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Abstract
This study analyzed the relationship between landscape
homogeneity and fire hazard for a certain area and time
period (1984 to 1995), by using logit models. Homogeneity
was measured though eight texture measurements computed
on visible and NIR bands of Landstat-5 TM data with varying
kernel sizes. Several significant models could be developed to
predict future burning at the pixel level for the study period.
The best spectral band for detecting proneness to burn was
TM1, the blue band, and best results were achieved with large
window sizes and the Homogeneity texture measure.

Introduction
The spatial and temporal occurrence of wildfire in any area is
determined by the geographical arrangement of fuel types and
their moisture condition, ignition sources, weather, and
topography (Kulakowski and Veblen, 2006). Hazard reduction,
or the “treatment of living or dead forest fuels to diminish the
likelihood of a fire starting, and to lessen the potential rate of
spread and resistance to control” (Merrill and Alexander,
1987), is the preferred, sometimes the only, line of action
available to fire managers. Fuel attributes such as dead/alive
matter ratios, flammability, canopy bulk density, canopy base
height, stand height, and many other physical, chemical and
structural variables (arrangement) must be considered in
studying fire hazard. Given the difficulty and expense of
measuring all required parameters in the field, fire managers
usually classify vegetation in a few fuel models for manage-
ment purposes (Arroyo et al., 2008). Each fuel model is
characterized by specific values of fuel depth, heat content of
fuel, or moisture of extinction values, for instance, which in
turn allow to model fire behavior (Rothermel, 1983).

The managerial application of fuel type classification
systems (Anderson, 1982) usually fails to recognize the
influence of fuel spatial patterns on fire ignition and propa-
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gation. A study by Jia et al. (2006) recently pointed at the
strong dependency of burned area and fire intensity upon the
spatial variability and type of fuels as they are arrayed across
the landscape. In Mediterranean countries, past fire history
and human activities have greatly modified both fuel type’s
distribution and condition (Farina, 1998). Pervasive land
abandonment processes in Southern Europe Mediterranean
countries have generally led to increased fuel loads and
greater landscape homogeneity, which has been put forward
as a relevant factor in the increment of fire incidence in
these countries (Moreira et al., 2001; Romero-Calcerrada and
Perry, 2002; Vega-García and Chuvieco, 2006).

In the evaluation of fire hazard through fuel type
classification in the Mediterranean, large tracks of land may
be classified as just one fuel type, posing a very serious
problem when management must efficiently place costly
prevention actions. Management must be spatially efficient
because fuel treatments for hazard reduction are very
expensive, a common problem to all Mediterranean moun-
tainous areas. Additional spatial information is needed, with
a good coverage at the landscape level, beyond the fuel type.

Remote sensing techniques have proven to be very useful
for fuel type classification and mapping (i.e., Riaño, 2002;
Burgan et al., 1998), as well as to monitor fuel status such as
dead or live fuel moisture content (i.e., Chuvieco et al., 2004),
but they have rarely been used for measuring specific geo-
graphical patterns of fuel arrangements, which are potentially
relevant in the wildfire process, such as horizontal continuity
(homogeneity). Recent studies (Andersen et al., 2005; Jia et al.,
2006; Kayitakire et al., 2006; Mutlu et al., 2007’ Riaño et al.,
2003b; Saatchi et al., 2007; Skowronski et al., 2007) have
focused on airborne scanning laser systems (lidar, SAR) or
high-resolution satellite data (QuickBird, Ikonos-2) to estimate
the spatial distribution of forest fuel types and parameters
(biomass, fuel load, crown bulk density) and local forest
structure (fractional cover, tree height, basal area), but these
important tools for wildfire management are not yet available
for most management agencies (Skowronski et al., 2007) and
present coverage problems for large areas. On the other hand,
the Landsat program (especially after Thematic Mapper (TM)
was launched) has been providing valuable moderate-resolu-
tion land-cover data for over 30 years, allowing the historical
study of many terrestrial processes (Boucher et al., 2006;
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Helder et al., 2008), and characterization of both forest stand
attributes (i.e., Franklin et al., 2003) and fuels (i.e., Riaño
et al., 2002 ). This data source was chosen for our study.

Historical fire occurrence has been modeled before in the
Mediterranean and elsewhere, usually from fuels, weather,
topographic and geographic or socioeconomic factors input
into a dedicated GIS (i.e., Vega-García et al., 2008; Zhai et al.,
2003), often using satellite data to map important parameters
of wildfire risk (i.e., Chuvieco, 2003; López et al., 2002).
Recent studies by Lozano et al., (2007 and 2008) included
several spectral indices (Normalized Difference Vegetation
Index, Normalized Difference Moisture Index, Normalized
Burned Ratio, and Tasseled Cap Transformation features on
Landsat data) together with other topographic and geographic
data in their yearly models of fire occurrence.

All these valuable approaches to fuel typing and the fire
occurrence prediction problem using remote sensing data
remain “vertical”, in the sense that they lack a specific consid-
eration of the influence of the surrounding fuel landscape
pattern on local fire occurrence. Since fuel units in a landscape
rarely burn in isolation, the spatial pattern of fuels around a
fuel unit (pixel) does matter. In fact, landscape configuration
measured through different indices (patch density, mean patch
size, and Shannon diversity index) was found to be an impor-
tant parameter in wildfire occurrence before (Lloret et al.,
2002). The studies by Lozano et al. (2007 and 2008) found a
high explanatory power for a variable measuring heathland
frequency in a 7 � 7 Landsat TM pixel kernel, but the authors
referred to this variable as “describing vegetation type,” and
did not comment on the contextual value of the information
and the obvious implications for fire proneness in a pixel
surrounded by a highly hazardous fuel class.

