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Abstract

Although Bermudan options are routinely priced by simulation and least-squares methods

using lower and dual upper bounds, these bounds are hardly optimized. We optimize recursive

upper bounds (UB), which are more tractable than the original/nonrecursive ones, and derive

two new results. (1) An UB based on (a martingale that depends on) stopping times is inde-

pendent of the next-period exercise decision and hence cannot be optimized. So we optimize

the recursive lower bound, and use its optimal recursive policy to evaluate the upper bound

as well. (2) Less time-intensive UBs that are based on a continuation value function only

need this function in the continuation region, where this continuation value is less nonlinear

and easier to �t (than in the entire support). In the numerical exercise, the lower and upper

bounds based on these two approaches are very tight, improving over state-of-the-art methods

(including global least-squares and pathwise optimization).
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1 Introduction

Pricing Bermudan options in high dimensions requires Monte Carlo (MC) methods, and two

MC-based prices have been developed: lower bounds and dual upper bounds. Longsta¤ and

Schwartz (2001) use a global least-squares MC approach to compute lower bounds; likewise,

dual bounds are also based on global regression and simulation (Andersen and Broadie, 2004).

Although these bounds converge, they are hardly optimized, which is important because sim-

ulation is time consuming, demanding a smart approach.1

In this paper, we �ll this gap and optimize recursive lower and dual upper bounds, which

are more tractable than the original (nonrecursive) ones. We show a recursive upper bound

is independent of the next-period exercise decision and hence cannot be optimized. So we

optimize the recursive lower bound, and use its optimal recursive policy to evaluate the upper

bound as well.2 We show these two bounds, which have a similar cost to the two bounds based

on a recursive policy estimated by global least-squares, are very tight. Speci�cally, lower/upper

bounds generated by simulation depend on an exercise policy, whereby the upper bound is

derived from a martingale based on this policy. In addition, a less time-intesive yet more

biased upper bound is generated from a martingale based on a continuation-value function.

We study this latter upper bound separately, and show how to reduce its bias as well.

First, consider a given family of exercise policies/stopping times. Ibáñez and Velasco (2018)

maximize a recursive Bermudan price/lower bound, L, with regard to this family at each

exercise period. An open question is which exercise strategy minimizes a (dual) upper bound,

U . We show the exercise strategy that maximizes a recursive lower bound also minimizes

not the recursive upper bound itself, but rather the gap between them, U � L. We provide

a recursive expression for the gap (Theorem 1), and show a recursive upper bound U is

independent of the next-period exercise policy (Proposition 2). Therefore, minimizing the

gap, U � L, is equivalent to maximizing the Bermudan price, L, recursively.
1Tsitsiklis and Van Roy (2001), Clément et al: (2002), Stentoft (2004), Eglo¤ (2005), Glasserman and

(2004), and Zanger (2017), among others, study the convergence of least-squares. For instance, pricing a max-

call barrier option, Desai et al: (2012) report that state-of-the-art methods (including global regression and

pathwise optimization) yield a three-digit gap between lower and dual upper bounds, perhaps because this gap

is costly to reduce by increasing the number of basis functions and simulated sample paths.
2Consider a Bermudan option that is exercisable from periods 1 to T . The exercise strategy at any time t,

1 � t � T � 1, is associated with an otherwise equivalent option but exercisable only from t to T , where the

strategy from t + 1 to T � 1 is given. That is, we consider stopping-times � such that �(1) = �(t) � t and

�(t+ 1) is given, going recursively from t = T � 1 to t = 1. The same de�nition applies to upper bounds.
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The following example illustrates the latter results: Consider a family of exercise strategies

and a Bermudan option with three exercise dates, t 2 f1; 2; 3g. The �rst-order conditions

associated with maximizing the Bermudan price at t = 0 imply optimal exercise at t 2 f1; 2g,

but only for those paths that are alive for the exercise decision at t = 2 (Ibáñez and Velasco).

Hence, if we consider all paths at t = 2, we can solve this problem recursively, which is more

tractable yet close to the optimal one. Minimizing the upper bound, by contrast, depends only

on the exercise decision at t = 2, not on t = 1 (Proposition 2).3

Second, consider a family of continuation-value functions, which lead to less time-intensive

dual upper bounds based on a one-period subsimulation. We show (i) a recursive upper bound

is independent of the next-period continuation-value function as well (Proposition 2); (ii)

by factorizing the two martingales that are based on either stopping times or continuation

values, the latter martingale includes a third error term, which ensures the process is actually

a martingale though implies more biased upper bounds; and (iii) this third term, however,

depends only on the option continuation value in the continuation/waiting region.4

The latter waiting-region constraint is important. Bermudan options become nonlinear

near the exercise boundary but much less in the waiting region, and �tting a continuation

value function only in this region is easier. This new upper bound (based on the waiting-region

continuation value) is as accurate as an upper bound based on an exercise policy estimated by

global regression (Anderson and Broadie), but in a fraction of the time. The former bound is

especially accurate for at-/in-the-money options; in this case, this bound is computed mostly

from sample paths that cross the exercise region (and do not depend on a continuation-value

function).5

In the numerical exercise, we price up-and-out Bermudan max-options. We use Ibáñez

and Velasco�s local regression to derive the optimal recursive exercise policy. We compute the

two bounds associated with this policy: The lower bound improves upon (Desai et al., 2012)

global regression and pathwise optimization by more than 100 to 200 cents, and the upper

bound yields a one-digit gap. This small gap implies the local-regression exercise policy is near

optimal, and the two associated bounds are close to the true (yet unknown) price.

3Kaniel et al: (2008), Lemma 1, proved this result for a two-period Bermudan option, t 2 f1; 2g; the upper

bound does not depend on t = 1 exercise decision, implying a two-period Bermudan upper bound is unbiased.
4The martingale �rst two components are those of the standard factorization of the American/Bermudan

option into an early-exercise-premium plus the European counterpart (Kim, 1991; Carr et al:, 1992).
5 Interestingly, this waiting-region constraint has the dual �avor of being the reciprocal constraint of using

only in-the-money paths (hence, the exercise region), as suggested, in the least-squares primal method.
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Although any upper bound is costly, the local policy is so good that reducing the number

of subsimulation by 20, our upper bound increases only by a few cents. The decision on both

tradeo¤s� number of local least-squares iterations versus (slightly) less biased lower bounds�

and number of nested simulation paths versus less biased upper bounds is left to the user.

Our upper bounds based on the local-regression exercise policy only change marginally

with the number of subsimulation paths and are robust to all re�nements, implying the upper

bound is tighter (and closer to the true price) than the lower bound. With other methods

that yield a nontrivial gap (e.g., global least-squares), this claim cannot be made. This result

agrees with the two-period Bermudan upper bound, which is independent of the (one-period)

exercise policy. A tighter upper bound implies that a mid point is lower biased.

Although a barrier option is an exotic security, the barrier makes this option very sensitive

to suboptimal exercise. This sensitivity depends on the gap between the intrinsic value slope

and the Bermudan option Delta at the exercise boundary. Consider a two-period Bermudan

up-and-out call on a single stock, which depends on its European counterpart (in the �rst

period) and easily illustrates the point: the call-payo¤ slope is equal to 1. A deep in-the-

money European call Delta is also close to 1, but with an up-and-out barrier, the potentially

large pro�ts vanish and the price function �atters. Hence, 1 minus Delta is easily two digits

larger for an up-and-out call than for a call if volatility is large (e.g., a max-call option).

The duality approach was developed by Rogers (2001) and Haugh and Kogan (2004) and

extended by many others.6 We tailor these results to our optimal recursive setting (Proposition

1; Theorem 1), which yields such tight lower/upper bounds. As a byproduct of the analysis of

both bounds, we develop a new statistical test that enables us to evaluate whether an exercise

strategy/stopping time is close to the optimal one. This test is formulated in terms of stopping

times instead of a nonzero (upper minus lower bound) gap.

Section 2 reviews dual upper bounds; section 3 derives the main results of the paper and

minimizes a recursive gap between lower and upper bounds; section 4 further studies upper

bounds based on stopping times and continuation values; section 5 presents a numerical exer-

cise; section 6 develops a test on optimal stopping times; and section 7 concludes. Appendix

A includes proofs of the main results, and B provides the local-regression algorithm.

