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Abstract—Traders and practitioners in diverse power exchanges are nowadays being most 

exposed to uncertainty than ever. The combination of several factors such as renewable 

generation and regulatory changes calls for suitable electricity price forecasting models that 

can deal with complex and unusual market conditions. Several authors have proposed 

combining fundamental approaches with econometric models in order to cover all relevant 

aspects for electricity price forecasting. This combination has shown positive results for 

medium-term horizons. However, this approach has rarely been carried out for short-term 

applications. Moreover, several day-to-day applications in electricity markets require fast 

responsiveness and accurate forecasts. All of these facts encourage this work’s short-term 

hybrid electricity price forecasting model, which combines a cost-production optimisation 

(fundamental) model with an artificial neural network (econometric) model. In order to 

validate the advantages and contributions of the proposed model, it has been applied to a 

real-size power exchange with complex price dynamics, such as the Iberian electricity 

market. Moreover, its forecasting performance has been compared with those of the two 

individual components of the hybrid model as well as other well-recognised methods. The 

results of this comparison prove that the proposed forecasting model outperforms the 
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benchmark models, especially in uncommon market circumstances.  

Keywords—Econometric Models, Electricity Markets, Fundamental Models, Hybrid 

Models, Short-Term Forecasting 

I. INTRODUCTION AND LITERATURE REVIEW 

As of today, electricity market agents and participants are increasingly being exposed to price 

uncertainty and high market volatility, especially since the deregulation and liberalisation of 

power exchanges. Moreover, this uncertainty is further heightened by the growing penetration of 

renewable energy sources and global financial instability. Furthermore, regulatory and market 

structural changes are intensifying the complexity of the system. Therefore, the combination of 

these facts strongly encourages the use of electricity price forecasting models. 

Other uses of electricity price forecasting models among traders and practitioners include risk 

management, speculation and strategic purposes. Moreover, these traders and practitioners 

usually take part in day-to-day applications and decision making, which call for fast forecasting 

approaches. Therefore, the fact that electricity market price forecasting models are highly 

demanded is not in question. 

One way of classifying these models is by paying attention to their applications, purposes and 

aims, which are mostly related to the planning horizon, i.e. short- medium- and long-term. Short-

term forecasting model uses regularly include statistical and econometric methods, while longer 

term applications generally involve fundamental modelling of the market dynamics [1]. 

The work presented in this manuscript focuses on electricity market price forecasting in the 

short term (horizons ranging from a few hours up to one week in advance), which plays a very 

important role in day-to-day market operations. Furthermore, a great number of research works 

confirm that electricity market prices exhibit volatile and non-stationary behaviour, making price 

 

All authors are with the Institute for Research in Technology (IIT) of the ICAI School of Engineering of Comillas 

Pontifical University, 28015, Madrid, Spain, with the following respective e-mail addresses (corresponding author 

indicated with *): demarcos@comillas.edu*, abello@comillas.edu and javierr@comillas.edu 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit 

sectors. 

mailto:demarcos@comillas.edu
mailto:abello@comillas.edu
mailto:javierr@comillas.edu


 4 

 

forecasting a highly challenging task. Therefore, the current literature encompasses numerous 

forecasting methods in order to yield accurate and adequate forecasts, as can be seen in [2]. 

Some of the most traditional electricity price forecasting models in short-term applications are 

statistical/econometric methods, which involve time-series methods (e.g. ARIMA, GARCH [3–

7]), Artificial Intelligence (AI) techniques (e.g. Support Vector Machine, Radial Basis Function 

Networks [8–13]) and combinations of both types of models [14–21]. 

These combinations have recently received a wide acceptance due to their proficiency at 

modelling linear (time series) as well as non-linear (AI) trends and patterns in datasets [22]. 

Furthermore, these models are capable of capturing the revealed behavioural aspects of market 

participants, such as strategic and speculative behaviour [23]. 

However, statistical models may not be able to fully incorporate market dynamics and 

operation to their electricity price forecasts. Furthermore, these models tend to have difficulties 

when it comes to representing regulatory and market structural changes. Moreover, another 

weakness of econometric models lies in the assumption that history repeats itself, which is not 

suitable in most cases for today’s power markets, which are more volatile and complex than ever. 

To cover these aspects, market clearing prices are estimated by means of fundamental methods, 

which are aimed at thoroughly modelling the power market, including all generation units and 

their technical features, such as production costs. Nevertheless, market clearing models are not 

usually resorted for short-term price forecasting applications, often due to their poor performance 

at capturing short-term price dynamics, as mentioned in [1]. 

Therefore, fundamental models are sometimes combined with other approaches, such as 

econometric methods, in order to improve their predictive performance. However, recent works 

prove that a great deal of work has been carried out in the context of these hybrid models for 

medium-term horizons, not only from a point-forecasting perspectives but also from probabilistic 

points of view [1,24,25]. 

This fundamental-econometric combination will be referred to as hybrid models for the 
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remainder of the manuscript. One of the main advantages of these medium-term hybrid models is 

the capability to consider most relevant, economic drivers of electricity market prices, such as 

supply, demand, unit commitment, dispatch and technical constraints [23,24,26,27]. By doing so, 

the behaviour and operation of the power market is successfully incorporated to the electricity 

price forecasts, which is of great interest for its participants. 

Fundamental procedures are increasingly being resorted to by traders and practitioners 

considering the ongoing structural and regulatory changes that most power exchanges are 

experiencing (e.g. new taxes, incentives for specific generation technologies, CO2 emission 

allowances, etc.), which do have an effect on electricity market prices [28]. 

However, according to the work presented in [23], these models tend to provide less volatile 

and more flat predictions than those ultimately observed. Moreover, fundamental approaches that 

aim to thoroughly model power exchanges in hourly resolution are commonly avoided in short-

term price forecasting applications due to extremely large size and resolution times in real power 

systems. This issue calls for simplification methods that are usually targeted at the temporal 

resolution or the structure of the system, such as the generation technology aggregation that has 

been carried out in [26]. This simplification provides a reduction of the volume of the input data, 

which may also be effectively reduced by means of variable selection and shrinkage tools. 

It is well known that electricity prices are affected by a plethora of factors, ranging from 

weather-related variables (e.g. wind speed, rainfall amounts) to energy generation parameters 

(e.g. fuel prices, maintenance costs). Variable selection tools have been considered in economic 

and price forecasting frameworks in [27,29–31] with the purpose of screening out the least useful 

and most noisy predictors. These works cover several variable selection methods, including 

traditional approaches such as stepwise regression, least squares and principal components; as 

well as more complex approaches such as least absolute shrinkage selection operator (LASSO, 

[32]), ridge regression [33] and elastic nets (combination of LASSO and ridge regression, [34]). 

Some of these methods have been recently applied to electricity price forecasting in [35], whose 

results suggest utilising an elastic net above the other approaches due to its beneficial outcomes 
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regarding day ahead electricity price forecasting accuracy by means of linear regression. 

The above paragraphs have pointed out some insufficiencies and scarcities in the context of 

short-term electricity price forecasting that encourage motivation for the proposed model of this 

manuscript. Several hybrid forecasting methods have been mainly employed in medium- and 

long-term horizons, and thus their adequacy in the short term is either poor or untested. 