A previous study in the Alto Mijares area, in Spain,
suggested that local homogeneity alone could be used to
predict future fire occurrence within a 15-year period with a
65 percent accuracy, in small areas (30 m � 30 m Landsat
pixels) (Vega-García and Chuvieco, 2006). Local homogene-
ity was evaluated through eight texture measurements
(Angular Second Moment, Homogeneity, Correlation,
Contrast, Dissimilarity, Entropy, Mean, Standard Deviation)
(Conners and Harlow, 1980; Haralick et al., 1973; Haralick,
1979) applied to the near infrared (NIR) bands of four
Landsat images, with a 25 � 25 kernel size for computation.

The potential influence of a different kernel size or an
alternative band selection on further improving the predic-
tions remained unexplored in the Vega-Garcia and Chuvieco
(2006) paper, so the goal of the present study was to evalu-
ate the influence of kernel size and Landsat-5 TM band
selection on the capability of the same eight texture meas-
ures to estimate probability of pixel burning within a 12-
year prevention planning period, in the same study area. It
must be noted, though, that it was not the goal of this study
to develop predictive models of fire occurrence for the area,
which would necessarily include other factors besides fuel
homogeneity. The goal was to test the relative explanatory
value of eight texture measures on fire occurrence predic-
tion, when their computational parameters varied, with a
view to a future inclusion of more effective landscape
homogeneity variables into broader models.

By doing so, we focused on the spatial arrangement of
fuels around a pixel and intended to evaluate the influence
of local conditions on its proneness to burn. The relationship
between the fuel type and the Landsat spectral and spatial
characteristics of the top layer of the vegetation canopy had
been explored by other authors (i.e., Burgan et al., 1998;
Riaño et al., 2002; Arroyo et al., 2008). Our interest was in
the local spatial pattern of the remotely sensed vegetation
canopy structure not only because canopy structure con-
tributes to fuel type classification (a relationship used in the

past to produce fuel type maps), but because it also deter-
mines fire spread. Given similar fuel types and general high
hazard conditions in many Mediterranean areas, we hypothe-
sized that horizontal continuity of fuels (fuel homogeneity)
aggravate the fire spread probability and the general high
hazard. Local spatial pattern influences the probability that a
pixel is burned: higher homogeneity implies more similar
vegetation structures are repeated locally, producing higher
continuity in the already hazardous Mediterranean canopy
and favoring the spread of fires.

In the development of an invertible reflectance model
for conifers, Li and Strahler (1985) found that interpixel
variance was related to canopy structure: size, shape and
spacing of trees. Woodcock and Strahler established in
1987 that at the spatial resolution of TM images, local image
variance is relatively high for forested environments, suggest-
ing that information-extracting techniques utilizing texture
are appropriate for this sensor. Canopy spatial patterns that
determine local fuel homogeneity can be measured using
texture analysis based in the Grey-Level Co-Occurrence
Matrix (Haralick, 1979), and this fact has long been exploited
by remote sensing. Other authors have used texture indices
to measure the effects of fire on landscape pattern (Chuvieco,
1999). By using texture to measure the spatial pattern of
the remotely sensed vegetation canopy around a pixel
(fuel homogeneity), we made it a surrogate variable for
fire contagion likelihood and proneness to burn.

This study purposely dealt with fuel hazard and not with
other variables in the fire environment, because fuels may be
modified by management, as stated before. If we can identify
higher-hazard-homogeneous areas through a simple method
that does not involve extensive field work (i.e., texture in
remote sensing), the results would greatly help managers
devising landscape-level strategies for hazard reduction.

Materials and Methods
Abundant digital information on topography, vegetation (fuels),
and fire history was available for the rural and mountainous
Mediterranean area of the Alto Mijares (Castellón, Comunidad
Valenciana) from the study by Vega-García and Chuvieco
(2006). In this interior area of 672.3 km2, fire behavior Fuel
Model 4 (Anderson, 1982; Rothermel, 1983), covered roughly
70 percent of the coarse-grained landscape created by land
abandonment since the 50’s. Stands of mature shrubs and
closed pine stands with flammable foliage are typical candi-
dates for this model, the most hazardous, in which fast-
spreading intense fires “involve the foliage and live and dead
fine woody material in the crowns of a nearly continuous
secondary overstory”(Anderson, 1982). Mean patch size for
dense shrublands and Aleppo pine forest belonging to this
model in the Alto Mijares reached 11.5 and 13 ha, respec-
tively, but size variability was very large (Vega-García, 2003).

