

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

(ICAI)

GRADO EN INGENIERÍA ELECTROMECÁNICA

Especialidad Electrónica

SOFTWARE INTEGRATION AND

SIMULATION OF AUTONOMOUS

VEHICLES

Author: Marta Bravo Lázaro

Director: Knut Åkesson

Madrid

July 2018

AUTHORIZATION FOR DIGITALIZATION, STORAGE AND DISSEMINATION IN THE

NETWORK OF END-OF-DEGREE PROJECTS, MASTER PROJECTS, DISSERTATIONS OR

BACHILLERATO REPORTS

1. Declaration of authorship and accreditation thereof.

The author Mr. /Ms.___

HEREBY DECLARES that he/she owns the intellectual property rights regarding the piece of work:

that this is an original piece of work, and that he/she holds the status of author, in the sense granted by the

Intellectual Property Law.

2. Subject matter and purpose of this assignment.

With the aim of disseminating the aforementioned piece of work as widely as possible using the

University's Institutional Repository the author hereby GRANTS Comillas Pontifical University, on a

royalty-free and non-exclusive basis, for the maximum legal term and with universal scope, the

digitization, archiving, reproduction, distribution and public communication rights, including the right to

make it electronically available, as described in the Intellectual Property Law. Transformation rights are

assigned solely for the purposes described in a) of the following section.

3. Transfer and access terms

Without prejudice to the ownership of the work, which remains with its author, the transfer of

rights covered by this license enables:

a) Transform it in order to adapt it to any technology suitable for sharing it online, as well as

including metadata to register the piece of work and include "watermarks" or any other security

or protection system.

b) Reproduce it in any digital medium in order to be included on an electronic database, including

the right to reproduce and store the work on servers for the purposes of guaranteeing its security,

maintaining it and preserving its format.

c) Communicate it, by default, by means of an institutional open archive, which has open and cost-

free online access.

d) Any other way of access (restricted, embargoed, closed) shall be explicitly requested and

requires that good cause be demonstrated.

e) Assign these pieces of work a Creative Commons license by default.

f) Assign these pieces of work a HANDLE (persistent URL). by default.

4. Copyright.

The author, as the owner of a piece of work, has the right to:

a) Have his/her name clearly identified by the University as the author

b) Communicate and publish the work in the version assigned and in other subsequent versions

using any medium.

c) Request that the work be withdrawn from the repository for just cause.

d) Receive reliable communication of any claims third parties may make in relation to the work

and, in particular, any claims relating to its intellectual property rights.

5. Duties of the author.

The author agrees to:

a) Guarantee that the commitment undertaken by means of this official document does not infringe

any third party rights, regardless of whether they relate to industrial or intellectual property or

any other type.

Marta Bravo Lázaro

Software Integration and Simulation of Autonomous Vehicles

Scanned with CamScanner

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

(ICAI)

GRADO EN INGENIERÍA ELECTROMECÁNICA

Especialidad Electrónica

SOFTWARE INTEGRATION AND

SIMULATION OF AUTONOMOUS

VEHICLES

Author: Marta Bravo Lázaro

Director: Knut Åkesson

Madrid

July 2018

Acknowledgements

Firstly, I would like to thank all my team mates Anton Frigård, Erik Lund, Oscar

Harmsen and Svante Trelsmo for all the collaboration and all the hours we have spend toguether

to get this project done. All the project was done in collaboration with them as well as the report

[30]. Also to Ashfaq Hussain Faarooqui for the guidance and feedback throughout the project.

I am also thankful to Knut Åkesson for putting this project together and enable me to work with

such an ambitious project eventhough I was not from a chalmers bachelor.

I would also like to thank all the groups who have been working on the Autonomous

Twizy, especially the perception and safety group for helping us. And to Chalmers University

of Technology for giving me the chance of being involved in such a big and important project.

And last but not least the Apollo team and community.

Marta Bravo

Madrid, July 2018

SOFTWARE INTEGRATION AND SIMULATION OF

AUTONOMOUS VEHICLES

Autora: Bravo Lázaro, Marta
Director: Knut Åkesson

ICAI, Universidad Pontificia de Comillas

RESUMEN DEL PROYECTO

El presente proyecto que trata sobre la

creación de un entorno virtual es una

parte de un proyecto grupal cuyo

objetivo es la automatización de

vehículos. En este proyecto, en concreto,

se ha pretendido crear y analizar un

entorno a través de diferentes situaciones

o escenarios habituales. Para ello se

contó con Apollo Auto 2.0. software

abierto que posibilitó el desarrollo de

este proyecto. Más concretamente se

trabajó principalmente con el módulo de

simulación.

Palabras clave: Apollo Auto, ROS,

Autonomous vehicle, AVs, Simulation,

Virtual Testing.

I. Introducción

Actualmente el mundo virtual y de las

simulaciones se encuentra en auge en

campos como la fabricación o la

producción. Se considera una manera

eficiente de analizar y concluir la viabilidad

de los proyectos, además de un método de

ahorro para la economía de la empresa al no

tener la necesidad de construir y probar

prototipos.

Por otro lado, dentro de la industria de la

automoción la conducción autónoma es uno

de los sectores con más empuje e

investigación. Se considera como una forma

de reducir significativamente el número de

accidentes consiguiendo carreteras más

eficientes y seguras.
El presente proyecto trata sobre el estudio y

análisis de un ambiente virtual recreado a

través de la plataforma Apollo Auto. Dicho

entorno está creado para analizar el

comportamiento de un vehículo autónomo

ante diferentes escenarios que recrean

situaciones de tráfico comunes.

II. Objetivos

El objetivo global del proyecto consiste en

conseguir automatizar un Renault Twizy.
Los objetivos concretos que se deseaban

alcanzar a lo largo de este proyecto en

particular son:
 Aprender a usar Apollo Auto 2.0. y

ROS
 Crear un simulador

 Crear un mapa
 Implementación de

obstáculos, tanto estáticos como

dinámicos

 Diseño de escenarios

 Evaluación y análisis de los

escenarios

III. Metodología

Al comienzo se planteó el proyecto como la

base para integrar los códigos de los

diferentes grupos del proyecto global.

Códigos como el de seguridad o el que

modela el vehículo con los parámetros

adecuados. Finalmente, se reorientó,

centrándolo en la creación de un entorno de

simulación para poder probar los diferentes

códigos y el comportamiento del vehículo

antes de ponerlo en práctica.

El primer paso que fue considerado y

realizado al inicio fue el reunir información

acerca de Apollo Auto. Debido a la falta de

información online decidimos crear un

documento, el “how to” adjuntado en los

apéndices con todo aquello que se fuese

reuniendo. Esta ha sido una forma sencilla

de compartir la información,

procedimientos y comandos. Además de

servir como herramienta para la posterior

ampliación de este proyecto en años

futuros.
Desde un punto de vista más práctico, se

comenzó con el análisis de los bagfiles.

Estos son grabaciones de diferentes

situaciones que venían ya en Apollo Auto.

Fueron usadas para analizar el output de

módulos como el mapa, Dreamview

(simulación), Perception, Routing o

Planning, de forma que pudiéramos tener

una referencia inicial sobre lo que

deberíamos esperar como output en

nuestros escenarios. Sin embargo, la poca

flexibilidad que tienen al ser grabaciones y

no dejar al usuario elegir el escenario que

desea simular hace que resulte un método

inútil hasta cierto punto. Esto fuerza a

generar un código que haga que los

obstáculos y el mapa sean personalizables y

que viene detallada su documentación en el

capítulo 4.

Posteriormente se comenzó con el

desarrollo del mapa y los obstáculos. Estos

se crearon de manera más o menos

simultánea. Para finalizar con la simulación

de los diferentes escenarios, cambiando así

los parámetros del mapa y los obstáculos

creados por nosotros mismos en el paso

previo. En concreto este proyecto se centró

en el desarrollo de los obstáculos tanto

estáticos como dinámicos. Por otro lado,

tanto la creación como la evaluación de los

distintos escenarios. Para crear los

escenarios se ha necesitado entender los

archivos de los mapas ya que

necesitaban crearse archivos binarios

para poder reproducirlos en Dreamview.

Los otros miembros por un lado trabajaron

con la parte de integración y comunicación

con otros grupos. También se encargaron de

todo lo relacionado con el sistema operativo

dentro del Twizy, estanterías dentro del

vehículo, instalación y configuraciones.

En cuanto al uso de dispositivos, en mi caso

concreto, comencé utilizando mi ordenador

personal un ASUS a través de una máquina

virtual. Finalmente, debido a un bucle que

no supe identificar y ocupaba prácticamente

la totalidad de la memoria del ordenador se

cambió al ordenador proporcionado por La

Universidad Tecnológica de Chalmers y

que viene explicado en detalle en el

capítulo 2.

IV. Apollo Auto
Se trata del software empleado para

desarrollar el proyecto. Está construido

sobre ROS que a su vez está construido

sobre Ubuntu. Se trata de un software libre,

en el cual los programas están divididos en

módulos o nodos. Estos se conectan para

mandar mensajes entre ellos a través de

topics como publicadores o subscriptores.

El gran punto de este tipo de software es la

flexibilidad que tiene al poder activar y

modificar ciertos módulos sin necesidad de

usar o modificar todos simultáneamente.

Será una cualidad muy usada a lo largo del

proyecto. En nuestro caso se modificarán

módulos como el mapa o el de simulación,

también llamado Dreamview.

V. Resultados

La forma que se ha tenido para evaluar el

entorno virtual es analizando si los

símbolos prestablecidos por Apollo

aparecen en pantalla. No se puede olvidar

que el objetivo es el análisis y la evaluación

del ambiente y no del comportamiento del

vehículo.

En el caso del peatón cruzando sobre el

paso de cebra, esperaríamos ver, por un

lado, que el obstáculo identificado por el

coche fuera un peatón, ya que hay un

símbolo específico (b) que significa que un

peatón ha sido identificado. Sin embargo, lo

que aparece es un cono naranja, esto debe

interpretarse como que obstáculo cualquiera

ha sido detectado. Se considera que el

posible motivo es la falta de información en

el protobuf message. Por otro lado, el

símbolo del paso de cebra (a) tampoco

aparece, en este caso podría estar bien

implementado. Esta conclusión viene

motivada por el análisis en uno de los

mapas que ya venían por defecto en los

archivos de Apollo Auto. En este mapa

a) b) c)

Ilustración 1. Algunos símbolos de Dreamview

d)

tampoco se consiguió que apareciera el

símbolo que hacía ver que el vehículo había

identificado el paso de cebra.

En el segundo escenario, en el cual se

pretende que se siga al vehículo de delante

ocurre el mismo problema. El cuadro de

“seguir a otro vehículo” es sustituido por el

cuadro de “parar”. Se deduce que el error es

el mismo que en el escenario anterior. La

falta de información del protobuf message.

Por último, en el caso de cambiar de carril,

tras varias simulaciones se concluye que no

siempre se consigue el cambio de carril.

Esto puede ser porque no se resetea

adecuadamente toda la información de

todos los módulos usados previamente. Por

otro lado, el símbolo de cambio de carril no

aparece en pantalla. Sin embargo, al

probarlo en mapas originales de Apollo 2.0.

tampoco aparece. Por tanto, se concluye

que el cambio de carril se produce

satisfactoriamente.

Pese a los errores descritos previamente

sabemos que el tipo de obstáculo no es

elegido al azar por el programa, sino que

responde a lo que el usuario pretende

simular. Esto se puede confirmar gracias al

color que se presenta en Dreamview y que

se corresponde con el que se marca en el

manual de Apollo. Un ejemplo sería el

peatón que está representado con un

rectángulo amarillo tal y como era

esperado.

VI. Conclusión

La principal conclusión es la correcta

implementación del ambiente de

simulación. Es decir, el entorno creado

posibilita el análisis del comportamiento del

vehículo que es el objetivo de toda

simulación. No se puede olvidar la falta de

ciertos símbolos, todo esto ha sido

explicado con más detenimiento en el

apartado de resultados.

SOFTWARE INTEGRATION AND SIMULATION OF

AUTONOMOUS VEHICLES

Autora: Bravo Lázaro, Marta
Director: Knut Åkesson

ICAI, Universidad Pontificia de Comillas

PROJECT SUMMARY

The projects which aim is the creation of

a virtual environment is a section of a

collective project which end is the vehicle

automatization. The core of this

particular project was the analysis and

creation of common driving scenarios.

For this aim an open software platform,

Apollo Auto 2.0. was used. In particular

the module that was mainly used was the

simulation module.
Key words: Apollo Auto, ROS,

Autonomous vehicles, Twizy, Simulation,

Virtual Testing.

I. Introduction
Virtual world and simulations are currently

seen as growing sectors in some fields such

as production and manufacturing. It is

considered as an efficient way of analyzing

and concluding the feasibility of some

projects. Moreover, it is a method that saves

vast amounts of money since no prototype

needs to be created nor tested.

On the other hand, the automation industry

is investing a lot in the research of

autonomous driving. This is motivated by

the decrease of accidents. Therefore, we

could conclude that the autonomy derives in

more efficient and secure roads.

The present project is related with the

analysis of a virtual environment done

thank you to Apollo Auto. This

environment is made with the end of testing

the behavior of the autonomous vehicle in

different scenarios. These situations pretend

to recreate common traffic scenarios.

II. Goals
The global goal of the Project is to achieve

an autonomous Renault Twizy driving

through some of the campus streets at

Chalmers University.

More specifically, the goals of this

particular thesis are:

 Learning of Apollo Auto 2.0. and

ROS
 Create the simulation environment

 Customize a map
 Obstacle implementation of

both, dynamic and static

obstacles.

 Different scenario simulation

 Analysis and evaluation of the

virtual environment.

III. Methodology

The idea of this project at the beginning

was to join the codes of the different groups

in Apollo so these codes could work all

together. However, the project finally was

reoriented. The main goal was the creation

of a custom environment to check the

modifications made by the different groups

before testing them in the actual Twizy.

First step considered was the gathering of

information about Apollo Auto. The lack of

information about Apollo Auto forced us to

start the “how to”. It is a document seen as

an easy way of sharing information,

procedures or commands. It was created by

all members of the group. Moreover, it can

also be used as a learning tool for future

developments of the project. This document

is attached in the appendix of the project.

From a more practical prospective, we

started analyzing the bagfiles. This are

recordings of different situations that came

along with Apollo Auto. They were used

for analyzing the output of modules such as

map, Dreamview (simulation module),

Perception, Routing or Planning. This

enabled us to have an initial reference of

what to expect as outputs of our own

scenarios. However, the little flexibility that

the bagfiles have by not letting the user to

choose which scenario to play, makes this

method kind of useless. This ends up on the

need of coding to create customizable maps

and obstacles. All this documentation is

further explained in chapter 4.

Afterwards both, the map and the obstacles,

were designed and codified. This task was

made simultaneously. It was done to end

playing different scenarios, enabling the

user to customize the scenario by changing

the values of the parameters in the map or

the obstacles that were created in the step

before. More precisely, this project was

focus on the develop of static and dynamic

obstacles. Moreover, the creation and the

evaluation of the virtual environment are

also in the scope of the project. In order to

be able to create the scenarios, maps needed

to be understood to enable the creation of

binary files. This binary files were

necessary to display the map in Dreamview.

The other members of the group were

focused on the integration and

communication with other groups. Besides,

the installation of the onboard computer

was also made by them, the computer rack

for the Twizy, and the installation and

configuration of the onboard computer.

About the devices that were used during the

project, in my case, my personal computer

was used at the beginning, an ASUS by a

Virtual Machine that allowed me to run

Ubuntu. Finally, due to a loop that could

not be identified made me start working

with the computer provided by Chalmers

University of Technology. This is explained

more in more detail in chapter 2.

IV. Apollo Auto
Apollo Auto is the software used to develop

the whole thesis. It is built upon ROS which

at the same time is built upon Ubuntu. It is

an open source platform in which the

programs are divided in modules or nodes.

The connection among them is by topics

with a publisher/subscriber method. The

main attribute of this system is the isolation

of the modules, in other words, the way of

activating or modifying some of the

modules and not all at the same time. This

was used during the project. In this project

some modules such as the map or the

simulation module, also called Dreamview,

will be modified.

V. Results

The evaluation method of the virtual

environment is based on the analysis of the

symbols that are pre-established by Apollo.

We cannot forget that the goal here is to

evaluate the environment and not the

behavior of the vehicle.

In the scenario of a pedestrian crossing the

road, we expected the vehicle to notice the

presence of a pedestrian. Therefore, it was

assumed that the pedestrian symbol (b)

should have appear. However, an orange

cone did appear instead. Thus, we know

that a random obstacle has been noticed by

the Apollo vehicle. It is considered that this

could be because some information is

missing in the protobuf message. We also

have the crosswalk symbol (a) which does

not appear either. Nevertheless, it could

have been correctly implemented. This

conclusion is driven by the analysis of maps

that already came by default in Apollos

files. In these maps the expected crosswalk

symbol did not appear either.

In the second scenario, following a vehicle

the same problem is encountered. The

assuming frame that might have appear, the

“following another vehicle” frame is

changed by a “stopping” frame. We deduce

that the error might be the same as before,

the lack of information in the protobuf

message.

Ilustration 2. Some Dreamview symbols

a) b) c) d)

Finally, the change of lane scenario. After

several runs, it was concluded that the

change of lane was not fulfilled every time.

This issue might be because of some data

not being reset properly. Moreover, the

symbol is not shown. However, it was

tested in some original Apollo file and it

was not shown either. We conclude that the

lane switching was properly implemented.

Even though, we have described some

errors, we also know that the program

recognizes the obstacle that the user has

implemented. This can be said because of

the color that the obstacle box presents in

Dreamview that matches up with Apollo

specifications. i.e. the pedestrian is yellow

as it was expected.

VI. Conclusion

The main conclusion is that the virtual

environment was properly implemented.

This conclusion is based on the fact that the

environment created let the user analyzed

the vehicle behavior which is the goal of

any simulation. However, we cannot forget

the absence of some symbols. This is

explained in more detailed in the evaluation

and results sections.

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA

(ICAI)

GRADO EN INGENIERÍA ELECTROMECÁNICA

Especialidad Electrónica

MEMORY

SOFTWARE INTEGRATION AND

SIMULATION OF AUTONOMOUS

VEHICLES

Author: Marta Bravo Lázaro

Director: Knut Åkesson

Madrid

July 2018

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

2

Memory Index

Part I Memory ..

