ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA ELECTROMECÁNICA

Especialidad Electrónica

ROTATING COIL SYSTEM FOR MEASURING PMQS

Autor: Mariano Colmenar Cascón
Director: Julio Lucas Torralba

Madrid
Mayo 2019

AUTORIZACIÓN PARA LA DIGITALIZACIÓN, DEPÓSITO Y DIVULGACIÓN EN RED DE PROYECTOS FIN DE GRADO, FIN DE MÁSTER, TESINAS O MEMORIAS DE BACHILLERATO

1^{0}. Declaración de la autoría y acreditación de la misma.

El autor D. Mariono Colmenar Coscón
DECLARA ser el titular de los derechos de propiedad intelectual de la obra: ROTATING COIL SYSTEM FOR MEASURING PMETS ,
que ésta es una obra original, y que ostenta la condición de autor en el sentido que otorga la Ley de Propiedad Intelectual.

2°. Objeto y fines de la cesión.

Con el fin de dar la máxima difusión a la obra citada a través del Repositorio institucional de la Universidad, el autor CEDE a la Universidad Pontificia Comillas, de forma gratuita y no exclusiva, por el máximo plazo legal y con ámbito universal, los derechos de digitalización, de archivo, de reproducción, de distribución y de comunicación pública, incluido el derecho de puesta a disposición electrónica, tal y como se describen en la Ley de Propiedad Intelectual. El derecho de transformación se cede a los únicos efectos de lo dispuesto en la letra a) del apartado siguiente.

30. Condiciones de la cesión y acceso

Sin perjuicio de la titularidad de la obra, que sigue correspondiendo a su autor, la cesión de derechos contemplada en esta licencia habilita para:
a) Transformarla con el fin de adaptarla a cualquier tecnología que permita incorporarla a internet y hacerla accesible; incorporar metadatos para realizar el registro de la obra e incorporar "marcas de agua" o cualquier otro sistema de seguridad o de protección.
b) Reproducirla en un soporte digital para su incorporación a una base de datos electrónica, incluyendo el derecho de reproducir y almacenar la obra en servidores, a los efectos de garantizar su seguridad, conservación y preservar el formato.
c) Comunicarla, por defecto, a través de un archivo institucional abierto, accesible de modo libre y gratuito a través de internet.
d) Cualquier otra forma de acceso (restringido, embargado, cerrado) deberá solicitarse expresamente y obedecer a causas justificadas.
e) Asignar por defecto a estos trabajos una licencia Creative Commons.
f) Asignar por defecto a estos trabajos un HANDLE (URL persistente).

4. Derechos del autor.

El autor, en tanto que titular de una obra tiene derecho a:
a) Que la Universidad identifique claramente su nombre como autor de la misma
b) Comunicar y dar publicidad a la obra en la versión que ceda y en otras posteriores a través de cualquier medio.
c) Solicitar la retirada de la obra del repositorio por causa justificada.
d) Recibir notificación fehaciente de cualquier reclamación que puedan formular terceras personas en relación con la obra y, en particular, de reclamaciones relativas a los derechos de propiedad intelectual sobre ella.

5°. Deberes del autor.

El autor se compromete a:
a) Garantizar que el compromiso que adquiere mediante el presente escrito no infringe ningún derecho de terceros, ya sean de propiedad industrial, intelectual o cualquier otro.
b) Garantizar que el contenido de las obras no atenta contra los derechos al honor, a la intimidad y a la imagen de terceros.
c) Asumir toda reclamación o responsabilidad, incluyendo las indemnizaciones por daños, que pudieran ejercitarse contra la Universidad por terceros que vieran infringidos sus derechos e
intereses a causa de la cesión.
d) Asumir la responsabilidad en el caso de que las instituciones fueran condenadas por infracción de derechos derivada de las obras objeto de la cesión.

6°. Fines y funcionamiento del Repositorio Institucional.

La obra se pondrá a disposición de los usuarios para que hagan de ella un uso justo y respetuoso con los derechos del autor, según lo permitido por la legislación aplicable, y con fines de estudio, investigación, o cualquier otro fin lícito. Con dicha finalidad, la Universidad asume los siguientes deberes y se reserva las siguientes facultades:
$>$ La Universidad informará a los usuarios del archivo sobre los usos permitidos, y no garantiza ni asume responsabilidad alguna por otras formas en que los usuarios hagan un uso posterior de las obras no conforme con la legislación vigente. El uso posterior, más allá de la copia privada, requerirá que se cite la fuente y se reconozca la autoría, que no se obtenga beneficio comercial, y que no se realicen obras derivadas.
> La Universidad no revisará el contenido de las obras, que en todo caso permanecerá bajo la responsabilidad exclusive del autor y no estará obligada a ejercitar acciones legales en nombre del autor en el supuesto de infracciones a derechos de propiedad intelectual derivados del depósito y archivo de las obras. El autor renuncia a cualquier reclamación frente a la Universidad por las formas no ajustadas a la legislación vigente en que los usuarios hagan uso de las obras.
> La Universidad adoptará las medidas necesarias para la preservación de la obra en un futuro.
$>$ La Universidad se reserva la facultad de retirar la obra, previa notificación al autor, en supuestos suficientemente justificados, o en caso de reclamaciones de terceros.

Madrid, a ..2...... de6.yo. \qquad de 2019

ACEPTA

Motivos para solicitar el acceso restringido, cerrado o embargado del trabajo en el Repositorio Institucional:

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título ...ROTATING ...COLL...SYSTEM...FOR ... MEARURIN.G.....PMOS....... en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el curso académico .2018/2019. es de mi autoría, original e inédito y no ha sido presentado con anterioridad a otros efectos. El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido tomada de otros documentos está debidamente referenciada.

Fdo.: Mariano Colmenar Cascón Fecha: 29..1 .05.1 2019

Autorizada la entrega del proyecto EL DIRECTOR DEL PROYECTO

Fdo.: Julio Lucas Torralba
Fecha:/ V1... 2019

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI) GRADO EN INGENIERÍA ELECTROMECÁNICA

Especialidad Electrónica

ROTATING COIL SYSTEM FOR MEASURING PMQS

Autor: Mariano Colmenar Cascón
Director: Julio Lucas Torralba

Madrid
Mayo 2019

SISTEMA DE MEDIDA DE PMQS POR BOBINA ROTATORIA

Autor: Colmenar Cascón, Mariano.
Director: Lucas Torralba, Julio.
Entidad colaboradora: Elytt Energy.

RESUMEN DEL PROYECTO

1. INTRODUCCIÓN

Este proyecto consiste en un sistema de bobina rotatoria que será usado para medir el campo magnético de PMQs (Cuadrupolo de Imán Permanente).

La idea general de la máquina es una mesa rotatoria que sostiene una bobina plana impresa en un PCB (Placa de Circuito Impreso) en posición vertical (Figura 1). La bobina estará colocada en el centro del PMQ, y tan pronto como esta empiece a girar, la variación del flujo magnético inducirá una tensión en la bobina rotatoria.

El PCB contiene dos bobinas independientes y opuestas. Las señales de tensión inducidas en cada bobina serán amplificadas directamente a través de un circuito en el PCB. Cuando las señales de estas dos bobinas se sumen, los términos de los harmónicos dipolares y cuadrupolares se anularán. Esta señal compensada también será amplificada a través de un circuito en el PCB y se obtendrá como una señal independiente con el sistema de adquisición de datos.

Figura 1: Partes principals del Sistema de bobina rotatoria
El gradiente integrado, error de los ejes y el roll serán calculados a partir de la señal de una de las dos bobinas independientes, mientras que el contenido harmónico será calculado a partir de la señal compensada.

Después de ser procesadas por medio de un análisis de Fourier, la señal de tensión será utilizada, junto con la posición angular de la mesa rotatoria, para calcular los harmónicos del campo magnético del PMQ.

La memoria de este proyecto está estructurada de la siguiente forma: primero, se introducirá el concepto de PMQ. A continuación, se explicará el proyecto LINAC 4 del CERN, y cómo
estos PMQs se utilizarán en él. Después, se realizará un estudio sobre las tecnologías existentes para la medida de PMQs, además de la motivación para llevar a cabo este proyecto.

A continuación, se explicará con detalle el desarrollo completo de la máquina, que incluirá: diseño inicial de la máquina, diseño de la bobina, circuito de amplificación y filtrado, encargo del PCB y soldadura de componentes, prototipado rápido con LEGO EV3, configuración de la mesa rotatoria y del sistema de adquisición de datos, diseño de la bancada y ensamblaje, y finalmnte, procesamiento de datos, calibración, pruebas y resultados.

La idea general de un PMQ (Cuadrupolo de Imán Permanente) (Figura 2) es un tipo de disposición de imanes en el que estos están colocados de tal forma que, cuando mirando a expansión planar del campo magnético, los términos significativos más bajos de las ecuaciones de campo son cuadrupolares, ya que los términos dipolares se cancelan.

Figura 2: Vista superior de un PMQ

2. ESTADO DEL ARTE Y MOTIVACIÓN DEL PROYECTO

Con respecto a la tecnología existente para la medida de PMQs , la sonda Hall es la alternativa más común al sistema de bobina rotatoria. Es además la tecnología que Elytt Energy utilizaba para la medida de PMQs hasta que este sistema de bobina rotatoria fue desarrollado.
La sonda Hall caracteriza el campo magnético a partir de la medida de tensión a través del cristal de la sonda Hall, esta tensión está provocada por el efecto Hall. (Figura 3)

Figura 3: Medida del efecto Hall por medio de sonda Hall [F3]
La sonda Hall, junto con un sistema de desplazamiento controlado por ordenador, proporciona un detallado mapa del campo del imán. Sin embargo, la principal desventaja de usar la sonda

Hall para medir PMQs es el largo tiempo requerido, que está comprendido entre 30 y 60 minutos para medir un único PMQ, sin ser capaz si quiera de extraer los harmónicos.

En conclusión, la principal razón por la que este proyecto se ha llevado a cabo es tener un sistema de medida rápido y preciso que permita identificar los harmónicos del campo de un PMQ, ya que la sonda Hall es muy lenta en comparación y no permite medir los harmónicos.

3. DESARROLLO DEL SISTEMA

En el proceso de diseñar el sistema podemos distinguir varias fases, que serán explicadas detalladamente en los apartados a continuación:

3.1. Diseño de la bobina plana

La "antena" del sistema está formada por dos bobinas planas, una interior y otra exterior, impresas en las cuatro capas de un PCB (Figura 4). La función de usar dos bobinas es medir la tensión individual inducida en cada bobina para obtener el harmónico principal del cuadrupolo (harmónico de segundo orden). Adicionalmente, para obtener los harmónicos de orden superior, se medirá la tensión total de las dos bobinas conectadas en anti-serie, que corresponde a la tensión resultante de la resta de las tensiones inducidas en cada bobina).

Figura 4: Capa de la bobina interior (Coil 1) y bobina exterior (Coil 2)

3.2. Diseño del circuito de amplificación y filtrado

Se necesitará utilizar un circuito de amplificación y filtrado antes de procesar la medida de la señal de tensión. El circuito estará formado por cuatro etapas: las dos primeras etapas (Al y A2) serán filtros paso bajo idénticos aplicados directamente a las señales de tensión medidas individualmente de la bobina interior (Coil 1) y exterior (Coil 2), la tercera etapa (A_{3}) y la cuarta etapa $\left(A_{4}\right)$ serán aplicadas a la señal de tensión compensada de las dos bobinas en antiserie. Se deberá determinar la frecuencia de corte y ganancia estática para las cuatro etapas.

Figura 5: Diagrama de Bode de A_{1} y A_{2} (izquierda) y diagrama de Bode de $A_{3} x A_{4}$ (derecha)

3.3. Diseño del PCB y soldadura de componentes

El siguiente paso fue diseñar el PCB (Placa de Circuito Impreso) por medio de una herramienta informática llamada KiCad. Una vez diseñado, se realizó el pedido del PCB y de los componentes. A continuación, los componentes fueron soldados en el PCB.

Figura 6: Vista general del diseño de PCB en KiCad

3.4. Prototipado rápido con LEGO EV3

Antes de continuar y comprar la mesa rotatoria, el sistema de adquisición de datos, fabricar las piezas y ensamblar la estructura completa, que supone un gran coste, se decidió montar un prototipo del sistema de bobina rotatoria usando piezas de LEGO (Figura 7) y realizar algunos experimentos midiendo señales de tensión. Se utilizó un servomotor LEGO EV3.

Figura 7: Prototipo del sistema con LEGO EV3

3.5. Configuración de la mesa rotatoria y del sistema de adquisición de datos:

Una vez puesto a prueba el prototipo, el siguiente paso fue configurar la mesa rotatoria, el controlador de movimiento, y el encoder. Se utilizó una mesa rotatoria Newport RGV100-BLS, y un controlador de movimiento Newport XPS-RL.

3.6. Diseño de la bancada

Diseñar una buena bancada (Figura 1) es crucial para la calidad del sistema de medida. Es imprescindible tener una estructura rígida y estable para minimizar el ruido en las señales medidas y para garantizar que el movimiento de la mesa rotatoria no causará vibraciones en la estructura que afecten a las mediciones.

3.7. Procesamiento de datos

Una vez recopiladas las medidas de la tensión inducida \in, la velocidad angular ω y la posición angular θ, se calcularán por medio de análisis de Fourier los coeficientes a_{n}, b_{n}, c_{n}, y el IG (Gradiente Integrado). Todos estos cálculos se realizarán utilizando Matlab.

4. PRUEBAS, RESULTADOS, Y CALIBRACIÓN

Se hicieron muchas pruebas con el fin de asegurar el mínimo error a la hora de realizar las medidas. La calibración del sistema de bobina rotatoria se realizó midiendo 15 PMQs con este nuevo sistema y comparando las medidas con las anteriores realizadas con sonda Hall.

Una vez calibrado el sistema, la máxima diferencia en el IG (Gradiente Integrado) entre las medidas por bobina rotatoria y por sonda Hall fue inferior al 0.15\% (Figura 8), para cada uno de los 15 PMQs, cumpliendo satisfactoriamente los requisitos.

Figura 8: Calibración del IG
En cuanto a los errores en los ejes x e y, la Figura 9 muestra la correlación entre las medidas por bobina rotatoria y por sonda Hall. Se puede apreciar una mayor dispersión en las medidas realizadas por bobina rotatoria, que es significativamente mayor en la dirección horizontal x.

Figura 9: Calibración del eje X (izquierda) y calibración del eje Y (derecha)

Con respecto al roll, los resultados de las medidas por bobina rotatoria concuerdan bastante en el roll con las medidas por sonda Hall.

5. CONCLUSIÓN

El funcionamiento de este sistema de medida de PMQs por bobina rotatoria cumple con todos los requisitos y objetivos, haciendo posible identificar los harmónicos del campo de un PMQ en menos de un minuto.

6. REFERENCIAS

[F3] https://www.electronics-tutorials.ws/electromagnetism/hall-effect.html

ROTATING COIL SYSTEM FOR MEASURING PMQS

Author: Colmenar Cascón, Mariano.
Director: Lucas Torralba, Julio.
Collaborating entity: Elytt Energy.

Abstract

\section*{1. INTRODUCTION}

This project is a rotating coil system which will be used for measuring the magnetic field of Permanent Magnet Quadrupoles (PMQs).

The general idea of the machine is a rotation stage which holds a flat coil printed on a PCB (printed circuit board) in a vertical position (Figure 1). The coil is placed in the center of the PMQ, and as soon as the coil starts turning, the variation of magnetic flux will induce a voltage in the rotating coil.

The PCB has two independent opposite coils. The voltage signals induced in each coil are preamplified directly in the PCB. When the signals of these two coils are added, the dipolar and quadrupolar harmonic terms cancel out. This compensated signal is also amplified in the PCB circuit and is obtained as an independent signal with the data acquisition device.

Figure 1: Main parts of the rotating coil system

The integrated gradient, axis error and roll can be obtained from the signal of one of the coils. The harmonic content can be obtained from the compensated signal.

After being processed with Fourier analysis, the signal will be used, together with the angle position of the rotation stage, to calculate the harmonics of the PMQ's magnetic field.

The memory for this project is structured in the following way: firstly, the concept of PMQ will be introduced (magnetic field and flux description, equations derivation and specific applications). Then, CERN's project LINAC 4 will be explained, as well as how these PMQs will be used in it. After that, a research on the already existing technologies for measuring PMQs will be illustrated, along with the motivation for carrying out this project.

Consecutively, the development of the entire machine will be explained in detail, this involves: initial design of the machine, coil design, filtering and amplification circuit, ordering the PCB and component soldering, LEGO EV3 rapid prototyping, rotation stage configuration and data acquisition, design of the bedplate and assembly, and finally, data processing, calibration, tests, and results.

Finally, some concluding remarks will be presented in the last section of the memory.
The general idea of a PMQ (Permanent Magnet Quadrupole) (Figure 2) is a type of magnet layout in which the magnets are placed in such way that, when looking at the planar expansion of the magnetic field, the lowest significant terms of the field equations are quadrupole, since the dipole terms cancel out.

