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Abstract. Thermoyphons, in the engineering literature, is a device composed of a
closed loop containing a fluid who motion is driven by several actions such as grav-
ity and natural convection. In this work we consider a viscoelastic fluid described
by the Maxwell constitutive equation. Their dynamics are governing for a coupled
differential nonlinear systems, and in several previous work we show chaos in the
fluid. This work is, a generalization of Proposition 2 in [11], and also in some sense,
a generalization of some previous results on standard (Newtonian) fluids obtained by
A. Rodrguez-Bernal and E.S. Van Vleck [21,22], when we consider a viscoelastic fluid.
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1 Introduction

Instabilities and chaos in fluids subject to temperature gradients have been the
subject of intense work for its applications in engineering and in atmospheric
sciences. The interest on this system comes both from engineering and as a toy
model of natural convection.

In the engineering literature a thermosyphon is a closed loop containing a
fluid whose motion is driven by the effect of several actions such as gravity and
natural convection.The flow inside the loop is driven by an energetic balance
between thermal energy and mechanical energy.

Here, we consider a thermosyphon model in which the confined fluid is
viscoelastic. This has some a-priori interesting peculiarities that could affect
the dynamics with respect to the case of a Newtonian fluid. On the one hand,
the dynamics has memory so its behavior depends on the whole past history
and, on the second hand, at small perturbations the fluid behaves like an elastic
solid and a characteristic resonance frequency could, eventually, be relevant
(consider for instance the behavior of jelly or toothpaste).

The simplest approach to viscoelasticity comes from the so-called Maxwell
model Morrison [18].

Viscoelastic behavior is common in polymeric and biological suspensions
and, consequently, our results may provide useful information on the dynamics
of this sort of systems inside a thermosyphon.
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In a thermosyphon the equations of motion can be greatly simplified because
of the quasi-one-dimensional geometry of the loop. Thus, we assume that the
section of the loop is constant and small compared with the dimensions of the
physical device, so that the arc length co-ordinate along the loop (x) gives the
position in the circuit. The velocity of the fluid is assumed to be independent of
the position in the circuit, i.e. it is assumed to be a scalar quantity depending
only on time. This approximations comes from the fact that the fluid is assumed
to be incompressible.

On the contrary temperature is assumed to depend both on time and posi-
tion along the loop.

The derivation of the thermosyphon equations of motion is similar to that
in Ref. keller [16] and are obtained in Yasappan and Jiménez-Casas et al. [14].
Finally, after adimensionalizing the variables (to reduce the number of free pa-
rameters) we get the followingo ODE/PDE system (see Yasappan and Jiménez-
Casas et al. [14] and Bravo-Gutierrez and Castro et al. [1]):

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
Tf,

∂T

∂t
+ v

∂T

∂x
= l(v)(Ta − T ) + c∂

2T
∂x2

(1)

with v(0) = v0,
dv
dt (0) = w0 and T (0, x) = T0(x).

Here v(t) is the velocity, T (t, x) is the distributions of the temperature of
the viscoelastic fluid into the loop, G(v), is the friction law at the inner wall
of the loop, the function f is the geometry of the loop and the distribution of
gravitational forces. In this cases l(v)(Ta−T ) is the Newton’s linear cooling law
as in Jiménez-Casas and Rodŕıguez-Bernal [5–7], Yasappan, Jiménez-Casas et
al. [14], Morrison [18] , Rodŕıguez-Bernal and Van Vleck [21] or Welander [24],
where l represents the heat transfer law across the loop wall, and is a positive
quantity depending on the velocity, and Ta is the (given) ambient temperature
distribution.

In this case we consider also in the transport equation for the temperature
(beside of the Newton’s linear cooling law) a term of the diffusion given by

c∂
2T
∂x2 , where c is a positive constant which denoting the thermal diffusivity.
ε in Eq. (1) is the viscoelastic parameter, wich is the dimensionless version

of the viscoelastic time. Roughly speaking, it gives the time scale in which the
transition from elastic to fluid-like occurs in the fluid.