Moreover, price forecasting models that combine fundamental and econometric approaches 

have proved beneficial in medium-term horizons, as these take several aspects into account such 

as market dynamics and structural/regulatory market changes (fundamentals), as well as 

strategic/speculative behaviour and linear/non-linear modelling capabilities (econometrics). 

However, the literature regarding this kind of hybrid models in short-term contexts is relatively 

scarce and thus it would be interesting to determine if the same advantages can be attained for the 

short term. 

Therefore, the main objective of this work is to propose a novel short-term hybrid electricity 

price forecasting model, which takes advantage of the combination of fundamental and 

econometric approaches in order to capture not only the effects caused by structural and 

regulatory market changes, but also the strategic and speculative behaviour exhibited by market 

agents, as discussed in [23]. Thus, fundamental approaches are able to model changes in market 

agent bidding strategies, which are frequent in the short-term, as opposed to medium-term 

contexts where this effect can be ignored without any drawbacks. 

The only work in the literature that considers the same kind of fundamental-econometric 

hybrids for short-term electricity price forecasting is the one presented in [26], although it yields 

daily average values for forecasting periods of one month instead of monthly values for periods 

of one day to one week (as considered in this manuscript). Furthermore, while the fundamental 

component of [26] represents a simplified bidding curve in which generation technologies are 

stacked together and an estimated generation price is obtained as a linear function of the different 

generation costs, the authors of this manuscript intend to consider a higher level of detail on their 

fundamental model by taking advantage of other elements, such as the operation of the power 
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system, technical features of generation units, demand levels and interconnections with other 

markets. Moreover, the authors of [26] then utilise the estimated generation cost in a non-linear 

regression model, although it would be interesting to consider an AI approach, such as neural 

networks, on this stage of the hybrid model. However, there are no other similar hybrid short-

term approaches in the literature, which thoroughly model the power exchange with hourly 

precision, to the best knowledge of the authors. 

The main contributions of the paper are summarised as follows: 

1. A novel hourly short-term hybrid forecasting tool is proposed and developed, which is based 

on a cost-production optimisation model that is linked to a neural network model. The 

computational efficiency of each model is enhanced individually in order to adapt the resulting 

hybrid forecasting model to the short-term electricity price forecasting contexts. 

2. The forecasting performance of the proposed hybrid model is put to the test on a real-size 

market with complex price dynamics: the Iberian (Portuguese and Spanish) electricity market.  

3. Benchmark models, including well-recognised methods and both individual components of the 

hybrid model, were tested on the same case studies so as to compare their forecasting 

performance with that of the proposed forecasting methodology. 

The remainder of this manuscript is organised as follows: section II describes this work’s 

methodology. Section III presents the case studies in which the proposed forecasting method has 

been tested, as well as a comparison with other forecasting procedures. Section IV contains the 

conclusions that were drawn in this work, including the suggestions for extensions and future 

developments of the proposed methodology. Additionally, there is an appendix section at the end 

of this manuscript that contains the main details of the fundamental model that was used in this 

work’s hybrid forecasting approach. 

II. PROPOSED METHODOLOGY 

The general objective of this work is to create a new short-term hybrid electricity price 

forecasting model and put it to the test on a real, full-scale and complex electricity market, such 
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as the Iberian power exchange. Forecasts have been considered for both one day and one week 

horizons so as to agree with the two ends of the short-term framework. The proposed 

fundamental-econometric hybrid model is displayed on Fig. 1. 

The first half of the model, displayed at the left part of Fig. 1, is composed of a cost-production 

optimisation model that aims to simulate the market-clearing process by minimising the total 

system costs, which are constrained by generation unit technical features, regulation limits, 

transmission limits and the demand vs. generation balance. Thus, in this model, the estimated 

electricity market price can be obtained as the dual variable of the demand balance constraint. 

The above optimisation model, which is similar to the one presented in [23], has been applied 

to the Iberian power exchange. Nevertheless, in order to decrease its runtime, certain 

simplifications were carried out. This simplification consisted of an aggregation of similar power 

plants, which are owned by the same market agent and have identical cost functions and other 

technical features. As a result, the optimisation problem size was significantly reduced and thus 

the estimation time of electricity market prices was reduced from a few minutes to a few seconds. 

Specifically, the simplified optimisation problem for a forecasting period of one week consists of 

12440 equations and 71024 variables with a total runtime of 3.91 seconds and a maximum RAM 

usage of 76 MB on a 64-bit Windows 7 PC with 16 GB installed RAM and the following 

processor: Intel® Core™ i7-3770 CPU @ 3.40 GHz of 4 cores and 8 logical processors. Further 

 

Fig. 1.  Proposed hybrid forecasting model 



 9 

 

details of this fundamental model can be found at the appendix section. 

However, even though other variables were simultaneously calculated (e.g. transmitted power, 

emissions, generation outputs), only the estimated price was utilised for the second half of the 

proposed hybrid model. Nevertheless, the authors do not deny the possibility that considering 

other outputs in the statistic model may prove beneficial. Moreover, an additional term may be 

incorporated to the objective function in order to consider agent strategic behaviour, which is 

defined in [23] as the “conjectured-price response”. Nevertheless, the authors discarded this 

possibility due to the fact that agent strategic behaviour can also be incorporated to the forecasts 

by means of econometric methods, such as the second half of the proposed hybrid approach. 

As shown on Fig. 1, the estimated market price is used as an additional input variable to the 

neural network model, which is trained alongside other inputs in order to produce short-term 

electricity price forecasts. The other input variables that were considered are as follows: 

• Lagged electricity market prices. The following lags were considered: 

o One day 

o Two days 

o One week 

o Two weeks 

• Expected system demand, expected wind generation and expected solar generation 

• Dummy variables indicating if a day belongs to one of the following day types: 

o Business day or non-business day, i.e. Sundays and holidays 

o Saturday or non-Saturday 

These variables are effortlessly obtainable from the Spanish ISO information website [36], and 

are appropriately handled by neural network models. Moreover, in order to bear in mind several 

levels of autoregression and seasonalities, four lagged prices were taken into account with the 

following delays: one day, two days, one week and two weeks. It is important to bear in mind 

that the expected demand, wind and solar generation have been also used in the fundamental 
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model, and these affect the values of other unit generation levels (e.g. coal and CCGT) via the 

demand balance constraint. However, neural network models take into account linear and non-

linear trends and statistical patterns between electricity prices and the aforementioned “expected” 

variables. Therefore, even if the same data was used in both models, these were not handled and 

treated alike. 

The neural network model configuration is shown on Fig. 1, which is comprised of a hidden 

layer and an output layer. According to [37], experience shows that one hidden layer is suitable 

for most applications. The hyperbolic tangent sigmoid was utilised as the activation function of 

the hidden layer’s neurons, whereas a pure linear transfer function was selected for the output 

layer. 

The neural network was trained as per the standard Levenberg-Marquardt algorithm, which is 

one of the most popular neural network training methods utilised in electricity price forecasting 

applications, such as [8] and [38]. Therefore, different numbers of neurons were utilised on the 

hidden layer in order to test different levels of complexity and avoid overfitting. 