Figure 1:Top view of a PMQ

2. STATE OF THE ART AND PROJECT MOTIVATION

Regarding already existing technologies, the Hall probe is the most commonly used alternative to the rotating coil system for measuring PMQs. It is also the technology that Elytt Energy used for measuring PMQs until this rotating coil system was developed.
The Hall probe measures the magnetic field by measuring the voltage across the crystal in the Hall probe, this voltage is caused by the Hall effect (Figure 3).

Figure 3: Measuring the Hall effect voltage with a Hall sensor [F3]
The Hall probe, combined with a computer-controlled displacement system, provides a detailed field map of the magnet. However, the main drawback of using the Hall probe to measure PMQs is the long time required, taking from 30 to 60 minutes to measure a single PMQ , not being able to analyze all harmonics. Whereas this rotating coil system only takes 1
minute to measure each PMQ, making it possible to save an enormous amount of time and fully analyze field harmonics.
In conclusion, the main reason for carrying out this project is to have a fast, accurate system that can identify all field harmonics of a PMQ, given that the Hall probe is comparatively slow and does not allow to measure field harmonics.

3. DEVELOPMENT OF THE SYSTEM

In the process of designing the system different phases can be distinguished, which are explained with detail in the following sections:

3.1. Flat coil design

The "antenna" of the system is formed by two flat coils, an internal coil and an external coil, printed in four layers of a PCB (Figure 4). The purpose of using two coils is to measure the individual voltage induced in each coil to acquire the main harmonic of the quadrupole (the second order harmonic). Additionally, in order to acquire the higher order harmonics, the overall voltage of both coils connected in anti-series is measured (the resulting subtraction of the voltages induced in each coil).

Figure 4: A layer of Coil 1 and Coil 2

3.2. Design of the filter and amplifier circuit

The use of an amplifier and filter circuit is required before processing the measured voltage signal. The circuit is formed by four stages: the first two stages $\left(A_{1}\right.$ and $\left.A_{2}\right)$ are two identical low pass filters applied directly to the voltage signals measured individually from Coil 1 and Coil 2, stage $3\left(A_{3}\right)$ and stage $4\left(A_{4}\right)$ are applied to the compensated anti-series voltage signal. For all four stages a cutoff frequency and a static gain is determined.

Figure 5: Bode plot of stages A_{1} and A_{2} (left) and Bode plot of stage $A_{3} x A_{4}$ (right)

3.3. PCB design and component soldering

The next step was to design the PCB (Printed Circuit Board) and do the layout using a CAD tool called KiCad. Once it had been designed, the PCB and components were ordered. Then, the components were soldered onto the PCB.

Figure 6: Overall view of the PCB KiCad design

3.4. Rapid prototyping with LEGO EV3

Before proceeding to buy the rotation stage, the data acquisition, manufacture and assemble the entire structure, given the very high price, a decision was made concluding that it would be best to do a LEGO prototype of the rotating coil system (Figure 7) and run some experiments by measuring voltage signals. A LEGO EV3 servomotor was used.

Figure 7: Prototype of the system with LEGO EV3

3.5. Rotation stage and data acquisition setup:

Once the prototype had been tested, the next step was to set up the rotation stage, the motion controller and encoder. A Newport RGV100-BLS rotation stage was used, and a Newport XPS$R L$ motion controller.

3.6. Bedplate design

Designing a good bedplate (Figure 1) was crucial for the quality of the measuring system. A highly stiff and stable structure is desired in order to minimize the noise in the measured signals and to assure that the motion of the rotation stage will not cause undesired vibrations in the structure and will not affect the measurements.

3.7. Data processing

After gathering the measurements of the induced voltage ϵ, the rotating speed ω and the angle θ, coefficients a_{n}, b_{n}, c_{n}, and IG (Integrated Gradient) are calculated through Fourier analysis. All of these calculations are made using Matlab.

4. TESTS, RESULTS, AND CALIBRATION

Many tests and experiments needed to be done to ensure the minimum error when measuring. Calibration of the rotating coil system was made by measuring 15 PMQs with this new system and comparing the measurements with the previous Hall probe measurements.
Once the rotating coil system was calibrated, the maximum difference in IG (Integrated Gradient) between the rotating coil measurements and Hall probe measurements was successfully less than 0.15%, for all 15 PMQs (Figure 8).

Figure 8: IG calibration

Regarding the x and y axis errors, Figure 9 shows that the rotating coil measurements are correlated to the Hall probe measurements, although the results obtained using the rotating coil have a larger dispersion, which is significantly higher in the horizontal direction x.

Figure 9: X axis calibration (left) and Y axis calibration (right)

Finally, regarding the roll, the results of the rotating coil measurements show a good roll agreement with the Hall probe measurements.

5. CONCLUSION

The operation of this rotating coil system for measuring PMQs has successfully met all of the requirements and accomplished the main objectives. And made it possible to identify the field harmonics of a PMQ in less than one minute.

6. REFERENCES

[F3] https://www.electronics-tutorials.ws/electromagnetism/hall-effect.html

DOCUMENT 1

MEMORY

TABLE OF CONTENTS

PART I: MEMORY. 1

1. INTRODUCTION 2
1.1. PERMANENT MAGNET QUADRUPOLES 4
1.1.1. INTRODUCTION TO PMQS. 4
1.1.2. MAGNETIC FIELD OF A QUADRUPOLE 4
1.1.3. LORENTZ FORCES 6
1.1.4. GENERAL MULTIPOLE EXPANSION 8
1.1.5. CYLINDRICAL COORDINATES REPRESENTATION 9
1.1.6. INTRODUCTION TO ACCELERATOR OPTICS 12
1.1.7. QUADRUPOLES IN PARTICLE ACCELERATORS 14
1.2. CERN: THE CLIENT 17
1.2.1. LINAC 4 18
2. STATE OF THE ART AND PROJECT MOTIVATION. 19
2.1. STATE OF THE ART. 19
2.2. MOTIVATION AND OBJECTIVES 21
3. DEVELOPMENT OF THE SYSTEM 22
3.1. FLAT COIL DESIGN 22
3.2. DESIGN OF THE FILTER AND AMPLIFIER CIRCUIT 29
3.3. PCB DESIGN AND COMPONENT SOLDERING. 39
3.4. RAPID PROTOTYPING WITH LEGO EV3 41
3.5. ROTATION STAGE AND DATA ACQUISITION SETUP 42
3.6. BEDPLATE DESIGN 44
3.7. DATA PROCESSING 47
4. TESTS, RESULTS, AND CALIBRATION. 51
4.1. IG (INTEGRATED GRADIENT) CALIBRATION 52
4.2. AXIS 53
4.3. ROLL 55
4.4. HARMONICS COMPARISON 56
4.5. IG TEMPERATURE DEPENDENCE 57
5. CONCLUSION 58
REFERENCES 59
TEXT REFERENCES 59
FIGURE REFERENCES 61
TABLE REFERENCES 63
PART II: ANNEXES 64
ANNEX I: Octave script for calculating coil parameters 65
Annex II: TCL script used for controlling the rotation stage and gather data 68
Annex III: Bill of Materials for amplifier and filter circuit 70
Annex IV: Matlab script used for data processing and calibration. 71
Annex V: Measurement results of Tank 3 76
Annex VI: Measurement results of Tank 4 78

TABLE OF TABLES

Table 1: CERN specifications for Permanent Magnet Quadrupoles [T1] 17
Table 2: Harmonics comparison between Elytt Energy's rotating coil system and BARC's 56
Table 3: IG temperature dependence 57

TABLE OF FIGURES

Figure 1: Main parts of the rotating coil system 3
Figure 2:Top view of a PMQ 4
Figure 3: Cross-section of a quadrupole magnet [F3] 5
Figure 4: Magnetic field lines of an ideal quadrupole [F4] 6
Figure 5: Path of integration used to relate g and I [F5] 6
Figure 6: Cylindrical coordinate system used for multipole expansion [F6] 9
Figure 7: Guidance of particles along a curved design orbit [F7] 12
Figure 8: Geometrical focusing in a homogenous magnetic field [F8] 13
Figure 9: Illustrating the circular shape of a particle accelerator [F9] 13
Figure 10: Alternating gradient focusing [F10] 14
Figure 11: Focusing field in the y axis [F11] 15
Figure 12: Defocusing field in the x axis [F12] 15
Figure 13: Net focusing effect of two equally strong but opposite quadrupoles [F13] 16
Figure 14: Quadrupole field and Lorentz forces [F14] 16
Figure 15: Linear accelerator LINAC 4 [F15] 18
Figure 16: Measuring the Hall effect voltage with a Hall sensor [F16] 20
Figure 17: Measurement of PMQ with Hall probe at Elytt Energy [F17] 20
Figure 18: Hall probe bench for measuring PMQ at Elytt Energy [F18] 21
Figure 19: Coordinate system referred to the rotating coil 23
Figure 20: Section of the coil. Coil 1 in blue and Coil 2 in red 27
Figure 21: Coil 1 and Coil 2 front copper layer 28
Figure 22: Coil 1 and Coil 2 inner copper layer 1 28
Figure 23: Coil 1 and Coil 2 inner copper layer 2 28
Figure 24: Coil 1 and Coil 2 back copper layer 28
Figure 25: Coil 1 and Coil 2 with a closer look 28
Figure 26: Circuit schematic for stages A_{1} and A_{2} 30
Figure 27: Bode plot of stages A_{1} and A_{2} 33
Figure 28: Circuit schematic for stages A_{3} and A_{4} 34
Figure 29: Octave code for calculating the maximum overall output voltage 36
Figure 30: Bode plot of stage A_{3} 37
Figure 31: Bode plot of stage A_{4} 37
Figure 32: Bode plot of stage $A_{t}=A_{3} * A_{4}$ 38
Figure 33: Schematic of the entire circuit 38
Figure 34: Octave code used for drawing the coil footprints on KiCad 39
Figure 35: Final PCB layout with all component footprints 40
Figure 36: Real picture of the PCB component layout 40
Figure 37: Overall view of the PCB KiCad design 41
Figure 38: Real picture of the overall final PCB 41
Figure 39: Prototype of the system with LEGO EV3 42
Figure 40: Newport RGV100-BLS rotation stage 43
Figure 41: Newport XPS-RL motion controller. 44
Figure 42: Mole used to couple the PCB to the rotation stage. 45
Figure 43: Picture of the bedplate 45
Figure 44: Overview of the bedplate 46
Figure 45: Rotating coil IG calibration 52
Figure 46: Coordinate system used for measuring PMQs [F46] 53
Figure 47: X axis error comparison 53
Figure 48: Y axis error comparison 54
Figure 49: Roll 1 comparison 55
Figure 50: Roll 2 comparison 55
Figure 51: Harmonics (c_{3}) comparison between rotating coil and Hall probe. 56
Figure 52: Harmonics (c_{4}) comparison between rotating coil and Hall probe. 57
Figure 53: Overview of the rotating coil system 58

PART I: MEMORY

1. INTRODUCTION

This project is a rotating coil system which will be used for measuring the magnetic field of Permanent Magnet Quadrupoles (PMQs).

The general idea of the machine is a rotation stage which holds a flat coil printed on a PCB (printed circuit board) in a vertical position (Figure 1). The coil is placed in the center of the PMQ, and as soon as the coil starts turning, the variation of magnetic flux will induce a voltage in the rotating coil.
The PCB has two independent opposite coils. The voltage signals induced in each coil are pre-amplified directly in the PCB. When the signals of these two coils are added, the dipolar and quadrupolar harmonic terms cancel out. This compensated signal is also amplified in the PCB circuit and is obtained as an independent signal with the data acquisition device.

The integrated gradient, axis error and roll can be obtained from the signal of one of the coils. The harmonic content can be obtained from the compensated signal.

After being processed with Fourier analysis, the signal will be used, together with the angle position of the rotation stage, to calculate the harmonics of the PMQ's magnetic field.

Figure 1: Main parts of the rotating coil system
This memory is structured in the following way: firstly, the concept of PMQ will be introduced (magnetic field and flux description, equations derivation and specific applications). Then, CERN's project LINAC 4 will be explained, as well as how these PMQs will be used in it. After that, a research on the already existing technologies for measuring PMQs will be illustrated, along with the motivation for carrying out this project.

Consecutively, the development of the entire machine will be explained in detail, this involves: initial design of the machine, coil design, filtering and amplification circuit, ordering the PCB and component soldering, LEGO EV3 rapid prototyping, rotation stage configuration and data acquisition, design of the bedplate and assembly, and finally, data processing, calibration, tests, and results.

Finally, some concluding remarks will be presented in the last section of this memory.

1.1. PERMANENT MAGNET QUADRUPOLES

1.1.1. INTRODUCTION TO PMQS

A PMQ (Permanent Magnet Quadrupole) is a type of magnet layout in which the magnets are placed in such way that, when looking at the planar expansion of the magnetic field, the lowest significant terms of the field equations are quadrupole, since the dipole terms cancel out. [WIKI01]

Figure 2:Top view of a PMQ
PMQs are widely used to focus beams of charged particles in particle accelerators, given the rapid growth of its magnetic field's magnitude with the radial distance from the central axis.

1.1.2. MAGNETIC FIELD OF A QUADRUPOLE

In order to illustrate the magnetic field of a quadrupole, an electromagnetic quadrupole will be used as shown in the figure bellow.

Figure 3: Cross-section of a quadrupole magnet [F3]

Given the polarity in the figure above, the horizontal component of the Lorentz force applied to a positively charged particle, moving into the plane of the drawing, will be directed towards the axis, whereas the vertical component will be directed away from it. Hence, the magnet shown will focus along the horizontal direction, and will defocus along the vertical direction. In case the direction of motion of the particle, the particle's charge, or the current direction were to be reversed, the exact opposite phenomenon will take place [TURN94].

The magnetic field is linear as it deviates from the axis:

$$
\begin{equation*}
B_{z}=-g x, \quad B_{x}=-g z \tag{1.1}
\end{equation*}
$$

In the air space of the magnet the Maxwell equation applies:

$$
\begin{equation*}
\nabla \times B=0 \tag{1.2}
\end{equation*}
$$

The field can be expressed as the gradient of a potential:

$$
\begin{equation*}
B=-\nabla V, \text { s.t } V(x, z)=g x z \tag{1.3}
\end{equation*}
$$

In a quadrupole, equipotential lines have the shape of hyperbolas such that $x z=$ constant, being the field lines perpendicular to these hyperbolas [TURN94].

Figure 4: Magnetic field lines of an ideal quadrupole [F4]

1.1.3. LORENTZ FORCES

The following theorem relates the gradient g and the current I that flows through the coils [TURN94]:

$$
\begin{equation*}
\oint H \cdot d s=n I \tag{1.4}
\end{equation*}
$$

Given the following path of integration:

Figure 5: Path of integration used to relate g and I [F5]

Using equation (1.4) and the path of integration in Figure 5:

$$
\begin{equation*}
n I=\oint H \cdot d s=\int_{0}^{R} H(r) d r+\int_{1}^{2} H_{E} \cdot d s+\int_{2}^{0} H \cdot d s \tag{1.5}
\end{equation*}
$$

In equation (1.5), the second integral is very small for $\mu_{r} \gg 1$, and since H is perpendicular to $d s$, the third integral also disappears, leaving the first integral as the only path $H(r)=g r / \mu_{o}$. This leaves us with the following:

$$
\begin{gather*}
n I=\frac{1}{\mu_{o}} \int_{0}^{R} g r d r \quad r=\sqrt{x^{2}+z^{2}} \\
g=\frac{2 \mu_{o} n I}{R^{2}} \tag{1.6}
\end{gather*}
$$

The next step is to relate the field strength to its optical effect. In order to do this, the field gradient g must be normalized to the particle momentum p by using equation (1.7), in which e denotes the particle charge. This way the quadrupole strength is defined:

$$
\begin{equation*}
k\left[m^{-2}\right]=\frac{e g}{p} \tag{1.7}
\end{equation*}
$$

The focal length f of the quadrupole is given by the following equation (1.8), with l being the length of the quadrupole.

$$
\begin{equation*}
\frac{1}{l}=k \cdot f \tag{1.8}
\end{equation*}
$$

The horizontal and vertical Lorentz forces result:

$$
\begin{align*}
& F_{x}=e v B_{z}(x, z)=-e v g x \\
& F_{z}=-e v B_{x}(x, z)=e v g z \tag{1.9}
\end{align*}
$$

Equation (1.9) reflects that both vertical and horizontal components of the Lorentz force are independent. The vertical Lorentz force component only depends on the vertical position, whereas the horizontal Lorentz force component only depends on the horizontal position [TURN94].

1.1.4. GENERAL MULTIPOLE EXPANSION

Firstly, note that what had been called coordinate z in sections 1.1.2 and 1.1.3 will now be called coordinate y, in order to keep the conventional notation $z=x+y i$ for complex numbers [TURN94].

Modern accelerator magnets usually have a much larger length than their bore radius. It is a fair approximation to ignore the end field contribution and take into account only transverse components.