6Practitioners use dual upper bounds to appraise Bermudan swaptions prices (Andersen and Andreasen,

2004; Sventrup, 2005). Broadie and Detemple (1996) introduce lower and upper bounds for American options.

For instance, Chen and Glasserman (2007) and Rogers (2010) study optimal dual bounds; Belomestny et al:

(2013) use a multilevel approach; Glasserman (2004) studies primal/dual bounds based on regression methods.
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2 Lower and Dual Upper Bounds: A Summary

Consider a Bermudan option that can be exercised at t 2 f1; 2; :::; Tg, where t = 0 is today.

Consider a vector of N stock prices St. Interest rates are stochastic, Rt > 0 is a bank account

process, R0 = 1, and Rj;t = Rt=Rj . If the interest rate r is constant, Rt = ert�t, Rt;t+1 = er�t,

and �t is the time between t and t+ 1. We assume a risk-neutral measure Q exists.

From the Bellman principle, the continuation value V �(t; St) of a Bermudan option with

intrinsic value I � 0 satis�es

V �(t; St) = E
Q
t

�
1

Rt;t+1
�max fIt+1; V �(t+ 1; St+1)g

�
; t = 0; 1; :::; T � 1; (1)

and V �(T; ST ) = 0. We refer to V � as the ��rst-best�Bermudan price. Although the results

below can be derived in terms of a bank account (in which Rt = 1, t = 0; 1; ::; T ), we work in

nominal terms for completeness; that way, all equations carry directly to the computer.

Lower bounds We rewrite equation (1) for a MC setting. Let T be the set of stopping-

times, � 2 f1; 2; :::; Tg. For a given e� 2 T , a lower bound V low0 is de�ned as follows:

V low0 := EQ0

�
Ie�
Re�
�
� sup
�2T

EQ0

�
I�
R�

�
= EQ0

�
I�
R�

����
�=��

�
:= V �0 ; (2)

where V �0 = V
�(0; S0) is the Bermudan price and �� is the associated �rst-best stopping time.

Dual upper bounds A dual upper bound is also an estimator of the Bermudan price

and allows us to build a mid-point and to assess a lower bound. A dual upper bound, however,

depends on a martingale that is not speci�ed (Rogers, 2001; Haugh and Kogan, 2004).

For a martingale Mt
Rt
, t 2 f0; 1; :::; Tg, upper bounds V up0 are based on the following result:

V up0 :=M0 + E
Q
0

�
max
1�t�T

�
It �Mt

Rt

��
�M0 + E

Q
0

�
I�
R�
� M�

R�

����
�=��

�
= V �0 ;

the last equality follows from the optional sampling theorem, and the inequality follows from

max
1�t�T

�
It �Mt

Rt

�
� I� �M�

R�

����
�=��

:

V up0 does not depend on the initial value M0 (see Appendix A). The upper bound is binding

(i.e., V up0 = V �0 ) for the process associated with the Bermudan price, M
� (Rogers, 2001;

Andersen and Broadie, 2004; or our Proposition 1). We de�ne M� below (see section 2.1).

We now build a martingale by using stopping times following equation (2) (as in Andersen

and Broadie, 2004). We build two martingales by using continuation values following equation
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(1) in section 3.2. Let e�(t) 2 ft; t + 1; :::; Tg, and hence e�(t) � t, be a stopping time indexed
in t, for t 2 f1; 2; :::; Tg, and e� (T ) = T . If e� is not indexed in t, e� = e�(1).

Let bV be the Bermudan price (continuation value) associated with e� ; that is, bVT = 0 and
bVt�1 = EQt�1

"
1ft<e�(t)g bVt + 1ft=e�(t)gIt

Rt�1;t

#
, t = 1; 2; :::; T: (3)

We de�ne the lower bound as in equation (2), V low0 = bV0 (given that necessarily bV0 � V �0 ).7
We then de�ne the process cM from e� as well; that is, cM0 = bV0 and

cMt = cMt�1Rt�1;t +
�
1ft<e�(t)g bVt + 1ft=e�(t)gIt�� bVt�1 �Rt�1;t, t = 1; 2; :::; T: (4)

cMt=Rt is a martingale (i.e., E
Q
t�1

hcMt=Rt�1;t
i
= cMt�1), which follows from bV de�nition.

The initial value of the process cM is not set to zero but cM0 = bV0, which implies, together
with

V low0 = bV0 = cM0 � V �0 � V
up
0 ;

that the following expectation is a proper gap:

EQ0

"
max
1�t�T

(
It � cMt

Rt

)#
= V up0 � bV0 � 0;

that is, the di¤erence between the upper and the lower bound is nonnegative.

2.1 Factorizing the martingale

Importantly, the process cM is explicitly de�ned by cM0 = bV0 and
cMt =

t�1X
j=1

�
Ij � bVj�� 1fj=e�(j)g �Rj;t + �1ft<e�(t)g bVt + 1ft=e�(t)gIt� ; (5)

which is equal to the sum of the early-exercise premium (reinvested in a bank account) plus

the right to exercise at time t (see Appendix A). For t = T , because bVT = 0, equation�s (5)

expectation implies the classical factorization of an American option into an early-exercise

premium plus the equivalent European counterpart (if e� = ��). This factorization is related
to the Doob-decomposition theorem, in which the Bermudan-option price process is the Snell

envelope (e.g., Carr et al:, 1992).

7 In our case, we estimate a second continuation-value function eVt by local least-squares (Ibáñez and Velasco,
2018), t 2 f1; 2; :::; T � 1g, from which the stopping time e�(t) is recursively de�ned by

e�(t) = t if It � eVt; e�(t) = e�(t+ 1) otherwise,
and e�(T ) = T .
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From equation (5), it follows for t � e� that
cMt = bVt, if t < e� ; and cMt = It, if t = e� ;

and therefore,

max
1�t�T

n
It � cMt

o
� Ie� � cMe� = 0: (6)

The martingale associated with the optimal stopping-time family, ��, is denoted by M�=R

and is de�ned in a similar way as in equation (5), where M�
0 = V

�
0 . The next result comple-

ments the literature (Rogers, 2001) on dual upper bounds for the optimal ��.

Proposition 1. (i) An upper bound based on the optimal stopping time �� is binding.

And (ii), for any path,

�� = inf

�
arg max

1�t�T
fIt �M�

t g
�
;

0 = max
1�t�T

fIt �M�
t g ;

in which the �inf�is taken in the case of multiple solutions.

Proof. See Appendix A. �

Remark. Proposition 1 shows equation (6) inequality is binding and the maximum is equal

to zero path by path for the optimal martingale M� (associated with ��). It follows that

the term max1�t�T fIt � cMtg, as well as the (sample) gap between the lower and the upper

bound, will have little variance if the process cM is based on a good exercise policy e� (and if,
in addition, cM is estimated with little simulation error).

3 Recursive Bounds: An Optimal Recursive Gap

Because the original dual upper bound is not tractable, we study a recursive version. Ibáñez

and Velasco (2018) maximize the Bermudan price with respect to a family of stopping times

at each exercise period recursively; we refer to this price as a recursive Bermudan price, which

is the objective function of the primal problem. The dual problem is to minimize the recursive

upper bound and to determine whether the solution to these two (recursive) primal and dual

problems are linked. If we consider a family of stopping times that are speci�ed in a recursive

way, we show a martingale based on the exercise strategy that maximizes the Bermudan price

also minimizes not the upper bound itself, but rather the gap between the lower and the upper

bound.
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We derive a simple recursive expression for this gap (Theorem 1), which holds for martin-

gales based on stopping times and continuation values, and from which we prove all results.

An upper bound is independent of the next-period stopping time or continuation value (Propo-

sition 2). Therefore, for a martingale based on stopping times, minimizing the gap is equivalent

to maximizing the lower bound in a recursive way (Proposition 3). For a martingale based on

a continuation value function, we show this function is only needed in the waiting region. In

this continuation/waiting region, the continuation value is less nonlinear and easier to �t than

in the entire support. We next de�ne recursive lower/upper bounds, derive Theorem 1 and

Proposition 2, and then minimize a recursive gap.

3.1 Recursive lower and dual upper bounds

We introduce three processes ( bZ(st)t , bZ(cv)t , and bZ(stcv)t ), which are based on equations (1) and

(2), but for simplicity, we denote any of them by bZt. In this way, we do not need to distinguish
between upper bounds based on stopping times (st), continuation values (cv), or both of them

(stcv). Theorem 1 and Proposition 2 below hold for the three processes.