The number of neurons is chosen as soon as the training algorithm reaches its performance 

optimality conditions by computing the Mean Squared Error (MSE) on the validation period (a 

time span that is placed between training and test/forecast periods). The network with the number 

of neurons on its hidden layer that yields the lower MSE was then utilised to ascertain the 

electricity market price for the forecast period. The MSE is calculated as per the following 

formula with the conventional notation (𝑌̂𝑖 represent the forecasted values for a certain period of 

N hours, whereas 𝑌𝑖 are the real values pertaining to the same period): 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑌̂𝑖 − 𝑌𝑖)

2
𝑁

𝑖=1

 (1) . 

Moreover, in order to take into account the variability and the randomness of the initialisation 

of the neural network’s weights at the start of the training process, a high number of replications 

of the described neural network procedure were carried out. This is also done bearing in mind 
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that neural networks are, to some extent, prone to getting stuck on local minima on the training 

process, and thus the global optimum may not be ascertained. The final step involves calculating 

the mean of the obtained forecasts in every replication in order to yield the forecast of this work’s 

proposed hybrid model. 

However, the training data, which consists of 10 variables, were modified with the intention of 

increasing efficiency as well as reducing overfitting occurrences. The training, validation and 

forecasting periods have been organised according to the timeline of Fig. 2. 

The training set is comprised of three time spans of d1 days each: T1, T2 and T3. The last one is 

placed right before the validation period V and contains the most updated information for the 

neural network to train on. This information reinforced by the data pertaining to T1, which occurs 

one year before T3. Furthermore, T2 contains a possible evolution of electricity prices and all 

related variables, which is what happened a year before the forecasting period. This training set 

arrangement is more efficient and better reflects the behaviour of electricity prices on the 

forecasting period F than utilising three times d1 days immediately prior to the validation period 

V. Furthermore, both V and F periods are set to be of the same duration, which is of d2 days (i.e. 

the forecasting horizon). 

Not only the arrangement of the input data was modified, but also a test was carried out in order 

to assess variable importance. Additionally, it would be useful to increase the parsimoniousness 

of the model, i.e. reducing model complexity as well as increasing predictive accuracy, and thus 

reducing possible overfitting occurrences. 

To this end, the variables were tested in a backward-elimination manner, i.e. evaluating all ten 

 
Fig. 2.  Training, validation and test/forecast periods arrangement 
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factors at once and discarding one by one the most noisy and redundant. However, this is more 

straightforward in linear regression cases than in neural network applications. Therefore, the 

performance of the neural network model was assessed for several combinations of variables and 

numbers of neurons in the hidden layer (comparing its validation set MSE) using a backward-

elimination procedure until only one variable was considered.  

First of all, the neural network forecast MSE was calculated considering all 10 input variables. 

Then, the process was repeated for every combination of 9 input variables and the resulting MSE 

was compared to the one obtained with 10 variables. The variable that was not considered in the 

combination that yielded the greatest reduction in MSE was considered discarded. This method 

was then replicated for 8 input variables, considering the lowest MSE obtained for 9 input 

variables, and so on. If the MSE error could not be further reduced by removing one additional 

variable, the test reached its end and thus all remaining variables were not discarded. This 

procedure was carried out several times for numerous days. As a result, the variables that have 

been mostly discarded were: two-day lagged electricity prices and the Saturday dummy variable. 

The estimated price from the fundamental model has not been discarded, which suggests that 

the underlying information within these prices is useful to the hybrid model (e.g. coal costs, CO2 

emission allowances, maintenance schedules). Moreover, elastic nets were also used for the same 

purpose, although this method is more appropriate for linear regression contexts, and the results 

were similar for a certain tolerance level (elastic net parameters). However, the authors preferred 

the backward-elimination procedure because it is a non-parametric approach and thus does not 

require further studies in order to ascertain additional information. 

Therefore, the volume of the input data was reduced by 20% and, as a result, the model’s 

performance was enhanced in terms of runtime and forecasting accuracy. The forecasting 

performance is tested as per some of the most used error metrics in the literature, e.g. [13], which 

are: Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root-Mean-

Square Error (RMSE). These error measures are computed as follows: 
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𝑀𝐴𝑃𝐸 =  
100

𝑁
∑ |

𝑌̂𝑖 − 𝑌𝑖

𝑌𝑖

|

𝑁

𝑖=1

 (2) . 

𝑀𝐴𝐸 =  
1

𝑁
∑|𝑌̂𝑖 − 𝑌𝑖|

𝑁

𝑖=1

 (3) . 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑌̂𝑖 − 𝑌𝑖)

2
𝑁

𝑖=1

 (4) . 

However, it is important to bear in mind that prices in the Iberian power exchange may go to 

zero, and thus may result in infinite MAPE (i.e., a division by zero in Equation (2)). 

Nevertheless, this has not happened throughout all hours in the considered case studies. 

Furthermore, it is also common in the literature, e.g. [35,39], to provide statistically significant 

conclusions regarding forecasting performance comparisons via the Diebold-Mariano (DM) test 

[40], and thus it has also been applied to this work’s case studies. A 10% significance level has 

been considered, an absolute error difference as the loss differential series, and a two-sided 

perspective, i.e. testing for both out- and underperformance.  

Although the main objective of this work is focused on reducing the error of the mean of the 

forecasts, the proposed model’s statistical performance has been evaluated so as to provide some 

insight related to risk analysis and worst case scenario evaluation. Therefore two different 

methods were carried out related to the percentiles of the forecasts of the proposed model, 

denoted by 𝑌̂𝑖𝑎, with 𝑎 = 1, 2, …, 99. Firstly, the percentage of times that the percentile of the 

forecast is above the real value of the electricity price (i.e. 𝑌𝑖) has been measured. This measure 

will be referred to as exceedance rate for the remainder of the paper. Ideally, given a percentile 

forecast 𝑌̂𝑖𝑎, its exceedance rate should be of 𝑎%. Secondly, the proposed model was tested the 

pinball loss function (PLF) as done in several works in the current literature that focus on 

probabilistic analyses, such as [41]. The PLF for a certain hour 𝑖 is calculated as per the following 

equation: 
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𝑃𝐿𝐹(𝑎)𝑖 =  {
(1 −

𝑎

100
) · (𝑌̂𝑖𝑎 − 𝑌𝑖)       𝑖𝑓 𝑌̂𝑖𝑎 > 𝑌𝑖

(
𝑎

100
) · (𝑌𝑖 − 𝑌̂𝑖𝑎)               𝑖𝑓 𝑌𝑖 > 𝑌̂𝑖𝑎

 (5) . 

Lower values of the PLF score indicate that the forecasts are statistically superior and better 

reflect the probability of the occurrence of the price value associated with the target percentile 𝑎. 

III. CASE STUDIES, RESULTS AND DISCUSSION 

This section is composed of four parts. On the first subsection, seven case studies are 

presented. On the second subsection, the forecasts yielded by the proposed forecasting model are 

analysed whereas on the third subsection the resulting forecasts are compared with 5 benchmarks. 

