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Eco-driving is considered a key measure to reduce the energy consumption of railway 
systems. Eco-driving consists in finding the speed profile that requires the minimum 
energy consumption without degrading commercial running times or passenger 
comfort. 

The research presented in this thesis develops optimisation models for the calculation 
of train eco-driving based on detailed and realistic simulation of the train movement. 
The models proposed investigate Nature Inspired Computational Intelligence 
techniques because of their suitability to use realistic train simulation results. The cases 
of metropolitan and long-distance lines are differentiated. 

Metropolitan trains are typically equipped with Automatic Train Operation system 
(ATO), which drives the train automatically according to a speed profile defined by 
several driving commands. During the operation, a traffic regulation system selects the 
speed profiles that the trains must perform from a pre-programmed set. Therefore, the 
problem is to find the combinations of driving commands that produce the optimal 
speed profiles and to select from them the pre-programmed set of speed profiles. 

In this thesis, MOPSO (Multi-Objective Particle Swarm Optimisation) and NSGA-II (Non-
dominated Sorting Genetic Algorithm II) algorithms for the optimal design of the ATO 
speed profiles are applied and compared based on the accurate simulation of the ATO 
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and train motion. The problem is stated as a multi-objective optimisation problem 
where  the objectives are the minimisation of energy consumption and running time. 
Therefore, the result is the set of non-dominated speed profiles, i.e. the Pareto front. 
The assessment of the results obtained with both algorithms has been carried out using 
several metrics that compare them in terms of number of solutions provided, diversity 
of solutions and distance to the real optimum. The results show that MOPSO 
outperforms NSGA-II in all the metrics.  

Later, the uncertainties in the train operation are studied and a method to design robust 
and efficient ATO speed profiles is proposed. The first stage of the method is the 
calculation of the optimal Pareto front for ATO speed profiles that are robust to changes 
in train load. A technique based on the conservation of the shape of the speed profiles 
(pattern robustness) is proposed and compared with robust optimisation technique. 
Both procedures are included in MOPSO. The results have showed that the pattern-
robustness is more restrictive and meaningful than the robust optimisation technique. 
Then, the set of speed profiles to be programmed in the ATO equipment are selected 
from the robust Pareto front by means of an optimisation model whose aim is the 
energy consumption minimisation. This model takes into account the statistical 
information about delays in the line and is solved using a PSO algorithm. Using this 
model, additional energy savings between 3% and 14% can be obtained. 

The following part of the thesis is dedicated to long-distance railways, in particular, to 
high-speed lines. Compared to metropolitan trains, high-speed trains are typically 
manually driven and the journeys between stations are long-distance travels. In most 
of the works of the literature, eco-driving has been applied offline in the design of 
commercial services. However, the benefits of the efficient driving can also be applied 
on-line in the regulation stage, for instance, to recover train delays.  

The train regulation problem is stated in this thesis as a dynamic multi-objective 
optimisation model to take advantage in real time of accurate results provided by 
detailed train simulation. The aim of the optimisation model is to find the Pareto front 
of the possible speed profiles and update it during the train travel. It continuously 
calculates a set of optimal speed profiles and, when necessary, one of them is used to 
substitute the nominal driving. The new speed profile is energy efficient under the 
changing conditions of the problem. DNSGA-II (Dynamic NSGA-II) and DMOPSO 
(Dynamic MOPSO) are applied to solve this problem. The performance of the dynamic 
algorithms has been analysed in a case study and the results show that dynamic 
algorithms are faster tracking the Pareto front changes than their static versions. 
Furthermore, DMOPSO presents better convergence results than DNSGA-II. In addition, 
the chosen algorithms have been compared with the typical delay recovery strategy of 
drivers showing that DMOPSO provides 7.8% of energy savings. 

The uncertainties related to high-speed trains operation are later included in the 
previous model. These uncertainties are associated with the manual execution of the 
driving parameters and with the possible future traffic disturbances that could lead to 
new delays. Thus, a new algorithm is proposed, including the uncertainty in manual 
driving by means of fuzzy numbers. Furthermore, a newly defined objective, the risk of 
delay in arrival, is introduced in the optimisation model as a third objective. The risk of 
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delay in arrival measures the sensitivity of speed profiles to arrive delayed to the next 
station because of traffic disturbances. The use of this algorithm provides energy 
savings and, in addition, it permits railway operators to balance energy consumption 
and risk of delays in arrival. This way, the energy performance of the system is improved 
without degrading the quality of the service. 

The final part of the thesis studies the eco-driving problem taking into account the ATO 
over ERTMS features. ATO over ERTMS is an interoperable system that aims to bring the 
ATO benefits observed in metropolitan lines to long-distance services equipped with 
ERTMS. ERTMS is a standardized signalling system developed to ensure interoperability 
of European trains and to improve safety, capacity. According to the new specification 
of the ATO over ERTMS, the on-board equipment is in charge of generating the speed 
profile to fulfil the timetable. Timetable information is provided to the on-board 
equipment by means of timing points. Timing points define positions in the track and 
the target departure/arriving/passing time for these points. Compared with the typical 
eco-driving problem, the algorithms needed by the on-board ATO system must be 
capable of generating speed profiles that not only meet a target running time, but also 
meet intermediate timing points minimising the energy consumption. This introduces 
new constraints to the speed profile optimisation problem. 

DE (Differential Evolution) algorithm is selected and a fitness function has been defined 
to handle the new constraints in the problem. The performance of the DE algorithm has 
been compared with the well-known GA. The results have shown that the GA does not 
find feasible solutions in this difficult-to-solve problem. Contrary, the DE algorithm 
proposed has demonstrated its capacity to find speed profiles that meet all the target 
times. Apart from finding feasible solutions, the algorithm is capable of finding which 
one has the lowest energy consumption.  
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CHAPTER 1  

1. INTRODUCTION 

Transport plays an important role in the development and growth of the countries. It 
serves the function of integrating and communicating the productive, social and 
territorial sectors. The development of the steam engine during the Industrial 
Revolution was a turning point in the mobility of people and goods. Its application to 
build the first locomotives in the beginning of 19th century was the birth of the railway 
industry.  

The appearance of the first trains improved the speed and capacity of human transport 
allowing longer and faster travels. Since then, railways have continued being an 
important transport mode despite the appearance of other transport methods such us 
airplanes or automobiles. 

From 19th century until now, the necessities of society have changed and the demands 
for transport industry have also evolved. Increasing speeds, capacity and safety are 
traditional objectives common for every transport mode. However, the concern for 
climate change and energy prizes arises nowadays as one of the main challenges. 

Transport sector is one of the major energy consumers in the world. Transport 
consumes 28.8% of global final energy consumption and it is responsible for 24.7% of 
CO2 emissions. This implies an important responsibility in climate change and, for this 
reason, the transport sector and research community are making efforts to reduce its 
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energy consumption and its contribution to greenhouse gas emissions (IEA and UIC, 
2017).  

Rail transport is regarded as a fast, inexpensive and safe transport mode. Furthermore, 
this transport mode is energy efficient and its contribution to global warming is less 
severe compared with others. As an evidence of its efficiency, in 2015, passenger 
railways consumed 1% of final energy demanded by passenger transport while 
accounted for 9% of passengers transport activity (IEA and UIC, 2017). Despite this 
advantage, railway industry does not escape from the responsibility to contribute to the 
sustainability of transport. 

Railway systems are expanding day by day throughout the world increasing not only 
their activity, but also their energy consumption. For instance, between 2013 and 2015, 
the world railroads grew by 25000 km and the number of vehicles increased by 28000 
units (UNIFE/Roland Berger, 2016). It is expected that the growing trend of railway 
systems will continue in the next years as well as the increasing energy demand. For this 
reason, it is necessary to continue working on the improvement of the efficiency or rail 
transport to mitigate its contribution to global warming. The compromise of energy 
reduction of railways was reflected in the Paris agreement of 2015 (United Nations, 
2015) where certain goals were established to reduce energy consumption per traffic 
unit (-50% by 2030 and -60% by 2050) and specific average CO2 emissions from train 
operations (-50% by 2030 and -75% by 2050) (IEA and UIC, 2016). 

It is important to take into account that the reduction of energy demand must be 
achieved without losing sight on increasing the quality of the service. By this way, the 
sustainability of transport will be improved no only by reducing the energy consumption 
of trains but also by reducing the activity of more polluting transport modes.  

Several energy efficiency measures can be applied in railways systems. These measures 
can be divided into three groups: measures that involve infrastructure, rolling stock or 
those related to traffic operation (Bae, 2009; Douglas et al., 2015; X. Yang et al., 2016).  

Among the measures that affect the rolling stock it can be found in the literature works 
related to the reduction of energy demanded by auxiliary systems (Beusen et al., 2013), 
the improvement of the drive chain efficiency (Kondo et al., 2014; Matsuoka and Kondo, 
2014), the reduction of trains’ resistance to motion (Bombardier, 2010) and the 
implementation of on-board energy storage system (Arboleya et al., 2014; Ciccarelli et 
al., 2012). On the other hand, measures related to infrastructure study the track 
topology (Lv et al., 2013; Xin et al., 2014) and the improvement of the electrical 
infrastructure by means of reversible substations (Cornic, 2010; Ibaiondo and Romo, 
2010; López-López et al., 2014; Roch-Dupré et al., 2018) or wayside energy storage 
systems (Barrero et al., 2008; Lee et al., 2013; Roch-Dupré et al., 2017) to maximise the 
regenerative energy saving. All the previous energy efficient methods are long-term 
actions that require high investments and, in some cases, they can only be applied 
during the system design. 

Measures related to traffic operation, on the contrary, require low investments and are 
short-midterm actions that allow to improve the performance of, not only new railway 
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systems, but also systems that are already in operation. The main energy efficiency 
actions that can be taken in the field of traffic operation are focused on: traffic design 
(Abril et al., 2008; Feng et al., 2013a; Hassannayebi and Zegordi, 2017; Peña-Alcaraz et 
al., 2011; Wang et al., 2012), on-line traffic regulation (Fay, 2000; Jia and Zhang, 1994; 
Lin and Sheu, 2011a; Sheu and Lin, 2012, 2011; Yin et al., 2016), maximization of 
regenerative energy transference among trains (Domínguez et al., 2012; Falvo et al., 
2011; Lu et al., 2014) and eco-driving.  

Eco-driving is considered a key measure to reduce the energy consumption of railway 
systems. Eco-driving is also named in the literature speed profile optimisation or train 
trajectory optimisation. It consists in obtaining the way to drive a train in a journey to 
fulfil a target running time with the minimum energy consumption. Eco-driving can be 
applied either by human drivers or by automatic train operation systems (ATO). The 
improvement in energy consumption obtained by eco-driving strongly depends on the 
timetable and the target running time. However, the literature consistently shows that 
important energy savings can be obtained in the short-midterm without high 
investment (Douglas et al., 2015). 

The piece of research presented in this thesis document is focused on eco-driving. This 
work is intended to contribute in the techniques that can be applied to obtain energy 
efficient train driving. In this work, different optimisation methods will be studied 
considering different kinds of railways and making use of detailed simulation methods. 
The rest of the present chapter explains some important concepts used in this work and 
defines the motivations, the objectives and the general outline of the thesis. 

1.1. ECO-DRIVING 

Train eco-driving consists in solving an optimisation problem where the objective is to 
minimise the energy consumption in a journey, fulfilling timetable constraints, 
operational constraints and comfort constraints. 

The first study on eco-driving was developed by Ichikawa (Ichikawa, 1968). He applied 
the Pontryagin’s Maximum Principle to a very simplified train dynamics model where 
the running resistance was considered linear and the track was considered flat. He 
obtained, for the first time, the optimal regimes of the train control, which are: 
maximum acceleration, cruising, coasting and maximum braking (Ichikawa, 1968).  

Strobel et al. continued this research line in 1974. In their work, a similar train model 
was applied but the running resistance was modelled by means of a quadratic function 
(Strobel and Horn, 1974). Milroy reformulated the problem in 1980 and obtained the 
model that has been used as the base for many optimal train control studies (Milroy, 
1980). Using this model, in 1988, Howlett demonstrated that the solution of the optimal 
train control problem exists and it is unique (Howlett, 1988) and, in 1990, he used the 
Pontryagin’s Maximum Principle to obtain the optimal driving regimes and the optimal 
solution of the problem (Howlett, 1990). Later, the eco-driving problem was 
transformed into seeking the switching points between optimal driving regimes 
(Howlett, 1996). This work showed that, as in (Ichikawa, 1968), the optimal solution to 
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drive a train in a flat track is as simple as the following sequence: a period of maximum 
acceleration, a period of cruising at certain speed value, a coasting phase and a final 
braking at the station. Figure 1-1 depicts the shape of the optimal speed profile in a flat 
track. 

 

Figure 1-1. Optimal speed profile in a flat track 

Since then, numerous works have followed this research line improving the train model 
considering variable motor efficiency (Franke et al., 2000) or considering regenerated 
energy (Khmelnitsky, 2000). The details about the track have been included in later 
research as variant grades and speed limits (Liu and Golovitcher, 2003). The optimal 
way to negotiate steep grades was obtained in (Howlett et al., 2009). As details were 
incorporated in the model, the complexity of the optimal solution increased compared 
with the optimal solution of Figure 1-1. 

The number of techniques applied to the eco-driving problem since the Ichikawa’s first 
study is remarkable. These techniques can be classified in analytical methods and 
numerical methods (X. Yang et al., 2016). Explicitly or implicitly, both groups of 
techniques make use of the optimal driving regimes obtained from the Pontryagin’s 
Maximum Principle. 

Most of analytical methods make use of the Pontryagin’s Maximum Principle to obtain 
the optimality necessary conditions and, using these results, apply different algorithms 
to solve it. Among these algorithms it can be found: constructive algorithms (A. R. 
Albrecht et al., 2013; Howlett et al., 2009; Khmelnitsky, 2000; Liu and Golovitcher, 2003; 
Su et al., 2013; J. Yang et al., 2016), Dynamic Programming (T. Albrecht et al., 2013; Lu 
et al., 2013; Miyatake and Ko, 2010; Miyatake and Matsuda, 2009), Sequential 
Quadratic Programming (Gu et al., 2014; Miyatake and Ko, 2010) and Lagrange 
multiplier method over the discretised problem (Rodrigo et al., 2013). Other analytical 
methods are based on transforming the optimal control problem into a non-linear 
problem and solving it directly (Wang et al., 2014, 2013). Analytical methods can 
produce the optimal solution of the problem and, in most cases, using low 
computational times. However, the complexity of the problem and the requirements 
for obtaining the analytical solution lead to simplifications in the train model, line 
description and in the operational restrictions that the solution must comply.  

On the contrary, numerical methods do not require simplifications in the train model, 
and any constraint related to passengers’ comfort or the driving commands can be 
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included. Therefore, the solutions can be obtained from models as detailed as necessary 
and fulfilling any operational restriction to be applied in real life. Numerical methods 
received less attention at the beginning of the optimal train control because they are 
computationally expensive. However, in recent years there is an increasing number of 
numerical methods applied to solve the eco-driving problem due to the improvement 
of computers performance. 

Different numerical methods can be found in the literature: direct search algorithms 
(De Cuadra et al., 1996; Wong and Ho, 2004a), Brute Force (Zhao et al., 2017), Monte 
Carlo Simulation (Tian et al., 2017), Artificial Neural Networks (Acikbas and Soylemez, 
2008; Chuang et al., 2009) and algorithms of the Nature Inspired Computational 
Intelligence branch (Bocharnikov et al., 2010; Carvajal-Carreño et al., 2014; Lu et al., 
2013; Sicre et al., 2012). Among these techniques, Nature Inspired algorithms are one 
of the most common methods applied to solve speed profile optimisation problem. The 
reason is that these techniques can be straightforward implemented and are 
independent of the specificities of the problem. It gives an enormous flexibility to solve 
eco-driving problems by means of different train models. They can be used in 
combination with complex models that can be easily substituted by other model when 
the features of railway system studied change. 

Among the Nature Inspired Computational Intelligence  techniques used to solve the 
train eco-driving problem it can be found in the literature: Genetic Algorithm (GA) 
(Bocharnikov et al., 2010; Chang and Sim, 1997; Lechelle and Mouneimne, 2010; Li and 
Lo, 2014; Lu et al., 2013; Sicre et al., 2012; Wong and Ho, 2004b, 2003; Yang et al., 2012), 
multi-population genetic algorithm (MPGA) (Huang et al., 2015; Wei et al., 2009), GA 
combined with fuzzy logic (Bocharnikov et al., 2007; Cucala et al., 2012b; Hwang, 1998; 
Sicre et al., 2014), Differential Evolution (Kim et al., 2013), Ant Colony Optimisation (Ke 
et al., 2012; Lu et al., 2013; Yan et al., 2016), Simulated Annealing (Keskin and 
Karamancioglu, 2017; Xie et al., 2013), Indicator Based Evolutionary Algorithm (IBEA) 
(Chevrier et al., 2013), Non-dominated Sorting Genetic Algorithm II (NSGA-II) (Carvajal-
Carreño et al., 2014; Domínguez et al., 2014) and Multi-Objective Particle Swarm 
Optimisation (MOPSO) (Domínguez et al., 2014). 