For t 2 f1; 2; :::; Tg, Zt takes any of these three forms:

bZ(st)t = 1ft<e�(t)g bVt + 1ft=e�(t)gIt; (7)

bZ(cv)t = max
neVt; Ito ;bZ(stcv)t = 1ft<e�(t)g eVt + 1ft=e�(t)gIt;

where e�(t) and eVt are given (and eVT = bVT = 0). bZt is akin to the value process of a Bermudan
option, either the intrinsic value or the continuation value.

Similar to equation (3), we rede�ne the process bV associated with bZ, satisfying bVT = 0

and bVt�1 = EQt�1
" bZt
Rt�1;t

#
, t = 1; 2; :::; T: (8)

We also rede�ne the process cMt in equation (4) in terms of bZt. That is, cM0 = bV0 and
cMt = cMt�1Rt�1;t + bZt � bVt�1 �Rt�1;t; 1 � t � T; (9)

so that cMt=Rt is also a martingale. In particular, cM1 = bZ1.
We de�ne a new variable GAP at time s as follows:

GAPs :=
cMs

Rs
�
bZs
Rs
+ max
s�t�T

(
It � cMt

Rt

)
; 1 � s � T: (10)
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where
cMs
Rs
� cMt

Rt
, s � t, are the Doob-martingale increments.8 In particular, because cM1 = bZ1,

GAP1 := max
1�t�T

(
It � cMt

Rt

)
;

and the upper bound is given by

V up0 := cM0 + E
Q
0

"
max
1�t�T

(
It � cMt

Rt

)#
= cM0 + E

Q
0 [GAP1] ;

where cM0 = bV0.
The next result allows us to understand a recursive gap between lower and upper bounds

(see Schoennemakers et al., 2013, for similar recursive statements).

Theorem 1. The process GAP de�ned in equation (10) for s = f1; 2; :::; Tg, with

GAPT+1 = 0, satis�es that

GAPs =
� bZs
Rs

+max

(
Is
Rs
;
bVs
Rs
+GAPs+1

)
: (11)

Moreover, only the term bZs, which is de�ned in three ways in equation (7), depends on the
functions e�(s) or eVs.

Proof. See Appendix A. �

Remark. From equation (10),

GAPT =
IT � bZT
RT

:

And from equation (11) (because bVT = 0, GAPT+1 = 0, and I � 0), it follows that
GAPT =

�
� bZT + IT� 1

RT

as well. Then GAPT = 0 if bZT = IT , that is, if the intrinsic value at maturity is known, which
is always the case.

Example. Consider a Bermudan option with three exercise opportunities (i.e., s = 1 and

T = 3),

GAP1 +
bZ1
R1

= max

(
I1
R1
;
bV1
R1

+GAP2

)

= max

8<: I1
R1
;
bV1
R1
�
bZ2
R2

+max

8<: I2
R2
;
bV2
R2

+GAP3| {z }
=0

9=;
9=; ;

8The process
cMs
Rs

� bZs
Rs
� cMt

Rt
is also a martingale. From equation (9), its initial value at t = s � 1 is given

by �
� cMs
Rs
� bZs

Rs
�

cMs�1
Rs�1

�
=

bVs�1
Rs�1

, where bVs�1 is the price of a Bermudan option exercisable from s to T .
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which (from equations (7) and (8)) does not depend on the functions e�(1) or eV1, as claimed
in Theorem 1.

For tractability, we analyze the upper bound recursively. We consider the following lower

and upper bounds, which correspond to a Bermudan option that can only be exercised from s

to T , 1 � s � T � 1. That is,

V lows;0 := EQ0

" bVs�1
Rs�1

#
and V ups;0 := E

Q
0

" bVs�1
Rs�1

#
+ EQ0 [GAPs] ; (12)

Consistent with our notation, V low0 = V low1;0 , V
up
0 = V up1;0 , and

V ups;0 � V lows;0 = EQ0 [GAPs] :

Proposition 2. V ups;0 does not depend on the variables e�(s) or eVs, which are the next-
period exercise decision or continuation value, respectively.

Proof. It follows from Theorem 1 and

V ups;0 : = EQ0

" bVs�1
Rs�1

#
+ EQ0 [GAPs]

= EQ0

" bVs�1
Rs�1

#
+ EQ0

"
� bZs
Rs

+max

(
Is
Rs
;
bVs
Rs
+GAPs+1

)#

= EQ0

"
max

(
Is
Rs
;
bVs
Rs
+GAPs+1

)#
: �

Namely, V ups;0 does not depend on e�(s) or eVs because the upper bound directly compares the
intrinsic value and an estimated continuation value at time s (i.e., maxfIs; bVsg). In particular,
a two-period Bermudan upper bound is always binding (Kaniel et al:, 2008). For a two-period

Bermudan, T = 2 (and GAP2 = 0). Then

V up0 = V up1;0 =
cM0 + E

Q
0 [GAP1]

= bV0 � EQ0 � bZ1 � 1

R1

�
| {z }

=bV0
+EQ0

24max
8<: I1
R1
;
bV1
R1

+GAP2| {z }
=0

9=;
35

= EQ0

�
max

�
I1; E

Q
1

�
I2 �

1

R1;2

��
� 1

R1

�
= V �0 ;

where the last equality follows from V �0 de�nition (i.e., the maximum between exercise and

the European option at t = 1).
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Proposition 2 implies that we cannot minimize the upper bound V ups;0 but rather the gap,

EQ0 [GAPs], in a recursive way (where e�(t) and eVt are given for t > s). We next analyze the
three cases of bZt in this minimization.

Remark. Although V lows;0 de�ned in equation (12) denotes a lower bound, a negative bias

is associated with bZ(st)t but not with bZ(cv)t and bZ(stcv)t . The latter two processes depend on

a continuation value eVt, which may yield a positively biased bVt�1 (if eVt > V �t ). Yet we keep

the lower-bound name, even if a bit misleading, because eV is only used to compute an upper

bound and because we de�ne and analyze the three gaps in the same way.

3.2 An optimal recursive gap: A martingale based on stopping times, e�(t)
From equation (7), recall that bZ(st)t = 1ft<e�(t)g bVt + 1ft=e�(t)gIt. De�ne

e��(s) := arg maxe�(s)2T je�(s+1)V lows;0 ; (13)

where V lows;0 is given in equation (12). e��(s) means optimal exercise at time s, conditional one� (s+ 1) and subject to a given set of stopping times T (in which now � 2 fs; s + 1; :::; Tg).
Namely, if e�� (s) > s, e�� (s) = e� (s+ 1) where e� (s+ 1) is computed in advance.

Proposition 3. Consider a Bermudan option that can only be exercised from s to T ,

1 � s � T � 1; that is, s � e� (s) 2 T . Assume the stopping time e� (s+ 1) is given. Thene��(s), de�ned in equation (13), satis�es that
e��(s) = arg mine�(s)2T je�(s+1)EQ0 [GAPs] :

Further, if e� (s+ 1) = �� (s+ 1) and ��(s) 2 T , then e��(s) = ��(s) and V lows;0 = V ups;0 .

In particular, for s = 1 (where R0 = 1, bV0 = V low0 and cM0 = bV0),
e��(1) := arg maxe�(1)2T je�(2)V low0 = arg mine�(1)2T je�(2)

n
V up0 � V low0

o
:

Proof. See Appendix A. �

Minimizing the gap EQ0 [GAPs] is well de�ned and corresponds with optimally exercise

at time s conditional on e� (s+ 1). The recursive problem of �nding an optimal e��(s) 2 T
solving equation (13) given e� (s+ 1) is tractable, being solved by a local-regression approach
(Ibáñez and Velasco, 2018), which yields a continuation value function eVs. Note bV and eV are

two di¤erent functions. bV is a lower bound (because bV � V �) associated with the exercise
strategy e�(s), which in turn is de�ned in terms of eV . By contrast, eV can be under (over)

valued, which leads to exercising too soon (too late).
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The lower/upper biases From EQ0 [GAP1] =
�
V �0 � V low0

�
+ (V up0 � V �0 ),

0 � V �0 � V low0

= EQ0

��
1f1=��(1)gI1 + 1f1<��(1)gV

�
1

�
� 1

R1

�
� EQ0

��
1f1=e�(1)gI1 + 1f1<e�(1)g bV1�� 1

R1

�
;

which is the bias associated with the lower bound, and

0 � V up0 � V �0

= EQ0

"
max

(
I1; bV1 +GAP2 � � 1

R1

��1)
� 1

R1

#
� EQ0

�
max fI1; V �1 g �

1

R1

�
;

which is the upper-bound bias (from V up0 = cM0 + E
Q
0 [GAP1] and equation (11) for GAP1).

