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A B S T R A C T

Traders and practitioners in diverse power exchanges are nowadays being most exposed to uncertainty than
ever. The combination of several factors such as renewable generation and regulatory changes calls for suitable
electricity price forecasting models that can deal with complex and unusual market conditions. Several authors
have proposed combining fundamental approaches with econometric models in order to cover all relevant as-
pects for electricity price forecasting. This combination has shown positive results for medium-term horizons.
However, this approach has rarely been carried out for short-term applications. Moreover, several day-to-day
applications in electricity markets require fast responsiveness and accurate forecasts. All of these facts encourage
this work’s short-term hybrid electricity price forecasting model, which combines a cost-production optimisation
(fundamental) model with an artificial neural network (econometric) model. In order to validate the advantages
and contributions of the proposed model, it has been applied to a real-size power exchange with complex price
dynamics, such as the Iberian electricity market. Moreover, its forecasting performance has been compared with
those of the two individual components of the hybrid model as well as other well-recognised methods. The
results of this comparison prove that the proposed forecasting model outperforms the benchmark models,
especially in uncommon market circumstances.

1. Introduction and literature review

As of today, electricity market agents and participants are increas-
ingly being exposed to price uncertainty and high market volatility,
especially since the deregulation and liberalisation of power exchanges.
Moreover, this uncertainty is further heightened by the growing pene-
tration of renewable energy sources and global financial instability.
Furthermore, regulatory and market structural changes are intensifying
the complexity of the system. Therefore, the combination of these facts
strongly encourages the use of electricity price forecasting models.

Other uses of electricity price forecasting models among traders and
practitioners include risk management, speculation and strategic pur-
poses. Moreover, these traders and practitioners usually take part in
day-to-day applications and decision making, which call for fast fore-
casting approaches. Therefore, the fact that electricity market price
forecasting models are highly demanded is not in question.

One way of classifying these models is by paying attention to their
applications, purposes and aims, which are mostly related to the
planning horizon, i.e. short- medium- and long-term. Short-term fore-
casting model uses regularly include statistical and econometric

methods, while longer term applications generally involve fundamental
modelling of the market dynamics [1].

The work presented in this manuscript focuses on electricity market
price forecasting in the short term (horizons ranging from a few hours
up to one week in advance), which plays a very important role in day-
to-day market operations. Furthermore, a great number of research
works confirm that electricity market prices exhibit volatile and non-
stationary behaviour, making price forecasting a highly challenging
task. Therefore, the current literature encompasses numerous fore-
casting methods in order to yield accurate and adequate forecasts, as
can be seen in Ref. [2].

Some of the most traditional electricity price forecasting models in
short-term applications are statistical/econometric methods, which in-
volve time-series methods (e.g. ARIMA, GARCH [3–7]), Artificial In-
telligence (AI) techniques (e.g. Support Vector Machine, Radial Basis
Function Networks [8–13]) and combinations of both types of models
[14–21].

These combinations have recently received a wide acceptance due
to their proficiency at modelling linear (time series) as well as non-
linear (AI) trends and patterns in datasets [22]. Furthermore, these
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models are capable of capturing the revealed behavioural aspects of
market participants, such as strategic and speculative behaviour [23].

However, statistical models may not be able to fully incorporate
market dynamics and operation to their electricity price forecasts.
Furthermore, these models tend to have difficulties when it comes to
representing regulatory and market structural changes. Moreover, an-
other weakness of econometric models lies in the assumption that his-
tory repeats itself, which is not suitable in most cases for today’s power
markets, which are more volatile and complex than ever.

To cover these aspects, market clearing prices are estimated by
means of fundamental methods, which are aimed at thoroughly mod-
elling the power market, including all generation units and their tech-
nical features, such as production costs. Nevertheless, market clearing
models are not usually resorted for short-term price forecasting appli-
cations, often due to their poor performance at capturing short-term
price dynamics, as mentioned in Ref. [1].

Therefore, fundamental models are sometimes combined with other
approaches, such as econometric methods, in order to improve their
predictive performance. However, recent works prove that a great deal
of work has been carried out in the context of these hybrid models for
medium-term horizons, not only from a point-forecasting perspectives
but also from probabilistic points of view [1,24,25].

This fundamental-econometric combination will be referred to as
hybrid models for the remainder of the manuscript. One of the main
advantages of these medium-term hybrid models is the capability to
consider most relevant, economic drivers of electricity market prices,
such as supply, demand, unit commitment, dispatch and technical
constraints [23,24,26,27]. By doing so, the behaviour and operation of
the power market is successfully incorporated to the electricity price
forecasts, which is of great interest for its participants.

Fundamental procedures are increasingly being resorted to by tra-
ders and practitioners considering the ongoing structural and reg-
ulatory changes that most power exchanges are experiencing (e.g. new
taxes, incentives for specific generation technologies, CO2 emission
allowances, etc.), which do have an effect on electricity market prices
[28].

However, according to the work presented in Ref. [23], these
models tend to provide less volatile and more flat predictions than those
ultimately observed. Moreover, fundamental approaches that aim to
thoroughly model power exchanges in hourly resolution are commonly
avoided in short-term price forecasting applications due to extremely
large size and resolution times in real power systems. This issue calls for
simplification methods that are usually targeted at the temporal re-
solution or the structure of the system, such as the generation tech-
nology aggregation that has been carried out in Ref. [26]. This sim-
plification provides a reduction of the volume of the input data, which
may also be effectively reduced by means of variable selection and
shrinkage tools.

It is well known that electricity prices are affected by a plethora of
factors, ranging from weather-related variables (e.g. wind speed, rain-
fall amounts) to energy generation parameters (e.g. fuel prices, main-
tenance costs). Variable selection tools have been considered in eco-
nomic and price forecasting frameworks in Refs. [27,29–31] with the
purpose of screening out the least useful and most noisy predictors.
These works cover several variable selection methods, including tradi-
tional approaches such as stepwise regression, least squares and prin-
cipal components; as well as more complex approaches such as least
absolute shrinkage selection operator (LASSO, [32]), ridge regression
[33] and elastic nets (combination of LASSO and ridge regression,
[34]). Some of these methods have been recently applied to electricity
price forecasting in Ref. [35], whose results suggest utilising an elastic
net above the other approaches due to its beneficial outcomes regarding
day ahead electricity price forecasting accuracy by means of linear re-
gression.