We assume that G(v) is positive and bounded away from zero. This function
has been usually taken to be G(v) = G0, a positive constant for the linear
friction case [16], or G(v) = |v| for the quadratic law [4,17], or even a rather
general function given by G(v) = g(Re)|v|,where Re is a Reynolds-like number
that is assumed to be large [22,23] and proportional to |v|. The functions G,
f, l and Ta incorporate relevant physical constants of the model, such as the
cross sectional area, D, the length of the loop, L, the Prandtl, Rayleigh, or
Reynolds numbers, etc see [23]. Usually G, l are given continuous functions,
such that G(v) ≥ G0 > 0, and l(v) ≥ l0 > 0, for G0 and l0 positive constants.

Finally, for physical consistency, it is important to note that all functions
considered must be 1-periodic with respect to the spatial variable, and

∮
=



∫ 1

0
dx denotes integration along the closed path of the circuit. Note that

∮
f =

0.
The contribution in this paper (section 3) is to prove that, under suitable

conditions, any solution either converges to the rest state or the oscillations of
velocity around v = 0 must be large enough. This result is a generalization of
the asymptotic behaviour proposed in [11] with c = 0 i.e. without diffusion of
temperature, when we consider a the thermal diffusivity c 6= 0, i.e with a term

of the diffusion given by c∂
2T
∂x2 .

Moreover, this result given by Proposition 2 generalizes, in some sense, the
some previous results proposed on standard (Newtonian) fluid in Rodŕıguez-
Bernal and Van Vleck [21,22] when we consider a thermosyphon model with a
one-component viscoelastic fluid.

2 Previous results about well posedness, global attractor
and inertial manifold

2.1 Well posedness and global attractor

First, we note that in this paper we consider the case in which all periodic
functions in Eq. (1) have zero average, i.e. we work in Y = IR2 × Ḣ1

per(0, 1),
where

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+ 1) = u(x)a.e.,

∮
u = 0},

Ḣm
per(0, 1) = Hm

loc(IR) ∩ L̇2
per(0, 1).

In effect, we observe that, if we integrate the equation for the temperature
along the loop, taking into account the periodicity of T , that is,

∮
(∂T/∂x) =∮

(∂2T/∂x2) = 0, we have that d
dt (
∮
T ) = l(v)

∮
(Ta−T ). Therefore,

∮
T →

∮
Ta,

exponentially as t→∞, for every
∮
T0.

Moreover, if we consider θ = T −
∮
T , then from the second equation of

system (1), we obtain that θ verifies the same equation of T replacing Ta, T0,
respectively by Ta −

∮
Ta, T0 −

∮
T0 with zero average.

Finally, since
∮
f = 0, we have that

∮
Tf =

∮
θf, and the equation for v

reads

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
θ.f, v(0) = v0,

dv

dt
(0) = w0. (2)

Thus, hereafter we consider the system Eq. (1) with
∮
T0 =

∮
Ta = 0 and∮

T (t) = 0 for every t ≥ 0.
Also, if c > 0, the operator −c(∂2/∂x2), together with periodic boundary

conditions, is an unbounded, self adjoint operator with compact resolvent in
L2
per(0, 1) that is positive when restricted to the space of zero average functions

L̇2
per(0, 1). Hence, the equation for the temperature T in (1) is of parabolic type

for c > 0.
Therefore, we can apply the result about sectorial operator of Henry [3] to

prove the existence of solutions of system (1). Moreover, if we consider some



aditionally hypothesis (H) to add for the friction G using in the technique
Lemma 5 in Yasappan and Jiménez-Casas [14], which are satisfied for all friction
functions G consider in the previous works,i.e., the thermosyphon models where
G is constant or linear or quadratic law, and also for G(s) ≡ A|s|n, as s→∞.
Then, we have the next result.

Proposition 1. We suppose that H(r) = rG(r) is locally Lipschitz, f, l ∈
L̇2
per(0, 1) l(v) ≥ l0 > 0 and Ta ∈ Ḣ1

per(0, 1). Then, given (w0, v0, T0) ∈ Y =

IR2 × Ḣ1
per(0, 1), there exists a unique solution of (1) satisfying

(w, v, T ) ∈ C([0,∞],Y) and (ẇ, w,
∂T

∂t
) ∈ C([0,∞), IR2 × L̇2

per(0, 1)),

where w = v̇ = dv
dt and ẇ = d2v

dt2 . In particular, (1) defines a nonlinear semi-
group, S(t) in Y, with S(t)(w0, v0, T0) = (w(t), v(t), T (t)).