Chapter 1 INTRODUCTION ... 11

1.1 State of art.. 12

1.2 Motivation .. 14

1.3 Aim ... 15

1.4 Method ... 16

1.5 Resources ... 18

1.6 Hierarchy .. 18

Chapter 2 SOFTWARE & HARDWARE ... 23

2.1. Software ... 23

2.1.1. ROS ... 23

2.1.1.1. Master .. 24

2.1.1.2. ROS commands .. 25

2.1.2. APOLLO .. 26

2.1.2.1. Modules ... 26

2.1.2.2. Communication within Apollo ... 30

2.1.2.3. Adapters .. 30

2.2. Hardware .. 31

Chapter 3 Simulation Module ... 33

3.1. Dreamview system notification scheme .. 35

Chapter 4 Creating and testing a simulation environment .. 37

4.1. Simulation using bag files .. 38

4.2. Creating the environment .. 42

4.2.1. Creating a road .. 42

4.2.2. Obstacle implementation .. 46

4.2.3. Simulation methods advantages and disadvantages .. 48

4.3. Complete system simulation ... 50

4.3.1. Scenario 1: Pedestrian crossing the road .. 50

4.3.2. Scenario 2: Following another car ... 55

4.3.3. Scenario 3: Change of lane .. 57

4.3.4. Scenario 4: Avoiding static obstacles ¡Error! Marcador no definido.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

3

4.4. Conclusions and general discussion ... 59

Chapter 7 ENVIRONMENTAL IMPACT ... 61

Chapter 9 CONCLUSION ... 63

Chapter 10 FUTURE DEVELOPMENTS .. 65

Chapter 11 BIBLIOGRAPHY .. 67

Part II Budget ... 67

Chapter 1 MEASUREMENTS ... 73

1.1 Hardware .. 73

1.2. Software ... 73

1.3. Labor costs ... 73

Chapter 2 UNIT PRICE .. 75

1.1 Hardware .. 75

2.2. Software ... 75

2.3. Labor costs ... 75

Chapter 3 PARTIAL AMOUNT ... 77

3.1. Hardware .. 77

3.2. Software ... 77

3.3. Labor costs ... 77

Chapter 4 TOTAL AMOUNT .. 79

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

4

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

5

Figure Index

Figure 1. Gantt Chart... 17

Figure 2.Related Research Areas .. 21

Figure 3. Flow chart .. 21

Figure 4. Publisher and subscriber initiation process ... 24

Figure 5. IPC used .. 32

Figure 6. Dreamview interface .. 34

Figure 7. Some of the symbols representing the decision making made by the system in the

Dreamview visual notification scheme. .. 35

Figure 8. Symbols representing what causes the car to stop in the Dreamview visual notification

scheme. ... 35

Figure 9. The structure of the virtual wo-lane road used in the simulations. 42

Figure 10. Straight Lane in Dreamview ... 45

Figure 11. Four important moments in time from the scenario of the crossing pedestrian 51

Figure 12. Four important moments in time from the scenario chasing another car 56

https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633432
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633433
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633434
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633435
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633436
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633437
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633438
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633438
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633439
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633439
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633440
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633441
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633442
https://d.docs.live.net/f655c99d83b39b17/Marta/A_Educación/Chalmers/TFG/Documentación%20España/Report/Autonomous%20Twizy.docx#_Toc517633443

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

6

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

7

Table index

Table 1. Apollo publishing & subscribing structure .. 29

Table 2. Subscriptions and publications of Dreamview .. 34

Table 3. A printout of information about the demo_2.0.bag file. .. 39

Table 4. An output message from the prediction module during simulation using bagfiles. 40

Table 5. The output after generating the routing and sim maps.. 45

Table 6. Output message from the planning module when stopping dor the crossing pedestrian ... 52

Table 7. Parts of a routing response message from the routing module after sending a routing

request to switch lanes. .. 57

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

8

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

9

PART I MEMORY

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

10

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

11

Chapter 1 INTRODUCTION

The number of vehicle manufacturers that are getting involved with autonomous

vehicles is rapidly increasing. This increase has led to a fierce competition when it comes

to delivering safe, usable and reliant autonomous cars. Nowadays, manufacturers have the

need of quicker and more effective ways to test the quality of their algorithms/systems in

order to ensure their needs are met. To secure that the algorithms are correct and safe they

must be tested for various scenarios to make sure they are safe for consumer use. Testing

the algorithms in the real world is expensive, time consuming and unsafe. Moreover, not

all scenarios can be tested in the real world. By simulating real world scenarios, the

algorithms can be tested. Hence, simulations are vastly important for developing safe and

reliable autonomous vehicles, hereinafter referred to as AV.

To ensure a car can autonomously drive, several problems need to be solved,

such as perception, path planning, vehicle control and safety. Once these sub-systems are

implemented and tested separately, they must be integrated and tested together. Testing

consists of simulating different scenarios to ensure reliable and safe performances.

In this project we aim to autonomously drive a Renault Twizy. In order to do

this, the project is divided into several groups each focusing on one sub-system. To

simplify the problems that we will need to deal with, a platform called Apollo Auto will

be used for integration as well as testing. The platform, Apollo Auto (The Apollo Team

2018), is built on the Robot Operating System (ROS) and utilizes the built-in functions in

ROS to support development of AVs. These functions in ROS and Apollo facilitates the

development and make this project possible in this timeline.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

12

1.1 State of art

The world of autonomous driving is yet unexplored and in research. There are a

lot of companies doing their best to make that futuristic goal become real. Is worthy to

explain how are defined the different autonomy levels. A definition of autonomy in

vehicles is given by SAE (Society of Autonomous Engineers), where 5 levels are

described. Levels 1 and 2 describe aids for the driver such as adaptive cruise control.

Levels 3-5 define an increased amount of self-driving capabilities in a vehicle [1].

Examples of autonomous vehicles include; robotic lawn mowers, cars with lane-detection

or driverless buses [2]. The definition is broad and incorporative a varied range of

machines. In this report however, the focus will lie on cars.

 Google, in 2009 a new Google’s self-driving car project started, Waymo. They

have invested more than 1 billion dollars into the AV research [3]. Waymo currently have

a fleet of cars that achieve to drive more than 25,000 autonomous miles per week [4].

They have already pointed out that they have let some driverless cars in some parts of the

United States.

According to Elon Musk, Teslas founder, cars will drive by themselves in two

years. From 2014 onwards, this company has been researching and testing with

autonomous cars. They have been ahead in this sector for many years achieving a level 3

autonomy in their vehicles [5].

The Drive Me project at Volvo is being implemented in Gothenburg, Sweden.

It is the world’s biggest large-scale pilot project in autonomous driving. It is a project

which is planned to be extended to London and China afterwards. The end of this project

is to receive some feedback from their customers with the implementation of level 4

autonomy vehicles. (No need of a human driver but with a steering wheel and pedals in

case of emergency). Drive Me last announcements have stated that 100 people will be

involved in the program within the next four years [6].

Moreover, some big companies like Uber, General Motors, Delphi or BMW

among others, are now trying to reach level 4.

Another perspective would be the software development and implementation.

At the moment, NVidias CEO, Jen-Hsun wants his robocar computer package to become

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

13

an industry standard. Nvidia has already released an automotive package, called Drive

PX. He stated that there is a collaboration between Nvidia and Audi. They are planning

to present a Level 4 vehicle as well [7].

Zenuity is a new company that is working with Volvo and Autoliv. They are

planning to use Nvidia’s Al computer groundwork as a basis for their own software. This

software is exclusively for Volvo [8].

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

14

1.2 Motivation

The transportation of both, commodities and people, has been a need that the

human being have always have. Some significant developments have been made over the

years in the transportation sector. First of all, the invention of the wheel, afterwards the

carriages to end up with the vehicles that we know nowadays. The main point of this

bachelor thesis is to get deeper into a new way of thinking about transportation.

Nowadays there is a revolution in the automation sector. The increase in the

number of vehicle manufacturers and the research that companies are making witnesses

it. Some key factors that motivate this research are the statics around car accidents. More

than 1.25 million people die each year as a result of road traffic crashes [9]. Another key

factor is the big change in the way of thinking due to the new technologies. This has lead

into a world where everything needs to be connected. The sustainability, safety and

effectiveness are points that are also considered. The implementation of AVs would bring

safer and more sustainable roads. Since some traffic congestions would be alleviated a lot

of fuel would be saved. Because of all these mentioned points, a need of reinventing the

automation has emerged.

In my personal case, I came to Gothenburg to finish my degree, specifically to

Chalmers University. This university has got some good collaborations with Volvo

Group. Hence, they have a vast knowledge about vehicles and transportation.

Furthermore, Volvo is now developing one of the biggest projects of autonomous cars in

Gothenburg. Therefore, I thought about taking advantage of this situation and get some

deep knowledge about autonomous driving. On the other hand, this project was offered to

be made in groups with Swedish people. That has given me a lot of work experience. In

fact, one of the main challenges that we had to face was the communication, planning and

working, together with the other groups, such that each group would have the possibility

of fulfilling their respective goals as well as collectively trying to reach the project goal.

To conclude this first introductory part is in collaboration with them. []

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

15

1.3 Aim

This thesis will be focused on the software integration and testing using the

Apollo-framework as well as hardware implementation of the onboard computer.

From a simulation or testing standpoint, a simulation needs to be done. This will

ensure the proper performance of the Twizy. This recreation will need different scenarios

around the building area. We could divide this goal into different sub-tasks such as the

design of a map and the implementation of some obstacles into that map. The obstacles

implemented should be both, dynamic and static. According to the place where the Twizy

is intended to run, the map that needs to be simulated is one of Chalmers buildings.

The software part of this thesis will be the joint of the different modules, some

of them were already coded in Apollo. However, some of the groups have made their own

codes. Therefore, all codes need to work together properly. The aim is to simulate the

complete system of the Twizys software (perception, path-planning and control, safety

system). It could be said that this will be done by using knowledge of how Apollo works

and establishing how the software architecture should be through the collaboration with

the other groups.

Finally, the hardware work will be the implementation of the onboard computer.

For that aim a rack will be design and assembled inside the car. Furthermore, that on-

board computer will need to be set up so that Apollo can be run.

As a summary we could say:

• Simulation world/Testing

o Map

▪ Straight roads

▪ Curves

o Objects

▪ Static

▪ Dynamic

• Software →Modules

• Hardware/Integration

o Set up onboard computer

▪ Rack

▪ Computer set up

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

16

1.4 Method

On the basis that the bachelor thesis was made by five people, for efficiency

reasons, the work has been split into different sections. This thesis will be about the

simulation of obstacles and map creation.

As an overall view it can be said that the obstacles work will start with the

implementation of static objects into the simulations. Nevertheless, dynamic obstacles

such as bicycles, pedestrians or other vehicles will intend to be done as well. On the other

hand, some maps are needed. The goal is to achieve some maps of the building of

Chalmers.

For Apollo to be an effective tool in achieving the goal, the project will begin

with learning the structure of the platform. The learning goal is to have a good knowledge

of how to build a software system reliably and effectively, model the intended route as

well as creating real world scenarios. Even though the work is split each group member

must have a basic understanding of the work of his or hers colleagues and time will

therefore be allocated for this.

The work in itself will be performed on the group members personal laptops as

well as remotely on stationary computers. One of these computers is situated in the

examiner’s office and equipped with a powerful graphics card. The other computers,

equipped with great processing power but no advanced graphics card, are situated in a

special lab. Most of the work was done in my personal laptop where a VirtualBox was

installed. Therefore, Linux could be run and consequently Apollo/ROS as well.

To be able to create a virtual model of the maps some data might be obtained

through testing. For the environment an integrated map creator tool exists in Apollo and

will be used. This tool uses input data from sensors on the car to create the environment

such that it is available for use in simulations.

Parallel with the modelling, work on creating random scenarios will be done.

This will include making these scenarios appear automatically and in a randomized order.

When the automatic scenarios are done the simulation can run for hours which will be

great for detecting possible issues with the algorithms.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

17

When there is a simple model and a functioning simulator building a steel frame

in the back of the car will be the next priority. This frame will house the onboard computer

and possibly separate hardware, running safety algorithms. There might also have to be

space for a secondary battery for powering the computer and sensors. This will be the case

if the battery that is currently in the Twizy and is powering the motor cannot be used for

this purpose as well.

All the work will be done in parallel with the work made in other groups. There

exist dependencies and we would need to collaborate with the different teams. The

integration team will initially work with Docker Containers and ROS objects, e.g. creating

images, containers, nodes, topics and packages etc. Early tests will initiate basic

communication between different nodes. In these cases, the data sent might not be same

type of data sent in latter stages of the project. Besides, information regarding actual input

and output from the subsystems will therefore be gathered through conversation with the

other project groups. Fake data will then be obtained and tested with the system. By the

time the Twizy is running for data gathering, the real-world data will be collected and

used in further testing. The final stage will be to integrate the Apollo framework on the

onboard computer. This will include installing Ubuntu and Apollo Auto on the computer

as well as making sure all the subsystems are functioning properly. Continuous testing on

the personal workstations as well as on the onboard computer will provide a base for

improving the system.

Figure 1. Gantt Chart

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

18

1.5 Resources

The main resource that will be used is Apollo. It is an open autonomous driving

platform made by Baidu a Chinese company [10]. This platform is made for developing

autonomous driving algorithms. Apollo is built upon a software library called Robot

Operating System (ROS), which is also an open source. ROS has a great library for

development regarding robots and automated machines.

The history of Apollo starts in 2015 when the Chinese company Baidu was

decided to invest in the research of AVs having driving tests on the highways and urban

roads of Beijing. In 2016 they obtained a license that let them test the self-driving vehicles

in California [11]. The first software released Apollo 1.0. was first released to everyone

in 2017. Finally, in 2018 was launched in Las Vegas, Apollo 2.0 that will be used during

the entire project [12][31]. A latest version of Apollo is now being launched, Apollo 2.5.

The use of this version will not concern this thesis.

1.6 Hierarchy

The overall aim of this project was to make the Twizy drive autonomously

through an established path in Chalmers. We were around thirty Chalmers students

involved in the project and thus groups needed to be made. Seven different groups of

about 6 people each were created. This division had the end of making the work more

efficient by having some “specialist” in each of the tasks that were considered essential.

At the end, all the groups were related and had to work cooperatively.

This section was open to explain the different departments that were created and

to describe in a general way the tasks that needed to be done by each of them.

 Inductive charging:

It was decided that the Twizy should be charged by itself with the end of making

the vehicle more ecofriendly and with more km of autonomy. Therefore, the induction

team needed to create a prototype which made the charges of the vehicle via induction

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

19

possible. They were focused on the coils and Twizys equipment. The design should bear

the outdoor climate of Gothenburg and be supplied from a stationary battery supply [13].

 Power modelling for energy optimization:

Energy should be optimized by selecting different routes, speeds and ways of

speed up or decelerate due to the expected arrival time. This teams aim was to evaluate

the different operation strategies in power and energy. The main idea was to design a

general power model and then adapt that model to the Twizy measurements [14].

 Steering and Motor control

All the work was divided in two sub-teams. One group did the emergency stop

and the steering of the car. The car was at first tested remotely, they oversaw the remote

control.

Second group was more focused on power electronics. They had been working

in converting the Twizy from pure mechanical steering into autonomous steering. This

was done by adding electric power steering. This EPS is controlled by a programmable

motor control unit. They needed a special collaboration with others such as safety or

vehicle control. They needed to ensure that messages from the vehicle control group were

correctly processed and done [15].

Safety systems

Their responsibility was to protect both driver and environment from harm. To

that end some algorithms had to be done so the vehicle can react when an obstacle is

detected. Once and object is detected an action should be taken by the car according to

what had been detected. The safety system implemented was “hard” which means that the

emergency breaks is activated whenever the vehicle determines a possible or imminent

danger. They must ensure that every action that is delivered through the bus CAN is

listened by steering and motor control [16].

 Path Planning and vehicle control

The aim of this project was to design and experimentally validate a path planner

and a low-level vehicle control system. The path planner had to be able to decide a path

based on the obstacles of the surrounding environment. The car should have had a control

implemented in order to follow the path that was decided. The low-level control system

should handle this task. Hence, it commands steering and acceleration/braking to follow

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

20

the path that was determined by path planning. The work was divided in two sub-teams

as in steering and motor control. Path planning which decided the safest and best route

and vehicle control that processed the information from path planning.

Vehicle control was situated between perception and safety. Their input is all

the data regarding the state of the vehicle and the perceived world around it. On the other

hand, their output data is originally a throttle and a brake command in percent of full

throttle and brake. A steering target is also another output. All this information needs to

be validated by safety, so the vehicle can conclude that it is safe. Finally, some of the

specific parameters in the code to fit the Twizy instead of the Lincoln MKZ will be

modified [17].

Perception

The aim of the project was to help the Twizy knowing what is around. This team

was involved with the installation of sensors such as, GPS, cameras, radar, sensors and

laser scanners (lidars) in the autonomous Twizy and the corresponding algorithms to

utilize the sensor output data in an efficient and reliable way.

This group needed to work together with groups like path planning and control

to develop an estimation algorithm that takes a coherent view of the environment with the

sensor observations [18].

 Virtual Integration and Testing

This bachelor project will be focused on this section. As an overall overview the

aim of this project is to create a virtual environment, integrating the different modules and

testing the Twizy. A virtual environment on top of ROS will be built. A coordination of

the work will need to be done so all the components can work together and tested in the

different simulations. Besides, obstacles, maps and a virtual model of the car will be done

[19].

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

21

Path Planning Vehicle Control

Steering & Motor

Control

Inductive

Charging

Power & Modelling

Energy

Safety
Virtual Testing &

Integration Perception

Figure 2.Related Research Areas

Figure 3. Flow chart

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

22

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

23

Chapter 2 SOFTWARE & HARDWARE

In this chapter the ROS-library and foundations of Apollo Auto are described.

It is meant to be an introduction to some basic concepts of ROS and Apollo Auto to enable

the reader to begin working on their own with AVs. A hardware section has been written

as well so the on-board computer installed in the Twizy can be analyzed.

2.1. Software

Apollo Auto is an open sourced platform for developing autonomous driving

algorithms. It is developed by a Chinese company called Baidu. Apollo is built upon a

software library called Robot Operating System (ROS) which is also open source.

2.1.1. ROS

ROS is a globally used framework which main goal is the develop and research

in robotics. However, ROS is built upon Linux or Ubuntu. Because of this, ROS is also

known as a meta-operating system.

The basis of ROS is grounded in the way communication is achieved within a

complete robotics system [20]. As most robotic systems are constructed of several sub-

systems (nodes), which need to communicate, a vital part of problem solving is finding

solutions so that they can talk to each other.

In ROS communication is achieved by using what is called nodes and topics.

Nodes are the actual programs that operate sensors, motors, etc. They are responsible for

the computation that is needed. Topics come in to play when nodes need to communicate

with each other. Topics are built upon a publish/subscribe system which allows nodes to

publish data onto a certain topic. This data is then available for subscribing nodes to read

and use for computing. This way of communication allows the nodes to talk with each

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

24

other without knowing who they are talking to. They just need to know what topic they

need to publish and subscribe to in order to transmit and receive data from.

2.1.1.1. Master

As it was mentioned before, ROS structure consists in the division of several

sub-systems, therefore, it requires some controller to keep track of every node and topic

within the system. This controller is called ‘the ROS-master' and must always run in order

for the ROS-system to operate [21].

The startup process that the master uses can be seen in figure 4. After booting

up the master the first step is for the publishers to advertise the master that they are ready

for publication on one or more topics. The master then creates the topic, but at this time

no data is sent onto it since there is no subscriber. For the subscribers to be able to access

data from topics a similar boot up process is executed. It sends a request to the master that

it wants to subscribe to the topic and starts to listen to the topic.

Figure 4. Publisher and subscriber initiation process

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

25

2.1.1.2. ROS commands

The advantages of using ROS do not only include the way communication is

handled but also its vast library of commands. These commands enable development,

analyzation and simulation of algorithms to be executed [22]. Some examples of the

commands are rosbag and rostopic.