The above paragraphs have pointed out some insufficiencies and
scarcities in the context of short-term electricity price forecasting that

encourage motivation for the proposed model of this manuscript.
Several hybrid forecasting methods have been mainly employed in
medium- and long-term horizons, and thus their adequacy in the short
term is either poor or untested.

Moreover, price forecasting models that combine fundamental and
econometric approaches have proved beneficial in medium-term hor-
izons, as these take several aspects into account such as market dy-
namics and structural/regulatory market changes (fundamentals), as
well as strategic/speculative behaviour and linear/non-linear model-
ling capabilities (econometrics). However, the literature regarding this
kind of hybrid models in short-term contexts is relatively scarce and
thus it would be interesting to determine if the same advantages can be
attained for the short term.

Therefore, the main objective of this work is to propose a novel
short-term hybrid electricity price forecasting model, which takes ad-
vantage of the combination of fundamental and econometric ap-
proaches in order to capture not only the effects caused by structural
and regulatory market changes, but also the strategic and speculative
behaviour exhibited by market agents, as discussed in Ref. [23]. Thus,
fundamental approaches are able to model changes in market agent
bidding strategies, which are frequent in the short-term, as opposed to
medium-term contexts where this effect can be ignored without any
drawbacks.

The only work in the literature that considers the same kind of
fundamental-econometric hybrids for short-term electricity price fore-
casting is the one presented in Ref. [26], although it yields daily
average values for forecasting periods of one month instead of monthly
values for periods of one day to one week (as considered in this
manuscript). Furthermore, while the fundamental component of Ref.
[26] represents a simplified bidding curve in which generation tech-
nologies are stacked together and an estimated generation price is ob-
tained as a linear function of the different generation costs, the authors
of this manuscript intend to consider a higher level of detail on their
fundamental model by taking advantage of other elements, such as the
operation of the power system, technical features of generation units,
demand levels and interconnections with other markets. Moreover, the
authors of Ref. [26] then utilise the estimated generation cost in a non-
linear regression model, although it would be interesting to consider an
AI approach, such as neural networks, on this stage of the hybrid model.
However, there are no other similar hybrid short-term approaches in
the literature, which thoroughly model the power exchange with hourly
precision, to the best knowledge of the authors.

The main contributions of the paper are summarised as follows:

1. A novel hourly short-term hybrid forecasting tool is proposed and
developed, which is based on a cost-production optimisation model
that is linked to a neural network model. The computational effi-
ciency of each model is enhanced individually in order to adapt the
resulting hybrid forecasting model to the short-term electricity price
forecasting contexts.

2. The forecasting performance of the proposed hybrid model is put to
the test on a real-size market with complex price dynamics: the
Iberian (Portuguese and Spanish) electricity market.

3. Benchmark models, including well-recognised methods and both
individual components of the hybrid model, were tested on the same
case studies so as to compare their forecasting performance with
that of the proposed forecasting methodology.

The remainder of this manuscript is organised as follows: Section 2
describes this work’s methodology. Section 3 presents the case studies
in which the proposed forecasting method has been tested, as well as a
comparison with other forecasting procedures. Section 4 contains the
conclusions that were drawn in this work, including the suggestions for
extensions and future developments of the proposed methodology.
Additionally, Appendix A contains the main details of the fundamental
model that was used in this work’s hybrid forecasting approach.
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2. Proposed methodology

The general objective of this work is to create a new short-term
hybrid electricity price forecasting model and put it to the test on a real,
full-scale and complex electricity market, such as the Iberian power
exchange. Forecasts have been considered for both one day and one
week horizons so as to agree with the two ends of the short-term fra-
mework. The proposed fundamental-econometric hybrid model is dis-
played in Fig. 1.

The first half of the model, displayed at the left part of Fig. 1, is
composed of a cost-production optimisation model that aims to simu-
late the market-clearing process by minimising the total system costs,
which are constrained by generation unit technical features, regulation
limits, transmission limits and the demand vs. generation balance.
Thus, in this model, the estimated electricity market price can be ob-
tained as the dual variable of the demand balance constraint.

The above optimisation model, which is similar to the one presented
in Ref. [23], has been applied to the Iberian power exchange. Never-
theless, in order to decrease its runtime, certain simplifications were
carried out. This simplification consisted of an aggregation of similar
power plants, which are owned by the same market agent and have
identical cost functions and other technical features. As a result, the
optimisation problem size was significantly reduced and thus the esti-
mation time of electricity market prices was reduced from a few min-
utes to a few seconds. Specifically, the simplified optimisation problem
for a forecasting period of one week consists of 12,440 equations and
71,024 variables with a total runtime of 3.91 s and a maximum RAM
usage of 76 MB on a 64-bit Windows 7 PC with 16 GB installed RAM
and the following processor: Intel® Core™ i7-3770 CPU@ 3.40 GHz of 4
cores and 8 logical processors. Further details of this fundamental
model can be found at Appendix A.

However, even though other variables were simultaneously calcu-
lated (e.g. transmitted power, emissions, generation outputs), only the
estimated price was utilised for the second half of the proposed hybrid
model. Nevertheless, the authors do not deny the possibility that con-
sidering other outputs in the statistic model may prove beneficial.
Moreover, an additional term may be incorporated to the objective
function in order to consider agent strategic behaviour, which is de-
fined in Ref. [23] as the “conjectured-price response”. Nevertheless, the
authors discarded this possibility due to the fact that agent strategic
behaviour can also be incorporated to the forecasts by means of
econometric methods, such as the second half of the proposed hybrid
approach.

As shown in Fig. 1, the estimated market price is used as an addi-
tional input variable to the neural network model, which is trained

alongside other inputs in order to produce short-term electricity price
forecasts. The other input variables that were considered are as follows:

• Lagged electricity market prices. The following lags were con-
sidered:
○ One day
○ Two days
○ One week
○ Two weeks

• Expected system demand, expected wind generation and expected
solar generation.

• Dummy variables indicating if a day belongs to one of the following
day types:
○ Business day or non-business day, i.e. Sundays and holidays
○ Saturday or non-Saturday.