The theory of analytic functions can be applied for two-dimensional fields such that:

$$
\operatorname{div} B=0
$$

Then a vector potential A exists such that:

$$
\begin{equation*}
B=\operatorname{rot} A \tag{1.10}
\end{equation*}
$$

Since only the transverse components of the field are considered, as explained before, the vector potential only has a component A_{s} in the longitudinal direction s. Additionally, in vacuum, as present in the inside of a particle accelerator beam pipe, the following equation applies:

$$
\operatorname{rot} B=0
$$

This way B can also be expressed as the gradient of a scalar potential V :

$$
\begin{equation*}
B=-\operatorname{grad} V \tag{1.11}
\end{equation*}
$$

Combining (1.10) and (1.11):

$$
\begin{equation*}
B_{x}=-\frac{\partial V}{\partial x}=\frac{\partial A_{s}}{\partial y} \quad B_{y}=-\frac{\partial V}{\partial y}=-\frac{\partial A_{s}}{\partial x} \tag{1.12}
\end{equation*}
$$

Equations (1.12) are the Cauchy-Riemann conditions for the real and imaginary part of an analytic function.

GRADO EN INGENIERÍA ELECTROMECÁNICA

Next, a complex potential function \tilde{A} of the form $z=x+i y$ is defined:

$$
\begin{equation*}
\tilde{A}(z)=A_{s}(x, y)+i V(x, y) \tag{1.13}
\end{equation*}
$$

In conclusion, the complex potential is an analytic function and so it can be expanded as the following series

$$
\begin{equation*}
\tilde{\mathrm{A}}(z)=\sum_{n=0}^{\infty} k_{n} z^{n} \quad k_{n}=\lambda_{n}+i \mu_{n} \tag{1.14}
\end{equation*}
$$

in which λ_{n} and μ_{n} are real constants [TURN94].

1.1.5. CYLINDRICAL COORDINATES REPRESENTATION

In the following chapters of this report, a large majority of the equations will be expressed in cylindrical coordinates (r, φ, s) for practical purposes [TURN94].

$$
\begin{equation*}
x=r \cos \varphi \quad y=r \sin \varphi \quad z^{n}=r^{n} \cdot e^{i n \varphi}=r^{n}(\cos n \varphi+i \sin n \varphi) \tag{1.15}
\end{equation*}
$$

Figure 6: Cylindrical coordinate system used for multipole expansion [F6]

The scalar potential V is given by:

$$
\begin{equation*}
V(r, \varphi)=\sum_{n=0}^{\infty}\left(\mu_{n} \cos n \varphi+\lambda_{n} \sin n \varphi\right) r^{n} \tag{1.16}
\end{equation*}
$$

The longitudinal component A_{s} of the vector potential is given by:

$$
\begin{equation*}
A_{s}(r, \varphi)=\sum_{n=0}^{\infty}\left(\lambda_{n} \cos n \varphi-\mu_{n} \sin n \varphi\right) r^{n} \tag{1.17}
\end{equation*}
$$

The gradient of $-V(r, \varphi)$ leads to the multipole expansion of the radial and azimuthal field components:

$$
\begin{align*}
& B_{r}=-\frac{\partial V}{\partial r}=-\sum_{n=1}^{\infty} n\left(\mu_{n} \cos n \varphi+\lambda_{n} \sin n \varphi\right) r^{n-1} \tag{1.18}\\
& B_{\varphi}=-\frac{1}{r} \frac{\partial V}{\partial \varphi}=-\sum_{n=1}^{\infty} n\left(\lambda_{n} \cos n \varphi-\mu_{n} \sin n \varphi\right) r^{n-1} \tag{1.19}
\end{align*}
$$

$B_{\text {main }}$ is now defined as the magnitude of the main field component of the magnet. Additionally, a reference radius r_{o} is defined for the multipole expansion.
In the following equations the normal multipole coefficients b_{n} and the skew coefficients a_{n} are introduced:

$$
\begin{equation*}
b_{n}=-\frac{n \lambda_{n}}{B_{\text {main }}} r_{o}^{n-1} \quad a_{n}=+\frac{n \mu_{n}}{B_{\text {main }}} r_{o}^{n-1} \tag{1.20}
\end{equation*}
$$

The multiple expansions result in the following expressions:

$$
\begin{align*}
& V(r, \varphi)=-B_{\text {main }} r_{o} \sum_{n=1}^{\infty}\left(-\frac{a_{n}}{n} \cos n \varphi+\frac{b_{n}}{n} \sin n \varphi\right)\left(\frac{r}{r_{o}}\right)^{n} \tag{1.21}\\
& A_{s}(r, \varphi)=-B_{\text {main }} r_{o} \sum_{n=1}^{\infty}\left(\frac{b_{n}}{n} \cos n \varphi+\frac{a_{n}}{n} \sin n \varphi\right)\left(\frac{r}{r_{o}}\right)^{n} \tag{1.22}\\
& B_{\varphi}(r, \varphi)=B_{\text {main }} \sum_{n=1}^{\infty}\left(b_{n} \cos n \varphi+a_{n} \sin n \varphi\right)\left(\frac{r}{r_{o}}\right)^{n-1} \tag{1.23}\\
& B_{r}(r, \varphi)=B_{\text {main }} \sum_{n=1}^{\infty}\left(-a_{n} \cos n \varphi+b_{n} \sin n \varphi\right)\left(\frac{r}{r_{o}}\right)^{n-1} \tag{1.24}
\end{align*}
$$

In the equations shown above, V denotes the scalar potential, A_{s} denotes the longitudinal component of the vector potential, B_{φ} denotes the azimuthal component of the magnetic field, and B_{r} denotes the radial component of the magnetic field.

Also note that b_{o} and a_{o} are set to zero since they do not contribute to the magnetic field.

For all equations derived in this section, the value of n determines the $2 n$-pole. More specifically, for an ideal $2 n$-pole magnet: $b_{n}=1$, being all other $a_{n}, b_{n}=0$.

The names given to magnets and their corresponding n values are:

$$
\begin{array}{ll}
n=1 & \text { Dipole } \\
n=2 & \text { Quadrupole } \\
n=3 & \text { Sextupole } \\
n=4 & \text { Octupole } \\
n=5 & \text { Decapole } \\
n=6 & \text { Dodecapole }
\end{array}
$$

This means that for the particular case of a quadrupole, $n=2$ in all equations.
Expressing the magnetic field B in a standard complex number form $B_{\varphi}+i B_{r}$ [TURN94]:
$B_{\varphi}+i B_{r}=B_{\text {main }} \sum_{n=1}^{\infty}\left(\frac{r}{r_{o}}\right)^{n-1}\left[b_{n}(\cos n \varphi+i \sin n \varphi)-i a_{n}(\cos n \varphi+i \sin n \varphi)\right]$
$B_{\varphi}+i B_{r}=B_{\text {main }} \sum_{n=1}^{\infty}\left(\frac{r}{r_{o}}\right)^{n-1}\left(b_{n}-i a_{n}\right) e^{i n \varphi}$

Hence:
$(|B|)_{n}=\left(\sqrt{B_{r}^{2}+B_{\varphi}^{2}}\right)_{n}=B_{\text {main }}\left(\frac{r}{r_{o}}\right)^{n-1} \sqrt{a_{n}^{2}+b_{n}^{2}}$

1.1.6. INTRODUCTION TO ACCELERATOR OPTICS

[TURN94] In any accelerator, it is desired that all particles move along one specific path, this path is called the design orbit (Figure 7). This design orbit may be curved for various purposes, in which case bending forces are required to keep the particles moving along the desired design orbit.
Of course, this is the ideal case, in reality most particles in the beam will always be deviated from the design orbit to some degree. These deviations must be kept small along the whole orbit, which could reach $10^{10} \mathrm{~km}$ in a storage ring. In order to achieve this, focusing forces are required.
The way of accomplishing both bending and focusing forces is using electromagnetic fields, given the definition of the Lorentz force:

$$
\begin{equation*}
F=e(E+v \times B) \tag{1.28}
\end{equation*}
$$

Due to the large velocities $\mathrm{v} \approx \mathrm{c}$, only transverse magnetic fields are considered, given that a moderately strong magnetic field of 1 Tesla would correspond to a very strong electric field of $3 \times 10^{8} \mathrm{~V} / \mathrm{m}$.

Figure 7: Guidance of particles along a curved design orbit [F7]

Depending on the magnitude of the focusing forces, a distinction can be made between strong focusing and weak focusing.

Weak focusing, also called geometrical focusing, is achieved by exposing the particles to uniform magnetic fields that make them move in circular paths due to the Lorentz force (1.28). This means that in a homogenous magnetic field all plane orbits are circles, so particles diverging from one point will meet again after 180° of revolution, as seen in Figure 8.

Figure 8: Geometrical focusing in a homogenous magnetic field [F8]

Nevertheless, deviations exist between these orbits. If the motion is stable, restoring forces will arise for small deviations in the particles from the design orbit. These restoring forces lead to oscillations around the design orbit, which are called betatron oscillations.

However, there is one major drawback when applying weak focusing: the circumference of the particle accelerator is smaller than the betatron oscillation wavelength, which means that for a large circumference, large deviations from the design orbit will take place.

Figure 9: Illustrating the circular shape of a particle accelerator [F9]

Strong focusing is used in most modern particle accelerators. The purpose of strong focusing is to make the particle beam converge by making the particles pass through a series of alternating field gradients, as can be seen in Figure 10. This process is also called alternating-gradient focusing.

Figure 10: Alternating gradient focusing [F10]

Figure 10 reveals an arrangement of quadrupole magnets that provides a net focusing in both planes (strong focusing). Dipoles are used for keeping the particles on the circular orbit. Alternating focusing quadrupoles and defocusing quadrupoles ends up focusing in both planes [TURN94].

1.1.7. QUADRUPOLES IN PARTICLE ACCELERATORS

In this section an explanation on how quadrupoles contribute to strong focusing will be given, a concept that was introduced in the previous section.

Figure 11 illustrates an electron exposed to a quadrupole magnetic field on the positive y axis. According to the Lorentz force, the electron bends towards the z axis (which represents the desired path or design orbit), resulting in a focusing effect. [HOCK10]

Figure 11: Focusing field in the y axis [F11]

On the other hand, when looking at the effect of this quadrupole's field along the x axis (Figure 12), the Lorentz force makes the electron move away from the desired path (z axis), resulting in a defocusing effect.

Figure 12: Defocusing field in the x axis [F12]

In conclusion, this quadrupole is focusing along the y direction, and defocusing along the x direction.

A new quadrupole is now placed separated from the previous one [HOCK10]. This quadrupole's magnetic field behaves the opposite to the first one, so it focuses the electrons along the x axis, and defocuses along the y axis. If the magnitude of both
quadrupole's fields is the same, the total resulting effect on an electron will be focusing, along both axes x and y (Figure 13).

Figure 13: Net focusing effect of two equally strong but opposite quadrupoles [F13]

The names give to these two types of quadrupoles are: F quadrupoles (which are focusing along the x direction and defocusing along the y direction), and D quadrupoles (which are focusing along the y direction and defocusing along the x direction).

Figure 14: Quadrupole field and Lorentz forces [F14]

Figure 14 illustrates the effect of a quadrupole on a positively charged particle moving into the image. Thus, this quadrupole is focusing in the y direction and defocusing on the x direction and hence, a D quadrupole [WIKIO1]

1.2. CERN: THE CLIENT

The European Organization for nuclear research, known as CERN, is the world's largest particle physics laboratory. Founded in 1954, it is located next to the FrancoSwiss border, close to Geneva. [WIKI02]

CERN's ultimate goal is to study the basic constituents of matter: fundamental particles. To achieve this, subatomic particles are made to collide with each other at high velocities close to the speed of light. By studying the interaction of these subatomic colliding particles, much knowledge can be acquired about the fundamental laws of the Universe. [CERN01]

The main instruments used in CERN are particle accelerators and detectors. The mission of particle accelerators is to boost beams of particles to high energies before making them collide. Whereas the purpose of detectors is to record and analyze collisions.

CERN Specifications	Family 1	Family 2
Integrated Gradient, Max	3,6 Tesla	4,0 Tesla
Integrated Gradient, Min	2,0 Tesla	2,0 Tesla
Length	45 mm	80 mm
Inner diameter	22 mm	22 mm
Outer diameter before final machining	61 mm	61 mm
Final outer diameter	60 mm	60 mm
Gradient integral error (rms)	$\pm 0,5 \%$	$\pm 0,5 \%$
Magnetic versus geometric axis	$<0,1 \mathrm{~mm}$	$<0,1 \mathrm{~mm}$
Harmonic content at 7.5 mm radius: Bn/B2 for $\mathrm{n}=3,4, \ldots$	<0.01	<0.01
Yaw/pitch/roll:	1 mrad	1 mrad

Table 1: CERN specifications for Permanent Magnet Quadrupoles [T1]

Permanent Magnet Quadrupoles (PMQs) are used in CERN's particle accelerators (specifications shown in Table 1) for strong focusing.

1.2.1. LINAC 4

LINAC 4 is a linear accelerator developed by CERN with the mission of boosting negative hydrogen ions to high energies, and will become the source of proton beams for the Large Hadron Collider (LHC). LINAC 4 is 86 meters long and it's located 12 meters below ground.
LINAC 4 accelerates negative hydrogen ions $\left(\mathrm{H}^{-}\right.$, formed by adding one additional electron to a hydrogen atom) up to 160 MeV , this way it prepares the ions to enter the Proton Synchrotron Booster, which is part of the LHC injection chain. The pulse of these Negative hydrogen ions as they pass through the accelerator is as low as 400 microseconds at a time.

The linear accelerator is formed by cylindrical conductors. The hydrogen ions pass through these conductors, which are alternately charged positive and negative (the accelerator charges these conductors by using radiofrequency cavities). The ions are accelerated when they get pushed by the conductors behind them and pulled by the conductors ahead of them. [CERN02]

Figure 15: Linear accelerator LINAC 4 [F15]

The role played by quadrupole magnets (Elytt Energy's manufactured PMQs) is to ensure that the hydrogen ions remain in a tight beam at all times.

2. STATE OF THE ART AND PROJECT MOTIVATION

2.1. STATE OF THE ART

Regarding already existing technologies, the Hall probe is the most commonly used alternative to the rotating coil system for measuring PMQs. It is also the technology that Elytt Energy used for measuring PMQs until this rotating coil system was developed.

A Hall probe is formed by a semiconductor crystal used as a sensor, which is built onto an aluminum plate. The probe is designed in such a way that the semiconductor crystal is placed perpendicularly to the handle. All connections from the crystal to the circuit go through the handle. This handle does not cause any disturbance on the measurements and field, since it is made of a non-ferrous material. [ELEC01]

The Hall probe measures the magnetic field by measuring the voltage across the crystal caused by the Hall effect. The Hall effect takes place when a conductor (the crystal) passes through a homogenous magnetic field. In this scenario, a Lorentz force is applied the charge carriers in the conductor, due to the natural electron drift of these charge carriers. This Lorentz force results in a separation or charges, with an accumulation of positive or negative charges on the top or the bottom of the plate, resulting in what is known as Hall effect voltage. [HYPE01]

Figure 16: Measuring the Hall effect voltage with a Hall sensor [F16]

Going back to the Hall probe, the crystal is exposed to a magnet's uniform field, additionally, a current is made pass through the crystal. This results in a Hall effect voltage across the crystal, which is proportional and leads to the magnetic field strength. Whenever the field lines pass at a 90° angle through the sensor (crystal) of the probe, the probe measures the value of the magnetic flux density (B).

Figure 17: Measurement of PMQ with Hall probe at Elytt Energy [F17]
The Hall probe, combined with a computer-controlled displacement system, provides a detailed field map of the magnet. However, the main drawback of using the Hall probe to measure PMQs is the long time required, taking from 30 to 60 minutes to measure a single PMQ, not being able to analyze all harmonics. Whereas
this rotating coil system only takes 1 minute to measure each PMQ, making it possible to save an enormous amount of time and fully analyze field harmonics.

Figure 18: Hall probe bench for measuring PMQ at Elytt Energy [F18]

2.2. MOTIVATION AND OBJECTIVES

The main reason for carrying out this project is to have a fast, accurate system that can identify all field harmonics of a PMQ, given that the Hall probe is comparatively slow and does not allow to measure field harmonics. Elytt Energy designs and manufactures PMQ's, therefore strict requirements demanded by clients must be met. It is essential to provide the most accurate information to clients, including the field harmonics. For measuring these harmonics, an accurate rotating coil system is required. The objectives pursued for this rotating coil system are the following:

- To save time and money by measuring our PMQs at Elytt Energy's own facilities with a rotating coil system, instead of having them measured elsewhere. Having another company measure the PMQ's field harmonics is both slow and expensive.
- To be able to fully map the field harmonics of a PMQ with the smallest possible error.
- To be able to measure as many PMQs in the least possible amount of time: the goal is 1 PMQ per minute.
- To increase Elytt Energy's client's trust by having an own rotating coil system and not having to rely on another company.
- To make a completely embedded rotating coil system, so it can be easily transported.

3. DEVELOPMENT OF THE SYSTEM

The main goal of this new machine was to fully measure the field harmonics of a PMQ as fast as possible and with the maximum precision.

In the process of designing the system different phases can be distinguished, which are explained with detail in the following sections.