The rosbag command allows the recording and playback of previously executed

simulations [23]. Important to note that there are several more subcommands linked to

rosbag that execute playback, filtering, etc.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

26

2.1.2. APOLLO

As previously mentioned Apollo Auto is a platform that enables development

of AVs. Baidu provides a functioning system that can be directly implemented in a vehicle

already provided, a Lincoln MKZ. For this aim a specific set of hardware is used. The

importance of using the same vehicle and hardware is because of the way that Apollo

transfers control signals to the vehicle is by CAN (Controller Area network). CAN is a

network often used in vehicles to transfers control signals to everything from lights and

wipers to motors and steering. The messages sent over the so called, CAN-bus vary a lot

between different vehicles. This includes the structure, content and frequency of the

messages. Another issue is the fact that for Apollo to run it needs feedback from the car.

This includes speed, turning angle and acceleration, etc. The chance that the messages are

constructed in the same way for separate vehicles is small and will therefore require

customization.

2.1.2.1. Modules

Modules can be defined as processes that perform the computation needed. In

other words, they are the actual programs that operate with sensors, motors, and more.

Modules are for Apollo what nodes are for ROS. Modules and nodes will be treated

indistinctly from now on. Moreover, communication in Apollo is as essential, as it was in

ROS. Therefore, modules are all related/connected at some point among them, so a

communication needs to be established. This communication is similar to the one

explained in ROS section based in topics.

Modules could be interpreted as a task division in a big process. The module

division is one of the biggest strengths in ROS and in Apollo because of the flexibility

they bring to the system. This means that a crash on any of the modules, wouldn’t lead

into an overall crash of the system, which makes the system safer and more reliable. In

this case, for example, we have a module that defines the localization, another that

recreates the map…

The end of this section is to explain some of the most important modules that

are already made in Apollo and that were used during this bachelor thesis. Thus,

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

27

prediction, routing and planning will be explained in a general basis. However, as a main

part of the thesis was to customize a map, the map module will be analyzed in more detail.

Besides, the simulation module, Dreamview, will be explained in a separate chapter. Is

important to know that there are other modules as Localization or Control, but they are

out of the scope.

Perception module end is to recognize obstacles. Prediction and perception

modules are very related, this is because prediction will receive the information of

perception and will generate the most likely trajectory that the obstacle perceived could

take.

The planning and the routing module will calculate a collision free route, so it

can be executed and followed. For that purpose, it will need the information given by

other modules such as map, perception… in the simulation a blue path is created for the

Apollo vehicle to follow.

Another important module is the map module. To enable autonomous driving,

a map is required by Apollo to plan a route that will take the vehicle safely from point A

to point B. Apollo comes with a few pre-made maps on which a simulation can be run,

but for a real-world scenario a map has to be made by the user. Apollo’s maps are all

based on the OpenDrive format. OpenDrive is an open file format for road-descriptions

using xml (Extensible Markup Language). Apollo has made some modifications and as

such the standard OpenDrive format will not work in Apollo. There is a definition sheet

shortly describing the modified format which can be acquired from the Apollo team.

Map-data is split into three different versions. These are the base map

(base_map.xml), routing map (routing_map.xml) and simulation map (sim_map.xml).

The routing map and the simulation map are simplified versions of the base map where

only the most relevant data is kept. The base map is a complete map with all detailed

coordinate-sets and map-elements, such as crosswalks, thoroughly defined. The

simulation map is a compressed version of the base map, where coordinate-sets get

shortened as much as possible for quicker execution during simulation. The routing map

is a version of the base map with the possible routing-actions, such as lane switching. The

routing module use this map to create a topological graph, describing the optimal route

from point A to point B.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

28

Apollo uses a collection of xml-parsers located in the map module to create the

routing map and simulation map from the base map. These depend on the base map being

an xml and as such there are scripts for translating a base map from either with a binary

format or txt format to xml.

How Apollo is structured with which modules communicates with each other

and via what topics can be seen in the table below.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

29

Table 1. Apollo publishing & subscribing structure

Module (Node) Subscription Publishing

Canbus
/apollo/control /apollo/canbus/chassis

/apollo/canbus/chassis_detail

Control

/apollo/canbus/chassis /apollo/control

/apollo/canbus/chassis_detail /apollo/cotrol/pad

/apollo/planning

/apollo/localization/msf_gnss

/apollo/localization/msf_lidar

/apollo/localization/msf_status

/apollo/localization/pose

Localization

None /apollo/localization/msf_gnss

 /apollo/localization/msf_lidar

 /apollo/localization/msf_lstatus

 /apollo/localization/pose

Map
None /apollo/relative_map

/apollo/drive_event

Monitor
None /apollo/monitor

 /apollo/monitor/static_info

Perception

None /apollo/perception/obstacles

 /apollo/perception/traffic_light

 /apollo/sensor/gnss/best_pose

 /apollo/sensor/gnss/corrected_imu

 /apollo/sensor/gnss/gnss_status

 /apollo/sensor/gnss/imu

 /apollo/sensor/gnss/ins_stat

 /apollo/sensor/gnss/odometry

 /apollo/sensor/gnss/rtk_eph

 /apollo/sensor/gnss/rtk_obs

 /apollo/sensor/mobileye

Planning

/apollo/perception/traffic_light /apollo/planning

/apollo/prediction /apollo/routing_request

/apollo/routing_response

/apollo/canbus/chassis

/apollo/canbus/chassis_detail

/apollo/localization/msf_gnss

/apollo/localization/msf_lidar

/apollo/localization/msf_status

/apollo/localization/pose

Prediction
/apollo/perception/obstacles /apollo/prediction

/apollo/perception/traffic_light

Routing
/apollo/routing_request /apollo/routing_response

/apollo/monitor

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

30

2.1.2.2. Communication within Apollo

For standard ROS messages (.msg files) the structure always has to remain the

same way [24]. In Apollo there are some changes on how communication is done.

Apollo uses a message definition called protocol buffers, also known as protobuf in

short, which allows for messages to be flexible. Flexibility means that the message has

the ability to allow some structural changes. If one node does not send its complete

message, in a normal setting this would cause the shutdown of the entire system in ROS,

but thanks to the inherent flexibility of the protobuf messages it can still operate

functionally given that the values missing are not critical for operation.

An example of how flexibility works in the case of an AV driving and

receiving coordinates from a GPS of where it is located. Say that these coordinates are

three dimensional (x, y, z). In many cases the car does not need to know at what height

it is and therefore, if the z-coordinate is missing the car should operate as usual. This is

possible thanks to protobuf messages.

Although protobuf enables flexibility and facilitates communication it creates

some issues when integrated. One of these issues is that ROS requires published

messages to be standard ROS messages and the output from modules in Apollo is

protobuf. This problem is solved by using so called adapters. They will be explained in

section 2.1.2.3.

While Apollo messages differs from the ROS standard structure of how

modules communicate follows the same node/topic structure as ROS, only difference is

that nodes are called modules. The structure of Apollo and how each module

communicate with each other, i.e. which topics the modules publish and subscribe to,

are presented in Table 1.

2.1.2.3. Adapters

Due to the massive amount of data that an AV needs to handle because of the

different sensors, cameras, lidars... The information needs to be recorded, stored and

analyzed in an easy way. For this reason, Apollo decided to use protobuf messages. To

establish a communication between ROS and Apollo Adapters were created. Adapters

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

31

can be viewed as translators of messages and are specialized for one specific topic.

Hence there are several adapters per module so that each topic is translated correctly.

2.2. Hardware

Since the Twizy does not have an internal computer with the capacity of running

the algorithms needed for autonomous drive, this warrants a need for a separate computer.

The computer used for this project is a Novu-6801-GC with Nvidia GTX 1080

graphics card. The Novu is chosen for its durability, computing power and small form

factor.

The Novu comes with most of the necessary components already installed, but

some crucial components are not included at delivery. These are a CAN-card, SSD and

graphics card. The CAN-card is used to convert messages into physical signals transported

over the CAN-bus. The SSD is used for storage and the graphics card for heavy data

processing. The hardware installation of these components was straight forward, but when

it comes to software integration and installation there were some issues.

Initially, the installation process of Ubuntu ran without any problems. However,

the Apollo kernel (linux-4.4.32-apollo-1.0.0) used in this project is optimized for Ubuntu

14.04 and the first installation of Ubuntu was done by using version 16.04. Because of

this there were some problems with the graphics, greatly lowering the refresh rate.

However, and installation of Ubuntu 14.04 fixed it.

When installing the CAN-card there were some issues with getting the CAN

module to send messages. Since this problem affected several parts of the Twizy it was

fixed in collaboration with another Twizy-group. The problem involved a function that

converts messages from the control module to CAN-messages and vice-versa. When this

function was called it only sent zeros over the CAN-bus and not the actual control

messages that it was supposed to send.

The solution to this problem was to remove a large portion of the code which is

located in a script called vehicle_control.cc between line 104 and 122. Those lines check

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

32

whether the messages that are supposed to be sent over the CAN-bus are valid or not. One

consequence of removing the checks is that all messages gets sent over the CAN-bus, this

includes messages that could become harmful for the vehicle and the surroundings. For

example, if a test is run with simulated signals over the CAN-bus there is the possibility

that the car drives blindly, which could lead to a crash. However, one advantage of this is

that it enables tests of every node, except perception and location, and the vehicle itself.

Figure 5. IPC used

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

33

Chapter 3 Simulation Module

In chapter 2 different modules were already introduced. This bachelor project

has been focused specifically on the simulation module. Therefore, a new chapter has

been opened with the purpose of explaining this module and the Dreamview interface.

Simulating in Apollo can either be done in the terminal using bag files, or in

Apollos internal HMI, Human-Machine Interface, “Dreamview”, which can be seen in

figure 6 [25]. There is a difference on what can be achieved in each and can thus warrant

the use of both methods.

Dreamview is designed to visualize the data currently sent over the Apollo

framework [25]. It provides the user with several options regarding choice of map and car

(if several are located in the system) as well as the option to toggle what modules are

currently running. This way of activating separate nodes makes possible the isolation of

a node so it can simply be analyzed. These functionalities enable basic testing of control

algorithms. The map used is a simplified version of the HD map, retaining only the core

information for base functionality. As such is portrayed as a 2D map, with roads and

obstacles visualized. Routes can be planned in Dreamview.

Bagfiles enables recording of real life scenarios, by driving the vehicle while

recording how the system would react in each situation. By using the command "rosbag-

filter" one can filter out messages sent over topics related to a specific module and

therefore allow for testing of new algorithms in specific modules [26]. This is useful in

cases where there are several teams working on separate parts of software development

that want to test only their own algorithms and not have to worry about bugs from another

part of the system.

The main idea of this module is to provide the user a web application where the

different outputs of the other modules are displayed. Apollos simulation uses a bash script

called “dreamview_sim_control.sh” to enable simulation. The script uses Apollos HMI

Dreamview, see figure below, for visualization. The activation of the simulation module

is always required before simulating.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

34

Using the terminal enables analysis of individual modules and topics in a more

detailed way than by using Dreamview. This comes from the fact that the terminal outputs

the actual message rather than a graphical view of the modules reacting. Because of this,

each message can be deconstructed to locate possible errors.

The table below contains the list of modules in which the Dreamview module is

subscribe to and the list of modules where Dreamview publishes to.

Table 2. Subscriptions and publications of Dreamview

Subscriptions Publications

/apollo/localization/pose None

/apollo/canbus/chassis

/apollo/canbus/chassis_detail

/apollo/planning

/apollo/monitor

/apollo/monitor/static_info

/apollo/perception/obstacles
/apollo/prediction

/apollo/routing_response

Figure 6. Dreamview interface

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

35

3.1. Dreamview system notification scheme

Dreamview uses a visual notification system expressing the decision making

that the car performs as it is driving both virtually and in reality [27]. For the planning

module, decisions are depicted by decision fences, as illustrated in the left and middle

picture in figure 7. The left fence is shown as the car is stopping for an obstacle on the

road and the right fence denotes the decision of following the vehicle in front. The

rightmost picture is shown as the car issues a signal to change lane.

However, the car may stop for other reasons than simply detecting an obstacle

in its path. A few of the symbols representing additional stopping reasons are shown in

figure 8. As a stopping reason is issued, it will substitute the orange cone shown in the top

right corner of the red stopping fence presented above. From left to right, the symbols

denote stopping due to crosswalk in front, pedestrian crossing in front, destination arrival

and emergency.

Perceived objects are assigned one out of four colors due to their type; vehicles

are presented as green boxes, pedestrians as orange, bicycles as blue and unknown objects

as purple. As the car is driving close to an object, an orange patch under the object appears,

depicting an area that the car should avoid. If the perceived object is moving, the

perception module will assign a white arrow to it, emanating from the geometrical center

point and pointing in the direction that the object is heading. Likewise, the prediction

module will assign a yellow arrow pointing in the direction of the predicted path.

Figure 7. Some of the symbols representing the decision making made by the system in the Dreamview visual notification scheme.

Figure 8. Symbols representing what causes the car to stop in the Dreamview visual notification scheme.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

36

There are several additional symbols that Dreamview can display in other

situations. However, only the ones presented in this section were seen as relevant for this

thesis. The tools to build and simulate scenarios are now acquired and, assuming the car

behaves properly, it is clear which symbols should be displayed in which situations by

virtue of this section.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

37

Chapter 4 Creating and testing a

simulation environment

The main purpose of the project was to investigate ways of simulating

and evaluating the system. In the beginning of this chapter, a simulation procedure using

bagfiles is proposed. However, this method proves to be rather inconvenient and a more

customizable simulation method is therefore required. The second method is based on the

contents of section 4.2.1. and 4.2.2. A detailed comparison of the two methods is

presented in section 4.2.3. The simulations are restricted to only run using the planning,

prediction and routing modules. These are the only relevant modules to simulate since the

other modules are interfaces to hardware, which is not included in the simulation.

More specifically, section 4.2.1. presents the process of creating a

custom map. The map was used in conjunction with the second simulation method to

create specific traffic scenarios. Three simulation scenarios are tested; a pedestrian

crossing the road in front of the car, another car driving slowly in front of the car, another

car driving slowly in front of the car and making the car perform a simple lane change.

These are presented in sections 4.3.1, 4.3.2. and 4.3.3. respectively.

The aim of this chapter is to evaluate the quality of the simulation

environment. The evaluation is primarily based on the content of section 3.1., which is a

brief introduction to the Dreamview notification scheme, as well as on the scenario

sections. At the end of each scenario, a scenario-specific evaluation is presented in section

4.4.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

38

4.1. Simulation using bag files

As explained in chapter 3, it is possible to create a new bag file containing

messages published on the topics of interest by filtering and existing bagfile. This can be

used to simulate a module, by filtering out the input data and providing it to the module

by playing the new bagfile. This procedure is explained by an example, using a bagfile

included in Apollo 2.0. for demonstrative purposes.

The contents of the demo_2.0.bag file can be inspected by running the command

rosbag info demo_2.0.bag which yields the following output.

1 path: demo_2.0.bag

2 version: 2.0

3 duration: 34.9s

4 start: Dec 28 2017 22:37:38.00 (1514497058.00)

5 end: Dec 28 2017 22:38:12.90 (1514497092.90)

6 size: 63.1 MB

7 messages: 46168

8 compression: none [80/80 chunks]

9 types: pb_msgs/ADCTrajectory [97587fe9a5b2df2b61888d56c6fc697b]

10 pb_msgs/Chassis [d6a21658031a6a4615858d76f8b5178e]

11 pb_msgs/ContiRadar [cc92608f43dabc2a96119eaca0c19535]

12 pb_msgs/ControlCommand [67f7ff8a4c675dc97a8c7ce6d6289943]

13 pb_msgs/EpochObservation [6d088c32c2d00b8a760974f0c580dfb7]

14 pb_msgs/GnssBestPose [c4465e2257bee53c91729e53c69bf7c5]

15 pb_msgs/GnssEphemeris [aa53419c1014e11a3b4604e3c54daf7b]

16 pb_msgs/GnssStatus [6ab9bfa7e56e2724f6d30280b731fef2]

17 pb_msgs/Gps [8fad5985ce947d3b6854fd093a59c429]

18 pb_msgs/Imu [bdef0ba51869607ed95736d41e80c1f5]

19 pb_msgs/InsStat [36306149a641468d85afa4cf44de7141]

20 pb_msgs/LocalizationEstimate [503c8e75900db180bc61534806a37cfb]

21 pb_msgs/LocalizationStatus [ea957896c739487ae64a8f4db8112e08]

22 pb_msgs/PerceptionObstacles [c6fd886a685be1dbbc6174bbc5a754de]

23 pb_msgs/PredictionObstacles [45bac0c01020cbf041fb9bd39f790e93]

24 pb_msgs/TrafficLightDetection [af38365a44e248f235d36014648275e9]

25 tf2_msgs/TFMessage [94810edda583a504dfda3829e70d7eec]

26 topics: /apollo/canbus/chassis 3490 msgs : pb_msgs/Chassis

27 /apollo/control 3489 msgs : pb_msgs/ControlCommand

28 /apollo/localization/msf_gnss 35 msgs : pb_msgs/LocalizationEstimate

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

39

29 /apollo/localization/msf_lidar 175 msgs : pb_msgs/LocalizationEstimate

30 /apollo/localization/msf_status 6535 msgs : pb_msgs/LocalizationStatus

31 /apollo/localization/pose 6277 msgs : pb_msgs/LocalizationEstimate

32 /apollo/perception/obstacles 348 msgs : pb_msgs/PerceptionObstacles

33 /apollo/perception/traffic_light 105 msgs : pb_msgs/TrafficLightDetection

34 /apollo/planning 349 msgs : pb_msgs/ADCTrajectory

35 /apollo/prediction 348 msgs : pb_msgs/PredictionObstacles

36 /apollo/sensor/conti_radar 465 msgs : pb_msgs/ContiRadar

37 /apollo/sensor/gnss/best_pose 35 msgs : pb_msgs/GnssBestPose

38 /apollo/sensor/gnss/corrected_imu 3490 msgs : pb_msgs/Imu

39 /apollo/sensor/gnss/gnss_status 35 msgs : pb_msgs/GnssStatus

40 /apollo/sensor/gnss/imu 6934 msgs : pb_msgs/Imu

41 /apollo/sensor/gnss/ins_stat 35 msgs : pb_msgs/InsStat

42 /apollo/sensor/gnss/odometry 3490 msgs : pb_msgs/Gps

43 /apollo/sensor/gnss/rtk_eph 66 msgs : pb_msgs/GnssEphemeris

44 /apollo/sensor/gnss/rtk_obs 69 msgs : pb_msgs/EpochObservation

45 /tf 10398 msgs : tf2_msgs/TFMessage

Table 3. A printout of information about the demo_2.0.bag file.

The most essential parts of the information are the messages listed on line 9 to

25 and the topics on which they are published on, listed on lines 26 to 45. By consulting

the table 1, the published topics in the bagfile can be compared to the subscription topics

of the modules. The conclusion is that simulating every module using only the content

from this bagfile is not possible. In fact, the only modules that could be provided with

complete input data are planning, routing and prediction modules.

Suppose that the prediction module needs to be tested. Thus, a bagfile containing

messages published on the /apollo/perception/obstacles and the /apollo/localization/pose

topics needs to be created, according to the table 1. These topics are listed on line 31 and

32 in the information printout. Filtering is performed by running the following command.