These variables are effortlessly obtainable from the Spanish ISO
information website [36], and are appropriately handled by neural
network models. Moreover, in order to bear in mind several levels of
autoregression and seasonalities, four lagged prices were taken into
account with the following delays: one day, two days, one week and
two weeks. It is important to bear in mind that the expected demand,
wind and solar generation have been also used in the fundamental
model, and these affect the values of other unit generation levels (e.g.
coal and CCGT) via the demand balance constraint. However, neural
network models take into account linear and non-linear trends and
statistical patterns between electricity prices and the aforementioned
“expected” variables. Therefore, even if the same data was used in both
models, these were not handled and treated alike.

The neural network model configuration is shown in Fig. 1, which is
comprised of a hidden layer and an output layer. According to Ref.
[37], experience shows that one hidden layer is suitable for most ap-
plications. The hyperbolic tangent sigmoid was utilised as the activa-
tion function of the hidden layer’s neurons, whereas a pure linear
transfer function was selected for the output layer.

The neural network was trained as per the standard Levenberg-
Marquardt algorithm, which is one of the most popular neural network
training methods utilised in electricity price forecasting applications,
such as [8] and [38]. Therefore, different numbers of neurons were
utilised on the hidden layer in order to test different levels of com-
plexity and avoid overfitting.

The number of neurons is chosen as soon as the training algorithm
reaches its performance optimality conditions by computing the Mean

Fig. 1. Proposed hybrid forecasting model.
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Squared Error (MSE) on the validation period (a time span that is
placed between training and test/forecast periods). The network with
the number of neurons on its hidden layer that yields the lower MSE
was then utilised to ascertain the electricity market price for the fore-
cast period. The MSE is calculated as per the following formula with the
conventional notation (Ŷi represent the forecasted values for a certain
period of N hours, whereas Yi are the real values pertaining to the same
period):

=
=

MSE
N

Y Y1 ( ˆ )
i

N

i i
1

2

(1)

Moreover, in order to take into account the variability and the
randomness of the initialisation of the neural network’s weights at the
start of the training process, a high number of replications of the de-
scribed neural network procedure were carried out. This is also done
bearing in mind that neural networks are, to some extent, prone to
getting stuck on local minima on the training process, and thus the
global optimum may not be ascertained. The final step involves cal-
culating the mean of the obtained forecasts in every replication in order
to yield the forecast of this work’s proposed hybrid model.

However, the training data, which consists of 10 variables, were
modified with the intention of increasing efficiency as well as reducing
overfitting occurrences. The training, validation and forecasting periods
have been organised according to the timeline of Fig. 2.

The training set is comprised of three time spans of d1 days each: T1,
T2 and T3. The last one is placed right before the validation period V
and contains the most updated information for the neural network to
train on. This information reinforced by the data pertaining to T1,
which occurs one year before T3. Furthermore, T2 contains a possible
evolution of electricity prices and all related variables, which is what
happened a year before the forecasting period. This training set ar-
rangement is more efficient and better reflects the behaviour of elec-
tricity prices on the forecasting period F than utilising three times d1
days immediately prior to the validation period V. Furthermore, both V
and F periods are set to be of the same duration, which is of d2 days (i.e.
the forecasting horizon).

Not only the arrangement of the input data was modified, but also a
test was carried out in order to assess variable importance.
Additionally, it would be useful to increase the parsimoniousness of the
model, i.e. reducing model complexity as well as increasing predictive
accuracy, and thus reducing possible overfitting occurrences.

To this end, the variables were tested in a backward-elimination
manner, i.e. evaluating all ten factors at once and discarding one by one
the most noisy and redundant. However, this is more straightforward in
linear regression cases than in neural network applications. Therefore,
the performance of the neural network model was assessed for several
combinations of variables and numbers of neurons in the hidden layer
(comparing its validation set MSE) using a backward-elimination pro-
cedure until only one variable was considered.

First of all, the neural network forecast MSE was calculated con-
sidering all 10 input variables. Then, the process was repeated for every
combination of 9 input variables and the resulting MSE was compared
to the one obtained with 10 variables. The variable that was not con-
sidered in the combination that yielded the greatest reduction in MSE

was considered discarded. This method was then replicated for 8 input
variables, considering the lowest MSE obtained for 9 input variables,
and so on. If the MSE error could not be further reduced by removing
one additional variable, the test reached its end and thus all remaining
variables were not discarded. This procedure was carried out several
times for numerous days. As a result, the variables that have been
mostly discarded were: two-day lagged electricity prices and the
Saturday dummy variable.

The estimated price from the fundamental model has not been
discarded, which suggests that the underlying information within these
prices is useful to the hybrid model (e.g. coal costs, CO2 emission al-
lowances, maintenance schedules). Moreover, elastic nets were also
used for the same purpose, although this method is more appropriate
for linear regression contexts, and the results were similar for a certain
tolerance level (elastic net parameters). However, the authors preferred
the backward-elimination procedure because it is a non-parametric
approach and thus does not require further studies in order to ascertain
additional information.

Therefore, the volume of the input data was reduced by 20% and, as
a result, the model’s performance was enhanced in terms of runtime and
forecasting accuracy. The forecasting performance is tested as per some
of the most used error metrics in the literature, e.g. Ref. [13], which
are: Mean Absolute Percentage Error (MAPE), Mean Absolute Error
(MAE), and Root-Mean-Square Error (RMSE). These error measures are
computed as follows:
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However, it is important to bear in mind that prices in the Iberian
power exchange may go to zero, and thus may result in infinite MAPE.
Nevertheless, this has not happened throughout all hours in the con-
sidered case studies. Furthermore, it is also common in the literature,
e.g. Refs. [35,39], to provide statistically significant conclusions re-
garding forecasting performance comparisons via the Diebold-Mariano
(DM) test [40], and thus it has also been applied to this work’s case
studies. A 10% significance level has been considered, an absolute error
difference as the loss differential series, and a two-sided perspective, i.e.
testing for both out- and underperformance.

Although the main objective of this work is focused on reducing the
error of the mean of the forecasts, the proposed model’s statistical
performance has been evaluated so as to provide some insight related to
risk analysis and worst case scenario evaluation. Therefore two dif-
ferent methods were carried out related to the percentiles of the fore-
casts of the proposed model, denoted by Ŷia, with a= 1, 2, …, 99.
Firstly, the percentage of times that the percentile of the forecast is
above the real value of the electricity price (i.e. Yi) has been measured.
This measure will be referred to as exceedance rate for the remainder of
the paper. Ideally, given a percentile forecast Ŷia, its exceedance rate

Fig. 2. Training, validation and test/forecast periods arrangement.
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should be of %. Secondly, the proposed model was tested the pinball
loss function (PLF) as done in several works in the current literature
that focus on probabilistic analyses, such as Ref. [41]. The PLF for a
certain hour is calculated as per the following equation:

=
>

>
PLF a

Y Y if Y Y

Y Y if Y Y
( )

(1 )·( ˆ ) ˆ

( )·( ˆ ) ˆi

a
ia i ia i

a
i ia i ia

100

100 (5)

Lower values of the PLF score indicate that the forecasts are sta-
tistically superior and better reflect the probability of the occurrence of
the price value associated with the target percentile.

