

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura					
NombreCompleto	Sistemas Digitales I				
Código	DEA-GITT-214				
Título	Grado en Ingeniería en Tecnologías de Telecomunicación				
Impartido en	Grado en Ingeniería en Tecnologías de Telecomunicación y Grado en ADE [Segundo Curso] Grado en Ingeniería de Tecnologías de Telecom. y Grado en Análisis de Negocios/Business Analytics [Segundo Curso] Grado en Ingeniería en Tecnologías de Telecomunicación [Segundo Curso]				
Cuatrimestre	Semestral				
Créditos	6,0				
Carácter	Obligatoria (Grado)				
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones				
Responsable	José Daniel Muñoz Frías				

Datos del profesorado					
Profesor					
Nombre	José Daniel Muñoz Frías				
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones				
Despacho	Alberto Aguilera 25 [D-219]				
Correo electrónico	daniel@icai.comillas.edu				
Teléfono	2417				
Profesores de laboratorio					
Profesor					
Nombre	Álvaro Padierna Díaz				
Departamento / Área	Departamento de Electrónica, Automática y Comunicaciones				
Correo electrónico	apadierna@icai.comillas.edu				

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería Telemática, esta asignatura pretende aportar al alumno los conocimientos básicos de sistemas digitales que le permitan diseñar circuitos digitales básicos, así como

entender algunos sistemas digitales complejos usados en otras asignaturas como microprocesadores o procesadores digitales de señal.

Compete	Competencias - Objetivos						
Competencias							
GENERALE	S						
CG04	Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, y de comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética y profesional de la actividad del ingeniero técnico de telecomunicación.						
CG06	Facilidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.						
ESPECÍFIC	ESPECÍFICAS						
CRT09	Capacidad de análisis y diseño de circuitos combinacionales y secuenciales, síncronos y asíncronos, y de utilización de microprocesadores y circuitos integrados.						
CRT10	Conocimiento y aplicación de los fundamentos de lenguajes de descripción de dispositivos de hardware.						

Resultados de Aprendizaje						
RA1	Manejar con soltura los sistemas de numeración binarios, así como su aritmética					
RA2	Diseñar circuitos digitales, tanto combinacionales como secuenciales					
RA3	Describir estos circuitos usando el lenguaje de descripción de hardware VHDL.					
RA4	Diseñar sistemas digitales complejos, dividiendo el sistema en ruta de datos y control.					
RA5	Manejar las herramientas CAD para diseñar circuitos basados en lógica programable					

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos – Bloques Temáticos

BLOQUE 1: Teoría

Tema 1: Introducción

- 1.1 Introducción a la técnica digital.
- 1.2 Bits y niveles lógicos.
- 1.3 Tecnologías para implantar circuitos digitales
- 1.4 Niveles de diseño.

Tema 2. Álgebra de Boole

- 2.1 Definiciones y teoremas del álgebra de boole.
- 2.2 Funciones lógicas no básicas.
- 2.3 Formas normales de una función booleana.
- 2.4 Simplificación usando diagramas de Karnaugh.

Tema 3: Sistemas de numeración

- 3.1 Sistemas de numeración posicionales.
- 3.2 Conversión entre bases.
- 3.3 Rangos.
- 3.4 Sistemas hexadecimal y octal.
- 3.5 Operaciones matemáticas con números binarios.
- 3.6 Representación de números enteros.
- 3.7 Rangos en los números con signo.
- 3.8 Operaciones matemáticas con números con signo.
- 3.9 Otros códigos binarios.

Tema 4: Introducción al lenguaje VHDL

- 4.1 Flujo de diseño.
- 4.2 Estructura del archivo.
- 4.3 Ejemplos.
- 4.4 Tipos de datos, constantes y operadores.
- 4.5 Sentencias concurrentes.

Tema 5: Circuitos Aritméticos

- 5.1 Sumador de un bit.
- 5.2 Sumador de palabras de n bits.
- 5.3 Restador de n bits.
- 5.4 Sumador/Restador de n bits.
- 5.5 Multiplicadores.
- 5.6 Sumador de números en BCD natural.

Tema 6: Bloques Combinacionales

- 6.1 Multiplexores.
- 6.2 Demultiplexores.
- 6.3 Codificadores.
- 6.4 Decodificadores.
- 6.5 Comparadores.

Tema 7. Circuitos secuenciales. Fundamentos

- 7.1 Introducción.
- 7.2 Conceptos básicos.
- 7.3 Biestables.

Tema 8. Temporización de circuitos digitales

- 8.1 Introducción.
- 8.2 Riesgos de temporización.

- 8.3 Diseño Síncrono.
- 8.4 Parámetros tecnológicos de los biestables.
- 8.5 Diseño síncrono y periodo de reloj.
- 8.6 Clock skew y distribución del reloj.
- 8.7 Sincronización de entradas asíncronas.

Tema 9: Máquinas de estados finitos

- 8.1 Nomenclatura.
- 8.2 Diseño de máquinas de estados.
- 8.3 Descripción en VHDL.
- 8.4 Detector de secuencia.
- 8.5 Detector de secuencia usando detectores de flanco.