3.1. FLAT COIL DESIGN

The "antenna" of the system is formed by two flat coils, an internal coil and an external coil, printed in four layers of a PCB. The purpose of using two coils is to measure the individual voltage induced in each coil to acquire the main harmonic of the quadrupole (the second order harmonic). Additionally, in order to acquire the higher order harmonics, the overall voltage of both coils connected in anti-series is measured (the resulting subtraction of the voltages induced in each coil).

It is convenient that the second order voltage harmonics are equal in both coils, so that they cancel out when measuring the overall voltage of both coils connected in anti-series. Therefore, both coils must be equally centered. Additionally, the highest possible sensibility is desired for measuring each of the second order harmonics individually. Additionally, the maximum sensibility is desired when measuring the overall anti-series voltage to acquire the higher order harmonics. To accomplish all of these specifications, some parameters are to be calculated, such as the width of the central gap of the inner coil, the number of spires in each coil, and the displacement of the coil center from the rotating axis.

These parameters must provide maximum sensibility for the individual measurement of the main harmonic, as well as the overall anti-series measurement of the higher order harmonics. For calculations, an Octave code was written (Annex $I)$, which is based on the following equation derivations.

When rotating inside the PMQ's magnetic field, a voltage is induced in each thread of the coil. For the following coordinate system:

Figure 19: Coordinate system referred to the rotating coil

In Figure 19 a simplified version of the rotating coil is shown for better understanding. This example is formed by two coils. The inner coil is Coil 1 (in orange), and it has only 2 spires. The outer coil is Coil 2 (in blue), and it has 3 spires. Both coils are distributed in two layers of a PCB. The real coil will have many more spires and will be printed in 4 PCB layers. The circles represent the filaments of the upstream spires and the crosses represent the downstream filaments of spires located on the opposite side of the coil center. A coordinate system x^{\prime}, y^{\prime} is conveniently defined, and it is solidary to the coil at all times, in which x ' is the center of the coil, and y ' is a perpendicular axis that passes through the origin. Each filament of each spire is located at a radius r_{k} from the origin and at an azimuthal angle θ_{k} from the coil central axis x '. Furthermore, the coil central axis is located at an azimuthal angle θ from the original x axis. In other words, angle θ_{k} is solidary to the coil and does not change with rotation, whereas θ constantly changes with the coil rotation.

Using vector potential A :

$$
\begin{equation*}
B=\nabla \times A \tag{3.1}
\end{equation*}
$$

Applying Stokes theorem:

$$
\begin{equation*}
\phi=\iint B \cdot d S=\iint \nabla \times A \cdot d S=\oint A \cdot d l \tag{3.2}
\end{equation*}
$$

Lenz law:

$$
\begin{equation*}
\epsilon=\frac{d \phi}{d t}=\frac{d \phi}{d \theta} \cdot \frac{d \theta}{d t} \Rightarrow \frac{d \phi}{d \theta}=\frac{\epsilon}{\omega} \tag{3.3}
\end{equation*}
$$

Deriving this expression is highly convenient since the data acquisition device will be able to obtain the induced voltage ϵ, the rotating speed ω, and the angle θ.
[LUCA17] Going back to the normal multipole coefficients b_{n} and the skew coefficients a_{n} defined in equation 1.20, defining $c_{n}=a_{n}+b_{n} \cdot i$:

$$
\begin{equation*}
\phi=\oint A \cdot d l=-B_{m} \cdot r_{r e f} \cdot \sum_{n=1}^{\infty}\left(\left(\frac{b_{n}}{n} \cdot \cos (n \cdot \theta)+\frac{a_{n}}{n} \cdot \sin (n \cdot \theta)\right) \cdot\left(\frac{r}{r_{r e f}}\right)^{n}\right) \tag{3.4}
\end{equation*}
$$

Using the information shown in Figure 19, and defining a parameter w that indicates whether the spire's filament goes upstream or downstream, along with the reference radius $r_{r e f}$ which is a parameter of each PMQ, the following expression is derived:

$$
\begin{gather*}
\phi=-\sum_{(k=1)}^{\text {total spires }}\left(\operatorname { s i g n } (w _ { k }) \cdot B _ { m } \cdot r _ { \text { ref } } \cdot \sum _ { (n = 1) } ^ { \infty } \left(\left(\frac{b_{n}}{n} \cdot \cos \left(n \cdot\left(\theta+\theta_{k}\right)\right)+\frac{a_{n}}{n} .\right.\right.\right. \\
\left.\left.\sin \left(n \cdot\left(\theta+\theta_{k}\right)\right) \cdot\left(\frac{r_{k}}{r_{\text {ref }}}\right)^{n}\right)\right) \tag{3.5}
\end{gather*}
$$

And using equation 3.3:
$\frac{\epsilon}{\omega}=\frac{d \phi}{d \theta}=-\sum_{(k=1)}^{(\text {total spires })}\left(\operatorname{sign}\left(w_{k}\right) \cdot B_{m} \cdot r_{r e f} \cdot \sum_{(n=1)}^{\infty}\left(\left(-b_{n} \cdot \sin (n \cdot(\theta+\right.\right.\right.$
$\left.\left.\left.\left.\left.\theta_{k}\right)\right)+a_{n} \cdot \cos \left(n \cdot\left(\theta+\theta_{k}\right)\right)\right) \cdot\left(\frac{r_{k}}{r_{r e f}}\right)^{n}\right)\right)$

Which leads to:
$\frac{\epsilon}{\omega}=\frac{d \phi}{d \theta}=-\sum_{k=1}^{\text {total spires }}\left(\operatorname{sign}\left(w_{k}\right) \cdot B_{m} \cdot r_{r e f} \cdot \sum_{n=1}^{\infty}\left(\left(-b_{n} \cdot(\sin (n \cdot \theta) \cdot \cos (n\right.\right.\right.$.
$\left.\left.\theta_{k}\right)+\sin \left(n \cdot \theta_{k}\right) \cdot \cos (n \cdot \theta)\right)+a_{n} \cdot\left(\cos (n \cdot \theta) \cdot \cos \left(n \cdot \theta_{k}\right)-\sin \left(n \cdot \theta_{k}\right) \cdot\right.$
$\left.\left.\sin (n \cdot \theta))) \cdot\left(\frac{r_{k}}{r_{r e f}}\right)^{n}\right)\right)$

Since both coils will be symmetrical with respect to axis y, all terms $\sin \left(n \theta_{k}\right)$ cancel out, leading to the following equation:

$$
\begin{equation*}
\frac{\epsilon}{\omega}=B_{m} \cdot \sum_{n=1}^{\infty}\left(S_{n} \cdot b_{n} \cdot \sin (n \cdot \theta)+S_{n} \cdot a_{n} \cdot \cos (n \cdot \theta)\right) \tag{3.8}
\end{equation*}
$$

S_{n} refers to the sensibility of order n:

$$
\begin{equation*}
S_{n}=\frac{1}{r_{r e f}^{n-1}} \sum_{k=1}^{\text {total spires }} \operatorname{sign}\left(w_{k}\right) \cdot r_{k}^{n} \cdot \cos \left(n \cdot \theta_{k}\right) \tag{3.9}
\end{equation*}
$$

For the design, the first specification that must be accomplished is a maximum individual sensibility for the main harmonic S_{2}, which must be equal in both coils, as explained previously. An Octave code (Annex I) was written to determine the design variables for both coils in order to achieve the highest S_{2}. Given the following parameters:

- Maximum width of PCB: 20 mm
- Minimum width of inner coil gap: 2 mm
- Step between spires: 0.3 mm
- Number of layers: 4
- Distance between layers: 0.5 mm
- PMQ magnetic reference radius: 7.5 mm
- PMQ inner diameter: 26 mm
- PMQ length: 80 mm

Obtaining the following results:

- Gap width of inner coil: 2.1 mm
- Coil center displacement from rotating axis: 3.34 mm
- Number of spires in Coil 1 (inner coil): 12 (per layer)
- Number of spires in Coil 2 (outer coil): 6 (per layer)

Figure 20: Section of the coil. Coil 1 in blue and Coil 2 in red

In Figure 20 the filaments of both coils can be clearly seen, as well as the distance between them, distance between all four layers, displacement of the coil center from the rotating axis, and the gap width of Coil 1 .

The Octave code (Annex I) also calculates all sensibilities S_{n} for harmonics of any order. One relevant observation of these calculations is that for the individual sensibilities of each coil, the second order harmonic S_{2} had the largest sensibility, as desired. The higher the order, the lower the sensibility for each coil measured separately. On the other hand, for the overall sensibility of both coils connected in anti-series $\left(\left|S_{\text {Coil 2 }}-S_{\text {Coil 1 }}\right|\right)$, the sensibility for the main harmonic S_{2} was zero, as desired, and it increased with the order of the harmonics.

For this reason, the system will take two different measurements. The first measurement would be the voltage induced in Coil 2, which is used to calculate the main harmonic (second order). The second measurement is the overall compensated voltage of the two coils connected in anti-series, which will be used to obtain the higher order harmonics. These two voltage signals need to be amplified and filtered, as seen in section 3.2.

Figure 21: Coil 1 and Coil 2 front copper layer

Figure 22: Coil 1 and Coil 2 inner copper layer 1

Figure 23: Coil 1 and Coil 2 inner copper layer 2

Figure 24: Coil 1 and Coil 2 back copper layer

Figure 25: Coil 1 and Coil 2 with a closer look

The total dimensions of Coil 1 are $190.75 \times 8.89 \mathrm{~mm}$ and the dimensions of Coil 2 are $201.93 \times 12.45 \mathrm{~mm}$, in each of the 4 layers.

3.2. DESIGN OF THE FILTER AND AMPLIFIER CIRCUIT

(All of the components used in this section can be found in the Bill of Materials in Annex III)

The use of an amplifier and filter circuit is required before processing the measured voltage signal. The circuit is formed by four stages: the first two stages $\left(A_{1}\right.$ and $\left.A_{2}\right)$ are two identical low pass filters applied directly to the voltage signals measured individually from Coil 1 and Coil 2, stage $3\left(A_{3}\right)$ and stage $4\left(A_{4}\right)$ are applied to the compensated anti-series voltage signal. For all four stages a cutoff frequency and a static gain is determined. The four operational amplifiers used in these stages are put together in one single component: Texas Instrument OPA4209 (Annex III)
-Stages A_{1} and A_{2} :
The first step is to determine the desired static gain. The goal is to obtain a voltage with an amplitude of at least 1 V for the main harmonic at the output of both A_{l} and A_{2}. Stages A_{1} and A_{2} are identical, this way the voltage main harmonic is still the same at the output of both stages.

Knowing that:

$$
\begin{equation*}
\frac{V_{n}}{\omega}=B_{n}[T \cdot m] \cdot S_{n}=B_{n}[T] \cdot r_{r e f} \cdot S_{n} \tag{3.10}
\end{equation*}
$$

It is also known that: $r_{\text {ref }}=7.5 \mathrm{~mm}, S_{2}=0.2446$ (calculated in Octave Annex I), $B_{2 \text { min }}=0.88$ T (looking at the PMQ specifications), assuming that $\omega=2 \pi \mathrm{rad} / \mathrm{s}$.

Then $V_{2}=0.88 \cdot 0.0075 \cdot 0.2445 \cdot 2 \cdot \pi=0.01 \mathrm{~V}$
Given that an output voltage of 1 V is desired: Gain $=A_{1}(0)=A_{2}(0)=\frac{1}{0.01}=$ 100

The circuit schematic for stages A_{1} and A_{2} are shown in the figure below:

Figure 26: Circuit schematic for stages A_{1} and A_{2}

From the circuit shown in Figure 26 the transfer functions for A_{1} and A_{2} are obtained, respectively:

$$
\begin{align*}
& A_{1}(s)=\frac{R_{4} \cdot R_{5} \cdot C_{3} \cdot s+R_{4}+R_{5}}{R_{4} \cdot R_{5} \cdot C_{3} \cdot R_{6} \cdot C_{4} \cdot s^{2}+\left(R_{4} \cdot R_{6} \cdot C_{4}+R_{4} \cdot R_{5} \cdot C_{3}\right) \cdot s+R_{4}} \tag{3.11}\\
& A_{2}(s)=\frac{R_{1} \cdot R_{3} \cdot C_{2} \cdot s+R_{1}+R_{3}}{R_{1} \cdot R_{3} \cdot C_{2} \cdot R_{2} \cdot C_{1} \cdot s^{2}+\left(R_{1} \cdot R_{2} \cdot C_{1}+R_{1} \cdot R_{3} \cdot C_{2}\right) \cdot s+R_{1}} \tag{3.12}
\end{align*}
$$

Given the desired gains $A_{1}(0)=100$ and $A_{2}(0)=100$:

$$
\begin{align*}
& A_{1}(0)=\frac{R_{4}+R_{5}}{R_{4}}=100 \tag{3.13}\\
& A_{2}(0)=\frac{R_{1}+R_{3}}{R_{1}}=100 \tag{3.14}
\end{align*}
$$

From equations 3.13 and 3.14 two constraints are obtained for R_{5}, R_{4} and R_{3}, R_{1}, respectively.

The desired cutoff frequency is now used to obtain some additional constraints.
It is desired for this system to determine the first 25 harmonics, therefore it seems reasonable to place the cutoff frequency at $25 \mathrm{~Hz}=50 \pi \mathrm{rad} / \mathrm{s}$. However, if the cutoff frequency is placed at 25 Hz , the harmonic at 25 Hz will be reduced by 3 dB , therefore the cutoff frequency ω_{o} is finally placed at $100 \mathrm{~Hz}=200 \pi \mathrm{rad} / \mathrm{s}$. Given that each of the two stages is formed by two first order low-pass RC filters put together, and the transfer function of a low pass filter is of the following form:

$$
\begin{equation*}
F(s)=\frac{1}{1+\frac{1}{\omega_{o}} \cdot s}=\frac{1}{1+C_{4} \cdot R_{6} \cdot s}=\frac{1}{1+C_{3} \cdot R_{5} \cdot s}=\frac{1}{1+C_{1} \cdot R_{2} \cdot s}=\frac{1}{1+C_{2} \cdot R_{3} \cdot s} \tag{3.15}
\end{equation*}
$$

The following constraints are obtained:

$$
\begin{equation*}
\omega_{o}=200 \pi=\frac{1}{C_{4} \cdot R_{6}}=\frac{1}{C_{3} \cdot R_{5}}=\frac{1}{C_{1} \cdot R_{2}}=\frac{1}{C_{2} \cdot R_{3}} \tag{3.16}
\end{equation*}
$$

The following component values are chosen to satisfy the constraints in equation 3.16:

$$
\begin{gathered}
R_{6}=R_{5}=R_{2}=R_{3}=1.07 \mathrm{k} \Omega \\
C_{4}=C_{3}=C_{1}=C_{2}=1.5 \mu F
\end{gathered}
$$

Using equations 3.13 and 3.14:

$$
\begin{aligned}
& \frac{R_{4}+R_{5}}{R_{4}}=\frac{R_{4}+1070}{R_{4}}=100 \rightarrow R_{4}=10.7 \Omega \\
& \frac{R_{1}+R_{3}}{R_{1}}=\frac{R_{1}+1070}{R_{1}}=100 \rightarrow R_{1}=10.7 \Omega
\end{aligned}
$$

It is required to verify that the maximum voltage at the output of stages A_{1} and A_{2} is less than 10 V so that the operational amplifiers will not saturate.

$$
V_{2 \max }=B_{2 \max } \cdot r_{r e f} \cdot S_{2} \cdot \omega
$$

It is known that: $r_{\text {ref }}=7.5 \mathrm{~mm}, S_{2}=0.2446$ (calculated in Octave Annex I), $B_{2 \max }=3.07$ ((looking at the PMQ specifications), assuming $\omega=2 \pi \mathrm{rad} / \mathrm{s}$.

$$
V_{2 \max }=3.07 \cdot 0.0075 \cdot 0.2446 \cdot 2 \cdot \pi=0.035 \mathrm{~V}
$$

Multiplying by the static gain $A_{1}(0)=A_{2}(0)=100$:

$$
V_{2 \max }=100 \cdot 0.035=3.5 \mathrm{~V}
$$

The maximum possible voltage at the output of these stages is 3.5 V , which is considerably less than 10 V . This assures that for the chosen component values, the operational amplifiers will not saturate.

A Bode plot of the frequency response of A_{1} and A_{2} is shown in the following figure:

Figure 27: Bode plot of stages A_{1} and A_{2}

- Stages A_{3} and A_{4} :

The purpose of stages A_{3} and A_{4} is to amplify and filter the compensated voltage signal of Coil 1 and Coil 2 connected in anti-series, in order to calculate the higher order harmonics. It is desired that the main voltage harmonics of the two coils cancel out, therefore an adding configuration is needed before stage A_{3}, since the main harmonics of the two voltage signals will be of equal magnitude but opposite. This adding configuration is achieved with resistors R_{7} and R_{8}, then, a potentiometer $R_{\text {POT }}$ is connected, which will be used if any small adjustment is required for the two voltages to be exactly equal and cancel out. Additionally, $R_{7}{ }^{\prime}=R_{7}+R_{\text {POT }}$ and $R_{8}{ }^{\prime}=R_{8}+R_{\text {POT }}$.