Moreover, from (H) (see [14]) Eq. (1) has a global compact and connected
attractor, A , in Y. Also if Ta ∈ ×Ḣm

per(0, 1) with m ≥ 1, the global attractor

A ⊂ IR2 × Ḣm+2
per (0, 1) and is compact in this space.

Proof. This result has been proved in Theorem 3, Theorem 5 and Corollary 11
from Yasappan and Jiménez-Casas at al.[14].

2.2 Inertial manifold

In this section we assume also that G∗(r) = rG(r) is locally Lipschitz satisfying
(H) (see [14]), and f, Ta ∈ L̇2

per are given by following Fourier expansions

Ta(x) =
∑
k∈IZ∗

bke
2πkix; f(x) =

∑
k∈IZ∗

cke
2πkix; where IZ∗ = IZ − {0} ,

while T0 ∈ Ḣ2
per is given by T0(x) =

∑
k∈IZ∗ ak0e

2πkix.

Finally assume that T (t, x) ∈ Ḣ2
per is given by

T (t, x) =
∑
k∈IZ∗

ak(t)e2πkix where IZ∗ = IZ − {0} .

We note that āk = −ak since all functions consider are real and also a0 = 0
since they have zero average.

Now we observe the dynamics of each Fourier mode and from Eq. (1), we
get the following system for the new unknowns, v and the coefficients ak(t).{

εd
2v
dt2 + dv

dt +G(v)v =
∑
k∈IZ∗ ak(t)c−k

ȧk(t) +
[
2πkiv(t) + 4cπ2k2 + l(v(t))

]
ak(t) = l(v(t))bk

(3)

Assume that the given ambient temperature Ta ∈ Ḣm
per, are given by

Ta(x) =
∑
k∈K

bke
2πkix, and bk 6= 0 for every k ∈ K ⊂ IZ,



with 0 6= K, since
∮
Ta = 0. We denote by Vm the clousure of the subspace of

Ḣm
per generated by {e2πkix, k ∈ K}.

Then we have from Theorem 13 in Yasappan and Jiménez-Casas et al.[14]
the setM = IR2×Vm is an inertial manifold for the flow of S(t)(w0, v0, T0) =
(w(t), v(t), T (t)) in the space Y = IR2 × Ḣm

per(0, 1).
By this, the dynamics of the flow is given by the flow in M associated to

the given ambient temperature Ta. This is

{
εd

2v
dt2 + dv

dt +G(v)v =
∑
k∈K ak(t)c−k

ȧk(t) +
[
2πkiv(t) + 4cπ2k2 + l(v(t))

]
ak(t) = l(v(t))bk, k ∈ K

(4)

3 Complex oscillations

In this section we consider the linear friction law [16] where G(v) = G0, and
l(v) = l0 with G0 and l0 positive constants, and we consider the diffusion tem-
perature in the transport equation for the temperature, as we have commented
in the previous section 1.This is, we consider the thermal diffusivity c ≥ 0.

The aim in this section is to prove the Proposition 2, for this linear friction
case [16] when we consider the diffusion temperature. This way, we generalize
the result of thermosyphon model without diffusion temperature (c = 0)[11]
and also, in some sense, the result of thermosyphon models for Newtoniann
fluids of Rodŕıguez-Bernal and Van Vleck [21,22].

We note proving the Proposition 2, we get to generalize for this general
case with thermal diffusivity different to zero c > 0, the results which show
the complex oscillations, this is: under suitable conditions,for large time the
velocity reaches the equilibrium - null velocity -, or takes a value to make
its integral diverge, which means that either it remains with a constant value
without changing its sign or it will alternate an infinite number of times so the
oscillations around zero become large enough to make the integral diverge.