Moreover, in order to further validate this work’s proposed model, the same experiments have 

been conducted in a much broader case study, whose results are given on the last subsection. 

A. Case study description and selection 

Several periods in late 2016 have been studied for both forecasting horizons (one day and one 

week). Nevertheless, for the sake of simplicity and clarity, only the most representative cases that 

are characterised by different types of complexities are detailed in this section (shown on Table 

I), all of which pertain to the period depicted on Fig. 3.  

Case 

study 

Training periods Validation period 

V 

Forecasting period 

F T1 ∪ T2 T3 

C1 
15/Oct/2015 to 

13/Dec/2015 

15/Oct/2016 to 

13/Nov/2016 
14/Nov/2016 15/Nov/2016 

C2 
21/Oct/2015 to 

19/Dec/2015 

21/Oct/2016 to 

19/Nov/2016 
20/Nov/2016 21/Nov/2016 

C3 
10/Nov/2015 to 

09/Jan/2016 

10/Nov/2016 to 

10/Dec/2016 
11/Dec/2016 12/Dec/2016 

C4 
24/Nov/2015 to 

23/Jan/2016 

24/Nov/2016 to 

24/Dec/2016 
25/Dec/2016 26/Dec/2016 

C5 
08/Oct/2015 to 

06/Dec/2015 

08/Oct/2016 to 

06/Nov/2016 

07/Nov/2016 to 

13/Nov/2016 

14/Nov/2016 to 

20/Nov/2016 

C6 
29/Oct/2015 to 

26/Dec/2015 

29/Oct/2016 to 

26/Nov/2016 

27/Nov/2016 to 

04/Dec/2016 

05/Dec/2016 to 

11/Dec/2016 

C7 
05/Nov/2015 to 

03/Jan/2016 

05/Nov/2016 to 

04/Dec/2016 

05/Dec/2016 to 

11/Dec/2016 

12/Dec/2016 to 

18/Dec/2016 

Table I - Case study training, validation and forecast periods 

a 
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The most outstanding period is 21/Nov/2016, when prices collapsed due to unusually high 

wind generation in the Iberian power system, reaching 10.88€/MWh at early morning hours. 

Moreover, this day presents a range of 56.61€/MWh and a standard deviation of 15.07€/MWh. 

These values are significantly higher than those of its adjacent days, which present a range of 

30.12€/MWh at most and a maximum standard deviation of 9.48€/MWh. Therefore, it would be 

interesting to analyse the models’ forecasting performance on such a day (case C2). 

Furthermore, there is an apparent price level difference between November and December, 

which implies a slight market structural change. Moreover, coal plants were slightly less 

available in December than in November, whereas demand levels also increased in December 

[36]. For these reasons, a day and a week that do not present uncommon behaviours have been 

selected for both months in order to compare both market circumstances (cases C1, C3, C5 and 

C7). 

Moreover, the most erratic weekly period in Fig. 3 takes place between 05/Dec/2016 and 

11/Dec/2016, which contains two Spanish National holidays on the 6th and 8th of December (case 

C6). Due to these holidays, electricity prices are lower than on their adjacent days. 

Additionally, another uncommon day included in Fig. 3 is 26/Dec/2016 (case C4), which is a 

Monday. However, the usual Christmas Day holiday happened on Sunday and thus the studied 

day was a holiday on most areas of Spain, so it cannot be considered a normal business day. 

These seven case studies put the proposed forecasting model to the test under diverse 

 

Fig. 3.  Iberian electricity market prices for late 2016 
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circumstances and challenges, all of which are analysed and discussed in the following 

subsections.  

However, given that these specific cases may provide evidence as to how the considered 

forecasting models may perform under specific circumstances, the corresponding results cannot 

be adequately generalised. Therefore, in order to provide more statistically significant results and 

further proof as to how these models perform, the entire year 2017 was also used as a case study, 

whose results are located in subsection D. 

B. Proposed hybrid price forecasting model 

First of all, the cost-production optimisation model has been run for the training and 

forecasting periods with hourly precision. In this test, regular circumstances in the Iberian power 

system were assumed regarding weather conditions (wind generation, hydro inflows, etc.). As a 

result, the estimated electricity market price was determined and used as an additional input to 

the neural network model. 

The neural network model was run for seven different market circumstances in order to assess 

its adequacy for the short term. This includes horizons of one day and one week with hourly 

precision. Once the day or week to forecast was set, all periods according to the timeline of Fig. 2 

can be set. In all cases, a training set arranged as per Fig. 2 was used with d1 equal to 30 days, 

thus a total of 90 days were used as training data. Neural networks with this training set were 

trained considering different numbers of neurons (10 to 60 with a step of 5). The neural network 

with the lowest MSE on the validation set was later used to forecast the electricity market price 

on the test/forecast period. This procedure (from neural network training to forecasting) was 

carried out 300 times, whose mean was used as the resulting forecast of the proposed electricity 

market price forecasting model. 

For the weekly cases, the authors previously tested this methodology by both using a standard 

168-hour horizon and a rolling window of a 24-hour horizon, i.e. forecasting day by day up to 

one week. However, by using a rolling-window method on a neural network model, the authors 
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found that the forecasts given in every simulation had a considerably higher volatility than those 

yielded by the neural network model with a 168-hour horizon, as well as a generally higher 

MAPE. Therefore, the rolling-window method was not utilised in these cases. However, one-day 

lagged prices were not included in the one-week forecasts, because, in reality, the price of the 

previous day becomes unknown if forecasting further than one day. Nevertheless, the estimated 

price from the fundamental model may contain, to some extent, the information of one-day 

lagged prices due to the chronological constraints (e.g. unit commitment and hydro reserve 

balance) that set links between current prices and other factors in the past. 

The first case study (C1) is displayed on Fig. 4, which shows the forecast for 15/Nov/2016 

(Tuesday). The daily trend that electricity prices usually exhibit is successfully mimicked and the 

model yields a 2.179% MAPE, which mostly corresponds to the early morning hours, whereas 

the late hours are considerably accurate. 

The dashed and dotted lines of Fig. 4 represent the forecasts of both components of the 

proposed hybrid model on their own, i.e. only the neural network model without the additional 

estimated price from the cost-minimisation model (Benchmark 1 or BM1), and also this estimated 

price on its own (Benchmark 2 or BM2). By analysing and comparing these results, the benefits 

of the hybridisation of both methods can be checked and verified. 

The estimated price of BM2 clearly lacks intraday dynamics and thus yields a lower accuracy 

(5.675% MAPE). Nevertheless, this forecast is somewhat centred on the average price level, 

which is of vital importance for the developed hybrid model. The daily behaviour exhibited by 

BM1 better resembles electricity price patterns mainly thanks to its adaptability for non-linear 

trends, although its accuracy is considerably lower on the afternoon and evening (2.856% 

MAPE). The combination of the advantages of both models yields a suitable adaptive behaviour, 

and thus increases the accuracy of the hybrid model forecast. 
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Regarding the one-week case studies, the forecast for the week of 05/Dec/2016 to 11/Dec/2016 

is displayed on Fig. 5. In this case study, the resulting MAPE is of 5.878%. Once again, it can be 

seen on Fig. 5 that the estimated price from the fundamental model (BM2) fails to follow the 

intraday pattern (8.709% MAPE). The neural network model on its own (BM1) shows an 

adequate performance (6.136% MAPE), although it seems to yield considerably lower values on 

the early hours of Thursday to Sunday, which may be caused by a slight underperformance of the 

neural network model as the forecasting horizon increases. 