$ rosbag filter demo_2.0.bag new_bag.bag

'topic == "/apollo/localization/pose" or

topic == "/apollo/perception/obstacles"'

Activating the prediction module by using e.g. the Dreamview module

controller and playing the new bagfile by running the command $ rosbag play

new_bag.bag will start the simulation. Echoing the /apollo/prediction topic yields the

output in the form of prediction obstacle messages as presented below.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

40

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

header {
timestamp_sec: 1521789098.58
module_name: "prediction"
sequence_num: 447
}
prediction_obstacle {
perception_obstacle {

id: 1816 position {
x: 587590.958171
y: 4140891.16965
z: -30.522346882

}
theta: 1.35948664408
velocity {

x: 3.3099228761
y: 15.40820552
z: 0.0
}
length: 1.80951833725
width: 2.05610489845
height: 0.663786709309
polygon_point {

x: 587589.763831
y: 4140890.56002
z: -30.493086751
}
.
. (several polygon points)
.
polygon_point {

x: 587591.76231
y: 4140890.0733
z: -30.531645177

}
tracking_time: 5.30291795731
type: VEHICLE
timestamp: 1514497088.83
confidence: 0.925041079521
confidence_type: CONFIDENCE_CNN

}

 42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

timestamp: 1514497088.83
predicted_period: 5.0
trajectory {

probability: 1.0
trajectory_point {

path_point {
x: 587590.958171
y: 4140891.16965
z: 0.0
theta: 1.36090444968

}
v: 15.7597077
a: -0.0368953225593
relative_time: 0.0

}
.
. (several trajectory points)
.
trajectory_point {

path_point {
x: 587601.815494
y: 4140967.35914
z: 0.0
theta: 1.49771702947
}
v: 15.7289489231
a: 0.0243981598557
relative_time: 4.9

}
}

}

perception_error_code: OK

start_timestamp: 1521789098.58

end_timestamp: 1521789098.58

Table 4. An output message from the prediction module during simulation using bagfiles.

Essentially, the prediction obstacle message wraps the perception obstacle,

which contains information about the position, velocity, type, ID and geometrical shape

of the object. The shape is determined by the polygon points, starting at line 23. The

prediction module then adds additional information, starting at line 42, which is the

predicted trajectory of the perceived object. The trajectory is represented by several

trajectory points. In this particular message, the car is keeping track of a vehicle with ID

1816.

Simulating the planning or routing modules can be done in an analogous

manner. Multiple modules can be simulated together as well by containing the input to

each module in the same bagfile and playing it. While this method of simulation works,

there are several substantial limitations to it. It is simply not possible to modify the

location, velocity, acceleration, type, geometrical shape or path of any object in the

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

41

bagfile. A more convenient method is based on a custom map and obstacle placement

function in the following two sections.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

42

4.2. Creating the environment

The main purpose of the project is to create a simulation environment, a

customize map and obstacles placed on that map. In order to achieve this goal some coding

was done. The scope was to recreate the road in Chalmers but due to construction work

on one of the roads constituting the car route which was initially decided upon, the teams

were forced to revert to driving on a simple straight on campus. This chapter 4.2. will

explained in detail how the custom map and the obstacles were created and integrated in

Dreamview.

4.2.1. Creating a road

By investigating the code of one of the already existing base_map.xml files in

the system, another Twizy project group managed to create a basic map consisting of a

single lane straight which the car was able to route and drive on in simulations. The group

also managed to obtain a specification sheet on the OpenDrive format used in Apollo.

Using these tools, the coordinate system of the map was changed, and an additional lane

and a crosswalk were included. This resulted in a road structure as illustrated in figure 9.

Figure 9. The structure of the virtual wo-lane road used in the simulations.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

43

The final code for the base_map.xml file is listed in the Appendix B.1. The code

begins with some basic xml file declarations and a header containing meta-data. On lines

15 through 17, there is special geographical meta-data. Starting from the right of line 16,

it is declared that the unit of measurement used in the subsequent code is meters. The

coordinate system is chosen according to the UTM standard, declared by the assignment

to proj, which makes the map compatible with Dreamview.

15 <geoReference>
16 <![CDATA[+proj=utm +zone=31 +ellps=WGS84 +datum=WGS84 +units=m +no_defs]]> 17

</geoReference>

Line 19 declares the road that holds the two lanes and assigns the road identifier

r1 to it. Lines 22 to 29 specify a crosswalk of width 2m located at a distance of 40 m from

the starting end of the straight.

22 <object id="1" type="crosswalk">
23 <outline>
24 <cornerGlobal x="40" y="0" z="0" />
25 <cornerGlobal x="40" y="-6" z="0" />
26 <cornerGlobal x="42" y="-6" z="0" />
27 <cornerGlobal x="42" y="0" z="0" />
28 </outline>
29 </object>

On lines 32 to 34, the lanes tag holds the laneSection which holds the road

boundaries. On lines 36 to 53, the leftmost and rightmost boundaries of the road are

declared. By OpenDrive convention, the center line o a road is a lane identifier 0 and no

width, as declared on line 56. This line is also referred to as the reference line.

56 <lane id="0" uid="r1_1_0" type="none">

Since the road contains two lanes with identical driving direction, no overtaking

by crossing the road center line is allowed and the line is set as a solid yellow on line 64.

64 <borderType sOffset="0" type="solid" color="yellow"/>

The innermost lane is declared at line 70 and assigned the lane identifier -1 by

convention.

70 <lane id="-1" uid="r1_1_-1" type="driving" direction="forward" turnType="noTurn">

Lines 71 to 78 declare the lane center line. The left border of the lane is hard

limited by the road reference line, but the right border may reside any distance from the

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

44

reference line as long as it is not further away than the rightmost road border. On lines 79

to 87, the first lane right border is set as to split the road in two parts of equal width 1.5

m.

79 <border> <!-- Lane right side border -->
80 <geometry sOffset="0" x="0" y="-3" z="0" length="1000">
81 <pointSet>
82 <point x="0" y="-3" z="0"/>
83 <point x="1000" y="-3" z="0"/>
84 </pointSet>
85 </geometry>
86 <borderType sOffset="0" type="broken" color="white"/>
87 </border>

The declaration of the second lane on lines 104 to 138 follows the same pattern

as the first. The second lane has assigned the lane identifier 2 by convention.

As the base map is complete, the routing map is generated by running the

command

$./scripts/generate_routing_topo_graph.sh --map_dir ${dir_name}

where the parameter dir_name is the path to the directory holding the

base_map.xml file. The command yields two new files, routing_map.txt and

routing_map.bin. Similarly, the map used for Dreamview visualization is generated by

the command

$ bazel-bin/modules/map/tools/sim_map_generator --map_dir=${dir_name} --

output_dir=${dir_name}

which yields the files sim_map.txt and sim_map.bin. To ensure that the maps

have been generated correctly, the terminal output should be investigated. Using the base

map presented in this section yields the output listed in table 5. Lines 1 to 14 and 15 to 33

represent the results from generating the routing map and the sim map respectively. As

evident from lines 3 and 4 as well as 15 and 16, the two maps contain one road, two lanes

and one crosswalk. Lines 18 to 31 ensures the success of the down sampling needed to

create the sim map.

1 I0508 12:32:49.797320 119 topo_creator.cc:36] Conf file:
2 modules/routing/conf/routing_config.pb.txt is loaded.
3 I0508 12:32:49.801218 119 proto_organizer.cc:373] hdmap statistics: roads-1,lanes-2,
4 crosswalks-1,clear areas-0,speed bumps-0,signals-0,stop signs-0,yield signs-0,junctions-0,
5 overlaps-3

6 I0508 12:32:49.801396 119 graph_creator.cc:72] Number of lanes: 2
7 I0508 12:32:49.801429 119 graph_creator.cc:98] Current lane id: r1_1_-2
8 I0508 12:32:49.801462 119 graph_creator.cc:98] Current lane id: r1_1_-1
9 I0508 12:32:49.803390 119 graph_creator.cc:146] Txt file is dumped successfully. Path:

10 modules/map/data/Simtest/routing_map.txt
11 I0508 12:32:49.803647 119 graph_creator.cc:151] Bin file is dumped successfully. Path:
12 modules/map/data/Simtest/routing_map.bin

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

45

13 I0508 12:32:49.803679 119 topo_creator.cc:43] Create routing topo successfully from
14 modules/map/data/Simtest/base_map.xml to modules/map/data/Simtest/routing_map.bin
15 I0508 12:32:49.875528 121 proto_organizer.cc:373] hdmap statistics: roads-1,lanes-2,
16 crosswalks-1,clear,areas-0,speed bumps-0,signals-0,stop signs-0,yield signs-0,junctions-0,
17 overlaps-3

18 I0508 12:32:49.875799 121 sim_map_generator.cc:84] Downsampling lane r1_1_-2
19 I0508 12:32:49.875811 121 sim_map_generator.cc:77] Lane curve downsampled from 2 points
20 to 2 points.

21 I0508 12:32:49.875821 121 sim_map_generator.cc:77] Lane curve downsampled from 2 points
22 to 2 points.

23 I0508 12:32:49.875828 121 sim_map_generator.cc:77] Lane curve downsampled from 2 points
24 to 2 points.

25 I0508 12:32:49.875849 121 sim_map_generator.cc:84] Downsampling lane r1_1_-1
26 I0508 12:32:49.875854 121 sim_map_generator.cc:77] Lane curve downsampled from 2 points to
27 2 points.

28 I0508 12:32:49.875875 121 sim_map_generator.cc:77] Lane curve downsampled from 2 points to
29 2 points.

30 I0508 12:32:49.875880 121 sim_map_generator.cc:77] Lane curve downsampled from 2 points to
31 2 points.

32 I0508 12:32:49.877517 121 sim_map_generator.cc:121] sim_map generated at:
33 modules/map/data/Simtest

Table 5. The output after generating the routing and sim maps.

As it is possible to create a map consisting of any road structure of choice, it would be natural to

include obstacles in the environment. While this could be done by using bagfiles to publish

perceived objects on the /Apollo/perception/obstacle topic, the second method is far more flexible

in conjunction with the custom map.

Figure 10. Straight Lane in Dreamview

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

46

4.2.2. Obstacle implementation

The second method offers the ability to change several features of a perceived

object, as opposed to the bagfile method. Parameters such as the position, velocity,

accelaration, path, shape, type and ID may all be chosen, greatly simplifying the creation

of traffic scenarios.

A new script called sim_test.cc containing a function called updateSimWorld

was created, enabling the desired creation and placement of box-shaped obstacles in the

simulation environment. The code for the script and function is listed in appendix C.1 and

C.2. Lines 1 to 15 declare the files that needs to be included. For example, the

corresponding header file called sim_test.h is included on line 1. The current files are

located in the Dreamview module directory, requiring the innermost namespace

Dreamview on line 18.

The declaration of the new main function is made at line 32. It is followed by

the declaration of a PerceptionObstacles object which is a form of container holding

multiple PerceptionObstacle objects. An additional function named

addPerceptionObstacle is called on lines 36 and 55. The call on line 36 relate to the

scenario presented in section 3.6 and the call on 55 to the scenario in section 4.3.2.

36 addPerceptionObstacle(&obstacles, ::apollo::perception::PerceptionObstacle::PEDESTRIAN, 1, 41, y, 0, 0, 1, 0, 1, 1,

1);

In calling the function, the first parameter is a PerceptionObstacles object, the

second is the type of object that is perceived, and the third parameter is an object identifier.

On line 36, the type of object is a pedestrian with the identifier 1. The three following

parameters are the x-, y- and z-coordinates of the object's geometrical center point in a

Cartesian coordinate system. The pedestrian is moving and therefore the y-coordinate is

updated according to the parameter y. The succeeding three parameters describe the

velocity in the x-, y- and z-direction in meters per second. If the object is stationary, the

addPerceptionObstacle function with 12 parameters on line 65 is indirectly called with

zero velocity in each direction. The final three parameters describe the width, length and

height of the box that represents the object, measured in meters.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

47

The addPerceptionObstacle function sets certain paramteters of the passed

PerceptionObstacles object, as described by the input parameters. This object is then

published on the /apollo/perception/obstacles topic on line 71, ending the main function

body.

The main function publishes only once per call and must be called upon

frequently enough in order to mimic an object perceived in real time. After some

investigation in the Dreamview module directory, a script called sim_control.cc was

found, containing a convenient function that runs as often as the car's position is updated.

Calling the self-made updateSimWorld function inside this function provides the

publishing rate of the PerceptionObstacle messages that is needed. The sim_control.cc

scripts are listed in appendix C.3.

Originally however, the Dreamview module is not permitted to publish any

messages onto the /apollo/perception/obstacles topic. To solve this, a file called

adapter.cong located in the Dreamview module directory was modified by changing the

communication mode from RECEIVE_ONLY to DUPLEX. Since changing code in the

system generally requires rebuilds, the new sim_test.cc and sim_test.h files were added to

the local BUILD file.

By rebuilding the system and initiating the simulation, the custom objects will

be shown in Dreamview as if the car is actually perceiving them. However, the perception

module is bypassed and not active in any way. While the perception module in fact can

be simulated, pre-recorded sensor data is required in order to do so. Being limited to the

scenario offered by the sensor data would contradict the purpose of the simulation method;

to be able to easily create and test new traffic scenarios.

The two simulation methods have been presented and their differences have

been mentioned briefly. However, a more detailed comparison is presented in the

following section. The comparison is explained by an example.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

48

4.2.3. Simulation methods advantages and

disadvantages

By the use of the sim_test.cc script, the ability to customize the position,

velocity, acceleration, type and geometrical shape of the object was acquired. This is the

first key aspect to why the second simulation method is superior to the bagfile method.

The second aspect involves the map. In fact, creating traffic scenarios by using tailored

according to the obstacles placed in it instead of the opposite. This may be explained by

a proposition on how to recreate the scenario of the crossing pedestrian, assuming that a

custom map is used.

Initially, a bagfile such as the demo_2.0.bag file would need to be played and

Dreamview accessed. The environment would then need to be searched until a pedestrian

was found. The pedestrian must not be close to any other object, since objects cannot be

removed from the bagfile and the scenario should include the pedestrian and the car only.

Furthermore, the walking path of the pedestrian must be somewhat straight. Due to these

restrictions, the likeliness of finding an adequate situation is already marginal.

Presume that a pedestrian has been found. Since the pedestrian should walk

across the road, the road must be placed accordingly. If the road is a simple straight,

placing the road will not require too much effort. However, placing a road with a more

complex structure including e.g. junctions, curves and roundabouts could be

extraordinarily time consuming and intricate. Assuming that this problem has been solved,

the scenario may then be simulated.

Most likely however, the first iteration of the scenario will not be completely

satisfying. For example, the map might need to be finely adjusted to suit the walking path

of the pedestrian. Furthermore, the pedestrian will re-spawn only as frequent as the bagfile

is re-played, possibly making it hard to synchronize the car to encounter the pedestrian at

a specific moment. The rate of spawning cannot be changed, since the duration of the

bagfile cannot be modified.

To conclude, the combined use of a custom map and the sim_test.cc script

makes it relatively easy to simulate a multitude of traffic scenarios. Before presenting the

traffic, scenarios chosen in this report, it is important to ensure that the quality evaluation

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

49

of the environment will be done in a correct way. As will be shown, the evaluation is

based on inspection of module output as well as on the notification system used in

Dreamview. The latter requires a general introduction, after which the scenarios will be

explained in more detail.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

50

 4.3. Complete system simulation

The goal of this bachelor thesis is the simulation of some real-life scenarios, so

money can be saved by seeing the behavior of the vehicle in the computer instead of

developing some real prototypes and traffic situations which cost vast amounts of money.

This last stage of the simulation work was focused on developing those

scenarios. There are four different scenarios that will be explained in detail during this

section.

4.3.1. Scenario 1: Pedestrian crossing the road

This particular scenario was chosen due to its frequent occurrence in real world

traffic. It is also interesting in the wake of the fatal accident in which a self-driving Uber

car ran over a pedestrian crossing a road at night in Arizona, USA this year [28].

In the sim_test.cc file, a line instantiating a moving obstacle shaped like a cube

with side 1m was added, which represents the crossing pedestrian. The pedestrian moves

across the crosswalk at a fairly slow pace. The pedestrian as an object and the mechanics

that makes it move are represented by the code on lines 46 to 51.

The scenario is illustrated in figure 11. Initially, a routing request has been sent

and the car accelerates as the routing and planning modules have decided on the preferred

trajectory. In picture 1 and 2, the car starts to decelerate as to be able to stop in time for

the crossing pedestrian. Note that the color of the box representing the pedestrian is orange

as expected, but that the white arrow is pointing perpendicularly to the pedestrian's actual

heading. Note also that the stopping reason is due to an obstacle in front and neither as

specific as to a crosswalk in front nor to a pedestrian crossing in front. In picture 3, the

car is standing completely still. As the pedestrian reaches the center line of the second

lane in picture 4, the car finds it safe enough to start moving again. As it drives past,

Dreamview displays the orange avoidance zone below the pedestrian. By closer

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

51

inspection of the last picture, it is possible to observe the green flag in the top right corner

of the red decision fence ahead, the stopping due to destination arrival symbol.

The decisions of the car may also be inspected in text format by printing out the

output of the planning module, as listed in table 6.

Figure 11. Four important moments in time from the scenario of the crossing pedestrian

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

52

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

decision {
 main_decision {

stop {
reason_code: STOP_REASON_OBSTACLE

reason: "stop by 1"
stop_point {

x: 34.5
y: -1.500001

}
stop_heading: 9.43860757827e-15
change_lane_type: FORWARD

}
}

object_decision {
decision {

id: "1"
perception_id: 1
object_decision {

stop {
reason_code: STOP_REASON_OBSTACLE
distance_s: -6.0

 stop_point {
x: 34.5
y: -1.500001

}
stop_heading: 9.43860757827e-15 }

}
}

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

decision {
id: "DEST"
perception_id: -1109540454
object_decision {

stop {
reason_code: STOP_REASON_DESTINATION
distance_s: -0.5
stop_point {

x: 64.1356383595
y: -1.500001
z: 0.0

}
stop_heading: 6.60935984861e-16
 }
}

}
}
vehicle_signal {

turn_signal: TURN_NONE
}

Table 6. Output message from the planning module when stopping dor the crossing pedestrian

The message contains information about several decisions. Esentially, each

decision consists of a stopping reason, a stopping point and the current distance to the

stopping point. In this case, the first stop decision is marked by

STOP_REASON_OBSTACLE on line 20 and the second by

STOP_REASON_DESTINATION on line 35. Thus, there is a proper correlation between

the output from the planning module and the decision fences as seen in the pictures in

figure 11.

The scenario was then repeated with a modified version of the road, the

maximum speed set to 50 km/h as opposed to the 10 km/h used previously. As the car

carries a higher speed, it needs to brake harder when coming up on the crossing pedestrian.

The car managed to stop in time in each run, but the sequence of notifications and signals

did not differ from the runs with the lower speeds. Note that the car did not reach 50 km/h

but rather 20 km/h due to the short run down to the crosswalk.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

53

Evaluation:

As the car encounters the crossing pedestrian, it is reasonable to assume that the

symbol of stopping due to a pedestrian crossing in front should appear. Instead, the

symbol for stopping due to an obstacle in front is displayed. While stopping for an

obstacle is not untrue, it is not as specific as might be desired. Furthermore, the object is

in fact recognized as a pedestrian by the perception and prediction modules, which makes

the absence of the pedestrian symbol contradictory. A likely cause of the problem is

potentially missing information about the pedestrian as it is declared and published in the

sim_test.cc file. As a matter of fact, not every parameter that is available in the

PerceptionObstacle protobuf message was assigned a value. Thus, the information that

the planning module receives about the pedestrian might be insufficient to determine the

true stopping reason.