By looking at the circuit shown in Figure 28, the following transfer function can be calculated for A_{3}, where $V_{i 1}$ and $V_{i 2}$ are the output voltages of stages A_{1} and A_{2}, respectively, and $V_{o 3}$ is the output of stage A_{3} :

$$
\begin{equation*}
V_{o 3}=\left(\frac{V_{i 1}}{R_{7}{ }^{\prime}}+\frac{V_{i 2}}{R_{8^{\prime}}}\right) \cdot\left(\frac{1}{\frac{1}{R_{10}}+C_{5^{\prime}} \cdot s}\right) \tag{3.17}
\end{equation*}
$$

Figure 28: Circuit schematic for stages A_{3} and A_{4}

The addition of main harmonics of the two voltages must be the zero. Therefore, R_{7} ' must be equal to R_{8}. This is the first design constraint.

$$
\begin{equation*}
R_{7}^{\prime}=R_{8}^{\prime} \tag{3.18}
\end{equation*}
$$

If $V_{o 3}$ is the output of stage A_{3}, and $V_{o 4}$ is the output of stage A_{4}, the transfer function for the final stage A_{4} is:

$$
\begin{equation*}
A_{4}(s)=\frac{V_{o 4}}{V_{o 3}}=\frac{1}{R_{11}} \cdot\left(\frac{1}{\frac{1}{R_{13}}+C_{6} \cdot s}\right) \tag{3.19}
\end{equation*}
$$

The final overall output of stages A_{3} and A_{4} is given by:

$$
\begin{equation*}
V_{o 4}=\left(\frac{V_{i 1}}{R_{7 \prime}}+\frac{V_{i 2}}{R_{8^{\prime}}}\right) \cdot\left(\frac{1}{\frac{1}{R_{10}}+C_{5^{\prime}} \cdot s}\right) \cdot \frac{1}{R_{11}} \cdot\left(\frac{1}{\frac{1}{R_{13}}+C_{6} \cdot s}\right) \tag{3.20}
\end{equation*}
$$

Equation 3.18 reveals that $R_{7}{ }^{\prime}=R_{8}{ }^{\prime}$, therefore:

$$
\begin{equation*}
V_{o 4}=\left(V_{i 1}+V_{i 2}\right) \cdot \frac{R_{13} \cdot R_{10}}{R_{7 \prime} \cdot R_{11}} \cdot\left(\frac{1}{1+R_{10} \cdot C_{5} \cdot s}\right) \cdot\left(\frac{1}{1+R_{13} \cdot C_{6} \cdot s}\right) \tag{3.21}
\end{equation*}
$$

The static gain k_{o} of the system is:

$$
\begin{equation*}
k_{o}=\frac{R_{13} \cdot R_{10}}{R_{7 \prime} \cdot R_{11}} \tag{3.22}
\end{equation*}
$$

The first step is to determine the cutoff frequency of the system. The desired cutoff frequency for stages A_{1} and A_{2} is 100 Hz , then $\omega_{\mathrm{o}}=200 \pi \mathrm{rad} / \mathrm{s}$, hence:

$$
\begin{equation*}
\omega_{o}=\frac{1}{R_{10} \cdot C_{5}}=\frac{1}{R_{13} \cdot C_{6}}=200 \cdot \pi \tag{3.23}
\end{equation*}
$$

Therefore:

$$
\begin{gathered}
R_{10}=R_{13}=1.07 \mathrm{k} \Omega \\
C_{5}=C_{6}=1.5 \mu F
\end{gathered}
$$

The next step is to determine the desired static gain k_{o}, the goal is to obtain the maximum possible gain without saturating any operational amplifier. Hence, the maximum possible output voltage is calculated for each harmonic.

First, the maximum voltage for each harmonic n is calculated at the output of stages A_{1} and A_{2}, these are $V_{\text {ilmax }}$ and $V_{i 2 \max }$.

$$
\begin{align*}
& V_{i 1 \max }(n)=B_{n \max } \cdot r_{\text {ref }} \cdot S_{1}(n) \cdot 2 \cdot \pi \cdot\left|A_{1}(2 \pi \cdot n)\right| \tag{3.24}\\
& V_{i 2 \max }(n)=B_{n \max } \cdot r_{r e f} \cdot S_{2}(n) \cdot 2 \cdot \pi \cdot\left|A_{2}(2 \pi \cdot n)\right| \tag{3.25}
\end{align*}
$$

The final output for each harmonic $V_{o 4 n}$ must satisfy the following condition, in order to maintain the operational amplifiers unsaturated for the first 25 harmonics:

$$
\begin{equation*}
\sqrt{\sum_{n=1}^{25} V_{o 4 n}^{2}} \leq 8 V \tag{3.26}
\end{equation*}
$$

The Octave code shown in Figure 29 leads to:
$\sqrt{\sum_{n=1}^{25} V_{o 4 n \max }^{2}}=0.8 \cdot k_{o}$, which means that $k_{o}=\frac{8}{0.8}=10 \mathrm{~V} / \mathrm{V}$

Figure 29: Octave code for calculating the maximum overall output voltage

Using equations 3.22 and 3.27 the following constraint is obtained:

$$
\begin{equation*}
k_{o}=10=\frac{R_{13} \cdot R_{10}}{R_{7!} \cdot R_{11}} \tag{3.28}
\end{equation*}
$$

Since $R_{13}=R_{10}=1.07 \mathrm{k} \Omega$, the following component values can be used for $R_{7}{ }^{\prime}$ and R_{11} :

$$
\begin{gathered}
R_{11}=112.6 \Omega \\
R_{7}^{\prime}=R_{8}^{\prime}=1 \mathrm{k} \Omega=\mathrm{R}_{7}+R_{P O T}=R_{8}+R_{P O T} \rightarrow \\
\rightarrow R_{7}=R_{8}=0.5 \mathrm{k} \Omega \\
\rightarrow R_{P O T}=0.5 \mathrm{k} \Omega
\end{gathered}
$$

To accomplish the conditions above, a potentiometer of $1 \mathrm{k} \Omega$ is chosen.
Due to expense reasons, resistors $R_{13}=R_{10}=1.07 \mathrm{k} \Omega$ were used, and a potentiometer of 100Ω. However, these changes were not significant and all objectives were accomplished.

The following figures show the Bode plots of the transfer functions $A_{3}(s)=$ $\frac{V_{o 3}}{V_{i 1}+V_{i 2}}, A_{4}(s)=\frac{V_{04}}{V_{o 3}}$, and finally the transfer function $A_{t}(s)=A_{3}(s) \cdot A_{4}(s)$

Figure 30: Bode plot of stage A_{3}

Figure 31: Bode plot of stage A_{4}

Figure 32: Bode plot of stage $A_{t}=A_{3}{ }^{*} A_{4}$

Figure 33: Schematic of the entire circuit

3.3. PCB DESIGN AND COMPONENT SOLDERING

The next step was to design the PCB and do the layout using a CAD tool. For this purpose, a program called KiCad was used.

The first task was to draw the footprint of both coils on KiCad. To achieve this, some research was done on the code format for drawing footprints on KiCad . A program was written in Octave, using loops to generate the code text needed for drawing the coil on KiCad (Figure 34). This helped to save a lot of time by not drawing it "manually" on KiCad.

Figure 34: Octave code used for drawing the coil footprints on KiCad

After drawing the coil, it was necessary to include all components in the PCB and doing the layout. Firstly, the circuit schematic was drawn and all components were added on KiCad. Then, the desired footprint for each component was included on the schematic. Most of the components used are SMD (Surface Mount Device) of size 0603 , which is the second smallest size existent for SMD (1.6 mm wide x 0.4 mm high). Although these small dimensions made the soldering part very challenging, they were necessary in order to fit the PCB in the rotation stage.

Finally, the layout was done, and after enrouting all components, the design of the PCB was complete.

Figure 35: Final PCB layout with all component footprints

Figure 36: Real picture of the PCB component layout

Figure 37: Overall view of the PCB KiCad design

Figure 38: Real picture of the overall final PCB
The next step was to order the PCB using a website called https://www.eurocircuits.com. This website allowed to upload the KiCad design directly, making the job conveniently simple. Additionally, a bill of materials (BOM) was made and components were ordered through a distributor called Farnell.

Finally, all of the components were soldered, a significantly challenging task given the small dimensions of the components.

3.4. RAPID PROTOTYPING WITH LEGO EV3

Before proceeding to buy the rotation stage, the data acquisition, manufacture and assemble the entire structure, given the very high price, a decision was made concluding that it would be best to do a $L E G O$ prototype of the rotating coil system and run some experiments by measuring voltage signals.

One week was spent building the structure out of $L E G O$, additionally, a prototype of the rotation stage was built with a $L E G O E V 3$ servomotor, which came with its own encoder. The experiments were run by making the coil rotate and measuring the induced voltage signal with an oscilloscope.

Figure 39: Prototype of the system with LEGO EV3

The results of the experiments were not as successful as expected, unfortunately. The structure was not stiff enough, given the undesired elasticity of the LEGO pieces. Therefore, the motion was more quivery and unsteady than desired, which resulted in a lot of noise in the voltage signal. However, the sine wave was clearly visible and the amplitude laid within the desired range.

3.5. ROTATION STAGE AND DATA ACOUISITION SETUP

Once the prototype had been tested, the next step was to set up the rotation stage, the motion controller and encoder. A Newport RGV100-BLS rotation stage was used, and a Newport XPS-RL motion controller.

After doing some research on $T C L$ coding, a $T C L$ script was written to make the rotation stage turn and gather the angle, speed, and both values of the individual voltage induced in Coil 2, and of the overall compensated voltage of both coils connected in anti-series. This code is shown in Annex II.

Figure 40: Newport RGV100-BLS rotation stage

The rotation stage would turn at 2 Hz , first anticlockwise for 8 laps, and then clockwise for 22 laps, the trigger is set to start measuring at the beginning of the $8^{\text {th }}$ clockwise lap, proceeding by analyzing exclusively data gathered from the $8^{\text {th }}$ clockwise lap to the $18^{\text {th }}$ clockwise lap, to ensure that neither the initial acceleration nor the final deceleration would affect the calculations.

The measurements are taken at a frequency of 1 kHz , and a total of 40000 data points. These measurements will include position (angle) and velocity, measured through the encoder, and the two aforementioned voltages, which will be measured through the two GPIO's in the motion controller.

Figure 41: Newport XPS-RL motion controller

3.6. BEDPLATE DESIGN

Designing a good bedplate was crucial for the quality of the measuring system. A highly stiff and stable structure is desired in order to minimize the noise in the measured signals and to assure that the motion of the rotation stage will not cause unwanted vibrations in the structure and will not affect the measurements.

Each part of the bedplate was designed with CATIA then they were ordered to be manufactured. Finally, the bedplate was assembled manually.

Some key parts in this design were the mole for the PCB and the slip rings. In order to couple the PCB to the rotation stage, a mole (Figure 42) was needed, it would be screwed to the rotation stage, additionally, the PCB would be glued to this mole.

The mole had to be made of a plastic non-conducting material to avoid parasitic capacitances and any other effect on the measurements.

Additionally, a slip rings mechanism was needed to avoid the wires getting tangled while the coil rotates.

Figure 42: Mole used to couple the PCB to the rotation stage

Figure 43: Picture of the bedplate

1.	Socket screw	8.	Feet fixation washer
2.	Washers	9.	Screw for slip rings
3.	Washers	10.	Nut for slip rings
4.	Socket screw	11.	Washer for slip rings
5.	Conical screw	12.	Slip rings
6.	Knurled screw	13.	Rotation stage
7.	Feet fixation nut	14.	Feet

Figure 44: Overview of the bedplate

3.7. DATA PROCESSING

All calculations used for data processing are done through the Matlab script shown in Annex IV.

Using the following nomenclature for sensibilities:

$$
\begin{align*}
& \operatorname{CoS}_{n}=\sum_{k=1}^{\text {total }}\left(\operatorname{sign}\left(w_{k}\right) \cdot \cos \left(n \cdot \theta_{k}\right) \cdot\left(\frac{r_{k}}{r_{\text {ref }}}\right)^{n}\right) \tag{3.29}\\
& \operatorname{SIN}_{n}=\sum_{k=1}^{\text {total }} \text { spires } \tag{3.30}\\
& \text { sign } \left.\left(w_{k}\right) \cdot \sin \left(n \cdot \theta_{k}\right) \cdot\left(\frac{r_{k}}{r_{r e f}}\right)^{n}\right)
\end{align*}
$$

Equation (3.7) leads to:

$$
\begin{equation*}
\frac{\epsilon}{\omega}=\frac{d \phi}{d \theta}=B_{m} \cdot r_{r e f} \cdot \sum_{n=1}^{\infty}\left(\left(b_{n} \cdot \operatorname{CoS}_{n}+a_{n} \cdot \operatorname{SIN}_{n}\right) \cdot \sin (n \cdot \theta)+\left(b_{n} \cdot \operatorname{SIN}_{n}-a_{n} \cdot \operatorname{CoS}_{n}\right) \cdot \cos (n \cdot \theta)\right) \tag{3.31}
\end{equation*}
$$

By doing a Fourier analysis of ϵ / ω :

$$
\begin{equation*}
\frac{\epsilon}{\omega}=\sum_{n=1}^{\infty} \tau_{n} \cdot \sin (n \cdot \theta)+\rho_{n} \cdot \cos (n \cdot \theta) \tag{3.32}
\end{equation*}
$$

The following system of equations is obtained:

$$
B_{m} \cdot r_{r e f} \cdot\left[\begin{array}{cc}
\operatorname{COS}_{\mathrm{n}} & \operatorname{SIN}_{n} \tag{3.33}\\
\operatorname{SIN}_{n} & -\operatorname{COS}_{n}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{n} \\
a_{n}
\end{array}\right]=\left[\begin{array}{l}
\tau_{n} \\
\rho_{n}
\end{array}\right]
$$

There is a matrix M_{n} for each harmonic containing the sensibilities:

$$
M_{n}=\left[\begin{array}{cc}
\operatorname{COS}_{\mathrm{n}} & \operatorname{SIN}_{n} \tag{3.34}\\
\operatorname{SIN}_{n} & -\operatorname{COS}_{n}
\end{array}\right]
$$

Shall the rotating coil be symmetrical respect to its mid plane (in the thickness direction), then the terms SINn will be zero, however, these terms are maintained to study the possibility of a misalignment in the rotating coil.

A Discrete Fourier Transform of the discrete data is now applied $F_{k}=\epsilon_{k} / \omega_{k}$. If N points are obtained, considering that $\theta \rightarrow \theta_{k}=\frac{2 \pi k}{N}$ then:

$$
\begin{align*}
\operatorname{DFT}\left(F_{k}\right) & =\gamma_{n}+i \cdot \delta_{n} \text { with } k=\left(-\frac{N-1}{2}\right) \ldots\left(+\frac{N-1}{2}\right) \text { if } N \text { is odd } \tag{3.35}\\
\operatorname{DFT}\left(F_{k}\right) & =\gamma_{n}+i \cdot \delta_{n} \text { with } k=-\left(\frac{N}{2}-1\right) \ldots\left(+\frac{N}{2}\right) \text { if } N \text { is even } \tag{3.36}\\
F_{k} & =\frac{1}{N} \cdot \sum_{-\frac{N-1}{2} \operatorname{or}-\left(\frac{N}{2}-1\right)}^{\frac{N-1}{2} \operatorname{N}}\left(\gamma_{n}+i \cdot \delta_{n}\right) \cdot e^{i \cdot \frac{2 \pi k}{N} \cdot n} \tag{3.37}
\end{align*}
$$

Since F_{k} is real, the following must happen:

$$
\begin{align*}
& \gamma_{n}=\gamma_{-n} \tag{3.38}\\
& \delta_{n}=-\delta_{-n} \tag{3.39}
\end{align*}
$$

This implies:

$$
\left[\begin{array}{l}
\tau_{n} \tag{3.40}\\
\rho_{n}
\end{array}\right]=\left[\begin{array}{c}
-2 \cdot \frac{\delta_{n}}{N} \\
2 \cdot \frac{\gamma_{n}}{N}
\end{array}\right]
$$

Applying Matlab's "fft" command to sampled points $\epsilon_{k} / \omega_{k}, \gamma_{n}$ and δ_{n} are obtained for each harmonic:

- To obtain γ_{n} and δ_{n} with $\mathrm{n} \leq 2 \rightarrow D F T$ of sampled points $\epsilon_{k} / \omega_{k}$ from Coil 2 individually
- To obtain γ_{n} and δ_{n} with $\mathrm{n}>2 \rightarrow D F T$ of sampled points $\epsilon_{k} / \omega_{k}$ from the overall compensated signal

Once γ_{n} and δ_{n} are calculated with Matlab's "fft" command, and N is the total number of sampled points, then:

$$
\left[\begin{array}{l}
b_{n} \tag{3.41}\\
a_{n}
\end{array}\right]=\frac{1}{B_{m} \cdot r_{r e f}} \cdot M_{n}^{-1} \cdot\left[\begin{array}{c}
-2 \cdot \frac{\delta_{n}}{N} \\
2 \cdot \frac{\gamma_{n}}{N}
\end{array}\right] \text { for } n=1 \ldots \frac{N}{2} \text { (if even) or } \frac{N-1}{2} \text { (if odd) }
$$

