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Abstract

Firms anticipate bad times by issuing long-term debt with procyclical rollover

activity, yet the 2008 crisis is associated with an excess of short-term debt.

Both patterns arise in a model of declining cash �ows and an upside event�

a growth option, whereby expired debt is re�nanced with short- or long-

term bonds. Larger upside events induce a higher fraction of equilibria in

which outstanding short-term debt falls in bad times, namely, a procyclical

rollover policy and a higher time to default. For su¢ ciently large upside

options, this pattern is the only model equilibrium, where �rms engineer a

later default via longer maturity.
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The amounts borrowed from the BoE must be repaid by 2022; as a result Ms

MacMahon [head of �nancial institutions group at Citi] said, �we are de�n-

itively seeing some banks starting to ramp up their regular funding activity

to repay the BoE.�UK banks�debt sales near decade high as regulations

tighten and cheap funding ends. (Financial Times, London, May 14, 2018).

1 Introduction

Debt maturity and leverage are crucial for any �rm. The former is less constrained

than leverage� de�ned by supply and demand factors such as �nancial regulation,

credit ratings, or binding covenants. A �rm�s debt-maturity structure matters because,

along with endogenous default, it provides an extra layer of �nancial �exibility. In an

in�uential study, Graham and Harvey (2001) provide a clear example of this interaction:

Firms, which are forward-looking, anticipate the cost of re�nancing in bad times, which

leads to the issuance of long-term debt and procyclical re�nancing activity (Chen et

al., 2013; Mian and Santos, 2018; Xu, 2018). In the 2008 credit crunch, by contrast, an

excess of short-term debt led to severe rollover and liquidity problems (Brunnermeier,

2009; Krishnamurthy, 2010). Although both patterns arise in a model of dynamic debt

maturity (He andMilbradt, 2016), the mechanisms behind them are largely unexplored.

In this paper, we show how the tradeo¤between two �rm fundamentals� the bond-

recovery sensitivity to the default time and a growth option� explains these rich debt-

maturity patterns. Speci�cally, in the model, the dynamic tradeo¤ between short-

and long-term debt is given by the tradeo¤ between these two �rm fundamentals. A

positive tradeo¤, namely, a poor growth option, induces an equilibrium rollover policy

in which outstanding short-term (long-term) debt increases (falls) in bad times, leading

to a shorter time to default; by contrast, a negative tradeo¤, that is, a large growth

option, implies the opposite� a procyclical rollover policy and a higher time to default.

Moreover, we derive several novel predictions. For instance, the issuance/rollover policy
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of new short-term debt is (independent of this tradeo¤and is) procyclical� more short-

term debt is issued in good than in bad times. Although multiple equilibria exist, they

are unique given the issuance policy, and hence this policy, namely, the change in debt

maturity (rather than maturity itself), is more revealing about a �rm�s debt-maturity

strategy. Very short-term debt or a large principal of debt reduces the fraction of

the equilibria with procyclical rollover activity (and a higher time to default), because

in both scenarios, the amount of debt is too large to roll over. Lastly, equity is less

sensitive to the maturity structure of debt in good times, which �ts with a less cyclical

re�nancing pattern of investment-grade �rms.

To understand corporate debt maturity means studying debt markets more deeply.

In contrast to a �xed-maturity mortgage, a �rm is permanently indebted and never

repays all debt. In addition, covenants limit further indebteness/leverage. Corporate

debt-maturity choice is a dynamic re�nancing problem. Short-term debt is riskier

than long-term debt because it leads more often to re�nancing, an endogenous earlier

default (Leland and Toft, 1996; He and Xiong, 2012). Further, any debt problem

involves borrowers and lenders and is solved in equilibrium. Also, the rollover choice

today depends on both the rollover choice in the future and the default policy, and

must be consistent with future decisions.

In this paper, in a model that builds on He andMilbradt (2016), we study how a �rm

manages its debt maturity, namely, the tradeo¤ between short- and long-term debt.

In the model, the volume of expiring debt depends on its maturity structure, and is

rolled over by issuing short- or long-term bonds that have the same seniority, principal

(normalized to 1), and coupon (equal to the risk-free rate of a �at yield curve), but a

distinct maturity rate. Operational income is declining, contains no volatility risk, and

is subject to an upside event� a growth option. (Declining operational income recog-

nizes that credit risk is linked to poor cash �ows.) As in Leland and Toft, equityholders

absorb the �rms�net cash �ow: operational income minus the debt service� coupons

and rollover costs. The latter per expired bond equals 1 minus the price of a newly
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issued bond, such that book leverage is constant (the principal of outstanding debt is

always 1). The �rm chooses both the default time and the rollover policy to maximize

equity value. Equity depends not only on cash �ows and the default time, but also on

the two bond prices and the fractions of outstanding and new issues of short-term debt.

No volatility implies the optimal default policy T � is straightforward: Default occurs

at the instant T � at which the declining net cash �ow, upside-event adjusted, hits zero.

Any other default policy (T 6= T �) is not credible. Therefore, any later default time

(T > T �) is not credible, and we assume that at time T �, lenders do not extend credit

beyond T �, and equityholders default. Equityholders do not commit to default at time

T �; rather, lenders cut �nancing. Value-matching and smooth-pasting conditions hold

at the time of default, T �. With dynamic debt maturity, the default policy T � also

depends on the fraction of outstanding short-term debt: Not only does more of this

fraction lead to an earlier default, the default time is also more sensitive to low than

to large fractions of outstanding short-term debt.

We study this model based on the integral form of the equity price. This strategy,

compared to the use of the partial di¤erential equation, simpli�es the joint analysis

of both problems: the optimal default time and the equilibrium rollover policy. To

understand our contribution, we �rst review the main results in He and Milbradt.

They show two types of equilibria exist based on the fraction of short-term debt in

new debt issues: corner (interior) policies in which this fraction is either zero or 1 along

the entire equilibrium path (between zero and 1 at the time of default). These rollover

policies interact with the default policy, and although multiple equilibria exist, they are

unique going backwards from the default time. They emphasize a corner-shortening

equilibrium in which all newly issued debt is short term, leading to a shortening time to

default. Notably, this shortening path, which has adverse welfare costs, emerges when

bond recovery is higher if default occurs earlier. However, they do not address key

questions such as the interior equilibria, in which the rollover policy is not explicitly

found, or what type of equilibrium (e.g., shortening over lengthening) prevails.
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In this paper, we provide many insights over He and Milbradt: Overall, we solve the

model analytically and provide a fuller characterization of equilibria, from which we

derive new economic insights. Speci�cally, we (1) provide closed-form solutions for the

equilibrium paths of the fraction of short-term debt in new issues and in outstanding

debt, (2) show equilibria are threefold based on the path of outstanding debt, and (3)

address the key question of when a type of path prevails, and show the tradeo¤ that

dictates this prevalence. Last but not least, we relate the rollover activity implied by

these equilibrium paths to the re�nancing patterns of creditworthy �rms.

First, we solve for all equilibrium paths and describe the interior equilibria (IE) in

detail. Any IE remains interior; that is, the fraction of new issues of short-term debt is

strictly between zero and 1 along the entire path. Hence, only pure corner or interior

equilibria exist. Further, this fraction of new issues of short-term debt steadily decays

with time in the run-up to default. Yet despite this fall in short-term debt issuance,

the fraction of short-term debt in outstanding debt may be hump shaped or increasing.

We also extend the insight that a corner-shortening equilibrium emerges in the face of

declining cash �ows so that bond recovery is higher if default occurs earlier.

We show the rollover policy on the path toward default is increasing in the rollover

policy at the instant of default. This link implies that as the sensitivity of bond recovery

to the default time rises, more short-term debt is issued not only at the instant of

default, but also along the entire equilibrium path. This result holds for any IE and

leads to an earlier default. Moreover, because this sensitivity, which is weakly negative,

decreases with time (i.e., becomes less negative), the choice of an earlier default time

(linked to larger fractions of outstanding short-term debt) also implies the issuance of

more short-term debt along the entire equilibrium path. If this sensitivity is su¢ ciently

negative, the equilibrium becomes a corner-shortening path. In addition, the higher

this bond-recovery convexity to the default time is, the fewer IE paths exist.

Second, besides the described corner/IE based on the issuance policy of new debt,

equilibria are also sorted and threefold based on the path of outstanding debt. An
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equilibrium exists in which (the fraction of) outstanding short-term debt rises along

the entire path to default, and in which the time to default is shorter� the shortening

equilibrium. A lengthening equilibrium also exists in which outstanding short-term

debt falls, as well as a hump-shaped equilibrium that is lengthening closer to default.

These equilibria (linked to large, small, and intermediate fractions of outstanding short-

term debt at the time of default) raise two bigger questions: �When is an equilibrium

of one type and not another (e.g., lengthening vs: shortening or hump-shaped)?�and

�When does one type of equilibrium prevail over the others?�

Third, although the issuance of new short-term debt is linked to the sensitivity of

bond recovery to an earlier default time (lenders anticipate a deteriorating recovery at

default), lengthening equilibria depend on the tradeo¤ between this sensitivity and the

upside-event expected payo¤ (so equityowners do not pass up a good reward). Thus,

(i) an equilibrium path is lengthening if this tradeo¤ is mainly negative. When multiple

equilibria exist away from the default boundary, although the shortening path implies a

higher bond-recovery sensitivity, borrowers and lenders bet longer for the upside option

in a lengthening path, which is riskier for both. And (ii) the larger the upside-event

expected payo¤, the larger the fraction of lengthening paths. For su¢ ciently large

upside options, this pattern is the only model equilibrium.

That a debt-maturity path trades o¤ a higher bond-recovery sensitivity to the de-

fault time versus a higher good-upside-option likelihood extends He and Milbradt, for

whom �the maturity choice trades o¤ rollover losses today versus higher rollover fre-

quencies tomorrow,�as well as Graham and Harvey, who report �rms issue long-term

debt to bypass re�nancing in bad times. For these �rms, ��nancial �exibility, credit

ratings, and matching debt maturity and assets life are important,�which ultimately

leads to less credit risk. As in the latter work, the mechanism our reveals is an equilib-

rium outcome, namely, a dynamic risk-management policy that depends on the assets

in place. Likewise, foreign-denominated debt is a natural hedge of foreign revenues

(Géczy et al., 1997). In our setting, not missing the growth option is key.
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This paper helps us understand the incentives associated with the endogenous choice

of debt maturity in a dynamic setting that includes endogenous default, risky cash

�ows, and debt-equity con�ict. Speci�cally, issuing short-term debt lowers current

rollover losses but requires re�nancing more often, leading to an earlier default. The

basic debt-equity agency con�ict in which equityholders set their endogenous default

decision, as well as how to absorb rollover losses, at the expense of debt holders is also

present here. Lenders incorporate this endogeneity in the pricing of new debt.

Endogenous debt re�nancing along with endogenous default provides additional

�exibility to any �rm. Chen et al: (2013) show aggregate corporate debt maturity has

a clear procyclical pattern: The average debt maturity is longer in economic expansions

than in recessions. In fact, Xu (2018) shows that speculative-grade �rms manage the

maturity pro�le of debt to avoid having to borrow in bad times via early re�nancing

along with maturity lengthening, whereas investment-grade �rms are more sensitive to

the term spread. Mian and Santos (2018) report �rms also re�nance their syndicated

loans in normal times. These future bad times, which lead to more long-term debt,

could be exogenous if liquidity becomes scarce or, simply, if the value of the �rm drops.

In brief, adding to early work on static debt maturity (e.g., Barclay and Smith, 1995;

Guedes and Opler, 1996; Baker et al:, 2003; Johnson, 2003), these new papers �nd

procyclical re�nancing activity, which is more relevant to our dynamic work.

In the model, in any IE, the fraction of new issues of short-term debt is larger than

the fraction of new issues of long-term debt in good times (i.e., when the �rm�s cash

�ow is large). Further, this fraction of new issues of short-term debt steadily decays at

the same time as the operational income. It follows that the issuance of new short-term

debt is procyclical; namely, more short-term debt is always issued in good than in bad

times (although this issuance policy does not necessarily lead to a lower fraction of

outstanding short-term debt� a lengthening path to default). Also, although multiple

equilibria exist, they are unique given the rollover policy, and hence the change in

outstanding debt and not debt maturity or outstanding debt itself fully determines an
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equilibrium path.