For instance, if GAP2 = 0, because bV1 � V �1 , then bV1 = V �1 and V
up
0 = V �0 so that the

upper bound is unbiased and independent of the (t = 1) next-period exercise decision, as in

Proposition 2. We just assume bV1 is computed without simulation error.
3.3 An optimal recursive gap: A martingale based on continuation values, eVt
Recall that bZ(cv)t = max

neVt; Ito. From Theorem 1 (equation (11)),

EQ0 [GAPs] = �E
Q
0

�
max

n
Is; eVso� 1

Rs

�
+ EQ0

"
max

(
Is
Rs
;
bVs
Rs
+GAPs+1

)#
:

Here, minimizing the gap is not well de�ned, because the lower bound based on eV ,
V lows;0 := EQ0

" bVs�1
Rs�1

#
= EQ0

�
max

n
Is; eVso� 1

Rs

�
;

is not necessarily lower biased (where bV is de�ned as in equation (8) with bZ(cv)t ).

Let us impose the best case EQ0 [GAPs] = 0, and search for an eV guaranteeing this. Then,
if we assume GAPs+1 = 0,

EQ0

�
max

n
Is; eVso� 1

Rs

�
= EQ0

�
max

n
Is; bVso� 1

Rs

�
;

and the simple solution associated with the latter equation is that eVs = bVs subject to bVs > Is.
This solution implies a (least-squares) �tting of the function eVs for a given sample of

simulated paths bVs subject to bVs > Is.9 eVs matches bVs only in the waiting region, where bVs > Is.
This constraint is convenient because the option continuation value becomes nonlinear near

the exercise boundary. This same result is derived in section 4.2 by factorizing the process cM .
9 In the case of stopping times, where bZt = 1ft<e�(t)g bVt + 1ft=e�(t)gIt, the last equality is given by

EQ
0

��
1fs<e�(s)g bVs + 1fs=e�(s)gIs�� 1

Rs

�
= EQ

0

�
max

n
Is; bVso� 1

Rs

�
;

and the same bVs appears on both sides of the equality, where the only possible di¤erence is derived from e�(s).
11



A martingale based on both stopping times and continuation values, e�(t) and eVt
Recall that bZ(cvst)t = 1ft<e�(t)g eVt + 1ft=e�(t)gIt. The gap minimization is also not well de�ned.
Assuming EQ0 [GAPs] = 0 and GAPs+1 = 0,

EQ0

��
1fs<e�(s)g eVs + 1fs=e�(s)gIs�� 1

Rs

�
= EQ0

"
max

(
Is
Rs
;
bVs
Rs

)#
:

We split this equality into two subproblems. We take e�(s) from a local regression instead

of the �max� function, and take eVs from a least-squares �tting, which also asks for settingeVs = bVs only in the waiting region (i.e., bVs > Is or s < e�(s)).
4 Upper bounds: Stopping Times versus Continuation Values

In this section, we compare the previous three upper bounds (based on stopping times, contin-

uation values, and a combination of the two) by factorizing the three associated martingales.

First, we show why an upper bound that is based on a good stopping time is less biased than

the other two upper bounds, which are based on continuation values. In the latter case, the

martingale has an additional third error term, which implies this larger bias (from Jensen

inequality). Second, we show that �tting the continuation value in the waiting/continuation

region is su¢ cient, a result that was also derived in the previous section. In the three cases,

we include the simulation error in the martingale.

4.1 The stopping time, e�(t)
cM is based on bZ(st), which depends on an stopping time e� as in equation (4); that is, cM0 = bV0
and, for t 2 f1; 2; :::; Tg,

cMt = cMt�1Rt�1;t +
�
1ft<e�(t)g �bVt + b�t�+ 1ft=e�(t)gIt�� �bVt�1 + b�t�1��Rt�1;t; (14)

where b�t is a zero-mean error (i.e., E[b�t] = 0) and hence cMt=Rt is a martingale.bV is computed separately based on

bVt�1 = EQt�1 �Rt�1 � Ie�(t)
Re�(t)

�
:

For every path, the process bVt is computed for t 2 f1; 2; :::; T � 1g by a new subsimulation

(from t to e�(t + 1)). Namely, bVt, which is an expectation, is replaced by bVt + b�t in equation
(14). cMt depends on both bVt and bVt�1; b�t introduces a second bias in the upper bound.

12



From equation (5), the martingale (i.e., cM=R) is explicitly given by
cMt =

t�1X
j=1

�
Ij �

�bVj + b�j��� 1fj=e�(j)g �Rj;t + �1ft<e�(t)g �bVt + b�t�+ 1ft=e�(t)gIt� : (15)

4.1.1 Reducing the upper-bound computational cost

Consider a path �!�such that the stopping time satis�es that t < e�(t) = t+1 (and let b�t = 0).
From Rj;t=Rt = R

�1
j ,

cMt � It
Rt

=
t�1X
j=1

�
Ij � bVj�� 1fj=e�(j)g � 1

Rj
+
bVt � It
Rt

:

Likewise, noting the �j = t�term of the sum in cMt+1 is zero because t < e�(t),cMt+1 � It+1
Rt+1

=
t�1X
j=1

�
Ij � bVj�� 1fj=e�(j)g � 1

Rj
:

Note that t < e�(t) does not necessarily imply bVt > It; if it did, e�(t) = e�(t + 1) would be
the optimal time�t recursive exercise policy. Hence, we have no guarantee that

�(cMt � It)
Rt

<
�(cMt+1 � It+1)

Rt+1
;

which would imply computing bVt is not necessary if t < e�(t). Similarly, given �(t) = t + 1,

computing bVt�j is also not necessary for any previous period t� j (j � 0) such that the path
is in the continuation region, namely, t� j < e� (t� j).

Hence, for any path !, it does not necessarily follow that

max
1�t�T : t=e�(t)

(
It � cMt

Rt

)
= max
1�t�T

(
It � cMt

Rt

)
:

Using the lhs, however, reduces the number of periods in which to launch a subsimulation

(especially for at-the-money/out-of-the-money options, as paths start in the waiting region),

but introduces a negative bias that lowers the upper bound. If e� is a good exercise policy, this
bias may be negligible, especially compared to the time saved in subsimulations.10

4.2 The continuation value, eVt
Consider cM is based on bZ(cv). Instead of using stopping times, we de�ne a martingale based
on a continuation value, eV ; that is, cM0 = bV0, and for t 2 f1; 2; :::; Tg,

cMt = cMt�1Rt�1;t +max
neVt; Ito� �bVt�1 + b�t�1��Rt�1;t; (16)

10Broadie and Cao (2008) and Joshi (2007) introduce a similar idea to reduce the cost of dual upper bounds.
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and bVt�1 = EQt�1 hR�1t�1;tmaxneVt; Itoi :
Now, for every path, the process bVt is computed for t 2 f1; 2; :::; T � 1g by a one-period
subsimulation (from t to t+ 1), where b� is the one-period subsimulation error, E[b�t] = 0.11

Then (see Appendix A)

cMt =

t�1X
j=1

n
Ij � eVjo+ �Rj;t + t�1X

j=1

�eVj � �bVj + b�j���Rj;t +maxneVt; Ito : (17)

By comparing cM in equation (17) with the optimalM� in (15), the upper-bound bias depends

mostly on the second sum, a martingale error-correcting term, in which the di¤erences eVj � bVj
can be large. However, eVj cancels if fIj � eVjg+ > 0, from the �rst and second sums, implying

the error eVj � bVj only matters when Ij < eVj , which is the waiting region.
4.2.1 Computing the function eV co in the waiting region
We denote by eV cos the continuation value in the waiting region. eV cos is computed in two steps.

First, we compute a stopping time, e�(s) � s. Second, we use least squares to �t eV cos in the

continuation region, where e�(s) > s. That is, e�(s) is used to exercise a sample path (from
s+ 1 on) and to determine if a path is in the waiting region (at time s).