3. Case studies, results and discussion

This section is composed of four parts. On the first subsection, seven
case studies are presented. On the second subsection, the forecasts
yielded by the proposed forecasting model are analysed whereas on the
third subsection the resulting forecasts are compared with 5 bench-
marks. Moreover, in order to further validate this work’s proposed
model, the same experiments have been conducted in a much broader
case study, whose results are given on the last subsection.

3.1. Case study description and selection

Several periods in late 2016 have been studied for both forecasting
horizons (one day and one week). Nevertheless, for the sake of sim-
plicity and clarity, only the most representative cases that are char-
acterised by different types of complexities are detailed in this section
(shown on Table 1), all of which pertain to the period depicted in Fig. 3.

The most outstanding period is 21/Nov/2016, when prices col-
lapsed due to unusually high wind generation in the Iberian power
system, reaching 10.88€/MWh at early morning hours. Moreover, this
day presents a range of 56.61€/MWh and a standard deviation of
15.07€/MWh. These values are significantly higher than those of its
adjacent days, which present a range of 30.12€/MWh at most and a
maximum standard deviation of 9.48€/MWh. Therefore, it would be
interesting to analyse the models’ forecasting performance on such a
day (case C2).

Furthermore, there is an apparent price level difference between
November and December, which implies a slight market structural
change. Moreover, coal plants were slightly less available in December
than in November, whereas demand levels also increased in December
[36]. For these reasons, a day and a week that do not present un-
common behaviours have been selected for both months in order to
compare both market circumstances (cases C1, C3, C5 and C7).

Moreover, the most erratic weekly period in Fig. 3 takes place be-
tween 05/Dec/2016 and 11/Dec/2016, which contains two Spanish
National holidays on the 6th and 8th of December (case C6). Due to
these holidays, electricity prices are lower than on their adjacent days.

Additionally, another uncommon day included in Fig. 3 is 26/Dec/
2016 (case C4), which is a Monday. However, the usual Christmas Day
holiday happened on Sunday and thus the studied day was a holiday on

most areas of Spain, so it cannot be considered a normal business day.
These seven case studies put the proposed forecasting model to the test
under diverse circumstances and challenges, all of which are analysed
and discussed in the following subsections.

However, given that these specific cases may provide evidence as to
how the considered forecasting models may perform under specific
circumstances, the corresponding results cannot be adequately gen-
eralised. Therefore, in order to provide more statistically significant
results and further proof as to how these models perform, the entire
year 2017 was also used as a case study, whose results are located in
subsection 3.4.

3.2. Proposed hybrid price forecasting model

First of all, the cost-production optimisation model has been run for
the training and forecasting periods with hourly precision. In this test,
regular circumstances in the Iberian power system were assumed re-
garding weather conditions (wind generation, hydro inflows, etc.). As a
result, the estimated electricity market price was determined and used
as an additional input to the neural network model.

The neural network model was run for seven different market cir-
cumstances in order to assess its adequacy for the short term. This in-
cludes horizons of one day and one week with hourly precision. Once
the day or week to forecast was set, all periods according to the timeline
of Fig. 2 can be set. In all cases, a training set arranged as per Fig. 2 was
used with d1 equal to 30 days, thus a total of 90 days were used as
training data. Neural networks with this training set were trained
considering different numbers of neurons (10 to 60 with a step of 5).
The neural network with the lowest MSE on the validation set was later
used to forecast the electricity market price on the test/forecast period.
This procedure (from neural network training to forecasting) was car-
ried out 300 times, whose mean was used as the resulting forecast of the
proposed electricity market price forecasting model.

For the weekly cases, the authors previously tested this metho-
dology by both using a standard 168-h horizon and a rolling window of
a 24-h horizon, i.e. forecasting day by day up to one week. However, by
using a rolling-window method on a neural network model, the authors

Table 1
Case study training, validation and forecast periods.

Case study Training periods Validation period V Forecasting period F

T1 ∪ T2 T3

C1 15/Oct/2015–13/Dec/2015 15/Oct/2016–13/Nov/2016 14/Nov/2016 15/Nov/2016
C2 21/Oct/2015–19/Dec/2015 21/Oct/2016–19/Nov/2016 20/Nov/2016 21/Nov/2016
C3 10/Nov/2015–09/Jan/2016 10/Nov/2016–10/Dec/2016 11/Dec/2016 12/Dec/2016
C4 24/Nov/2015–23/Jan/2016 24/Nov/2016–24/Dec/2016 25/Dec/2016 26/Dec/2016
C5 08/Oct/2015–06/Dec/2015 08/Oct/2016–06/Nov/2016 07/Nov/2016–13/Nov/2016 14/Nov/2016–20/Nov/2016
C6 29/Oct/2015–26/Dec/2015 29/Oct/2016–26/Nov/2016 27/Nov/2016–04/Dec/2016 05/Dec/2016–11/Dec/2016
C7 05/Nov/2015–03/Jan/2016 05/Nov/2016–04/Dec/2016 05/Dec/2016–11/Dec/2016 12/Dec/2016–18/Dec/2016

Fig. 3. Iberian electricity market prices for late 2016.
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found that the forecasts given in every simulation had a considerably
higher volatility than those yielded by the neural network model with a
168-h horizon, as well as a generally higher MAPE. Therefore, the
rolling-window method was not utilised in these cases. However, one-
day lagged prices were not included in the one-week forecasts, because,
in reality, the price of the previous day becomes unknown if forecasting
further than one day. Nevertheless, the estimated price from the fun-
damental model may contain, to some extent, the information of one-
day lagged prices due to the chronological constraints (e.g. unit com-
mitment and hydro reserve balance) that set links between current
prices and other factors in the past.