The field-based fire history database of fires larger than
5 ha in the study by Vega-García and Chuvieco (2006)
provided the dependent variable: if the pixel was burned in
the 1984 to 1995 period was coded as Y � 1, if not, it was
coded as Y � 0. The study period from 1984 to 1995 was
selected because by 1984 the human population was at the
lowest in the Alto Mijares, and most fuel load accumulation
had already taken place. Forest structure changed very little,
since no harvesting took place, and there was no reforesta-
tion. Landscape dynamics had become fire-driven (Vega-
García, 2003), but over this period fire suppression resources
remained stable. This period was the worst in the fire
history of the Alto Mijares, both in number of fires and in
area burned, and preceded in time a Fire Prevention Plan for
the region (Tragsatec, 1996) which would later imply the
construction of an extensive fuelbreak network. Figure 1
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displays the location of the 38 fires larger than 5 ha
occurred in the Alto Mijares between 1984 and 1995. Out of
the 38 fires in the period only nine were larger than 200 ha.
One fire burned more than 19,000 ha in 1994. This size

variability, common to any fire regime, suggested that a
sufficiently wide range of fire conditions were accounted
for. There were some relatively wet years and some rela-
tively dry years in the study period, but none out of the
ordinary for this Mediterranean area. After 1995, very few
fires have taken place, but it is expected that conditions
similar to past will develop in the near future (after 2010),
based on observed vegetation recovery patterns and known
vegetation dynamics in the region (Roselló-Gimeno, 1994).

A cloud-free Landsat-5 TM image (path/row 199/032)
acquired the 19 July 1984, and geometrically corrected (UTM
Zone 30T, European Datum 1950) with control points and a
nearest-neighbor algorithm, was converted to radiance values
using standard calibration values (Price, 1987). The dark-
object algorithm by Chavez (1996) was used to remove
atmospheric dispersion. The c-correction method (Teillet
et al., 1982) modified by Riaño et al. (2003a) was applied to
the image to remove shadowing effects caused by the abrupt
topography (32 percent average slope). Figure 2 displays
bands TM3 and TM4 after corrections.

Eight texture measures or indices defined by Haralick
et al. (1973), Haralick (1979), and Conners and Harlow
(1980) (Table 1) were then calculated for each pixel (30 m
� 30 m) in bands TM1, TM2, TM3, and TM4 of the 1984
reflectance image, corresponding to the Blue, Green, Red,
and NIR, respectively, regions of the spectrum. Angular
Second Moment, Homogeneity, Correlation, Contrast,
Dissimilarity, and Entropy are considered the six most
relevant texture measurements for remote sensing data
analysis out of the fourteen originally defined by Haralick
et al. (1973) (Kayitakire et al., 2006). Mean and Standard
Deviation values have also been used before in texture
assessment (Tso and Mather, 2001; Tuominen and
Pekkarinen, 2005; St-Louis et al., 2006). We used the
TEX command in the PCI software (PCI, Inc., 1997) for
computing these texture indices. For any local window
of a certain size (centered at a reference pixel), the

Figure 1. Perimeters of fires over 5 ha in the period
1984 to 1995 in the Alto Mijares study area.

(a) (b)

Figure 2. (a) Band TM3-Red of the 1984 Landsat-5 image, and (b) Band TM4-NIR of the 1984 
Landsat-5 image.
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command computes texture measurements derived
from the co-occurrence matrix of reflectance values
(the Grey Level Co-occurrence Matrix (GLCM) or grey-tone
spatial-dependence matrix after Haralick et al., 1973), a
two-dimensional histogram of digital (reflectance) counts
for a pair of adjacent pixels which are separated by a
fixed spatial relationship (the displacement value, �) and
an angular spatial relationship (the direction parameter,
� � 0, 45, 90, and 135 degrees). The GLCM matrix of
relative frequencies approximates the joint probability
distribution of any such pair of pixels in the window.
Haralick et al. (1973) stated that the GLCM “describes
how often one gray tone will appear in a specified spatial
relationship to another grey tone on the image.” In our
case “grey tones” were reflectances and “images” were
windows of variable size placed in order over all pixels
in each band of the 1984 image. For a good approximation,
the number of different digital values must be relatively
few, and window size must be relatively large (PCI, Inc.,
1997). A study by Tuominen and Pekkarinen (2005)
experimented with different digital ranges for Angular
Second Moment, Contrast, Correlation, Entropy and
Homogeneity to relate texture measurements and forest
stand volume, finding that best correlations were achieved
with 14 to 16 different digital classes in ten out of fifteen
models. Marceau et al. (1990) found that this quantization
level had very little impact in texture measurements
performance for improving land cover classification. For
this reason, we reduced the original range of reflectance
values to 16 classes, using an adaptive nonlinear scaling
method (PCI, Inc., 1997) which preserved the shape of the
original histogram and was robust against a few extreme
outliers in the input reflectance image of 1984.

A key parameter in the texture measurements is the size
of the window (kernel) from which the texture indices are
computed. Marceau et al. (1990) tested the influence of
seven window sizes on land-cover classification accuracy
and found that for each land-cover a window size existed
that maximized classification accuracy. There are not
objective methods to compute the ideal size of this kernel.
Many authors do not justify the choice of a window size,
i.e., 3 � 3 on Landsat and SPOT data for estimating forest
stand attributes in Cohen and Spies (1992). Frequently, trial
and error methods are used and several kernel sizes are
computed and compared (Kayitakire et al., 2006). In this
study four kernel sizes were used for computation of the
texture indices: 5 � 5, 15 � 15, 25 � 25, and 35 � 35
pixels. These kernel sizes allowed the evaluation of fuel
conditions in squared areas around each pixel ranging from
its near-neighborhood to relatively wide regions, measuring
respectively 2.25, 20.25, 56.25, and 110.25 ha. Since mean
patch size for dense shrublands and Aleppo pine forest
(Fuel Model 4 in the Alto Mijares) reached on the average

11.5 and 13 ha, respectively (Vega-García, 2003), kernel size
was also considered to be theoretically related to intra-patch
conditions for the smaller kernel and to inter-patch condi-
tion for the larger ones.