Tema 10: Registros

- 9.1 Introducción.
- 9.2 Registros de entrada y salida en paralelo.
- 9.3 Registros de desplazamiento.

Tema 11: Contadores

- 10.1 Contador binario ascendente.
- 10.2 Contador binario descendente.
- 10.3 Contador ascendente / descendente.
- 10.4 Contadores con habilitación de la cuenta.
- 10.5 Contadores módulo m.
- 10.6 Conexión de contadores en cascada.
- 10.7 Contadores con carga paralelo.
- 10.8 Contadores de secuencia arbitraria.

Tema 12: Diseño de sistemas complejos: ruta de datos + control

- 11.1 Introducción.
- 11.2 Control de una barrera de aparcamiento.
- 11.3 Control de calidad de toros.
- 11.4 Conversor de binario a BCD.
- 11.5 Interconexión de dispositivos mediante SPI.

BLOQUE 2: Laboratorio

- Práctica 1: Introducción a las puertas lógicas integradas y al osciloscopio digital
- Práctica 2: Introducción a la captura de esquemas y la compilación con Quartus II.
- Práctica 3: Introducción a la simulación y a la implantación física con Quartus II.
- Práctica 4: Circuitos combinacionales. Diseño con VHDL.
- Práctica 5: Circuitos aritméticos. Sumador de 5 bits.
- Práctica 6: Circuitos aritméticos. Multiplicador de 5 bits.
- Práctica 7: Circuitos aritméticos. ALU de 5 bits.
- Práctica 8: Introducción a los biestables.
- Práctica 9: Cerradura electrónica.
- Práctica 10: Control de aparcamiento.
- Práctica 11: Temporizador para horno microondas.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Con el fin de conseguir el desarrollo de competencias propuesto, la materia se desarrollará teniendo en cuenta la actividad del alumno como factor prioritario. Ello implicará que tanto las sesiones presenciales como las no presenciales promoverán la implicación activa de los alumnos en las actividades de aprendizaje.

Metodología Presencial: Actividades

- Lección expositiva: El profesor explicará los conceptos fundamentales de cada tema incidiendo en lo más importante y a continuación se explicarán una serie de problemas tipo, gracias a los cuáles se aprenderá a identificar los elementos esenciales del planteamiento y la resolución de problemas del tema.
- 2. **Resolución en clase de problemas propuestos:** En estas sesiones se explicarán, corregirán y analizarán problemas análogos y de mayor complejidad de cada tema previamente propuestos por el profesor y trabajados por el alumno.
- 3. **Prácticas de laboratorio**. Se realizara en grupos y en ellas los alumnos ejercitarán los conceptos y técnicas estudiadas, familiarizándose con el entorno material y humano del trabajo en el laboratorio.
- 4. **Tutorías** se realizarán en grupo e individualmente para resolver las dudas que se les planteen a los alumnos después de haber trabajado los distintos temas. Y también para orientar al alumno en su proceso de aprendizaje.

Metodología No presencial: Actividades

- 1. Estudio individual y personal por parte del alumno de los conceptos expuestos en las lecciones expositivas.
- 2. Resolución de problemas prácticos que se corregirán en clase.
- 3. Preparación de las prácticas.
- 4. Resolución grupal de problemas y esquemas de los conceptos teóricos.

El objetivo principal del trabajo no presencial es llegar a entender y comprender los conceptos teóricos de la asignatura, así como ser capaz de poner en práctica estos conocimientos para resolver los diferentes tipos de problemas.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES									
Clase magistral y presentaciones generales	Trabajos de carácter práctico individual y de grupo	Prácticas de laboratorio, preparación y trabajo posterior							
20,00	20,00	20,00							

HORAS NO PRESENCIALES									
Trabajo autónomo sobre contenidos teóricos por parte del alumno	Trabajos de carácter práctico individual y de grupo	Prácticas de laboratorio, preparación y trabajo posterior							
40,00 40,00 40,00									
CRÉDITOS ECTS: 6,0 (180,00 horas)									

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso
Realización del examen final	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	42 %
Realización del examen intersemestral y de los controles de clase.	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. 	18 %
Examen final de laboratorio	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita. Manejo de las herramientas del laboratorio. 	20 %
	Compresión de conceptos.	

- · Test previos.
- Funcionamiento de las prácticas.
- Documentación de los resultados.
- Aplicación de conceptos a la resolución de problemas prácticos y a la realización de prácticas en el laboratorio.
- Análisis e interpretación de los resultados obtenidos en las prácticas de laboratorio.
- Capacidad de trabajo en grupo.
- Presentación y comunicación escrita.

20 %

Calificaciones

Convocatoria ordinaria

La evaluación del alumno consta de dos partes: teoría y laboratorio. Para evaluar la teoría se realizarán las siguientes pruebas:

- Ejercicios cortos en clase (10 minutos). El objetivo de estos ejercicios es que el alumno conozca lo
 que sabe (y lo que no sabe) durante la marcha del curso. La media de estos ejercicios proporciona la
 nota de clase n_c.
- Un examen intercuatrimestral, del que se obtendrá la nota n_i.
- Un examen final que comprenderá toda la materia impartida en el curso. De este examen se obtendrá la nota $n_{\rm e}$.