3.1 Reduced subsystem for the relevant temperature coefficients

First of all, we note that hereafter, we consider de functions Ta(ambient tem-
perature) and f(the function associated to the geometry of the loop), are given
by the following Fourier expansions

Ta(x) =
∑
k∈K

bke
2πkix, f(x) =

∑
k∈J

cke
2πkix, (5)

where
K = {k ∈ IZ∗/bk 6= 0} , J = {k ∈ IZ∗/ck 6= 0} with IZ∗ = IZ − {0}.

Next, from the equations Eq.(3), regarding the right hand side of the first
equation, we can observe that the velocity of the fluid is independent of the
coefficients for temperature ak(t) for every k ∈ IZ∗ − (K ∩ J).

That is, the relevant coefficients for the velocity are only ak(t) with k be-
longing to the set K∩J. This important result about the asymptotic behaviour



has been proved in Propositions 14 and 15 from Yasappan and Jiménez-Casas
at al.[14].

We also note that 0 /∈ K ∩ J and since K = −K and J = −J then the set
K ∩ J has an even number of elements, which we denote by 2n0, where n0 is
the number of the positive elements of K ∩ J , (K ∩ J)+.

Moreover the equations for a−k are conjugates of the equations for ak and

therefore we have
∑
k∈K∩J ak(t)c−k = 2Re(

∑
k∈(K∩J)+

ak(t)c−k).

Thus, ∮
Tf = 2Re(

∑
k∈(K∩J)+

ak(t)c−k). (6)

with āk = −ak since all functions consider are real and also a0 = 0 since
they have zero average. From Eq. (1), we get the following system for the new
unknowns, v and the relevant coefficients ak(t).{

εd
2v
dt2 + dv

dt +G(v)v =
∑
k∈(K∩J)+ ak(t)c−k

ȧk(t) +
[
2πkiv(t) + 4cπ2k2 + l(v(t))

]
ak(t) = l(v(t))bk, k ∈ (K ∩ J)+

(7)

3.2 Result about complex oscillations

In order to prove the Proposition 2, we consider the following Lemma which
have been proved in [11].

Lemma 1. We consider the linear equation given by

ε
d2v

dt2
+
dv

dt
+G0v = I(t), (8)

then there exist vp(t) particular solution of (8) such that

limsupt→∞|vp(t)| ≤ limsupt→∞|I(t)| (9)

and

liminft→∞|vp(t)| ≥ liminft→∞|I(t)| (10)

Proof. See Lemma 1 pag 250 in [11]

Proposition 2. We consider the linear friction case, i.e. G(v) = G0, and
l(v) = l0 with G0 and l0 positive constants and with the thermal diffusivity
c ≥ 0.

i) if K ∩ J = ∅, then the global attractor for system Eq. (1) in IR2 ×
Ḣ1
per(0, 1) is reduced to a point {(0, 0, θ∞)}. This is, for every (w0, v0, T0) ∈

IR2×Ḣ1
per(0, 1), one has that the associated solution verifies (w(t), v(t), T (t))→



(0, 0, θ∞) in IR2 × Ḣ1
per(0, 1) as t→∞; where θ∞(x) is the unique solution in

Ḣ2
per(0, 1) of the equation

−c∂
2θ∞
∂x2

+ l0θ∞ = l0Ta. (11)

Moreover, we note that if c = 0, one gets T (t)→ Ta.

ii) We assume that

I0 = Re(
∑

k∈(K∩J)+

bkc−k
4cπ2k2 + l0

) = 0, (12)

with K ∩ J finite set, and that a solution of Eq. (3) satisfies
∫∞
0
|v(s)|ds <∞.

Then the system reaches the rest stationary solution, this is:{
v(t)→ 0, and w(t)→ 0, as t→∞
ak(t)→ l0

bk
4cπ2k2+l0

, as t→∞

Therefore, he also have in this situation the global attractor for the system
Eq. (1) in IR2 × Ḣ1

per(0,1) is reduced to a point {(0, 0, θ∞)}, with θ∞ satisfying

the equation (11).

iii) Conversely, if I0 = Re(
∑

k∈(K∩J)+

bkc−k
4cπ2k2 + l0

) 6= 0, then for every solu-

tion
∫∞
0
|v(s)|ds =∞, and v(t) does not converge to zero.

Proof. We cover several steps.