A lengthening path in which the fraction of outstanding short-term debt is falling

and hence average maturity is rising implies a procyclical re�nancing activity. In a

setting of declining operational income, a path is lengthening if the tradeo¤ between

the upside-event expected payo¤ and the bond-recovery sensitivity to the default time

is positive. This tradeo¤ is intuitive: better to wait longer if a good reward is expected.

It follows that although the slope of the default time to the outstanding short-term debt

is negative, and although shortening and lengthening paths coexist, �rms with a good

upside option engineer a later default via a large fraction of lengthening equilibria.

Thus, we �nd a rationale in which, in most of the equilibria, more long-term debt

is newly issued, outstanding short-term debt falls in bad times, the rollover policy

is procyclical, and the time to default rises, complementing the evidence of similar

procyclical re�nancing patterns for speculative-grade �rms (Mian and Santos, 2018; Xu,

2018) or the debt-overhang problem (Diamond and He, 2014). For example, Guedes

and Opler (1996) �nd speculative-grade �rms typically borrow in the middle of the

maturity spectrum, and do not issue short-term debt. Moreover, issuing the short-

term debt far away from default/in good times, when equity is only slightly sensitive

to the maturity structure of debt, conforms with a less cyclical re�nancing pattern of

investment-grade �rms (Xu, 2018).

For example, consider an oil-production �rm. Oil is a stored commodity that hardly

depreciates. In the US shale oil and gas �nance industry, Reserve-Based Lending facil-

ities have a �ve-year tenor with a bullet maturity (Azar, 2017). Our analysis suggests

both borrowers and lenders expect the oil price to hike in this extended �ve-year period.

Naturally, a third factor of a �rm�s debt-maturity equilibrium policy (besides the

bond recovery and the upside option) is the maturity spread between short- and long-

term bonds. Very short-term debt not only accelerates default and depresses the is-

suance of new short-term debt, but also reduces the fraction of lengthening equilibria.

The reason is that a large fraction of outstanding very short-term debt, which quickly
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expires, is costly to roll over and cannot be easily unwound, but the �rm defaults.

That the default time is more sensitive to small than to large fractions of outstand-

ing short-term debt implies that in the presence of very short-term debt, a shortening

equilibrium leads to a much earlier default than a lengthening path. It follows that

outstanding overnight (e.g., repo) debt, poor cash �ows, and steadily declining asset

values (or collateral) lead to a quicker default in equilibrium.

During the 2007�2008 credit-crunch crisis, in which the secured repo market was a

key �nancing tool in the entire (including the shadow) banking system, banks reduced

the maturity of their debt while the collateral was sliding (Brunnermeier, 2009; Krish-

namurthy, 2010). This pattern �ts with a shortening equilibrium. Further, a supply

of short-term funding exists, such as money-market funds restrained to invest at the

front end of the yield curve (e.g., in commercial paper, Gorton et al., 2015).

In sum, although the default and rollover policies are highly interconnected, the

path of outstanding debt captures the interaction between the two. The implications

of the model inputs in this path of outstanding debt sum up as follows: Very short-term

debt or a large principal of debt reduces the fraction of lengthening equilibria. Although

short-term debt issuance depends on the bond-recovery sensitivity to the default time,

the upside-event intensity or reward increases the lengthening equilibria. Although a

faster declining rate of operational income speeds up default, the operational-income

level rises only slightly. It follows that shortening equilibria depend not only on a

nonzero bond-recovery sensitivity to the default time and a larger fraction of outstand-

ing short-term debt in place, but also on very short-term debt or large book leverage

(a poor upside event), namely, too much debt to roll over (waiting longer is pointless).

The existence of shortening equilibria, as well as where to place these paths, depends

critically on whether or not default occurs when operational income is negative, which

determines the de�nition of bond recovery. If operational income is negative at the

instant of default, shortening (lengthening) paths are unambiguously tied to larger

(smaller) fractions of outstanding short-term debt at the instant of default. However,
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a discontinuity in the bond-recovery value exists for lower values of the upward-event

expected payo¤. In this case, some operational income is positive at the time of default,

implying the bond recovery becomes less sensitive to this time and the opposite result

happens; that is, large fractions of outstanding short-term at the time of default are

linked to paths with procyclical rollover activity. If, indeed, operational income is only

positive at default, all paths are (corner or interior but) lengthening.

In welfare terms, a shortening equilibrium is not desirable in general; equityholders

maximize equity and not the entire �rm value. This result is easily illustrated if the

bond-recovery value is a fraction of the enterprise value (i.e., lenders are less e¢ cient

running the �rm post default). A later default time, such as a lengthening path implies,

always yields an entire �rm value larger than earlier default (because of this loss of

e¢ ciency). As pointed out, very short-term debt reduces the fraction of lengthening

equilibria, especially in the case of a large amount of short-term debt in place.

In Leland and Toft�s model, in which debt maturity is constant, as well as in He

and Milbradt and our paper that relax this assumption, rollover losses hit shareholders�

deep pockets in Leland�s tradition. In Brunnermeier and Oehmke (2013), by contrast,

rollover losses are also absorbed by equityholders promising a su¢ ciently high new face

value to new lenders. That is, old lenders are the most diluted in the event of default,

because new bondholders are promised a new larger face value (that no covenant in

place prevents) at the time of re�nancing. We abstract from these frictions that may

a¤ect the supply/demand of debt maturity, including liquidity risk (Diammond, 1991),

asymmetric information (Flannery, 1994), excess of leverage and di¤erent-seniority

lenders (Brunnermeier and Oehmke, 2013), market timing (Greenwood et al., 2010),

or debt �nancing of new projects (Diamond and He, 2014).

Our paper relates to the novel area that studies credit risk and endogenous debt

dynamics, especially He and Milbradt.1 We extend their work by providing a fuller

1Dynamic debt is important too in studies of sovereign credit risk, in which risk-averse households
smooth consumption shocks by managing debt maturity and leverage (e.g., Arellano and Rama-
narayanan, 2012; Lorenzoni and Werning, 2014; or Aguiar et al., 2018).
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description of equilibria and especially linking the debt-maturity structure and re�-

nancing activity to the �rm�s fundamentals and empirical evidence. We largely avoid

assuming a speci�c functional form for the declining operational income. Early work in

debt maturity examines the repricing of short-term debt (Diammond, 1991; Flannery,

1994), linked to re�nancing costs. He and Xiong (2012) point out that the riskiness of

short-term debt arises from funding risk. Huang et al., (2017) study multi-period debt

contracts. Friewald et al: (2018) relate equity returns to debt re�nancing. Volatile cash

�ows or dynamic leverage (DeMarzo and He, 2017) are two extensions left for future

research.

The paper is structured as follows. Section 2 presents a model of optimal default in

a static setting. Section 3 moves to study optimal default with dynamic debt. Section

4 describes the rollover-choice problem, and section 5 solves this dynamic problem.

Section 6 provides some extensions. Section 7 concludes. Proofs are in the Appendix.

2 Static Debt

Because the optimal default decision is similar in a static or dynamic debt setting, we

focus �rst on a model with static debt. We de�ne equity value as follows:

F (t;T ) =

Z T

t

I (u;T )� du; t � T; (1)

in which t � 0 is time, T is the default policy, and I is the (discounted) payout

rate/net cash �ow to equityholders. I is deterministic and, like risky debt, depends on

the default policy T . This setting is transparent, and it is convenient to understand

the optimal default decision here.

F (t; t) = 0 is the value-matching condition, and equity value is worthless at default.

F (t; t) = 0 implies F (t;T ) � 0 by switching to the default policy (i.e., t = T ). Non-

negative equity prices, the value-matching condition, and endogenous default, which is
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shown next, are three standard properties of any model of equity prices (Leland, 1994).

2.1 The optimal default policy

Equityholders are not committed to any default policy, and may default at any time.

The only credible policy, denoted by T = T �, is the optimal default policy. The

lenders, that is, bondholders, make sure this decision is consistent by not extending

credit beyond T �. The smooth-pasting condition holds at time t = T �. Formally, this

is as follows.

The �rst-order derivative of the value of equity with respect to T is given by

FT (t;T ) = I (T ;T ) +

Z T

t

IT (u;T )� du: (2)

In particular, for t = T , the integral vanishes and

FT (T ;T ) = I (T ;T ) ;

where we denote F (T ;T ) = F (t;T jt = T ) and I (T ;T ) = I (t;T jt = T ).

If T = T � is an interior optimal default policy,

FT (T
�;T �) = I (T �;T �) = 0: (3)

This zero net cash �ow, a necessary optimality condition, determines the optimal de-

fault policy, T �. Because Ft (T ;T ) = �I (T ;T ), it follows that

Ft (T
�;T �) = 0; (4)

which implies smooth-pasting is a �rst-order optimality condition.
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We de�ne the optimal default time as the following (deterministic) stopping time:

T = finf
u�0

: I (u;u) = 0g; 0 � T <1:

If T � is unique (e.g., in a model of declining cash �ows), T � = T .

A su¢ cient condition for T � to be optimal We assume I (0; 0) > 0 and

dI (T ;T )

dT
� �� < 0; 0 � T;

which imply a unique T � exists, where I (T �;T �) = 0. To prove T = T � is the optimal

default policy, we show any other default policy T < T � (T > T �) is not credible; better

to delay (accelerate) default with respect to such a policy T 6= T �. Then lenders do not

re�nance any new bond beyond the only credible policy T �, which pushes equityholders

to optimal default at time T �, subject to 0 � T � T �.

Remark. If the expired debt at time T � cannot be re�nanced, equityholders will

su¤er bigger losses by no defaulting than the expected loss if they default (the latter

equals zero because T � is a credible default policy, equation (3)). For example, a simple

covenant, associated with already-poor cash �ows, constrains the maturity of all bonds

to less than T �. Otherwise, a default policy in equilibrium may not exist, which shows

that equityholders �nd it pro�table to postpone default by rolling over debt. This

outcome is not an equityholder�s commitment to default at time T �, but rather the

consequence of a strategic action of lenders (and helps us simplify the rollover problem

after T �). Likewise, in the case of many lenders, as in a syndicated bank loan, they

can fail to coordinate in re�nancing this debt (Bolton and Scharfstein, 1996).

Proposition 1 Let T = T � be such that I (T �;T �) = 0. Then FT (T �;T �) = 0 and

the smooth-pasting property holds, that is, Ft (T �;T �) = 0. In addition, assume that

I (0; 0) > 0 and dI(T ;T )
dT

� �� < 0, 0 � T . Then T � exists, T 6= T � is not a credible

default policy, and T = T � is the optimal default policy (subject to 0 � T � T �).
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Further, a weaker condition than dI(T ;T )
dT

� ��<0, for T � 0, is that the following

equation I (T; T ) = 0 has a unique solution (denoted by T = T �) and dI(T ;T )
dT

���
T=T �

< 0,

subject to I (0; 0) > 0.

Proof. See Appendix A.

From Proposition 1, I (T ;T ) > 0 if T < T � (and I (T ;T ) < 0 if T > T �). It follows

that delaying (accelerating) default slightly from T to T + dT if T < T � (to T � dT if

T > T �) always dominates any default policy in which T 6= T �, where dT > 0.2

2.1.1 Example: a model of declining cash �ows

Below, where debt maturity is dynamic, we de�ne the �rm�s payout rate in equation

(1) akin to

I (u;T ) = A (u)�m� e�R�(T�u) � l (T ) :

A (u) is operational income, m > 0 is the amount of expiring debt, e�R�(T�u) is the

present value of risky debt, and 1 � l (T ) > 0 is the debt loss given default. It follows

that

I (T ;T ) = A (T )�m� l (T ) :

We assume that A0 (T ) < 0, i.e., operational income declines, and l0 (T ) � 0, i.e.,

debt losses at default are also (weakly) increasing with time. It follows that

dI (T ;T )

dT
= A0 (T )�m� l0 (T ) < 0: (5)

Then if a T � exists such that I (T �;T �) = 0, T � is the optimal default policy. For

example, A0 (T ) � �� < 0 implies T � does exist, where A (T �) = m� l (T �).

