

FICHA TÉCNICA DE LA ASIGNATURA

Datos de la asignatura				
NombreCompleto	Campos Electromagnéticos			
Código	DIE-GITT-221			
Título	Grado en Ingeniería en Tecnologías de Telecomunicación			
Impartido en	Grado en Ingeniería en Tecnologías de Telecomunicación y Grado en ADE [Segundo Curso] Grado en Ingeniería de Tecnologías de Telecom. y Grado en Análisis de Negocios/Business Analytics [Segundo Curso] Grado en Ingeniería en Tecnologías de Telecomunicación [Segundo Curso]			
Nivel	Reglada Grado Europeo			
Cuatrimestre	Semestral			
Créditos	6,0			
Carácter	Obligatoria (Grado)			
Departamento / Área	Departamento de Ingeniería Eléctrica Grado en Ingeniería en Tecnologías de Telecomunicación Grupo de Asignaturas Planificables			
Responsable	Francisco Javier Herraiz Martínez			
Horario	Consultar horario oficial			
Horario de tutorías	Solicitar cita			

Datos del profesorado			
Profesor			
Nombre	Francisco Javier Herraiz Martínez		
Departamento / Área	artamento / Área Departamento de Electrónica, Automática y Comunicaciones		
Despacho	Calle Alberto Aguilera, 25 D-220		
Correo electrónico	fjherraiz@icai.comillas.edu		

DATOS ESPECÍFICOS DE LA ASIGNATURA

Contextualización de la asignatura

Aportación al perfil profesional de la titulación

El electromagnetismo es una de las cuatro fuerzas fundamentales de la naturaleza (fuerte, electromagnética, débil y gravitacional, por orden decreciente de intensidad). El conocimiento de los fundamentos de la teoría electromagnética es importante para entender gran parte de los fenómenos físicos que tienen lugar a nuestro alrededor, así como un sinfín de aplicaciones en ingenierí

Este es un curso de electromagnetismo de nivel intermedio en el que

- Se repasa en profundidad los fundamentos de electrostática y magnetostática en el vacío y en medios materiales.
- Se utilizan técnicas matemáticas potentes para resolver problemas en este y otros campos.
- Se estudian los fundamentos de electrodinámica y sus consecuencias.
- Se analizan diversas aplicaciones industriales del electromagnetismo.

Competencias GENERALES Conocimiento de materias básicas y tecnologías, que le capacite para el aprendizaje de nuevos métodos y tecnologías, así como que le dote de una gran versatilidad para adaptarse a nuevas situaciones. Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, y de comunicar y transmitir conocimientos, habilidades y destrezas, comprendiendo la responsabilidad ética y profesional de la actividad del ingeniero técnico de telecomunicación. ESPECÍFICAS Capacidad para comprender los mecanismos de propagación y transmisión de ondas electromagnéticas y acústicas, y sus correspondientes dispositivos emisores y receptores.

Resultados de Aprendizaje			
RA1	Comprender cualitativamente la naturaleza de los campos eléctricos y magnéticos en el vacío y en la materia. Efectos sobre la materia y caracterización de dichos materiales.		
RA2	Modelar de forma sencilla sistemas complejos para el cálculo aproximado de campos y potenciales utilizando las leyes básicas del electromagnetismo.		
RA3	Utilizar los operadores vectoriales para su uso en el ámbito de los campos.		
RA4	Comprender de forma básica las ondas electromagnéticas y sus aplicaciones.		
RA5	Calcular capacidades e inductancias en sistemas sencillos. Usar herramientas informáticas para el cálculo en sistemas complejos.		
RA6	Comprender los mecanismos de propagación y transmisión de ondas electromagnéticas y acústicas		
RA7	Conocer los fundamentos y aplicaciones de los principales dispositivos emisores y receptores de ondas electromagnéticas y acústicas		

BLOQUES TEMÁTICOS Y CONTENIDOS

Contenidos - Bloques Temáticos

Tema 1: Electrostática. Cargas y campos

- 1.1. Ley de Coulomb
- 1.2 Campo eléctrico: concepto y representación vectorial
- 1.3 Ley de Gauss y aplicación al cálculo del campo eléctrico en simetrías plana, esférica y cilíndrica
- 1.4 Energía electrostática
- 1.5 Fuerza sobre una capa de carga

Tema 2: Potencial eléctrico. Operadores vectoriales.

- 2.1. Superficies equipotenciales y operador gradiente
- 2.2. Definición de potencial eléctrico
- 2.3. Divergencia y ley de Gauss diferencial
- 2.4. Ecuación de Poisson y Laplaciana.
- 2.5. Rotacional y teorema de Stokes

Tema 3: Conductores.