Likewise, it is not unreasonable to assume that the symbol for stopping due to a

crosswalk in front should appear. An initial suggestion would be that some error in the

base_map.xml file is causing the absence of the symbol. Unarguably, the crosswalk does

not visually appear as a crosswalk, but rather as a slightly opaque rectangle. While this

may cause suspicion, the crosswalks in each of the original Apollo 2.0. maps have

identical appearances. Furthermore, the results of generating the routing and sim maps, as

was presented in table 5, shows that the road indeed contains a crosswalk. Thus, from a

structural point of view the base_map.xml is likely to be successfully implementing the

crosswalk. From a simulation point of view however, further comparisons must be made.

A quick test of the Sunnyvale Loop, one of the maps in the original collection,

produced no symbols when driving past crosswalks. However, the test did not include any

crossing pedestrians. Including pedestrians by playing the demo_2.0.bag file or using the

sim_test.cc script proved to be fruitless. No crossing pedestrian could be found in the

environment when playing the bagfile and the sim_test.cc script could not the used due to

the messages potentially missing some information. Thus, it is not possible to make a

decent comparison of the Sunnyvale simulation run and the first scenario until a solution

to either of these two problems is found.

As stated, there are probably no errors with the crosswalk in the base_map.xml

file. Furthermore, it is not completely clear whether the crosswalk symbol should appear

in the scenario at all. A quick comparison of one of the original Apollo 2.0. maps with the

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

54

custom map used in the scenarios was aimed at providing an answer to the matter.

However, due to some complications a reasonable comparison could not be made. Thus,

to be able to conclude anything about the crosswalk symbol, the problem of the

incomplete messages should be solved.

The cause of the white arrow pointing continuously in the wrong direction is

likely an error in the sim_test.cc script. It might also be the results of missing information

about the pedestrian object. The orange patch is visible as the car gets close to the

pedestrian as expected.

Increasing the speed limit on the road was of interest to investigate whether the

emergency symbol presented in figure 8 would appear. Hypothetically, as the speed limit

increases, the car will carry more speed and eventually need to brake hard enough for the

symbol to be presented. As previously mentioned, the distance between the start of the

straight and the crosswalk was not long enough for the car to reach above 20 km/h,

regardless of the speed limit. Furthermore, it is unclear which type of scenarios are

classified as emergencies. Thus, there is no way of properly evaluating the environment

in this situation. To be able to conclude anything, the crosswalk would need to be moved

further away from the start of the straight.

To summarize, the environment is solid enough in order to make the car drive

safely on the road. However, the symbol for a crossing pedestrian in front does not appear

as the car stops for the pedestrian. While the symbol for a crosswalk in front does not

appear either, it is unclear whether it is supposed to be displayed at all. Most likely, the

cause of the pedestrian symbol error is missing information about the perceived object.

An orange patch is visible below the pedestrian, but the white arrow is pointing in the

wrong direction. It could not be concluded if the speed of the car has any implications on

whether the situation is classified as an emergency.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

55

4.3.2. Scenario 2: Following another car

One safe assumption regarding AV’s would be that not every car in the world

would instantly become autonomous once AV’s hit the road. As such, a core functionality

required of an AV would be to be able to handle situations involving other vehicles,

autonomous or not. To demonstrate how Apollo handles this, a scenario involving another

vehicle is shown here. As this scenario includes another car the following naming

convention is used, "Apollo car" and "obstacle car".

In this scenario the obstacle car is spawned 20 meters ahead of the Apollo car.

It moves at a slow pace of around 3-4 km/h and the Apollo car is initially following it, as

illustrated in picture 1 in figure 12. Note that Dreamview displays the red stopping fence

instead of the green follow fence. In picture 2, the obstacle car starts drifting into the other

lane and once merged, it continues along the second lane for a short while. In picture 3,

the obstacle car is cleared, and the Apollo car removes the need for slower speed. Note

that the white arrow is continuously pointing in the same direction as in the last scenario.

However, the orange patch under the obstacle car is properly displayed. In the last picture,

the Apollo car has accelerated and is approaching its destination.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

56

Evaluation:

It is reasonable to assume that the green follow fence depicted in figure 7 should

appear instead of the red stopping fence in the same figure. What is interesting is that

Apollo car actually manages to follow the obstacle car regardlessly. However, it does so

in a seemingly unconventional way by moving the stop fence in front of it as it drives. A

likely cause of the fence error may once again be due to missing information about the

obstacle car when it is published in the sim_test.cc file, somehow making it impossible to

be followed properly.

Once again, the white arrow is pointing in the wrong direction. In fact, it is

pointing identically to the white arrow in the previous scenario. Thus, it is also likely to

be the results of the same error.

Figure 12. Four important moments in time from the scenario chasing another car

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

57

4.3.3. Scenario 3: Change of lane

Switching between lanes is a common action in everyday driving. The purpose

of the scenario is to determine whether the vehicle notice about the change of lane. For

this aim, the output of the routing module is analyzed.

Initially, the car is requested to drive from the left lane to the right by sending a

routing request. Echoing the /apollo/routing_response topic yields a message of which a

selected part is listed in table 7. Essentially, the route is based on two passages on line 8

and changing to the right lane. Line 10 declares the starting point as located in the left

lane. The change of lane is indicated on line 14. The car that reaches the next passage,

consisting of the right lane as declared on line 18. From here it will proceed to its

destination without changing lane again, as declared on line 23.

1 header {
2 timestamp_sec: 1525439337.15
3 module_name: "routing"
4 sequence_num: 5
5 }
6 road {
7 id: "r1"
8 passage {
9 segment {

10 id: "r1_1_-1"
11 start_s: 120.246563791
12 end_s: 167.255089008
13 }
14 change_lane_type: RIGHT
15 }
16 passage {
17 segment {
18 id: "r1_1_-2"
19 start_s: 120.246563791
20 end_s: 167.255089008
21 }
22 can_exit: true
23 change_lane_type: FORWARD
24 }
25 }

Table 7. Parts of a routing response message from the routing module after sending a routing request to switch lanes.

After several runs of the simulation, it was concluded that the change of lane is

not fulfilled every time. In the erroneous runs, the route end point is not saved correctly

after the routing request has been sent. Thus, the car cannot interpret the path established

by the user which causes it to drive in the lane it started in without ever stopping.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

58

Evaluation:

The green symbol representing the decision to change lane as depicted in figure

7 is not shown as the car switches lanes. However, the symbol does not appear when

switching lanes in the any of the original Apollo 2.0 maps either. Thus, it is likely that the

symbol appears in related circumstances, such as needing to switch lane when overtaking

a slow car in front.

The issue of the car not always being able to switch lanes might be the

implication of some data not being reset in the planning or routing modules while re-

routing. To conclude, the simulation environment most likely enables the car to switch

lanes but is interrupted from time to time by some unknown issue. However, the issue is

likely not the results of an error in the simulation environment.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

59

4.4. Conclusions and general discussion

 To conclude, the simulation environment enables the car to drive safely on the

road. However, the information that is displayed in Dreamview is not as specific as is

expected. It is deemed likely that some of the missing information about the published

obstacles is causing the planning module not to fully comprehend the situation. This is in

turn causing the absence of the correct symbols. Nevertheless, the base_map.xml file

seems to be properly implemented. The cause of the intermittent lane switching issue is

uncertain but suggested to be a type of reset issue related to the module.

One way of further investigating the missing information problem is simply to

compare the parameters in the published messages with the PerceptionObstacle messages

from other sources. The demo_2.0.bag file, whose content was listed in table 3, is one

such promising source. Another approach is to look at the PerceptionObstacle protobuf

message definition, which is found in the perception module directory. The definition

contains declarations of all parameters that are allowed in the message.

The reason a straight was created for the simulations was due to the simplicity

of implementing it and that now of the chosen scenarios demanded anything more

complex. By all means, scenarios such as making the car drive to a junction and turn onto

a road with dense traffic or driving the car in a roundabout together with other vehicles

could be created. While simulating the car in multiple scenarios would certainly be

interesting to evaluate the car's behavior, it is important to note that this was not the aim

of testing the simulation environment.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

60

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

61

Chapter 7 ENVIRONMENTAL IMPACT

There is a main concern about the rise in CO2 emissions. One of the primary

sources where they come from is the burnt of fossil fuels. A lot of targets had been

accomplished through the years, the most recent one is the Paris Agreement. They had set

an increase of the global temperature in 2 degrees Celsius [32]. One of the main sources

of CO2 emissions is the transportation sector. According to the Europe commission, cars

are responsible for around 12% of total EU emissions of carbon dioxide. However,

emerging countries demand in this sector is increasing. [33]. The image 20000 remarks

the share of road transport estimation in a worldwide scale [34].

Due to all the concern that was mentioned and explained above, the automation

industry has taken steps, vehicle manufacturers, for example, have already reduced

pollutant emissions. This achievement is based on fuel combustion improvements.

Coming into autonomous driving a lot of fuel could be saved. There are a lot of

possible explanations for the reduction of the emissions. Firstly, a higher efficiency with

a faster flow is expected, besides, traffic congestions could be reduced. This would be

achieved with the vehicle-to-vehicle communication. Systems would be able to identify

busy routes, so they can avoid them. DHL explains in their article that with fuel efficiency

achieved by optimized driving and by convoying, owners of driverless vehicles can reduce

their carbon footprint and motoring costs by approximately 15% [35]

Ilustration 7. Man-made CO2 emissions

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

62

Another way of using efficiently the existing energy sources would be the

charging moment. The idea here is that the vehicle would strategically be charged at times

of low demand. This is normally when renewable energy is produced. Therefore, no

additional power capacity may be needed. This could lead into an increase of renewable

projects [36].

Vehicles could become lighter, they would not need any extra protection for

crash avoidance. Therefore, the materials used for their fabrication would experience a

significant decrease. Moreover, they will be equipped with a electric propulsion system

that could reduce the CO2 emissions up to a 95% [37].

We could conclude, hence, that the implementation of the AVs would mean a

great advanced in the CO2 emissions reduction. This would support even more the

research in the autonomy sector. It should be said that all this are pure factual conjectures

because of the lack of AVs driving the streets.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

63

Chapter 9 CONCLUSION

Since the task of creating an AV is large and complex there existed the need for

a platform to use when creating the system for the autonomous Twizy. As a consequence

of this Apollo Auto was chosen by the project manager. The idea was that Apollo included

a lot of the necessary code already complete to operate the Twizy. This choice came with

pros and cons. Apollo being a relatively new project with updates coming daily, a difficult

barrier to overcome. To cope with the lack of documentation there was a lot of trial and

error through the project. This was time consuming and required changes to the original

project plan.

Initially, the project plan allocated a great deal of time for integrating new code

into the system. However, during the course of the project it became evident that few of

the Twizy project groups would provide new code that needed to ne integrated. Most of

the new code was implemented in ways that kept the same inputs and outputs that Apollo

originally comes with. The sole group that eventually provided new code, which required

integration, found it easier to perform the integration themselves with only minor

intervention from us. The implications were several rearrangements of the project plan

and an increased focus on the simulation part of the project.

To be able to drive the route on campus the car needs a map. Since it was unclear

which group was responsible for creating this map, we offered to do it in collaboration

with another group. As the project proceeded the route had to be changed due to

construction work. A simple, straight street on campus was chosen as the new route. Since

the street is a straight, the process of creating the map was identical to the process of

creating the map in chapter 4. However, the points constituting the road are GPS

coordinates collected by the other project group. The map is found in appendix B.2.

The final part of the projects goal was to create a model of the Twizy that could

be implemented into the simulation environment. This was to make the car in the

simulation as representative of the Twizy as possible. After a while however, another

project group was assigned to create the model which left only integration of the model

into Apollo.

The main part of the project was to create a simulation environment consisting

of a map, a virtual model of the Twizy and static and dynamic obstacles. In chapter 4, a

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

64

map of a long straight was created. The chapter also presented two methods to

successfully include both stationary and moving objects in the environment. Based on

simulations of three traffic scenarios, the quality of the environment was evaluated. While

the car was able to drive safely on the road in each scenario, some of the expected symbols

did not appear. The cause of the error is most likely some missing code in the sim_test.cc

script. However, the base_map.xml file seems to be properly implemented. Apart from

not creating a virtual model of the Twizy, we therefore consider the aims regarding the

simulation environment to be achieved.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

65

Chapter 10 FUTURE DEVELOPMENTS

As stated earlier the documentation of Apollo is scarce and badly structured.

Hence focus was placed on creating a guide that can be used in future projects that use the

Apollo platform. This work resulted in the how-to document located in appendix

 E.

Possible future projects are many as the simulation has some flaws there could

be work done to fix these. The simulator is also lacking an automatic evaluation tool that

does not require the tester to evaluate the cars performance visually. There is also the

possibility to make the simulator more user friendly in the sense that objects, maps and

vehicle parameters are changed with ease. Another future improvement of the simulator

would be to create a random simulation generator that picks a route, places obstacles and

other vehicles randomly along the route to simulate how the vehicle reacts.

Moreover, different scenarios and maps could be make such as intersections or

curves. Apollo 2.5 have some new features compared to Apollo 2.0 these could be useful

to improve the Twizys behavior, it would be interesting to learn how to use and implement

the latest version.

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

66

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

67

Chapter 11 BIBLIOGRAPHY

[1] On-Road Automated Driving (ORAD) Committee, “SURFACE VEHICLE

RECOMMENDED PRACTICE - Taxonomy and Definitions for Terms Related to Driving

Automation Systems for On-Road Motor Vehicles,” 2015.

[2] “First self-driving bus in operation at Chalmers,” 2018. [Online].

Available: https://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/

First-self-driving-bus-in-operation-at-Chalmers.aspx

[3] Automotive News: [Online] Available: http://nordic.businessinsider.com/google-self-

driving-car-investment-exceeds-1-billion-2017-9?r=US&IR=T

[4] Waymo: [Online] Available: https://waymo.com/

[5] Fred Lambert, Electrek: [Online] Available: https://electrek.co/2017/12/08/elon-musk-

tesla-self-driving-timeline/

[6] Automotive News: [Online] Available:

http://europe.autonews.com/article/20171212/ANE/171219914/volvos-drive-me-takes-

detour-on-road-to-full-autonomy

[7] IEEE Spectrum: [Online] Available: https://spectrum.ieee.org/cars-that-

think/transportation/self-driving/nvidia-ceo-announces

[8] Tech Crunch: [Online] Available: https://techcrunch.com/2017/06/26/volvo-and-autoliv-

aim-to-sell-self-driving-cars-with-nvidia-ai-tech-by-2021/

[9] World Health Organization: [Online] Available:

http://www.who.int/mediacentre/factsheets/fs358/en/

[10] Apollo Auto: [Online] Available: http://apollo.auto/fund.html

[11] Reuters Staff, Reuters: [Online] Available: https://www.reuters.com/article/us-baidu-

autonomous/baidu-receives-approval-from-california-dmv-to-test-self-driving-cars-

idUSKCN11L2FU

[12] Kyle Hyatt, Road Show, by Cnet: [Online] Available:

https://www.cnet.com/roadshow/news/baidu-launches-version-2-0-of-its-apollo-self-

driving-moonshot/

[13] Inductive charging: [Online] Available:

https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-

35.pdf

https://www.chalmers.se/en/areas-of-advance/Transport/news/Pages/
http://nordic.businessinsider.com/google-self-driving-car-investment-exceeds-1-billion-2017-9?r=US&IR=T
http://nordic.businessinsider.com/google-self-driving-car-investment-exceeds-1-billion-2017-9?r=US&IR=T
https://waymo.com/
https://electrek.co/2017/12/08/elon-musk-tesla-self-driving-timeline/
https://electrek.co/2017/12/08/elon-musk-tesla-self-driving-timeline/
http://europe.autonews.com/article/20171212/ANE/171219914/volvos-drive-me-takes-detour-on-road-to-full-autonomy
http://europe.autonews.com/article/20171212/ANE/171219914/volvos-drive-me-takes-detour-on-road-to-full-autonomy
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/nvidia-ceo-announces
https://spectrum.ieee.org/cars-that-think/transportation/self-driving/nvidia-ceo-announces
https://techcrunch.com/2017/06/26/volvo-and-autoliv-aim-to-sell-self-driving-cars-with-nvidia-ai-tech-by-2021/
https://techcrunch.com/2017/06/26/volvo-and-autoliv-aim-to-sell-self-driving-cars-with-nvidia-ai-tech-by-2021/
http://www.who.int/mediacentre/factsheets/fs358/en/
http://apollo.auto/fund.html
https://www.reuters.com/article/us-baidu-autonomous/baidu-receives-approval-from-california-dmv-to-test-self-driving-cars-idUSKCN11L2FU
https://www.reuters.com/article/us-baidu-autonomous/baidu-receives-approval-from-california-dmv-to-test-self-driving-cars-idUSKCN11L2FU
https://www.reuters.com/article/us-baidu-autonomous/baidu-receives-approval-from-california-dmv-to-test-self-driving-cars-idUSKCN11L2FU
https://www.cnet.com/roadshow/news/baidu-launches-version-2-0-of-its-apollo-self-driving-moonshot/
https://www.cnet.com/roadshow/news/baidu-launches-version-2-0-of-its-apollo-self-driving-moonshot/
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-35.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-35.pdf

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

68

[14] Power Modelling for Energy Optimization: [Online] Available:

https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-

36.pdf

[15] Steering and motor control: [Online] Available:

https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-

37.pdf

[16] Safety: [Online] Available:

https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-

38.pdf

[17] Path Planning and Vehicle Control: [Online] Available:

https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-

35.pdf

[18] Perception: [Online] Available:

https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-

40.pdf

[19] Virtual integration and testing: [Online] Available:

https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-

41.pdf

[20] “Core Components,” p. 4, 2017. [Online]. Available:

 http://www.ros.org/ core-components/#communications_infrastructure]

[21] “ROS-master,” 2018. [Online]. Available: http://wiki.ros.org/Master

[22] “ROS-command-line-tools,” 2015. [Online]. Available: http://wiki.ros.org/ROS/

CommandLineTools

[23] “ROS-rosbag,” 2015. [Online]. Available: http://wiki.ros.org/rosbag

[24] “ROS-Messages,” 2017. [Online]. Available: http://wiki.ros.org/msg

[25] “Apollo Auto Dreamview,” 2017. [Online]. Available:

https://github.com/

ApolloAuto/apollo/blob/cf9f08454ae21d5faa231b742a3d5939a8c0bb46/modules/

dreamview/README.md

[26] I. Saito, “ROS-rosbag-commandline,” 2018. [Online]. Available: http://wiki.ros.org/

rosbag/Commandline

[27] “Dreamview Usage Table.” [Online]. Available: https://github.com/ApolloAuto/

 apollo/blob/r2.0.0/docs/specs/dreamview_usage_table.md

https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-36.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-36.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-37.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-37.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-38.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-38.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-35.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-35.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-40.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-40.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-41.pdf
https://www.chalmers.se/SiteCollectionDocuments/E2/Kandidatprojekt/2018/EENX15-18-41.pdf
http://www.ros.org/core-components/#communications_infrastructure]
http://www.ros.org/core-components/#communications_infrastructure]
http://wiki.ros.org/Master
http://wiki.ros.org/ROS/CommandLineTools
http://wiki.ros.org/ROS/CommandLineTools
http://wiki.ros.org/ROS/CommandLineTools
http://wiki.ros.org/rosbag
http://wiki.ros.org/msg
https://github.com/
https://github.com/
https://github.com/ApolloAuto/apollo/blob/cf9f08454ae21d5faa231b742a3d5939a8c0bb46/modules/dreamview/README.md
https://github.com/ApolloAuto/apollo/blob/cf9f08454ae21d5faa231b742a3d5939a8c0bb46/modules/dreamview/README.md
https://github.com/ApolloAuto/apollo/blob/cf9f08454ae21d5faa231b742a3d5939a8c0bb46/modules/dreamview/README.md
http://wiki.ros.org/rosbag/Commandline
http://wiki.ros.org/rosbag/Commandline
http://wiki.ros.org/rosbag/Commandline
https://github.com/ApolloAuto/apollo/blob/r2.0.0/docs/specs/dreamview_usage_table.md
https://github.com/ApolloAuto/apollo/blob/r2.0.0/docs/specs/dreamview_usage_table.md
https://github.com/ApolloAuto/apollo/blob/r2.0.0/docs/specs/dreamview_usage_table.md

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

69

[28] “Video released of Uber self-driving crash that killed woman in Arizona.” [Online].