Remark. At time t = T �, delaying default from T � to a su¢ ciently large S > T �,

2We do not consider a second-order condition, because F (t;T ) is de�ned only for 0 � t � T and
the optimal T policy is binding in this support.
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which immediately yields a positive net cash �ow I (T �;S)� dt (if R > 0),

I (T �;S) = A (T �)�m� e�R�(S�T �) � l (S) � A (T �) (e.g., if S !1)

> A (T �)�m� l (T �) = I (T �;T �) = 0;

is not a credible policy, because at time t = S, the cash �ow is negative,

I (S;S) = A (S)�m� l (S) < I (T �;T �) = 0:

In e¤ect, this noncredible default policy would increase the value of debt, that is, lower

rollover losses by delaying default su¢ ciently further away from T �. (If R = 0, because

l0 (S) � 0, directly I (T �;S) = A (T �)�m� l (S) � I (T �;T �) = 0).

3 Dynamic Debt Maturity: Optimal Default

We now study optimal default with dynamic debt maturity. Consider the payout rate

I depends on a new variable, �t 2 [0; 1], the fraction of outstanding short-term debt

(1 � �t is the fraction of outstanding long-term debt). We assume a default-policy

function, S (�). Because operational income is declining, f(t; �) : t � S (�)g is the

defaulting region; that is, t < S (�t) implies no defaulting at time t. For any path �u,

0 � u, the default time is a (deterministic) stopping time de�ned as follows:

T = finf
u�0

: u = S (�u)g; 0 � T <1:

The payout rate and the equity value are given by I (t; �t; ft; T ) and

F (t; �t;T ) =

Z T

t

e�R�(u�t) � I (u; �u; fu; T )� du; t � T: (6)

Equity value, F , depends on two variables, t and �t, as well as the default-policy
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function S (�) (instead of two variables in the static case, t and T �). I also depends

on a new variable, the fraction of newly issued short-term bonds, ft. We wait until the

next section to describe this dynamic setting in detail.

3.1 The optimal default policy, T � (�)

Similar to the previous static setting,

FT (T; �T ;T ) = I (T; �T ; fT ; T ) : (7)

We assume I does not depend on fT at the default time (i.e., short- and long-term

bonds are equal at default, same principal and same seniority). If S (�) = T � (�) is an

interior optimal default-policy function,

I (T; �; f; T )jT=T �(�) = 0; (8)

and a zero payout rate also determines the optimal default policy, T � (�). It also follows

the two smooth-pasting conditions are given by (see Appendix A)

Ft (T; �;T )jT=T �(�) = 0 and F� (T; �;T )jT=T �(�) = 0: (9)

The optimal default time is given by the following stopping time:

T = finf
u�0

: I (u; �u; fu; u) = 0g; 0 � T <1:

In a model of declining cash �ows, T � (�) is a monotone function (T �� (�) < 0), and

T =T � (�T ). For instance, a constant �u = �0, for u � 0, implies the previous static-

debt solution, where the default time and default policy are the same number, T =

T � (�0).

The following assumption implies the zero-payout-rate condition (and hence smooth-
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pasting conditions) is su¢ cient for optimal default. Akin to the proof leading to Propo-

sition 1, assume I (0; �; f; 0) > 0 and

dI (T; �; f; T )

dT
� �� < 0; 0 � T; (10)

which implies a function T � (�) > 0 exists such that the payout rate becomes zero;

that is,

I (T � (�) ; �; f; T � (�)) = 0;

as in equation (8). Like the static-debt case, equation (10) is implied by positive but

declining operational income. It follows T � (�) is the optimal default policy (subject

to 0 � S (�) � T � (�)). We also assume that no issuance policy pulls the �rm away

from the default boundary (which is equation (27)).

We collect all information of the equity value at this optimal default time, T � (�).

Lemma 2 Let � 2 [0; 1] and T � (�) be such that I (T � (�) ; �; f; T � (�)) = 0. Then

value-matching condition : F (T � (�) ; �;T � (�)) = 0;

�rst-order optimality condition : FT (T
� (�) ; �;T � (�)) = I (T � (�) ; �; f; T � (�)) = 0;

implicit optimal default policy : I (T � (�) ; �; f; T � (�)) = 0;

smooth-pasting conditions :

Ft (T
� (�) ; �;T � (�)) = �I (T � (�) ; �; f; T � (�))�

 
1� dT

dt

����
t=T �(�)

!
= 0;

F� (T
� (�) ; �;T � (�)) = I (T � (�) ; �; f; T � (�))� dT

d�t

����
t=T �(�)

= 0;

Assume I (0; �; f; 0) > 0 and dI(T;�;f;T )
dT

� �� < 0, 0 � T , independent of f . Then

S (�) = T � (�) exists and is the optimal default time, subject to 0 � S (�) � T � (�).

Proof. See Appendix A. �
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4 The Rollover-Choice Problem

We follow He and Milbradt�s (HM) notation and layout. Consider two noncallable

bonds that have di¤erent maturity, which is exponentially distributed. d�1S (d�1L ) is

the expected maturity and dS (dL) is the maturity rate of short- (long-term) bonds,

respectively, dS > dL � 0. Let ft 2 [0; 1] be the fraction of short-term bonds that are

newly issued by the �rm at time t, the variable of rollover choice.

ft controls the dynamic of �t, the fraction of outstanding short-term bonds,

�0t = ��t � dS +m (�t)� ft: (11)

m (�t) > 0 (if dL > 0) is the total number of expiring outstanding bonds,

m (�t) = �t � dS + (1� �t)� dL; (12)

like a sinking-fund provision (a la Leland). A large fraction of newly issued short-term

bonds allows equityholders to shorten the debt�s maturity structure of the �rm (i.e.,

�0t > 0 if ft >
�t�dS
m(�t)

), and a smaller fraction extends it. m (�t) dictates the �rm

re�nancing activity.

The two bonds pay the same continuous coupon (c) and have the same principal

(normalized to 1) and seniority. The only di¤erence between them is the maturity rate.

We assume a �at yield curve, where r is the riskless rate. The coupon equals this rate,

c = r. If a bond randomly expires, the price equals the principal of 1. All these features

produce a more tractable setting. For instance, the total coupon to be paid does not

depend on the level of outstanding short-term debt (i.e., c = �t � c+ (1� �t)� c).

4.1 Net cash �ows and the value of equity and debt

We assume a �rm in which the operational income is deterministically declining, that is,

y0 (t) � �� < 0. Although this zero-volatility premise is due to tractability, it recog-
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nizes that credit risk is linked to poor/negative cash �ows. The same �rm, however, is

subject to an upside event, with intensity � � 0, in which the assets in place mature

and the value of these assets jumps to X � 1. This event is like a �growth option�� a

successful investment/project, a discovery, or a new technology that boosts the value

of the �rm. Then the company pays back the debt, cancels all operations, and is sold

by X � 1 (e.g., the �rm goes public or is purchased by outside investors).

Accordingly, the (instantaneous and expected) net cash �ow is as follows:

I (t; �t; ft; T ) = A (t) +m (�t)� (G (� ; ft; T )� 1) ; (13)

� = T � t is the time to default, A (t) is net operational income, G is the value of newly

issued debt, and 1 is the principal of the expired debt; any coupon payment and jump

adjustment is included in A. Speci�cally,

A (t) = y (t)� c+ � � (X � 1) ;

where c = r is the coupon payment and � � (X � 1) is the �rm�s expected payo¤ due

to the upside option. To simplify the notation, the optimal default time is denoted by

T (i.e., T = T and T = T � (�T )).

1�G is the rollover cost of debt. The value of debt depends on quantity and prices

(f and DfS;Lg, respectively) of the two bonds, and is given by

G (� ; ft; T ) = ft �DS (� ;T ) + (1� ft)�DL (� ;T ) ; (14)

where DS and DL are the prices of short- and long-term debt, respectively. It follows

that book leverage is constant; the promised principal of outstanding debt is always 1.

Assuming both bonds have the same priority at default,

G (0; fT ; T ) = DS (0;T ) = DL (0;T ) = 1� l (T ) � 0;
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which is the bond-recovery value. The term l (T ) is the bond loss given default. We

assume the following: 0 < l (T ) � 1, the de�nition of credit risk; l0 (T ) � 0, the later

the default, the larger the losses; and l00 (T ) � 0, losses are concave, which is equivalent

to the bond-recovery value being a convex function. For instance, we can de�ne l (T )

as follows: If bondholders are less e¢ cient running the �rm post-default, 0 < a � 1,

1� l (T ) = a�
Z Ta�T

0

e�R�u � (y (T + u) + �X)� du; (15)

where Ta � T is the optimal abandoning time. Based on this de�nition of l (T ), we show

that declining cash �ows (along with y00 (t) � 0) imply the previous three properties of

l (T ) (see Appendix B).

Having explained the inputs of the model, we price the two corporate securities,

equity and debt. Given the default time T , debt is priced by discounting expected cash

�ows:

Di (� ;T ) = 1� e�(R+di)�� � l (T ) ; i = fS; Lg, (16)

where R � 0 equals the riskless rate plus the intensity (i.e., R = r + �). dS > dL � 0

implies DS > DL; namely, short-term debt is more expensive than long-term debt.

Bond prices, Di, equal the principal minus the discounted probability of default

multiplied by the loss given default. The default event is due to a random surviv-

ing event (between t and T ), which depends on two standard Poisson processes, and

e���� � e�di�� gives the bond-surviving probability (i.e., nonupside event and nonex-

pire, respectively). Without default risk, these two bonds are two par-coupon bonds

with random maturity and a �at yield curve. For any expired bond, the rollover loss

depends on l (T ) (i.e., from equation (14), 1�Di (� ;T ) = e
�(R+di)���l (T ), i = fS; Lg).

The net cash �ow, I, reduces to

I (t; �t; ft; T ) = A (t)�m (�t)�
�
ft � e�(R+dS)�� + (1� ft)� e�(R+dL)��

�
�l (T ) ; (17)
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and at the time of default,

I (t; �t; ft; T )jt=T = A (T )�m (�T )� l (T ) :

The value of equity is given by

F (t; �t;T ) =

Z T

t

e�R�(u�t) �
�
y (u)� c+ � � (X � 1) (18)

� m (�u)�
�
fu � e�(R+dS)�(T�u) + (1� fu)� e�(R+dL)�(T�u)

�
� l (T )

�
� du:

Equity depends on bond prices through the loss given default, l(T ). See Appendix B.

4.2 The optimal default boundary, �� (T )

The optimal default policy, T � (�), is implicit in the zero net cash-�ow condition,

A (T � (�)) = m (�)� l (T � (�)) :

The optimal default time is given by the �rst time that net operational income is equal

(from above) to the rollover cost, A (T ) andm (�)� l (T ), respectively. Net operational

income is positive at the time of default (i.e., A (T ) > 0 if l (T ) > 0).

Larger losses (l) imply larger net operational income (A) at default, and thus an

earlier default (lower T � (�)) because A0 < 0, as in a Leland-type setting. It follows

that

�� (T ) =
1

dS � dL
�
�
A (T )

l (T )
� dL

�
; (19)

which is the optimal default boundary.3 A0 � ��<0 and l0 � 0 imply dI(T;�;f;T )
dT

<0, from

which follows the optimality of the zero net cash �ow at default (I (t; �t; ft; t)jt=T �(�) =

0). Because dS > dL, both assumptions A0 (T ) < 0 and l0 (T ) � 0 also imply T �� < 0,
3In a Leland-di¤usion setting, instead of the analytical default boundary �� (T ), we obtain the

equity�s gamma from the equity boundary conditions at the default point (Ibáñez, 2017).
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namely,

��T (T ) =
1

dS � dL
� A

0l � Al0
l2

< 0:

If A00 � 0 (i.e., A0 = y0 and A00 = y00), the default boundary and default time are

convex functions (��TT (T ) > 0 and T
�
�� > 0, Appendix B). This implies that at larger

fractions of outstanding short-term debt, the default time T � (�) is less sensitive to this

fraction. Hence, all equilibria are more alike in this region. Conversely, very short-term

debt (i.e., a large maturity-rate spread, dS � dL) lowers �� (T ) and accelerates default,

but T � (�) becomes more sensitive to lower fractions of outstanding very short-term

debt. From equation (19), �� (T ) = 0 (�� (T ) = 1) does not depend on dS (dL).