- 3.1. Características generales de los conductores
- 3.2. Teorema de unicidad de soluciones
- 3.3. Efecto pantalla
- 3.4. Método de las imágenes.
- 3.5. Metalizado de equipotenciales
- 3.6. Solución analítica de la ecuación de Laplace
- 3.7. Capacidad de conductores y condensadores
- 3.8. Energía almacenada en un condensador
- 3.9. Fuerzas sobre conductores y método de los trabajos virtuales para el cálculo de fuerzas
- 3.10. Cálculo del campo por métodos numéricos: método de relajación

Tema 4: Campo eléctrico en medios materiales

- 4.1. Polarización dieléctrica. Campos internos y externos
- 4.2. Condensadores con material dieléctrico
- 4.3. Momento dipolar eléctrico: campo de un dipolo, pares y fuerzas en un dipolo
- 4.4. Materiales polarizados y tipo de polarización
- 4.5. Vector desplazamiento eléctrico y aplicaciones
- 4.6. Aplicaciones industriales de la electrostática

Tema 5: Corriente eléctrica

- 5.1. Ley de Ohm
- 5.2. Densidad de corriente
- 5.3. Ley de Ohm vectorial
- 5.4. Cálculo general de resistencias
- 5.5. Ecuación de conservación de la carga y de continuidad
- 5.6. Ley de Joule
- 5.7. Teorías de la conducción eléctrica: teoría cinética y ondulatoria
- 5.8. Aplicaciones industriales

Tema 6: Campo magnético en el vacío

- 6.1. Definición del campo magnético
- 6.2. Campo y fuerzas producido por un hilo de corriente
- 6.3. Ley de Ampère
- 6.4. Láminas de corriente
- 6.5. Propiedades del campo magnético y teorema de unicidad
- 6.8. Ley de Biot-Savart diferencial
- 6.9. Vector potencial magnético

Tema 7: Inducción electromagnética

- 7.1. Ley de Faraday integral y diferencial
- 7.2. Fuerza magnética y tensión inducida
- 7.3. Autoinducción e inducción mutua
- 7.4. Aplicaciones industriales.

Tema 8: Ecuaciones de Maxwell y ondas electromagnéticas

- 8.1. Corriente de desplazamiento
- 8.2. Ecuaciones de Maxwell
- 8.3. Ondas planas. Superposición de ondas.
- 8.4. Propiedades de las ondas electromagnéticas
- 8.5. Energía de una onda electromagnética y vector de Poynting.
- 8.6. Propagación y reflexión de ondas planas.

Tema 9: Campos electromagnéticos en la materia

- 9.1. Analogías entre magnetización y polarización
- 9.2. Momento dipolar magnético: campo de un dipolo, pares y fuerzas sobre un dipolo
- 9.3. Vector H intensidad de campo magnético y ley de Ampère
- 9.4. Materiales magnéticos. Curva B-H y ciclo de histéresis.

METODOLOGÍA DOCENTE

Aspectos metodológicos generales de la asignatura

Metodología Presencial: Actividades

- 1. Clase Magistral. El profesor introduce los conceptos o aplicaciones básicas.
- 2. **Problemas de clase.** Los alumnos, individualmente o en grupo, intentan hacer el problema asignado que trata los conceptos explicados por el profesor. Por último, el profesor discute su solución.

Metodología No presencial: Actividades

1. **Estudio del material presentado en clase**. Actividad realizada individualmente por el estudiante repasando y completando lo visto en clase.

RESUMEN HORAS DE TRABAJO DEL ALUMNO

HORAS PRESENCIALES					
Clase magistral y presentaciones generales	Resolución en clase de problemas prácticos				
40,00	20,00				
HORAS NO PRESENCIALES					
Trabajo autónomo sobre contenidos teóricos por parte del alumno	Trabajo autónomo sobre contenidos prácticos por parte del alumno				
50,00	70,00				
	CRÉDITOS ECTS: 6,0 (180,00 horas)				

EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN

Actividades de evaluación	Criterios de evaluación	Peso	
 Pruebas tipo problema Prueba de seguimiento, Examen intersemestral. Examen final. 	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita 	60 %	
Pruebas tipo abierto • Prueba de seguimiento, • Examen intersemestral. • Examen final.	 Comprensión de conceptos. Aplicación de conceptos a la resolución de problemas prácticos. Análisis e interpretación de los resultados obtenidos en la resolución de problemas. Presentación y comunicación escrita 	40 %	

Calificaciones

Convocatoria ordinaria

- 40% nota evaluación continua (5% participación en clase + 10% de prueba de seguimiento + 25% nota de examen intersemestral)
- 60% nota del examen convocatoria ordinaria.

Convocatoria extraordinaria

- 30% nota evaluación continua (3.75% participación en clase + 7.5% prueba de seguimiento + 18.75% examen intersemestral)
- 70% examen convocatoria extraordinaria.

BIBLIOGRAFÍA Y RECURSOS

Bibliografía Básica

- E. M. Purcell. Electricidad y Magnetismo, 2ª edición. Reverté 1994.
- T.A. Moore. Six ideas that shaped physics, Unit. E. 2ª ed. McGraw-Hill

Plan de trabajo y cronograma

Semana	Presencial			No presencial			Total horas
	Temas	Teo	Prob.	Т	Р	R	
1	Presentación, 1	2.5	1.5	4	3	2	13
2	1, 2	2	2	3	2	2	11
3	2, 3	2.5	1.5	4	2	3	13
4	3, examen	3	1	2	2	2	10
5	3, 4	3	1	4	2	3	13
6	4	1.5	2.5	2	3	3	12
7	4, 5	2.5	1.5	4	3	2	13
8	examen inter	0	4	4	1	2	11
9	5, 6	1.5	0.5	3	1	2	8
10	6	3	1	4	1	3	12
11	6, 7	2.5	1.5	1	2	2	9
12	7	3	1	2	1	3	10
13	7, 8	1.5	0.5	3	2	3	10
14	8	2.5	1.5	2	2	3	11
15	8, 9	3	1	2	2	2	10
Mayo	Examen		4			10	14
		34	26	44	29	47	180
		Total	60	Total		120	

Estudio autónomo teoría (T) Resolución de Problemas (P) Repaso y profundización (R)