Knowing that:

$$
\begin{equation*}
B_{n}=b_{n} \times B_{\text {main }} \quad A_{n}=a_{n} \times B_{\text {main }} \tag{3.42}
\end{equation*}
$$

Equations 3.41 and 3.42 lead to:

$$
\left[\begin{array}{l}
B_{n} \tag{3.43}\\
A_{n}
\end{array}\right]=\frac{1}{r_{r e f}} \cdot M_{n}^{-1} \cdot\left[\begin{array}{c}
-2 \cdot \frac{\delta_{n}}{N} \\
2 \cdot \frac{\gamma_{n}}{N}
\end{array}\right] \text { for } n=1 \ldots \frac{N}{2} \text { (if even) or } \frac{N-1}{2} \text { (if odd) }
$$

Coefficients B_{n} and A_{n} are calculated from equation 3.43.
It is also known that:

$$
\begin{equation*}
C_{n}=\sqrt{A_{n}^{2}+B_{n}^{2}} \rightarrow C_{2}=\sqrt{A_{2}^{2}+B_{2}^{2}} \tag{3.44}
\end{equation*}
$$

Going back to equation 1.27:

$$
\begin{align*}
(|B|)_{n}= & \left(\sqrt{B_{r}^{2}+B_{\varphi}^{2}}\right)_{n}=B_{\text {main }}\left(\frac{r}{r_{o}}\right)^{n-1} \sqrt{a_{n}^{2}+b_{n}^{2}} \rightarrow \\
& \rightarrow(|B|)_{n}=\left(\frac{r}{r_{o}}\right)^{n-1} \sqrt{A_{n}^{2}+B_{n}^{2}} \tag{3.45}
\end{align*}
$$

If $n=2$ (for the main harmonic), then:

$$
\begin{equation*}
(|B|)_{2}=B_{\text {main }}=\left(\frac{r}{r_{o}}\right)^{1} \sqrt{A_{2}^{2}+B_{2}^{2}} \tag{3.46}
\end{equation*}
$$

Assuming $r \approx r_{o}$ and using equations 3.44 and 3.46:

$$
\begin{equation*}
B_{\text {main }} \approx \sqrt{A_{2}^{2}+B_{2}^{2}} \approx C_{2} \tag{3.47}
\end{equation*}
$$

$B_{\text {main }}$ is easily calculated using equation 3.47
The next step is to calculate the IG (integrated gradient), axis errors, and roll.

IG calculation:

The IG is measured in Tesla [T], and it is calculated in the following way:

$$
\begin{equation*}
I G[T]=\frac{B_{\operatorname{main}}}{r_{r e f}} \tag{3.48}
\end{equation*}
$$

Axis errors:
To calculate the axis errors, the PMQ must be initially measured in Position 1. Using the calculated parameters A_{n}, B_{n} and C_{n} in this position, axis errors are:

$$
\begin{align*}
& - \text { Horizontal axis error in Position } 1: \Delta \mathrm{x}_{1}=-\frac{B_{1} \cdot r_{r e f}}{C_{2}} \tag{3.49}\\
& \text {-Vertical axis error in Position 1: } \Delta \mathrm{y}_{1}=\frac{A_{1} \cdot r_{r e f}}{C_{2}} \tag{3.50}
\end{align*}
$$

Consequently, the PMQ must be measured in Position 2, in which it is rotated 180° from Position 1. Again, using the calculated parameters A_{n}, B_{n} and C_{n} in this new position, axis errors are:

$$
\begin{align*}
& - \text { Horizontal axis error in Position } 2: \Delta \mathrm{x}_{2}=-\frac{B_{1} \cdot r_{r e f}}{C_{2}} \tag{3.51}\\
& \text {-Vertical axis error in Position 2: } \Delta \mathrm{y}_{2}=\frac{A_{1} \cdot r_{r e f}}{C_{2}} \tag{3.52}
\end{align*}
$$

Using the errors in Position 1 and Position 2, the overall axis errors are:

$$
\begin{align*}
& \text {-Overall horizontal axis error: } \Delta x=\frac{\Delta x_{1}-\Delta x_{2}}{2} \tag{3.53}\\
& \text {-Overall vertical axis error: } \Delta y=\frac{\Delta y_{1}-\Delta y_{2}}{2} \tag{3.54}
\end{align*}
$$

Roll:

To calculate Roll $1\left(\Delta \theta_{l}\right)$, the PMQ must be measured in Position 1. Using the calculated parameters A_{n}, B_{n} and C_{n} in this position, $\Delta \theta_{l}$ is determined:

$$
\begin{equation*}
\Delta \theta_{1}=-\frac{A_{2}}{2 C_{2}} \tag{3.55}
\end{equation*}
$$

The same applies to calculate Roll $2\left(\Delta \theta_{2}\right)$, for which the PMQ must me measured in Position 2, rotated 90° from Position 1, then $\Delta \theta_{2}$ is determined:

$$
\begin{equation*}
\Delta \theta_{2}=-\frac{A_{2}}{2 c_{2}} \tag{3.56}
\end{equation*}
$$

4. TESTS, RESULTS, AND CALIBRATION

Many tests and experiments needed to be done to ensure the minimum error when measuring. The results of the measurements of Tank 3 [1] are shown in Annex V, and the results of the measurements of Tank 4 [2] are shown in Annex VI.

The calibration of the rotating coil was made using the Hall probe measurements. PMQ 413 [3] was measured by CERN, obtaining a good agreement with the Hall probe machine at Elytt Energy (less than 0.15% error). Since PMQ 413 had already been delivered to $I N F N$, it could not be used to calibrate the rotating coil system. However, all Tank 4 and Tank 3 PMQs were measured in the Hall probe using the same procedure. Therefore, it seemed reasonable to calibrate the rotating coil using all of the Tank 3 PMQs, making the new rotating coil measurements match the Hall probe measurements.

All calculations used for calibrating the system where done using the Matlab script shown in Annex IV.
[1] Set of 15 PMQs manufactured by Elytt Energy
[2] Ser of 13 PMQs manufactured by Elytt Energy
[3] PMQ that belongs to Tank 4

4.1. IG (INTEGRATED GRADIENT) CALIBRATION

Once the rotating coil system was calibrated, the maximum difference in IG between the rotating coil measurements and Hall probe measurements was less than 0.15%, for all 15 PMQs in Tank 3.

Figure 45: Rotating coil IG calibration

4.2. AXIS

A comparison of the $\mathrm{X}-\mathrm{Y}$ axis errors between the Hall probe measurements and the rotating coil measurements is shown in Figure 47 and Figure 48.

> PIN 1 Defocusing

Figure 46: Coordinate system used for measuring PMQs [F46]

Figure 47: X axis error comparison

Figure 48: Y axis error comparison

Figure 47 and Figure 48 show that the rotating coil measurements are correlated to the Hall probe measurements, although the results obtained using the rotating coil have a larger dispersion, which is significantly higher in the horizontal direction x. The reason for this dispersion is thought to be an existing gap between the PMQ and the bench when positioning the PMQ. Therefore, PMQ positioning must be improved. Elytt Energy is currently developing an adaptor to reduce this gap between the bench and PMQ.

4.3. ROLL

A roll comparison between Hall probe measurements and rotating coil measurements is shown in Figure 49 and Figure 50. The results of the rotating coil measurements show a good roll agreement with the Hall probe measurements.

Figure 49: Roll 1 comparison

Figure 50: Roll 2 comparison

4.4. HARMONICS COMPARISON

The harmonics have been compared using the PMQ S36, which was initially measured by BARC. The results are shown in Table 2:

	S36		
Harmonic number	cn BARC Rotating coil	cn Elytt Rotating coil	Difference
3	82	85	3
4	11	15	4
5	24	21	-3
6	58	57	-1
7	17	16	-1
8	16	19	3
9	6	5	-1
10	3	4	1

Table 2: Harmonics comparison between Elytt Energy's rotating coil system and BARC's

Rotating coil harmonics c_{3} and c_{4} show a good agreement with the ones measured with the Hall probe, as seen in Figure 51 and Figure 52:

Figure 51: Harmonics (c_{3}) comparison between rotating coil and Hall probe

Figure 52: Harmonics (c4) comparison between rotating coil and Hall probe

4.5. IG TEMPERATURE DEPENDENCE

PMQ 413 was measured (before optimizing magnet positions) at different temperatures to check the temperature dependence. Results are shown in Table 3:

Macro	$T=19^{\circ}$	$T=26.1^{\circ}$	Difference per ${ }^{\circ} \mathrm{C}$
IG measuring about 70% of the PMQ length	0.9504	0.9473	-0.0454283%
IG measuring 100% of the PMQ length	1.2068	1.2020	-0.0563491%

Table 3: IG temperature dependence

Two different clouds of points where used (one measured about 70\% of IG and the other measured the full PMQ). A mean value for temperature dependence shall be selected, i.e. $-0.0508887 \% /{ }^{\circ} \mathrm{C}$

5. CONCLUSION

The operation of this rotating coil system for measuring PMQs has successfully met all of the requirements and accomplished the main objectives:

- To save time and money by measuring our PMQs at Elytt Energy's own facilities with a rotating coil system.
- To be able to accurately map the field harmonics of a PMQ with the smallest possible error.
- To be able to measure 1 PMQ in 1 minute, which is incredibly fast as compared with the previous technology
- To make a completely embedded rotating coil system that can be easily transported

This rotating coil system is currently operating successfully, being used for measuring PMQs in Elytt Energy's facility at Bilbao, Spain.

Figure 53: Overview of the rotating coil system

REFERENCES

TEXT REFERENCES

[TURN94] S. Turner, CERN Accelerator School Fifth General Accelerator Physics Course, CERN, Geneva, Switzerland, 26 January 1994
[HOCK10] Kai Hock, Quadrupole Magnet, Report, Cockcroft Institute, Liverpool University, 10 March 2010

Link: http://hep.ph.liv.ac.uk/~hock/Damping_Ring/quadrupole.pdf
[WIKI01] https://en.wikipedia.org/wiki/Quadrupole_magnet Last Access: 20/04/2019
[WIKI02] https://en.wikipedia.org/wiki/CERN
Last Access: 12/03/2019
[CERN01] https://home.cern/about Last Access: 02/05/2019
[CERN02] https://home.cern/science/accelerators/linear-accelerator-4 Last Access: 15/03/2019
[ELEC01] https://www.electronics-tutorials.ws/electromagnetism/halleffect.html
Last Access: 11/04/2019
[HYPE01] http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/Hall.html Last Access: 12/04/2019
[LUCA17] Julio Lucas, Design and Manufacturing of Accelerator Components for Use on Linacs, Doctoral Thesis, Universidad del País Vasco, Leioa, July 2017

GRADO EN INGENIERÍA ELECTROMECÁNICA

FIGURE REFERENCES

[F3] K.Wille, Maria Laach lectures, from book S. Turner, CERN Accelerator School Fifth General Accelerator Physics Course, CERN, Geneva, Switzerland, 26 January 1994
[F4]
https://en.wikipedia.org/wiki/Quadrupole\#/media/File:VFPt_quadr upole_coils_1.svg Last Access: 20/04/2019
[F5] K.Wille, Maria Laach lectures, from book S. Turner, CERN Accelerator School Fifth General Accelerator Physics Course, CERN, Geneva, Switzerland, 26 January 1994
[F6], [F7], [F8]
S. Turner, CERN Accelerator School Fifth General Accelerator Physics Course, CERN, Geneva, Switzerland, 26 January 1994
[F9] Image © Diamond Light Source
https://www2.physics.ox.ac.uk/accelerate/resources/background/pa rticles-and-materials

Last Access: 06/03/2019
[F10] S. Turner, CERN Accelerator School Fifth General Accelerator Physics Course, CERN, Geneva, Switzerland, 26 January 1994
[F11], [F12], [F13]
Kai Hock, Quadrupole Magnet, Report, Cockcroft Institute, Liverpool University, 10 March 2010

Link: http://hep.ph.liv.ac.uk/~hock/Damping_Ring/quadrupole.pdf
[F14]
https://en.wikipedia.org/wiki/Quadrupole_magnet\#/media/File:Ma gnetic_field_of_an_idealized_quadrupole_with_forces.svg Last Access: 20/04/2019
[F15] Andrew Hara
https://home.cern/news/news/accelerators/linac-4-reached-its-energy-goal
Last Access: 02/05/2019
[F16] https://www.electronics-tutorials.ws/electromagnetism/halleffect.html

Last Access: 11/04/2019
[F17] [F18] [F46]
Elytt Energy archive

TABLE REFERENCES

[T1] Elytt Energy archive

PART II: ANNEXES

GRADO EN INGENIERÍA ELECTROMECÁNICA

ANNEX I: Octave script for calculating coil parameters

j++;
j++;
b21_a(t2,:)=[0;0];
b21_a(t2,:)=[0;0];
for v=1:1:n2
for v=1:1:n2

t2++;
t2++;
B21-a(t2,:)=[(n1+n2)*p+sp1+4*di+li+(n1+n2-2)*p+j12-p*(v-1);(x+w/2+(n1+n2-1)*p)-p*(v-1)];
B21-a(t2,:)=[(n1+n2)*p+sp1+4*di+li+(n1+n2-2)*p+j12-p*(v-1);(x+w/2+(n1+n2-1)*p)-p*(v-1)];
t2++;
t2++;
b2i-a
b2i-a
end
end
821_a(2,:)=[-pp*};b21_a(2,2)];
821_a(2,:)=[-pp*};b21_a(2,2)];
b2La(t2,:)=[e+p*(v)+pp*m; (x-w/2-(n1+n2-1)*p)+p*(v-1)];
b2La(t2,:)=[e+p*(v)+pp*m; (x-w/2-(n1+n2-1)*p)+p*(v-1)];
b21_a(t2+1,:)=[0+p*(v)+pp*m; x];
b21_a(t2+1,:)=[0+p*(v)+pp*m; x];
b2i(: $2 \times \pi-1)=b 2 i \operatorname{a}(:, 1)$; ab2i contendrá los puntos de la bobina b2(exterior) en sus capas impares(cada capa serán las columnas tomadas de dos b21(:,2*m)=b2i_a(:,2);
$\mathrm{t} 1=1 ;$
$11(\mathrm{i}!=1)$
b11_a(t1,:)=[n2*p+ap1-pp*);x]; *b11 contendrá los puntos de la bobina bl(interior) en sus capas impares(cada capa serán las columnas tomadas
b11_a(t1,:)=[n2*p+ap1;0];
end
rv=1:1:n1
rv=1:1:n1
b11_a(t1,:)=[n2*p+ap1+p*(v-1);x+w/2+(n1-1)*p-p*(v-1)];
b11_a(t1,:)=[n2*p+ap1+p*(v-1);x+w/2+(n1-1)*p-p*(v-1)];
t1++;
t1++;
b11_a(t1,:)=[n2*p+ap1+n1*p+i*di+li+(n2-1)*p-p*(v-1); x-w/2-(n1-1)*p+p*(v-1)];
b11_a(t1,:)=[n2*p+ap1+n1*p+i*di+li+(n2-1)*p-p*(v-1); x-w/2-(n1-1)*p+p*(v-1)];
t1++;
t1++;
end
end
(i!=1)
(i!=1)
b11_a(2,:)=[n2*p+ap1-pp*j;b11_a(2,2)];
b11_a(2,:)=[n2*p+ap1-pp*j;b11_a(2,2)];
b1i_- (t1,:)=[n2+p+ap1+p*(v)+pp*m;x-w/2-(n1-1)*p+p*(v-1)];
b1i_- (t1,:)=[n2+p+ap1+p*(v)+pp*m;x-w/2-(n1-1)*p+p*(v-1)];
b11 a(t1+1,;)=[n2*p+ap1+p*(v)+pp*m;x]
b11 a(t1+1,;)=[n2*p+ap1+p*(v)+pp*m;x]
b11(:,2*m)=b11 a(:,2);
b11(:,2*m)=b11 a(:,2);
else
else
it;;
it;;
k=t2;
k=t2;
(0) v=n2:-1:1
(0) v=n2:-1:1
t2++;
t2++;
62p_a(t2,:)=[0+p*(v);(x+w/2+(n1+n2-1)*p)-p*(v-1)]
62p_a(t2,:)=[0+p*(v);(x+w/2+(n1+n2-1)*p)-p*(v-1)]
b2p_a(t2,:)=[(n1+n2)*p+ap1+4*di+1i+(n1+n2-2)*p+112-p*(v-1);(x+m/2+(n1+n2-1)*p)-p*(v-1)];
b2p_a(t2,:)=[(n1+n2)*p+ap1+4*di+1i+(n1+n2-2)*p+112-p*(v-1);(x+m/2+(n1+n2-1)*p)-p*(v-1)];
t2++;
t2++;
t2++
t2++
b2p_a(t2,:)=[0+p*(v-1); (x-w/2-{n3+n2-1)*p)+p*(v-1)];
b2p_a(t2,:)=[0+p*(v-1); (x-w/2-{n3+n2-1)*p)+p*(v-1)];
end
end
(il=nc)
(il=nc)
r+t;
r+t;

b2p_a(t2+1,:)=[-pp*r;x);
b2p_a(t2+1,:)=[-pp*r;x);
b2p_a(t2+1,:)=(0;0);
b2p_a(t2+1,:)=(0;0);