4.3 Equilibrium

We assume a Markov perfect equilibrium, which depends on (1) the maximization of

the value of equity subject to the optimal default policy and (2) the two bond prices

being consistent with the default policy. This equilibrium is as follows:

(1) For any initial state (0; �0), the issuance strategy of equityholders ft 2 [0; 1],

0 � t � T , maximizes equity value given by equation (18).

Then the optimal issuance strategy, the dynamics of the fraction of outstanding

debt, and the optimal default boundary (i.e., ft, �
0
t in equation (11), and �

� (T ) in

equation (19), respectively) determine the default time T (i.e., �� (T ) = �T ).

(2) Given the optimal default time T , bond prices (i.e., DS and DL) are given by

equation (16).

5 The Equilibrium Path of Debt Maturity

In this section, we provide the main results of the paper (proofs are in Appendix C).

(1) We solve in closed form the equilibrium paths of the fractions of outstanding and

new issues (�t and ft) of short-term debt, (2) provide a fuller description of equilibria
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based on the path of the fraction of outstanding debt (�t), and (3) show the tradeo¤

that determines which type of equilibrium path is more abundant.

5.1 Equityholder�s objective function

Before optimal default (i.e., t < T � (�t)), the equityholder�s instantaneous net gain

depends on time (or operational income, y (t)), outstanding debt, and rollover choice

(t, �t, and ft, respectively), and is given by

(I (t; �t; ft; T ) + F� (t; �t;T )� �0t)� dt: (20)

This objective function is equivalent to

ICt � ft =
�
�
�
e�(R+dS)�� � e�(R+dL)��

�
� l (T ) + F� (t; �t;T )

�
� ft; (21)

in which ICt is the term multiplying ft (and m (�t) > 0 is factorized out). ICt is

an incentive-compatibility condition (borrowing HM�s name). The rollover decision is

linear in ft, the newly issued fraction of short-term bonds. This linear form implies a

corner solution except for a zero linear term, namely, ICt = 0. A zero (nonzero) ICt

condition determines an interior (corner) policy, ft, in equilibrium.

For instance, if ICt = 0,

F� (t; �t;T ) =
�
e�(R+dS)�� � e�(R+dL)��

�
� l (T ) < 0:

and the price di¤erence between short- and long-term debt equals the change in equity

value with regard to outstanding short-term debt, which is an equilibrium condition.

More short-term debt reduces the value of equity, that is, F� (t; �t;T ) < 0. Far away

from default (i.e., if � ! 1), this sensitivity F� (t; �t;T ) becomes small. This latter

observation implies that in good times, when cash �ows are large, the speci�c (interior)

equilibrium path and hence whether multiple equilibria exist is less relevant.
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Notably, HM show equilibria are unique going backwards from the default time T .

To solve these unique equilibria, we use the following approach. We solve the optimal

default boundary and bond prices in advance, �� (T ) and DfS;Lg, respectively, which

depend on the loss given default l (T ), an input of the model. Next, we study the

rollover-choice policy, ft, t � T . We solve ft backward in time, given �
� (T ) and

DfS;Lg, implying ft is consistent and is the equilibrium policy.

We focus �rst on nonconstrained rollover policies, fnct 2 R, for which any equi-

librium is de�ned by ICt = 0, t � T . For constrained policies, 0 � ft � 1, two

types of equilibria exist: corner and interior. The interior equilibrium (IE) is the same

nonconstrained one, that is, 0 � ft = fnct � 1, t � T .4

Summary of main results Akin to HM�s results, we show the following in a simple

way:

� fncT and fT , the rollover policies at the time of default, are given in closed-form

solution (HM�s Lemma 1 and Proposition 1).

� ft 2 f0; 1g if fncT =2 (0; 1). A corner solution is determined at default; namely,

fncT =2 (0; 1) is a su¢ cient condition for corner equilibria (as in HM�s Proposition 2).

� Our analytical expression for ft implies any interior backwards path that starts

from the boundary is unique (as in HM�s Proposition 5).

In addition, based on the new �t and ft�s analytical solutions (see our Proposition

3), we show the following for the IE (i.e., 0 < fncT < 1), t � T :

(1) Corollary 4: 0 < fnct < 1; any IE remains interior along the whole path, which

implies only pure (i.e., either corner or interior) equilibria exist. dfnct
dt
< 0; fewer and

fewer new issues of short-term debt are made in the run-up to default for any IE.

dfnct
dfncT

> 0; the larger fncT , the more short-term debt is issued along the entire IE path.

(2) Proposition 5: In addition to corner-lengthening and -shortening (ft 2 f0; 1g)

and interior (ft 2 (0; 1)) equilibria, we have lengthening, in which outstanding short-
4Nonconstrained policies allow the issuance of short positions, e.g., buying short-term debt, which

may reverse a default situation. As HM argue, changing the maturity pro�le in practice is not easy.
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term debt falls (i.e., �0t < 0), shortening, in which outstanding short-term debt rises

(�0t > 0), and hump-shaped (but lengthening closer to default, otherwise) equilibria.

(3) The shorter the maturity-rate spread or the lower the principal of debt, the

larger the fraction on lengthening equilibria. Assume linear cash �ows: the larger the

upside-option expected payo¤, �X, the larger the fraction of lengthening equilibria.

(4) Proposition 6: Although multiple equilibria exist for a same �t, interior equi-

libria are unique given the issuance policy ft (i.e., independent of �t).

5.2 Nonconstrained equilibria in the vicinity of default

We study �rst the vicinity of default, in which we easily prove the constrained equi-

librium rollover policy. Because of smooth-pasting (see equations (49) and (50) in

Appendix A), ICt is equivalent to

ICt � �
�
e�(R+dS)�� � e�(R+dL)��

�
+

Z T

t

e�R�(u�t)

l (T )
� d

d�t
I (u; �u; fu; T )� du; (22)

in which l (T ) > 0 is factorized out. Then, from a �rst-order Taylor approximation

with regard to � (where T is �xed and t = T � �),

ICt � ICT + IC 0T � � = IC 0T � � ;

in which ICT = 0 and

IC 0T � (dS � dL) +
d
d�t
I (u; �u; fu; T )

���
u=t;t=T

l (T )
:

For t! T , ICt = 0 implies IC 0T = 0.

Computing d
d�t
I (u; �u; fu; T )

���
u=t;t=T

(see Appendix C),

IC 0T � m (�T )� (dS � dL)� (fT � fncT )� T �� ; (23)
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where (we advance that)

fncT =

l0(T )
l(T )

� (R + dL)
dS � dL

(24)

denotes the nonconstrained rollover policy at the default time. It follows that

IC 0T = 0() fT = f
nc
T ; (25)

which is the unique solution of a nonconstrained equilibrium.

The constrained equilibria, 0 � fT � 1

For an interior equilibrium, 0 � fT = fncT � 1. For a corner equilibrium,

(i) if fncT > 1, fT = 1 (implies that IC 0T > 0 and) maximizes IC 0T � fT and is a

shortening equilibrium, and

(ii) if fncT < 0, fT = 0 (implies that IC 0T < 0 and) maximizes IC 0T � fT and is a

lengthening equilibrium.

Equivalently, and more compactly (for both interior and corner equilibria),

fT = min fmax f0; fncT g ; 1g ; (26)

that is, the constrained optimal rollover policy in the vicinity of default (which is the

unique equilibrium)� HM�s Proposition 1.

Remark. From equation (24), HM derive a key insight: the issuance of new short-

term debt at the instant of default depends on the bond-recovery sensitivity (i.e., fncT >0

implies l0 (T )>0). Below, we show this result extends along the entire equilibrium

path: as the sensitivity of bond recovery to the default time increases, the more short-

term debt is issued not only at the instant of default, fncT , but also along the entire

equilibrium path (Corollary 4).
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The default-time slope Short-term borrowing (i.e., fT > 0) implies l0 (T ) > 0.

From the default-boundary slope (see equation (19)),

��T (T ) =
A0 (T )�m (�T ) l0 (T )
(dS � dL)� l (T )

< 0;

it follows that fT > 0 also requires a �atter default time. That is,

(dS � dL)� l (T )
A0 (T )

<
(dS � dL)� l (T )

A0 (T )�m (�T ) l0 (T )
= T �� < 0;

where the �rst unequality follows if l0 (T ) > 0. Otherwise, default is su¢ ciently delayed

by issuing long-term debt. Moreover, as in HM, we assume

��T (T ) < �
0
T = ��TdS +m (�T ) fT , 0 � fT � 1; (27)

which implies no issuance policy pulls the �rm away from the default boundary. Given

that �T = �
� (T ), the previous equation simpli�es to ��T (T ) + �

� (T ) dS < 0.

5.3 Nonconstrained equilibria

We �nd studying the rollover problem using a second integral form for the price of

equity is easier. Equity equals the value of assets minus the value of the debt, in which

the former is given by (discounting expected) operating revenues until default and the

asset�s recovery value at default:

F (t; �t;T ) =

Z T

t

e�R�(u�t) � (y (u) + �X)� du+ e�R�� � (1� l (T )) (28)

�
�
�t �

�
1� e�(R+dS)�� � l (T )

�
+ (1� �t)�

�
1� e�(R+dL)�� � l (T )

��
:

Both boundary conditions, value matching and smooth pasting, hold (Appendix C).

We analyze the problem backwards in time, from a �xed default time T . The ICt
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condition implies (Appendix C)

ICt � � (dS � dL)�
�
�T � fncT + �t � e�dS�� (fncT � 1) + (1� �t)� e�dL��fncT

�
�e�R�� ;

(29)

where fncT is given in equation (24). If � !1 (i.e., t! �1), ICt ! 0 (if �t 2 [0; 1]),

and, from equation (21), F� (t; �t;T )! 0. As emphasized above, equity depends little

on the maturity structure of debt far away from default, in good times.

Two results follow from the last equation for a nonconstrained equilibrium:

Proposition 3 If ICt = 0, t � T , the equilibrium paths of the (nonconstrained) frac-

tion of outstanding and new issues, �nct and fnct , of short-term debt are given by

�nct =
fncT + (�ncT � fncT )� edL��

fncT + (1� fncT )� e�(dS�dL)��
; (30)

fnct =
fncT

fncT + (1� fncT )� e�(dS�dL)��
: (31)

Proof. See Appendix C.

Note �nct is near exponential if �
nc
T 6= fncT (and dL>0), and the denominator vanishes

if � > 0 and fncT = �e�(dS�dL)��

1�e�(dS�dL)��
< 0. Three salient insights follow from equation (31).

Corollary 4 If 0 < fncT < 1,

(i) 0 < fnct < 1, t � T ; that is, any interior equilibrium at the default boundary

remains interior along the entire path (even if �t =2 [0; 1]).

(ii) df
nc
t

d�
� fncT � (1� fncT )�e�(dS�dL)�� > 0, t � T ; that is, less and less short-term

debt is newly issued in the run-up to default, where lim�!1 f
nc
t = 1ffncT >0g.

And (iii) dfnct
dfncT

� e�(dS�dL)�� > 0, t < T ; that is, the issuance of short-term debt on

the path toward default is increasing in the issuance of short-term debt at the instant of

default (for a default time T �xed, which corresponds to comparing di¤erent models).
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Proof. The proof immediately follows from equation (31) and 0 < fncT < 1.5

Next, we focus on constrained equilibria (i.e., 0 � ft � 1), studying separately the

two types of corner equilibria and the interior equilibrium.

Corner equilibria (i) if fncT > 1, ft = 1 is a corner-shortening equilibrium (i.e.,

ICt > 0 and ICt � ft is maximized for ft = 1, where ICt � ft = ICt), t � T ; and

(ii) if fncT < 0, ft = 0 is a corner-lengthening equilibrium (i.e., ICt < 0 and ICt� ft

is maximized for ft = 0, where ICt � ft = 0), t � T .

That is, corner equilibria are determined at the default time (i.e., if fncT =2 (0; 1)),

which is HM�s Proposition 2. We just assume �t 2 [0; 1]. See Appendix C.

Interior equilibrium For fncT 2 [0; 1], any interior equilibrium path of short-term

debt is given by

�t = �
nc
t and ft = fnct , t � T; (32)

in which �nct and fnct are the nonconstrained counterparts (equations (30) and (31)).