The first case study (C1) is displayed in Fig. 4, which shows the
forecast for 15/Nov/2016 (Tuesday). The daily trend that electricity
prices usually exhibit is successfully mimicked and the model yields a
2.179% MAPE, which mostly corresponds to the early morning hours,
whereas the late hours are considerably accurate.

The dashed and dotted lines of Fig. 4 represent the forecasts of both
components of the proposed hybrid model on their own, i.e. only the
neural network model without the additional estimated price from the
cost-minimisation model (Benchmark 1 or BM1), and also this estimated
price on its own (Benchmark 2 or BM2). By analysing and comparing
these results, the benefits of the hybridisation of both methods can be
checked and verified.

The estimated price of BM2 clearly lacks intraday dynamics and thus
yields a lower accuracy (5.675% MAPE). Nevertheless, this forecast is
somewhat centred on the average price level, which is of vital im-
portance for the developed hybrid model. The daily behaviour ex-
hibited by BM1 better resembles electricity price patterns mainly thanks
to its adaptability for non-linear trends, although its accuracy is con-
siderably lower on the afternoon and evening (2.856% MAPE). The
combination of the advantages of both models yields a suitable adaptive
behaviour, and thus increases the accuracy of the hybrid model fore-
cast.

Regarding the one-week case studies, the forecast for the week of
05/Dec/2016–11/Dec/2016 is displayed in Fig. 5. In this case study,
the resulting MAPE is of 5.878%. Once again, it can be seen in Fig. 5
that the estimated price from the fundamental model (BM2) fails to
follow the intraday pattern (8.709% MAPE). The neural network model
on its own (BM1) shows an adequate performance (6.136% MAPE),
although it seems to yield considerably lower values on the early hours
of Thursday to Sunday, which may be caused by a slight under-
performance of the neural network model as the forecasting horizon
increases.

This performance decrease is somewhat diminished by the esti-
mated price of BM2, which provides the equilibrium price level even at
longer horizons and thus results in a more accurate forecast for the
hybrid model. The benefits of the proposed hybrid model are experi-
enced yet again, which strongly supports the statement that the com-
bination of both models’ advantages is highly valuable. Furthermore,
the fundamental model’s ability to incorporate the effects of the re-
duction of availability in the system coal power plants provided a slight
upward pressure on the hybrid model’s price forecasts. This contribu-
tion of the fundamental model proved relevant and useful in this
forecasting period.

The rest of the cases (C2, C3, C4, C5 and C7) are discussed on the
following subsection, including the performance of the other bench-
mark forecasting models.

3.3. Comparison with other forecasting models

The performance of this work’s proposed hybrid forecasting model
has been compared with five other electricity price forecasting models,
two of which represent the split versions of the hybrid model (BM1 and
BM2). The third benchmark (BM3) is a slight modification of a linear
regression model that was proposed in Ref. [42] and most recently
applied to electricity price forecasting in Ref. [35]. This linear regres-
sion model can be represented as per the following equations in order to
calculate the log-price pd,h at day and hour :

= + + + + +

+ + +

p p p p p z D

D D
d h h d h h d h h d h h d

min
h d h h Sat

h Sun h Mon d h

, ,1 1, ,2 2, ,3 7, ,4 1 ,5 , ,6

,7 ,8 , (6)

=
=

p log P
T

log P( ) 1 ( )d h d h
t

T
d h, ,

1
, (7)

The betas are the regressor coefficients, which respectively re-
present lagged log-prices (one, two and seven days), the minimum log-
price of the 24 h in day minus one, the expected demand and three
dummy variables indicating if day is Saturday, Sunday or Monday.

Furthermore, as mentioned before, a slight modification was carried
out, which pertains to the logarithmic transform of Eq. (7), where refers

Fig. 4. Electricity price forecast for 15/Nov/2016 (C1).

Fig. 5. Electricity price forecast from Mon, 05/Dec/2016 to Sun, 11/Dec/2016 (C6).
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to the training period. The mirror-log transform, recently applied to
electricity price forecasting in Ref. [43], was applied due to the possi-
bility of prices equal to zero in the Iberian power system, which is re-
presented in the following equations:

=n
P µ( )

d h
d h T

T
,

,

(8)

= + +p sgn n log n
c

log c( ) 1 ( )d h d h d h, , , (9)

First of all, according to Eq. (8), the prices were normalised by
subtracting their mean in the training period (μT) and dividing by their
standard deviation in the training period (σT). The parameter was set to
1/3 as done in Ref. [43].

The fourth benchmark (BM4), based on ARIMA models, is more
established than the previous two and well recognised. These models
have been widely used in electricity price forecasting, including the
Iberian electricity market [44]. In this case, the model consists of a
transfer function with SARIMA noise, which has been developed ac-
cording to the methodologies presented in the works of Refs. [45,46].
Electricity prices were stabilised (variance) by means of the Box–Cox
transformation [47]. The BIC value of the fitted models was used as
model selection criterion. The obtained SARIMA noise presents the
following parameters with the standard notation:
SARIMA(1,0,0)168(1,0,2)24(1,0,0)1. The expected demand was used as
an exogenous variable in this model that can be therefore also referred
to as a SARIMAX model.

The last benchmark (BM5) is a simple naïve approach in which the
real electricity prices from the previous week are directly taken as the
forecast:

=P Pd h d h, 7, (10)

The MAPE, MAE and RMSE of these benchmarks along with those
yielded by the proposed electricity price forecasting model on the seven
case studies are displayed in Tables 2–4, respectively. First of all, it is
worth noting that the proposed model outperforms the others in all
cases except C2, in which the pure neural network model yields a higher
accuracy. This is mostly due to the fact that, in early morning hours,
BM1’s forecast is closer to the real value than the proposed model’s
forecast. Furthermore, in a case in which prices collapse to such a low
value (10.88€/MWh), this difference is more apparent and noticeable.

This trend also happens in the more common days pertaining to
cases C1 (see Fig. 4) and C3, although the proposed hybrid model’s
forecast in the rest of the hours of the day makes up for it more than
enough, yielding a higher overall accuracy in terms of MAPE. This fact
also confirms that the fundamental contribution enhances forecasting
performance on late morning hours up to midnight, whereas on early
morning hours it yields a reduced accuracy and this reduction is further
heightened on uncommon, low-price situations such as C2.