A decision to use the three visible and the near-infrared
band from the Thematic Mapper sensor was based in the
statement by Haralick et al. (1973) and Haralick (1979) about
the inextricable relationship between tone and texture in
any image. Tonal properties influence texture measurements
results. Since different bands in a Landsat image exhibit
varying reflectance (tonal) values, texture indices would
vary accordingly with band selection. Given the current state
of most space-based Earth observation programs and the
increasing availability of multi-spectral and hyper-spectral
images from different sensors, we considered that a discrimi-
nation of at least the spectral regions of interest among the
blue, green, red, and infrared dominions would facilitate
future studies of fire proneness based on local homogeneity
measures. Bands TM5 and TM7 (shortwave infrared and mid-
infrared) were not used because water contents were
relatively variable from year to year and seasonally in the
area (for instance, 1991 was a wet year with precipitation a
bit over 600 mm, 1995 was a dry year with a bit less than
400 mm). Because the Mediterranean vegetation in the area
is well adapted to normal weather conditions, spectral
signatures did vary very little between years, especially in
bands TM1 (blue), TM2 (green), and TM3 (red). An analysis
using four dates (1984, 1991, 1995, and 1998) in Vega-García
(2003) exhibited slight changes with yearly conditions by
bands TM4 (near-infrared), TM5 (shortwave infrared), and
TM7 (mid-infrared), making them less desirable for our
study, since we were looking for stability in the data,
reflecting structural characteristics, not inter-annual varia-
tion in vigor or water content. We considered band TM4
should not be excluded because of its general importance
in vegetation studies.

Therefore, local homogeneity was calculated for four
kernel sizes, for each of the four TM bands, and for each of
the eight texture measures, rendering 128 texture images of
the Alto Mijares area for analysis (4 kernels � 4 bands � 8
texture indices). Figure 3 illustrates two examples of these
spatial operations.

The displacement parameter was set to one (� � 1),
in order to test for homogeneous contiguity conditions in
fuels. Also, studies by Tuominen and Pekkarinen (2005)
and Kayitakire et al. (2006) suggested that short lags (a few
meters) performed better in forest stand features extraction.
The direction parameter (�) was held invariant, since our
previous knowledge of the area did not indicate the exis-
tence of preferential fire spread patterns. Kayitakire et al.
(2006) found the direction parameter had minimal effects
in modeling forest structure parameters, though they
used high resolution Ikonos-2 data. Directional invariance

TABLE 1. DEFINITION OF TEXTURE INDICES

Variable Description

Homogeneity* SUM (i,j�0,N�1)(P(i,j)/(1�(i�j)**2))
Contrast SUM (i,j�0,N�1)(P(i,j)*(i�j)**2)
Dissimilarity SUM (i,j�0,N�1)(P(i,j)*ƒi�jƒ)
Mean SUM (i,j�0,N�1)(i*P(i,j))
Standard Deviation SQRT (Var_i), where Var_i � SUM(i,j�0,N�1)(P(i,j)*(i � Mean_i)**2)
Entropy SUM (i,j�0,N�1)(�P(i,j)*LOGe(P(i,j))), assuming that 0*LOGe(0) � 0
Angular Second Moment* SUM (i,j�0,N�1)(P(i,j)**2)
Correlation* SUM (i,j�0,N�1)(P(i,j)*(i�Mean_i)*(j�Mean_j))/SQRT(Var_i*Var_j)

*The values of these variables increase with homogeneity in the local window
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was achieved by computing the GLCM at four directions,
horizontal, vertical, and diagonal (0, 45, 90, and 135°),
and summing them before texture calculation. A detailed
definition of each texture measure based on GLCM computa-
tion may be found in the paper by Haralick et al. (1973)
where the textural features were originally defined.

One percent (10,856 observations) of all pixels in each
image was randomly sampled for statistical analysis. Pixels
were sparsely distributed over the study area (672.3 km2),
apart from each other, so that the kernels applied for texture
computation would not overlap, and spatial correlation
problems would be basically avoided. Data was randomly
split in two datasets, 80 percent of the data (8,685 pixels,
including 3,331 fire observations and 5,354 no-fire observa-
tions) were used for model building and 20 percent (2,171
pixels, including 864 fire observations and 1,307 no-fire
observations) were separated for validation purposes.
Sampling was avoided in all non-combustible areas (urban
areas, water, roads, irrigated and fallow land) which had
been previously identified by Vega-García (2003).

Local homogeneity (texture) variables were investi-
gated through descriptive statistics, and a general correla-
tion analysis was performed among all variables. Very
high correlation values were to be generally expected
among all variables, due to their mode of generation from
same or similar co-occurrence matrices and bands close by
in the visible and near-infrared regions of the spectrum,
belonging to a same image. Due to this fact, the statistical
modeling of the expected relationships between future fire
occurrence and local homogeneity would admittedly suffer
from multicollinearity problems, if all independent
variables were input into the models. But this was not
intended, since the purpose of the study was specifically
the evaluation of kernel size and band selection factors in
the explanatory capability of the different texture meas-
ures. The stated objective required to build univariate
models anyways, to compare the performance of the
different texture measures as a function of band selection
or window size.