Apart from the specific technique used, the eco-driving problem can be classified taking 
into account the kind of railway (urban or long-distance) and the stage (planning or 
regulation) when it is going to be applied. 

1.1.1. ECO-DRIVING FOR URBAN RAILWAYS 

Eco-driving application during the planning stage is similar for urban and long-distance 
trains. Before the operation, a nominal timetable is defined in an offline manner. From 
this timetable, the running time between stations that a train must comply is extracted. 
After that, for each journey between stations, it is obtained the driving that the train 
must perform to fulfil the timetable, minimising the energy consumption. 

Most of the speed profile optimisation algorithms can be applied both to the case of 
urban or long distance railways. The main difference when applying eco-driving in an 
urban railway or in a long-distance railway are the driving commands to execute to 
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perform the required running times and fulfil the comfort restrictions. Driving 
commands are the way in which the optimal driving regimes of the train control are 
applied. 

Urban railways are characterised by short stretches between stations. Besides, these 
systems are usually automatised where the trains are driven by an ATO system. Because 
of this, the driving commands applied in these lines are: holding speed to ensure the 
comfortability of the speed profile (Feng et al., 2012; Howlett et al., 1994; Jong and 
Chang, 2005; Liu and Golovitcher, 2003) and coasting-remotoring cycles to perform 
efficient speed profiles taking advantage of high motor efficiency when using maximum 
traction and coasting periods (Bocharnikov et al., 2007; Chang and Sim, 1997; Coleman 
et al., 2010; Domínguez et al., 2011a; Howlett, 1996; Howlett et al., 2009; Ichikawa, 
1968). 

 

Figure 1-2. Examples of speed profiles with speed-holding (left) and coasting/re-motoring cycles (right) 

The efficient speed profiles obtained for urban trains must be defined by the driving 
parameters used by the ATO. Therefore, it is important that the solutions provided by 
eco-driving algorithms can be easily translated to the driving parameters used by the 
specific ATO where it is going to be implemented. These driving parameters will be pre-
programmed in the ATO equipment to be applied during the operation. 

It is very important to apply detailed simulation models when designing speed profiles 
to give confidence to the Railway Operator that energy savings will be obtained without 
degrading the commercial running times or passengers’ comfort. Focused on urban 
railways, it is crucial to represent in detail the characteristics and behaviour of the 
specific ATO used in the study line because it conditions the driving possibilities. The 
logic that decides when to start to brake in front of a speed limit reduction or to stop at 
the station along with the comfort restrictions applied determines the running times 
that are observed in reality. Only few works can be found in the literature that take into 
account real ATO equipments in the train model (Bocharnikov et al., 2007; Chang and 
Xu, 2000; Domínguez et al., 2011a). However, in these works the study of most modern 
signalling system has not been taken into account. New urban signalling systems, such 
as the CBTC (Communications based train control) use new communications channels 
to send driving commands to the train. The increased communication bandwidth 
improves exponentially the possibilities to drive the train. New algorithms are needed 
to explore the numerous speed profiles that a CBTC train can apply and find the most 
efficient ones. Apart from this, optimal speed profiles are usually obtained using a fix 
value of train mass. However, this mass value varies a lot depending on the time of the 
day. Therefore, it is important that new eco-driving techniques model this uncertainty 
to find solutions that can be applicable with different values of train mass.  



Comillas Pontifical University, ICAI School of Engineering, Institute for Research in Technology 
 Train eco-driving optimisation based on simulation models 

 

 

7 
 

Delays arise during the traffic operation in real-time because of the accumulation of 
passengers at the stations or because of incidences in the line. At this stage, regulation 
plays a fundamental role. The objective of traffic regulation is to ensure the quality of 
the service bringing the traffic to the scheduled timetable. That means that, when a 
delay arises, the regulation system is in charge of making that the train make up the 
delay using the slack time included in the timetable. Contrary to the planning situation, 
the way eco-driving is in the regulation stage is different in urban railways and long-
distance railways. 

Urban railways usually present a carrousel operation. In other words, trains circulate in 
a loop where, once the terminal station is reached, they turn around and circulate in 
the opposite direction in the other track. Furthermore, the number of trains circulating 
in these systems is typically close to the maximum capacity. Therefore, it is frequent 
that the delay of a train is transmitted to the following trains in the line. For these 
reasons, traffic regulation in urban systems is performed considering all the trains 
jointly.  

The Traffic Management Centre (TMS) is in charge of regulating the timetable 
deviations. It observes not only the scheduled timetable but also the scheduled interval 
between trains. Based on this information, TMS decides the dwell time that trains must 
spend on stations and the speed profile to be performed by each train (Fernandez et 
al., 2006). To carry out this task, the regulator algorithm online calculates the delay of 
each train and the interval between trains. With this information, the regulator chooses 
the most adequate speed profile among a set of pre-programmed speed profiles for 
each stretch (Fernandez et al., 2006). Typically, the list of the pre-programmed speed 
profiles is made up by four speed profiles per interstation: 

 The flat-out driving. This speed profile performs the minimum running time. It is 
used to recover delays. 

 The nominal driving: this speed profile performs typically the nominal running 
time. It is used to track the timetable if there are no delays. 

 The slow driving: this speed profile performs a higher running time than the 
nominal one. It is used to reduce the speed of the train when the precedent train 
suffers a delay with the objective of increasing the interval between those trains. 

 The extra-slow driving: this speed profile performs a higher running time that 
the slow one. Its mission is similar than the previous one. 

Commonly, the pre-programmed speed profiles are designed off-line and selected 
manually to have the associated running time separated a constant time value between 
consecutive profiles (Domínguez et al., 2011a). However, this could not be the optimal 
solution. Extra energy savings could be obtained selecting the pre-programmed speed 
profiles by means of optimisation algorithms taking into account the usual delay 
distribution at each station. 

1.1.2. ECO-DRIVING FOR LONG-DISTANCE RAILWAYS 

Long-distance trains are characterised by larger stretches between stations where the 
trains are manually driven. Coasting-remotoring cycles, which are commonly applied by 
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urban trains, cannot be applied for long-distance trains. The continuous acceleration 
changes are perceived as unpleasant by passengers in a long distance travel. Moreover, 
it is very demanding for human drivers to implement frequent changes between 
traction and coasting in this type of travels. In this case, the efficient driving commands 
are holding speed (Ji et al., 2016) and its efficient version, holding speed without 
braking. The latter consists in applying traction as long as it is necessary to maintain the 
cruising speed but no braking is applied unless it is needed to observe a speed limitation 
or to brake before the arrival station. Instead of applying braking, coasting is performed 
so the train increases its speed (Hwang, 1998; Sicre et al., 2014, 2012). Figure 1-3 shows 
an example of a holding speed without braking command. 

 

Figure 1-3. Example of speed profile performing a holding speed without braking command 

A typical way of implementing eco-driving algorithms for long distance trains is by 
means of Driver Advisory Systems (DAS). DAS have been developed not only for energy 
saving reasons but also to increase the transport capacity and to reduce timetable 
deviations. Several commercial DAS can be found in the literature such as “MetroMiser” 
(Howlett et al., 1995), “CATO” (Yang et al., 2013) or “OptiDrive” (Lechelle and 
Mouneimne, 2010). Most of DAS systems calculate the speed profile before the 
departure of the train based on a timetable. Then, during the journey, it advices to the 
driver how to drive the train according to the optimal speed profile obtained. It can be 
done showing the driver the speed profile to follow or showing driving commands that 
are time, position or event dependant (Panou et al., 2013). 

In a long distance system, different kinds of services can run on the same line, which 
could have a complex topology with crossing points and different routes. In this case, 
the regulation of traffic affects each train individually and the objective is the fulfilment 
of the planned timetable. In other words, each train is responsible of recovering its own 
delay.  

When a train is delayed, the eco-driving obtained during the planning stage is not valid 
anymore because a faster speed profile is needed. Furthermore, the modification of the 
speed profile cannot wait to the next station arrival because of the long distance 
between stations. In these situations, drivers usually increase the speed of the train to 
recover the delay as fast as possible. However, this is not the most efficient way to meet 
the timetable. 
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Most of standalone DAS monitor the tracking of the optimal speed profile. By this way, 
they are capable of detecting delays more precisely and react accordingly. Once a 
deviation is detected, a new speed profile is obtained to allow the train to arrive on time 
at the next station. Thus, a new eco-driving optimisation is performed in an online 
manner to recover the delay energy efficiently. One of the many challenges of applying 
online eco-driving optimisation in long distance trains is the reduced calculation time 
available. 

Some solutions have been proposed in the literature to solve the on-line eco-driving 
design. Several works make use of mathematical models taking advantage of their low 
computation time (Coleman et al., 2010; Howlett et al., 1994; Khmelnitsky, 2000; Liu 
and Golovitcher, 2003). Other works make use of Nature Inspired algorithms (Chang 
and Sim, 1997; Sicre et al., 2014; Wong and Ho, 2004b). However, there is still room to 
improve the existing algorithms, on one hand by using detailed simulation models and 
incorporating uncertainty to these models, and in the other hand improving the 
execution times of simulation-based algorithms.  

1.1.3. FUTURE OF ECO-DRIVING IN LONG DISTANCE RAILWAYS: ATO OVER 
ERTMS 

Twenty-three different signalling systems coexist in Europe along fifteen countries. In 
the past, this has been a difficulty for cross-border trains. A train needed to be equipped 
with several signalling equipments to be capable of operating in different countries. This 
involved an extra cost because of the variety of equipments needed and waiting times 
when switching from one system to another (Dhahbi et al., 2011).  

The European Commission undertook a major project called “European Railway Traffic 
Management System” (ERTMS) to solve this problem and to develop the specification 
of a standardised signalling system (Council Directive, 1996). The aim of this system is 
to ensure interoperability of European trains and to improve safety, transport capacity 
and economic effectiveness. This system has been successful and has been 
implemented not only in many lines in Europe but also in railways of other continents. 

The ERTMS is composed of two main subsystems: ETCS (European Train Control System) 
y GSM-R (Global System for Mobile Communications - Railways). The ETCS is in charge 
of the control and safety of the traffic whereas GSM-R is in charge of communications. 

ETCS provides an Automatic Train Protection system (ATP) that ensures the safe 
movement. There are three main different operational levels of ETCS: 

 ETCS level 1: It is based on blocking stretches between signals and sends 
movement authority (MA) to trains using balises. There is a punctual 
communication from the track-side equipment to the train and lateral signals 
are needed. 

 ETCS level 2: It is based on track circuits so the MA could reach the end of the 
closest track circuit to the precedent train that is not occupied. There is a 
continuous communication between the track-side equipment and the train by 
means of radio, and lateral signals are not needed. 
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 ETCS level 3: It is a moving-block signalling systems so the MA could reach the 
tail of the precedent train. There is a continuous communication between the 
track-side equipment and the train by means of radio, and lateral signals are not 
needed. 

 

Figure 1-4. Operational levels of ETCS 

The next feature of ERTMS is to control the train driving by means of an interoperable 
ATO system. ATO systems have been installed in urban railways for many years and their 
advantages has been proven. ATO leads to more deterministic running times, which 
permit increasing the transport capacity. Furthermore, eco-driving can be executed 
easily by automatic systems, increasing the energy efficiency of train operation (Emery, 
2017). With the objective of bringing ATO benefits to long distance trains, a TEN-T 
project (TEN-T - ATO project, 2016) has been developed to include ATO in the ERTMS 
specification. The new ATO over ERTM standard will include the requirements that this 
system must comply to drive the train automatically and to be interoperable.  

Several projects are currently under development to implement ATO over ERTMS in real 
lines as the Mexico-Toluca project developed by CAF Signalling (Villalba, 2016) and the 
Thameslink project in London developed by Siemens (Burton, 2009). The commissioning 
of these projects is expected from 2019. 

The requirements of the ATO over ERTMS establish that wayside equipment must 
supply the train the information of the assigned timetable. This could be the nominal 
timetable, or a timetable generated on-line by complex algorithms with traffic 
regulation purposes. Timetable information is provided by means of timing points. 
These points are defined as a set of the following information: 

 Type of point: Departure, passing or arrival. 

 Position of the point. 

 Time assigned. 

Along with the timing information, the wayside equipment also sends the information 
of the topology and operational conditions of the track. Thus, the on-board ATO 
equipment generates the speed profile that the train must perform to fulfil the 
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timetable (TEN-T - ATO project, 2016). By this way, the interoperability of train is 
ensured. Each train is responsible of generating its own speed profile following its own 
rules or driving commands to meet the target times. 

One of the objectives pursued in the ATO over ERTMS specification is the energy 
efficiency of the driving. Eco-driving algorithms have an important role to play in the 
development of these systems. These algorithms must be capable of generating speed 
profiles that, not only meet a target running time minimising energy consumption as 
usual, but also meet intermediate passing times at timing points. Furthermore, these 
calculations have to be executed in real-time so the algorithms must be fast enough. 

These characteristics make necessary the development of new eco-driving techniques 
capable of fulfilling the requirements of the ATO over ERTMS specification maximising 
the energy savings of the train driving. 

1.2. NATURE INSPIRED OPTIMISATION 

Optimisation processes are present in many actions of nature. For instance, the 
evolution of species, the search for the best source of food or metallurgic processes are 
cases of optimisation found in nature. For several decades, researchers have taken 
inspiration from this kind of processes to solve complex problems proposing numerous 
optimisation techniques. Some of these methods are part of Nature Inspired 
Computational Intelligence research field. These techniques are also known in the 
literature as metaheuristic methods.  

In words of Glover and Kochenberg, it includes “any procedures that employ strategies 
for overcoming the trap of local optimality in complex solution spaces, especially those 
procedures that utilise one or more neighbourhood structures as a means of defining 
admissible moves to transition from one solution to another, or to build or destroy 
solutions in constructive and destructive processes” (Glover and Kochenberger, 2003). 
These methods usually make use of stochastic components, they are not gradient based 
and are problem independent. Moreover, they can describe and resolve complex 
relationships with practically no knowledge of the search space.  

Frequently, real-world problems are difficult to solve because of their complexity. When 
traditional optimisation method fails, Nature Inspired optimisation can help to find 
solutions to these problems. The use of Nature Inspired Computational Intelligence 
does not guarantee the optimal solution of the problem in a finite time because it 
exhibits an asymptotic convergence behaviour (Cerf, 1998; Chiang and Chow, 1994). 
However, it can find near optimal solutions that, for most of the engineering problems, 
are good enough solutions. 

The hardware improvements have led to reduce calculation times. Because of this, 
Nature Inspired methods have been remarkably developed during last thirty years. 
These methods have become very popular to solve complex optimisation problems, 
most of them, using detailed simulation models. These techniques have been applied 
in a variety of engineering fields such as: computer networks, power systems, security, 
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robotics, production engineering, biomedical engineering, control systems, data 
mining, etc… (Binitha and Sathya, 2012). The reasons for that popularity can be found 
in the flexibility and efficiency of these algorithms that, furthermore, tend to be easy to 
implement. 

Among Nature Inspired algorithms, it can be found trajectory-based algorithms and 
population-based algorithms (Yang, 2014). The most popular trajectory-based 
algorithms is Simulated Annealing (SA) (Kirkpatrick et al., 1983). This method takes 
inspiration from the metallurgic process of annealing to solve optimisation problems. 
This algorithm makes use of a solution that moves in the search space. The random 
movements of the particle are always accepted if they find a better location. However, 
a move that do not improve the location of the solution is accepted with a certain 
probability that is constantly reduced during iterations. 

On the other hand, population based algorithms make use of a set of solutions that 
evolves, or move, through iterations seeking the best solution. Evolutionary algorithms 
are those population-based algorithms inspired in the Darwinian principles of the 
evolution of species. These methods apply crossover and mutation operators to 
generate new solutions and, at the end of an iteration, only the best solutions survive 
using selection operators. Among evolutionary algorithms it can be found Evolutionary 
Programming (EP) (Fogel et al., 1966), Evolution strategies (ES) (Holland, 1992), Genetic 
Algorithm (GA) (Goldberg, 1989), Genetic Programming (GP) (Koza, 1994) and 
Differential Evolution (DE) (Storn and Price, 1997). 

Swarm Intelligence methods are also population based algorithms, which take 
inspiration from the social behaviour of insects or other animal societies. These 
algorithms use a set of solutions that moves through the search space seeking 
individually the best position and cooperating with other population members by 
means of information sharing about the best solutions found. Examples of Swarm 
Intelligence algorithms are Particle Swarm Optimisation (PSO) (Kennedy and Eberhart, 
1995), Ant Colony Optimisation (ACO) (Dorigo et al., 2006), Artificial Bee Colony (ABC) 
(Karaboga and Basturk, 2007), Firefly Algorithms (FA) (Yang, 2009) or Cuckoo Search 
(Yang and Deb, 2009). 

All these algorithms have in common the use of exploration and exploitation 
mechanisms and the trade-off between them (Yang, 2014). Exploration or 
diversification consists in generating diverse solutions to explore the maximum portion 
of the search space. On the other hand, exploitation or intensification consists in 
generating solutions focused on the most promising region of search space. The 
appropriate combination of these two components makes possible to find the optimal, 
or at least a near optimal solution, and avoid local optimum. 