More compactly, for both interior and corner equilibria,

ft =
fT

fT + (1� fT )� e�(dS�dL)��
and �t =

fT + (�T � fT )� edL��
fT + (1� fT )� e�(dS�dL)��

; t � T;

(33)

in which fT = min fmax f0; fncT g ; 1g. As stated in Corollary 4, any interior equilibrium

remains interior along the entire equilibrium path in the run-up to default.

The fraction of interior paths Note that

dfncT
dT

=
1

dS � dL
�
 
l00 (T )

l (T )
�
�
l0 (T )

l (T )

�2!
� 0; (34)

5For instance, if � ! 0, �nct = �ncT . If f
nc
T ! 0, �nct = �ncT � edS�� ; and if fncT ! 1, �nct � 1 =

(�ncT � 1)� edL�� . If �ncT = fncT , f
nc
t = �nct , for t � T , and �nct = 1ffncT >0g if � !1.

In addition, if � ! 0, fnct = fncT ; and if � ! 1; fnct = 1ffncT >0g. If f
nc
T ! 0, fnct = 0; and if

fncT ! 1, fnct = 1. That is, fnct 2 f0; 1g, t � T , are two speci�c examples of corner equilibria.
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De�ne the default times T0 and T1 by �
� (T0) = 0 and �

� (T1) = 1, where �
�
T (T ) < 0

implies T0 > T1. If fncT0 > 0, that is,

l0 (T0)

l (T0)
> r + � + dL;

no corner-lengthening equilibrium exists. Conversely, if fncT1 < 1, that is,

l0 (T1)

l (T1)
< r + � + dS;

no corner-shortening equilibrium exists (e.g., if l0 (T1) is su¢ ciently small). These two

results, however, require that l (T ) be a continuous function, which may fail if default

occurs at both positive and negative values of y (T ) and is explained below.

Now, de�ne Ta > Tb by fncTa = 0 and f
nc
Tb
= 1, and assume they exist. The fraction

of interior equilibria is given by �� (Tb)� �� (Ta) > 0. Assume the higher the distance

Ta � Tb, the higher �� (Tb) � �� (Ta). The slope of the function fncT between Ta and

Tb is given by � (Ta � Tb)�1. The more negative this slope, the lower Ta � Tb, which

implies a lower fraction of interior paths. From equation (34), a higher convexity

�l00 (T ) � 0 leads to a higher derivative �dfncT
dT
. Hence, besides the sensitivity l0 (T ),

a higher bond-recovery convexity to the default time also leads to less interior (more

corner) paths.

5.4 Equilibria based on the path of outstanding debt

Next, we show that in addition to corner/interior equilibria, which are de�ned in terms

of the rollover policy at the time of default, equilibria are also sorted and threefold

based on the path of outstanding debt. This result fully explains the interior paths.

Corner-shortening (-lengthening) equilibria are de�ned by ft = 1 (ft = 0), t � T .

We provide all equilibria de�ned by �0t > 0 (�0t < 0), t � T . An equilibrium exists

in which outstanding short-term debt increases, and in which the time to default is
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shorter� a shortening equilibrium. A lengthening equilibrium exists as well, in which

outstanding short-term debt falls, and a hump-shaped equilibrium exists that is length-

ening closer to default.

Proposition 5 Assume nonperpetual long-term debt, dL > 0. If 0 < �T + fT < 2, for

t � T ,

if �T � fT , �0t < 0, a lengthening equilibrium;

if �T <
dL�fT

dL�fT+dS�(1�fT ) , �
0
t > 0, a shortening equilibrium; and

if dL�fT
dL�fT+dS�(1�fT ) < �T < fT , �

0
T > 0, but �t is hump-shaped (where �

0
T = 0 if

�T =
dL�fT

dL�fT+dS�(1�fT )).

And if �T = fT = 0 (�T = fT = 1), �t = 0 (�t = 1) follows from equation (11).

Proof. See the Appendix C.

Because of optimal default (i.e., �T = �
� (T )), two results follow: First, an equilib-

rium is lengthening if the fraction of short-term debt in outstanding debt is larger than

or equal to the fraction of short-term debt in new issues at the time of default, that is,

if �� (T ) � fT (i.e., if A (T ) � l0 (T ) � (r + �) � l (T )) Equivalently, an equilibrium is

lengthening if the upside-option expected payo¤, �X, holds that

�X � l0 (T ) + (r + �)� (1� l (T ))� y (T ) ; (35)

which implies �X � l0 (T ) if y (T ) � 0 (because 1 � l (T ) � 0). Equation (35) fails

to hold when l0 (T ) is su¢ ciently large� an earlier T because l00 (T ) � 0. Namely, a

nonpositive tradeo¤between �X and l0 (T ) is a su¢ cient condition for a nonlengthening

path, whereas a positive tradeo¤ is necessary for a lengthening path.

Second, the fraction of lengthening equilibria equals the fraction of outstanding

short-term debt such that �� (T ) = fncT (i.e., max f0;min f�� (T ) ; 1gg if this fraction

�� (T ) =2 [0; 1]). That is, this fraction is given by the intersection point between two
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functions, the optimal default boundary and the equilibrium rollover policy at default,

�� (T ) = fncT :

However, this second result about the fraction of lengthening equilibria (as well as where

to place these paths) depends critically on whether default occurs when operational

income is negative, which shapes the de�nition of bond recovery. This link is because

at the time of default, if bondholders are less e¢ cient running the �rm post default,

the operational income y (T ) is adjusted to ayy (T ) as follows:

ay � 1 if y (T ) < 0 but 0 � ay � 1 if y (T ) > 0;

and the growth option is also reduced to aXX, 0 < aX � 1.

If operational income is negative at the instant of default, y (T ) < 0, shortening

(lengthening) paths are unambiguously linked to larger (smaller) fractions of outstand-

ing short-term debt at the instant of default. By contrast, if y (T ) � 0, the bond recov-

ery becomes less sensitive to this default time and the opposite result happens: large

fractions of outstanding short-term debt at default are linked to lengthening paths. If

y (T ) � 0, the default penalty in the positive operational income (i.e., (1� ay)�y (T ))

is reduced by delaying default (i.e., y (T ) is closer to zero) through lengthening paths.

We show all these results in the case of linear cash �ows, and stress the sign of y (T )

depends on the upside-event expected payo¤, �X.

Moreover, �� (T ) = fncT implies the intersection point, which is denoted by T (�X),

solves

�X = l0 (T (�X)) + (r + �)� (1� l (T (�X)))� y (T (�X)) ; (36)

which does not depend on the two bonds�maturity rates, dS and dL. Although the

spread, dS � dL, does not change T (�X), it lowers the �� (T ) and fncT functions and
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hence lowers �� (T (�X)), the fraction of lengthening equilibria. That is,

dT (�X)

d [dS � dL]
= 0 and

d�� (T (�X))

d [dS � dL]
< 0;

which directly follow from equations (36) and (19). Very short-term debt (i.e., a large

maturity-rate spread, dS�dL) implies larger rollover costs and fewer lengthening paths.

Only fncT , the new issuance of short-term debt, depends on l0 (T ), where

dfncT
d [l0 (T )]

> 0:

The larger the sensitivity l0 (T ), the lower the fraction of lengthening equilibria �� (T (�X)).

Note that l0 (T ) is a function and not a parameter. Next, assuming linear cash �ows,

we show
d�� (T (�X))

d [�X]
> 0:

Namely, the larger �X, the larger the fraction of lengthening paths (if y (T ) < 0).

In sum, although the issuance of short-term debt is linked to whether a later default

time implies a lower bond recovery l0 (T ) > 0 (lenders anticipate a deteriorating recov-

ery at default), lengthening equilibria depend on the tradeo¤ between this sensitivity

and the upside-event expected payo¤ �X (borrowers do not pass up a good reward).

If this tradeo¤ is zero or positive, the associated equilibrium path is nonlengthening; a

lengthening path implies a later default compared to constant outstanding debt. The

examples below are fully consistent with the tradeo¤ between �X and l0 (T ).

5.5 The fraction of lengthening equilibria

We derive additional properties of this fraction by assuming operational income is

linear, declining at a constant rate, y0 (t) = �� < 0 and y00 (t) = 0. Then

1� l (T ) =
Z Ta�T

0

e�R�u � (ayy (T )� �� u+ aX�X)� du; (37)
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where 0 < ax � 1 and ay > 0. It follows that

l0 (T ) = ay��
1� e�R�(Ta�T )

R
> 0;

where Ta � T = ayy(T )+aX�X

�
. The following results depend critically on the two bond-

recovery sensitivity parameters, aX and especially ay, and hence on the sign of y (T ).

Where are equilibria placed? First, the slope of the di¤erence between �� (T )

and fncT evaluated at the crossing point is given by

d [�� (T )� fncT ]
dT

����
T=T (�X)

� �� (ay � 1) ; (38)

which is a key result to understand where equilibria are placed. If ay 6= 1, and ay

does not depend on y, a unique intersection point exists. ay > 1 implies shortening

(lengthening) equilibria are associated with larger (smaller) fractions of short-term

debt at the instant of default. ay < 1 implies the opposite. That is, the fraction of

lengthening equilibria is given by �� (T ) and 1� �� (T ), respectively.

However, assume ay � 1 (ay � 1) depends on negative operational income at

default, y (T ) � 0 (on positive, y (T ) � 0). Further, y (T ) � 0 (y (T ) � 0) is linked

to larger (smaller) �X, and we can have a setting with an intermediate �X� and both

positive and negative operational income at default, which implies the bond-recovery

function is discontinuous and the previous results mix.

What type of equilibria exist? Second,

�� (T )� fncT
l (T )�1

= (1� aX) �X|{z}
>0

�
�
y (T )| {z }
70

+�� 1� e
�R�(Ta�T )

R| {z }
>0

�
� (ay � 1) : (39)

We present three special cases: (i) If ay = aX < 1, �
� (T ) > fncT and only a lengthening

equilibrium exists if y (T ) � 0 (which is a su¢ cient condition). (ii) If ay = aX = 1,
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�� (T ) and fncT overlap (i.e., �� (T ) = fncT for all T independent of the sign of y (T ))

and only a speci�c type of path exists, namely, the nonexponential in equation (31).

In this scenario, all paths are both interior (i.e., both short- and long-term debt are

issued) and lengthening. And (iii) if ay > 1 and y (T ) � 0, the tradeo¤ can be both

positive or negative (i.e., lengthening and nonlengthening paths, respectively, coexist).

In general, if ay > 1, ay increases the convexity �l00 (T ) > 0, but the e¤ect on the

sensitivity l0 (T ) is less clear and depends on T . That is, a higher ay changes fncT so

that �l00 (T ) and �dfncT
dT

increase, but the e¤ect on �� (T (�X)) is less straightforward.6

A steeper fncT implies more corner equilibria. A higher aX increases l0 (T ).

The growth option and lengthening equilibria Third, for simplicity, assume

aX = 1. If ay > 0,
d�� (T (�X))

d [�X]
> 0; (40)

and the larger the upside-option expected payo¤, the more valuable waiting is by means

of lengthening paths (if ay > 1, because �
� (T (�X)) = 1 if ay � 1). For X su¢ ciently

large, all equilibria are lengthening (and the opposite holds for X � 1 small enough).

In sum, either ay � 1 or ay � 1 depends on the sign of y (T ). As �X falls,

the lengthening-equilibria fraction falls, but at the same time, y (T ) increases and a

discontinuity in the bond-recovery value may exist. So it is convenient to separate the

two cases of negative and positive values for y (T ). The following examples show all

scenarios exist, with both lengthening and shortening equilibria but also without one

of the two. In practice, negative operational income (y (t) � 0) is more relevant.7

6For example, if T ! Ta, l (T ) � 1, l0 (T ) � 0, and �l00 (T ) � a2Y � > �y0 (T ) = � (if aY > 1), which
implies l0 (T ) grows faster than y (T ) if T falls, in the right-hand-side of equation (35), explaining the
tradeo¤ between �X and l0 (T ).

7The fraction of shortening equilibria is given by 1� �� (T ), where T holds that

�� (T ) =
dL � fT

dL � fT + dS � (1� fT )
;

and a larger �� (T ) also implies fewer shortening paths. A lower maturity spread and a larger short-
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5.5.1 Numerical examples

Equipped with �t and ft�s formulae, we compute several interior paths (as a function

of y = y (t)). We use the same parameters as HM�s Figures 1 and 4.