The dichotomous nature of the dependent variable
(burned/unburned in the next 12 years) led us to select
the logit model (Cox and Snell, 1989; Ben-Akiva and
Lerman, 1985) as best fitted for our analysis. The logit
model has been frequently used for fire occurrence predic-
tion (Loftsgaarden and Andrews, 1992; Vega-García et al.,
1995; Cardille et al., 2001; Preisler et al., 2004). Its advan-
tages have been reviewed elsewhere (Vega-García et al.,
1995). According to this model, the probability Pi that a
given pixel i will burn is given by:

Pi � P(Y � 1) � exp (Zi)/(1 � exp (Zi)) (1)

where Zi is a function of an independent texture variable Xi,
and b0 and b1 are the parameters to estimate, usually
through maximum likelihood methods (Maddala, 1988):

Zi � b0 � b1Xi. (2)

The probability that a pixel will not burn may be computed
subtracting Equation 1 from 1 and simplifying:

1�Pi � P(Y � 0) � 1/(1 � exp (Zi)). (3)

By dividing Equations 1 and 3 and applying natural loga-
rithms to both sides of the equation it is possible to obtain
the log-odds ratio of the two possible outcomes as a linear
function of any independent texture variable X:

ln (Pi/(1�Pi)) � Zi � b0 � b1Xi. (4)

For this study, 128 logit univariate models were developed
and tested, one for each of the texture measure-band-kernel
combination (Xi). Modeling was carried out with the LOGIS-
TIC procedure of the SAS v. 8.2 software (SAS Institute, Inc.,
1999).

Best models were evaluated and selected by means of
both their predictive capability and goodness of fit to the
data. For the latter, the Hosmer-Lemeshow goodness of fit
test (Hosmer and Lemeshow, 1989) was used. Predictive

(a) (b)

Figure 3. (a) Entropy texture measure computed on TM1-Blue band with a kernel size of 15 pixels �
15 pixels, and (b) Homogeneity texture measure computed on TM1-Blue band with a kernel size of 
35 pixels � 35 pixels.
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capabilities were tested using a 2 � 2 classification table of
observed and predicted responses (SAS Institute, Inc., 1999).
For the best models, the ROC (Receiver-Operating Character-
istic) plot (Stephens and Finney, 2002) was generated and
analyzed to determine the best probability level or cut-off
point to segregate observations into likely or unlikely events
(future pixel burn yes/no). The c-value (area under the ROC
curve) was also consulted as a measure of predictive
effectiveness and model fit (Lozano et al., 2007). Estimated
parameter significance was evaluated with the Chi square
test and Wald statistic (the squared ratio of the Bi coefficient
by its standard error) (Ben-Akiva and Lerman, 1985), which
is a test of the null hypothesis that a particular coefficient is
zero (Wald Chi-square).

Results
The correlation analysis confirmed the need to build
univariate models in this case. All texture variables (128)
were very highly correlated. In all cases texture variable
correlations were higher than 0.4, and in the majority of
cases were higher than 0.7 in absolute value.

Several significant models could be developed to
predict future burning at the pixel level for the study period
(1984 to 1995), based in local homogeneity values measured
on 1984 data (the Landsat TM image) through the texture
measures of this study. However, conditions of estimated
parameters significance (p �0.05) with significant goodness
of fit (Hosmer-Lemeshow, 1989) and c-value 	0.6 were
achieved only by five models out of 128 (Table 2).

Band TM1 (Blue) was predominant in this group with
four models, the fifth being based on band TM3 (Red).
Homogeneity (four models) was the leading texture index,
followed by Entropy (1 model). Angular Second Moment,
Contrast, Correlation, Dissimilarity, Standard Deviation, and
Mean were absent from this group of selected models. Signs
of the significant estimated parameters were as expected
according to the theoretical definition of the texture meas-
urements; Homogeneity showed a positive relationship with
proneness to burn, and this relationship was negative for
Entropy. All window sizes were present, but the larger

seemed to be associated to better performances in the best
models.

Only three models obtained a c-value (area under the
ROC curve) over 0.65. The best three logit models corre-
sponded to the Homogeneity index computed on band TM1-
blue with the larger window sizes, 35 � 35, 25 � 25 and
15 � 15 pixels, and by that order. The significance tests for
the estimated parameters in the best logit model (c-value
0.71, Chi-square 11.95, p � 0.1531) are presented in Table 3.

The predictive capability of this model reached a
67.9 percent total percentage correctly predicted at the
midpoint (0.5) value of the logistic function, which is
customarily applied in most analysis (Table 4). The model
predicted better the pixels that would not burn (85 percent
correct), than those which would be burned (41 percent).
However, a different probability level could be used
(Jamnick and Beckett, 1987) depending on management
objectives, e.g., to reduce false alarms, or improve detection
of fire-prone areas. By selecting a probability level of 0.4,
for instance, the total percentage correctly predicted
decreased just slightly, to 66.3 percent, but correct predic-
tions in fire-prone/no-fire-prone areas were more balanced,
58.9 percent and 70.8 percent, respectively.