The first steps of Nature Inspired optimisation was focused on single-objective 
problems. However, metaheuristic algorithms have been demonstrated highly efficient 
solving multi-objective optimisation problems (MOOPs) (Deb, 2010). 

Multi-objective optimisation refers to problems which objective is to optimise 
simultaneously two or more conflicting objectives. Therefore, the result obtained is a 
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set of non-dominated solutions instead of a single solution. Non-dominated solutions 
are those that cannot be improved at the same time in all the objectives. The set of non-
dominated solutions is usually called Pareto front. In some cases, the information 
provided by the Pareto front is useful to make a decision of selecting one of the 
solutions because it reflects clearly the trade-off among the objectives of the problem. 

Several population-based algorithms have been proposed to solve multi-objective 
optimisation problems. Many of them are extensions of previously mentioned 
algorithms. Examples can be found in the literature such as Strength Pareto 
Evolutionary Algorithm (SPEA) (Zitzler, 1999), Non-dominated Sorting Genetic 
Algorithm (NSGA) (Srinivas and Deb, 1994), Pareto Archived Evolution Strategy (PAES) 
(Knowles and Corne, 1999), Multi-Objective Particle Swarm Optimisation (MOPSO) 
(Coello et al., 2004). 

Many real-life optimisation problems are changing constantly. Changes cause 
modifications in some part of problem definition, the objective function or constraints. 
Therefore, the optimal solution varies with time as the problem environment changes 
dynamically. In the literature, this kind of problems is called dynamic optimisation 
problems (DOPs) or time-dependant problems. DOPs are challenging problems because 
the objective is not only to find the optimal solution but also to track its changes with 
time. 

In the last 20 years, Nature Inspired Computational Intelligence has developed 
mechanisms to provide algorithms that solve DOPs. These mechanisms are: change 
detection mechanisms, the introduction diversity in the population, the use of memory 
from past iterations, the use of prediction or multiple populations (Nguyen et al., 2012). 
These mechanisms combined with previously mentioned algorithms have yielded 
extensions of static algorithms to solve DOPs not only from the single-objective point of 
view (Cruz et al., 2011) but also from the multi-objective point of view (Helbig and 
Engelbrecht, 2014). 

1.3. THESIS OBJECTIVES 

1.3.1. MAIN OBJECTIVE 

The main objective of this thesis is the development of optimisation models for the 
calculation of train eco-driving based on detailed and realistic simulation of the train 
movement. The models proposed will investigate Nature Inspired Computational 
Intelligence techniques because of their suitability to be combined with train simulation 
models. 

Furthermore, these models will take into account the most important restrictions and 
sources of uncertainty related to the real train operation. In particular, the restrictions 
related to passengers’ comfort and driving systems, the uncertainty associated with the 
traffic and the variability of the load will be evaluated.  
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The studies carried out will differentiate between the eco-driving application on the 
planning stage and the online application during the regulation phase. The 
particularities of the specific railway systems will be taken into account considering 
urban railways and long-distance railways. The case of long-distance trains will be 
focused on high-speed railways because of its growing importance not only in Spain but 
also in the world. 

1.3.2. SPECIFIC OBJECTIVES 

The main objective can be divided into 5 specific objectives that will constitute the 
contributions of this thesis. These objectives will cover the different scenarios in terms 
of type of railway system and stage of eco-driving application: 

1. Comparison of multi-objective optimisation models for the design of speed 
profiles in urban railways equipped with CBTC signalling system. 

The existing signalling systems before CBTC work with a reduced bandwidth to 
communicate driving commands to the train. Consequently, the solution space is small 
and it can be explored by brute force methods. Last generation of signalling systems, as 
CBTC, provides a better bandwidth for communications increasing the number of 
driving possibilities. Thus, the challenge of designing efficient speed profiles in urban 
railways equipped with CBTC is to assess an enormous search space. This search space 
cannot be exhaustively explored and, for that reason, it is necessary to apply algorithms 
that find the most efficient solution for each possible running time. A Pareto curve of 
efficient speed profiles can be provided to the designer and, in view of the trade-offs, 
the speed profiles to be programmed for their execution during the train journey can 
be chosen. Different algorithms will be tested to check their performance in this task. 

2. Development of an optimisation model for the automatic design of speed 
profiles in urban railways equipped with CBTC signalling system, taking into 
account the variation of the train load and the frequency of use of the pre-
programmed speed profiles. 

Solutions provided by the Pareto front must be useful in every condition of the real train 
operation. During a period of operation, the train load presents high variability. If this 
variation is not taken into account when obtaining the Pareto front, the eco-driving 
solutions obtained for a specific value of train mass could be non-efficient using other 
mass values. Furthermore, modifications in the shape of the speed profile could happen 
if the train mass is increased or decreased, making comfortable solutions to be non-
comfortable. An optimisation model will be proposed to find the Pareto front of 
solutions that are robust to mass changes providing speed profiles that are efficient 
under different conditions. 

On the other hand, to maximise the energy savings, it is useful to improve the selection 
of the speed profiles to be programmed in the ATO equipment. The application of a pre-
programmed set of speed profiles in an interstation depends on the exiting delays in 
the line. Therefore, this source of uncertainty has to be taken into account. Using this 
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information, pre-programmed speed profiles can be selected automatically from the 
Pareto front with the objective of minimising the expected energy consumption. 

3. Development of a model to optimise in real-time the speed profile of a high-
speed train, which is manually operated. 

Some studies in the literature optimise the train speed profile by means of a Genetic 
Algorithm combined with a detailed train simulator (Sicre et al., 2014). These studies 
have demonstrated that efficient speed profiles can be obtained in real time using 
Nature Inspired algorithms. However, the results obtained can be improved modelling 
the eco-driving problem as a dynamic optimisation problem. Dynamic problems are 
those in which the objectives, constraints or even the problem itself vary with time. For 
solving the dynamic eco-driving problem, algorithms from Nature Inspired Computation 
specialised in solving dynamic problems (Helbig and Engelbrecht, 2014) will be tested.  

Besides, if the problem is stated as a dynamic multi-objective optimisation problem, the 
result will be a Pareto front that is adapted during the train movement. This way, the 
train will have available a set of different speed profiles ready to be used when 
necessary. 

4. Incorporation of uncertainty in the dynamic multi-objective optimisation model 
to calculate real-time eco-driving solutions for high-speed trains. 

To ensure that a train using an eco-driving solution will arrive on time to the next 
station, besides using an accurate model, it is necessary to model the uncertainty 
associated to real operation. The main uncertainty in high-speed trains regulation is 
associated with the contingencies that may occur in the line. Contingencies are usual 
situations that produce delays and are related to temporary speed limitations and 
traffic perturbations. The commercial running time between two stations is designed 
using a time margin in timetables to deal with contingencies. If necessary, this margin 
is available to make up delays and, if not, it can be consumed during the train travel to 
perform efficient speed profiles. If the margin is quickly consumed during the journey, 
the train could perform an efficient speed profile but it might not have reaction capacity 
to unexpected delays. Contrary, the speed profiles that retain the time margin until the 
end of the journey are highly energy consuming but more robust to contingencies in the 
line. Measuring the time margin consumption rate could be useful to measure the 
sensitivity of the solutions to contingencies. 

In addition, it is also important to model the uncertainty associated with manual driving, 
considering that there are always small deviations in the application of driving 
commands. The uncertainty in these parameters is usually better represented using 
fuzzy knowledge modelling (Bellman and Zadeh, 1970). 

A new dynamic optimisation algorithm is proposed including the margin consumption 
rate (called risk of delay in arrival)  as well as a fuzzy model of the manual driving. 

5. Development of an eco-driving model for a high-speed train fulfilling the ATO 
over ERTMS specifications. 



 Introduction 

 

16 
 

The new standard of ATO over ERTMS (nowadays a draft) establishes that the speed 
profiles will have to fulfil a final running time and several intermediate passing times at 
certain positions. This includes in the eco-driving optimisation problem new restrictions 
that constrain the search space. A Nature Inspired algorithm will be proposed to deal 
with this constrained optimisation problem. 

1.4. STRUCTURE OF THE DOCUMENT 

This thesis is structured into seven chapters: 

 Chapter 1 has presented an introduction to the thesis besides the motivation and 
objectives pursued. 

 In Chapter 2, the multi-objective optimisation eco-driving problem for urban 
railways is presented and solved by two different optimisation algorithms that are 
compared. 

 In Chapter 3, the previous model is extended to find robust solutions to train load 
variations. Furthermore, an automatic design of pre-programmed speed profiles 
procedure is proposed based on the stochastic delay distribution. 

 Chapter 4 addresses the online regulation problem of a high-speed train by means 
of a dynamic multi-objective optimisation model. Two different algorithms are 
presented and compared. 

 In Chapter 5, uncertainty is included in the model of the previous chapter. A 
measure for quantify the risk of a speed profile to future delays is proposed and 
added to the model as a third objective. Furthermore, uncertainty of manual driving 
is introduced by means of fuzzy parameters. This way, a new optimisation algorithm 
is proposed, the DNSGA-III-F. 

 Chapter 6 presents the particularities of the ATO over ERTMS system and how 
affects the train driving. Moreover, a new eco-driving optimisation algorithm is 
developed for this system. 

 Chapter 7 collects the main conclusions obtained from the work presented in the 
thesis. The most relevant contributions and future works are also detailed in this 
chapter. 

 



 

 
 

CHAPTER 2 

2. OPTIMISATION ALGORITHMS FOR THE DESIGN OF 
ENERGY EFFICIENT ATO SPEED PROFILES IN 

METROPOLITAN LINES 

2.1. INTRODUCTION 

The objective in efficient driving (eco-driving) design is to find the speed profile that 
requires the minimum energy consumption without degrading commercial running 
times. With this aim, various mathematical models have been applied. However, the 
difficulties involved in the analytical resolution of the problem lead to a number of 
simplifications in the approaches (Albrecht et al., 2011; Franke et al., 2000; Khmelnitsky, 
2000; Ko et al., 2004; Miyatake and Ko, 2010; Su et al., 2013) which makes their 
application to real cases impractical. The approaches based on simulation offer more 
promising alternatives. They do not require simplifications in the models and enable an 
accurate calculation of the running times and the energy consumption. A number of 
optimisation techniques have been used in combination with simulation - Genetic 
Algorithm (Bocharnikov et al., 2010, 2007; Cucala et al., 2012b; Lu et al., 2013; Sicre et 
al., 2012; Wong and Ho, 2004b, 2003; Yang et al., 2012), Artificial Neural Networks 
(ANN) (Chuang et al., 2009, 2008), a combination of both the techniques (Acikbas and 
Soylemez, 2008) and direct searching methods (De Cuadra et al., 1996; Wong and Ho, 
2004a). ANN have also been used to optimise the traffic regulation by learning traffic 
data (Lin and Sheu, 2011b). 
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However, additional difficulties are involved when the trains are equipped with 
Automatic Train Operation systems (ATO) as seen in many metropolitan trains today. 
The function of this equipment on board the train is to drive the train automatically 
according to a pre-programmed speed profile (Bocharnikov et al., 2007; Chang and Xu, 
2000). The ATO equipment provides a control reference to the train’s traction 
equipment for observing the maximum and safe speed limits and for stopping the train 
at stations. The intervention of human drivers is limited just to the opening and closing 
of the doors and to the starting up of the train after each stop. As a result, the running 
times and energy consumptions are quite stable when the signalling systems do not 
affect the circulation of trains.  

A set of pre-programmed ATO speed profiles are available per interstation with 
different running times and energy consumption. Depending on the running time 
required, the centralised traffic regulation system on-line selects the ATO speed profile 
to be executed by each train between two stations (Fernandez et al., 2006). Each speed 
profile is programmed as a combination of the ATO commands that are transmitted to 
the train from the track via encoded balises or antennas.  

The traffic regulation systems performance and the total energy consumption strongly 
depend on the off-line design of these ATO speed profiles. Studies on the driving 
efficiency in metropolitan trains with ATO can be found in (Bocharnikov et al., 2007; 
Chang and Xu, 2000; Khmelnitsky, 2000; Wong and Ho, 2004a; Zhou et al., 2011). 
However, they do not satisfy realistic constraints and control capabilities of any 
particular ATO system or the ATO model is simplified (De Cuadra et al., 1996), which 
makes difficult their implementation in real ATO equipment. The particular features of 
the ATO systems, the short inter-stations in metropolitan lines and the differences of a 
few seconds between the ATO speed profiles to be designed, make it necessary to 
develop accurate models that optimise the combination of the ATO commands of each 
speed profile to be pre-programmed in the equipment. 

Most of the metropolitan railways use four alternative speed profiles per interstation 
(Fernandez et al., 2006). The first one (number 0) is characterised by the minimum 
running time (flat-out), that is to say, applying maximum available acceleration, speed 
and deceleration. The remaining profiles are slower and correspond to lower energy 
consumption. The maximum time gap between the fastest and the slowest is bounded 
as an operational criterion (Cucala et al., 2012a; Domínguez et al., 2011b).  

Typically, the configuration variables of the ATO systems consist of four commands: 
coasting speed, re-motoring speed, speed holding value and braking deceleration rate. 
These commands are transmitted to the antenna located under the train via encoded 
balises on the track, which permit a limited amount of data bits to be transmitted due 
to the channel capacity (Gill and Goodman, 1992). Thus, only a few and discrete values 
of the commands can be sent providing each interstation with a relatively small solution 
space of speed profiles consisting of the combinations of these discrete values. This 
way, the optimal solution can be found by exhaustive search, simulating all the possible 
combinations as described in (Domínguez et al., 2011b).  
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Other studies have also looked for saving energy under the framework of the current 
fixed-block signalling system (Ke et al., 2009). However, the new state-of-the-art of 
signalling technologies such as CBTC permit a better communication capacity 
(bandwidth) with high-resolution train location determination, and bidirectional train-
wayside data communications (“IEEE Standard for Communications-Based Train Control 
(CBTC) Performance and Functional Requirements,” 1999). More command values can 
be sent since the increment is smaller, thus resulting in an exponential solution space.  

Therefore, this calls for a new method for the optimal design of the ATO speed profiles 
without an exhaustive simulation of all the combinations. Some studies are already 
trying to find optimal driving in CBTC (Communications-Based Train Control) systems 
(Gu et al., 2011). Some studies have proposed algorithms based on GA (Genetic 
Algorithm) (Bocharnikov et al., 2007; Lu et al., 2013; Wong and Ho, 2004a), or ACO (Ant 
Colony Optimisation) (Lu et al., 2013) for the single objective optimisation, but they do 
not consider either realistic characteristics of the ATO equipment. 

On the other hand, other works state the eco-driving problem as an optimisation 
problem with two objectives. Usually, the two conflicting objectives are energy 
consumption and running time, and the result is the Pareto front of solutions in these 
two dimensions. In view of Pareto front, the decision maker can select the most 
appropriate speed profile taking into account the trade-off between energy 
consumption and running time. For solving this task, population-based algorithms from 
the Nature Inspired Computational Intelligence are typically used. Population-based 
algorithms seem to be especially suited to MOOP due to their abilities to search 
simultaneously for multiple Pareto optimal solutions and to perform better global 
search of the search space (Mitchell, 1996). Among population-based algorithms, it can 
be distinguished Evolutionary Algorithms and Swarm Intelligence techniques. 

Many Evolutionary Algorithms have been developed for solving MOOP. Examples are: 
NSGA-II (Deb et al., 2002), which is a variant of NSGA (Non-dominated Sorting Genetic 
Algorithm); SPEA2 (Zitzler et al., 2002), which is an improved version of SPEA (Strength 
Pareto Evolutionary Algorithm) and PAES (Pareto Archived Evolution Strategy) (Knowles 
and Corne, 2000). These EAs are population-based algorithms that possess an in-built 
mechanism to explore the different parts of the Pareto front simultaneously.  

Among Swarm Intelligence techniques, Particle Swarm Optimisation (PSO) (Kennedy 
and Eberhart, 1995, 2001, 1997) is one of the most popular methods. PSO imitates the 
social behaviour of insects, birds or fish swarming together to hunt for food. The PSO is 
also extended to solve MOOP. Among those algorithms that extend PSO to solve multi-
objective optimisation problems are Multi-objective Particle Swarm Optimisation 
(MOPSO) (Coello et al., 2004), Non-dominated Sorting Particle Swarm Optimisation 
(NSPSO) (Li, 2003) and the aggregating function for PSO (Parsopoulos and Vrahatis, 
2002).  

Several studies have implemented this kind of techniques in an eco-driving MOOP. In 
(Chevrier et al., 2013) the Indicator Based Evolutionary Algorithm (IBEA) is applied to 
obtained optimal speed profiles but they do not take into account a realistic ATO 
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simulation model. NSGA-II is applied in (Dullinger et al., 2017) to optimise a train 
traction system taking into account the efficiency in driving but ATO is not modelled. 