Available: https://www.theguardian.com/technology/2018/mar/

22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona

[29] Software Integration and Simulation of Autonomous Vehicle Project Plan, Frigard

Anton, 2018

[30] Autonomous Twizy-Simulation using Apollo Auto, Frigard Anton, 2018

[31] Baidu: [Online] Available:

https://baike.baidu.com/item/%E9%98%BF%E6%B3%A2%E7%BD%97/20625862

[32] United Nations: [Online] Available: http://bigpicture.unfccc.int/#content-the-paris-

agreemen

[33] European Commision: [Online] Available:

https://ec.europa.eu/clima/policies/transport/vehicles/cars_en

[34] «International Organization of Motor Vehicle Manufacturers» [Online] Available:

http://oica.net/wp-content/uploads/climate-change-and-co2-brochure.pdf

[35] «Self-Driving vehicles in logistics, DHL» [Online] Available:

http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/dhl_self_drivi

ng_vehicles.pdf

[36] «Peak car Ownership» [Online] Available: https://www.rmi.org/wp-

content/uploads/2017/03/Mobility_PeakCarOwnership_Report2017.pdf

[37] [Online] Available: https://www.ecosiglos.com/2014/12/los-beneficios-

ambientales-de-los-vehiculos-autonomos.html

https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona
https://www.theguardian.com/technology/2018/mar/22/video-released-of-uber-self-driving-crash-that-killed-woman-in-arizona
http://bigpicture.unfccc.int/#content-the-paris-agreemen
http://bigpicture.unfccc.int/#content-the-paris-agreemen
https://ec.europa.eu/clima/policies/transport/vehicles/cars_en
http://oica.net/wp-content/uploads/climate-change-and-co2-brochure.pdf
http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/dhl_self_driving_vehicles.pdf
http://www.dhl.com/content/dam/downloads/g0/about_us/logistics_insights/dhl_self_driving_vehicles.pdf
https://www.rmi.org/wp-content/uploads/2017/03/Mobility_PeakCarOwnership_Report2017.pdf
https://www.rmi.org/wp-content/uploads/2017/03/Mobility_PeakCarOwnership_Report2017.pdf
https://www.ecosiglos.com/2014/12/los-beneficios-ambientales-de-los-vehiculos-autonomos.html
https://www.ecosiglos.com/2014/12/los-beneficios-ambientales-de-los-vehiculos-autonomos.html

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

70

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

71

PART II BUDGET

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

72

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

73

Chapter 1 MEASUREMENTS

It must be said that all the material and project was done in Sweden. Therefore, all the budget will

be calculated in Swedish krona.

1.1 Hardware

Reference Element Units

101 Embedded Computer 2
102 Nvidia GPU 2
103 SSD drive 2

1.2. Software

Reference Programs/O.S. Units

201 Virtual Box 2
202 Ubuntu 4
203 Apollo Auto 4

1.3. Labor costs

Reference Tasks Hours

301 Research 120
302 Use of software 500
303 Testing and problem solving 300
304 Report 130

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

74

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

75

Chapter 2 UNIT PRICE

1.1 Hardware

Reference Element kSEK/unit

101 Embedded Computer 50
102 Nvidia GPU 30
103 SSD drive 5

2.2. Software

Reference Programs/O.S. kSEK/unit

201 Virtual Box 0
202 Ubuntu 0
203 Apollo Auto 0

2.3. Labor costs

Reference Tasks kSEK/hour

301 Research 40
302 Use of software 70
303 Testing and problem solving 60
304 Report 25

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

76

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

77

Chapter 3 PARTIAL AMOUNT

3.1. Hardware

Reference Element Units kSEK/unit
Total Amount

(kSEK)

101
Embedded
Computer

2 50 100

102 Nvidia GPU 2 30 60
103 SSD drive 4 5 20

Total 180

3.2. Software

Reference Programs/O.S. Units kSEK/unit
Total Amount

(kSEK)

201 Virtual Box 2 0 0
202 Ubuntu 4 0 0
203 Apollo Auto 4 0 0

Total 0

3.3. Labor costs

Reference Tasks Hours kSEK/hour
Total Amount

(kSEK)

301 Research 120 0.4 48
302 Use of software 500 0.7 350

303
Testing and

problem solving
300 0.6 180

304 Report 130 0.25 32.5
Total 610.5

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

78

UNIVERSIDAD PONTIFICA DE COMILLAS
 ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
 INGENIERA ELECTROMECÁNICA

79

Chapter 4 TOTAL AMOUNT

Section Partial Amount(KSEK)

Hardware 180

Software 0

Labor costs 610.5

Total 790.5

A
Apollo publishing & subscribing

structure

I

Module (Node) Subscribing to Publishing on

Canbus /apollo/control /apollo/canbus/chassis
/apollo/canbus/chassis_detail

Control /apollo/canbus/chassis
/apollo/canbus/chassis_detail
/apollo/planning
/apollo/localization/msf_gnss
/apollo/localization/msf_lidar
/apollo/localization/msf_status
/apollo/localization/pose

/apollo/control
/apollo/control/pad

Dreamview /apollo/localization/pose
/apollo/canbus/chassis
/apollo/canbus/chassis_detail
/apollo/planning
/apollo/monitor
/apollo/monitor/static_info
/apollo/perception/obstacles
/apollo/prediction
/apollo/routing_response

None

Localization None /apollo/localization/msf_gnss
/apollo/localization/msf_lidar
/apollo/localization/msf_status
/apollo/localization/pose

Map None /apollo/relative_map
/apollo/drive_event

Monitor None /apollo/monitor
/apollo/monitor/static_info

Perception None /apollo/perception/obstacles
/apollo/sensor/conti_radar
/apollo/sensor/delphi_esr
/apollo/perception/traffic_light
/apollo/sensor/gnss/best_pose
/apollo/sensor/gnss/corrected_imu
/apollo/sensor/gnss/gnss_status
/apollo/sensor/gnss/imu
/apollo/sensor/gnss/ins_stat
/apollo/sensor/gnss/odometry
/apollo/sensor/gnss/rtk_eph
/apollo/sensor/gnss/rtk_obs
/apollo/sensor/mobileye

Planning /apollo/perception/traffic_light
/apollo/prediction
/apollo/routing_response
/apollo/canbus/chassis
/apollo/canbus/chassis_detail
/apollo/localization/msf_gnss
/apollo/localization/msf_lidar
/apollo/localization/msf_status
/apollo/localization/pose

/apollo/planning
/apollo/routing_request

Prediction /apollo/perception/obstacles
/apollo/perception/traffic_light

/apollo/prediction

Routing /apollo/routing_request
/apollo/monitor

/apollo/routing_response

B
base_map.xml

B.1 Map used in simulations

1 <?xml version="1.0" encoding="UTF-8"?>

2 <OpenDRIVE xmlns="http://www.opendrive.org">

3 <header

4 revMajor="1"

5 revMinor="0"

6 name="Chalmers HDMap"

7 version="1"

8 date="2018-04-10T09:35:00"

9 north="0"

10 south="0"

11 east="0"

12 west="0"

13 vendor="Autonomous Twizy"

14 >

15 <geoReference>

16 <![CDATA[+proj=utm +zone=31 +ellps=WGS84 +datum=WGS84 +units=m +no_defs]]>

17 </geoReference>

18 </header>

19 <road id="r1" junction="-1">

20 <link></link>

21 <objects>

22 <object id="1" type="crosswalk">

23 <outline>

24 <cornerGlobal x="40" y="0" z="0.000000000e+00" />

25 <cornerGlobal x="40" y="-6" z="0.000000000e+00" />

26 <cornerGlobal x="42" y="-6" z="0.000000000e+00" />

27 <cornerGlobal x="42" y="0" z="0.000000000e+00" />

28 </outline>

29 </object>

30 </objects>

31 <signals/>

32 <lanes>

33 <laneSection singleSide="true">

34 <boundaries>

35 <!-- Leftmost line containing the road (the reference line) -->

36 <boundary type="leftBoundary">

37 <geometry>

38 <pointSet>

39 <point x="0" y="0" z="0"/>

40 <point x="1000" y="0" z="0"/>

41 </pointSet>

42 </geometry>

43 </boundary>

44 <!-- Rightmost line containing the road (the rightmost lanes border) -->

45 <boundary type="rightBoundary">

46 <geometry>

III

B. base_map.xml

47 <pointSet>

48 <point x="0" y="-6" z="0"/>

49 <point x="1000" y="-6" z="0"/>

50 </pointSet>

51 </geometry>

52 </boundary>

53 </boundaries>

54 <center>

55 <!-- reference line -->

56 <lane id="0" uid="r1_1_0" type="none">

57 <border>

58 <geometry sOffset="0" x="0" y="0" z="0" length="1000">

59 <pointSet>

60 <point x="0" y="0" z="0"/>

61 <point x="1000" y="0" z="0"/>

62 </pointSet>

63 </geometry>

64 <borderType sOffset="0" type="solid" color="yellow"/>

65 </border>

66 </lane>

67 </center>

68 <right>

69 <!-- First right lane -->

70 <lane id="-1" uid="r1_1_-1" type="driving" direction="forward" turnType="noTurn">

71 <centerLine> <!-- Lane center line -->

72 <geometry sOffset="0" x="0" y="-1.5" z="0" length="1000">

73 <pointSet>

74 <point x="0" y="-1.5" z="0"/>

75 <point x="1000" y="-1.5" z="0"/>

76 </pointSet>

77 </geometry>

78 </centerLine>

79 <border> <!-- Lane right side border -->

80 <geometry sOffset="0" x="0" y="-3" z="0" length="1000">

81 <pointSet>

82 <point x="0" y="-3" z="0"/>

83 <point x="1000" y="-3" z="0"/>

84 </pointSet>

85 </geometry>

86 <borderType sOffset="0" type="broken" color="white"/>

87 </border>

88 <link>

89 <neighbor id="r1_1_-2" side="right" direction="same" />

90 </link>

91 <speed max="50"/>

92 <sampleAssociates>

93 <sampleAssociate sOffset="0" leftWidth="1.5" rightWidth="1.5"/>

94 <sampleAssociate sOffset="1000" leftWidth="1.5" rightWidth="1.5"/>

95 </sampleAssociates>

96 <objectOverlapGroup>

97 <objectReference id="1" startOffset="40" endOffset="42"/>

98 </objectOverlapGroup>

99 <junctionOverlapGroup></junctionOverlapGroup>

100 <laneOverlapGroup>

101 <laneReference id="r1_1_-2" startOffset="0" endOffset="1000" isMerge="true"/>

102 </laneOverlapGroup>

103 </lane>

104 <!-- Second right lane -->

105 <lane id="-2" uid="r1_1_-2" type="driving" direction="forward" turnType="noTurn">

106 <centerLine> <!-- Lane center line -->

107 <geometry sOffset="0" x="0" y="-4.5" z="0" length="1000">

IV

B. base_map.xml

108 <pointSet>

109 <point x="0" y="-4.5" z="0"/>

110 <point x="1000" y="-4.5" z="0"/>

111 </pointSet>

112 </geometry>

113 </centerLine>

114 <border> <!-- Lane right side border -->

115 <geometry sOffset="0" x="0" y="-6" z="0" length="1000">

116 <pointSet>

117 <point x="0" y="-6" z="0"/>

118 <point x="1000" y="-6" z="0"/>

119 </pointSet>

120 </geometry>

121 <borderType sOffset="0" type="broken" color="white"/>

122 </border>

123 <link>

124 <neighbor id="r1_1_-1" side="left" direction="same" />

125 </link>

126 <speed max="50"/>

127 <sampleAssociates>

128 <sampleAssociate sOffset="0" leftWidth="1.5" rightWidth="1.5"/>

129 <sampleAssociate sOffset="1000" leftWidth="1.5" rightWidth="1.5"/>

130 </sampleAssociates>

131 <objectOverlapGroup>

132 <objectReference id="1" startOffset="40" endOffset="42" />

133 </objectOverlapGroup>

134 <junctionOverlapGroup></junctionOverlapGroup>

135 <laneOverlapGroup>

136 <laneReference id="r1_1_-1" startOffset="0" endOffset="1000" isMerge="true"/>

137 </laneOverlapGroup>

138 </lane>

139 </right>

140 </laneSection>

141 </lanes>

142 </road>

143 </OpenDRIVE>

B.2 Map used in test drives

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!--

3 https://www.maps.ie/coordinates.html

4 https://pastebin.com/pBRHXRgk

5 -->

6 <OpenDRIVE xmlns="http://www.opendrive.org">

7 <header

8 revMajor="1"

9 revMinor="0"

10 name="Chalmers HDMap"

11 version="1"

12 date="2018-04-10T09:35:00"

13 north="57.69004972576799"

14 south="57.686929994328885"

15 east="11.982407065449252"

16 west="11.976828070698275"

17 vendor="Perception Squad"

18 >

19 <geoReference>

20 <![CDATA[+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs]]>

21 </geoReference>

V

B. base_map.xml

22 </header>

23 <road id="r1" junction="-1">

24 <link>

25 <!--

26 <predecessor elementType="road" elementId="nåt" contactPoint="start"/>

27 <successor elementType="road" elementId="nåt" contactPoint="end"/>

28 -->

29 </link>

30 <objects/>

31 <signals/>

32 <lanes>

33 <laneSection singleSide="true">

34 <boundaries>

35 <!-- Leftmost line containing the road (the reference line) -->

36 <boundary type="leftBoundary">

37 <geometry>

38 <pointSet>

39 <point x="11.9777109467941" y="57.68812039715326" z="0"/>

40 <point x="11.977468634345016" y="57.688394602302274" z="0"/>

41 <point x="11.97744176754415" y="57.68843741455268" z="0"/>

42 <point x="11.977068370245743" y="57.6888556551523" z="0"/>

43 </pointSet>

44 </geometry>

45 </boundary>

46 <!-- Rightmost line containing the road (the rightmost lanes border) -->

47 <boundary type="rightBoundary">

48 <geometry>

49 <pointSet>

50 <point x="11.9777397547" y="57.6881278225" z="0"/>

51 <point x="11.9774926684" y="57.6884021175" z="0"/>

52 <point x="11.9774678886" y="57.6884455305" z="0"/>

53 <point x="11.9770924222" y="57.6888620698" z="0"/>

54 </pointSet>

55 </geometry>

56 </boundary>

57 </boundaries>

58 <center>

59 <!-- reference line -->

60 <lane id="0" uid="r1_1_0" type="none">

61 <border>

62 <geometry sOffset="0" x="11.9777109467941" y="57.68812039715326" z="0" length="90.1586">

63 <pointSet>

64 <point x="11.9777109467941" y="57.68812039715326" z="0"/>

65 <point x="11.977468634345016" y="57.688394602302274" z="0"/>

66 <point x="11.97744176754415" y="57.68843741455268" z="0"/>

67 <point x="11.977068370245743" y="57.6888556551523" z="0"/>

68 </pointSet>

69 </geometry>

70 <borderType sOffset="0" type="broken" color="white"/>

71 </border>

72 </lane>

73 </center>

74 <right>

75 <!-- First right lane -->

76 <lane id="-1" uid="r1_1_-1" type="driving" direction="forward" turnType="noTurn">

77 <centerLine> <!-- Lane center line -->

78 <geometry sOffset="0" y="11.977725350745573" x="57.68812410982745" z="0" length="90.1586">

79 <pointSet>

80 <point x="11.977725350745573" y="57.68812410982745" z="0"/>

81 <point x="11.97748065137126" y="57.688398359901704" z="0"/>

82 <point x="11.977454828070613" y="57.68844147252701" z="0"/>

VI

B. base_map.xml

83 <point x="11.977080396221808" y="57.68885886247673" z="0"/>

84 </pointSet>

85 </geometry>

86 </centerLine>

87 <border> <!-- Lane right side border -->

88 <geometry sOffset="0" x="11.9777397547" y="57.6881278225" z="0" length="90.1586">

89 <pointSet>

90 <point x="11.9777397547" y="57.6881278225" z="0"/>

91 <point x="11.9774926684" y="57.6884021175" z="0"/>

92 <point x="11.9774678886" y="57.6884455305" z="0"/>

93 <point x="11.9770924222" y="57.6888620698" z="0"/>

94 </pointSet>

95 </geometry>

96 <borderType sOffset="0" type="broken" color="white"/>

97 </border>

98 <link>

99 <!--

100 <predecessor id=""/>

101 <successor id=""/>

102 -->

103 </link>

104 <speed max="5"/>

105 <sampleAssociates>

106 <sampleAssociate sOffset="0.0" leftWidth="1.5" rightWidth="1.5"/>

107 <sampleAssociate sOffset="33.6782" leftWidth="1.5" rightWidth="1.5"/>

108 <sampleAssociate sOffset="38.6931" leftWidth="1.5" rightWidth="1.5"/>

109 <sampleAssociate sOffset="90.1586" leftWidth="1.5" rightWidth="1.5"/>

110 </sampleAssociates>

111 <junctionOverlapGroup></junctionOverlapGroup>

112 <laneOverlapGroup></laneOverlapGroup>

113 </lane>

114 </right>

115 </laneSection>

116 </lanes>

117 </road>

118 <road id="r2" junction="-1">

119 <link>

120 <!--

121 <predecessor elementType="road" elementId="nåt" contactPoint="start"/>

122 <successor elementType="road" elementId="nåt" contactPoint="end"/>

123 -->

124 </link>

125 <objects/>

126 <signals/>

127 <lanes>

128 <laneSection singleSide="true">

129 <boundaries>

130 <!-- Leftmost line containing the road (the reference line) -->

131 <boundary type="leftBoundary">

132 <geometry>

133 <pointSet>

134 <point x="11.977068370245743" y="57.6888556551523" z="0"/>

135 <point x="11.97744176754415" y="57.68843741455268" z="0"/>

136 <point x="11.977468634345016" y="57.688394602302274" z="0"/>

137 <point x="11.9777109467941" y="57.68812039715326" z="0"/>

138 </pointSet>

139 </geometry>

140 </boundary>

141 <!-- Rightmost line containing the road (the rightmost lanes border) -->

142 <boundary type="rightBoundary">

143 <geometry>

VII

B. base_map.xml

144 <pointSet>

145 <point x="11.9770443183" y="57.6888492405" z="0"/>

146 <point x="11.9774156465" y="57.6884292986" z="0"/>

147 <point x="11.9774446003" y="57.6883870871" z="0"/>

148 <point x="11.9776821389" y="57.6881129718" z="0"/>

149 </pointSet>

150 </geometry>

151 </boundary>

152 </boundaries>

153 <center>

154 <!-- reference line -->

155 <lane id="0" uid="r2_1_0" type="none">

156 <border>

157 <geometry sOffset="0" x="11.977068370245743" y="57.6888556551523" z="0" length="90.1586">