In our Figure 1, we show the default boundary, �� (T ), and three interior equilibrium

paths of the fraction of outstanding short-term debt, �t, that is, a lengthening path

that ends at �T = 0:50, a hump-shaped path that ends at �T = 0:58 (which replicates

HM�s Figure 4, right panel), and a shortening path that defaults at �T = 0:64. We also

show the following equilibrium regions at the default boundary: corner lengthening,

0 � �T � 0:46; corner shortening, 0:65 � �T � 1; and interior, 0:46 < �T < 0:65.

In addition, we have lengthening, 0 < �T � 0:56, shortening, 0:63 < �T < 1, and

hump-shaped, 0:56 < �T < 0:63.

*** to include Figure 1 ***

In Figure 2, we provide the rollover policy at default, fT , and the three equilibrium

paths of the fraction of new issues of short-term debt, ft. Figure 2 illustrates Propo-

sition 4; namely, interior policies at default remain interior and the issuance policy

increases with both an earlier default time or a larger time to default. In addition,

the three interior issuance-policy paths never intersect, implying a unique equilibrium

exists, given the rollover policy (see Proposition 6 below).

*** to include Figure 2 ***

The example in Figures 1 and 2, in which ay = 3 and aX = 0:95, implies the

existence of more corner-lengthening/-shortening equilibria than interior equilibria.

The function fT 2 [0; 1], the rollover choice at default, is very steep (see Figure 2).

term debt issuance (dS=dL and fT , respectively) imply a larger ratio:

dL � fT
dL � fT + dS � (1� fT )

=
1

1 + dS
dL
� 1�fT

fT

:

Using similar reasonings as above, we can study the fractions of shortening/hump-shaped equilibria.
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A lower (higher) payo¤ compared to X = 13, for example, X � 7 (X � 16), implies

fewer or zero corner-lengthening (-shortening) equilibria exist, as follows from equation

(40). That is, a lower (higher) payo¤ �X implies �� (T ) and fT intersect closer to

�� (T ) = 0 (�� (T ) = 1), implying from Proposition 5 fewer corner-lengthening (-

shortening) paths.

In Figure 3, we increase the number of nonlengthening equilibria by either decreas-

ing the upside payo¤ (from X = 13 to X = 10) or by assuming shorter short-term debt

(increasing dS = 5 to dS = 11). We show both the optimal default boundary and the

equilibrium rollover policy at default, �� (T ) and fT , and stress the intersection point.

Compared to Figure 1, the fraction of lengthening equilibria is reduced from 56% by

half, approximately. Note how close some operational income is to being positive at

the instant of default.

*** to include Figure 3 ***

In Figure 4, however, we assume a di¤erent recovery, 0 < 0:8 = ay = aX < 1.

Compared to Figures 1 and 2, in which ay = 3, ay < 1 implies a �atter fncT and fewer

shortening paths. We show both �t and ft�s paths. All equilibria are (either corner or

interior but) lengthening, that is, �T > fT (�T 2 [0; 1]) at the default time. Although

ay < 1, y (T ) < 0 because � = 0:35 and X = 13 are as in the other �gures (if ay < 1,

y (T ) � 0 is a su¢ cient but not necessary condition for lengthening paths).

*** to include Figure 4 ***

Perpetual-debt example: For nonexpiring debt, dL = 0,

�� (T ) =
A (T )

dS � l (T )
and fncT =

�R + l0 (T ) =l (T )
dS

;

and any equilibrium path simpli�es to

ft =
fT

fT + (1� fT )� e�dS��
and �t =

�T
fT + (1� fT )� e�dS��

; t � T: (41)
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Assume �T > 0. If fT = 1, �t = �T , which is a static corner-shortening equilibrium;

if fT < 1, �
0
t < 0, all equilibrium paths reduce short-term debt in the run-up to default.

If fT > 0, �t is not exponential. These three features are linked to perpetual debt.

One can wonder whether a Leland-static equilibrium, which is de�ned by a constant

level �t = �T , t � T , exists. The latter constraint implies e�dS�� � (1� fT ) + fT = 1;

hence, fT = 1. A static equilibrium is any corner-shortening equilibrium (in case one

exists), which is given by fncT � 1, implying, because fncT = 1
dS
�
�
�R + l0(T )

l(T )

�
,

�� (T ) � 1 : l0 (T )

l (T )
� R + dS:

A Leland-static equilibrium is linked to perpetual debt and large loads of outstanding

short-term debt at the time of default (besides the all long-term debt case, �� (T ) = 0).

6 Extensions: More Outstanding Face Value

Consider the bond principal (instead of L = 1) is L > 0. B (T ) = L� l (T ) is the bond

recovery given default, and l (T ) is the loss given default. It can be shown that the

optimal default boundary changes to

�� (T ) =
1

dS � dL
�
�
y (T ) + �X � (r + �)� L

l (T )
� dL

�
;

because the coupon and the intensity depend on the bond principal (L), but the rollover

policy at the time of default is the same:

fncT =

l0(T )
l(T )

� (R + dL)
dS � dL

:

Likewise, the intersection point �� (T ) = fncT implies

y (T (�X)) + �X = l0 (T (�X)) + (r + �)� (L� l (T (�X))| {z }
=B(T (�X))

):
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The bond recovery B (T ) does not depend on L but on the default time T (i.e., on

operational income, y (T )). Therefore, the last equation is independent of L (or dS�dL,

as we show above). It follows that

dT (�X)

dL
= 0 and

d�� (T (�X))

dL
=
� (r + �)� l (T (�X))� A (T (�X))

(dS � dL)� l (T (�X))2
< 0; (42)

because l (T ) = L�B (T ) implies dl(T )
dL

= 1 (and A (T (�X)) > 0). The larger the debt

principal L, the lower the fraction of lengthening equilibria. This result complements

Proposition 4 in HM; that is, the fraction of corner-shortening paths increases with L.

6.1 Recovering a unique equilibrium

Although equilibria are not necessarily unique (�t is consistent with many �T , t < T ;

see Figure 1), we can recover a unique default time T from the rollover policy, ft.

For corner equilibria, this uniqueness is clear. As HM show, corner paths (same type)

do not cross between each other, and, as we show, the interior equilibrium remains

interior. Hence, ft 2 f0; 1g is only associated with corner paths. Given the threesome,

that is, ft 2 f0; 1g, �t, and t (or y (t)), we have a unique corner equilibrium.

For interior paths, we have a unique equilibrium given only ft and t. Intuitively, the

rollover policies do not cross between each other, implying interior equilibria are unique

based on the rollover policy. It follows that the issuance policy of new debt� namely,

the change in outstanding debt (and not debt maturity itself)� determines a speci�c

equilibrium path. From ft and �t�s analytical solutions, we have that

�t =
fu + (�u � fu)� edL�(u�t)

fu + (1� fu)� e�(dS�dL)�(u�t)
, u 2 R, (43)

ft =
fu

fu + (1� fu)� e�(dS�dL)�(u�t)
, u 2 R. (44)

From the former equation, �t depends on both �u and fu (besides u � t). From the

latter, ft depends only on fu. Formally,
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Proposition 6 If 0 < fncT < 1,

dft
dfu

� e�(dS�dL)�(u�t) > 0;

Proof. The proof directly follows from the equation (44).

As ft increases so does fu for any u 2 R (i.e., along the entire equilibrium path),

which implies interior issuance-policy paths never cross. In addition, for a given equi-

librium path of the rollover policy, the default time T can also be characterized as the

intersection point between two curves fT and fu, where fT (fu) denotes the issuance

policy at the time of default for all equilibria (along the entire interior-equilibrium

path, u � T ). Both results are consistent with Figures 2 and 4.

6.2 Welfare analysis

We complete the paper by looking to welfare. From equation (28), we see the total

�rm value V (t; �t;T ) is given by

F (t; �t;T ) + �t �
�
1� e�(R+dS)�� � l (T )

�
+ (1� �t)�

�
1� e�(R+dL)�� � l (T )

�
=

Z T

t

e�R�(u�t) � (y (u) + �X)� du+ e�R�� � (1� l (T )) : (45)

If we assume the bond-recovery value is given by equation (15), 0 � a � 1,

V (t; �t;T ) =

Z T

t

e�R�(u�t)�(y (u) + �X)�du+a�
Z Ta

T

e�R�(u�t)�(y (u) + �X)�du:

(46)

Importantly, the abandoning time (Ta) is independent of the default time (T ), and it

holds that

y (Ta) + �X = 0:

For the states (t; �1) and (t; �2), consider the equilibrium default times T1 and T2,

respectively, where T2 > T1. If �1 = �2, the two states are the same, which is an
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example of the multiplicity of equilibria. Clearly,

V (t; �1;T2)� V (t; �2;T1) (47)

= (1� a)�
Z T2

T1

e�R�(u�t) � (y (u) + �X)� du > 0 (if 0 � a < 1);

because the integrals cancel between 0 and T1 and between T2 and Ta, 0 < T1 < T2 < Ta.

The latter inequality implies the later T2 always welfare dominates the earlier T1

(e.g., a lengthening and a shortening, respectively) equilibrium. Only by changing

l0 (T ), the bond loss given default, can we reverse this result. HM provide some exam-

ples in which a shortening path is welfare improving close to default. Yet all equilibria

are welfare equal if a = 1.

7 Concluding Remarks

We study how a �rm manages the maturity of its debt in a model of declining cash �ows

subject to an upside event (i.e., growth option), where expired debt is re�nanced with

short- or long-term bonds. Shortening, hump-shaped, and lengthening equilibrium

paths in time to default coexist. In the latter, outstanding short-term debt falls in bad

times, which leads to a procyclical rollover policy and a higher time to default.

Although the issuance of short-term debt is linked to whether an earlier default

time leads to a larger bond recovery (bondholders anticipate a deteriorating recovery at

default, He and Milbradt, 2016), lengthening equilibria depend on the tradeo¤between

this sensitivity and the upside-event expected payo¤ (so equityholders do not pass up

a good reward). The larger this upside event, the higher the fraction of lengthening

paths; for su¢ ciently large upside options, this pattern is the only model equilibrium.

It follows that �rms with a good upside option engineer a later default via longer

maturity.

The rationale of issuing long-term debt and increasing the fraction of outstanding
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long-term debt because of a larger upside option is a sensible outcome. As Graham and

Harvey (2001) or Xu (2018) show, speculative-grade �rms manage the maturity pro�le

of debt to avoid having to borrow in bad times, by early re�nancing along with matu-

rity lengthening. It follows that growth options and a higher fraction of lengthening

equilibria �t with the evidence of procyclical re�nancing activity of speculative-grade

�rms. Moreover, issuing short-term debt in good times, where equity is only somewhat

sensitive to the maturity structure of debt, conforms with a less cyclical re�nancing

pattern of investment-grade �rms. For these high credit-rating �rms, we expect debt-

maturity choices to also be more heterogenous and depend on the term premium.
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8 Appendix A: Optimal Default Conditions

Proof of Proposition 1. Wemake the following two assumptions on the payout-rate

function, I (t;T ). First, I (0; 0) > 0, and second,

dI (T ;T )

dT
� �� < 0, 0 � T;

which imply a unique point T � > 0 exists such that the payout rate becomes zero; that

is, I (T �; T �) = 0, because I (0; 0) > 0.

Remark. I (T �; T �) = 0 and dI(T ;T )
dT

< 0 are analogous to necessary and su¢ cient

conditions, respectively, to show that T � is the optimal default time. In addition, we

assume lenders do not extend credit beyond T �. Consequently, equityholders optimize

with regard to T in the interval 0 � T � T �.