In (Sicre, 2013) and (Carvajal-Carreño et al., 2014) a realistic CBTC ATO equipment was 
modelled to obtain energy efficient speed profiles. Those works stated the eco-driving 
problem as a multi-objective optimisation problem (MOOP) and solve it using Nature 
Inspired Computational Intelligence techniques. While MOPSO was proposed in (Sicre, 
2013), NSGA-II was applied in (Carvajal-Carreño et al., 2014). Both optimisation 
algorithms exhibit good performance solving eco-driving MOOP. 

Some studies have compared evolutionary algorithms solving theoretical benchmark 
MOOPs. The results indicated that NSGA-II has shown better performance than PAES 
(Deb et al., 2002) and similar results to SPEA-II working with lower dimensional 
objective spaces (Zitzler et al., 2001). In (Coello et al., 2004) a similar comparison can be 
found where the performance of different multi-objective algorithms has been tested. 
MOPSO and NSGA-II are part of these algorithms. The results of this study indicate that 
MOPSO is the best in covering the full Pareto front of all the benchmark functions used. 
In addition, it is found to converge with a low computational time. 

Despite these theoretical studies, the algorithm performance depends on the problem 
characteristics. MOPSO and NSGA-II have been proven successful solving eco-driving 
problem but they have not been compared to determine which one presents a better 
performance.  

Therefore, this chapter of the thesis develops a multi-objective optimisation model to 
obtain the Pareto front with the optimal ATO speed profiles of a real metropolitan line. 
The optimisation model is based on simulation to calculate in detail the realistic 
characteristics of the ATO driving and the type of commands that can be sent to the 
train. The results of MOPSO and NSGA-II finding the Pareto front of optimal ATO speed 
profiles will be compared. Several performance metrics will be applied to find the best 
optimisation algorithm. 

In section 2.2, the simulation model of a train equipped with an ATO system is 
introduced. Then, the MOOP proposed for the design of ATO speed profiles is detailed 
in section 2.3. Furthermore, MOPSO algorithm and NSGA-II algorithm for solving the 
MOOP are described in this section. Section 2.4 describes a case study of a real line and 
the proposed MOPSO algorithm is compared with NSGA-II to determine which presents 
the better performance. The results of some interstations are shown and, in addition, 
the comfort and operational constraints are introduced in the design of the case study 
in section 2.4. Finally, conclusions are presented in section 2.5. 

2.2. TRAIN MOTION SIMULATION MODEL  

When it comes to design an energy efficient driving profile, the decision variables are 
running time (𝑅𝑇) and energy consumption (𝐸𝐶), whilst the comfort criteria must be 
met. Simulation results of these variables must be precise in order to make a proper 
decision. The validity of the simulation results depends on the accurate simulation of 
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the complete journey of a train between two stations. The simulation model applied in 
this thesis for the accurate simulation of the train movement with an ATO system was 
developed in (Domínguez et al., 2011b; Sicre, 2013). The simulator can obtain every 
possible speed profile for that ATO system and check the fulfilment of the operational 
and comfort constraints specified.  

The simulation model is composed of three modules: train, line, and ATO modules, 
considering all the main variables that affect the train dynamics. All the constraints that 
can affect the train motion (speed limitations, maximum traction effort, etc.) are 
included in the simulation model. 

The model of the train takes into account the length and mass of the train, running 
resistance, traction and braking maximum curves, variations of the motor efficiency 
with respect to speed and effort ratio, auxiliary equipment consumption and rotary 
inertia. The line characteristics included in the model are speed limits, tunnels, grades, 
grade transitions (and the effect along the train) and bends. The ATO module interprets 
and executes the commands that can be pre-programmed in real ATO equipment and 
always observes the speed limitations of the line and the stop points at stations applying 
brake effort when necessary. The inputs of the ATO module are the same commands 
that the train receives from balises (or radio) at each interstation: a braking deceleration 
rate (𝑏), a speed holding value (𝑣ℎ), or a coasting speed (𝑣𝑐) and a remotoring speed 
(𝑣𝑟). Figure 2-1 shows speed profiles based on speed-holding regulation (left) and speed 
profiles based on coasting-remotoring cycles (right). The ATO sets the train traction to 
zero (coasting) when train speed reaches the coasting speed value 𝑣𝑐, and the ATO sets 
train traction to maximum force when the train speed falls below 𝑣𝑐 − 𝑣𝑟. When the 
train is controlled by a holding speed parameter 𝑣ℎ, the ATO regulates the train traction 
to maintain the train speed to this value. 

 

Figure 2-1. Speed profile with speed-holding (left) and coasting/re-motoring (right) 

The train motion and the ATO modules and algorithms and the validation of them can 
be found in (Domínguez et al., 2011b). The parameter-setting and validation of the 
simulator to fit the models and adjust the results is an important aim to get reliable 
designs since the final goal is the implementation of the designed speed profiles and 
the regulation on the traffic operations allow only a few seconds of difference between 
profiles. With this purpose, all the real data of configuration of the ATO system, the 
train and the line such as the gradient with slope transition curves and a list of minimum 
speed limits along the curves are considered, as well as the distributed mass of the train 
(instead of a point mass train).  
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The time step-based simulation model calculates at each step the acceleration of the 
train from the balance of forces expressed in Eq. (2.1). 

𝑀𝑒𝑞 ∙ 𝑎 = 𝐹𝑚 − (𝐹𝑟 + 𝐹𝑔) (2.1) 

where the equivalent mass 𝑀𝑒𝑞 is the mass of the train plus the rotational inertial effect, 

a is the acceleration of the train, 𝐹𝑚 is the motor force, 𝐹𝑟 is the running resistance force 
and 𝐹𝑔 is the force due to the track grades. Bends are modelled as equivalent grades. 

The equation of the running resistance is a function of the speed (𝑣) of the train as 
shown in Eq. (2.2) (Davis formula), and the force due to the grades along the track is 
calculated as shown in Eq. (2.3) 

𝐹𝑟 = 𝐴 + 𝐵 ∙ 𝑣 + 𝐶 ∙ 𝑣
2 (2.2) 

 

𝐹𝑔 = 𝑔 ∙ 𝑚 ∙ 𝑝 (2.3) 

where 𝑚 is the mass of the train, and 𝑝 is the average grade of the track affecting the 
length of the train at each simulation step. 

Once the acceleration rate is calculated, the new position of the train at each simulation 
step can be calculated from the uniformly accelerated motion equation. When the 
simulation from the departure station to the next one is finished, the running time 𝑅𝑇 
is obtained. 

The energy consumption of motors is calculated at each simulation step as the electrical 
power consumed multiplied by the time step, as shown in Eq. (2.4), when motoring. 
Since the ATO speed profiles design is carried out off-line and executed on different 
traffic scenarios, the voltage is assumed to be the nominal one. The current is obtained 
applying the ratio between the required force calculated and the maximum traction 
force, affected by the efficiency coefficient of the motor. See (Domínguez et al., 2011b) 
for a detailed description of the calculations. 

𝐸𝐶 = 𝐼 ∙ 𝑈 ∙ ∆𝑡 (2.4) 

To calculate the energy consumption 𝐸𝐶 associated with the speed profile at that 
interstation, the power is integrated for all the simulation steps.   

A comparison between the complete simulations and measured data has been carried 
out (Domínguez et al., 2011b). An average difference of 4.2% in traction energy and 
1.0% in running times is obtained.  

The simulated ATO speed profiles observe all the constraints associated both with the 
train motion (such as speed limitations, the maximum traction effort, etc.) and with the 
ATO driving. Likewise, there is an operational restriction of minimum speed limits along 
curves that must be observed in order to avoid an excessive wear of the wheels and 
track.  
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2.3. MULTI-OBJECTIVE OPTIMISATION FOR THE DESIGN OF ATO SPEED 
PROFILES  

In (Domínguez et al., 2011b) a design method based on the accurate simulation of all 
the possible combinations of the ATO speed commands was presented. The commands 
are listed in Table 2-1. Combining the commands between the minimum and maximum 
with the corresponding increase and with a minimum difference of 5 km/h between the 
coasting and re-motoring speed, all the possible speed profiles per interstation (156) 
were obtained (the squared points in Figure 2-2). The Pareto front, which represents 
the minimum consumption for each running time, was also obtained for each 
interstation. It is a multi-criteria optimisation problem where the aim is to find the 
optimal trade-off between the energy consumption and running times. Decision theory 
techniques were used to solve it according to the shape of the Pareto front. The method 
has already been applied to real services such as the Madrid (Domínguez et al., 2011b), 
Barcelona and Bilbao (Cucala et al., 2012a) undergrounds in Spain achieving savings up 
to 15%. 

 Deceleration rate (𝑏) 

(m/s2) 

Speed holding (𝑣ℎ) 

(km/h) 

Coasting speed (𝑣𝑐) 

(km/h) 

Re-motoring speed (𝑣𝑟) 

(km/h) 

Minimum 0.6 30 30 10 

Maximum 0.75 75 75 30 

Increase 0.05 0.5 5 10 

Table 2-1. Real values of the ATO speed commands 

 

 

Figure 2-2. Solution space of one interstation 

However, the new state-of-the-art of signalling technologies such as CBTC permit a 
better communication capacity (bandwidth) with high-resolution train location 
determination, and bidirectional train-wayside data communications (“IEEE Standard 
for Communications-Based Train Control (CBTC) Performance and Functional 
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Requirements,” 1999). More command values can be sent since the increment is 
smaller (Table 2-2), thus resulting in an exponential solution space. For instance, given 
the commands of Table 2-2, 20860 combinations are possible. In other words, there 
would be 20860 different speed profiles between two stations. Figure 2-2 shows the 
solution space of one interstation of the Madrid Underground as an example. The 
computation time is more than 1 hour. The figure also shows the current solution space 
using the commands of Table 2-1 of the same interstation. The computation time 
associated with Table 2-1 is less than 1 minute in this case, which allows the exhaustive 
search of the Pareto front. However, the large number of unavailable solutions and the 
benefit of using more combinations are evident. For instance, a speed profile with 
associated running time between 109 s and 111 s would never be selected. Likewise, a 
speed profile with running time 107 s would consume 7.6 kWh in the current solution 
space associated with Table 2-1 and 6.1 kWh in the new solution space associated with 
Table 2-2. Thus, 20% of savings is achievable thanks to the additional solutions. 

 Deceleration rate (𝑏) 

(m/s2) 

Speed holding 

(𝑣ℎ) (km/h) 

Coasting speed (𝑣𝑐) 

(km/h) 

Re-motoring speed (𝑣𝑟) 

(km/h) 

Minimum 0.6 30 30 5 

Maximum 0.8 80 80 50 

Increase 0.05 0.25 0.5 1 

Table 2-2. ATO speed commands considered  

Thus, a multi-objective optimisation model is proposed in the following for the design 
of ATO speed profiles in this framework with low computational time. As explained 
above, the objective of the design of ATO speed profiles is not to find a unique optimum 
point but a set of profiles with different running times, which is a MOOP. Thus, the 
objectives involved in the minimization function are now both the running time 𝑅𝑇 and 
the energy consumption 𝐸𝐶 (Eq. (2.5)).  

𝑀𝑖𝑛 𝑓 (𝑥𝑝⃗⃗⃗⃗ ) = [𝐸𝐶(𝑥𝑝⃗⃗⃗⃗ ), 𝑅𝑇(𝑥𝑝⃗⃗⃗⃗ )] (2.5) 

where 𝑅𝑇 and 𝐸𝐶 are calculated by means of the simulation model previously 
described. The solution  𝑥𝑝⃗⃗⃗⃗ = (𝑏, 𝑣ℎ, 𝑣𝑐, 𝑣𝑟) is a 4-dimensional vector since there are 
four decision variables (deceleration rate, speed-holding, coasting speed and re-
motoring speed). 

The result of the optimisation is the set of non-dominated solutions. Non-dominated 
solutions are those that cannot be improved at the same time in all the objectives. Thus, 
in a non-dominated set, it is possible to find a speed profile with lower running time 
than another solution, but it will cost energy. In the same way, it is possible to find a 
solution with less energy consumption but it will require higher running time. 

All the solutions provided by the model must be feasible with respect to driving 
constraints. Constraints associated with the train motion (such as speed limitations 
along the track, the maximum traction effort and braking curves of the train, etc.) are 
taken into account in the simulation model of the train and the line. In addition, 
constraints associated with the ATO driving are included in the ATO model.  
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Bearing in mind that the objective is to carry out a design for a possible implementation 
in a real line, it is important to take into account the comfort to ensure the successful 
implementation of suitable speed profiles from the passengers’ point of view. For 
example, to apply coasting in a steep uphill results in an unpleasant feeling of falling. It 
highlights the importance of accurate and realistic simulations. An error of a few meters 
in a coasting point could make the train coast in an inappropriate place.  

Therefore, a speed profile is considered unfeasible if it has a coasting point in a slope 
greater than 25 mm/m (Eq. (2.6)). 

𝑝 < 𝑝𝑚𝑎𝑥   𝑖𝑓  𝐹𝑚 = 0  𝑎𝑛𝑑   𝐹𝑚
𝑝𝑟𝑒𝑣 > 0 (2.6) 

where 𝑝 is the slope, 𝑝𝑚𝑎𝑥 is the maximum slope permitted in a point of coast start, 𝐹𝑚 

is the traction effort at this simulation step and 𝐹𝑚
𝑝𝑟𝑒𝑣 is the traction effort at the 

previous step. 

Some other comfort restrictions have been modelled and parameterised according to 
the metro operation experts’ criteria: minimum speed throughout the journey (20 
km/h) (Eq. (2.7)) and maximum number of re-motoring cycles per interstation (Eq. 
(2.8)). 

𝑣 > 𝑣𝑚𝑖𝑛  (2.7) 

where 𝑣 is the speed of the train and 𝑣𝑚𝑖𝑛 is the minimum permitted speed. 

𝑛𝑟𝑒𝑚𝑜𝑡𝑜𝑟𝑖𝑛𝑔 < 𝑛𝑚𝑎𝑥  (2.8) 

where 𝑛𝑟𝑒𝑚𝑜𝑡𝑜𝑟𝑖𝑛𝑔 is the number of re-motoring cycles executed along an interestation 

and 𝑛𝑚𝑎𝑥  is the maximum number of re-motoring cycles permitted. 

The comfort and operational constraints (Eqs. (2.6), (2.7) and (2.8)) are included in the 
model by means of a filtering process as will be described later. 

The MOOP could be transformed into a single objective one, for instance through a 
weighted sum formulation or by choosing manually a solution, in the case the objective 
of the algorithm were to design a single driving for the interstation. However, as the 
purpose is to obtain the full Pareto front for all the possible running times, the proposed 
model will be more efficient than just repeating a single objective optimisation model 
repeatedly for different objective running times, to obtain one solution every time it is 
executed. Instead, the following algorithms are executed once, storing at each iteration 
the set of non-dominated solutions for different running times. 

In the following, two algorithms are presented: the MOPSO (proposed in (Sicre, 2013)) 
and the NSGA-II and they are then compared to analyse their performance solving the 
eco-driving problem 
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2.3.1. MOPSO ALGORITHM FOR THE DESIGN OF ATO SPEED PROFILES 

The population-based MOPSO algorithm conducts a search using a population of 
individuals. The individual in the population is called the particle and the population is 
called the swarm. The performance of each particle is measured according to 
domination criteria. Particles are assumed to “fly” over the search space in order to find 
promising regions of the landscape. In the minimization case, such regions possess 
lower functional values than other regions visited previously. Each particle is treated as 
a point in a space with a number of dimensions equal to 𝑛𝑜. They adjusts its own “flying” 
according to its flying experience as well as the flying experience of the other 
companion particles. By making adjustments to the flying based on the personal best 
(pbest) guide and the global best (gbest) guide found so far, the swarm as a whole 
converges to the optimum point, or at least to a near-optimal point, in the search space. 

The notations used in MOPSO and particularised to our problem are as follows: The 𝑗𝑡ℎ 
particle of the swarm is a specific combination of the ATO commands and in 
consequence, a specific speed profile. It is represented in iteration 𝑖𝑡 by a 4-dimensional 
vector since there are four decision variables (deceleration rate, speed-holding, 
coasting speed and re-motoring speed), 𝑥𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) = (𝑏𝑗 , 𝑣ℎ𝑗 , 𝑣𝑐𝑗 , 𝑣𝑟𝑗). Each particle or 

speed profile also has a position change known as velocity, which for the 𝑗𝑡ℎ particle in 
iteration 𝑖𝑡 is 𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) = (𝑣𝑏𝑗 , 𝑣𝑣ℎ𝑗 , 𝑣𝑣𝑐𝑗 , 𝑣𝑣𝑟𝑗). The best previous position (the position 

with the best fitness value) of the 𝑗𝑡ℎ particle is 𝑝 𝑗(𝑖𝑡) = (𝑝𝑏𝑗 , 𝑝𝑣ℎ𝑗 , 𝑝𝑣𝑐𝑗, 𝑝𝑣𝑟𝑗). The 

best combination of commands in the swarm, is denoted by the index 𝑔. In a given 
iteration 𝑖𝑡, particle’s new velocity, based on its previous velocity and the distances 
from its current position to its pbest and to the gbest positions is updated using Eq. 
(2.9). The new velocity is then used to compute the particle’s new position Eq. (2.10). 

𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) = 𝑤 ∙ 𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡 − 1) + 𝑐1 ∙ 𝑟1 ∙ (𝑝 𝑗 − 𝑥𝑖(𝑖𝑡 − 1)) + 𝑐2 ∙ 𝑟2 ∙ (𝑝 𝑔 − 𝑥𝑖(𝑖𝑡 − 1)) (2.9) 

 

𝑥𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) = 𝑥𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡 − 1) + 𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) (2.10) 

where, 𝑖 =  1, 2, … , 𝑛𝑠𝑤𝑎𝑟𝑚; 𝑖𝑡 =  1, 2, … , 𝑖𝑡𝑚𝑎𝑥. The parameter 𝑛𝑠𝑤𝑎𝑟𝑚 is the size of 
the swarm, and 𝑖𝑡𝑚𝑎𝑥 is the iteration limit; 𝑐1 and 𝑐2 are positive constants (called 
“social factors”), and r1 and 𝑟2 are random numbers between 0 and 1; 𝑤 is inertia 
weight that controls the impact of the previous history of the velocities on the current 
velocity, influencing the trade-off between the global and local experiences. It 
decreases during a run between 𝑤1 and 𝑤2 (Table 2-3) since a large inertia weight 
facilitates global exploration (searching new areas), while a small one tends to facilitate 
local exploration (fine-tuning the current search area).  

The MOPSO algorithm used is similar to the ones described in the works of (Coello et 
al., 2004; Coello Coello and Lechuga, 2002) and (Alvarez-Benitez et al., 2005). It 
maintains an external archive 𝐴, containing the non-dominated speed profiles found by 
the algorithm so far that will constitute the Pareto curve. The MOPSO algorithm has 
been further refined by including the crowding distance mechanism (𝐶𝐷) found in 
(Raquel and Naval,Jr., 2005) and also used in (Zou et al., 2013) with the objective of 
achieving a more even distribution of the speed profiles on the Pareto front.  
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The crowding distance of a speed profile is the average distance of its two neighbouring 
solutions when all the speed profiles are sorted in ascending objective function values 
(the sum of both objectives). The speed profiles at the two extreme edges are given 
infinite crowding distance so that they are always selected to belong to the archive. In 
the MOPSO, the global best of the speed profile is selected with the Top select 
probability (Table 2-3) from among those non-dominated speed profiles with the 
highest crowding distance values. Selecting different guides for each combination of 
commands in a specified top part (Top select Table 2-3) of the sorted archive based on 
a decreasing crowding distance, allows the population to move towards those non-
dominated speed profiles in the external archive that are in the least crowded area in 
the objective space. 

The algorithm begins with the initialization of an empty external archive 𝐴. A population 
of 𝑛𝑠𝑤𝑎𝑟𝑚 combinations of commands is randomly generated. The particle positions 
(𝑥𝑝⃗⃗⃗⃗ 𝑗) and velocities (𝑣𝑝⃗⃗⃗⃗ 𝑗) are initialised randomly and discretised. These are the values 

of the commands within their appropriate bounds, tabulated in Table 2-2. At each 
iteration 𝑖𝑡 the velocities and the positions of the particles are updated using equations 
(2.9) and (2.10), respectively. The particle positions are checked if they are constrained 
to the bounded region after each update. Similarly, the velocities of particles are forced 
into the bounds, if they have crossed them. The objective functions (energy 

consumption and running time) 𝑓 𝑗(𝑥𝑝⃗⃗⃗⃗ 𝑗) = [𝐸𝐶(𝑥𝑝⃗⃗⃗⃗ 𝑗), 𝑅𝑇(𝑥𝑝⃗⃗⃗⃗ 𝑗)] are then evaluated for 

each of the combination of commands, after performing simulation of the train drive.    

The crucial parts of the MOPSO algorithm are selecting the personal and the global 
guides. There are no clear concepts of pbest and gbest that can be identified when 
dealing with a set of multiple objective functions. However, the following strategy can 
be applied to maintain the diversity in the swarm when selecting pbest and gbest 
positions. 

If the current position of 𝑥𝑝⃗⃗⃗⃗ 𝑗 weakly dominates 𝑝 𝑗, that is, if the value of 𝑥𝑝⃗⃗⃗⃗ 𝑗 is lower or 

equal in both objectives than its current pbest, or if 𝑥𝑝⃗⃗⃗⃗ 𝑗 and 𝑝 𝑗 are mutually non-

dominating, then 𝑝 𝑗 is set to the current position. However, if only one of these two 

objectives (𝐸𝐶(𝑥𝑝⃗⃗⃗⃗ 𝑗), 𝑅𝑇(𝑥𝑝⃗⃗⃗⃗ 𝑗)) is improved, then 𝑝 𝑗 is set to either the previous pbest 

or the current position with a 50% probability.  

Members of 𝐴 are mutually non-dominating and no member of the archive is 
dominated by any 𝑥𝑝⃗⃗⃗⃗ 𝑗. All the members of the archive are, therefore, candidates for the 

global guide. However, if the members of the archive are selected as global guides 
based on uniform probability, the result is a Pareto front with substantial gaps in 
between. To fill up these gaps, the crowding distance MOPSO selects the global best 
guide from a specified top portion (Top select Table 2-3) of the archive 𝐴 sorted in 
descending values of the crowding distance.  

The MOPSO algorithm described is represented in Figure 2-3. 
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Figure 2-3. MOPSO Algorithm  

2.3.2. NSGA-II ALGORITHM FOR THE DESIGN OF ATO SPEED PROFILES 

NSGA-II uses a population of individuals to perform the search of Pareto front as well 
as MOPSO. NSGA-II is a class of genetic algorithm for solving MOOP. Therefore, it takes 
inspiration from Darwinian principles of the evolution of species. The population of 
solutions evolves through iterations where only the best solutions survive. The best 
solutions produce new solutions by means of crossover and mutation operators. These 
new solutions are called offspring. The fitness of individuals of this population are 
calculated by means of the domination level metric.   

The domination level of an individual is calculated as the number of solutions that 
dominate that specific individual. Notice that the Pareto front found by the algorithm 
will be the set of solutions with dominance level equal to zero. Therefore, solutions with 
lower level of domination level are preferable because they are closer to Pareto front.  

Each solution 𝑗𝑡ℎ of the population is a specific combination of the ATO commands and 
has associated a specific speed profile. As in MOPSO, it is represented in iteration 𝑖𝑡 by 
a 4-dimensional vector  𝑥𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) = (𝑏𝑗, 𝑣ℎ𝑗 , 𝑣𝑐𝑗 , 𝑣𝑟𝑗). Solutions are generated randomly 

at the beginning of the optimisation process or by means of crossover and mutation 
operators. 

Crossover generates a solution from two individuals from solutions called parents. This 
operator is usually related to exploitation. The parents are randomly selected from a 
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portion of the surviving population with certain probability (Table 2-4). The 
characteristics of the two parents are combined to form a new solution. Thus, one 
parent is selected randomly as the basis of the new solution and a driving parameter is 
substituted taking the value from the same parameter of the other parent. If the 
solutions are not compatible, for example because coasting-remotoring parent is mixed 
with a regulation parent, the offspring is discarded and the process is repeated. 

On the other hand, mutation operator generates solutions from a single surviving 
solution. This operator is usually related to exploration. The parent is randomly selected 
from a portion of the surviving population with certain probability (Table 2-4). The 
driving parameters of the parent is taking as the basis of the offspring solution. Then, 
one parameter is randomly chosen to be mutated. The value of this parameter is then 
substituted by a random value. Again, if the offspring solution is not feasible, for 
example because it presents coasting-remotoring parameters and a holding speed 
parameter, the offspring is discarded and the process is repeated. 

The optimisation process is the same proposed in (Deb et al., 2002). NSGA-II starts 
creating a parent population 𝑃0 of 𝑛𝑝𝑜𝑝 random solutions. Mutation and crossover 

operators are used to generate the offspring population of 𝑛𝑝𝑜𝑝 individuals (𝑄0). After 

that, 𝑃0 and 𝑄0 are joined to generate the result population 𝑅0 of size 2𝑛𝑝𝑜𝑝. Then, 

domination level is used to sort 𝑅0 population and solutions that do not fulfil comfort 
and operational restrictions are given the worst possible punctuation (Eqs. (2.6), (2.7) 
and (2.8)).  

Once the 𝑅0 population is ranked, the best 𝑛𝑝𝑜𝑝 solutions survive and the rest are 

eliminated. The parent population for the next iteration 𝑃1 is generated obtaining the 
𝑛𝑝𝑜𝑝 solutions from 𝑅0 with the lowest domination level. This process is performed 

adding solutions in sets of individuals that share the same domination level. If a set of 
solutions cannot be included because it exceeds the size of the parent population, the 
same crowding distance operator (CD) used for MOPSO (Raquel and Naval,Jr., 2005) is 
applied to that set of solutions to select the ones that will be part of 𝑃1. CD operator 
calculates the distance, in terms of the optimisation objectives, of a solution to the 
individuals that surround it. Therefore, the solutions of the last set of individuals are 
included in 𝑃1 in decreasing order of CD until the parent population is filled. This way, 
the zones with low density of solutions are prioritised.  

Once 𝑃1 is created, the next iteration of the algorithm starts generating the offspring 
population 𝑄1 using crossover and mutation operators and, after that, a new result 
population 𝑅1 is created. Again, each solution 𝑥𝑝⃗⃗⃗⃗ 𝑗 of the population is evaluated by 

means of the simulation model presented in 2.2. This process is repeated until a number 
of iterations 𝑖𝑡𝑚𝑎𝑥 is reached (𝑖𝑡 = 𝑖𝑡𝑚𝑎𝑥). The final result is the set of solutions with 0 
domination level of the last result population 𝑅𝑖𝑡𝑚𝑎𝑥 .  

In Figure 2-4 the NSGA-II flowchart is depicted. 
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Figure 2-4. NSGA-II Algorithm  

2.4. CASE STUDY AND RESULTS  

The experiments presented have been carried out using real data from a train and a line 
of an urban railway system. In particular, Metro de Madrid Line 3 data have been used 
as case study. Before the test, both algorithms have been tuned searching the best 
parameter configuration. 

Table 2-3 shows the values selected for the MOPSO parameters.  

𝑐1 𝑐2 𝑤1 𝑤2 Top select (%) Top select probability (%) 

1 1 0.9 0.2 6 98 

Table 2-3. Tuned parameters of the MOPSO algorithm 

NSGA-II has been programmed in the same platform as MOPSO to ensure that the 
computation time is comparable. Furthermore the population size in the NSGA-II 
programmed has the same value than the number of particles in MOPSO and the 
maximum number of iterations is equal in both cases. This way, the number of 
simulations made by both algorithms in a run is equal. Simulation are computational 
expensive and, therefore, practically the calculation time required by the algorithms 
depends on the number of evaluations carried out. The configuration parameters that 
have been used in the NSGA-II are shown in Table 2-4. 
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Population size 
Number of 

mutations 

Number of 

crossovers 
Top select (%) 

Top select 

probability (%) 

Maximum number 

of iterations 

80 40 40 25 85 50 

Table 2-4. Tuned parameters of the NSGA-II algorithm 

2.4.1. COMPARISON OF MOPSO AND NSGA-II 

The assessment of the results obtained with both algorithms has been carried out using 
the metrics described in (Coello et al., 2004) and (Jiménez et al., 2013) that compare 
the results of the algorithms with the points of the real Pareto front. Such real Pareto 
front has been obtained through exhaustive simulation of the full space of possible 
solutions. 

a) Normalised Hypervolume. 

The normalised Hypervolume metric represents the fraction of the objective space that 
is not dominated by any of the solutions obtained. This indicator provides information 
about the distance of the solutions to the real Pareto front and about the spread. This 
metric is calculated as shown in Eq. (2.11). 

𝐻𝑉 = 1 −

∑ [(𝑓𝑛𝑜
𝑚𝑎𝑥 − 𝑓𝑛𝑜

𝑗
)∏ (𝑓𝑞

𝑠𝑢𝑝𝑞
𝑗

− 𝑓𝑞
𝑗
)𝑛𝑜−1

𝑞=1 ]𝑁𝐼
𝑗=1

∏ (𝑓𝑞
𝑚𝑎𝑥 − 𝑓𝑞

𝑚𝑖𝑛)𝑛𝑜
𝑗=1

 
(2.11) 

where 𝑓𝑞
𝑗
 is the value of the objective 𝑞 for the individual 𝑗, 𝑛𝑜 is the number of 

objectives and 𝑁𝐼 the number of individuals of the efficient front obtained with the 

algorithm. 𝑓𝑞
𝑚𝑎𝑥 and 𝑓𝑞

𝑚𝑖𝑛 are the maximum and the minimum values for the 𝑞𝑡ℎ 

objective if the objective space is bounded. If the objective space is not bounded these 

are the values that satisfy 𝑓𝑞
𝑚𝑎𝑥 > 𝑓𝑞

𝑗
 and 𝑓𝑞

𝑚𝑖𝑛 < 𝑓𝑞
𝑗
 for each individual 𝑗. 𝑓

𝑗

𝑠𝑢𝑝𝑞
𝑗

 is the 

value of the objective 𝑞𝑡ℎ for the individual higher adjacent in the 𝑞𝑡ℎ objective to 
individual 𝑗. 

a) Generational distance 

The generational distance calculates the proximity of the solutions obtained by the 
algorithm to the population of the real Pareto front. This indicator is calculated as 
shown in Eq. (2.12).  

𝛾 =
√∑ 𝑑𝑗

2𝑁𝐼
𝑗=1

𝑁𝐼
 

(2.12) 

where 𝑑𝑗 is the Euclidean distance between the solution 𝑗 and the nearest solution in 

the real Pareto front. 
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b) Spread. 

The spread indicator estimates the diversity of the set of solutions obtained. This metric 
is calculated as shown in Eq. (2.13).  

∆=
∑ 𝑑𝑞

𝑒𝑛𝑜
𝑞=1 +∑ |𝑑𝑗 − �̅�|

𝑁𝐼
𝑗=1

∑ 𝑑𝑞
𝑒𝑛𝑜

𝑞=1 + 𝑁𝐼 ∙ �̅�
 (2.13) 

where 𝑑𝑞
𝑒  is the Euclidean distance between the extreme solutions in the front obtained 

with the algorithm and the extreme solutions in the real Pareto front. 𝑑𝑗  is the Euclidean 

distance between adjacent solutions and �̅� is the mean value of such measurements. 

c) Error ratio 

The error ratio indicator calculates the percentage of solutions provided by the 
algorithm that are not members of the real Pareto front. This indicator is calculated as 
shown in Eq. (2.14). 

𝐸𝑅 =
∑ 𝑒𝑗
𝑁𝐼
𝑗=1

𝑁𝐼
∙ 100 (2.14) 

where 𝑒𝑗 = 0 if the particle 𝑗 is a member of the real Pareto front and 𝑒𝑗 = 1, 

otherwise. 

d) Spacing 

Spacing indicator measures the distance variance of neighbouring individuals in the 
front obtained with the algorithm. The value obtained assesses how well the solutions 
in such front are distributed. This indicator is calculated as shown in Eq. (2.15). 

𝑆𝑃 ≜ √
1

𝑛𝑜 − 1
∑(𝑑′̅ − 𝑑𝑗

′)
2

𝑛𝑜

𝑗=1

 (2.15) 

where 𝑑𝑗
′ is the distance of neighboring individuals in the front obtained with the 

algorithm and 𝑑′̅ is the mean value for these distances. 

A real case based on AL1 (Almendrales, track 1) interestation from Metro Madrid has 
been used to test the performance of both algorithms. The obtained results are 
measured by the foregoing indicators and are presented in Table 2-5 and Table 2-6. 
Figure 2-5 shows graphically the comparison of the results. 

It is shown in Figure 2-5 that the MOPSO algorithm front is closer to the real Pareto 
front and it has a better distribution of the individuals in the objective space. Solutions 
provided by the NSGA-II algorithm can consume up to 10% more than the solutions 
provided by MOPSO. Furthermore, for higher running times the NSGA-II has difficulties 
to find non dominated solutions. 
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Figure 2-5. Front obtained by MOPSO and NSGA-II 

It has to be noted that the real Pareto front, calculated by exhaustive simulation of all 
the possible combinations of ATO commands, is a non continuous curve and the 
discrete solutions are not uniformly distributed, as just the solutions that can be 
executed by the real ATO equipment belong to such real front. Consequently, it is 
important to calculate the diversity measures for the real Pareto front (Hypervolume, 
spread and spacing) in order to later compare the measures of MOPSO and NSGA-II 
algorithms with them. 