Moreover, the one-week cases (C5, C6 and C7) comparison between
the proposed model and BM1 show similar accuracies. However, on
early December (case C6), when the overall price levels are beginning to
increase, the difference is higher. This may suggest that whenever such
a structural market evolution is underway, fundamental information

should be taken into consideration.
Furthermore, case C6 includes two Spanish National holidays, and

thus it may imply that the proposed model is also the most proficient at
forecasting prices on non-business days. The same conclusion can be
reached from the results of case C4, which is also a non-business day.
This may also indicate that by considering the estimated price from the
fundamental model, the bias effect from the previous week is lessened.

The results shown by the MAPE, MAE and RMSE values have shown
some differences between the proposed model and the five benchmarks.
In order to adequately analyse the statistical differences between these
forecasting models, a DM with 10% significance level was carried out,
whose results are displayed in Table 5.

It can be seen that the proposed model’s forecasts generally yield
statistically lower errors than those of its competitors. The only ex-
ception in which its forecasts are statistically underperforming is in case
C2, where BM1 has proved to be more accurate according to the error
metrics of the previous tables. However, three cases, C1, C4 and C6,
show significant differences in favour of the proposed model when
compared to BM1.

3.4. Results for the entire year 2017

This work’s proposed model, as well as the five benchmarks, has
also been tested for the entire year 2017 for both one-day and one-week
forecasting horizons. The MAPE, MAE and RMSE forecasting error re-
sults are shown in Tables 6–8 respectively.

It is important to take into account that, during January 2017, the

Table 2
Comparison of the proposed forecasting model with five benchmarks in terms of
MAPE (%).

Model C1 C2 C3 C4 C5 C6 C7

Proposed 2.179 15.96 3.726 3.242 6.146 5.878 4.119
BM1 2.856 13.79 4.075 3.825 6.172 6.136 4.166
BM2 5.675 26.73 6.812 10.83 11.23 8.709 8.135
BM3 7.522 27.84 5.421 13.63 11.95 10.84 7.746
BM4 9.280 22.48 6.238 6.657 9.894 13.67 7.224
BM5 7.595 31.91 8.544 19.57 12.84 14.11 10.85

Table 3
Comparison of the proposed forecasting model with five benchmarks in terms of
MAE (€/MWh).

Model C1 C2 C3 C4 C5 C6 C7

Proposed 1.250 5.294 2.414 1.767 3.062 3.462 2.609
BM1 1.690 4.444 2.715 2.045 3.123 3.634 2.542
BM2 3.062 7.575 3.414 3.374 5.496 4.893 4.890
BM3 4.646 7.935 3.422 7.226 5.811 6.173 4.750
BM4 5.695 7.365 4.068 3.397 5.043 8.367 4.641
BM5 4.727 9.658 5.378 10.51 6.456 7.870 6.623

Table 4
Comparison of the proposed forecasting model with five benchmarks in terms of
RMSE (€/MWh).

Model C1 C2 C3 C4 C5 C6 C7

Proposed 1.861 7.166 2.622 2.474 3.897 4.466 3.213
BM1 2.035 5.893 3.063 2.718 3.930 4.621 3.149
BM2 3.817 10.85 4.018 3.771 6.986 5.619 5.534
BM3 5.249 9.938 4.697 8.241 7.151 7.617 5.655
BM4 6.202 8.105 4.407 3.743 6.163 9.704 5.552
BM5 6.043 11.24 6.876 12.41 8.333 9.780 8.453

Table 5
Results of the Diebold-Mariano test across all case studies.

Model comparison C1 C2 C3 C4 C5 C6 C7

Proposed vs. BM1 1a −1b 0c 1 0 1 0
Proposed vs. BM2 1 0 1 1 1 1 1
Proposed vs. BM3 1 1 1 1 1 1 1
Proposed vs. BM4 1 1 1 1 1 1 1
Proposed vs. BM5 1 1 1 1 1 1 1

a A value of 1 indicates significant outperformance of the proposed model
forecasts.

b A value of −1 indicates significant underperformance of the proposed
model forecasts.

c A value of 0 indicates no significant difference between model forecasts.
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Iberian power market was affected by an uncommon mix of events:
unusually low temperatures, low renewable generation, and high nat-
ural gas prices; and thus the forecasting error on all models is sig-
nificantly higher than in the other seasons of the year. Furthermore,
January’s monthly average price was of 71.49€/MWh (18.6% and
38.2% higher than that of the previous and the following month re-
spectively) and its standard deviation was of 14.26€/MWh (52.4% and
23.9% higher than that of the previous and the following month re-
spectively).

Although the overall mean of the proposed model’s forecasting er-
rors is the lowest during the entire year 2017, it slightly underperforms
during some seasons. For example, for the one-day forecasting horizon
cases, the proposed model’s performance during the early morning
hours of the day in summer is lower, which coincides with the afore-
mentioned trend described in the previous subsection.

In order to check if there are any significant differences in predictive
performances, a DM test has also been carried out for each model
throughout the year 2017, whose results are displayed in Table 9 (with
the same notation as in Table 5). The proposed model is not sig-
nificantly outperformed in any of the cases and there seems to be a
general outperformance in the entire year 2017 for the one-week hor-
izon cases. Taking into account that neural network forecast accuracy is
reduced for longer horizons, it can be deduced from this result that the
contribution of the equilibrium price level that is provided by the es-
timated fundamental price is more notable, which coincides with case
C6’s results that are explained in subsection 3.2. This is also why, in
numerous works in the current literature (such as Refs. [23,24]), this
effect has proven useful for longer forecasting windows (i.e. medium-
term horizons). However, the results repeatedly suggest that the pro-
posed fundamental-econometric hybrid model’s performance needs to
be improved in the early morning hours of the day.

Furthermore, it is also of interest to verify the statistical features of
the forecasts that have been given by the proposed model, which can be
done by analysing the percentiles of the forecasts. The exceedance rate
of the percentile forecasts of the proposed model and BM1 is displayed
in Table 10. As mentioned before, the ideal exceedance rate for the
percentile 1, 5, 95 and 99 forecasts are of 1%, 5%, 95% and 99% re-
spectively.