158 <pointSet>

159 <point x="11.977068370245743" y="57.6888556551523" z="0"/>

160 <point x="11.97744176754415" y="57.68843741455268" z="0"/>

161 <point x="11.977468634345016" y="57.688394602302274" z="0"/>

162 <point x="11.9777109467941" y="57.68812039715326" z="0"/>

163 </pointSet>

164 </geometry>

165 <borderType sOffset="0" type="broken" color="white"/>

166 </border>

167 </lane>

168 </center>

169 <right>

170 <!-- First right lane -->

171 <lane id="-1" uid="r2_1_-1" type="driving" direction="forward" turnType="noTurn">

172 <centerLine> <!-- Lane center line -->

173 <geometry sOffset="0" y="11.977056344271809" x="57.688852447826726" z="0" length="90.1586">

174 <pointSet>

175 <point x="11.977056344271809" y="57.688852447826726" z="0"/>

176 <point x="11.977428707020614" y="57.68843335657701" z="0"/>

177 <point x="11.977456617321263" y="57.68839084470171" z="0"/>

178 <point x="11.977696542845573" y="57.68811668447744" z="0"/>

179 </pointSet>

180 </geometry>

181 </centerLine>

182 <border> <!-- Lane right side border -->

183 <geometry sOffset="0" x="11.9777397547" y="57.6881278225" z="0" length="90.1586">

184 <pointSet>

185 <point x="11.9770443183" y="57.6888492405" z="0"/>

186 <point x="11.9774156465" y="57.6884292986" z="0"/>

187 <point x="11.9774446003" y="57.6883870871" z="0"/>

188 <point x="11.9776821389" y="57.6881129718" z="0"/>

189 </pointSet>

190 </geometry>

191 <borderType sOffset="0" type="broken" color="white"/>

192 </border>

193 <link>

194 <!--

195 <predecessor id=""/>

196 <successor id=""/>

197 -->

198 </link>

199 <speed max="5"/>

200 <sampleAssociates>

201 <sampleAssociate sOffset="0" leftWidth="1.5" rightWidth="1.5"/>

202 <sampleAssociate sOffset="51.4655" leftWidth="1.5" rightWidth="1.5"/>

203 <sampleAssociate sOffset="56.4804" leftWidth="1.5" rightWidth="1.5"/>

204 <sampleAssociate sOffset="90.1586" leftWidth="1.5" rightWidth="1.5"/>

VIII

B. base_map.xml

205 </sampleAssociates>

206 <junctionOverlapGroup></junctionOverlapGroup>

207 <laneOverlapGroup></laneOverlapGroup>

208 </lane>

209 </right>

210 </laneSection>

211 </lanes>

212 </road>

213 </OpenDRIVE>

IX

B. base_map.xml

X

C
Scripts for simulating obstacles

C.1 sim_test.cc

1 #include "modules/dreamview/backend/sim_control/sim_test.h"

2

3 #include <cmath>

4

5 #include "modules/common/math/math_utils.h"

6 #include "modules/common/math/quaternion.h"

7 #include "modules/common/time/time.h"

8 #include "modules/common/util/file.h"

9

10 //ERIK (some might be unnacessery)

11 #include "modules/common/adapters/adapter_gflags.h"

12 #include "modules/dreamview/backend/common/dreamview_gflags.h"

13 #include "modules/common/adapters/proto/adapter_config.pb.h"

14 #include "modules/common/util/util.h"

15 #include "modules/common/adapters/adapter_manager.h"

16

17 namespace apollo {

18 namespace dreamview {

19

20 using apollo::common::adapter::PerceptionObstaclesAdapter;

21 using apollo::perception::Point;

22 using apollo::perception::PerceptionObstacle;

23 using apollo::perception::PerceptionObstacles;

24

25 double y;

26 double x;

27 double x_change;

28 double y_change;

29 bool dec;

30

31

32 void updateSimWorld(){

33

34 PerceptionObstacles obstacles; //creates an obstacles which is a protobuff msg that

will contain obstacle(s)

35 //Declares global variables

36 apollo::common::adapter::AdapterManager::FillPerceptionObstaclesHeader("perception_obstacle",

&obstacles); //Updates the timestamps

37 if (dec != true){

38 x =20;

39 y=-1.5;

40 x_change=0.01;

41 y_change=0.004;

42 dec = true;

43 }

44

XI

C. Scripts for simulating obstacles

45 // Scenario 1 - Pedestrian crossing (comment out while running other

scenarios)

46 addPerceptionObstacle(&obstacles,

::apollo::perception::PerceptionObstacle::PEDESTRIAN, 1, 41, y, 0, 0, 1, 0,

1, 1, 1);

47 if(y<-6.5){

48 y=0.5;

49 }else{

50 y=y-y_change;

51 }

52

53

54 //Scenario 2 - Car chase (comment out while running other scenarios)

55 addPerceptionObstacle(&obstacles, ::apollo::perception::PerceptionObstacle::VEHICLE,

1, x, y, 0, sqrt(pow(x_change,2)+pow(y_change,2)),

sqrt(pow(x_change,2)+pow(y_change,2)), 0, 1, 0.5, 1);

56 x = x+x_change;

57 if(x>30 && y>-4.5){

58 x=x+x_change;

59 y=y-y_change;

60 }

61 if(x>80){

62 x=20;

63 y=-1.5;

64 }

65

66

67 /* How obstacles are made: adds static obstacle(s) to obstacles, what is sent

is: a pointer to the obstacles that the obstacle should be added to, what

type of obstacle should be added, the id of the obstacle,the x-coordinate to

the centrum of the obstacle, y- -||-, z- -||-, width of the obstacle(x),

length of the obstacle(y), height of the obstacle(z)

68 */

69

70 //publish the msg

71 apollo::common::adapter::AdapterManager::PublishPerceptionObstacles(obstacles);

72 }

73

74 /* Adds obstacle to obstacles, what is requerd: a pointer to the obstacles that

the obsticle should be added to, what type of obstacle should be added, the id

of the obstacle, the x-coordinat to centrum of the obstacle, y- -||-,

z-coordinate to the bootom of the obstacle, ith of the obstacle(x), legnth of

the obstacle(y), height of the obstacle(z)

75 */

76 void addPerceptionObstacle(perception::PerceptionObstacles *obstacles,

perception::PerceptionObstacle::Type type, int id, double Xcoord, double Ycoord,

double Zcoord, double width, double length, double height){

77 //Calls on addPerceptionObstacle with speed set to 0 in x,y,z

78 addPerceptionObstacle(obstacles, type, id, Xcoord, Ycoord, Zcoord, 0, 0, 0, width,

length, height);

79 }

80

81 /* Adds obstacle to obstacles, what is requerd: a pointer to the obstacles that the

obsticle should be added to, what type of obstacle should be added, the id of the

obstacle, the x-coordinat to centrum of the obstacle, y- -||-, z-coordinate to the

bootom of the obstacle, ith of the obstacle(x), legnth of the obstacle(y), height of

the obstacle(z)

82 */

XII

C. Scripts for simulating obstacles

83 void addPerceptionObstacle(perception::PerceptionObstacles *obstacles,

perception::PerceptionObstacle::Type type, int id, double Xcoord, double Ycoord,

double Zcoord, double xVel, double yVel, double zVel, double width, double length,

double height){

84 //adds an obstacle called obst to obstacles

85 auto obst = obstacles->add_perception_obstacle();

86

87 obst->set_id(id);

88 obst->set_length(length);

89 obst->set_width(width);

90 obst->set_height(height);

91 obst->set_type(type);

92

93 auto pointy = obst->mutable_position();

94 auto pointy2 = obst->mutable_velocity();

95

96 pointy->set_x(Xcoord);

97 pointy->set_y(Ycoord);

98 pointy->set_z(Zcoord);

99

100 pointy2->set_x(xVel);

101 pointy2->set_y(yVel);

102 pointy2->set_z(zVel);

103

104 //Adds a polygone point which are the corners of the obstacle

105 auto pen0 = obst->add_polygon_point();

106 auto pen1 = obst->add_polygon_point();

107 auto pen2 = obst->add_polygon_point();

108 auto pen3 = obst->add_polygon_point();

109 auto pen4 = obst->add_polygon_point();

110 auto pen5 = obst->add_polygon_point();

111 auto pen6 = obst->add_polygon_point();

112 auto pen7 = obst->add_polygon_point();

113

114 //Makes a box round the point where the obstacle is, the the point is on the

center of the "flor" of the box

115 pen0->set_x(Xcoord-width/2);

116 pen0->set_y(Ycoord-length/2);

117 pen0->set_z(Zcoord);

118 pen1->set_x(Xcoord+width/2);

119 pen1->set_y(Ycoord-length/2);

120 pen1->set_z(Zcoord);

121 pen2->set_x(Xcoord+width/2);

122 pen2->set_y(Ycoord+length/2);

123 pen2->set_z(Zcoord);

124 pen3->set_x(Xcoord-width/2);

125 pen3->set_y(Ycoord+length/2);

126 pen3->set_z(Zcoord);

127 pen4->set_x(Xcoord-width/2);

128 pen4->set_y(Ycoord-length/2);

129 pen4->set_z(Zcoord+height);

130 pen5->set_x(Xcoord+width/2);

131 pen5->set_y(Ycoord-length/2);

132 pen5->set_z(Zcoord+height);

133 pen6->set_x(Xcoord+width/2);

134 pen6->set_y(Ycoord+length/2);

135 pen6->set_z(Zcoord+height);

136 pen7->set_x(Xcoord-width/2);

137 pen7->set_y(Ycoord+length/2);

138 pen7->set_z(Zcoord+height);

139

XIII

C. Scripts for simulating obstacles

140

141 }

142

143

144 }

145 }

C.2 sim_test.h

1 #ifndef MODULES_DREAMVIEW_BACKEND_SIM_CONTROL_TEST_H_

2 #define MODULES_DREAMVIEW_BACKEND_SIM_CONTROL_TEST_H_

3

4 #include <string>

5

6 #include "gtest/gtest_prod.h"

7 #include "modules/common/adapters/adapter_manager.h"

8 #include "modules/dreamview/backend/common/dreamview_gflags.h"

9 #include "modules/dreamview/backend/map/map_service.h"

10

11

12 /**

13 * @namespace apollo::dreamview

14 * @brief apollo::dreamview

15 */

16 namespace apollo {

17 namespace dreamview {

18

19 void updateSimWorld();

20

21 void addPerceptionObstacle(perception::PerceptionObstacles *obstacles,

22 perception::PerceptionObstacle::Type type, int id, double Xcoord,

23 double Ycoord, double Zcoord, double xVel, double yVel, double zVel,

24 double width, double length, double height);

25

26 void addPerceptionObstacle(perception::PerceptionObstacles *obstacles,

27 perception::PerceptionObstacle::Type type, int id, double Xcoord,

28 double Ycoord, double Zcoord, double width, double length, double height);

29

30

31 }

32 }

33

34 #endif

C.3 sim_control.cc

1 /**

2 * Copyright 2017 The Apollo Authors. All Rights Reserved.

3 *

4 * Licensed under the Apache License, Version 2.0 (the "License");

5 * you may not use this file except in compliance with the License.

6 * You may obtain a copy of the License at

7 *

8 * http://www.apache.org/licenses/LICENSE-2.0

9 *

10 * Unless required by applicable law or agreed to in writing, software

11 * distributed under the License is distributed on an "AS IS" BASIS,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

13 * See the License for the specific language governing permissions and

XIV

C. Scripts for simulating obstacles

14 * limitations under the License.

15 ***/

16

17 #include "modules/dreamview/backend/sim_control/sim_control.h"

18

19 #include <cmath>

20

21 #include "modules/common/math/math_utils.h"

22 #include "modules/common/math/quaternion.h"

23 #include "modules/common/time/time.h"

24 #include "modules/common/util/file.h"

25

26 //ERIK

27 #include "modules/dreamview/backend/sim_control/sim_test.h"

28

29 namespace apollo {

30 namespace dreamview {

31

32 using apollo::canbus::Chassis;

33 using apollo::common::Point3D;

34 using apollo::common::Quaternion;

35 using apollo::common::TrajectoryPoint;

36 using apollo::common::adapter::AdapterManager;

37 using apollo::common::Header;

38 using apollo::common::math::HeadingToQuaternion;

39 using apollo::common::math::InverseQuaternionRotate;

40 using apollo::common::math::NormalizeAngle;

41 using apollo::common::math::QuaternionToHeading;

42 using apollo::common::time::Clock;

43 using apollo::common::util::GetProtoFromFile;

44 using apollo::localization::LocalizationEstimate;

45 using apollo::routing::RoutingResponse;

46

47

48

49

50

51 namespace {

52

53 void TransformToVRF(const Point3D& point_mrf, const Quaternion& orientation,

54 Point3D* point_vrf) {

55 Eigen::Vector3d v_mrf(point_mrf.x(), point_mrf.y(), point_mrf.z());

56 auto v_vrf = InverseQuaternionRotate(orientation, v_mrf);

57 point_vrf->set_x(v_vrf.x());

58 point_vrf->set_y(v_vrf.y());

59 point_vrf->set_z(v_vrf.z());

60 }

61

62 bool CompareHeader(const Header& lhs, const Header& rhs) {

63 return lhs.sequence_num() == rhs.sequence_num() &&

64 lhs.timestamp_sec() == rhs.timestamp_sec();

65 }

66

67 } // namespace

68

69 SimControl::SimControl(const MapService* map_service)

70 : map_service_(map_service),

71 prev_point_index_(0),

72 next_point_index_(0),

73 received_planning_(false),

74 planning_count_(-1),

XV

C. Scripts for simulating obstacles

75 re_routing_triggered_(false),

76 enabled_(FLAGS_enable_sim_control) {}

77

78 void SimControl::Init(bool set_start_point, double start_velocity,

79 double start_acceleration) {

80 // Setup planning and routing result data callback.

81

82 AdapterManager::AddPlanningCallback(&SimControl::OnPlanning, this);

83 AdapterManager::AddRoutingResponseCallback(&SimControl::OnRoutingResponse,

84 this);

85

86 // Start timer to publish localization and chassis messages.

87 sim_control_timer_ = AdapterManager::CreateTimer(

88 ros::Duration(kSimControlInterval), &SimControl::TimerCallback, this);

89

90 if (set_start_point) {

91 apollo::common::PointENU start_point;

92 if (!map_service_->GetStartPoint(&start_point)) {

93 AWARN << "Failed to get a dummy start point from map!";

94 return;

95 }

96 SetStartPoint(start_point.x(), start_point.y());

97 }

98

99 start_velocity_ = start_velocity;

100 start_acceleration_ = start_acceleration;

101 }

102

103 void SimControl::SetStartPoint(const double x, const double y) {

104 next_point_.set_v(start_velocity_);

105 next_point_.set_a(start_acceleration_);

106

107 auto* next_point = next_point_.mutable_path_point();

108 next_point->set_x(x);

109 next_point->set_y(y);

110 next_point->set_z(0.0);

111

112 double theta = 0.0;

113 double s = 0.0;

114 if (!map_service_->GetPoseWithRegardToLane(next_point->x(), next_point->y(),

115 &theta, &s)) {

116 AERROR << "Failed to get heading from map! Treat theta and s as 0.0!";

117 }

118 next_point->set_theta(theta);

119 next_point->set_s(s);

120 next_point->set_kappa(0.0);

121

122 prev_point_index_ = next_point_index_ = 0;

123 received_planning_ = false;

124

125 Start();

126 }

127

128 void SimControl::ClearPlanning() {

129 current_trajectory_.Clear();

130 received_planning_ = false;

131 planning_count_ = 0;

132 }

133

134 void SimControl::OnRoutingResponse(const RoutingResponse& routing) {

135 CHECK_LE(2, routing.routing_request().waypoint_size());

XVI

C. Scripts for simulating obstacles

136 const auto& start_pose = routing.routing_request().waypoint(0).pose();

137

138 current_routing_header_ = routing.header();

139

140 // If this is from a planning re-routing request, don't reset car's location.

141 re_routing_triggered_ =

142 routing.routing_request().header().module_name() == "planning";

143 if (!re_routing_triggered_) {

144 ClearPlanning();

145 SetStartPoint(start_pose.x(), start_pose.y());

146 }

147 }

148

149 void SimControl::Start() {

150 if (enabled_) {

151 sim_control_timer_.start();

152 }

153 }

154

155 void SimControl::Stop() { sim_control_timer_.stop(); }

156

157 void SimControl::OnPlanning(const apollo::planning::ADCTrajectory& trajectory) {

158 // Reset current trajectory and the indices upon receiving a new trajectory.

159 // The routing SimControl owns must match with the one Planning has.

160 if (re_routing_triggered_ ||

161 CompareHeader(trajectory.routing_header(), current_routing_header_)) {

162 // Hold a few cycles until the position information is fully refreshed on

163 // planning side. Don't wait for the very first planning received.

164 ++planning_count_;

165 if (planning_count_ == 0 || planning_count_ >= kPlanningCountToStart) {

166 planning_count_ = kPlanningCountToStart;

167 current_trajectory_ = trajectory;

168 prev_point_index_ = 0;

169 next_point_index_ = 0;

170 received_planning_ = true;

171 }

172 } else {

173 ClearPlanning();

174 }

175 }

176

177 void SimControl::Freeze() {

178 next_point_.set_v(0.0);

179 next_point_.set_a(0.0);

180 prev_point_ = next_point_;

181 }

182

183 double SimControl::AbsoluteTimeOfNextPoint() {

184 return current_trajectory_.header().timestamp_sec() +

185 current_trajectory_.trajectory_point(next_point_index_)

186 .relative_time();

187 }

188

189 bool SimControl::NextPointWithinRange() {

190 return next_point_index_ < current_trajectory_.trajectory_point_size() - 1;

191 }

192

193 void SimControl::TimerCallback(const ros::TimerEvent& event) { RunOnce(); }

194

195 void SimControl::RunOnce() {

196 // Result of the interpolation.

XVII

C. Scripts for simulating obstacles

197 double lambda = 0.0;

198 auto current_time = Clock::NowInSeconds();

199

200 if (!received_planning_) {

201 prev_point_ = next_point_;

202 } else {

203 if (current_trajectory_.estop().is_estop() || !NextPointWithinRange()) {

204 // Freeze the car when there's an estop or the current trajectory has been

205 // exhausted.

206 Freeze();

207 } else {

208 // Determine the status of the car based on received planning message.

209 double timestamp = current_trajectory_.header().timestamp_sec();

210

211 while (NextPointWithinRange() &&

212 current_time > AbsoluteTimeOfNextPoint()) {

213 ++next_point_index_;

214 }

215

216 if (next_point_index_ == 0) {

217 AERROR << "First trajectory point is a future point!";

218 return;

219 }

220

221 if (current_time > AbsoluteTimeOfNextPoint()) {

222 prev_point_index_ = next_point_index_;

223 } else {

224 prev_point_index_ = next_point_index_ - 1;

225 }

226

227 next_point_ = current_trajectory_.trajectory_point(next_point_index_);

228 prev_point_ = current_trajectory_.trajectory_point(prev_point_index_);

229

230 // Calculate the ratio based on the position of current time in

231 // between the previous point and the next point, where lambda =

232 // (current_point - prev_point) / (next_point - prev_point).