This performance decrease is somewhat diminished by the estimated price of BM2, which 

provides the equilibrium price level even at longer horizons and thus results in a more accurate 

forecast for the hybrid model. The benefits of the proposed hybrid model are experienced yet 

again, which strongly supports the statement that the combination of both models’ advantages is 

highly valuable. Furthermore, the fundamental model’s ability to incorporate the effects of the 

reduction of availability in the system coal power plants provided a slight upward pressure on the 

hybrid model’s price forecasts. This contribution of the fundamental model proved relevant and 

useful in this forecasting period. 

The rest of the cases (C2, C3, C4, C5 and C7) are discussed on the following subsection, 

including the performance of the other benchmark forecasting models. 

C. Comparison with other forecasting models 

 

Fig. 4.  Electricity price forecast for 15/Nov/2016 (C1)  

Fig. 5.  Electricity price forecast from Mon, 05/Dec/2016 to Sun, 11/Dec/2016 (C6) 
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The performance of this work’s proposed hybrid forecasting model has been compared with 

five other electricity price forecasting models, two of which represent the split versions of the 

hybrid model (BM1 and BM2). The third benchmark (BM3) is a slight modification of a linear 

regression model that was proposed in [42] and most recently applied to electricity price 

forecasting in [35]. This linear regression model can be represented as per the following 

equations in order to calculate the log-price 𝑝𝑑,ℎ at day 𝑑 and hour ℎ: 

𝑝𝑑,ℎ = 𝛽ℎ,1𝑝𝑑−1,ℎ + 𝛽ℎ,2𝑝𝑑−2,ℎ + 𝛽ℎ,3𝑝𝑑−7,ℎ + 𝛽ℎ,4𝑝𝑑−1
𝑚𝑖𝑛  + 𝛽ℎ,5𝑧𝑑,ℎ + 𝛽ℎ,6𝐷𝑆𝑎𝑡 + 𝛽ℎ,7𝐷𝑆𝑢𝑛 + 𝛽ℎ,8𝐷𝑀𝑜𝑛 + 𝜀𝑑,ℎ (6) . 

𝑝𝑑,ℎ = 𝑙𝑜𝑔(𝑃𝑑,ℎ) −
1

𝑇
∑ 𝑙𝑜𝑔(𝑃𝑑,ℎ)

𝑇

𝑡=1

 (7) . 

The betas are the regressor coefficients, which respectively represent lagged log-prices (one, 

two and seven days), the minimum log-price of the 24 hours in day 𝑑 minus one, the expected 

demand and three dummy variables indicating if day 𝑑 is Saturday, Sunday or Monday. 

Furthermore, as mentioned before, a slight modification was carried out, which pertains to the 

logarithmic transform of Equation (7), where 𝑇 refers to the training period. The mirror-log 

transform, recently applied to electricity price forecasting in [43], was applied due to the 

possibility of prices equal to zero in the Iberian power system, which is represented in the 

following equations: 

𝑛𝑑,ℎ =
(𝑃𝑑,ℎ − 𝜇𝑇)

𝜎𝑇

 (8) . 

𝑝𝑑,ℎ = 𝑠𝑔𝑛(𝑛𝑑,ℎ) [𝑙𝑜𝑔 (𝑛𝑑,ℎ +
1

𝑐
) + 𝑙𝑜𝑔 (𝑐)] (9) . 

First of all, according to Equation (8), the prices were normalised by subtracting their mean in 

the training period (𝜇𝑇) and dividing by their standard deviation in the training period (𝜎𝑇). The 

parameter 𝑐 was set to 1/3 as done in [43]. 

The fourth benchmark (BM4), based on ARIMA models, is more established than the previous 

two and well recognised. These models have been widely used in electricity price forecasting, 

including the Iberian electricity market [44]. In this case, the model consists of a transfer function 
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with SARIMA noise, which has been developed according to the methodologies presented in the 

works of [45,46]. Electricity prices were stabilised (variance) by means of the Box-Cox 

transformation [47]. The BIC value of the fitted models was used as model selection criterion. 

The obtained SARIMA noise presents the following parameters with the standard notation: 

SARIMA(1,0,0)168(1,0,2)24(1,0,0)1. The expected demand was used as an exogenous variable in 

this model that can be therefore also referred to as a SARIMAX model. 

The last benchmark (BM5) is a simple naïve approach in which the real electricity prices from 

the previous week are directly taken as the forecast: 

𝑃𝑑,ℎ = 𝑃𝑑−7,ℎ (10) . 

The MAPE, MAE and RMSE of these benchmarks along with those yielded by the proposed 

electricity price forecasting model on the seven case studies are displayed on Table II, Table III 

and Table IV respectively. First of all, it is worth noting that the proposed model outperforms the 

others in all cases except C2, in which the pure neural network model yields a higher accuracy. 

This is mostly due to the fact that, in early morning hours, BM1’s forecast is closer to the real 

value than the proposed model’s forecast. Furthermore, in a case in which prices collapse to such 

a low value (10.88€/MWh), this difference is more apparent and noticeable. 
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This trend also happens in the more common days pertaining to cases C1 (see Fig. 4) and C3, 

although the proposed hybrid model’s forecast in the rest of the hours of the day makes up for it 

more than enough, yielding a higher overall accuracy in terms of MAPE. This fact also confirms 

that the fundamental contribution enhances forecasting performance on late morning hours up to 

midnight, whereas on early morning hours it yields a reduced accuracy and this reduction is 

further heightened on uncommon, low-price situations such as C2. 

Moreover, the one-week cases (C5, C6 and C7) comparison between the proposed model and 

BM1 show similar accuracies. However, on early December (case C6), when the overall price 

levels are beginning to increase, the difference is higher. This may suggest that whenever such a 

structural market evolution is underway, fundamental information should be taken into 

consideration. 