Consider a family of continuation values F . eV coT = 0 and eV cot�1 is de�ned, for t = fT; T �
1; :::; 2g, as follows:

eV cot�1 = arg min
ft�12F

X
$

1

Rt�1
�
�
ft�1 �R�1t�1;t � bUt�2 � 1fe�(t�1)>t�1g;

bUt = R�1t;e�(t) � Ie�(t);
and all variables depend on the sample paths !. At time s = t� 1, we compute many samples

of the discounted realized payo¤, R�1t�1;t � bUt, following the local-regression exercise strategye�(t). The payo¤s in the waiting region (i.e., if 1fe�(t�1)>t�1g = 1) are approximated using a

global regression by the family F . We proceed backward until s = 1. We then plug eV co in
equation (16); that is, fV = eV co.

Table 1�s last two columns show a global-regression stopping time produces only slightly

worse upper bounds than the local-regression stopping time. This �nding implies estimating

the continuation value in the waiting region (i.e., if e�(t� 1) > t� 1) is the key insight (more
than the realized payo¤ bUt) for upper bounds based on a continuation value function.
11 In some cases, the one-period expectation can be approximated analytically (Glasserman and Yu, 2004;

Nadarajaha et al., 2017)
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A third alternative, e�(t) and eVt. cM is based on bZ(stcv). Extending equation (4), cM is

de�ned from e� but using a new eV ; that is, cM0 = bV0, and for t = f1; 2; :::; Tg,
cMt = cMt�1Rt�1;t +

�
1ft<e�(t)g eVt + 1ft=e�(t)gIt�� �bVt�1 + b�t�1��Rt�1;t;

and bVt�1 = EQt�1 hR�1t�1;t � �1ft<e�(t)g eVt + 1ft=e�(t)gIt�i :
We combine, in a one-period subsimulation, e� from the local regression and eV from least-

squares (in the waiting region). This approach is intuitive if e� is close to ��.
Then

fMt =
t�1X
j=1

�
Ij � eVj�� 1ft=e�(t)g �Rj;t + t�1X

j=1

�eVj � �bVj + b�j���Rj:t (18)

+
�
1ft<e�(t)g eVt + 1ft=e�(t)gIt� :

Comparing the three factorizations, in (15), (17), and (18), based on bZ(st), bZ(cv), andbZ(stcv), respectively, the �rst yields a martingale that is close to M�=R if e� is close to ��. The
second and third martingales require only a one-period subsimulation, but include a second

sum that depends on the error between the posed eV and the sample realized bV (in the waiting
region), implying a more biased upper bound. In an unreported numerical exercise, we �nd

the latter martingale yields the most biased upper bound of the three.12

5 Numerical Exercise: Up-and-Out Bermudan Max-Options

We price an up-and-out max-call Bermudan option. This barrier feature makes call payo¤s

very sensitive to suboptimal exercise. We de�ne It = fmaxfStg �Kg+, K is the strike price,

and B > K is the barrier. We introduce two auxiliary processes, Y and b; b0 = 1 and

Yt = 1fmaxfStg<Bg and bt = bt�1 � Yt, t = 1; 2; :::; T: (19)

bt = 0 indicates the up-and-out barrier (B) has been hit (i.e., bj = 0, j = t; t+ 1; :::; T ). The

Bermudan payo¤ is given by It � bt.
12The third martingale works worse than the second martingale, because a low-biased eVt implies a process

based on bZ(cv) = max
neVt; Ito is closer to the optimal Z�t = max fV �

t ; Itg than the one based on bZ(stcv) =
(1ft<e�(t)g eVt + 1ft=e�(t)gIt). That is, for any stopping time e�(t) (including e�(t) = ��(t)),

if eVt � V �
t , max fV �

t ; Itg � max
neVt; Ito � 1ft<e�(t)g eVt + 1ft=e�(t)gIt:
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We use Ibáñez and Velasco�s local regression to derive the optimal recursive policy, and

compute the associated lower/dual upper bounds. We follow the MC exercise in Table 1 in

Desai et al: (DFM). This table has nine examples, corresponding to three numbers of stocks

(N = f4; 8; 16g) and three initial stock prices (S0 = f90; 100; 110g). The strike price K = 100

is common across all scenarios. The up-and-out barrier is B = 170. To derive the � associated

with the local regression, we also use 200,000 paths but exclude those points that are out-of-

the-money or hit the barrier (i.e., if maxfStg � K or if maxfStg � B). The local-regression

algorithm is in Appendix B, where we provide further details.

We use the same linear basis of N + 2 variables as DFM, which includes a constant, every

component of the price vector S =
�
S(1); S(2); :::; S(N)

�
, and fmaxfStg �Kg+;13 that is,

�
1; St; fmaxfStg �Kg+

�
� 1fK<maxfStg<Bg:

The regression�s dependent variable is also multiplied by 1fK<maxfStg<Bg. To compute V
low
0 ,

we use 2 million paths. We report the mean and standard error over 10 independent trials.

5.1 Lower/upper bounds based on stopping times

In our Table 1, we provide the lower bound V low0 produced by two regression methods: the

global method and the local method (�rst to third iterations). From the exercise strategies

associated with global regression and the local third iteration, we also generate upper bounds.

The upper-bound mean and standard error are also based on 10 independent trials.

*** to include Table 1 ***

As our Table 1 shows, the local approach improves upon the global (and DFM) lower

bounds. The local lower bounds improves upon the global lower bounds by 100 to 280 cents

(upon DFM lower bounds by 85 to 160 cents). The lowest gap in DFM Table 1, which includes

two lower and three upper bounds, varies from 105 cents (N = 16 and S0 = 110) to 200 cents

(N = 4 and S0 = f90; 100g). The third iteration of the local regression reduces this gap to less

than 10 cents. In the nine examples, the �rst iteration yields the most signi�cant improvement;

for four assets, the price rises only by a few cents after the third iteration; for eight and 16

assets, the lower bound converges in one iteration.14

13Because we consider in-the-money paths, the regressors
�
1; fmaxfSg �Kg+

�
and (1;maxfSg) are alike.

14The largest gap corresponds to four stocks; for 16 stocks, the gap is less than 6 cents. For 16 stocks, if

the option is in-the-money, the chance of hitting the barrier the next period and all being lost is high. Hence,
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Standard errors The standard errors (s.e:) of the local-regression method are between 0.2

to 0.4 cents. These s.e: correspond to the average of 10 trials, where the price of each trial is

computed with two million paths. Because the s.e: of a single price is approximately 0.3 cents,

the similar (0.2 to 0.4 cents) s.e: of the average of 10 prices, which use 20 million paths, is

mostly due to computing the 10 di¤erent continuation values in the �rst simulation step. The

error of these estimated continuation values, which are based on 200,000 paths, does not have

a signi�cant impact on the lower bound (i.e.,
p
10� 0:3, 1 cent approximately).

Improvement and robustness of the lower bound In Table 2, we increase the number

of paths that are used in the local regression to improve Table 1 numbers. We consider N = 4

stocks (the hardest problem) and compute the average of 10 independent trials. Improving

these lower bounds is di¢ cult. We just reduce the s.e. and get smoother prices through all

iterations, which is intuitive in a least-squares setting.

In Table 3, we show the lower bound�s robustness to the local regression kernel. More

(less) than 1% percent of the paths that are used in the Table 1 kernel imply lower (slightly

larger but erratic) prices. This 1% is our optimal kernel choice, yet a kernel with a constant

bandwidth of 1.2 (from try and error) also works. A bandwidth larger (lower) than 1.2 implies

lower (larger but erratic) prices; for eight assets, this constant is 2.0.

Tables 2 and 3 show the robustness of both upper bounds to the estimation of the contin-

uation value by local least squares (i.e., number of simulation paths and kernel). Because the

upper bound based on stopping times is robust to (and does not improve with) the number of

iterations, this upper bound is tighter (closer to the true price) than the lower bound.

*** to include Table 2 and 3 ***

5.2 Upper bounds

In the case of (a martingale based on) stopping times, the upper bound is de�ned as the lower

bound plus the gap. Because we have computed a lower bound with a large number of paths in

Table 1, we just compute (and report) the gap in Table 4. The gap has much less variability,

requiring a lower number of paths, for example, 3,000 (against the 2 million for the lower

the optimal exercise policy seems to be exercising as soon as the largest stock price is su¢ ciently in-the-money.