UNIVERSIDAD PONTIFICIA COMILLAS

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA (ICAI)
GRADO EN INGENIERÍA ELECTROMECÁNICA

Annex II: TCL script used for controlling the rotation stage and gather data


```
& umndy function to disploy an orror and clats the connmct ion
    Mlobal tcl_argv ( )
    }atset error_message "SAPIName ERROR => -2 : TCP timeout"
    } arse { {scode =-108) {
        } set error_message "{APIName ERROR => -108 : The TCP/IP connection was closed by an administrator"
            *)
                Set error_message "sAPIName ERROR => $code - ErrorStringGet ERROR => $codeZ"
                } clse ferror_message "saPIName sstrerror"
        } }
    puts stdout serror_message
    (set tcl argv(0) serror message
    }
```



```
    WProvemysyy
    at code 0
*## verisbles interesantes:
%# deftritr nimero de vueltas
    ct n118
    \n12 14
    at acc 100e
    7. vel [-xpr {shz + 360}]
    Wonir momios funcion oc) to anterion
    *) deg11 [:opr {$n11:(-360)};
```

```
set samp1start -1
    et Samp2start 1
#N max freg & kHz, queremos 1 kh3
    et samplingPS &
    SamplingPS 8
##* operaciones previas (necesarias en general)
## iniciar la comunicación (necesario)
# Open TCP socket
OpenConnection $TimeOut socketID
    {$socketID =-1} {
    puts stdout "OpenConnection failed => -1"
}
## Inicializar el grupo (nccesario)
    # terminar el grupo si no to estabs
    fet code [catch "GroupKill $socketID Group1"]
    {$code != 0} {
    OisplayErrorAndCloseConnection $socketID $code "GroupKill"
}
*iniciar el grupo
# Run command: GroupInitialize(Group1)
    et code [catch "GroupInitialize $socketID Group1"]
    DisplayErrorAndCloseConnection $socketID $code "GroupInitialize"
}
# buscar el 0
    * Run commend: GroumtoresearchlGrounib
    et code [catch "GroupHomeSearch $socketID Group1"]
    DisplayErrorAndCloseConnection $socketID $code "GroupHomeSearch"
}
```

```
# Run conmend: GroupMotionEnable(Groupi)
    # set, code leatch "GroupMotionEmabie ssackeaid Groupi")
    - If {scode 隹 f
    DisplayErrorAndCloseConnection ssocketID $code "GroupMotionEnable"
    }
* configurar ia tons de datós (leer posicion ectual, NOC1 y ADC2)
```



```
set code fcatch "GatheringConfigurationSet ssocketID Group1.Pos.CurrentPosition Group1.Pos.Currentvelocity GPIO2.ADC1 GPIO2.ADC2"1
    (scode DisplayErrorAndCloseConnection $socketID scode "GatheringConfigurationSet"
    Misp
}
# definicion de ciando se lanza el triggar 
Set code [fatch "EventExtendedConfigurationTriggerSet $socketID Group1.Pos.WaitForPositionLeftToRight $samp1start 0 0 0"]
    \isplayErrorAndCloseConnection $socketID $code "EventExtendedConfigurationTriggerSet"
    l
}
# definicion de que bo de hacer el trigger 
#et code [ental "EventExtendedConfigurationActionSet $socketID GatheringRun $sampplingNSamples $samplingPS 0 0"]
    f {$code 0.0} {
    mezurn
}
# iniciar el trigger
set code [catch) "EventExtendedStart $socketID arg1"]
    ( {scode = 0) {
    DisplayErrorAndCloseConnection $socketID $code "EventExtendedStart" 
}
```



```
    code [cotcin "PositionerSGammParametersSet $socketID Group1.Pos svel 1000 0.005 0.05"]
    iscoce 泣位ErrorAndCloseConnection SsocketID $code "PositionerSGammaParametersSet"
    }
```

: movamiento rotatorio previo
\# Run conmand: GroupMoveabsolute(Group1, deg11)
set code [catch "GroupMoveAbsolute \$socketID Group1 \$deg11"]
if $\{\$$ code $1=2\}$ \{
DisplayErrorAndCloseConnection \$socketID \$code "GroupMoveAbsolute"
return
3
F movimiento rotatoria largo
(8. Run command: GroupMoveAbsotute(Group1, deg12)
set code [catch "GroupMoveAbsolute \$socketID Groupl \$deg12"]
〔\$code
DisplayErrorAndCloseConnection \$socketID \$code "GroupMoveAbsolute"
3
\# quardar los datos

- Run conmand: GatheringStopAndSave()
Sct code [catch "GatheringStopAndSave \$socketID"]
\{ $\$$ code $=0$) $\{$
(\$code DisplayErrorAndCloseConnection \$socketID \$code "GatheringStopAndSave"
\}
\# renombrar el archivo
set code [catch "FileGatheringRename \$socketID clockwise.dat"]
If $\begin{aligned} & \text { \{scode } \\ & \text { Display } \\ & \text { I } \\ & \text { er }\end{aligned}$ \{
DisplayErrorAndCloseConnection \$socketID \$code "FileGatheringRename"
\}
A volver a o
set code [catch "GroupMoveAbsolute \$socketID Group1 0"]
if $\{$ Scode $1=0\}\{$
DisplayErrorAndCloseConnection \$socketID \$code "GroupMoveAbsolute"
\}
 * deshabilitar moviniento (opcionot)
5et code [catch "GroupMotionDisable \$socketiD Group1"]
if $\left\{\begin{array}{l}\text { (\$code learch } \\ \text { i } \\ \text { it }\end{array}\right.$
DisplayErrorAndCloseConnection \$socketID \$code "GroupMotionEnable"
return
\}
\# cerrar la conexion
TCP_Closesocket \$socketiD

Annex III: Bill of Materials for amplifier and filter circuit

GRADO EN INGENIERÍA ELECTROMECÁNICA

Annex IV: Matlab script used for data processing and calibration

47	
48	ELTASCONVELHORARIO2Hz14V_385C2_PP1R1_EJE_20180321_22.dat'
48	'VUELTASCONVEHORARIO2HZ14V 305C2 FP1R3 EESE 20180321 22.dat'
50	'WUELTASCONVELHORARIO2H214V_305C2_FP1R1_ROLL_20180321_22.dat'
52	'VUELTASCONVELHORARIO2HZ14V_305C2_FP1R1_RDLL_ 20180321_22.dat'
53	'VUEL TASCOWVELHORARTO2Hz14V_305C2_PP1R1_ROLL_20180321_22.dat'
54	'VUELTASCONVELHORARI02H214V_385C2_PP2R1_ROLL_20189321_22.dat'
5	
	VUELTASCONVELHORARTO2HZ14V 306C2 FP1R1 EJE 20180321.22. dat $^{\prime}$
B	UELTASCONVELHORMPI02H214V_306C2_FP1R3_EJE_20189321_22.
3	'VUELTASCONELHORARTO2Hz14V_306C2_FP1R1_ROLL_ 20180321_ 22.dat'
61	'VUELTASCONVELHOPART02HZ14V_306C2_FP1R1_ROLL_20180321_22.dat'
2	'VUELTASCONVELHORARTO2Hz14V 306C2_FP1R1 ROLL 20180321 22.dat'
63	'VUELTASCONVELHOPMRIO2HZ14V_306C2_FP2R1_ROLL_20180321_22.dat'
4	
5	
66	'VUELTASCONVELHORARIO2H214V_307CZ_FP1R1_EJE_20180321_22.dat''
	'VUELTASCONVELHORARIO2H214V 307C2 PPIR3 EJE 20180321 22. dat'
88	'VUELTASCONVELHOPMR102H214V_307C2_FP1R1_ROLL_20180321_22.dat '
)	t'
1	'vUELTASCONVELHORARTO2HZ14V_307C2_FP1R1_ROLL 20180321_ 22,dat'
72	'VUELTASCONVELHORARTO2HZ14V_307C2_FP2R1_ROLL_ 20180321_22.dat'
73	
74	
75	'VUELTASCONVELHORMRI02HZ14V_308C2_FP1R1_EJE_20130321_24,5.dat'
	'VUELTASCONVELHORMPIO2Hz14V_308C2_FP1R3_EJE_20180321_24,5.dat'
77	'VUELTASCONVELHORARIO2HZ14V_308C2_FPIR1_ROLL_20189321_24,5.dat'
?	'VUELTASCCNVELHOPMR102H214V_388C2_FP1R1_ROLL_20180321_24,5.dat'
38	'VUELTASCOWVELHORMRIO2HZ14V_308C2_FP1R1_ROLL_ 20180321_24, 5.dat'
31	'VUELTASCONVELHORMRIO2H214V_388C2_FP2R1_ROLL_20180321_24,5.dat'
	WUELTASCONVELHORARIO2H214V_309C2_FP1R3_E3E-201803321-22.dat
	'VUELTASCONVELHORARIO2HZ14V_399C2_PP1R1_ROLL_20160321_22.dat'
	VUELTASCONVELHORARIO2Hz14V_309C2_FP1R1_ROLL_20160321_22.dat'
8	'VUELTASCCNVELHORARTO2HZ14V 309C2_FP1R1_ROLL_20180321 22.dat'
9	'VUELTASCONELHORART02HZ14V_309C2_FP2R1_ROLL_20180321_22.dat'
98	
93	'VUELTASCONVELHORART02HZ14V 310C2 FP1R3 EJE 20180321 22.dat'
94	' 'VUELTASCONVELHORARIO2HZ14V_310C2_FP1R1_ROLL_20180321_22.dat'


```
|_postelength(files)/3;
```



```
    Ciclo=[504:1:503+500*n_ciclo); % Selecion de puntos para 2Hz
    *)
```



```
    Menp_corr=38 
    Fcal=eq(2.14898738246317/2.1628378a797305-1)*108 temperatura en Factor de calibracion del IG en %
    theta_CORR=-1.5239+0.25597-0.021-0.00977pi/2 & Correccion de angulo theta en rad
```



```
* PARAMETROS MEDIDA
    #rref=3.7*mm % Reterence radius
    #.8=100
    * PAPaMETROS PC
    errorx=0*an
    error=0.0*mm;
    dist_t=0.3*mm;
    espesor=0.15%mm;
    AmpLL_B1=108;
Ampl{_comp=10%;
* Coetticientes calculados de la bobina
    * error al posicionar ta espira respecto al pNO
    * error al posicionar ta espira respecto at mMo
    * Distancia entre capa y capa (entre su plano medio
    * Distancia entre turn y turn (entre su plano medio)
    * Distancia entr
    * Espesor path 
    * Anplificacion bobinaz
- Amplificacion comp
```



```
** Creacion bobina 1
Creo lista de puntos \overline{x}
    nlayers_81=4;
    x9р_ 81=4,39*mm;
    x0n_B1=2.29*rm;
*)
Xnean_81=x0n_81*0.5+x0p_B1*i.5; & Centro de la bobina
    f yod(nlayers_81,2)={
    elseit mod(nlayers 81,2)=
    y0,B1=0-dist_l*(nlayers_81/2-0.5); & y0 de la primera espira mas abajo, no considera error
end
XY_81=[];
```

```
    t=1:nturns_81
    x0p_B1+(t-1)*dist_t+errorX y0_B1+(l-1)*dist_l+errorY
end
NTB1=size(XY_81,1); % Numero de puntos en bobina
RB1=(XY_B1(!,1), \hat{2}+XY_B1(:,2).\hat{2}):~0.5;* Radio en bobina I en m
```



```
phi_B1=atan2(XY_B1(:,2),XY_B1(:,1)); * phi en bobina 1 en rad
#scatter(XY_Bi(:,1),XY_B1(:,2))
```



```
% Creacion bobina 2, B2,
nlayers 82=0;
nturns-82=6;
* B=7.0%; &umero de vueltas
* Numero de vueltas por capa
x0n B2=-1,31*m;; & X0 de la prinera espira positiva, no considera error
*)
    4 mod(nlayers_ 82,2)=ef
l
ye_Bz=|-dist_l*(nlayers_B2/2-0.5); * Yo de la primera espira mas abajo, no considera error
end
XY_B2=[1;
Tor l=1:nlayers B2
    t=1:nturn5 B2 
        x0p_82+(t-1)*dist_t+errorX y0_B2+(l-1)*dist_l_errorY
        x@n_82-(t-1)*dist_t+errorx yo_ B2+(1-1)*dist_l+errory];
    end
NTB2=size(XY, B2,1); % Nunero de puntos en bobina 1
```



```
lol
S1gno_82==1gn(XY-62(;,1)-Xnean_82);, & Sequn la espira vaya + +
```


\＄scatter（XY＿ $\left.82(:, 1), x y _82(:, 2)\right)$

н⿱⿴囗十丌
(1)

* dibatter(xN DOS BOBINAS
thold on
*scatter(XY_81(:,1),XY_81(:,2))

* Calculo coefficientes de cada harmonico de bobina 1
for $n=1: n_{1} \quad \mathrm{~B}$
COSN_B1(n, 1)=5ul(signo_B1.*Cos(n*phi_81).*((R_B1/rref).^n));
end
for $n=1: n, 8$
sTM 1 B1 n,

end
for $n=1: n _B$
ML_B1 $(:, i, n)=I \operatorname{COSN} _B 1(n) \quad$ SINN_B1 (n)
and $\operatorname{SZNL_ B1(n)-\operatorname {cosN}_ B1(n)1\text {;};~}$
end
* Calculo coefficientes de cada harmonico de bobina

COSN_B2(n,1)=sul(signo_B2.*cos(n*phi_B2).*((R_B2/rref).^n));
end
for $n=1: n _$B
SIN_ $82(n, 1)=s u n\left(s i g n o _B 2 . * s i n\left(n * p h i _B 2\right) . *\left(\left(R _B 2 / r r e f\right) . \wedge n\right)\right) ; ~$
SINL 82 (
for $n=1: n _B$
(MN_B2(i,i,n) $=(\operatorname{cosN} B 2(n)$ SINN_B2(n)
SIN_B2(n) -COSN_B2(n)];
end

```
Calculo matriz compensada
MN_comp+w_B2-WN_81;
* Multiplico por amplificadores
MN B2-NN B2*Ampli_ B2;
MN comp=Hl comp*Ampll
```



```
et POST-PROCESO MEDIDAS
    Mor P=1:n_post
    complete_filel=strcat(path,files((P-2)*3+f})
    clockwisedlaread(complete_fite1);
    W__med=clockwise(ciclo, 2)*d2r;
    sig_82=clockwise(Ciclo,3);
    sig_comp=clockwise(ciclo,4)
    Npoints=length(ph1_med);
```



```
    * PROCESO BOBIM
```



```
    * DFT
    lanbda_sig_B2=tft(sig_B2./M_med);
    lanbdo_sig_82(round(Npoints/2)+1:end)=[1;
    2n_sig_82=real(lambda
    n_S19_82-cel(amoda_s10_82)*2/Npoints;
    M_s1_82=-1mag(tambda_sig_82)=2/Npoints;
    M_S2_B2=Rn_sig_82([n_ciclo:n_ciclo:Length(Rn_sig_B2)));
```



```
    * Calculo coeficientes Bn, An
        T n=1:n_8
        SOLUCTON= inv(MN_82(:,:,n))*[TM_sig_B2(n) Rn_siq_B2(n)]'/rref;
        Bn_82(n,1)=SOLUCION(1);
    An_-2 in,1)=SOLucrov(2);
```



```
    Bnain_B2=Cn-B2(2);
    IG(:,f,P)=Bmain_B2/rref;
```

```
* Calculo coeticientes bn, an, incluyen ta correccion de angulo
numero_harm=[1:1:n_8]';
on_B2(:, f, P)=Bn_ B2/Bma in B2*1e4,*cos(numero harm*theta_CORR)+An B2/Bna in B2*14.**s in(nunero harm*theta CORR):
an_B2(:,f,P)=-Bn_B2/Baain_B2*1e4,*51n(numero_hare*theta_CORR)+An_B2/Bmain_B2*1e4,*cos(numero_harm*theta_CORR);
cn_82(:,f,P)=(an_82(:,f,P).^2+bn_B2(:,f,P).^2).^0.5;
* Para que dibujar harmonicos en pantalla
dibuja=[1:1:18];
[dibuja an_B2(dibuja,f,P) bn_B2(dibuja,f,P) cn_82(dibuja,f,P)];
```



```
    * Proceso bobina COMPENSADA
```



```
    & DFT
    lanbda_sig_comp_fft(sig_comp./w_med);
    lambda_sig_comp-ft(sig_comp./w med);
    lambda_sig_comp (1)=(1;
    Rn_sig_comp=real(lambda_sig_comp)*2/Mpoints;
    Tn_sig_comp=-inag (lambda_siq_comp) *2/Npoints;
    Rn_sig_compinn_sig_comp(In_ciclo:n_ciclo:length(Pn_sig_comp)]);
    Tn_sig_comp=Tn_sig_comp([n_ciclo:n_ciclo:length(Tn_sig_comp)));
    % Calculo coeficientes Bn, An
    for n=1:n_8
        SOLUCION-inv(MN_comp( :, , ,n))*[Tn_sig_comp(n) Rn_sig_comp(n)]'/rref;
        Bn_comp(n,1)=S0LUCION(1);
    end
    end Calculo coeficientes bn, an, incluyen la correccion de angulo
    Cr_comp=(An_corp. ^2+Bn_comp. 人2).^Q.5;
    * No puedo nornalizar con B2 porque esta cancelado aposta
    * Normalizo para obtener el mismo c3 en ambos casos
    numero_harm=[1:1:n_B]
    numero_harmmi:1:n_B];
    an_comp(:,f,P)=An_comp*coeff amplificacion *cos(numero_harm*theta_COPR)-Bn_comp*coeff amplificacion.*sin(numero harm*theta CORR):
    bn_comp(:,f,P)=An_comp*cceff_amplificacion.*sin(numero_harm*theta_copR)+Bn_comp*coeff_amplificacion.*cos(numero_harm*theta_coRR);
    cn_comp(:, f,P)=abs (Cn_comp*coeff_amplificacion);
    * Para que dibujar harmonicos en pantalla
    dibuja=[3:1:18]';
    [dibuja an_comp(dibu]a, f,P) bn_comp(dibuja,f,P) cn_comp(dibuja, f,P)];
end
```



```
    ** CALCULO OUTPUT DE DATOS
    $* CALCULO OUTPUT DE DATOS *-1)
```