First of all, it is natural that the longer horizon forecasts deviate
more from these ideal values. The proposed model is generally closer to

the ideal values than BM1, especially the percentile 1 and percentile 5
values. This means that the proposed model’s forecasts are generally
more suitable for risk analyses such as extreme or worst case scenario
evaluation. However, no notable improvement was achieved for the
percentile 95 and percentile 99 cases. Furthermore, for both forecasting
horizons, the percentile 95 and percentile 99 exceedance rates seem to
be farther from their ideal values, which may be an indication that the
probability distribution of the forecasts presents a positive skew and
therefore is not symmetrical. This can be verified by calculating the PLF
as per Eq. (5). of the proposed model’s forecasts, whose results can be
seen in Table 11.

The PLF results suggest that the proposed hybrid model yields
overall superior probabilistic forecasts for percentiles 1 and 5 as op-
posed to percentiles 99 and 95 respectively, which indicates that the
forecasts do not capture the probability of the occurrence of extremely
high prices as well as the occurrence of extremely low prices. Therefore,
this may call for a peak or extreme value detection procedure if this
imbalance is to be solved.

4. Conclusions and future work

The novel methodology that has been proposed in this work is based
on a hybrid model which consists of a cost-production optimisation
model and a neural network model. Both models have been linked by
using the cost-production optimisation model’s estimated price as an
additional input to the neural network model. Furthermore, the input
data on both components of the proposed hybrid model were rear-
ranged and modified in order to decrease computational burden and
therefore increase efficiency, as well as reduce runtime and overfitting
occurrences on the neural network model.

The proposed hybrid model has shown adequate performance in
seven case studies, all of which have presented diverse circumstances
and challenges. The benchmark models were outperformed by the
proposed model in most case studies, especially the estimated price
from the cost-production optimisation model, the linear regression
model of Ref. [42], the SARIMAX model and the simple naïve approach
that utilises the previous week’s electricity prices as the forecast.

Furthermore, it can be concluded that the proposed hybrid fore-
casting model’s accuracy is generally increased by the effect of the es-
timated price from the fundamental model. In addition, the non-linear

Table 6
MAPE comparison of the proposed model with five benchmarks for the year 2017 (%).

Model One-day forecasting horizon One-week forecasting horizon

Winter Spring Summer Autumn Average Winter Spring Summer Autumn Average

Proposed 12.83 8.840 5.016 6.764 8.341 17.08 8.330 5.120 8.000 9.633
BM1 12.97 9.018 4.977 6.815 8.424 17.31 8.202 5.305 7.919 9.684
BM2 26.67 21.54 12.39 19.10 19.89 26.38 21.94 12.13 19.18 19.91
BM3 16.79 13.58 7.153 10.51 11.99 17.69 13.24 7.050 10.56 12.13
BM4 15.06 9.293 5.097 7.654 9.248 17.64 10.36 5.915 8.662 10.65
BM5 25.93 17.55 9.343 12.82 16.37 26.17 17.02 9.462 12.91 16.39

Table 7
MAE comparison of the proposed model with five benchmarks for the year 2017 (€/MWh).

Model One-day forecasting horizon One-week forecasting horizon

Winter Spring Summer Autumn Average Winter Spring Summer Autumn Average

Proposed 5.137 3.068 2.359 3.331 3.465 7.369 3.247 2.407 4.044 4.267
BM1 5.178 3.059 2.335 3.383 3.480 7.486 3.257 2.491 4.028 4.315
BM2 14.96 9.413 5.949 11.03 10.31 14.68 9.667 5.797 11.12 10.32
BM3 6.838 4.765 3.262 5.066 4.972 7.213 4.652 3.198 5.116 5.045
BM4 8.113 4.150 2.473 4.454 4.780 9.382 4.694 2.844 5.051 5.493
BM5 10.53 6.225 4.266 6.387 6.828 10.54 6.043 4.315 6.434 6.833
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patterns in electricity prices have been adequately dealt with by the
neural network model. Moreover, the combination of the longer-term
price level yielded by the fundamental model and the intraday pattern
given by the econometric model has unquestionably proven to be ad-
vantageous, especially on uncommon market situations, such as holi-
days or increasing unit unavailableness.

Additionally, the case study of the entire year 2017 showed an
overall lower forecasting error from this work’s proposed forecasting
model. This advantage is more notable on the one-week forecasting
horizon results, which further indicates that the equilibrium price level
of the fundamental model enhances predictive accuracy even if the
forecasting horizon is longer. Moreover, even though this work’s pro-
posed model yields overall superior probabilistic forecasts, there seems
to be room for improvement in order to obtain percentile forecasts that

are closer to the ideal values regarding exceedance rates.
However, the results suggest that, on early morning hours, a com-

bination technique with another pure statistical model, or a regime-
switching model within a hybrid framework, may enhance the resulting
model’s accuracy. Furthermore, other variables from the fundamental
model may be utilised as additional information for the econometric
model, such as the unit generation levels for the different thermal
technologies. Nevertheless, considering more input variables in this
application may call for a more suitable sensitivity analysis or variable
selection procedure than the one carried out in this work, although
developing a computationally efficient method may result in a highly
challenging task due to the high level of complexity of the neural net-
work training algorithms.

Table 8
RMSE comparison of the proposed model with five benchmarks for the year 2017 (€/MWh).

Model One-day forecasting horizon One-week forecasting horizon

Winter Spring Summer Autumn Average Winter Spring Summer Autumn Average

Proposed 5.921 3.658 2.840 4.003 4.096 8.927 4.074 3.065 5.113 5.295
BM1 5.953 3.638 2.822 4.089 4.115 9.046 4.115 3.164 5.083 5.352
BM2 16.59 10.97 6.985 12.39 11.70 16.84 11.87 7.114 12.87 12.17
BM3 7.809 5.552 3.885 6.055 5.814 9.010 5.944 4.105 6.612 6.418
BM4 10.84 5.585 4.531 4.959 6.460 12.76 6.414 5.341 5.639 7.537
BM5 11.48 7.092 5.030 7.567 7.773 12.32 7.775 5.458 8.298 8.464

Table 9
Results of the Diebold-Mariano test for the entire year 2017.

Model One-day forecasting horizon One-week forecasting horizon

Win. Spr. Sum. Aut. Avg. Win. Spr. Sum. Aut. Avg.

Proposed vs. BM1 0 0 0 1 0 1 0 1 0 1
Proposed vs. BM2 1 1 1 1 1 1 1 1 1 1
Proposed vs. BM3 1 1 1 1 1 0 1 1 1 1
Proposed vs. BM4 1 1 0 1 1 1 1 1 1 1
Proposed vs. BM5 1 1 1 1 1 1 1 1 1 1

Table 10
Exceedance rate of the percentile forecasts for the entire year 2017 (%).