We also include the two-asset Bermudan, where the price is approximated by a binomial method and linear

extrapolation (and di¤ers from the upper bound by 1 cent). A sixth iteration of the local LSM increases the

lower-bound to 31.05, which cannot be further improved by additional iterations.
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bound) for a similar standard error. In the case of continuation values, we directly compute

the upper bound as explained in section 4.2.

First, the upper bound based on the third iteration of the local exercise strategy produces

very good prices. Table 4 shows this upper bound deteriorates little with the number of

paths in the sub-simulation. We can reduce the upper-bound cost without losing accuracy; for

example, in reducing the number of subsimulation paths from 10,000 to 500 (to 100), the gap

rises by only 3 (15) cents.

*** to include Table 4 ***

Second, from Table 1, an upper bound based on continuation values is more biased. Yet

�tting a continuation value in the waiting region (V co) yields upper bounds that, especially if

the option is at-/in-the-money, are as accurate as those based on stopping times and global

regression but in a fraction of the time. The di¤erence between splitting the waiting region

by using a global versus a local approach is less important; see Table 1, last two columns.15

Computational cost of optimal recursive lower/upper bounds Wemake two remarks.

First, in the case of the lower bound, optimizing the kernel means optimizing the bandwith.

Although the latter can be optimized in each exercise period, a constant bandwidth (which

is obtained from try and error) is robust; it produces prices a couple of cents below the best

price. This kernel optimization is a �xed or learning cost, which is made once.

A kernel regression is a weighted-global regression, which has a cost similar to a global

regression. Therefore, the variable cost of a local approach over the global regression is given

by the number of iterations minus one. For example, for N = f8; 16g, the lower bound

converges in one iteration; hence, the extra cost of the local approach is given by the time

invested in �nding the constant bandwidth. In addition, the local approach is independent of

moneyness, which is convenient in the case of portfolios of derivatives.

Second, in the case of the upper bound based on stopping times, our upper bound is so

good that we can reduce the number of subsimulation paths (e.g., from 10,000 to 500 paths)

without losing accuracy. This is a notable saving for the upper bound. So the combined cost

of the lower/upper bounds based on a local approach (i.e., a constant bandwidth, moneyness

free, a couple of iterations, and less subsimulation paths) compares well with the cost of the

15 In addition (not reported here for brevity), for four assets, we can reduce this upper bound by another 10

bps if we use a quadratic (instead of a linear) function V co, and by another few points if V co is estimated from

paths simulated exactly from S0 (to compute eV for the e� stopping-time, it is convenient to simulate paths not
from S0 and t = 0 but from in-the-money values and t < 0).

18



two bounds based on global regression, yet the local approach produces very tight bounds.

6 Testing Whether a Stopping Time Is Optimal

Consider a martingale M
R de�ned in terms of stopping times/exercise strategies, e� . The gap

V up0 � bV0 enables us to test if e� is optimal. V up0 � bV0 = 0 if and only if e� = �� (if we forget the
simulation error) as shown by the literature. In this section, we introduce a second test about

the optimality of e� , where e� = e� (1).
For any stopping time e� , see equations (5) and (6), cMe� = Ie� � be� . It follows that

0 � max
1�t�T

(
It � cMt

Rt

)
= GAP1;

In the case of ��, the inequality is binding (see Proposition 1).

De�ne t� = t�(!) for any path !,

t�(!) := inf

 
arg max

1�t�T

(
It � cMt

Rt

)!
:

From cMe� = Ie� , it follows cMt� = It� if t� = e� . Then,
V �0 � V up0 = bV0 + EQ0

"
It � cMt

Rt

�����
t=t�

#
(20)

= bV0 + EQ0
"
It � cMt

Rt

�����
t=t�

� 1ft� 6=e�g
#
:

The latter equation implies that if e� is not the optimal stopping-time (and V �0 � bV0 > 0),
EQ0

"
It � cMt

Rt

�����
t=t�

� 1ft� 6=e�g
#
= V up0 � bV0 � V �0 � bV0 > 0:

The gap, V up0 � bV0, depends only on those paths in which e� is di¤erent from t�; t� 6= e� . For
the optimal stopping time ��, this set has zero probability because t� = �� (Proposition 1).

Proposition 4. Assume that It�cMt
Rt

���
t=t�

< 1 (a.s.) and EQ0
�
1f�� 6=e�(1)g� > 0 impliesbV0 < V �0 . Then EQ0 �1f�� 6=e�(1)g� > 0 (i.e., e� is not the optimal stopping time) if and only if

EQ0
�
1ft� 6=e�(1)g� > 0: (21)

Proof. See Appendix A.
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That is, e� 6= �� with positive probability if and only if e� 6= t� with positive probability.

Although �� is unknown, the inequality (21) is feasible because t� can be simulated. Next,

because of the following bound,

0 � EQ0
�
1ft� 6=e�(1)g� � 1;

an optimality test based on �counting�(i.e., t� and e�) can be more intuitive than one based
on computing lower and dual upper bounds,

0 � V up0 � bV0 = EQ0
"
It � cMt

Rt

�����
t=t�

� 1ft� 6=e�(1)g
#
;

where the right-hand-side equality is also a novel result. Finally, alternative tests can also be

proposed using time deviations, because EQ0
�
1ft� 6=e�(1)g� > 0 implies EQ0 [jt� � e� (1)j] > 0.

7 Conclusions

In this paper, we show the exercise strategy that maximizes the Bermudan price/lower bound

(Ibáñez and Velasco, 2018) also minimizes the gap between the lower and the dual upper bound.

We assume both bounds are speci�ed recursively, and show the upper bound is independent of

the next-period policy. Lower/upper bounds based on this optimal recursive exercise policy are

very tight, as we show for barrier Bermudan max-options. Upper bounds are tighter but more

time intensive than lower bounds. In addition, a better upper bound based on continuation

values, not as accurate but more e¢ cient than based on stopping times, requires reestimating

the continuation value only in the waiting region.

Speci�cally, the di¤erence between the payo¤ slope and the option Delta at the exercise

boundary gives the sensitivity to suboptimal exercise for Bermudan options. The up-and-out

barrier feature means the option Delta is well below 1, implying optimal exercise matters for

these securities. For more examples of lower/upper bounds in equity models with stochastic

volatility and interest rates, see Ibáñez and Velasco (2016); for term-structure applications,

Joshi and Tang (2014); for energy real options, Nadarajaha et al: (2017); and see Kogan and

Mitra (2013) and Bender et al: (2017) for extensions to other economic problems.
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8 Appendix A: Proofs

Proof of Equation (5). From the same equation (5),

cMt � cMt�1Rt�1;t =
�
It�1 � bVt�1�� 1ft�1=e�(t�1)g �Rt�1;t + �1ft<e�(t)g bVt + 1ft=e�(t)gIt�
�
�
1ft�1<e�(t�1)g bVt�1 + 1ft�1=e�(t�1)gIt�1��Rt�1;t

=
�
1ft<e�(t)g bVt + 1ft=e�(t)gIt�� bVt�1 �Rt�1;t;

which is equation (4). �

Proof of Proposition 1. M� is explicitly de�ned as cM in equation (5) for e� = ��. The
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de�nition of �� (i.e., ��(t) = t, if It � V �t ; ��(t) > t, otherwise) implies

(It � V �t )� 1ft=��(t)g = fIt � V �t g
+ � 0:

From equation (5) for e� = �� and from the last equation, it follows that

M�
t > It, if t 6= ��; and M�

t = It, if t = �
�;

where �� means ��(1), and therefore,

max
1�t�T

fIt �M�
t g = I�� �M�

�� = 0; and

V up0 := M�
0 + E

Q
0

�
max
1�t�T

�
It �M�

t

Rt

��
= V �0 + E

Q
0 [0] = V

�
0 : �

V up1;0 does not depend on the martingale initial value cM0. Consider a di¤erent initial

value bx0 6= bV0. From
V ups;0 : = bV0 + EQ0

"
max
1�t�T

(
It � cMt

Rt

)#

= bx0 + EQ0
24 max
1�t�T

8<:It �
�cMs;t �

�bV0 � bx0��Rt�
Rt

9=;
35 ;

and a more general martingale bmt=Rt is given by bm0 = bx0 and bmt = cMt �
�bV0 � bx0��Rt for

t � 1. And bmt = cMt if bx0 = bV0. �
Proof of Theorem 1. From equation (10),

GAPs =
� bZs
Rs

+max

(
Is
Rs
;
cMs

Rs
+ max
s+1�t�T

(
It � cMt

Rt

))
(22)

=
� bZs
Rs

+max

(
Is
Rs
;
bVs
Rs
+
cMsRs;s+1 + bZs+1 � bVsRs;s+1

Rs+1
�
bZs+1
Rs+1

+ max
s+1�t�T

(
It � cMt

Rt

))

=
� bZs
Rs

+max

8>>>><>>>>:
Is
Rs
;
bVs
Rs
+
cMs+1

Rs+1
�
bZs+1
Rs+1

+ max
s+1�t�T

(
It � cMt

Rt

)
| {z }

=GAPs+1

9>>>>=>>>>; ;

the last equality follows from the de�nition of cM in equation (9).