Furthermore, case C6 includes two Spanish National holidays, and thus it may imply that the 

proposed model is also the most proficient at forecasting prices on non-business days. The same 

Model C1 C2 C3 C4 C5 C6 C7 

Proposed 2.179 15.96 3.726 3.242 6.146 5.878 4.119 

BM1 2.856 13.79 4.075 3.825 6.172 6.136 4.166 

BM2 5.675 26.73 6.812 10.83 11.23 8.709 8.135 

BM3 7.522 27.84 5.421 13.63 11.95 10.84 7.746 

BM4 9.280 22.48 6.238 6.657 9.894 13.67 7.224 

BM5 7.595 31.91 8.544 19.57 12.84 14.11 10.85 

Table II - Comparison of the proposed forecasting model with five benchmarks in terms of MAPE (%) 

 

Model C1 C2 C3 C4 C5 C6 C7 

Proposed 1.250 5.294 2.414 1.767 3.062 3.462 2.609 

BM1 1.690 4.444 2.715 2.045 3.123 3.634 2.542 

BM2 3.062 7.575 3.414 3.374 5.496 4.893 4.890 

BM3 4.646 7.935 3.422 7.226 5.811 6.173 4.750 

BM4 5.695 7.365 4.068 3.397 5.043 8.367 4.641 

BM5 4.727 9.658 5.378 10.51 6.456 7.870 6.623 

Table III - Comparison of the proposed forecasting model with five benchmarks in terms of MAE (€/MWh) 

 

Model C1 C2 C3 C4 C5 C6 C7 

Proposed 1.861 7.166 2.622 2.474 3.897 4.466 3.213 

BM1 2.035 5.893 3.063 2.718 3.930 4.621 3.149 

BM2 3.817 10.85 4.018 3.771 6.986 5.619 5.534 

BM3 5.249 9.938 4.697 8.241 7.151 7.617 5.655 

BM4 6.202 8.105 4.407 3.743 6.163 9.704 5.552 

BM5 6.043 11.24 6.876 12.41 8.333 9.780 8.453 

Table IV - Comparison of the proposed forecasting model with five benchmarks in terms of RMSE (€/MWh) 
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conclusion can be reached from the results of case C4, which is also a non-business day. This 

may also indicate that by considering the estimated price from the fundamental model, the bias 

effect from the previous week is lessened. 

The results shown by the MAPE, MAE and RMSE values have shown some differences 

between the proposed model and the five benchmarks. In order to adequately analyse the 

statistical differences between these forecasting models, a DM with 10% significance level was 

carried out, whose results are displayed on Table V. 

It can be seen that the proposed model’s forecasts generally yield statistically lower errors than 

those of its competitors. The only exception in which its forecasts are statistically 

underperforming is in case C2, where BM1 has proved to be more accurate according to the error 

metrics of the previous tables. However, three cases, C1, C4 and C6, show significant differences 

in favour of the proposed model when compared to BM1. 

D. Results for the entire year 2017 

This work’s proposed model, as well as the five benchmarks, has also been tested for the entire 

year 2017 for both one-day and one-week forecasting horizons. The MAPE, MAE and RMSE 

forecasting error results are shown on Table VI, Table VII and Table VIII respectively. 

Model comparison C1 C2 C3 C4 C5 C6 C7 

Proposed vs.  BM1 1a -1b 0c 1 0 1 0 

Proposed vs.  BM2 1 0 1 1 1 1 1 

Proposed vs.  BM3 1 1 1 1 1 1 1 

Proposed vs.  BM4 1 1 1 1 1 1 1 

Proposed vs.  BM5 1 1 1 1 1 1 1 

Table V - Results of the Diebold-Mariano test across all case studies 
a A value of 1 indicates significant outperformance of the proposed model forecasts 
b A value of -1 indicates significant underperformance of the proposed model forecasts 
c A value of 0 indicates no significant difference between model forecasts 
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It is important to take into account that, during January 2017, the Iberian power market was 

affected by an uncommon mix of events: unusually low temperatures, low renewable generation, 

and high natural gas prices; and thus the forecasting error on all models is significantly higher 

than in the other seasons of the year. Furthermore, January’s monthly average price was of 

71.49€/MWh (18.6% and 38.2% higher than that of the previous and the following month 

respectively) and its standard deviation was of 14.26€/MWh (52.4% and 23.9% higher than that 

of the previous and the following month respectively). 

Although the overall mean of the proposed model’s forecasting errors is the lowest during the 

entire year 2017, it slightly underperforms during some seasons. For example, for the one-day 

forecasting horizon cases, the proposed model’s performance during the early morning hours of 

the day in summer is lower, which coincides with the aforementioned trend described in the 

previous subsection.  

Model 
One-day forecasting horizon One-week forecasting horizon 

Winter Spring Summer Autumn Average Winter Spring Summer Autumn Average 

Proposed 12.83 8.840 5.016 6.764 8.341 17.08 8.330 5.120 8.000 9.633 

BM1 12.97 9.018 4.977 6.815 8.424 17.31 8.202 5.305 7.919 9.684 

BM2 26.67 21.54 12.39 19.10 19.89 26.38 21.94 12.13 19.18 19.91 

BM3 16.79 13.58 7.153 10.51 11.99 17.69 13.24 7.050 10.56 12.13 

BM4 15.06 9.293 5.097 7.654 9.248 17.64 10.36 5.915 8.662 10.65 

BM5 25.93 17.55 9.343 12.82 16.37 26.17 17.02 9.462 12.91 16.39 

Table VI - MAPE comparison of the proposed model with five benchmarks for the year 2017 (%) 

 

Model 
One-day forecasting horizon One-week forecasting horizon 

Winter Spring Summer Autumn Average Winter Spring Summer Autumn Average 

Proposed 5.137 3.068 2.359 3.331 3.465 7.369 3.247 2.407 4.044 4.267 

BM1 5.178 3.059 2.335 3.383 3.480 7.486 3.257 2.491 4.028 4.315 

BM2 14.96 9.413 5.949 11.03 10.31 14.68 9.667 5.797 11.12 10.32 

BM3 6.838 4.765 3.262 5.066 4.972 7.213 4.652 3.198 5.116 5.045 

BM4 8.113 4.150 2.473 4.454 4.780 9.382 4.694 2.844 5.051 5.493 

BM5 10.53 6.225 4.266 6.387 6.828 10.54 6.043 4.315 6.434 6.833 

Table VII - MAE comparison of the proposed model with five benchmarks for the year 2017 (€/MWh) 

 

Model 
One-day forecasting horizon One-week forecasting horizon 

Winter Spring Summer Autumn Average Winter Spring Summer Autumn Average 

Proposed 5.921 3.658 2.840 4.003 4.096 8.927 4.074 3.065 5.113 5.295 

BM1 5.953 3.638 2.822 4.089 4.115 9.046 4.115 3.164 5.083 5.352 

BM2 16.59 10.97 6.985 12.39 11.70 16.84 11.87 7.114 12.87 12.17 

BM3 7.809 5.552 3.885 6.055 5.814 9.010 5.944 4.105 6.612 6.418 

BM4 10.84 5.585 4.531 4.959 6.460 12.76 6.414 5.341 5.639 7.537 

BM5 11.48 7.092 5.030 7.567 7.773 12.32 7.775 5.458 8.298 8.464 

Table VIII – RMSE comparison of the proposed model with five benchmarks for the year 2017 (€/MWh) 
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In order to check if there are any significant differences in predictive performances, a DM test 

has also been carried out for each model throughout the year 2017, whose results are displayed on 

Table IX (with the same notation as in Table V). The proposed model is not significantly 

outperformed in any of the cases and there seems to be a general outperformance in the entire 

year 2017 for the one-week horizon cases. Taking into account that neural network forecast 

accuracy is reduced for longer horizons, it can be deduced from this result that the contribution of 

the equilibrium price level that is provided by the estimated fundamental price is more notable, 

which coincides with case C6’s results that are explained in subsection B. This is also why, in 

numerous works in the current literature (such as [23,24]), this effect has proven useful for longer 

forecasting windows (i.e. medium-term horizons). However, the results repeatedly suggest that 

the proposed fundamental-econometric hybrid model’s performance needs to be improved in the 

early morning hours of the day. 