The proof is as follows. Let dT > 0. If T < T �,

F (T ;T + dT )� F (T ;T )| {z }
=0

� F (T ;T )| {z }
=0

+ I (T ;T )| {z }
=FT (T ;T )

�dT +O
�
dT 2

�
= I (T ;T )� dT +O

�
dT 2

�
;

which follows from a �rst-order Taylor expansion in F�s second variable. If I (T ;T ) >

I (T �;T �) = 0, F (T ;T + dT ) > F (T ;T ), which implies it is optimal to (delay) default

beyond T , that is, dT > 0.
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If T > T �,

F (T � dT ;T )� F (T � dT ;T � dT )| {z }
=0

� F (T ;T )| {z }
=0

�I (T ;T )| {z }
=Ft(T ;T )

� (�dT ) +O
�
dT 2

�
= I (T ;T )� dT +O

�
dT 2

�
;

which follows from a �rst-order Taylor expansion in F�s �rst variable. If I (T ;T ) <

I (T �;T �) = 0, F (T � dT ;T ) < F (T � dT ;T � dT ). It is optimal to (accelerate)

default before T , that is, �dT < 0.

From both scenarios, it follows that T 6= T � is not a credible default policy, but

T = T �. Then lenders do not extend credit beyond T �, and equityholders optimize

with regard to T in the interval 0 � T � T �. It follows that T = T � is optimal. Finally,

FT (T
�;T �) = 0 and Ft (T �;T �) = 0 follow from I (T �; T �) = 0 and section 2.1.

Further, instead of assuming the function dI(T ;T )
dT

� �� < 0, 0 � T , we have a

weaker condition: The equation I (T; T ) = 0 has a unique solution, which is denoted

by T = T �, and dI(T ;T )
dT

���
T=T �

< 0. The proof is exactly as above, because I (T; T ) > 0

if T < T � (and I (T; T ) < 0 if T > T �). �

Proof of Lemma 2. The partial derivatives Ft and F� are given by

Ft (t; �t;T ) = � I (u; �u; fu; T )ju=t + e�R�(T�t) � I (u; �u; fu; T )ju=T �
dT

dt
(48)

+

Z T

t

d

dt

�
e�R�(u�t) � I (u; �u; fu; T )

�
du;

F� (t; �t;T ) = e�R�(T�t) � I (u; �u; fu; T )ju=T �
dT

d�t
(49)

+

Z T

t

e�R�(u�t) � d

d�t
I (u; �u; fu; T ) du:

Because the two integrals vanish for t = T , from equation (8), the smooth-pasting

conditions are given by

Ft (T; �;T )jT=T �(�) = 0 and F� (T; �;T )jT=T �(�) = 0: (50)
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The other properties in Lemma 2 follow directly from the exposition in section 3

and Proposition 1. �

9 Appendix B: The Value of Equity and Debt

Given the default time T , a bond price is given by discounting expected cash �ows at

the interest rate r. The two exponential distributions imply the probability of surviving

between t and T is given by e(�+�)�(T�t). For t < u � T , the probability of the bond

being cancelled and repaid at u is given by e(�+�)�(u�t) � (� + �)� du. Consequently,

Di (T � t;T )

=

Z T

t

e�(r+�+�i)�(u�t) � (c+ (� + �i)� 1)� du+ e(r+�+�i)�(T�t) � (1� l (T ))

= �e�(r+�+�i)�u
��u=T�t
u=0

+ e(r+�+�i)�(T�t) � (1� l (T ))

= 1� e(r+�+�i)�(T�t) � l (T ) :

The coupon is c = r and i = fS; Lg. Similarly, equity value is given by

F (t; �t;T ) =

Z T

t

e�(r+�)�(u�t) � (y (u)� c+ � � (X � 1)

+ m (�u)� (fu �DS (T � u;T ) + (1� fu)�DL (T � u;T )� 1))� du:

=

Z T

t

e�(r+�)�(u�t) � (y (u)� r + � � (X � 1)

� m (�u)�
�
fu � e�(r+�+dS)�(T�u) + (1� fu)� e�(r+�+dL)�(T�u)

�
� l (T )

�
� du;

as in equations (16) to (18).

9.1 The Loss Given Default, l:

We assume operational income is declining, y0 (t) � �� < 0, t � 0. We also assume

r + � � 0 and y00 (t) � 0, t � 0.
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The default time, T = T � (�T ), implies A (T ) holds that

y (T )� r + � � (X � 1) = m (�T )� l (T ) :

If bondholders are less e¢ cient running the �rm post-default, 0 < a � 1,

1� l (T ) = a�
Z Ta�T

0

e�(r+�)�u � (y (T + u) + �X)� du:

Likewise, the abandon time, Ta, is also given by a zero net cash-�ow condition,

y (Ta) + �X = 0; and
dTa
dT

= 0;

where Ta > T if y (T ) + �X > 0 (and Ta = T if y (T ) + �X � 0). Hence, l (T ) � 1.

Further,

l0 (T ) = a�
�
e�(r+�)�(Ta�T ) � (y (Ta) + �X)�

Z Ta�T

0

e�(r+�)�u � y0 (T + u)� du
�

= �a�
Z Ta�T

0

e�(r+�)�u � y0 (T + u)� du; and

l00 (T ) = �a�
�
�e�(r+�)�(Ta�T ) � y0 (Ta) +

Z Ta�T

0

e�(r+�)�u � y00 (T + u)� du
�
;

and hence

l0 (T ) > 0 if y0 (T + u) < 0, u � 0;

l00 (T ) < 0 if y0 (Ta) < 0 and y00 (T + u) � 0; u � 0:

Next we prove l (T ) > 0. We show that if A
�bT� � 0, l

�bT� > 0. Hence, bT <
T � (�) ; � 2 [0; 1], where T � is the solution of the default boundary equation,

A (T � (�)) = m (�)� l (T � (�)) > 0; if dL > 0;
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because A0 < 0 and l0 � 0. If Ta = T , l (T ) = 1, so assume Ta > bT .
A
�bT� � 0 implies y �bT� + �X � r + �. If r + � = 0, Ta = bT and l �bT� = 1, so

assume r + � > 0. Then

1� l
�bT� = a� (r + �)�

Z Ta�bT
0

e�(r+�)�u �
y
�bT + u�+ �X

r + �
� du (51)

< a� (r + �)�
Z Ta�bT
0

e�(r+�)�u � du

= �a� e�(r+�)�u
��Ta�bT
0

= a�
�
1� e�(r+�)�(Ta�bT)� :

The inequality follows from declining cash �ow,
y(bT+u)+�X

r+�
< 1 if u > 0. It follows that

l
�bT� > 1� a� �1� e�(r+�)�(Ta�bT)� � 0:

In addition,

y (T ) + �X = r + �| {z }
�0

+m (�T )� l (T )| {z }
>0

> 0

implies Ta > T and 0 < l (T ) < 1 (i.e., m (�T ) = 0 only if �T = 0 and dL = 0).

�

If A00 � 0, the default boundary is a convex function, ��TT (T ) > 0. Note that

A00 = y00. Convexity follows from (Al00l + (A0l � Al0) 2) < 0 and

(dS � dL)� ��TT (T ) =
(A00l + A0l0 � A0l0 � Al00) l2 � (A0l � Al0) 2l

l4

=
A00

l
� Al

00l + (A0l � Al0) 2
l3

> 0:

Then

T ��� (�) =
d

d�

�
T �� (�)

�
=
d

d�
[1=��T (T

� (�))]

=
�1

��TT (T )
� T �� (�)| {z }

<0

> 0 if ��TT (T ) > 0:
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10 Appendix C: Equilibrium Rollover Policies

Derivation of equation (23). Note that

(dS � dL)�1

l (T )
� d

d�t
[I (u; �u; fu; T )]

= � m (�u)
dS � dL

�
�
e�(R+dS)�(T�u) � e�(R+dL)�(T�u)

�
� dfu
d�t

�
�
fu � e�(R+dS)�(T�u) + (1� fu)� e�(R+dL)�(T�u)

�
� d�u
d�t

�m (�u)�
�
fu � e�(R+dS)�(T�u) � (fncT � 1)

+ (1� fu)� e�(R+dL)�(T�u) � fncT
�
� T �� �

d�T
d�t

;

where

fncT =

l0(T )
l(T )

� (R + dL)
dS � dL

:

Then, for u = t and t = T , d�u
d�t

= 1 and d�T
d�t

> 0 (see the two remarks next),

1

l (T )
� d

d�t
I (u; �u; fu; T )

����
u=t;t=T

= � (dS � dL)+(dS � dL)�m (�T )�(fT � fncT )�T ���
d�T
d�t

����
t=T

;

(52)

from which follows equation (23).

Two remarks. (i) d�u
d�t

���
u=t

= 1 follows from equation (11). From a �rst-order Taylor

approximation, t � u � T ,

�u � �t + (��t � dS +m (�t)� ft (�t))� (u� t) ;

and if u! t,

d�u
d�t

� 1 +
�
�dS +

d [m (�t)� ft (�t)]
d�t

�
� (u� t)! 1:
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(ii) From a similar approximation from the default boundary, �T = �
� (T ) and

�t � �� (T )� (��� (T )� dS +m (�� (T ))� fT )| {z }
=�0T

� (T � t) ;

and if � = T � t! 0,

d�t
dT

� d�� (T )

dT
� �0T �

d [�0T ]

dT
� � (53)

! d�� (T )

dT
� (��� (T )� dS +m (�� (T ))� fT )| {z }

=�0T

< 0;

because no issuance policy pulls the �rm away from the default boundary.

Further, note that

dT

d�t

����
t=T

= T �� �
d�T
d�t

����
t=T

= T �� �
1

1� �0T � T ��

= T �� �
d��(T )
dT

d��(T )
dT

� �0T
=

1
d��(T )
dT

� �0T
< 0;

which is consistent with the previous equation. It follows that d�T
d�t

���
t=T

> 0.

Boundary conditions for equation (28). We check that value-matching and

smooth-pasting conditions also hold. From m (�T ) = �T � dS + (1� �T ) � dL and

A (T ) = m (�T )� l (T ),

F (t; �t;T )jt=T = (1� l (T ))� (�T � (1� l (T )) + (1� �T )� (1� l (T ))) = 0;

F� (t; �t;T )jt=T = (A (T )� (�T � dS + (1� �T )� dL)� l (T ))�
dT

d�t

����
t=T

= 0;

Ft (t; �t;T )jt=T = (A (T )� (�T � dS + (1� �T )� dL)� l (T ))�
�
dT

dt

����
t=T

� 1
�
= 0;

where the other terms (as in equation (54)) cancel (and are omitted for brevity).

49



Proof of Proposition 3. Derivation of the equilibrium nonconstrained rollover pol-

icy. First, given that c = r, R = r + �, and A (t) = y (t)� c+ � (X � 1),

F� (t; �t;T ) (54)

= e�R�� � A (T )� dT

d�t
+
�
e�(R+dS)�� � e�(R+dL)��

�
� l (T )

�
�
�e�R�� �R + �t � e�(R+dS)�� � (R + dS)

+ (1� �t) e�(R+dL)�� � (R + dL)
�
� l (T �)� dT

d�t

+
�
�e�R�� + �t � e�(R+dS)�� + (1� �t)� e�(R+dL)��

�
� l0 (T )� dT

d�t
:

It follows

ICt � �m (�T ) +
�
�R + �t � e�dS�� � (R + dS) + (1� �t)� e�dL�� � (R + dL)

�
�
�
�1 + �t � e�dS�� + (1� �t)� e�dL��

�
� l

0 (T )

l (T )
; (55)

where the price di¤erence between the two bonds cancels and �e�R�� � l (T �) � dT
d�t

factorizes out (see remark (i) below). In particular, ICT = m (�T )�m (�T ) = 0.