Table 2-5 summarises the previously defined measures associated with the proximity to 
the real Pareto front and the diversity of solutions.  For a computational time practically 
equal in both algorithms, the measure of the proximity to real Pareto front shows that 
the MOPSO provides better solutions (for example, the error ratio of MOPSO is 16.95% 
much less than 77.55% of the NSGA-II)  

 

 
Normalised 

Hypervolume 

Generational 

distance 
Spread 

Error 

ratio 
Spacing 

Computational 

time (minutes) 

Number of 

solutions 

MOPSO 0.3526 0.0007936 0.5611 16.95% 0.4286 11.96 59 

NSGA-II 0.3873 0.0044525 0.5738 77.55% 0.5161 11.86 49 

Real 

Pareto 

front 

0.3500 N.A. 0.4394 N.A. 0.3513 59.79 73 

Table 2-5. MOPSO and NSGA-II performance indicators 

For the sake of clarity, Table 2-6 shows the distance of the diversity measures in 
percentage for both algorithms to the measures of the real Pareto front. It should be 
noted that the Hypervolume of the solution obtained by the MOPSO is practically the 
Hypervolume of the optimal solution (0.74% difference) while for the NSGA-II is 10% 
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higher. The spread, spacing and number of solutions metrics of MOPSO have closer 
values to the real Pareto front than NSGA-II metrics. 

 

Normalised 

Hypervolume 

(difference in %) 

Spread 

(difference in %) 

Spacing 

(difference in %) 

Number of 

solutions 

(difference in %) 

Difference MOPSO-

real Pareto front 
0.74% 27.69% 22.00% -19.18% 

Difference NSGA-II - 

real Pareto front 
10.66% 30.58% 46.91% -32.88% 

Table 2-6. Distance between metric of MOPSO and NSGA-II to the real Pareto front 

Figure 2-6 shows the evolution of the calculations for both algorithms through the 
normalised Hypervolume indicator. It shows that the MOPSO is improving the result of 
the found solution until the last iteration while NSGA-II finds a stable solution in 24 
iterations but with a higher error.  

 

Figure 2-6. Normalised Hypervolume value during the evolution of MOPSO and NSGA-II  

Thus, it can be concluded that the MOPSO algorithm has better performance than the 
NSGA-II algorithm, for diversity of solutions and proximity to the real Pareto front. 

2.5. CONCLUSIONS AND CONTRIBUTIONS 

Previous works have already highlighted the importance of the optimal design of ATO 
speed profiles, taking into account the technical requirements, the quality of service 
and additionally the minimisation of energy consumption. However, the design 
procedures are based on the exhaustive simulation of all the possible combinations of 
the speed commands, and the solutions obtained provide an average energy savings of 
15%. 
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The new signalling technologies such as CBTC permit a better communication capacity 
and thus, the possible values of the ATO parameters that can be sent to the train (that 
is, the associated number of different possible speed profiles) is drastically higher. It has 
been shown that some of these new possible speed profiles are more efficient from the 
energy point of view (up to 20%) and are located precisely in some of the Pareto front 
gaps. Consequently, it is important to propose a new design algorithm that can find 
efficiently the Pareto front in this new solution space.  

In this chapter of the thesis, two algorithm for the optimal design of the ATO speed 
profiles has been applied and compared based on the accurate simulation of the ATO 
and train motion.  

MOPSO algorithm is efficient in computational time and has better performance solving 
the eco-driving MOOP proposed than the NSGA-II algorithm, for metrics of diversity and 
proximity to the real Pareto front.  

The main contributions of this chapter are: 

 The application of the NSGA-II algorithm to the eco-driving problem defined by real 
ATO speed commands. 

 The use of several metrics to assess the performance of optimisation algorithms 
when solving the eco-driving problem. 

 The comparison between MOPSO algorithm and NSGA-II solving the eco-driving 
problem.
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 CHAPTER 3  

3. ROBUST SPEED PROFILES FOR THE AUTOMATIC 
TRAFFIC REGULATION SYSTEM IN METROPOLITAN LINES 

3.1. INTRODUCTION 

In the previous chapter, a multi-objective optimisation model was proposed for 
obtaining the Pareto front of efficient speed profiles and two algorithms were tested to 
determine the best one. That study does not take into account the uncertainty of the 
solutions obtained. The main sources of uncertainty are the train load and the train 
delays.  

The high precision of the ATO equipment in the execution of the pre-programmed 
driving parameters is practically just affected by the uncertainty in the mass of the train 
associated with the passengers load (Lin and Sheu, 2008). The value of the train mass 
has two components. The empty vehicle mass and the passenger load. The empty 
vehicle mass is a fixed value whereas the passenger load varies depending not only on 
the departure station but also on the moment of the observation. It is obvious that 
variations of passenger load produce different results on energy consumption. 
However, it also causes variations in the running time produced by a set of driving 
parameters because the train resistance is dependant of the train mass. For the same 
reason, the load variations could cause variations in the shape of the speed profile 
making an expected comfortable solution to become non-comfortable. 
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The CBTC system permits pre-programming different sets of speed profiles for different 
operation periods, as peak-hours and off-peak-hours. However, this is not enough. At 
each period, the passengers load takes a different mean value, but it is not constant 
throughout the period. Passengers flow and the trains headway are constantly varying 
leading to important oscillations of load carried by different trains for the same stretch.  

It can be observed in the literature that most of eco-driving studies do not take into 
account the uncertainty caused by mass variation. Usually, as in the previous chapter of 
this thesis, the train mass is consider a fixed value. This value corresponds to the mean 
passenger load expected. Therefore, these studies do not consider mass variations 
obtaining a result that could be non-optimal for the real operation. 

Few works can be found that address the eco-driving problem with variable train mass. 
The passenger load is represented by means of fuzzy numbers in (Carvajal-Carreño et 
al., 2014). In this work, NSGA-II with fuzzy parameters is applied to calculate the Pareto 
front of efficient speed profiles whose objectives are running time and energy 
consumption. The result obtained by this method is a Pareto front where the solutions 
are non-dominated according to a necessity value. This approach is useful to maximise 
the energy savings taking into account different mass conditions. However, the 
robustness of the solutions, i.e. the sensitivity of solutions to vary its energy 
consumption and running time with mass variation, is not considered and the 
implementation of the solutions could be difficult. A set of driving parameters could 
produce a different driving shape with a different mass value. This could lead to a drastic 
change in the results of running time and energy consumption. Drastic changes in 
running time and energy results are negative for traffic regulation because the 
behaviour of the train is not predicted.  

A similar conclusion could be derived by the work in (Xin Yang et al., 2016). This paper 
proposed a bi-level stochastic model to solve the timetable optimisation jointly with the 
speed profile optimisation. In this model, the mass variation is represented by means 
of a stochastic distribution. Therefore, the result is the best energy performance for the 
conditions of the study but the robustness of solutions is not considered. 

The other main source of uncertainty associated with the traffic operation is the 
occurrence of delays that must be corrected by the traffic regulator (Lin and Sheu, 
2008). The statistical distribution of the delays determines the frequency with which 
the controller demands each pre-programmed ATO speed profile at each station. 
Typically, the four selected speed profiles of the pre-programmed set are equidistant in 
time, and the frequency of use is not taken into account (Domínguez et al., 2011b).  

In this chapter, a new method to design efficient and robust ATO speed profiles in CBTC 
lines is proposed, considering the previously described sources of uncertainty. 

Two steps compose this method. In the first step, the Pareto curve of robust ATO speed 
profiles, taking into account the uncertainty in the mass, is generated. Two procedures 
are applied to generate the robust Pareto curve. The first one is a robust optimisation 
technique in time and energy consumption. An alternative procedure, based on the 
analysis of the relationship between the robustness and the conservation of the shape 
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of the speed profiles (pattern robustness), is proposed. This procedure makes use of the 
MOPSO algorithm described in (Domínguez et al., 2014) adding a driving pattern 
identifier. In the second step, the set of ATO speed profiles to be programmed in the 
regulation system is selected from the robust Pareto front by means of an optimisation 
model. This model is based on the Particle Swarm Optimisation algorithm (PSO) 
(Kennedy and Eberhart, 2001) to minimise the energy consumption throughout an 
operation period, taking into account the statistical distribution of running times 
demanded by the regulation system. 

In section 3.2 the two proposed methods to obtain a robust Pareto front of the speed 
profiles are presented. Section 3.3 describes the optimisation model to select the pre-
programmed speed profiles. The methodology proposed is applied to a case study and 
the results and analysis obtained from the design of ATO speed profiles are discussed 
in section 3.4. In addition, in section 3.4 the energy savings associated with the increase 
of the number of ATO speed profiles to be programed in the regulation system are 
analysed. Finally, conclusions are presented in section 3.5. 

3.2. DESIGN OF EFFICIENT AND ROBUST ATO SPEED PROFILES  

In this section, the Pareto curve of optimal ATO speed profiles is calculated, where the 
objectives are the running time and the energy consumption. For each running time the 
optimisation algorithm has to find the ATO speed profile with the minimum 
consumption. For example, in Figure 3-1, two speed profiles with the same running time 
are shown. These optimal speed profiles are later used by the regulation system in an 
operation period (peak or non-peak hour). The speed profiles must be robust against 
variations of the train mass in that period. The decision variables are the driving 
parameters of the speed profiles, that is, the typical configuration variables of the ATO 
equipment: coasting speed (𝑣𝑐), re-motoring speed (𝑣𝑟), holding speed (𝑣ℎ) and braking 
rate (𝑏). The ATO sets the train traction to zero (coasting) when train speed reaches the 
coasting speed value 𝑣𝑐, and the ATO sets train traction to maximum force when the 
train speed falls below 𝑣𝑐 − 𝑣𝑟. When the train is controlled by a holding speed 
parameter 𝑣ℎ, the ATO regulates the train traction to maintain the train speed to this 
value. Each ATO speed profile (a possible solution) is defined as a configuration vector 
of driving parameters 𝑥𝑝⃗⃗⃗⃗  = (𝑏, 𝑣ℎ , 𝑣𝑐 , 𝑣𝑟). In addition, the ATO always observes the 
speed limitations and the stopping point at the station by applying breaking force when 
necessary (see (Domínguez et al., 2011b) for more details). 

In the following subsections, the robust optimisation method is described and also the 
alternative procedure based on conservation of the driving pattern. 

3.2.1. GENERATION OF ROBUST PARETO FRONT OF OPTIMAL SPEED PROFILES 
USING A ROBUST OPTIMISATION TECHNIQUE  

A robust solution is the less sensitive to perturbations in the decision variables in its 
vicinity (Deb and Gupta, 2005). The multi-objective optimisation approach deals with 
the search of solutions which are non-dominated by any other feasible solutions. Thus, 
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it is necessary to check the sensitivity of each solution 𝑥𝑝⃗⃗⃗⃗  in the 𝑛𝑜 objectives to changes 
in all the decision variables to provide a robust Pareto front.  

In (Deb and Gupta, 2005), two approaches are proposed to obtain the robust optimal 
front. In order to obtain a multi-objective robust solution Type-I a mean effective 

objective function (𝑓 𝑒𝑓𝑓(𝑥𝑝⃗⃗⃗⃗ )) is used for the optimisation instead of the original 

objective function (𝑓 (𝑥𝑝⃗⃗⃗⃗ )). Therefore, a solution 𝑥𝑝⃗⃗⃗⃗ ∗ is a robust solution of Type-I if it 
belongs to the Pareto-optimal solution of the following problem (3.1). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 
𝑒𝑓𝑓
(𝑥𝑝⃗⃗⃗⃗ ) = (𝑓1

𝑒𝑓𝑓(𝑥𝑝⃗⃗⃗⃗ ), 𝑓2
𝑒𝑓𝑓(𝑥𝑝⃗⃗⃗⃗ ),… , 𝑓𝑛𝑜

𝑒𝑓𝑓(𝑥𝑝⃗⃗⃗⃗ )) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥𝑝⃗⃗⃗⃗  𝜖 𝑆 

(3.1) 

where 𝑆 is the solution space and 𝑓𝑗
𝑒𝑓𝑓(𝑥𝑝⃗⃗⃗⃗ ) is the mean effective objective function of 

the 𝑗 objective for the neighbourhood 𝛿. The mean effective objective function is 
defined in (3.2). 

𝑓𝑗
𝑒𝑓𝑓(𝑥𝑝⃗⃗⃗⃗ ) =

1

|𝐵𝛿|
∫ 𝑓𝑗

 

�⃗� ∈𝑥 +𝐵𝛿

(𝑦 )𝑑𝑦 (3.2) 

where |𝐵𝛿| is the Hypervolume (Deb and Gupta, 2005) of the chosen vicinity 𝛿. 

The second approach proposed by Deb and Gupta adds a restriction to the original 
problem so that the user can adjust the maximum value of the solutions sensitivity. 
Therefore, a solution 𝑥𝑝⃗⃗⃗⃗ ∗ is a robust solution of Type-II if it belongs to the Pareto-
optimal solution of the problem (3.3): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑓1(𝑥𝑝⃗⃗⃗⃗ ), 𝑓2(𝑥𝑝⃗⃗⃗⃗ ),… , 𝑓𝑛𝑜(𝑥𝑝⃗⃗⃗⃗ )) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
‖𝑓 𝑃(𝑥𝑝⃗⃗⃗⃗ ) − 𝑓 (𝑥𝑝⃗⃗⃗⃗ )‖

‖𝑓 (𝑥𝑝⃗⃗⃗⃗ )‖
≤ 𝜂 

𝑥𝑝⃗⃗⃗⃗  𝜖 𝑆 

(3.3) 

where 𝑓 𝑃(𝑥𝑝⃗⃗⃗⃗ ) is the perturbed objective vector and 𝜂 is the maximum value of 
sensitivity required. The perturbed objective vector can be chosen either as the worst 
case or as the mean effective of the neighbourhood. 

Type-II was chosen to obtain the optimal speed profiles because it is more practical than 
Type-I as it is highlighted in (Deb and Gupta, 2005). Furthermore, in the present ATO 
design problem, the worst cases, that is, the maximum variations of running time and 
energy consumption occur in the extreme values of train mass for the considered 
operation period. As previously mentioned, the high precision of the ATO equipment in 
the execution of the driving parameters is affected, in practice, only by the uncertainty 
in the mass of the train associated with the passenger load. 

Therefore, the Type-II robust optimisation model has been selected because the 
robustness can be controlled by a maximum sensitivity value. The sensitivity is 
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controlled comparing the objective function for the mean value of the train mass in the 
operation period with the worst case (maximum and minimum mass). The optimisation 
problem is formulated as (3.4). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 (𝑥𝑝⃗⃗⃗⃗ ) = (𝑓1(𝑥𝑝⃗⃗⃗⃗ ), 𝑓2(𝑥𝑝⃗⃗⃗⃗ ),… , 𝑓𝑛𝑜(𝑥𝑝⃗⃗⃗⃗ )) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
‖𝑓 𝑚𝑎𝑥
𝑃 (𝑥𝑝⃗⃗⃗⃗ ) − 𝑓 (𝑥𝑝⃗⃗⃗⃗ )‖

‖𝑓 (𝑥𝑝⃗⃗⃗⃗ )‖
≤ 𝜂 

‖𝑓 𝑚𝑖𝑛
𝑃 (𝑥𝑝⃗⃗⃗⃗ ) − 𝑓 (𝑥𝑝⃗⃗⃗⃗ )‖

‖𝑓 (𝑥𝑝⃗⃗⃗⃗ )‖
≤ 𝜂 

𝑥  𝜖 𝑆 

(3.4) 

where 𝑓 𝑚𝑎𝑥
𝑃 (𝑥𝑝⃗⃗⃗⃗ ) and 𝑓 𝑚𝑖𝑛

𝑃 (𝑥𝑝⃗⃗⃗⃗ ) are the objective vector for the maximum and the 

minimum mass, for the considered period, and 𝑓 (𝑥𝑝⃗⃗⃗⃗ ) is the objective vector for the 
mean value of the mass in that period. 

A multi Objective Particle Swarm Optimisation algorithm with crowding distance 
mechanism (MOPSO-CD) (Domínguez et al., 2014) is applied to generate the Pareto 
curve of the problem defined in (3.4).  

In the MOPSO algorithm, each particle (possible solution) is treated as a point in an 𝑛𝑜-
dimensional space. The particle “flies” over the search space to find promising regions 
of the landscape. The movement of a particle is directed by the best position found by 
itself (pbest) and the best position (gbest) found by the whole swarm (population). So 
the position and the velocity of the particle 𝑗 are updated at each iteration using (3.5) 
and (3.6). 

𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) = 𝑤 ∙ 𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡 − 1) + 𝑐1 ∙ 𝑟1 (𝑝 𝑗 − 𝑥𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡 − 1)) + 𝑐2 ∙ 𝑟2 (𝑝 𝑔 − 𝑥𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡 − 1)) (3.5) 

𝑥𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) = 𝑥𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡 − 1) + 𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) (3.6) 

where 𝑥𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) and 𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) are the position and the speed of particle 𝑗 at iteration 𝑖𝑡. 

The positions 𝑝 𝑗 and 𝑝 𝑔 are respectively the pbest and the gbest. 𝑐1 and 𝑐2 are positive 

constants called (“social factors”), and 𝑟1 and 𝑟2 are random numbers between 0 and 1. 
𝑤 is an inertia weight that controls the effect of the previous history of velocities. 

The MOPSO algorithm deals with a multi-objective optimisation problem where the 
objective is to find the Pareto curve. Pareto curve is the set of the non-dominated 
solutions. A solution is dominated if there is another feasible solution that performs a 
lower value in one objective (energy consumption or running time) and, it has a lower 
or equal value in the other objective. The objective function is shown in (3.7).  