Then it is easy to show by induction that GAPs+
bZs
Rs
does not depend on e�(s) or eVs because

GAPs+1 does not either. �
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Proof of Propostion 3. V ups;0 does not depend on e� (s), and hence, from equation (12),

arg mine�(s)2T je�(s+1)EQ0 [GAPs] = arg mine�(s)2T je�(s+1)
n
V ups;0 � V lows;0

o
= arg mine�(s)2T je�(s+1)

n
�V lows;0

o
= arg maxe�(s)2T je�(s+1)V lows;0 = e��(s): �

Proof of equation (17). We assume b� = 0 for simplicity. From the same equation (17),

cMt � cMt�1Rt�1;t =

�n
It�1 � eVt�1o+ + eVt�1 � bVt�1��Rt�1;t +maxneVt; Ito

�max
neVt�1; It�1o�Rt�1;t

= max
neVt; Ito� bVt�1 �Rt�1;t;

which is equation (16), because
n
It�1 � eVt�1o+ + eVt�1 = maxneVt�1; It�1o. �

Proof of Proposition 4. We assume EQ0
�
1f�� 6=e�g� > 0 implies V �0 > bV0.

If V �0 > bV0,
EQ0

"
It � cMt

Rt

�����
t=t�

� 1ft� 6=e�g
#
= V up0 � bV0 � V �0 � bV0 > 0;

where It�cMt
Rt

���
t=t�
� 0 and 1ft� 6=e�g � 0. Next, if

EQ0

"
It � cMt

Rt

�����
t=t�

� 1ft� 6=e�g
#
> 0;

then EQ0
�
1ft� 6=e�g� > 0 if we assume It�cMt

Rt

���
t=t�

<1 (a.s.).

Finally, because t� = �� path by path (see Proposition 1), EQ0
�
1ft� 6=e�g� > 0 directly implies

EQ0
�
1f�� 6=e�g� > 0. �

9 Appendix B: The Local Least-Squares Algorithm

We follow Ibáñez and Velasco (2018) and adapt the local algorithm to the up-and-out barrier.

Let ni � 1 be the number of iterations. We specify the �nal period t = T , and recursively

solve the continuation value for T � 1, T � 2, until t = 1.

The intrinsic value is given by

It = fmaxfStg �Kg+ , t = f1; 2; :::; Tg ; (23)

Consider a set of simulated paths, $ 2 
.
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The local LSM algorithm:

0. Set t = T . De�ne yT+1 = 0 and eV �T = 0.
1. UPDATING PATHS, $ 2 


yt = 1fmaxfStg<Bg �

8<: It; if It � eV �t
e�r�t � yt+1; otherwise.

With the indicator 1fmaxfStg<Bg, we cancel (the value is zero) a path that hits the barrier.

Set t = t� 1.

2. The new CONTINUATION VALUE

Set n = 1 and eV 0t = eV �t+1. If t = T � 1, set eV 0T�1 = eV LSMT�1 from a global least-squares

method.

2.1. LOCALIZING THE EXERCISE BOUNDARY

Provide a kernel K. Then

eV nt = arg min
ft2F

X
$2


�
ft (xt)�

yt+1
er�t

�2
�K

�eV n�1t (xt)� It; �)
�
� 1fK<maxfStg<Bg;

eV nt  
eV nt + eV n�1t

2
. (24)

Set n = n+ 1. Go back to step 2.1 until n = ni.

Set eV �t = eV nit . Go back to step 1 until t = 1.
End of the local LSM algorithm

At t = 1, we have estimated all continuation values: eV �T�1; eV �T�2; :::; eV �1 . �
Finally, like Desai, Farias, and Moallemi (2012), we use the same N + 2 regressors,

xt =
�
1; St; fmaxfStg �Kg+

�
;

and the same linear function, namely, ft (xt) = b0t � xt, where bt is the 1 � (N + 2) vector of

coe¢ cients.

9.1 The local-regression implementation

The distinctive feature of the local-regression method is estimating the continuation value near

the exercise boundary. Note four points regarding this algorithm.

First, for a local regression, having paths close to the (unknown) exercise boundary is

necessary; otherwise, we have no information to rely on. We start to simulate paths three

months before the initial period t = 0, so rich price dispersion is present at the �rst exercise
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dates. For N = f2; 4; 8g, we simulate paths from an in-the-money point (i.e., 120 for all

assets). If the boundary is well above K = 100, and we simulate paths from 90 or 100 (and

from t = 0), few paths overshoot the boundary at the �rst exercise dates. For N = 16 assets,

we simulate from 100 because many paths will eventually hit the barrier. The simulated paths

are the same for the global-regression method. These changes improve the robustness of the

local method (our global-regression prices are in line with those reported in DFM).

Second, by using the continuation value estimated in the previous period to de�ne the

kernel, one local regression produces very good prices. We iterate this local regression a

couple of times to further increase this price a few cents. The local exercise strategy does not

depend on moneyness; that is, neither the initial simulation point (120 for N = f2; 4; 8g and

100 for N = 16) nor the estimated continuation values depend on the initial stock price S0.

Third, the up-and-out barrier implies the Bermudan price is not monotonic near the exer-

cise boundary. To avoid potential cycles and guarantee smooth price convergence, we de�ne

the new continuation value as one half the local regressions of the present and previous periods

(the last two iterations, in the case of more than one iteration).

Finally, the optimal kernel uses approximately 1%�5% of the 200,000 simulated points

that are closer to the exercise boundary. A larger (lower) number of paths implies more biased

(more erratic) prices; see Table 3 below. For 8 and 16 stocks, many of those 200,000 paths

eventually hit the barrier near expiry, which implies many fewer available points for the local

regression, requiring a less localized kernel of 5%.
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10 Tables

Table 1: Lower and upper bounds

Lower bound, V low0 Upper bound, V up0

S0 binomial price LSM local LSM iterations ��based V co�based

V �0 1st 2nd 3rd 3rd LSM 3rd LSM

n = 2 assets (kernel= 0:5%)

100 31:074 28:799
(:006)

30:869
(:008)

30:988
(:006)

31:016
(:006)

31:083
(:001)

31:278
(:028)

31:347
(:006)

31:331
(:007)

[V low0;DFM ,V
up
0;DFM ] n = 4 assets (kernel= 1%)

90 [33:011; 34:989] 32:706
(:008)

34:612
(:004)

34:656
(:004)

34:667
(:004)

34:749
(:005)

34:934
(:015)

34:976
(:013)

34:962
(:010)

100 [41:541; 43:587] 40:328
(:008)

43:117
(:003)

43:138
(:004)

43:161
(:004)

43:251
(:004)

43:630
(:024)

43:558
(:011)

43:557
(:010)

110 [48:169; 49:909] 47:197
(:007)

49:398
(:004)

49:429
(:004)

49:430
(:004)

49:482
(:004)

49:998
(:028)

49:780
(:007)

49:851
(:007)

n = 8 assets (kernel= 5%)

90 [44:113; 45:847] 43:321
(:006)

45:460
(:004)

45:460
(:004)

45:460
(:004)

45:580
(:003)

46:743
(:015)

45:847
(:007)

45:830
(:008)

100 [50:252; 51:814] 49:523
(:007)

51:357
(:003)

51:360
(:003)

51:360
(:003)

51:433
(:003)