Step 1: First, we study the behaviour for large time of the coefficients
ak(t).

From the second equation in (3), for t0 enough large, we known that for
every t > t0 , we have

ak(t) = ak(t0)e
−

∫ t
t0

2πkvi+4cπ2k2+l0 + l0bk

∫ t

t0

e−
∫ t
r
2πkvi+4cπ2k2+l0dr. (13)

Now, we note that

ak(t) = ak(t0)e
−

∫ t
t0

2πkvi+4cπ2k2+l0 + l0bk(I1(t) + (I2(t)) (14)

where

I1(t) =

∫ t

t0

e−
∫ t
r
4cπ2k2+l0dr =

(1− e−(4cπ2k2+l0)(t−t0))

4cπ2k2 + l0
(15)

and

I2(t) =

∫ t

t0

e−
∫ t
r
4cπ2k2+l0

(
e−

∫ t
r
2πkvi − 1

)
dr (16)

Next, taking limits when t→∞, in (14), we have that:



i)

ak(t0)e
−

∫ t
t0

2πkvi+4cπ2k2+l0 → 0 as t→∞

since
∣∣∣e− ∫ t

t0
2πkvi

∣∣∣ = 1 and c, l0 are positive constants. And from (15), we also

have
ii)

I1(t)→ 1

4cπ2k2 + l0
as t→∞.

Therefore, if we assume that

I2(t)→ 0 as t→∞, (17)

then taking limits when t→∞, in (14), we obtain that:

ak(t)→ l0
bk

4cπ2k2 + l0
, as t→∞. (18)

Thus, to conclude this step, this is to get (18), it is enough to prove (17).
In order to prove (17), we consider a solution of Eq.(3) satisfying∫∞
0
|v(s)ds < ∞, and then we will prove that for every η > 0 there exists

t0 such that I2(t) ≤ η for every t ≥ t0.

In effect, if
∫∞
0
|v(s)|ds <∞, then for all δ there exits t0 > 0 such that for

every t0 ≤ r ≤ t we have |
∫ t
r
v| ≤ δ. Then, for any η > 0 we can take t0 large

enough such that

|e−
∫ t
r
2πikv − 1| ≤ (4cπ2k2 + l0)η for all t0 ≤ r ≤ t. (19)

Hence, from (16) we get

I2(t) =

∫ t

t0

e−
∫ t
r
4cπ2k2+l0

(
e−

∫ t
r
2πkvi − 1

)
dr ≤ η

(
1− e−(4cπ

2k2+l0)(t−t0)
)
≤ η,

since
∣∣∣1− e−(4cπ2k2+l0)(t−t0)

∣∣∣ ≤ 1, and we get (17). Thus, we conclude (18)

Moreover, with K ∩ J a finite set, we also have:
ak(t)→ l0

bk
4cπ2k2+l0

I(t) = 2Re(
∑

k∈(K∩J)+

ak(t)c−k)→ 2l0I0 (20)

with I0 = Re(
∑

k∈(K∩J)+

bkc−k
4cπ2k2 + l0

).

Step 2: We study now the asymptotic behaviour for the temperature
T (t, x).

In this step, we will prove that



T (t, x) =
∑
k

ak(t)e2πkix → θ∞ = l0
∑
k

bk
4cπ2k2 + l0

e2πkix in Ḣ1
per(0, 1), (21)

and we also note

−c∂
2θ∞
∂x2

+ l0θ∞ = l0
∑
k

bke
2πkix = l0Ta(x).

In effect, first from T (t, x) =
∑
k ak(t)e2πkix ∈ Ḣ1

per(0, 1) for every t ≥
t0 ≥ 0 we have that

∑
k k

2|ak(t)|2 < ∞ for every t ≥ t0 ≥ 0, and using

Ta(x) =
∑
k bke

2πkix ∈ L̇2
per(0, 1) we also have that

∑
k |bk|2 <∞, and then

∞∑
k=m+1

k2|ak(t)|2 → 0, for every t ≥ t0 ≥ 0 and

∞∑
k=m+1

|bk|2 → 0 as m→∞.