Minimise 𝑓 (𝑥𝑝⃗⃗⃗⃗ ) = (𝑅𝑇(𝑥𝑝⃗⃗⃗⃗ ), 𝐸𝐶(𝑥𝑝⃗⃗⃗⃗ )) (3.7) 

where 𝑅𝑇(𝑥𝑝⃗⃗⃗⃗ ) is the running time and 𝐸𝐶(𝑥𝑝⃗⃗⃗⃗ ) is the energy consumption. 



 Robust speed profiles for the automatic traffic regulation system in 
metropolitan lines  

 

42 
 

𝑅𝑇(𝑥𝑝⃗⃗⃗⃗ ) and 𝐸𝐶(𝑥𝑝⃗⃗⃗⃗ ) are calculated by means of a detailed simulator of the train 
movement and the ATO equipment (Domínguez et al., 2011b). 

The algorithm maintains an external archive A that stores the non-dominated solutions 
found throughout the iterations. The gbest is randomly selected at each iteration from 
the solutions in the archive A. However, if the solutions of A were selected based on 
uniform probability distribution, the resulting Pareto curve would contain substantial 
gaps. To avoid this problem, the crowding distance MOPSO (Raquel and Naval,Jr., 2005) 
selects the gbest from a top portion of the archive A sorted in decreasing values of 
crowding distance (CD). The CD is calculated as the sum of distances in all the objectives 
of its two neighbouring solutions 

On the other hand, the pbest of a particle is selected as the current position if it 
dominates the previous pbest. If the previous pbest dominates the current position, the 
pbest remains. However if the current position of the particle and its pbest are mutually 
non-dominated, the pbest is selected randomly between them.  

3.2.2. GENERATION OF ROBUST PARETO FRONT USING AN ALTERNATIVE 
METHOD BASED ON DRIVING PATTERNS 

The driving pattern determines the shape of the speed profile. A pattern is 
characterised by the sequence of the different working modes that the train executes 
during its journey. These working modes are traction (𝑇), braking (𝐵), coasting (𝐶) and 
final braking (𝐹𝐵). Alternative solutions 𝑥𝑝⃗⃗⃗⃗   are obtained exploring the variable decision 
space (values for 𝑣𝑐, 𝑣𝑟, 𝑣ℎ, 𝑏). They are simulated to calculate their associated pattern, 
running time and energy consumption.  

In Figure 3-1, two examples of driving patterns are presented. The ATO command is the 
ratio between the force demanded by the automatic driver and the maximum force that 
the motor can provide. Positive values of the ATO command produce traction force and 
negative values of the ATO command produce braking force. In coasting-remotoring 
stages the ATO command present typically two values (0 and 1 in Figure 3-1). Zero value 
of the ATO command corresponds to a coasting phase (see (Domínguez et al., 2011b) 
for more details about ATO model). 
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Pattern T-C-T-FB 

 
Pattern T-C-T-C-T-C-FB 

Figure 3-1. Different driving patterns with the same running time 

The driving pattern of a speed profile provides information to the designer about the 
passengers’ comfort. Furthermore, information about the robustness of the speed 
profile can be obtained from the driving pattern. Frequently, the speed profiles which 
change their driving pattern with the train load have associated high variations in 
running time and energy consumption. A solution 𝑥𝑝⃗⃗⃗⃗  is said to be pattern robust if its 
associated pattern does not change with train mass variations.  

Therefore, the following alternative method is proposed to obtain a robust Pareto front 
based on the detection of changes in the pattern: 

 Step 1: Obtain the Pareto front considering the mean value of the train mass in 
the operation period using the MOPSO-CD algorithm without any robustness 
restriction 

 Step 2: Identify the different driving patterns of the solutions obtained in step 1. 

 Step 3: Eliminate the solutions with uncomfortable patterns according to the 
designer’s criteria. 

 Step 4: For each pattern p (not eliminated in step 3), obtain a different pattern-
robust Pareto front using the MOPSO-CD adding the following restriction: 

- The solution 𝑥𝑝⃗⃗⃗⃗  must perform a pattern 𝑝𝑡 using the mean value of the 
train mass (if not, 𝑥𝑝⃗⃗⃗⃗  is discarded). 

- The solution 𝑥𝑝⃗⃗⃗⃗  must be pattern-robust for the worst-case train mass 
variations, that is, it must conserve the pattern 𝑝𝑡 simulating with the 
maximum and the minimum values of train mass in the operation period.  

 Step 5: The global robust Pareto front is made by the non-dominated solutions 
combining all the previous Pareto fronts of each 𝑝𝑡 in step 4. 
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With this alternative method, the designer can filter or give priority to certain driving 
patterns over other patterns based on comfort criteria defined by the operator 
(typically the maximum number of coasting-remotoring cycles, and the minimum 
duration of the last traction before braking) (Domínguez et al., 2014). In the case study 
explained in Section IV the solutions obtained using this method and using the method 
explained in Section 3.2.1 will be compared. 

3.3. OPTIMAL SELECTION OF THE ATO SPEED PROFILE SET 

Once the robust Pareto front has been obtained, the objective of the optimisation 
method described in this section is to select a set of ATO speed profiles to be 
programmed in the ATO equipment. These speed profiles are optimised for a specific 
operation period (i.e. peak-hour or non-peak-hour) to be handled by the traffic 
regulation system during that period. 

The candidates to be programmed are the speed profiles from the robust Pareto front 
obtained applying the method described in the previous section. Therefore, the 
candidates are the most efficient speed profiles for each possible running time. 

The problem is stated as a stochastic optimisation model. The statistical distribution of 
running times demanded by the traffic regulation system between two stations in the 
considered operation period is an input data for the proposed model. Figure 3-2 shows 
an example of a running time distribution, where 𝑝𝑠 is the statistical probability of 
demanding a running time. This figure shows a typical case where the highest 
probability is concentrated around the times close to the nominal running time (125 
seconds). The scenarios where the regulation system demands higher running times 
than the nominal one occur when the train is slowed down by the regulation system to 
reduce its time interval with the following train (Fernandez et al., 2006). On the other 
hand, scenarios that require lower running times than the nominal one occur when the 
train is delayed. 

The statistical distribution of running times is discretised into 𝑁𝑆 scenarios with regular 
time intervals assigning a probability 𝑝𝑠 to each scenario of running time 𝑅𝑇𝑠 as shown 
in Figure 3-2.  

 
Figure 3-2. Example of the discrete probability distribution of the running time demanded by the 

regulator  

The objective is to select a set of 𝐷 number of speed profiles from the Pareto front (3.8). 
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𝑠𝑡𝑑  ∈  𝐽              𝑑 =  (1, 2. . 𝐷) (3.8) 

where 𝑠𝑡𝑑  is the d speed profile of the pre-programmed set 𝑠𝑡⃗⃗  ⃗ with an associated 
running time 𝑅𝑇𝑑 and energy consumption 𝐸𝐶𝑑. 𝐽 is the Pareto front. 

The energy consumption associated with the scenario 𝑠 is the energy consumption of 
the speed profile selected from the pre-programmed set by the traffic regulation 
system. In order to obtain the energy consumption of each scenario it is necessary to 
apply the selection logic of the regulation system (3.9). 

𝐸𝐶𝑠 = {𝑚𝑖𝑛(𝐸𝐶𝑑)  |  𝑅𝑇𝑑 ≤ 𝑅𝑇𝑠} (3.9) 

The regulation system on-line selects the speed profile that has the lowest energy 
consumption from those that perform a running time lower than or equal to the 
demanded running time (3.9). The running time demanded by the traffic regulation 
system is constrained by the shortest running time associated with the interstation. 
Furthermore, the flat out speed profile will always be selected as an element of the pre-
programmed set to ensure that there is a solution that fulfils (3.9) when the regulator 
demands the shortest time (see Figure 12 in the case study). 

The aim of the problem is the selection of a set of speed profiles with the minimum 
expected energy consumption. Therefore, the objective function is expressed in (3.10): 

𝑚𝑖𝑛∑(𝑝𝑠 ∙ 𝐸𝐶𝑠)

𝑁𝑆

𝑠

 (3.10) 

Particle Swarm Optimisation algorithm (PSO) (Kennedy and Eberhart, 1995, 2001, 1997) 
is used to solve this problem because its ability to work with discrete exploration spaces, 
its simplicity in concept and coding implementation and its less sensitivity to the nature 
of the objective function. The algorithm makes use of a swarm of 𝑁𝑃 particles whose 

position (𝑠𝑡⃗⃗  ⃗𝑗) and velocity (𝑣𝑝⃗⃗⃗⃗ 𝑗) is randomly initialised. The position 𝑠𝑡⃗⃗  ⃗𝑖 of the particle 𝑗 

is defined by the speed profiles of the Pareto front 𝐽 selected to form the pre-

programmed set 𝑠𝑡⃗⃗  ⃗𝑗. The information of the Pareto front is introduced in the algorithm 

assigning to each speed profile, besides their running time and energy consumption, an 
integer number 𝑖 which represents their position in the Pareto front respect to the other 
speed profiles when the Pareto set is time sorted. Therefore, the pre-programmed set 

𝑠𝑡⃗⃗  ⃗𝑗 is a vector of 𝐷 dimensions where each dimension 𝑠𝑡𝑗
𝑑 has a value 𝑖 assigned which 

represents the Pareto position of a speed profile selected in the pre-programmed set 

𝑠𝑡⃗⃗  ⃗𝑗. The dimensions of each 𝑠𝑡⃗⃗  ⃗𝑗 vector are sorted as a function of the position of the 

Pareto position 𝑖 in order to increase the computational efficiency of the algorithm. The 
movement of the particles varies depending on their velocity, which is updated at each 
iteration 𝑖𝑡. The value of the velocity depends on the best position found by the particle 
(𝑝 𝑖) and the best position found by the whole swarm (𝑝 𝑔) following (3.11) and (3.12).  

𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) = 𝑤 ∙ 𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡 − 1) + 𝑐1 ∙ 𝑟1 (𝑝 𝑗 − 𝑠𝑡⃗⃗  ⃗𝑗(𝑖𝑡 − 1)) + 𝑐2 ∙ 𝑟2 (𝑝 𝑔 − 𝑠𝑡⃗⃗  ⃗𝑗(𝑖𝑡 − 1)) (3.11) 

𝑠𝑡⃗⃗  ⃗𝑗(𝑖𝑡) = 𝑠𝑡⃗⃗  ⃗𝑗(𝑖𝑡 − 1) + 𝑣𝑝⃗⃗⃗⃗ 𝑗(𝑖𝑡) 
(3.12) 
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where 𝑐1 and 𝑐2 are the “social factors” constants, 𝑟1 and 𝑟2 are random numbers 
between 0 and 1 and 𝑤 is an inertia weight that controls the effect of the previous 
history of velocities. 

The pbest (𝑝 𝑖) and gbest (𝑝 𝑔) are obtained assigning at each solution a fitness value. 

The fitness value is the expected value of the energy consumption of the pre-
programmed set. Thus, a lower value of fitness implies a better solution. 

PSO algorithm is a single-objective algorithm. Therefore, it does not require an external 
archive A because the final solution is the gbest in the last iteration (Figure 3-3 and 
Figure 3-4). 

 

Figure 3-3. Pseudocode of PSO algorithm to obtain the energy efficient pre-programmed set 

 

Figure 3-4. Pseudocode of the algorithm used to calculate the expected value of the energy 
consumption of a solution  

For i = 1:NP   NP particles (population size) 

{stî, vî}   Initialize positions & velocities 

Sort(stî) Sort the dimensions of the vector according to position  

in Pareto front 

yi = f(stî)  Evaluate objective functions 

pî = stî  Initialize pbest 

End For 

 

pĝ = min(f(pî))   Initialize gbest 

For n = 1:N   N iterations 

For i = 1:NP   NP particles 

For d = 1:D   D dimensions of vectors stî and vî 

 vi
d = wvi

d+c1r1(p
i

d -sti
d)+c2r2(p

g

d-sti
d)  Update velocity 

 sti
d = sti

d+vi
d     Update position 

End For 

 

Sort(stî) Sort the dimensions of the vector according to  

position in Pareto front 

yi = f(stî)    Evaluate objective function 

 

If yi< f(p
î
) Then p

î
= stî  Update pbest 

End For 

 

pĝ = min(pî)   Update gbest 

 

End For 

//f(stî) function//    consumption of stî 

 

totalCons=0    Initialization  

 

For s = 1:S    S scenarios 

For d = 1:D    D dimensions 

If Td <=          If RTd <= RTs Then      Search the closer speed profile with lower time  

ECs = ECi,d    than the time required in scenario s 

 Else 

Exit For 

End If 

End For 

 

totalCons = totalCons + ps ∙ Cs  Total consumption is a weighted sum of each scenario 

consumption 

End For 

 

f(stî)= totalCons 
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3.4. CASE STUDY 

The methods previously described have been applied to a case study considering a 
typical journey between stations in Metro de Madrid of 1500 meters, with different 
speed limits along the journey (see Figure 3-6). A class-3000 train of Metro de Madrid 
has been modelled. The empty mass of the train is 160 tons, the maximum passenger’s 
load is 78 tons and the length of the train is 90 meters. The maximum power of the train 
is 1500 kW and the traction network voltage is 1500 V DC.  

The speed profile design is carried out for an operation period characterised by an 
average passenger load of 50% of the maximum. Furthermore in the 90% of the 
situations the passenger load is between 30% and 70% of the maximum. These limits 
will be used to check the robustness conditions of the speed profiles to mass variations. 

A detailed train simulator (average accuracy of 4.2% in traction energy and 1.0% in 
running times) and a simulator of real ATO equipment both described in (Domínguez et 
al., 2011b) are used to calculate the running time and the energy consumption of speed 
profiles. 

3.4.1. GENERATION OF THE ROBUST PARETO FRONT 

The robust MOPSO-CD algorithm (Type-II) has been applied to the case study and the 
results obtained with the MOPSO-CD algorithm (Domínguez et al., 2014) and the 
proposed robust MOPSO-CD are shown  in Figure 3-5. The robustness coefficient 𝜂 is 
set to 0.07 because this value has demonstrated an acceptable performance in the 
context of the problem. 

 
Figure 3-5. Comparison of the current Pareto front and robust Pareto front using the robust MOPSO-CD 

algorithm 

Comparing both Pareto fronts, the robust one presents a wider time-gap around the 
running time 120 s, and higher energy consumption from 135 to 145 s. The steps in 
energy consumption at 135 s and at 145 s correspond to a change in the driving pattern.  

Non-robust solutions, that suffer great variations in time and energy consumption with 
train load, were analysed. It was observed that most of these solutions change the 
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shape of their driving pattern for extreme values of train load with respect to the 
average value. For instance, Figure 3-6 shows two different speed profiles considering 
the same ATO parameters (𝑣𝑐  = 58 km/h, 𝑣𝑟 = 21 km/h, 𝑏 = 0.65 m/s2) but different 
passenger load (50% and 100%). The increase in the train mass causes a lower starting 
acceleration. For this reason, the train does not reach the coasting speed, and instead 
the control system activates the braking mode to fulfil the speed limitation of 60 km/h. 
This fact changes the shape of the speed profile and causes large differences in energy 
consumption and running time as shown in Table 3-1. 

 

Figure 3-6. Simulation of ATO configuration: (𝑣𝑐 = 58 𝑘𝑚/ℎ, 𝑣𝑟 = 21 𝑘𝑚/ℎ, 𝑏 =  0.65 𝑚/𝑠2) with 
50% and 100% passenger load 

Passengers’ load Time (seconds) Energy consumption (kWh) Pattern 

50% 130.30 17.11 T-C-T-FB 

100% 121.25 20.73 T-B-T-C-FB 

Table 3-1. Performance of ATO configuration: (𝑣𝑐 = 58 𝑘𝑚/ℎ, 𝑣𝑟 = 21 𝑘𝑚/ℎ, 𝑏 =  0.65 𝑚/𝑠2) 

This effect has been studied during the execution of the robust MOPSO-CD algorithm. 
With this purpose, pattern variations has been checked, and the number of pattern 
changes are counted separately for robust a non robust solutions. In addition, different 
values of the η parameter have been considered in order to compare the results for 
higher and lower sensitivity (see Table 3-2).  

𝜂 Rejected solutions 
Rejected non pattern- robust 

solutions 

Accepted non pattern- robust 

solutions 

0.15 78 78 585 

0.1 108 108 559 

0.07 132 132 482 

0.04 1206 568 374 

0.02 1275 322 115 

0.01 3948 3402 0 

Table 3-2. Performance of the robustness restriction in the robust MOPSO algorithm for different η 
values 

For 𝜂 higher than or equal to 0.07, all the solutions rejected by the robust restriction 
change their pattern, so they are also non pattern robust to train load changes. On the 
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other hand, there are many solutions that fulfil the robust restriction but change their 
pattern.  

For 𝜂 values lower than 0.07 the situation changes: the robust algorithm rejects many 
solutions that are pattern robust, and a considerable amount of non pattern-robust 
solutions continue being accepted by the robust restrictions.  

In conclusion, for high enough 𝜂, solutions that preserve the driving pattern against load 
changes are also robust in energy and time. This robustness criterion based on patterns 
is more restrictive and can be useful for designers, because it guarantees a qualitative 
level of passenger’s comfort associated with the pattern (see next section). 