233 if (next_point_index_ != prev_point_index_) {

234 lambda = (current_time - timestamp - prev_point_.relative_time()) /

235 (next_point_.relative_time() - prev_point_.relative_time());

236 }

237 }

238 }

239

240 PublishChassis(lambda);

241 PublishLocalization(lambda);

242 }

243

244

245

246 void SimControl::PublishChassis(double lambda) {

247 Chassis chassis;

248 AdapterManager::FillChassisHeader("SimControl", &chassis);

249

250 chassis.set_engine_started(true);

251 chassis.set_driving_mode(Chassis::COMPLETE_AUTO_DRIVE);

252 chassis.set_gear_location(Chassis::GEAR_DRIVE);

253

254 double cur_speed = Interpolate(prev_point_.v(), next_point_.v(), lambda);

255 chassis.set_speed_mps(cur_speed);

256 chassis.set_throttle_percentage(0.0);

257 chassis.set_brake_percentage(0.0);

XVIII

C. Scripts for simulating obstacles

258

259 AdapterManager::PublishChassis(chassis);

260 }

261

262 void SimControl::PublishLocalization(double lambda) {

263 LocalizationEstimate localization;

264 AdapterManager::FillLocalizationHeader("SimControl", &localization);

265

266 auto* pose = localization.mutable_pose();

267 auto prev = prev_point_.path_point();

268 auto next = next_point_.path_point();

269

270 // Set position

271 double cur_x = Interpolate(prev.x(), next.x(), lambda);

272 pose->mutable_position()->set_x(cur_x);

273 double cur_y = Interpolate(prev.y(), next.y(), lambda);

274 pose->mutable_position()->set_y(cur_y);

275 double cur_z = Interpolate(prev.z(), next.z(), lambda);

276 pose->mutable_position()->set_z(cur_z);

277

278 // Set orientation and heading

279 double cur_theta = NormalizeAngle(

280 prev.theta() + lambda * NormalizeAngle(next.theta() - prev.theta()));

281

282 Eigen::Quaternion<double> cur_orientation =

283 HeadingToQuaternion<double>(cur_theta);

284 pose->mutable_orientation()->set_qw(cur_orientation.w());

285 pose->mutable_orientation()->set_qx(cur_orientation.x());

286 pose->mutable_orientation()->set_qy(cur_orientation.y());

287 pose->mutable_orientation()->set_qz(cur_orientation.z());

288 pose->set_heading(cur_theta);

289

290 // Set linear_velocity

291 double cur_speed = Interpolate(prev_point_.v(), next_point_.v(), lambda);

292 pose->mutable_linear_velocity()->set_x(std::cos(cur_theta) * cur_speed);

293 pose->mutable_linear_velocity()->set_y(std::sin(cur_theta) * cur_speed);

294 pose->mutable_linear_velocity()->set_z(0);

295

296 // Set angular_velocity in both map reference frame and vehicle reference

297 // frame

298 double cur_curvature = Interpolate(prev.kappa(), next.kappa(), lambda);

299 pose->mutable_angular_velocity()->set_x(0);

300 pose->mutable_angular_velocity()->set_y(0);

301 pose->mutable_angular_velocity()->set_z(cur_speed * cur_curvature);

302

303 TransformToVRF(pose->angular_velocity(), pose->orientation(),

304 pose->mutable_angular_velocity_vrf());

305

306 // Set linear_acceleration in both map reference frame and vehicle reference

307 // frame

308 double cur_acceleration_s =

309 Interpolate(prev_point_.a(), next_point_.a(), lambda);

310 auto* linear_acceleration = pose->mutable_linear_acceleration();

311 linear_acceleration->set_x(std::cos(cur_theta) * cur_acceleration_s);

312 linear_acceleration->set_y(std::sin(cur_theta) * cur_acceleration_s);

313 linear_acceleration->set_z(0);

314

315 TransformToVRF(pose->linear_acceleration(), pose->orientation(),

316 pose->mutable_linear_acceleration_vrf());

317

318

XIX

C. Scripts for simulating obstacles

319

320

321 AdapterManager::PublishLocalization(localization);

322

323 //ERIK

324 //Calls the code that generates obtacles

325 updateSimWorld();

326

327

328 }

329

330

331

332 } // namespace dreamview

333 } // namespace apollo

XX

E
How-to document

This document contains detailed information on how to setup Apollo Auto and how to

customize it. It should be viewed as a collection of text written by the Apollo Auto team

and some from experience of the authors. Therefore a lot of credit from this document

should go to the Apollo Auto team as well as the authors of this thesis. For further

information on Apollo Auto visit https://github.com/ApolloAuto.

XXIII

Contents

1 Computer setup 1

1.1 Hardware . 1
1.2 Software . 1

1.2.1 Technical installation process . 2

2 Bag-file Simulation 4

2.1 Creating bag-files . 4

3 Complete system simulation 5

3.1 The three maps essential for simulation . 5
3.2 Creating a new map . 5
3.3 Changing maps . 6
3.4 Implement CAN for new vehicle . 6
3.5 Starting a new simulation . 7
3.6 Adding obstacles to the simulation . 7
3.7 Debugging . 8

4 CAN 9

5 Add an Adapter 10

1

Computer setup

This chapter explains how the computer(Nuvo-6108-GC, hereby refered to as Novu) is set-up properly
for use with Apollo Auto. Further information on how the set-up process is conducted can be found
on the Apollo Auto github.

1.1 Hardware

Firstly the SSD, GPU and CAN-card are installed in the case. Remember to screw each component
into the case with the existing holders, this is to remove risk of the contacts breaking from bumps
and such while driving. Observe that the CAN-card does not have an extra holder, but is only held
in place with one screw.

Something to note about installing the CAN-card is that we had to bend the outer shell of the case a
bit with our hands to make it fit. Do not press excessively but just a little (< .5 mm).

The graphics card is placed on the PCI-express x16 port that is located as far away from the heat
sink. Make sure that the holder is fastened as well, it is a small metal holder that fits on the top of
the graphics card.

1.2 Software

Firstly Ubuntu has to be installed. Download it from their website (https://www.ubuntu.com), as of
27/2-18 Apollo runs on Ubuntu 14.04 with kernel ”linux-4.4.32-apollo-1.0.0”.

To be able to install Ubuntu the USB-drive has to be bootable, with some quick searches on Google this
is easy to find and do. One example of a program that does this is Rufus (https://rufus.akeo.ie).

When Ubuntu is installed it is recommended to turn the fan speed up. This is done by restarting the
computer and holding down the F2 button. When you get to the BIOS go to ”Advanced”, ”Smart
Fan Setting”. Then changed ”Max” to 50 degrees and ”Start” to 20.

The installation process for the Apollo-kernel will not be described in detail here but can be found
on the Apollo Auto Github as read-me files. The kernel can be downloaded from the same place
(https://github.com/ApolloAuto/apollo-kernel).

To check if the correct kernel is running use the command:

uname -r

1

1.2.1 Technical installation process

Copy the ’’esdcan’’ to computer

> Write the ISO -file to the USB -drive , with for example Rufus.

// Done on a separate computer

> Start the Novu , with the USB connected , hold F12 during the start up.

//The BIOS is entered by holding F12

> When in the BIOS , choose to boot from USB.

> Follow the installation guide and install Ubuntu.

> When booted up , open the terminal.

> Run "apollosetup1.sh"

> Reboot the Novu

> Run apollosetup2.sh

// This might not work correctly the follow the next two steps.

// Copy the git clone by hand and run the apollosetup2.sh again:

// > git clone https :// https :// github.com/ApolloAuto/apollo.git

> Copy ntacn.h (located in esdcan/include) to

apollo/third_party/can_card_library/esd_can/include.

> Copy libntacn.so .4.0.1 (located in lib64) to

apollo/third_party/can_card_library/esd_can/lib

NOTE! You have to create the final maps ’’include ’’ and ’’lib ’’ by yourself.

> In apollo/third_party/can_card_library/esd_can run:

> cd ./lib/;

> ln -s libntcan.so .4.0.1 libntcan.so.4;

> ln -s libntcan.so .4.0.1 libntcan.so.4.0

2

apollosetup1.txt

#!/bin/bash

sudo apt-get update; sudo apt-get upgrade -Y

sudo apt-get install -Y linux-generic-lts-xenial

tar zxvf linux-4.4.32-apollo-1.5.0.tar.gz

cd install

sudo bash install_kernel.sh -Y

echo "Please reboot in apollo-kernel"

apollosetup2.txt

#!/bin/bash

cd esdcan-pcie402-linux-2.6.x-x86_64-3.10.4

cd src/; make -C /lib/modules/‘uname -r‘/build M=‘pwd‘

sudo make -C /lib/modules/‘uname -r‘/build M=‘pwd‘ modules_install

cd ../../

sudo apt install git

git clone https://github.com/ApolloAuto/apollo.git

cd apollo

git checkout r2.0.0; cd apollo;

echo "export APOLLO_HOME=$pwd" >> ~/.bashrc && source ~/.bashrc

source ~/.bashrc

cd $APOLLO_HOME

bash docker/scripts/install_docker.sh

sudo apt-get update

sudo apt-get install docker-ce

sudo groupadd docker

sudo usermod -aG docker $USER

echo "Please log in and out and run: bash apollo/docker/scripts/release_start.sh"

3

2

Bag-file Simulation

2.1 Creating bag-files

To extract a topic from a bagfile use:

rostopic echo -b docs/demo_guide/demo_2 .0.bag /apollo/perception/obstacles ...

... >> test.csv

To exclude the data for a certain module, i.e. remove the topics it is sending.use the following
command:

rosbag filter demo_2 .0. bag </.../ newfile >.bag ’topic != ’’/apollo/<modulename >’’

To start simulation using bagfiles use following command:

rosbag play -l </.../ filename >.bag

(The -l loops the bag-file, remove it if you want to run it just one time.)

Observe that the car follows existing GPS data and will not follow new routing commands or stop, it
will run as it would when running the original bag-file.

To observe what messages are beeing sent over a topic run the original bag-file and use:

rostopic echo /apollo/<topicname >

The topicnames can be obtained either by running the following command:

rostopic list

Or you can go to ”apollo/scripts/topics.txt”

If you want to see what topics are contained in a bag-file use:

rosbag info <filename >.bag

Important: do not forget to turn on each module that is tested!

4

3

Complete system simulation

3.1 The three maps essential for simulation

There are three different maps that the system will use when simulating; base map, routing map and
sim map. These maps can be represented by .txt, .xml or .bin files. The most important one is
base map, which is also the most detailed of the three. routing map contains the topology of the lanes
in base map and can be generated by the following two commands

$ dir_name=modules/map/data/demo # example map directory

$./ scripts/generate_routing_topo_graph.sh --map_dir ${dir_name}

sim map is a light weight version of base map for Dreamview visualization. It has reduced data density
for better runtime performance. It can be generated by the following two commands

$ dir_name=modules/map/data/demo # example map directory

$ bazel -bin/modules/map/tools/sim_map_generator ...

... --map_dir=${dir_name} --output_dir=${dir_name}

Actually, base map itself is generated from the HDmap, which is currently created and provided
by companies like Mobileye. The creation process is very complex and involves driving test vehicles
equipped with perceptive sensors in the area to be mapped, process the sensor data with deep learning
algorithms, manually adjust roads, junctions etc and manually correct any observed inconsistencies.
The base map.xml file is based on a modified and expanded OpenDRIVE standard format, for which
the format specification can be found in appendix

3.2 Creating a new map

Currently new maps need to be created by hand. There exists programs like OpenRoadEd (https:
//openroaded.sourceforge.io) for creating OpenDRIVE standard formatted maps graphically, but
there does not seem to be a way of converting the standard format to the Apollo modified format yet.

A convenient way of creating a new map is modifying an already existing one, e.g. the chalmers.xml
file originally created by the Perception group.

5

3.3 Changing maps

Use a different map, choose one option:

1. [Prefered] Change global flagfile: *modules/common/data/global flagfile.txt*

2. Pass as flag, which only affects individual process:

bash

<binary > --map_dir =/path/to/your/map

3. Override in the module’s flagfile, which generally located at:

modules/<module_name >/conf/<module_name >.conf

Obviously it also only affect single module.

txt

--flagfile=modules/common/data/global_flagfile.txt

Overrides values from the global flagfile.

--map_dir =/path/to/your/map

3.4 Implement CAN for new vehicle

Git-info: https://github.com/ApolloAuto/apollo/blob/master/docs/howto/how_to_add_a_new_
vehicle.md

Main work-folder: modules/canbus/vehicle/

The bare neccessities for a car in Apollo is partly described in the ”how to” of adding a vehicle. This
only covers the initial steps of each task however. We haven’t gotten it to register a new car doing
only what is described in the how to. The major steps to be taken are (as described in the apollo git
how to):

• In a new folder add the following:

– A new vehicle controller (twizy vehicle controller.h)

– A new message manager (twizy message manager.h)

– A new vehicle factory (twizy vehicle factory.h and .cc)

• The car must be registered in the vehicle factory.cc, modules/canbus/vehicle/vehicle factory.cc

• The config file must be updated with the vehicles data, modules/canbus/conf/canbus conf.pb.txt

By examining the already existing Lincoln you come to the conclusion that some extra steps are
required, these mainly being:

• Adding ”#include”’s to the correct other scripts which run the ”car generation”, eg. including
the new car-scripts/classes into Apollo. Currently some/many scripts rely on the already existing

6

Lincoln code to generate the car virtually. To be able to do so with a new car, the new car must
be included there as well.

• Adding the required information inside the new vehicle controller, message manager, vehicle factory
and config files. This information is in many ways the description of the car as a system/model,
or at least what puts it all together.

• Inside the new vehicle folder there will need to be another folder called ”proto”. This folder in
the Lincoln case contains several .h/.cc files describing everything from the wheelspeed, to the
throttle, to the gps, to the fuel-level etc. etc.

• New protocols need to be added for the new vehicle. These follow the template of ProtocolData
(/modules/drivers/canbus/can comm/protocol data.h). As can be noted in the Lincoln case,
these protocols can be quite substantial.

There is another group called Safety who succeeded in creating a new vehicle in Apollo, they said that
if you have a dbc-file most of the code necessary was generated by itself.

3.5 Starting a new simulation

bash docker/scripts/dev_start.sh # Initialize the dev -docker

bash docker/scripts/dev_into.sh # Jump into the dev -docker

bash scripts/dreamview_sim_control.sh # Start the simulation

bash scripts/dreamview_sim_control.sh stop # Stops the currently

running dreamview simulation. Allowing for changes to be made.

A choice between bootstrap and sim control will be necessary. It is recommend to use sim control for
simulation.

*To kill all docker containers quickly, use ”docker kill $(docker ps -q)”

When this is run, go to localhost:8888 in your web-browser, there press on ”Module Controler” and
turn on planing and routing. After that you can go to ”Route editing”, choose a start and final point
then press ”routing request”. Now you will see the car move from the start point to the end point.

3.6 Adding obstacles to the simulation

To make the car react to objects they are added to the obstacles topic, to which the planing mod-
ule listens to. To do this a function is added to the sim control.cc file and in the function Sim-
Control::PublishLocalization(double lambda) which runs every time the car position updates. The
function that is added publishes to the obstacles topic.

To make the function able to publish to the obstacle topic the node it is written in have to be a
publisher to the obstacle topic. This is done by updating the adapter.conf file so that the mode is
publish or duplex (can both publish and subscribe): config type: PERCEPTION OBSTACLES mode:
DUPLEX message history limit: 1

If the function is not written in an already existing file the.cc file and .h files should be added to the
BUILD file in that folder that the code is located. Under cc libary the .h-file should be added under

7

the hdrs and the .cc-file should be added under srcs. And if there are any new dependencies those
should be added under deps.

We have made a function called updateSimWorld() that is added to the last line in the PublishLo-
calization function. Because the function is in a other file the .h-file have to be included to the
sim control.cc file using the #include command.

updateSimWorld() is declaerd in a file called sim test, what the code dose is that it creates a percep-
tionObstacles, which is a protobuf message. To the perceptionObstacles contains perceptionObsta-
cle, time information and more. The obstacle contains information about its position, size, type,
which ID it have and more. The Obstacles are then published to the obstacles topic using the
apollo::common::adapter::AdapterManager::PublishPerceptionObstacles(obstacles); command.

3.7 Debugging

There are output files created under apollo/data/log that can contain good information, they can be
written to using a command like:

AINFO << "The canbus conf file is loaded: "

And in the apollo/data/core crash files are created, it is good to sometimes remove those because they
take up a lot of space.

8

4

CAN

After the CAN-bus is up and running, which is indicated by a green-light by the CAN-bus in
dreamview. The CAN-module have to be configured so that it can send actual messages over the
bus. This has mainly been done by the safety grope of the bigger project.

But Apollo can auto generate some code if the ID’s of the CAN-bus are known and what are sent over
them. Then in that generated code it tells you where to translate the control command to a message
on the can-bus and where to write cod that converts from can messages to chassis messages.

We ran in to some trouble while trying to get the can-bus code to send our messages instead of zeroes.
So all checks in vehicle controller.cc in the function VehicleController::Update at line 104 to 122 where
removed which made our commands go through even if something was wrong. To compensate for the
lack of checks the safety group added some functions to make the car safer. Safetys code where added
in to the code which translates the code from control messages to CAN commands, what the code
does is that it inactivates the control module if drive is not active or if the break-pedal is pressed.

Be aware that the can-bus sends the control messages no matter what, which means that if a simulation
runs and the control and can module are activated the car will try to move blindly accordingly to how
the car moves in the simulation.

Normally Apollo sends the speed as a throttle percentage and it uses some PID-regulators to convert
the wanted speed into a throttle percentage. This have been modified because the motor-control group
wanted the reference speed directly, the speed is then scaled so that 5 m/s is represented by 255 on
the can-bus.

9

5

Add an Adapter

To integrate the safety module in to Apollo the control module had to publish messages onto a topic
that the can-bus module dose not listen to so that safety could stop the message to reach the can-bus.

This was done by creating a new adapter called ControlCommand2 which publishes on the topic called
/apollo/control2. On that topic the control command are published which safety forwards to the old
topic called /apollo/control if everything is as it should.

The new adapter was created by adding some code into the adapter module:

After line 272 in adapter manager.h the following line was added

REGISTER_ADAPTER(ControlCommand2);

After line 101 in message adapters.h the following line was added

using ControlCommand2Adapter = Adapter <control :: ControlCommand >;

After line 93 in adapter manager.cc the following line was added

EnableControlCommand2(FLAGS_control_command_topic2 , config);

After line 33 in adapter gflags.h the following line was added

DECLARE_string(control_command_topic2);

After line 37 in adapter gflags.cc the following line was added

DEFINE_string(control_command_topic2 , "/ apollo/safety", "control

command2 topic name ");

After line 46 in adapter config.proto the following line was added

CONTROL_COMMAND2 = 40;

(MIGHT NOT BE NECESSARY, because it was not used in adapter manager.cc as a separate case)

And in the module control in the file control.cc at line 315

AdapterManager :: PublishControlCommand (* control_command);

was changed to

AdapterManager :: PublishControlCommand2 (* control_command);

10