Furthermore, it is also of interest to verify the statistical features of the forecasts that have been 

given by the proposed model, which can be done by analysing the percentiles of the forecasts. 

The exceedance rate of the percentile forecasts of the proposed model and BM1 is displayed on 

Table X. As mentioned before, the ideal exceedance rate for the percentile 1, 5, 95 and 99 

forecasts are of 1%, 5%, 95% and 99% respectively. 

 First of all, it is natural that the longer horizon forecasts deviate more from these ideal values. 

The proposed model is generally closer to the ideal values than BM1, especially the percentile 1 

and percentile 5 values. This means that the proposed model’s forecasts are generally more 

suitable for risk analyses such as extreme or worst case scenario evaluation. However, no notable 

improvement was achieved for the percentile 95 and percentile 99 cases. Furthermore, for both 

forecasting horizons, the percentile 95 and percentile 99 exceedance rates seem to be farther from 

Model 
One-day forecasting horizon One-week forecasting horizon 

Win. Spr. Sum. Aut. Avg. Win. Spr. Sum. Aut. Avg. 

Proposed vs. BM1 0 0 0 1 0 1 0 1 0 1 

Proposed vs. BM2 1 1 1 1 1 1 1 1 1 1 

Proposed vs. BM3 1 1 1 1 1 0 1 1 1 1 

Proposed vs. BM4 1 1 0 1 1 1 1 1 1 1 

Proposed vs. BM5 1 1 1 1 1 1 1 1 1 1 

Table IX - Results of the Diebold-Mariano test for the entire year 2017 
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their ideal values, which may be an indication that the probability distribution of the forecasts 

presents a positive skew and therefore is not symmetrical. This can be verified by calculating the 

PLF as per Equation (5) of the proposed model’s forecasts, whose results can be seen on Table 

XI. 

The PLF results suggest that the proposed hybrid model yields overall superior probabilistic 

forecasts for percentiles 1 and 5 as opposed to percentiles 99 and 95 respectively, which indicates 

that the forecasts do not capture the probability of the occurrence of extremely high prices as well 

as the occurrence of extremely low prices. Therefore, this may call for a peak or extreme value 

detection procedure if this imbalance is to be solved. 

IV. CONCLUSIONS AND FUTURE WORK 

The novel methodology that has been proposed in this work is based on a hybrid model which 

consists of a cost-production optimisation model and a neural network model. Both models have 

been linked by using the cost-production optimisation model’s estimated price as an additional 

input to the neural network model. Furthermore, the input data on both components of the 

proposed hybrid model were rearranged and modified in order to decrease computational burden 

and therefore increase efficiency, as well as reduce runtime and overfitting occurrences on the 

neural network model. 

Percentile Model 
One-day forecasting horizon One-week forecasting horizon 

Win. Spr. Sum. Aut. Avg. Win. Spr. Sum. Aut. Avg. 

P1 
Proposed 4.398 4.076 5.978 5.952 5.103 6.227 4.487 8.562 10.58 7.463 

BM1 4.583 6.024 7.428 5.815 5.970 6.181 5.037 10.12 11.86 8.299 

P5 
Proposed 10.51 7.926 11.01 12.13 10.39 12,73 8,379 15,11 17,54 13,44 

BM1 11.06 9.149 12.55 11.81 11.14 13,74 9,432 15,84 17,99 14,25 

P95 
Proposed 88.94 85.73 85.51 81.87 85.50 79,35 80,08 75,05 69,60 76,02 

BM1 89.03 84.92 84.65 81.04 84.90 77,66 80,91 71,61 69,51 74,92 

P99 
Proposed 94.68 93.39 93.80 92.31 93.54 87.18 89.88 84.62 80.45 85.53 

BM1 95.51 94.34 91.39 91.07 93.07 86.49 90.43 80.91 83.47 85.32 

Table X - Exceedance rate of the percentile forecasts for the entire year 2017 (%) 

 

Percentile 
One-day forecasting horizon One-week forecasting horizon 

Win. Spr. Sum. Aut. Avg. Win. Spr. Sum. Aut. Avg. 

P1 0.259 0.199 0.180 0.239 0.219 0.415 0.162 0.162 0.341 0.270 

P99 0.324 0.212 0.172 0.217 0.231 0.711 0.287 0.399 0.516 0.478 

P5 0.813 0.503 0.408 0.590 0.577 1.141 0.455 0.391 0.748 0.684 

P95 0.816 0.515 0.428 0.588 0.586 1.410 0.656 0.672 1.031 0.942 

Table XI - Pinball loss function score of this work’s proposed model for the entire year 2017 
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The proposed hybrid model has shown adequate performance in seven case studies, all of 

which have presented diverse circumstances and challenges. The benchmark models were 

outperformed by the proposed model in most case studies, especially the estimated price from the 

cost-production optimisation model, the linear regression model of [42], the SARIMAX model 

and the simple naïve approach that utilises the previous week’s electricity prices as the forecast. 

Furthermore, it can be concluded that the proposed hybrid forecasting model’s accuracy is 

generally increased by the effect of the estimated price from the fundamental model. In addition, 

the non-linear patterns in electricity prices have been adequately dealt with by the neural network 

model. Moreover, the combination of the longer-term price level yielded by the fundamental 

model and the intraday pattern given by the econometric model has unquestionably proven to be 

advantageous, especially on uncommon market situations, such as holidays or increasing unit 

unavailableness. 

Additionally, the case study of the entire year 2017 showed an overall lower forecasting error 

from this work’s proposed forecasting model. This advantage is more notable on the one-week 

forecasting horizon results, which further indicates that the equilibrium price level of the 

fundamental model enhances predictive accuracy even if the forecasting horizon is longer. 

Moreover, even though this work’s proposed model yields overall superior probabilistic 

forecasts, there seems to be room for improvement in order to obtain percentile forecasts that are 

closer to the ideal values regarding exceedance rates. 