51:646
(:015)

51:668
(:003)

51:667
(:005)

110 [53:488; 54:890] 52:319
(:006)

54:525
(:002)

54:527
(:002)

54:527
(:002)

54:564
(:001)

54:898
(:018)

54:697
(:004)

54:744
(:003)

n = 16 assets (kernel= 5%)

90 [50:885; 52:316] 49:779
(:005)

51:916
(:003)

51:923
(:002)

51:925
(:002)

51:981
(:002)

52:252
(:015)

52:158
(:005)

52:184
(:006)

100 [53:638; 54:883] 52:574
(:002)

54:601
(:002)

54:603
(:002)

54:603
(:002)

54:633
(:002)

53:806
(:017)

54:718
(:002)

54:800
(:003)

110 [55:146; 56:201] 54:968
(:005)

55:994
(:003)

55:995
(:003)

55:995
(:003)

56:025
(:002)

56:200
(:018)

56:070
(:002)

56:125
(:003)

Table 1. Prices of Bermudan up-and-out max-call options for n = f4; 8; 16g uncorrelated

stocks in a Black-Scholes setting (r = 0:05, � = 0, and � = 0:20). K = 100 is the strike price,

B = 170 is the barrier, T = 3 is maturity, and 54 exercise opportunities. The �rst column is

the stock price, and the second is the best lower- and upper-bound, [V low0;DFM , V up0;DFM ], reported

by DFM (Desai, Farias, and Mollemi, 2012). The third to sixth and seventh to tenth are the

lower and upper bounds, respectively. The third column is the global regression/LSM method

(Longsta¤-Schwartz), and the fourth to sixth columns are the �rst three iterations of the local

LSM method (Ibáñez and Velasco, 2018). The seventh and eighth are upper-bounds based

on a stopping time e� , which are associated with the LSM (as Andersen-Broadie) and local

LSM third-iteration exercise strategies, respectively. The last two columns are upper bounds
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based on a continuation value V co, which is reestimated in the continuation region, which is

associated with the LSM and third-iteration local LSM exercise strategies, respectively. For the

LSM and local LSM methods, we use 200,000 paths to recursively compute the continuation

values and then 2 million paths to compute the Bermudan price. We report the mean and

standard error (over 10 independent trials). For the gap of the upper bound based on e� , we use
3,000 external paths and 10,000 subsimulation paths. For the upper bound based on V co, we

use 10,000 external paths and 500 subsimulation paths. We also report the two-asset case, in

which the true price is derived from the binomial method and linear extrapolation (to correct

the erratic binomial prices).

Table 2: Increasing the number of paths in the regression (S0 = 100, n = 4, kernel= 1%)

Lower bound, V low0 Upper bound, V up0

paths LSM local LSM iterations ��based V co�based

m 1st 2nd 3rd 4th 5th 10th 3rd 3rd

5*104 40:327
(:010)

43:106
(:004)

43:128
(:005)

43:147
(:004)

43:153
(:004)

43:160
(:004)

43:178
(:004)

43:251
(:004)

43:558
(:011)

105 40:329
(:008)

43:112
(:005)

43:135
(:004)

43:154
(:005)

43:161
(:005)

43:167
(:005)

43:183
(:004)

43:250
(:005)

43:558
(:011)

2*105 40:328
(:008)

43:117
(:003)

43:138
(:004)

43:161
(:004)

43:168
(:004)

43:175
(:004)

43:191
(:004)

43:251
(:004)

43:558
(:011)

4*105 40:325
(:006)

43:119
(:003)

43:143
(:003)

43:164
(:002)

43:172
(:002)

43:179
(:002)

43:193
(:002)

43:250
(:002)

43:559
(:011)

106 40:328
(:002)

43:118
(:002)

43:143
(:002)

43:163
(:002)

43:170
(:002)

43:177
(:002)

43:193
(:002)

43:250
(:003)

43:558
(:011)

2*106 40:322
(:003)

43:120
(:003)

43:144
(:002)

43:165
(:002)

43:172
(:002)

43:179
(:002)

43:194
(:002)

43:250
(:003)

43:559
(:011)

Table 2. Prices of Bermudan up-and-out max-call options for n = 4 uncorrelated stocks in a

Black-Scholes setting (r = 0:05, � = 0, and � = 0:20 and kernel= 1%). S0 = 100 is the initial

value, K = 100 is the strike price, B = 170 is the barrier, T = 3 is maturity, and 54 exercise

opportunities. The �rst column �m� is the number of paths in the backward regressions to

estimate the continuation values. The second column is the LSM method and third to eighth

columns are the �rst �ve and the tenth iteration of the local LSM method (Ibáñez and Velasco,

2018) lower-bounds. The ninth and tenth are the upper bounds. We report the mean and

standard error over 10 trials. Lower and upper bounds are as in Table 1.
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Table 3: Di¤erent kernels (S0 = 100; n = 4;m = 200; 000)

Lower bound, V up0 Upper bound, V up0

kernel LSM local LSM iterations ��based V co�based

p 1st 2nd 3rd 4th 5th 10th 3rd 3rd

0:5% 40:328
(:008)

43:119
(:003)

43:151
(:005)

43:175
(:004)

43:186
(:004)

43:194
(:004)

43:208
(:003)

43:250
(:003)

43:559
(:011)

1% 40:328
(:008)

43:117
(:003)

43:138
(:004)

43:161
(:004)

43:168
(:004)

43:175
(:004)

43:191
(:004)

43:251
(:004)

43:558
(:011)

3% 40:328
(:008)

43:116
(:002)

43:138
(:003)

43:159
(:002)

43:166
(:002)

43:173
(:002)

43:189
(:003)

43:249
(:004)

43:558
(:011)

5% 40:328
(:008)

43:073
(:005)

43:072
(:005)

43:081
(:005)

43:086
(:005)

43:089
(:005)

43:101
(:005)

43:262
(:006)

43:558
(:011)

Table 3. Prices of Bermudan up-and-out max-call options for n = 4 uncorrelated stocks in a

Black-Scholes setting (r = 0:05, � = 0, and � = 0:20). S0 = 100 is the initial value, K = 100 is

the strike price, B = 170 is the barrier, T = 3 is maturity, and 54 exercise opportunities. The

�rst column is the kernel used in the local regressions, where p is the approximated number

of points used from a total of m = 200; 000. The second column is the LSM method and the

third to eighth columns are the �rst �ve and the tenth iterations of the local LSM method

(Ibáñez and Velasco, 2018) lower-bounds. The ninth and tenth are the upper bounds. We

report the mean and standard error over 10 trials. Lower and upper bounds are as in Table 1.

Table 4: Lower and upper bounds gaps ��based (S0 = 100; n = 4;m = 200; 000)

Lower bound, V low0 Gap ��based Upper bound, V up0

local LSM 100 sub-paths 500 sub-paths 10,000 sub-paths 10,000 sub-paths

S0 LSM 3rd iter LSM 3rd iter LSM 3rd iter LSM 3rd iter LSM 3rd iter

90 32:706
(:008)

34:647
(:005)

2:405
(:015)

0:306
(:007)

2:257
(:015)

0:133
(:006)

2:228
(:015)

0:082
(:005)

34:934
(:015)

34:752
(:005)

100 40:328
(:008)

43:159
(:002)

3:483
(:025)

0:284
(:004)

3:329
(:026)

0:120
(:004)

3:302
(:024)

0:090
(:005)

43:630
(:024)

43:249
(:004)

110 46:197
(:007)

49:429
(:003)

3:965
(:029)

0:234
(:004)

3:833
(:027)

0:082
(:003)

3:801
(:028)

0:052
(:004)

49:998
(:028)

49:480
(:003)

Table 4. Gaps of lower and ��based upper bounds for up-and-out Bermudan max-call options

for n = 4 uncorrelated stocks in a Black-Scholes setting (r = 0:05, � = 0, and � = 0:20). S0 is

the initial value, K = 100 is the strike price, B = 170 is the barrier, T = 3 is maturity, and 54

exercise opportunities. We directly compute the gap for di¤erent numbers of subsimulation

paths (sub-paths): 100, 500, and 10,000. The upper bound is de�ned as the lower bound plus

the gap (i.e., V up0 =V low0 +Gap). We report the mean and standard error over 10 trials. Table

1 represents the case using 10,000 subsimulation paths.
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