Percentile Model One-day forecasting horizon One-week forecasting horizon

Win. Spr. Sum. Aut. Avg. Win. Spr. Sum. Aut. Avg.

P1 Proposed 4.398 4.076 5.978 5.952 5.103 6.227 4.487 8.562 10.58 7.463
BM1 4.583 6.024 7.428 5.815 5.970 6.181 5.037 10.12 11.86 8.299

P5 Proposed 10.51 7.926 11.01 12.13 10.39 12,73 8,379 15,11 17,54 13,44
BM1 11.06 9.149 12.55 11.81 11.14 13,74 9,432 15,84 17,99 14,25

P95 Proposed 88.94 85.73 85.51 81.87 85.50 79,35 80,08 75,05 69,60 76,02
BM1 89.03 84.92 84.65 81.04 84.90 77,66 80,91 71,61 69,51 74,92

P99 Proposed 94.68 93.39 93.80 92.31 93.54 87.18 89.88 84.62 80.45 85.53
BM1 95.51 94.34 91.39 91.07 93.07 86.49 90.43 80.91 83.47 85.32

Table 11
Pinball loss function score of this work’s proposed model for the entire year 2017.

Percentile One-day forecasting horizon One-week forecasting horizon

Win. Spr. Sum. Aut. Avg. Win. Spr. Sum. Aut. Avg.

P1 0.259 0.199 0.180 0.239 0.219 0.415 0.162 0.162 0.341 0.270
P99 0.324 0.212 0.172 0.217 0.231 0.711 0.287 0.399 0.516 0.478
P5 0.813 0.503 0.408 0.590 0.577 1.141 0.455 0.391 0.748 0.684
P95 0.816 0.515 0.428 0.588 0.586 1.410 0.656 0.672 1.031 0.942
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Appendix A

The fundamental model that has been used in this work’s proposed methodology consists of a traditional market equilibrium model in which the
costs of each market agent are minimised. In this model, perfect competition has been assumed, and thus total system costs are simultaneously
minimised in its objective function. Taking into account that the main decision variables are the production quantities of each generation unit qi, the
following equation represents the model’s objective function:

cmin
q i

i
i (11)

The term ci is the cost function of generation unit i, which mainly consists of the following costs: fuel, start-up, CO2 emission and maintenance
costs. Apart from the corresponding technical and physical constraints (e.g. maximum/minimum power, start-up and shut-down periods, etc.) of the
system’s generation units, the most important element of this optimisation problem is the demand vs. generation balance equation (for every hour t):

=q D t:i i t t t, (12)

Each unit’s production quantities, i.e. qi,t, are mainly limited by this constraint, and therefore its dual variable can be considered as the system’s
marginal price λt, which represents the market clearing price that is utilised for the econometric component of this work’s proposed hybrid model.
Furthermore, it is worth noting that interconnections with adjacent markets, such as France, have been taken into account. Given this model’s
purpose, the lack of non-linear terms (e.g. the conjectured-price response quadratic term of Ref. [23]) and the unit coupling conditions (i.e. start-up
and shut-down bounds), the nature of the optimisation model is a relaxed mixed-integer problem (RMIP), which has been run with the CPLEX solver
(version 12.5.1.0).

The parameters, i.e. input data, of this optimisation model are listed below:

• Pi: minimum power output of unit i
• Pi : maximum power output of unit i
• Ui,0: initial unit commitment state of (thermal) unit i (active or inactive)
• FPi,t: fuel cost per unit of volume produced for (thermal) unit i and hour t
• Si: cost per start-up operation for (thermal) unit i
• Ai: tonnes of CO2 emitted per unit of volume produced for (thermal) unit i
• B: penalty per tonne of CO2 emitted
• Mi: maintenance costs per unit of volume produced for (thermal) unit i
• Ii,t: expected hydro inflow for (hydro) unit i and hour t
• Ri,0: initial hydro reservoir level of (hydro) unit i
• Wi,t: expected wind generation for (wind power) unit i at hour t
• Dt: expected system demand at hour t

All generation units considered may belong to one of these sets:

• T: thermal power units (nuclear, CCGT, OCGT, and coal)
• H: hydro power units
• W: wind power units

Solar generation units are not physically considered and their expected production is a known parameter that is added to the term on the left-
hand side of Eq. (12). Furthermore, as mentioned on the beginning of this manuscript’s Section 2, the generation units that share similar technical
features were aggregated into larger units, therefore reducing the number of them. Although the operation and behaviour of the market is thus not
very accurately modelled, the main objective of this model is to provide an output (i.e. market clearing prices) that reflects changes regarding the
market fundamentals. Moreover, the main computational statistics of this simplified optimisation model are also mentioned at Section 2.

The main variables of the optimisation model, apart from the system’s marginal price, are listed below:

• qi,t: production of generation unit i at hour t
• ci: total costs of unit i
• cfi: fuel costs of (thermal) unit i
• csi: start-up costs of (thermal) unit i
• cci: CO2 emission costs of unit i
• cmi: maintenance costs of (thermal or wind power) unit i
• ui,t: integer variable that indicates if generation unit i at hour t is active or not
• yi,t: binary variable that indicates if generation unit i at hour t is starting up
• zi,t: binary variable that indicates if generation unit i at hour t is shutting down
• ri,t: hydro reservoir level of (hydro) unit i at hour t
• si,t: energy spilled amount of (hydro or wind power) unit i at hour t
• pi,t: pumped amount of (hydro) unit i at hour t

In addition to Eq. (12), the following set of equations represents this model’s main constraints for every hour :

P q P i t,i i t i, (13)

= >y z u u i t, 1i t i t i t i t, , , , 1 (14)
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=y z u U ii i i i,1 ,1 ,1 ,0 (15)

= + + +c cf cs cc cm ii i i i i (16)

=cf q FP i T·i
t

i t i t, ,
(17)

=cs y S i T·i
t

i t i,
(18)

=cc q A B i T· ·i
t

i t i,
(19)

=cm q M i T W· { , }i
t

i t i,
(20)

= + + >r r I q s p i H t, 1i t i t i t i t i t i t, , 1 , , , , (21)

= + +r R I q s p i Hi i i i i i,1 ,0 ,1 ,1 ,1 ,1 (22)

=q W s i W t,i t i t i t, , , (23)
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