Discussion and Management Implications
Several significant univariate logit models were built to
explain future fire occurrence in the Alto Mijares based on
several texture measures of landscape homogeneity. Overall
accuracy of the best model (66 to 68 percent) was similar
to those found by other authors (e.g., 68 to 72 percent:
Lozano et al., 2007; 65 percent: Vega-García and Chuvieco,
2006), but this model contained just one variable, Homo-
geneity, with a positive sign in the significant estimated
coefficient. This model supported the relationship between
homogeneity conditions of fuels in a wide local window
(35 pixels � 35 pixels; 110.25 ha) and wildfire occurrence.
The relationship found suggests that important canopy
structural characteristics can be discriminated from surro-
gate measures such as texture (St-Louis et al., 2006), in this
case, fuel continuity.

TABLE 2. VALUES OF C AND P PARAMETERS FOR THE BEST MODELS

Band Texture M. kernel size c (ROC curve) p (H-L)

band TM1 HOMOG 35�35 0.71 0.1521
band TM1 HOMOG 25�25 0.698 0.4452
band TM1 HOMOG 15�15 0.679 0.2336
band TM3 HOMOG 5�5 0.642 0.1322
band TM1 ENTROPY 15�15 0.606 0.4474
band TM3 DISIM 5�5 0.569 0.3364
band TM1 DISIM 5�5 0.564 0.4240
band TM3 ENTROPY 5�5 0.563 0.2299
band TM1 ENTROPY 5�5 0.556 0.0797
band TM2 ENTROPY 5�5 0.556 0.6692
band TM4 ENTROPY 35�35 0.552 0.2138
band TM4 ENTROPY 25�25 0.544 0.1389
band TM4 CORREL 5�5 0.523 0.3017

TABLE 3. ESTIMATED PARAMETERS: VALUES AND WALD CHI-SQUARE SIGNIFICANCE TESTS

Parameter DF Coefficient Standard Error Wald Chi-square Pr 	 ChiSq

Intercept 1 �9.7079 0.2972 1067.255 �.0001
Homog35TM1 1 16.7408 0.5349 979.4992 �.0001
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Band Selection
Model results indicated that the best spectral band for
detecting proneness to burn was TM1, the blue band;
although the TM3 (Red) band may also be an important
spectral region for estimation of fire proneness. These results
seemed to be at variance with other studies, which have
generally favored a priori spectral indices computed from
the NIR and red bands (e.g., Lozano et al., 2007), but they
did agree with the design characteristics of the Landsat TM
bands. TM2 was designed to detect green reflectance from
healthy vegetation, TM3 for chlorophyll absorption in
vegetation, and TM4 for detecting near-IR reflectance peaks in
healthy green vegetation; but the fact is that TM1 was
designed for distinguishing forest types and for soil-vegeta-
tion differentiation (Earth Observation Satellite Company,
1994). The lowest reflectance values for vegetation occur in
the blue waveband (Tso and Mather, 2001) and bare soil
reflectance is greater than that of the vegetation in the
visible bands. Both forest types and soil-vegetation patterns
examined in the blue spectral region should be expected to
be directly related to fuel type and distribution, and conse-
quently, to fire hazard. Also, the blue band is the most
influenced by dispersion, which could produce higher
shadow variability than in other bands.

The study by Lozano et al. (2007) found good results
for spectral indices based on SWIR (shortwave-infrared, TM7)
and MIR (mid-infrared, TM5) wavelengths, which they
attributed to their relationships with moisture content in
vegetation and soil and a better capability than visible
bands to penetrate thin clouds and smoke. Tasseled Cap
Wetness-based models, which included the visible bands,
had the best goodness-of-fit, while the Greenness factor
showed little explanatory value.

These results suggest a need to critically examine the
best spectral domain for fire occurrence prediction in future
studies. Spectral regions related to forest type discrimination
could be more useful for hazard evaluation and wildfire
occurrence prediction in fire-prevention time frames (several
years) than bands in the domain designed for vegetation
activity monitoring and biomass estimation, which are
probably more useful in fire-suppression time frames
(several days); but this aspect was not covered in this paper.

Window Size
All window sizes were present in the prediction models, but
only one model had the 5 � 5 kernel, in the same order of
magnitude than the results by Lozano et al. (2007) regarding
the good predictive power of a percentage-of-heath contex-
tual variable computed with a 7 � 7 kernel. Best models,
though, exhibited large window sizes, an in descending
order within the same spectral domain and texture measure,
which suggested a clear pattern in the Alto Mijares where
local fire proneness increases with areas of surrounding
homogeneous fuel of at least 100 ha.

Most texture measures exhibited somewhat different
values for the small kernel size (5 pixels � 5 pixels; 2.25 ha)
than for the rest. Since fuel mean patch size was 11 to 13 ha

in this landscape, the difference in values may be explained
by the fact that the 5 � 5 kernel was mainly linked to intra-
patch texture, while the other kernels (	20.25 ha) were
connected to inter-patch texture. The small window size
would capture the influence of the internal structural
variation of each fuel type patch on the wildfire process,
while the larger windows would be associated to fuel type
pattern in the landscape.