Equivalently to equation (55),

ICt � �m (�T )�R +
l0 (T )

l (T )

� (dS � dL)�
�
�t � e�dS�� � (fncT � 1) + (1� �t)� e�dL�� � fncT

�
= � (dS � dL)�

�
�T � fncT + �t � e�dS�� � (fncT � 1) + (1� �t)� e�dL�� � fncT

�
:

Therefore, ICt = 0 implies �
nc
t in equation (30). Also, from ICt we can obtain IC 0T ,

and from IC 0T = 0, along with a Taylor expansion, follows equation (23) as well.
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Second,

�0t =
@

@t

�
fncT + (�T � fncT )� edL��

fncT + (1� fncT )� e�(dS�dL)��

�
(56)

= �dL �
(�T � fncT )� edL��

fncT + (1� fncT )� e�(dS�dL)��

��t � (dS � dL)�
(1� fncT )� e�(dS�dL)��

fncT + (1� fncT )� e�(dS�dL)��

= �dL �
�fncT + fncT + (�T � fncT )� edL��
fncT + (1� fncT )� e�(dS�dL)��

��t � (dS � dL)�
�fncT + fncT + (1� fncT )� e�(dS�dL)��

fncT + (1� fncT )� e�(dS�dL)��

= �dL � �t � �t � (dS � dL) + fncT � dL + �t � (dS � dL)
fncT + (1� fncT )� e�(dS�dL)��

= ��t � dS + fncT � m (�t)

fncT + (1� fncT )� e�(dS�dL)��
:

Therefore, from �0t = �dS � �t +m (�t)� ft,

fnct =
dS � �t + �0t
m (�t)

=
fncT

fncT + (1� fncT )� e�(dS�dL)��
: �

Two remarks about equation (55). (i) If ICt = 0, the sign of dTd�t is not relevant,
dT
d�t

factorizes out. This derivative dT
d�t

can be computed from equation (30).8 (ii) In the

case of corner paths, which (if same type) are parallel and do not cross between each

other, dT
d�t

< 0 and ICt 6= 0 hold for both corner-shortening and -lengthening paths.

For example, for a lengthening path, ft = 0, t � T , implies �T = �t � e�dS�� and

d�t
dT

=
d

dT

�
�� (T )� edS�(T�t)

�
=
d�� (T )

dT
� edS�(T�t) + dS � �� (T )� edS�(T�t)

=

�
d�� (T )

dT
+ dS � �� (T )

�
� edS�(T�t) < 0

because paths are parallel and are below the default boundary� in the waiting region.

8For example, consider the default times T and T + �T are linked to a lengthening and hump-
shaped path, respectively; hence, �T < 0. For a su¢ ciently early time t < T , the two �t�s paths will
cross, which implies �T

��t
is positive. Yet it is less straightforward the result in the limit, lim�T!0

�T
��t

.
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That is, because of the following constraint, which says no issuance policy pulls the

�rm away from the default boundary,

d�� (T )

dT
< �0T = ��TdS +m (�T ) fT , fT = 0:

Next, fncT =2 [0; 1] implies ICt 6= 0 if ft 2 f0; 1g, t � T . For example, in the case of

a lengthening path (i.e., �T = �t � e�dS�� ), equation (29) reduces to

ICt � � (dS � dL)�
�
�fncT + �t � e�dS�� � fncT + (1� �t)� e�dL�� � fncT

�
< 0

() fncT �
�
1�

�
�t � e�dS�� + (1� �t)� e�dL��

��
< 0() fncT < 0;

given that �t 2 [0; 1]. It follows a corner-lengthening path is an equilibrium if fncT < 0.

Proof of Proposition 5. The case �0t < 0, t � T , and the case �t is hump-shaped,

t � T , are clear. We prove the shortening equilibrium, �0t > 0. We have

d�t
d�

= � @
@t

�
fT + (�T � fT )� edL��

fT + (1� fT )� e�(dS�dL)��

�
(57)

= (�T � fT )� edL�� �
dLfT + dS (1� fT )� e�(dS�dL)��

(fT + (1� fT )� e�(dS�dL)�� )2

+
fT � (dS � dL)� (1� fT )� e�(dS�dL)��

(fT + (1� fT )� e�(dS�dL)�� )2
;

by using the second equality in equation (56) and the de�nition of �t in equation (30).

Equation (57) implies �0T = 0, �T =
dLfT

dLfT+dS(1�fT ) (from � = 0 and d�t
d�
= 0).
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Next,

d�t
d�

�
�
�T �

dLfT
dLfT + dS (1� fT )

�
� edL�� � dLfT + dS (1� fT )� e

�(dS�dL)��

(fT + (1� fT )� e�(dS�dL)�� )2

= �fT �
(dS � dL)� (1� fT )
dLfT + dS (1� fT )

� edL�� � dLfT + dS (1� fT )� e
�(dS�dL)��

(fT + (1� fT )� e�(dS�dL)�� )2

+
fT � (dS � dL)� (1� fT )� e�(dS�dL)��

(fT + (1� fT )� e�(dS�dL)�� )2

� �fT � (dS � dL)� (1� fT )
 
edL�� �

�
dLfT + dS (1� fT )� e�(dS�dL)��

�
dLfT + dS (1� fT )

� e�(dS�dL)��
!

= �fT � (dS � dL)� (1� fT )

�
dLfT �

�
edL�� � e�(dS�dL)��

�
+ dS (1� fT )� e�(dS�dL)�� �

�
edL�� � 1

�
dLfT + dS (1� fT )

� 0:

It follows that

d�t
d�

< 0 if �T <
dLfT

dLfT + dS (1� fT )
, for all � � 0;

and �0t = �
d�t
d�
> 0. �

10.1 Linear cash �ows

We assume a linear declining cash-�ow process, y0 (t) = �� < 0 and y00 (t) = 0, t � 0.

In addition, R = r + �, ay � 1 if y (T ) � 0 (and 0 < ay � 1 if y (T ) � 0), and

0 � aX � 1. It follows that the bond-recovery value equals

1� l (T ) =

Z Ta�T

0

e�R�u � (ayy (T )� �� u+ aX�X)� du (58)

= (ayy (T ) + aX�X)�
1� e�R�(Ta�T )

R

���
�
(Ta � T )�

�e�R�(Ta�T )
R

+
1� e�R�(Ta�T )

R2

�
=

�

R
�
�
(Ta � T )�

1� e�R�(Ta�T )
R

�
:
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The abandonment time, Ta, is given by

ayy (T )� �� (Ta � T ) + aX�X = 0() Ta � T =
ayy (T ) + aX�X

�
:

In particular, Ta = T if ayy (T ) + aX�X � 0, and Ta > T if ayy (T ) + aX�X > 0.

If l (T ) < 1 (i.e., bond-recovery value is positive),

ayy (T ) + aX�X > 0,

ayy (T )� �� (Ta � T ) + aX�X = 0 and
d [Ta � T ]
dT

= �ay:

Then

l0 (T ) = ay��
1� e�R�(Ta�T )

R
> 0

and

l00 (T ) = �a2y�� e�R�(Ta�T ) < 0:

The constraints on the parameters ay and ax also imply that l (T ) > 0. Next we show

that ay and ax determine the types and fractions of equilibria as well.

10.1.1 The fraction of lengthening equilibria

Because the intersection point is given by �� (T ) = fncT , we study the tradeo¤ between

these two functions, �� (T ) and fncT . First,

�� (T )� fncT
l (T )�1

= �X + y (T )� (l0 (T ) + (r + �)� (1� l (T )))

= �X + y (T )�
�
ay��

1� e�R�(Ta�T )
R

+ ��
�
(Ta � T )�

1� e�R�(Ta�T )
R

��
= (1� aX) �X �

�
y (T ) + �� 1� e

�R�(Ta�T )

R

�
� (ay � 1) :

For instance, �� (T ) � fncT if ay = aX � 1 (if we assume y (T ) � 0) and all equilibria
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are lengthening. Another one-parameter scenario is

�� (T )� fncT
l (T )�1

=

�
�X + y (T ) + �� 1� e

�R�(Ta�T )

R

�
� (1� ay) if ay = aX ;

and if ay > 1 and y (T ) � 0, the tradeo¤ can be both positive or negative (i.e.,

lengthening and nonlengthening paths, respectively, coexist).

Second, the slope of this function at the intersection point is given by

d [�� (T )� fncT ]
dT

����
��(T )=fncT

= �
�
1 + ay � e�R�(Ta�T )

�
� (ay � 1) > 0 if ay > 1;

but this slope is negative if 0 � ay < 1.

Third, if ay 6= 1, the intersection point (denoted by T = T (�X)) is given by

�X =

�
y (T ) + �� 1� e

�R�(Ta�T )

R

�
� ay � 1
1� aX

:

Computing dT (�X)
d[�X]

,

1 =

�
��dT (�X)

d [�X]
+

�
�ay�

dT (�X)

d [�X]
+ aX

�
e�R�(Ta�T )

�
� ay � 1
1� aX

and

dT (�X)

d [�X]
=

1

�
�
�1�aX
ay�1 + aXe

�R�(Ta�T )

1 + aye�R�(Ta�T )

=
1

�
�
aX �

�
1 + (ay � 1) e�R�(Ta�T )

�
� 1

(ay � 1)� (1 + aye�R�(Ta�T ))

=
1

�
� e�R�(Ta�T )

(1 + aye�R�(Ta�T ))
> 0 if aX = 1.

The larger the upside-option expected payo¤ �X, the later the default time T (�X).

For example, dT (�X)
d[�X]

> 0 if ay > 1 and if (ay � 1)� e�R�(Ta�T ) > 1�aX
aX

, or dT (�X)
d[�X]

> 0

if ay < 1 and aX < 1:

55



The case aX = 1 and ay 6= 1 The intersection point is given by

0 = y (T ) + �� 1� e
�R�(Ta�T )

R
;

implying, as above,

0 = ��dT (�X)
d [�X]

+

�
�ay�

dT (�X)

d [�X]
+ 1

�
e�R�(Ta�T );

dT (�X)

d [�X]
=

1

�
� e�R�(Ta�T )

1 + aye�R�(Ta�T )
> 0:

The fraction of lengthening equilibria solves �� (T ) = fncT . That is,

fncT =
1

dS � dL
�
�
l0 (T )

l (T )
� (R + dL)

�
=

1

dS � dL
�
� ay�� 1�e�R�(Ta�T )

R

1� �
R
�
�
(Ta � T )� 1�e�R�(Ta�T )

R

� � (R + dL) �

=
� (R + dL)
dS � dL

+
ay�=R

dS � dL
� 1� e�R�(Ta�T )

1� �
R
�
�
(Ta � T )� 1�e�R�(Ta�T )

R

� ;
evaluated at the crossing point, where

Ta � T =
ayy (T ) + �X

�
and

d [Ta � T ]
d [�X]

= �ay �
dT (�X)

d [�X]
+
1

�
=
�ay
�
� e�R�(Ta�T )

1 + aye�R�(Ta�T )
+
1

�

=
1

�
� 1

1 + aye�R�(Ta�T )
> 0:

It follows

d�� (T (�X))

d [�X]
=
dfncT (�X)
d [�X]

�
�
R� e�R�(Ta�T ) � l (T ) +

�
1� e�R�(Ta�T )

�
� �

R
�
�
1� e�R�(Ta�T )

��
� d [Ta � T ]

d [�X]
> 0;

which is equation (40), as we want to prove, and holds for all ay > 0. �
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Figure 1: Equilibrium paths of the fraction of outstanding short-term debt, �t, t �
T � (�T ). We plot the optimal default boundary, �

� (y). We then plot three interior
paths: a lengthening, a hump-shaped, and a shortening one. Parameters are as follows
(the same as in HM�s �gures): c = 0:1; r = 0:1; X = 13; � = 13; � = 0:35; dS = 5;
dL = 1; ay = 3; aX = 0:95.
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Figure 2: Equilibrium paths of the fraction of newly issued short-term debt, ft, t �
T � (�T ). We plot the equilibrium rollover policy at default, fT (y), and the three paths
associated with the previous Figure 1. Parameters are as follows: c = 0:1; r = 0:1;
X = 13; � = 13; � = 0:35; dS = 5; dL = 1; ay = 3; aX = 0:95.
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Figure 3: Optimal default boundary, �� (y), and equilibrium rollover policy at default,
fT (y). Parameters are as follows: c = 0:1; r = 0:1; X = 13; � = 13; � = 0:35; dS = 5;
dL = 1; ay = 3; and aX = 0:95. For the model of a lower upside event (the thick line),
X = 10; for the model of a shorter short-term debt (the thin line), dS = 11. A box
signals the crossing points between �� (y) and fT (y).
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Figure 4: Equilibrium paths of the fractions of outstanding and new issues of short-
term debt, �t and ft, t � T � (�T ). We also plot the optimal default boundary, �� (y),
and the optimal rollover policy at default, fT (y). Parameters are as follows: c = 0:1;
r = 0:1; X = 13; � = 13; � = 0:35; dS = 5; dL = 1; and ay = 0:80; aX = 0:80. For the
equilibrium path defaulting at �T = 0:50, we show the two paths (�t and ft) in dash
lines.
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