Next, we will prove that

∞∑
k=m+1

k2|ak(t)|2 → 0 as m→∞, uniformly for t large. (22)

From (13), taking into account that |e−
∫ t
r
2πikv| = 1 together with (15), we get

|ak(t)| ≤ |ak(t0)|e−(4µπ
2k2+l0)(t−t0) +

l0|bk|
4cπ2k2 + l0

(1− e(−4cπ
2k2+l0)(t−t0)).

Therefore, using now e−(4cπ
2k2(t−t0)+l0 ≤ 1 and (1 − e−(4cπ2k2+l0)(t−t0)) ≤ 1,

we get

|ak(t)| ≤ |ak(t0)|+ l0|bk|
4cπ2k2 + l0

.

Thus, we obtain that

∞∑
k=m+1

k2|ak(t)|2 ≤ C
( ∞∑
k=m+1

k2|ak(t0)|2 + l20

∞∑
k=m+1

k2|bk|2

(4cπ2k2 + l0)2

)
,

and since k2

(4cπ2k2+l0)2
≤ 1

16c2π4k2 ≤
1

16c2π4 , we get

∞∑
k=m+1

k2|ak(t)|2 ≤ C
( ∞∑
k=m+1

k2|ak(t0)|2 +
l20

16c2π4

∞∑
k=m+1

|bk|2
)
,

with C > 0 independent of k,m and t, and we conclude (22).

Finally, we note that

‖(T (t, x)− θ∞)x‖2L̇2
per(0,1)

≤ 4π2
∑
k

k2|ak(t)− l0bk
4cπ2k2 + l0

|2 ≤



≤ 4π2
m∑
k=1

k2|ak(t)− l0bk
4cπ2k2 + l0

|2+

+4π2
∞∑

k=m+1

k2|ak(t)− l0bk
4cπ2k2 + l0

|2 = 4π2Sm(t) + 4π2Rm+1(t),

where

Rm+1(t) =

∞∑
k=m+1

k2|ak(t)− l0bk
4cπ2k2 + l0

|2 ≤ C
∞∑

k=m+1

k2|ak(t)|2+

+
C

16c2π4

∞∑
k=m+1

|bk|2 → 0

as m→∞ uniformly for t large thanks to (22).
Then, for every η > 0 there exists m0(η) > 0 such that 4π2Rm0+1(t) < η

2 .
Therefore, using again (20), we obtain t0(η) > 0 enough large, such that we
also have 4π2Sm0(t) < η

2 for every t ≥ t0, where

Sm0(t) =

m0∑
k=1

k2|ak(t)− l0bk
4cπ2k2 + l0

|2.

This is, we get

‖(T (t, x)− θ∞)x‖2L̇2
per(0,1)

→ 0 as t→∞.

Analogously, we also prove that

‖T (t, x)− θ∞‖2L̇2
per(0,1)

→ 0 as t→∞,

and we get that T (t, x)→ θ∞ in Ḣ1
per(0, 1).

To conclude, we study now when the velocity v(t) and the acceleration w(t)
go to zero.

Step 3: We study now the asymptotic behaviour for the velocity v(t).

From (6) we can reading the equation for v, the first equation of system Eq.
(3), as

ε
d2v

dt2
+
dv

dt
+G(v)v = I(t).

we consider now, G(v) = G0 > 0 and then we note that:

I) First, we consider vp(t) the particular solution of the above equation
given by Lemma 1 and we denoted by vH(t) the solution of linear homogeneous
equation given by:

ε
d2v

dt2
+
dv

dt
+G0v = 0



such that v(t) = vp(t) + vH(t). We now that since vH(t) → 0 as t → ∞, we
have that: v(t)− vp(t)→ 0 as t→∞.

II) Second,using (20) for every δ > 0 there exists t0 such that |I(t)−I∗0 | ≤ δ
for ever t ≥ t0, with I∗0 = 2l0I0 and using Lemma 1, we conclude that

limsupt→∞|v(t)| ≤ I∗0 + δ

G0
and liminft→∞|v(t)| ≥ I∗0 − δ

G0
(23)

for every δ > 0.

Step 4: Next, we study the asymptotic behaviour for the acceleration w(t),
and using the above steps to conclude the proof.