Para obtener la nota final de la teoría se obtendrá una media ponderada de las notas anteriores según la siguiente fórmula:

$$n_t = n_i * 0.2 + n_e * 0.7 + n_c * 0.1$$

La evaluación del laboratorio se realiza a partir de:

- El trabajo previo de la práctica, que se evalúa mediante un test de 10 minutos al principio de la misma. De la media de todos los test se obtiene la nota n_t.
- La documentación de la práctica y el funcionamiento de los circuitos diseñados. De la media de todas las prácticas se obtiene la nota n_p.
- El examen final de laboratorio, n_{ex}.

La nota final del laboratorio se obtiene a partir de la media ponderada de las notas anteriores, según la fórmula siguiente:

$$n_l = n_{ex} * 0.5 + n_t * 0.3 + n_p * 0.2$$

Es obligatorio entregar todas las prácticas. Si no se ha entregado alguna de ellas, la nota del laboratorio será un cero.

Para aprobar la asignatura las notas n_t y n_l deben ser superiores a 5. Si se cumple esta condición, La nota final de la asignatura se calcula:

$$n_{final} = n_t * 0.6 + n_l * 0.4$$

En caso contrario la nota final será la menor de las dos notas n_t y n_l.

Convocatoria extraordinaria

La convocatoria extraordinaria se considera como una segunda oportunidad en caso de que el alumno haya suspendido alguna o las dos partes de la que se compone la asignatura.

Si el alumno ha suspendido la teoría realizará el examen teórico n_{jt} y se obtendrá la nueva nota de teoría según la fórmula:

$$n_t = n_{it} * 0.9 + n_c * 0.1$$

Si el alumno ha suspendido el laboratorio, realizará el examen de laboratorio n_{jl} y la nueva nota de laboratorio se obtendrá según la fórmula:

$$n_l = n_{il} * 0.8 + n_p * 0.2$$

La nota final de la convocatoria extraordinaria se obtendrá de la misma forma que la de la ordinaria: si las notas n_t y n_l son superiores a 5, la nota final de la asignatura se calcula:

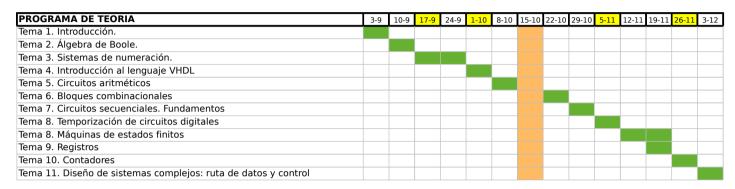
$$n_{final} = n_t * 0.6 + n_l * 0.4$$

En caso contrario la nota final será la menor de las dos notas n_t y n_l .

Normas de asistencia

La asistencia a clase es obligatoria. Si un alumno tiene más de un 15 % de faltas a las sesiones de teoría o alguna falta a las sesiones de laboratorio, no podrá examinarse ni en la convocatoria ordinaria ni en la extraordinaria (art. 92 Reglamento General de la Universidad).

BIBLIOGRAFÍA Y RECURSOS


Bibliografía Básica

 José Daniel Muñoz Frías. Introducción a los sistemas digitales. Un enfoque usando lenguajes de descripción de hardware. (2017)

Bibliografía Complementaria

- John F. Wakerly Digital Design: Principles and practices. 4ª Edición. (Hay versión en español de la tercera edición) Prentice Hall. 2000.
- Thomas L. Floyd Fundamentos de sistemas digitales. 9ª Edición. Pearson/ Prentice Hall. 2006.

CRONOGRAMA Sistemas Digitales I. 2º GITT Curso 2018/2019

Nota. El cronograma se da por semanas de clase. Cada semana se identifica por la fecha del lunes de dicha semana

Fechas clave teoría

En amarillo	Controles de clase
En Naranja	Intercuatrimestrales

PROGRAMA DE LABORATORIO	3-9	10-9	17-9	24-9	1-10	8-10	15-10	22-10	29-10	5-11	12-11	19-11	26-11	3-12
P1. Introducción a las puertas lógicas integradas y al osciloscopio digital.														
P2. Introducción a la captura de esquemas y la compilación con Quartus II.														
P3. Introducción a la simulación y a la implantación física con Quartus II.														
P4. Circuitos combinacionales. Diseño con VHDL.														
P5. Circuitos aritméticos. Sumador de 5 bits.														
P6. Circuitos aritméticos. Multiplicador de 5 bits.														
P7. Circuitos aritméticos. ALU de 5 bits.														
P8. Introducción a los biestables.														
P9. Cerradura electrónica.														
P10. Control de aparcamiento.														
P11. Temporizador para horno microondas.														

Nota. El cronograma se da por sesión de laboratorio

Fechas clave laboratorio

En Azul	Se da teoría en lugar de laboratorio
En Naranja	Intercuatrimestrales
En gris	Días festivos