Texture Index
The predominant texture index in the significant models
was Homogeneity, but Entropy was selected in one model.
Correlation and Entropy were found the most relevant for
land-cover classification by Rao et al. (2002). Homogeneity
was selected in the best model, however. Homogeneity was
found to perform well in forest age discrimination on Ikonos
data by Franklin et al. (2001), but no other texture measure-
ments were evaluated by these authors.

It is remarkable that Angular Second Moment, Contrast,
Mean, and Standard Deviation were absent from the group of
selected models. These results apparently differed from
findings in Vega-García and Chuvieco (2006), where Angular
Second Moment and Standard Deviation were found to be
very important variables for fire prediction. However, the
models in that study were artificial neural networks and they
were not univariate, a pool of texture measures would always
be input into the networks. When input to the nets, Angular
Second Moment would undergo a linear transform in most
cases, and Standard Deviation would be transformed by a
hyperbolic transfer function. Therefore, it is important to
indicate that the explanatory value of independent variables is
determined by the modeling technique, in our case, the logistic
regression analysis. Other techniques may be able to detect
non-sigmoid patterns in the data and select other texture
measurements. In any case, Angular Second Moment and
Homogeneity were variables very highly correlated and both
increased with grey-level homogeneity in the local window.
Both Homogeneity and Angular Second Moment were recom-
mended by Solberg (1999) as best for forest map revision.

Why would the Homogeneity index be the most inform-
ative in this particular case? The information content of
each measure depends “on the type of image analyzed with
regards to the spectral domain, spatial resolution and
characteristics of the sensed objects (dimension, shape and
spatial distribution)” (Kayitakire et al., 2006). Here, all
measurements pertained to the same image and, therefore,
characteristics of sensed objects, the fuel patches, were the
same. Though absolute values of the texture measures do
not have a physical meaning by themselves, it was our
stated goal to particularly evaluate the relative influence of
kernel size and Landsat-5 TM band selection on the values
and the capability of the texture measures to estimate
probability of pixel burning. By keeping spectral domain
invariant and varying the kernel size, local influence on
information content could be inferred, and alternatively, by
keeping kernel size fixed spectral domain effects could be
assessed.

TABLE 4. CLASSIFICATION TABLE FOR THE BEST LOGIT MODEL, AT DIFFERENT PROBABILITY LEVELS

Correct Incorrect Percentages
Probability
Level Event Non-Event Event Non-Event Correct Sensitivity Especificity False Posit. False Negat.

0.400 1961 3793 1561 1370 66.3 58.9 70.8 44.3 26.5
0.500 1356 4541 813 1975 67.9 40.7 84.8 37.5 30.3
0.600 847 4960 394 2484 66.9 25.4 92.6 31.7 33.4
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TABLE 5. CLASSIFICATION TABLE FOR THE BEST LOGIT MODEL, AT DIFFERENT PROBABILITY LEVELS, FOR THE VALIDATION DATA

Correct Incorrect Percentages
Probability
Level Event Non-Event Event Non-Event Correct Sensitivity Especificity False Posit. False Negat.

0.400 497 954 353 367 66.8 57.5 73.0 41.5 27.8
0.500 348 1113 194 516 67.3 40.3 85.2 35.8 31.7
0.600 227 1229 78 637 67.1 26.3 94.0 25.6 34.1

The plots of mean values for each measure-band-kernel
size combination contributed to clarify the favorable results
for Homogeneity, and also for Entropy, second to it. Figure 4
shows the variation of mean values of Homogeneity and
Entropy, with spectral band and window size.

The analysis of these plots provided evidence that both
Homogeneity and Entropy behaved as could be theoretically
expected according to their definitions. Most of the Alto
Mijares area is covered by Fuel Model 4, but this type
may include in fact several vegetation classes (Vega-García,
2003), and the topography is highly fractured, causing
complex local patterns. Even though spectral vegetation
characteristics in relation to topographic attributes vary
across geographic space and spatial scales (Deng et al.,
2007), increased window size should reveal more hetero-
geneity for all texture measures in the Alto Mijares. The
texture measures were defined as functions of the statistical
distribution of the spatial relationships of grey-level
(reflectance) properties. Should the textures be coarse, the
statistical distribution would change little with distance;
should they be fine (heterogeneous), the distribution would
change rapidly with distance (Aksoy and Haralick, 1998).
The fuel patterns in the Mijares area could be defined as
relatively coarse at the Landsat image resolution, so they
should be expected to become more heterogeneous with
window size but with changes of small magnitude in
texture values.

Homogeneity and Entropy values did agree with
theoretical trends. The fact that their plots exhibited an
asymptotic trend with larger window sizes also agreed
with findings by Kayitakire et al. (2006), denoting that
the texturing objects sizes of interest with regard to fuel
hazard (patches) were reached at these window sizes.
Information content would be similar at the three larger
window sizes, explaining the comparable results in 
their models, for the blue band. The blue band in the

Homogeneity plot clearly separated from the rest, indicat-
ing a different behavior of this measure in this spectral
region.

We concluded that for this Landsat-TM image acquisi-
tion conditions and configuration of spatial objects (vegeta-
tion canopy/fuel patches), texture explanatory value varied
with computational parameters; both band (blue) and kernel
size (35 pixels � 35 pixels) played a significant role in
determining Homogeneity fitness to describe fuel hazard in
this landscape.