However, the results suggest that, on early morning hours, a combination technique with 

another pure statistical model, or a regime-switching model within a hybrid framework, may 

enhance the resulting model’s accuracy. Furthermore, other variables from the fundamental 

model may be utilised as additional information for the econometric model, such as the unit 

generation levels for the different thermal technologies. Nevertheless, considering more input 

variables in this application may call for a more suitable sensitivity analysis or variable selection 

procedure than the one carried out in this work, although developing a computationally efficient 

method may result in a highly challenging task due to the high level of complexity of the neural 
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network training algorithms. 
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APPENDIX 

The fundamental model that has been used in this work’s proposed methodology consists of a 

traditional market equilibrium model in which the costs of each market agent are minimised. In 

this model, perfect competition has been assumed, and thus total system costs are simultaneously 
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minimised in its objective function. Taking into account that the main decision variables are the 

production quantities of each generation unit 𝑞𝑖, the following equation represents the model’s 

objective function: 

min
𝑞𝑖

∑ 𝑐𝑖

𝑖

 (11) ́  

The term 𝑐𝑖 is the cost function of generation unit 𝑖, which mainly consists of the following 

costs: fuel, start-up, CO2 emission and maintenance costs. Apart from the corresponding 

technical and physical constraints (e.g. maximum/minimum power, start-up and shut-down 

periods, etc.) of the system’s generation units, the most important element of this optimisation 

problem is the demand vs. generation balance equation (for every hour 𝑡): 

∑ 𝑞𝑖,𝑡

𝑖

= 𝐷𝑡                   ∶ 𝜆𝑡    ∀𝑡 (12) ́  

Each unit’s production quantities, i.e. 𝑞𝑖,𝑡, are mainly limited by this constraint, and therefore 

its dual variable can be considered as the system’s marginal price 𝜆𝑡, which represents the market 

clearing price that is utilised for the econometric component of this work’s proposed hybrid 

model. Furthermore, it is worth noting that interconnections with adjacent markets, such as 

France, have been taken into account. Given this model’s purpose, the lack of non-linear terms 

(e.g. the conjectured-price response quadratic term of [23]) and the unit coupling conditions (i.e. 

start-up and shut-down bounds), the nature of the optimisation model is a relaxed mixed-integer 

problem (RMIP), which has been run with the CPLEX solver (version 12.5.1.0).  

The parameters, i.e. input data, of this optimisation model are listed below: 

• 𝑃𝑖: minimum power output of unit 𝑖 

• 𝑃𝑖̅: maximum power output of unit 𝑖 

• 𝑈𝑖,0: initial unit commitment state of (thermal) unit 𝑖 (active or inactive) 

• 𝐹𝑃𝑖,𝑡: fuel cost per unit of volume produced for (thermal) unit 𝑖 and hour 𝑡 

• 𝑆𝑖: cost per start-up operation for (thermal) unit 𝑖 
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• 𝐴𝑖: tonnes of CO2 emitted per unit of volume produced for (thermal) unit 𝑖 

• 𝐵: penalty per tonne of CO2 emitted 

• 𝑀𝑖: maintenance costs per unit of volume produced for (thermal) unit 𝑖 

• 𝐼𝑖,𝑡: expected hydro inflow for (hydro) unit 𝑖 and hour 𝑡 

• 𝑅𝑖,0: initial hydro reservoir level of (hydro) unit i 

• 𝑊𝑖,𝑡: expected wind generation for (wind power) unit 𝑖 at hour 𝑡 

• 𝐷𝑡: expected system demand at hour 𝑡 

All generation units considered may belong to one of these sets: 

• 𝑇: thermal power units (nuclear, CCGT, OCGT, and coal) 

• 𝐻: hydro power units 

• 𝑊: wind power units 

Solar generation units are not physically considered and their expected production is a known 

parameter that is added to the term on the left-hand side of Equation (12). Furthermore, as 

mentioned on the beginning of this manuscript’s Section II, the generation units that share similar 

technical features were aggregated into larger units, therefore reducing the number of them. 

Although the operation and behaviour of the market is thus not very accurately modelled, the 

main objective of this model is to provide an output (i.e. market clearing prices) that reflects 

changes regarding the market fundamentals. Moreover, the main computational statistics of this 

simplified optimisation model are also mentioned at Section II. 

The main variables of the optimisation model, apart from the system’s marginal price 𝜆𝑡, are 

listed below: 

• 𝑞𝑖,𝑡: production of generation unit 𝑖 at hour 𝑡 

• 𝑐𝑖: total costs of unit 𝑖 

• 𝑐𝑓𝑖: fuel costs of (thermal) unit 𝑖 

• 𝑐𝑠𝑖: start-up costs of (thermal) unit 𝑖 
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• 𝑐𝑐𝑖: CO2 emission costs of unit 𝑖 

• 𝑐𝑚𝑖: maintenance costs of (thermal or wind power) unit 𝑖 

• 𝑢𝑖,𝑡: integer variable that indicates if generation unit 𝑖 at hour 𝑡 is active or not 

• 𝑦𝑖,𝑡: binary variable that indicates if generation unit 𝑖 at hour 𝑡 is starting up 

• 𝑧𝑖,𝑡: binary variable that indicates if generation unit 𝑖 at hour 𝑡 is shutting down 

• 𝑟𝑖,𝑡: hydro reservoir level of (hydro) unit i at hour 𝑡 

• 𝑠𝑖,𝑡: energy spilled amount of (hydro or wind power) unit i at hour 𝑡 

• 𝑝𝑖,𝑡: pumped amount of (hydro) unit i at hour 𝑡 

In addition to Equation (12), the following set of equations represents this model’s main 

constraints for every hour 𝑡: 

𝑃𝑖 ≤ 𝑞𝑖,𝑡 ≤ 𝑃𝑖̅ ∀𝑖, 𝑡 (13) ́  

𝑦𝑖,𝑡 − 𝑧𝑖,𝑡 = 𝑢𝑖,𝑡 − 𝑢𝑖,𝑡−1 ∀𝑖, 𝑡 > 1 (14) ́  

𝑦𝑖,1 − 𝑧𝑖,1 = 𝑢𝑖,1 − 𝑈𝑖,0 ∀𝑖 (15) ́  

𝑐𝑖 = 𝑐𝑓𝑖 + 𝑐𝑠𝑖 + 𝑐𝑐𝑖 + 𝑐𝑚𝑖  ∀𝑖 (16) ́  

𝑐𝑓𝑖 =  ∑ 𝑞𝑖,𝑡 · 𝐹𝑃𝑖,𝑡

𝑡

 ∀𝑖 ∈ 𝑇 (17) ́  

𝑐𝑠𝑖 =  ∑ 𝑦𝑖,𝑡 · 𝑆𝑖

𝑡

 ∀𝑖 ∈ 𝑇 (18) ́  

𝑐𝑐𝑖 =  ∑ 𝑞𝑖,𝑡 · 𝐴𝑖 · 𝐵

𝑡

 ∀𝑖 ∈ 𝑇 (19) ́  

𝑐𝑚𝑖 =  ∑ 𝑞𝑖,𝑡 · 𝑀𝑖

𝑡

 ∀𝑖 ∈ {𝑇, 𝑊} (20) ́  

𝑟𝑖,𝑡 =   𝑟𝑖,𝑡−1 + 𝐼𝑖,𝑡 −  𝑞𝑖,𝑡 − 𝑠𝑖,𝑡 + 𝑝𝑖,𝑡  ∀𝑖 ∈ 𝐻, 𝑡>1 (21) ́  

𝑟𝑖,1 =   𝑅𝑖,0 + 𝐼𝑖,1 − 𝑞𝑖,1 − 𝑠𝑖,1 + 𝑝𝑖,1 ∀𝑖 ∈ 𝐻 (22) ́  
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𝑞𝑖,𝑡 =  𝑊𝑖,𝑡 − 𝑠𝑖,𝑡  ∀𝑖 ∈ 𝑊, 𝑡 (23) ́  

 