First, we will prove that if v(t)→ 0 then w(t)→ 0 as t→∞ exponentially.
In effect, if v(t) → 0 , for every δ > 0 there exists t0 such that |G0v| ≤ δ

and εd|w|dt + |w| ≤ δ for every t ≥ t0, this is

|w(t)| ≤ |w(t0)|e− 1
ε (t−t0) + δ[1− e− 1

ε (t−t0)] ≤ δ (24)

i.e w(t)→ 0 as t→∞ exponentially.

i)-ii) From (23), in particular when K ∩J = ∅ or I0 = 0,(i.e I∗0 = 2l0I0 = 0)
we get v(t)→ 0 and from (24), w(t)→ 0 as t→∞. Then, taking into account
that (21) we conclude.

iii) Finally, we also note that from (23)

liminft→∞|v(t)| ≥ I∗0 − δ
G0

for every δ > 0 and in the case of I0 6= 0,(i.e I∗0 = 2l0I0 6= 0) taking enough
small δ we get liminft→∞|v(t)| > 0, which implies that

∫∞
0
|v(s)|ds =∞. This

result is in contradiction with the initial condition
∫∞
0
|v(s)|ds < ∞, what

implies that it is not a valid hypothesis, and we conclude.

3.3 Concluding remarks

Recalling that functions associated to circuit geometry, f, and to prescribed
ambient temperature, Ta, are given by f(x) =

∑
k∈J cke

2πkix and Ta(x) =∑
k∈K bke

2πkix, respectively.
In Yasappan and Jiménez-Casas et. al [14], using the operator abstract

theory, it is proved that if K ∩ J = ∅, then the global attractor for system Eq.
(1) in IR2 × Ḣ1

per(0, 1) is reduced to a point for every c ≥ 0.
In this sense the Proposition 2 offers the possibility to obtain the same

asymptotic behaviour for the dynamics, i.e., the attractor is also reduced to a
point taking functions f and Ta without this condition, that is with K ∩J 6= ∅,
its enough that the set (K ∩ J) 6= ∅, but



Re(
∑

k∈(K∩J)+

bkc−k
4cπ2k2 + l0

) = 0, when we consider the linear friction case

G = G0, and l = l0 in the Newton calling law and also considering diffusion

temperature i.e. ( l0(Ta − T ) + c∂
2T
∂x2 ).

We note, the result about the inertial manifold ( Yasappan and Jiménez-
Casas et. al [14]) reduces the asymptotic behaviour of the initial system Eq.
(1) to the dynamics of the reduced explicit system Eq. (4) with k ∈ K ∩ J.

We observe also that from the analysis above, it is possible to design the
geometry of circuit, f , and/or ambient temperature, Ta, so that the resulting
system has an arbitrary number of equations of the form N = 4n0 +1 where n0
is the number of elements of (K ∩ J)+ and we consider the real an imaginary
parts of relevant coefficients for the temperature ak(t) and solute concentration
dk(t) with k ∈ (K ∩ J)+ .

Note that it may be the case that K and J are infinite sets, but their
intersection is finite. Also, for a circular circuit we have f(x) ∼ asen(x) +
bcos(x), i.e. J = {±1} and then K ∩ J is either {±1} or the empty set.

Finally, we also note if the ambient temperature Ta is constant in this case
for every f geometry of the loop, we have the set K ∩ J = ∅, this is, the global
attractor for system Eq. (1) in IR2 × Ḣ1

per(0, 1) is reduced to a point for every
c ≥ 0.

Recently, we have considered a thermosyphon model containing a viscoelas-
tic fluid and we have shown chaos in some closed-loop thermosyphon model with
one-component viscoelastic fluid not only in this model [14], also in other kind
of transfer law ([12], Jiménez-Casas and Castro [8], Yasappan and Jiménez-
Casas et al. [13],[9]), and even in some cases with a viscoelastic binary fluid
(Yasappan and Jiménez-Casas et al. [15]) and Jiménez-Casas and Castro [8]).
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19. A. Rodŕıguez-Bernal, “Inertial Manifolds for dissipative semiflows in Banach

spaces”, Appl. Anal., 37, 95-141, (1990).
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