Annex V: Measurement results of Tank 3

Hall probe													
$\begin{aligned} & \text { PMQ } \\ & \mathrm{S} / \mathrm{N} \end{aligned}$	$\begin{gathered} \Delta x \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \Delta y \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \Delta \theta 1 \\ (\mathrm{mrad}) \end{gathered}$	$\begin{gathered} \Delta \theta 2 \\ (\mathrm{mrad}) \end{gathered}$	$\begin{aligned} & \text { IG (T) } \\ & \text { at } 30^{\circ} \mathrm{C} \end{aligned}$	Nominal IG at $30^{\circ} \mathrm{C}$	$\begin{gathered} \text { Error in IG } \\ \% \end{gathered}$	a3	a4	b3	b4	c3	c4
301	-7,07	39,88	0,76	0,70	1,5896	1,5896	0,00	0,0	-4,2	-10,8	-18,1	10,8	18,6
302	2,18	1,50	-0,09	-0,10	1,5156	1,5200	-0,29	$-17,7$	-7,1	-1,3	2,9	17,7	7,7
303	-5,76	-49,22	0,08	0,29	1,5484	1,5424	0,39	-54,8	-3,0	6,5	-1,7	55,2	3,4
304	-22,72	8,12	0,17	0,08	1,5486	1,5488	-0,01	-0,2	16,4	-7,2	-2,1	7,2	16,5
305	38,85	0,19	-1,47	-1,19	1,5339	1,5344	-0,03	-15,2	-19,0	44,6	-15,3	47,2	24,3
306	17,28	0,86	1,64	1,39	1,5264	1,5216	0,32	7,4	2,4	9,1	-3,7	11,7	4,4
307	2,32	-22,01	0,56	0,76	1,5075	1,5072	0,02	19,8	11,9	-8,9	1,4	21,7	12,0
308	5,01	-1,73	1,57	1,50	1,4957	1,4944	0,09	13,0	-18,4	-0,2	-13,5	13,0	22,8
309	25,40	-0,18	0,37	0,61	1,4793	1,4816	-0,16	-4,2	-18,7	11,9	3,1	12,6	19,0
310	23,88	28,15	0,43	0,66	1,4758	1,4696	0,42	3,2	14,0	12,6	15,5	13,0	20,9
311	-15,46	45,99	0,60	0,68	1,4542	1,4560	-0,12	15,6	-11,2	-9,8	4,8	18,4	12,2
312	-6,96	25,88	-0,99	-0,82	1,4516	1,4456	0,41	19,4	6,4	-9,1	-11,8	21,4	13,5
313	-37,09	33,39	-1,49	-1,28	1,4443	1,4472	-0,20	23,9	-20,8	-43,3	-25,5	49,4	32,9
314	38,59	-8,03	1,66	1,93	1,4479	1,4432	0,33	-4,8	-14,2	8,9	-19,6	10,1	24,2
315	30,38	34,58	0,14	0,30	1,3836	1,3776	0,44	-15,2	4,3	7,0	0,1	16,7	4,3

Rotating coil													
$\begin{aligned} & \text { PMQ } \\ & \mathrm{S} / \mathrm{N} \end{aligned}$	$\begin{gathered} \Delta \mathrm{x} \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \Delta y \\ (\mu \mathrm{~m}) \end{gathered}$	$\begin{gathered} \Delta \theta 1 \\ (\mathrm{mrad}) \end{gathered}$	$\begin{gathered} \Delta \theta Z \\ (\mathrm{mrad}) \end{gathered}$	$\begin{aligned} & \text { IG (T) } \\ & \text { at } 30^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Nominal IG } \\ & \text { at } 30^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} \text { Error in IG } \\ \% \end{gathered}$	a3	a4	b3	b4	c3	c4
301	14,49	34,68	-0,56	1,36	1,5887	1,5896	-0,06	-3,7	11,0	13,2	15,5	13,7	19,1
302	-4,75	24,82	0,53	-0,05	1,5153	1,5200	-0,31	$-1,0$	7,4	1,1	-8,0	1,4	10,9
303	13,69	-46,21	0,27	0,47	1,5487	1,5424	0,41	34,2	5,6	$-14,9$	$-1,7$	37,3	5,8
304	-11,56	12,17	0,14	-0,04	1,5510	1,5488	0,14	-0,2	-13,4	6,2	1,8	6,2	13,5
305	64,95	3,05	-1,42	-1,23	1,5338	1,5344	-0,04	15,0	23,2	-50,9	9,6	53,1	25,1
306	22,24	-2,72	1,55	0,51	1,5272	1,5216	0,37	-0,7	0,3	-9,0	2,3	9,0	2,3
307	-9,22	-28,62	0,63	0,81	1,5096	1,5072	0,16	-10,1	-10,0	13,7	0,2	17,0	10,0
308	31,05	-8,63	1,66	1,91	1,4951	1,4944	0,05	-4,4	25,2	-1,1	5,9	4,6	25,8
309	19,68	-1,95	0,42	0,44	1,4796	1,4816	-0,13	-2,4	18,5	-12,8	-11,5	13,0	21,8
310	47,13	46,81	0,34	0,52	1,4750	1,4696	0,37	-2,1	-14,0	-12,9	-11,0	13,0	17,8
311	-3,87	59,96	0,91	0,91	1,4573	1,4560	0,09	-16,3	12,6	12,1	-9,4	20,3	15,7
312	2,41	30,21	-1,19	-1,04	1,4519	1,4456	0,44	-21,6	-1,9	16,5	10,3	27,2	10,5
313	-71,10	50,82	-1,25	-1,52	1,4452	1,4472	-0,14	-13,2	29,1	46,7	17,1	48,5	33,8
314	35,69	-18,19	1,90	2,19	1,4477	1,4432	0,31	2,3	20,5	-10,0	13,7	10,2	24,6
315	24,10	41,63	0,19	0,09	1,3838	1,3776	0,45	8,4	-3,4	$-8,8$	-4,3	12,1	5,5

an with rotating coil								
PMQs	an3	an4	an5	an6	an7	an8	an9	an10
301	$-3,65$	11,03	$-12,15$	$-3,12$	1,57	1,34	1,54	$-6,61$
302	$-0,97$	7,41	8,04	0,57	1,62	0,72	1,17	$-5,92$
303	34,24	5,59	$-2,57$	$-9,85$	$-0,12$	$-0,54$	2,01	$-6,18$
304	$-0,22$	$-13,42$	$-2,42$	0,08	$-0,79$	0,52	1,15	$-6,41$
305	14,98	23,20	$-5,49$	0,18	0,93	1,41	1,10	$-6,21$
306	$-0,71$	0,26	$-1,30$	2,33	$-0,67$	0,76	1,07	$-6,13$
307	$-10,13$	$-9,99$	$-0,33$	$-9,58$	$-1,59$	0,79	2,08	$-5,96$
308	$-4,43$	25,15	4,69	$-0,69$	1,18	0,68	1,45	$-5,91$
309	$-2,35$	18,51	0,90	$-2,23$	0,12	1,38	1,11	$-5,65$
310	$-2,08$	$-14,02$	$-11,94$	1,79	$-0,10$	0,26	1,03	$-5,69$
311	$-16,27$	12,63	$-0,29$	2,41	$-1,05$	1,49	1,02	$-5,54$
312	$-21,57$	$-1,86$	$-11,59$	$-7,08$	$-1,09$	1,22	1,11	$-5,41$
313	$-13,21$	29,13	6,06	2,46	0,49	0,05	0,54	$-5,44$
314	2,28	20,45	0,88	0,16	$-0,34$	$-0,15$	1,59	$-5,51$
315	8,37	$-3,40$	6,59	3,21	0,81	0,26	0,75	$-5,05$

bn with rotating coil								
PMQs	bn3	bn4	bn5	bn6	bn7	bn8	bn9	bn10
301	13,19	15,54	$-3,06$	$-6,91$	2,55	$-0,73$	$-1,83$	$-12,51$
302	1,06	$-7,97$	$-6,43$	$-8,63$	0,38	$-1,72$	$-1,86$	$-11,28$
303	$-14,89$	$-1,73$	$-3,27$	$-6,01$	0,60	0,18	$-1,66$	$-11,96$
304	6,19	1,81	$-0,77$	$-3,73$	0,49	$-0,32$	$-1,80$	$-11,95$
305	$-50,90$	9,60	$-2,74$	$-9,12$	$-1,23$	$-1,24$	$-1,31$	$-11,63$
306	$-8,97$	2,32	4,98	$-5,26$	$-0,94$	$-0,45$	$-1,69$	$-11,58$
307	13,68	0,16	$-1,04$	$-6,22$	2,58	0,07	$-2,11$	$-11,30$
308	$-1,12$	5,88	$-4,87$	$-7,93$	$-0,13$	$-0,57$	$-1,59$	$-10,99$
309	$-12,81$	$-11,53$	$-2,37$	$-2,20$	$-0,20$	$-0,73$	$-1,95$	$-10,88$
310	$-12,86$	$-10,98$	3,02	$-2,30$	0,07	$-0,49$	$-1,16$	$-10,81$
311	12,09	$-9,37$	10,02	$-6,00$	$-0,94$	$-0,62$	$-1,66$	$-10,50$
312	16,53	10,30	3,40	$-4,04$	$-0,85$	$-0,87$	$-1,43$	$-10,45$
313	46,71	17,13	6,03	$-6,64$	$-0,24$	$-0,21$	$-2,08$	$-10,32$
314	$-9,98$	13,72	4,39	$-8,46$	$-0,83$	$-0,72$	$-1,71$	$-10,37$
315	$-8,79$	$-4,33$	$-3,24$	$-4,99$	$-0,46$	$-0,08$	$-1,57$	$-9,40$

cn with rotating coil									
PMQs	cn3	cn4	cn5	cn6	cn7	cn8	cn9	cn10	
301	13,69	19,05	12,53	7,59	2,99	1,53	2,39	14,15	
302	1,44	10,88	10,30	8,65	1,67	1,87	2,20	12,74	
303	37,34	5,85	4,16	11,54	0,62	0,57	2,61	13,46	
304	6,20	13,54	2,54	3,73	0,94	0,61	2,13	13,56	
305	53,06	25,10	6,14	9,12	1,54	1,88	1,71	13,19	
306	9,00	2,33	5,15	5,75	1,15	0,88	1,99	13,11	
307	17,02	9,99	1,10	11,43	3,04	0,80	2,96	12,78	
308	4,57	25,83	6,76	7,96	1,19	0,89	2,15	12,48	
309	13,02	21,80	2,53	3,14	0,24	1,56	2,24	12,26	
310	13,02	17,81	12,32	2,92	0,12	0,55	1,55	12,22	
311	20,27	15,73	10,02	6,47	1,41	1,61	1,95	11,87	
312	27,17	10,47	12,08	8,15	1,38	1,50	1,81	11,77	
313	48,54	33,79	8,55	7,08	0,54	0,22	2,15	11,67	
314	10,24	24,62	4,48	8,46	0,89	0,73	2,33	11,74	
315	12,13	5,51	7,34	5,93	0,93	0,27	1,74	10,67	

Annex VI: Measurement results of Tank 4

PMQ S / N	$\Delta x(\mu \mathrm{~m})$	$\Delta \mathrm{y}(\mu \mathrm{m})$	$\Delta \theta 1$ (mrad)	$\Delta \theta 2$ (mrad)	IG (T) at $30^{\circ} \mathrm{C}$	Nominal IG at $30^{\circ} \mathrm{C}$	Error in IG $\%$	a3	a4	b3	b4	c3	$\mathrm{c4}$
401	43,57	$-2,93$	$-1,44$	0,50	1,3725	1,3736	$-0,08$	4,1	$-6,6$	44,2	$-3,3$	44,4	7,4
402	30,04	$-20,39$	$-1,05$	$-1,02$	1,3862	1,3864	$-0,02$	$-10,4$	1,1	$-0,9$	$-20,0$	10,5	20,0
403	$-32,62$	29,66	0,40	0,34	1,3878	1,3824	0,39	29,4	25,9	$-19,0$	$-21,2$	35,0	33,5
404	43,49	$-21,74$	$-0,62$	$-0,89$	1,3576	1,3584	$-0,06$	$-22,2$	$-4,8$	$-3,0$	3,2	22,4	5,8
405	6,96	$-16,30$	0,04	0,33	1,3495	1,348	0,11	$-22,5$	19,1	0,5	$-11,2$	22,5	22,1
406	$-19,93$	31,10	$-1,17$	$-0,34$	1,3416	1,3376	0,30	47,8	$-8,3$	$-16,7$	$-15,2$	50,6	17,3
407	$-11,49$	$-8,09$	$-1,10$	$-1,04$	1,3288	1,328	0,06	$-12,3$	$-3,0$	$-19,3$	$-4,5$	22,9	5,5
408	$-12,65$	$-19,49$	1,23	1,53	1,3160	1,3176	$-0,12$	$-11,1$	9,9	$-12,1$	3,5	16,4	10,5
409	27,49	$-29,50$	$-0,59$	$-0,02$	1,3081	1,308	0,01	$-22,3$	$-1,5$	31,7	9,1	38,8	9,3
410	22,39	$-36,03$	1,46	1,71	1,3000	1,2984	0,12	$-11,2$	3,4	12,4	11,4	16,7	11,9
411	$-30,09$	$-18,65$	0,26	0,19	1,3077	1,3032	0,35	$-7,3$	$-7,9$	$-15,2$	0,8	16,9	8,0
412	$-10,82$	0,41	$-0,70$	$-1,10$	1,3125	1,3096	0,22	11,0	$-6,4$	$-1,8$	$-16,8$	11,1	18,0
413	$-25,80$	13,09	1,66	1,13	1,2797	1,2824	$-0,21$	11,9	$-12,5$	$-17,4$	$-13,5$	21,1	18,4

DOCUMENT 2

DIAGRAMS

LIST OF DIAGRAMS

PART I: BEDPLATE DIAGRAMS

- DIAGRAM 1: BASE
- DIAGRAM 2: SUPERIOR PLATE
- DIAGRAM 3: COLUMN
- DIAGRAM 4: PUSHER
- DIAGRAM 5: SLIP-RING FIXING
- DIAGRAM 6: ADAPTER TO LEHIPA REFERENCE MAGNET
- DIAGRAM 7: STATOR
- DIAGRAM 8: MOLE
- DIAGRAM 9: CONNECTION FRAME
- DIAGRAM 10: ROTOR
- DIAGRAM 11: SLIP-RING FLANGE
- DIAGRAM 12: PMQ ROTATING COIL SYSTEM

PART I: BEDPLATE DIAGRAMS

DIAGRAM 1: BASE

DIAGRAM 2: SUPERIOR PLATE

DIAGRAM 3: COLUMN

DIAGRAM 4: PUSHER

Section view A-A
Scale: 2:1

Section view B-B Scale: 2:1

-	--	-	-	
-	--	-	-	
MODIFICATIONS	APP	INDEX	DATE	

CHECKED BY	DRAWING NUMBER
FFG	ROTCOIL1_VO_M_1_4_RO

DIAGRAM 5: SLIP RING FIXING

DIAGRAM 6: ADAPTER TO LEHIPA

REFERENCE MAGNET

DIAGRAM 7: STATOR

DIAGRAM 8: MOLE

DIAGRAM 9: CONNECTION FRAME

Isometric view
Scale: 1:1

DIAGRAM 10: ROTOR

DIAGRAM 11: SLIP-RING FLANGE

DIAGRAM 12: PMQ ROTATING COIL SYSTEM