Applicability of the Results
Application of the Homogeneity model (blue band, 
35 � 35 kernel size) to the validation dataset produced a 
67.3 percent total correctly predicted at the midpoint
(probability level � 0.5) of the logistic function (Table 5).
By selecting a probability level of 0.4, the total percentage
correctly predicted slightly decreased to 66.8 percent, but
correct predictions in fire-prone/no-fire-prone areas were
more balanced, 57.5 percent and 73 percent, respectively.
These values were almost identical with those of the model
building data (Table 4), indicating a good generalization
capability of the model.

Even though this logit model could only be applicable
in this study site, for this image and correction techniques,
the procedures are simple enough to be applied in other
areas where a rapid assessment of fuel hazard allied to
homogeneous fuel-model conditions is required. However,
since texture is the structural arrangement of surfaces (tonal
primitives; Haralick, 1979), it depends on the spatial
resolution of the sensor and the size of the homogeneous
area being characterized.

Vegetation spectral response is linked to multiple
environmental factors (Deng et al., 2007), so if the area over
which texture is measured includes several fuel classes, the
measures may not be useful (Tso and Mather, 2001).

(a) (b)

Figure 4. Variation with band and kernel size for texture measurements: (a) Homogeneity, and (b) Entropy.
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The use of this approach would avoid some drawbacks
in the use of classified images for fuel hazard evaluation in
coarse-grained homogeneous fuel-type landscapes, which
may mask local pixel heterogeneity and increase processing
time (St-Louis et al., 2006), providing scarce spatial informa-
tion for fire prevention management.

In order to illustrate the outcome of this process, we
produced a map of probability of future wildfire occurrence
or proneness to burn for the Alto Mijares study area, by
applying the logit model to the Homogeneity image com-
puted on the blue band with a 35 � 35 kernel. Figure 5
displays two maps: the resulting probability map and a fuel
model map of the area, originated by a maximum likelihood
digital classification based on the six 30 m resolution bands
of the TM84 image plus the topographic variables, aspect,
slope, and elevation (Vega-García, 2003).

The availability of a fire hazard map derived from a
surrogate texture variable as Homogeneity (Figure 5b) can be
of help to fire managers facing extensive and expensive
silvicultural interventions, helping to more efficiently locate
fuel treatments than when they are based on fuel maps such
as the one in Figure 5a. Figure 6 shows the 78,760.44
hectares of Fuel Model 4 in the study area, sliced in proba-
bility of burn levels (deciles in this case) or categories of
fuel hazard, accordingly to the Homogeneity logit model of
this study. Examination of this map suggests that a unique
opportunity to anticipate and aid fuel treatments within the
most hazardous fuel in the Alto Mijares existed in 1984.

In 1996, after the great fires of 1993 and 1994 (32,334
ha in those two years) burned most of the southeast (and a
great part of the homogeneous areas), a fire prevention plan
was approved for the region based on a fuel type map of
1996 (Tragsatec, 1996). Isolated treatments were performed
along roads in the following years, but execution of the
main fuelbreak network did not start until recently, i.e., in
2004. Again, application of the best logit model to a Landsat
TM image acquired in 1995 and processed identically as the
1984 image (Vega-García and Chuvieco, 2006) could have
provided improved information on the homogeneity

characteristics of the most dangerous fuels, and aid this
planning (Figure 7).

The almost complete absence of large fires in the Alto
Mijares in the last years (only a 18 ha fire in 1997 and a
8 ha fire in 2001) may contribute to a perception that not
immediate action needs to be taken, but the expectation that
a few more years of vegetal succession will drive the
landscape to similar hazard conditions to those existing in
1984 still hold, advising that a higher resolution spatial
diagnosis tool is needed.

The inclusion of landscape homogeneity variables into
models of fire occurrence and in fire prevention planning
would allow considering specifically the influence of the
surrounding fuel landscape pattern on local fire occurrence,
adding more detailed spatial information to the fuel model
classification usually employed by managers. These vari-
ables may be critical in Southern Europe Mediterranean
countries under pervasive land abandonment processes were
landscape homogeneity has been put forward as a relevant
factor of higher fire incidence.

Conclusions
Homogeneity conditions in forest fuels do have an impact on
wildfire occurrence, according to this study. Fuel homogene-
ity in a wide local window of 110.25 ha around a Landsat-5
30 m pixel was found to increase its probability of burning in
a subsequent period of 12 years in the Alto Mijares, in
Mediterranean Spain. A significant logit model allowed
computing this probability with a 68 percent total percentage
correctly predicted based on the Homogeneity texture meas-
ure. We concluded that for this Landsat image acquisition,
conditions and configuration of spatial objects (fuels) texture
explanatory value varied with computational parameters; both
band (blue) and kernel size (35 � 35 pixels) determined
Homogeneity fitness to describe fuel hazard in this landscape
created by land abandonment. The availability of a fire
hazard map derived from a surrogate texture variable as
Homogeneity can be of help to fire managers facing extensive

(a) (b)

Figure 5. (a) Fuel type map of the Alto Mijares, and (b) Proneness to burn in the same area for the study
period 1984 to 1995 (in percentage).
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and expensive silvicultural interventions, helping to more
efficiently locate fuel treatments in areas where the usual fuel
type mapping does not provide sufficient spatial information
to optimize fire management action.
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