3.4.2. GENERATION OF THE ROBUST PARETO FRONT USING THE ALTERNATIVE 
METHOD BASED ON DRIVING PATTERN 

The first step to obtain the robust Pareto front based on maintaining the driving 
patterns is the identification of patterns present in the original Pareto front. For this 
purpose, the MOPSO algorithm without any robustness restriction and average load is 
executed to obtain the optimal front as shown in Figure 3-7. 

 

Figure 3-7. Optimal Pareto front of the possible speed profiles and driving patterns obtained 

In this case study, there are 9 different driving patterns. The shape of some driving 
patterns is shown in Figure 3-8. Patterns 3 and 8 are rejected because they present a 
short traction period before starting the final braking. This situation can be perceived 
by the passengers as uncomfortable. 
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Pattern 1: T-B-T-FB Pattern 9: T-C-B-T-C-FB 

  
Pattern 3: T-C-T-C-T-C-T-FB Pattern 8: T-C-T-C-T-C-FB 

Figure 3-8. Example of the speed profile of different patterns 

For each non-filtered driving pattern, a Pareto front of the solutions that performs each 
pattern is obtained. A pattern restriction is added to the MOPSO algorithm to select 
solutions of the specific pattern. Then, the pattern-robustness of each solution is 
checked. All the solutions are simulated using the maximum value of the train load 
(70%), and using the minimum one (30%). Solutions that change the pattern (not 
pattern-robust) are eliminated and the result is a set of robust Pareto fronts for each 
driving pattern (Figure 3-9). 

 
Figure 3-9. Pattern-robust Pareto fronts for each driving pattern 

Dominated solutions are eliminated to obtain a single robust Pareto front (Figure 3-10). 
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Figure 3-10. Robust Pareto front obtained using the method based on driving pattern robustness 

It has been necessary to simulate an average of 5000 journeys to obtain each robust 
Pareto front.  

In Figure 3-11, the comparison of this solution with the previously obtained by using the 
robust MOPSO-CD algorithm for 𝜂 =  0.07, shows that the number of solutions is 
higher, and the running-time gaps have been reduced. The designer can select a speed 
profile taking into account not only its energy consumption but also the preferred 
driving patterns, considering the passenger comfort or other operation criteria. 

 
Figure 3-11. Comparison between robust MOPSO-CD algorithm and the pattern robust algorithm 

3.4.3. OPTIMAL SELECTION OF THE PRE-PROGRAMMED SET OF ATO SPEED 
PROFILES  

Traffic regulation systems typically handle a set of 4 pre-programmed alternative speed 
profiles between stations (Fernandez et al., 2006). The first speed profile (number 0) 
performs the lowest running time (flat-out), and it is used to recover delays. The second 
speed profile (number 1) is usually chosen to provide the nominal running time. The 
third (number 2) and the fourth (number 3) speed profiles have higher associated 
running times and lower energy consumption, and are used to reduce the time interval 
with the following train. Typically, the speed profiles have been selected equidistant, 
that is uniformly distributed with the same time separation (Domínguez et al., 2011b). 
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The optimisation method explained in Section 3.3 has been applied to our case study to 
select the 4 speed profiles. The inputs of the proposed PSO algorithm are the robust 
Pareto front obtained in Section 3.4.2, the size of the pre-programmed set (4 speed 
profiles in this case study) and the discrete statistical distribution of running times 
demanded by the traffic regulation system at the control centre. Table 3-3 shows the 
tuned parameters of the PSO algorithm. 

𝑐1  𝑐2  𝑤 𝑁𝑃 Iterations 

1 1 0.6 300 400 

Table 3-3. Tuned parameters of the PSO algorithm 

Three different shapes of probability distributions of demanded running times are 
considered in this study: decreasing, increasing and uniform distributions. The first one 
represents stations where delays are frequent, or the nominal running time is close to 
the minimum one. The second distribution represents stations where trains are 
regulated frequently to reduce their time interval with the following train, or the 
nominal running time is close to the maximum one. The third distribution corresponds 
to an intermediate situation where running times are demanded with the same 
probability. 

Considering the previous distributions of demanded running times, the four optimal 
speed profiles are obtained by the proposed PSO algorithm (see Figure 3-12). 

Figure 3-12 shows that the selected optimal solutions are not uniformly distributed in 
time (as the typical design criterion does), when the objective function is the 
minimisation of the energy consumption along an operation period. 

 
Figure 3-12. Optimal speed profiles selected by the PSO algorithm 

The PSO algorithm selects the speed profiles where the energy benefit is higher taking 
into account the frequency of use of the speed profiles. Figure 3-12 shows that the 
optimal selection is the same for the decreasing and the uniform distributions, and the 
optimal selection is different in the increasing probability distribution case. 

Table 3-4 shows the numerical results in terms of energy consumption and savings.  
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Decreasing probability 

(kWh) 
Rising probability (kWh) 

Constant probability 

(kWh) 

Optimal 16.64 12.90 14.78 

Equidistant 17.25 15.02 16.11 

Savings 3.5% 14.1% 8.3% 

Table 3-4. Energy consumption and savings obtained comparing the optimisation results with the 
equidistantly pre-programmed set 

The speed profiles selected by the uniform distribution of running times are not the 
most efficient. The optimal selection of speed profiles generated by the PSO algorithm 
provides energy savings between 3.5% and 14% compared with the typical design 
criterion. These are additional savings to those obtained from the optimal design of the 
ATO speed profiles (that are around 20%) described in (Domínguez et al., 2011b). 

Optimal solutions provide average advance time of 4,8 s (decreasing and constant 
probability distribution case) and 6,5 s (increasing probability distribution case). These 
advance times are compensated increasing the dwell time, and thus, there is no 
schedule advance at departures. 

In the previous optimisation model, the number of speed profiles is a fixed parameter. 
However, the new signalling system based on radio communication, CBTC, allows the 
programming of more speed profiles in the equipment. In order to exploit this 
advantage, the energy efficiency that can be obtained increasing the number of speed 
profiles to be pre-programmed has been analysed. In addition, when the number of 
speed profiles is increased, the schedule advance at arrivals is reduced. 

The PSO algorithm has been executed with different sizes (from 2 to 20 speed profiles) 
of the pre-programmed set, taking into account the 3 previous probability distributions. 
The curves plotted in Figure 3-13 represent the energy savings obtained for each size 
compared with size = 1. 

 
Figure 3-13. Expected value of energy savings obtained for different pre-programmed set size compared 

with the pre-programmed of 1 speed profile 

In view of the results, it can be concluded that the lower importance have the delays in 
the line the larger the achievable energy saving. The usual 4 speed profile pre-
programmed set is in general an acceptable solution. Nevertheless, significant energy 
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savings can be reached with 1 or 2 extra-speed profiles. Table 3-5 compares the optimal 
sets of 4 and 6 speed profiles. 

 Decreasing prob.  (kWh) Increasing prob.  (kWh) Constant prob.  (kWh) 

6 speed profiles 16.04 12.43 14.31 

4 speed profiles 16.64 12.90 14.78 

Savings 3.64% 3.60% 3.19% 

Table 3-5. Comparison of the optimal pre-programmed set of 4 and 6 speed profiles 

3.5. CONCLUSIONS AND CONTRIBUTIONS 

A new procedure to design energy efficient speed profiles to be programed in the 
signalling equipment of a metropolitan system has been proposed. The procedure takes 
into account the main uncertainties in the traffic operation: train load and delays in the 
line.  

The proposed model is based on the calculation of the Pareto curve of the possible 
speed profiles that are robust against passenger load variations. Then, the set of speed 
profiles to be programmed in the signalling system is taken from the robust Pareto front 
by means of a PSO optimisation algorithm, considering energy efficiency and delay 
distribution in the line. 

Two algorithms for obtaining the robust Pareto front have been proposed and 
compared using a case study. The first model is a robust multi-objective optimisation 
algorithm that makes use of a robust definition as a restriction. The second one is an 
alternative method based on the robustness of the solution to changes in their driving 
pattern. It has been shown that pattern-robustness requirement is more restrictive than 
definition of robustness type-II. Moreover, the pattern-robustness requirement is more 
useful because it guarantees the comfort of the speed profile. Besides that, the 
alternative procedure has found more solutions than the standard robust optimisation 
algorithm. For this reason, the pattern recognition gives to the designer more possible 
solutions to choose and, some of them, have lower energy consumption for a given 
running time. 

The proposed selection model including train delays information has been compared 
with the traditional selection method that distributes speed profiles uniformly in time. 
The results show important energy savings, around 3 - 14%. This model has also been 
used to study the energy benefits obtained from increasing the number of speed 
profiles in the pre-programmed set. The typical size of this set is 4 and the energy 
consumption can be reduced 3.5% by the inclusion of two extra speed profiles. 

The main contributions of this chapter are: 

 The application of the robust optimisation method proposed in (Deb and Gupta, 
2005) combined with MOPSO algorithm to be applied in the ATO eco-driving 
problem. 

 A process to design robust and efficient ATO speed profiles based on the proposed 
pattern of the driving model. 
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 The comparison between the method proposed in (Deb and Gupta, 2005) and the 
pattern-based method proposed in this thesis. 

 A model to select the optimal speed profiles from a Pareto front to be programmed 
in the ATO equipment based on the delay distribution in the line. 

 The application of PSO algorithm to obtain the optimal pre-programmed set of 
speed profiles of the traffic regulation system. 

 The assessment of the energy saving that can be obtained selecting optimally the 
pre-programmed set, using delay information and  the energy savings that can be 
obtained increasing the number of speed profiles in the pre-programmed set.





 

 
 

CHAPTER 4 

4. REAL TIME ECO-DRIVING OF HIGH-SPEED TRAINS 

4.1. INTRODUCTION 

Previous developments of the thesis were focused on urban railways. The next chapters 
will be dedicated to long-distance lines, particularly, to high-speed railways. High-speed 
railways (HSR) are expanding throughout the world becoming an important energy 
consumer. It is considered an energy efficient transport mode (Givoni, 2007), however, 
it can be improved and many studies are being carried out to reduce the energy 
consumption of HSR (Hasegawa et al., 2016). These works have the objective of 
reducing both the economic costs for railway operators and the environmental impact 
of railways  (Feng et al., 2014, 2013b). As the rest of the thesis, the work developed is 
focused on eco-driving framework. 

There are important differences when comparing urban and high-speed railways that 
affect the eco-driving application. Metropolitan railways are highly automated systems 
where trains are typically driven by automatic train operation (ATO) equipment. The 
driving strategies applied in ATO equipped trains are basically: speed regulation (Feng 
et al., 2012; Liu and Golovitcher, 2003) and coasting-remotoring defined by coasting 
points (Coleman et al., 2010) or by upper and lower speed limits (Bocharnikov et al., 
2007; Domínguez et al., 2014, 2011b; Howlett, 1996). Typically, high-speed trains are 
driven manually (Yang et al., 2015) and the journeys between stations are long-distance 
travels. The driving strategies applied in HSR are speed regulation (Ji et al., 2016) and 
its efficient version, holding speed without braking (Hwang, 1998; Sicre et al., 2014, 
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2012). It consists in maintaining a constant speed as long as traction effort is needed. If 
braking is needed to maintain the speed command, the train will coast increasing its 
velocity in order to save energy. This command has been tested in Spanish high-speed 
lines and proved to be energy efficient and easily executed by train drivers (Sicre et al., 
2012). 

Most of the eco-driving work in the literature is related to the offline planning of 
railway’s efficient driving using analytical methods (A. R. Albrecht et al., 2013; T. 
Albrecht et al., 2013; Gu et al., 2014; Howlett et al., 2009; Khmelnitsky, 2000; Liu and 
Golovitcher, 2003; Lu et al., 2013; Miyatake and Ko, 2010; Su et al., 2013; Wang et al., 
2014; J. Yang et al., 2016) or Nature Inspired Computational Intelligence techniques 
(Bocharnikov et al., 2010; Chang and Sim, 1997; Cucala et al., 2012b; Huang et al., 2015; 
Ke et al., 2012; Keskin and Karamancioglu, 2017; Kim et al., 2013; Lechelle and 
Mouneimne, 2010; Li and Lo, 2014; Lu et al., 2013; Sicre et al., 2012; Wei et al., 2009; 
Wong and Ho, 2004b, 2003; Yang et al., 2012). 

However, optimal speed profiles can also be obtained in the regulation stage as an on-
line calculation. If the train is delayed, the offline eco-driving design is not valid anymore 
and a new on-line eco-driving calculus is required to recover the delay in an energy 
efficient way. The challenge of the on-line eco-driving application is the low 
computation time available to carry out the optimisation and the changing situations 
that may occur along the trip.  

Some solutions have been proposed in the literature to solve the on-line eco-driving 
design. Several works make use of analytical models (Coleman et al., 2010; Howlett et 
al., 1994; Khmelnitsky, 2000; Liu and Golovitcher, 2003). A pseudospectral method was 
applied by Wang et. al. to transform the optimal train control into a Mixed Integer Linear 
Programming problem (MILP) (Wang et al., 2014, 2013). Pseudospectral method 
approximates the differential equations of the problem by orthogonal polynomials. 
Using this method, Wang et. al. obtained solutions with very low computational time. 
However, the train model lies in simplifications, it does not take into account comfort 
restrictions and, besides, pseudospectral method introduces additional inaccuracies 
because of the approximations made. 

Other works combine GA with simulation (Chang and Sim, 1997; Wong and Ho, 2004b) 
but solutions provided are not suitable for high-speed lines because they demand many 
coasting-remotoring cycles. In (Sicre et al., 2014), Sicre et al. present a model to 
calculate in real time a new set of holding speed without braking commands when a 
delay occurs in a high-speed line. This model is stated as a single-objective optimisation 
problem and makes use of a GA with fuzzy parameters.  

Previous models can be improved with the application of Population-based algorithms 
for dynamic multi-objective optimisation problems (DMOOPs) (Helbig and Engelbrecht, 
2014). The use of a dynamic optimisation algorithm would reduce the calculation time 
required for the optimisation process, allowing frequent updates of the Pareto front.  

The main contribution of this chapter of the thesis is the on-line calculation of the eco-
driving of a high-speed train by means of a dynamic multi-objective optimisation 
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algorithm. The proposed algorithm can be executed in real-time and improves the 
energy savings provided by static simulation-based eco-driving algorithms, fulfilling the 
punctuality requirements and taking into account the passenger’s comfort. The DMOOP 
regulation algorithm provides a set of updated and non-dominated solutions that can 
be used to change the current speed profile as soon as a delay arises or the traffic 
situation changes. These solutions make use of the holding speed without braking 
strategy that has been found as the most appropriate manual driving strategy to HSR. 
Two algorithms are proposed and compared to calculate eco-driving: Dynamic Non-
dominated Sorting Genetic Algorithm II (DNSGA-II) (Deb et al., 2007) and Dynamic 
Multi-Objective Particle Swarm Optimisation algorithm (DMOPSO) (Salazar Lechuga, 
2009). Dynamic algorithms are faster tracking the Pareto front changes than their static 
versions, providing better energy savings. In addition, the proposed algorithms take into 
account the passengers’ comfort constraints including a lower bound for the speed 
commands, maximum acceleration and deceleration rates, maximum jerk and a limited 
number of different speed commands in the journey 

The chapter is organised as follows: Section 4.2 describes the simulation model of a 
high-speed train, the manual driving model and introduces the delay response 
mechanisms used. The dynamic optimisation model of the high-speed train regulation 
problem and the algorithms proposed to solve it are presented in Section 4.3. In Section 
4.4, the results of the application of the dynamic algorithms to a case study are 
analysed. Finally, Section 4.5 details the main conclusions obtained in this piece of 
research. 

4.2. TRAIN SIMULATION MODEL 

The aim of the time-step simulation model is the accurate calculation of the running 
time and the energy consumption of a high-speed train journey (Goodman et al., 1998). 
The simulation model is divided into three modules: train, line and manual driving (Sicre 
et al., 2012). 

The train module takes into account the characteristics of the specific high-speed train 
used in the simulation. These characteristics are length, mass, running resistance and 
rotary inertia. The features of the motor are also included in the train module by means 
of the maximum traction and braking effort curves as a function of the train speed and 
the efficiency as a function of the effort ratio and train speed. 

The line module includes the physical information of the track: grades, grade transition 
curves (and the effect along the train), bends, bend transition curves and tunnels. In 
addition, the line module includes the operational characteristics of the track such as 
permanent and temporary speed limits. The electrical network is also taken into 
account including the location of neutral sections and electrical substations in order to 
compute the energy losses in transmission lines. 

The manual driving module determines the traction and braking force (𝐹𝑚) that is 
demanded to the motors as a function of the driving commands, stopping point at 
stations and speed limits. The effort provided by the motor is represented by means of 
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a single variable that represents propulsion (positive values), coasting (zero value) and 
braking (negative values).  

The simulator was validated against real measurements registered on-board high-speed 
trains on commercial services and nocturnal tests on the Madrid–Barcelona high-speed 
line. It was shown that the simulated running times differ on average 1.2% from 
measured times, and the difference between energy consumptions is 0.4%, which 
provides strong evidence for the validity of the simulator. This accurate simulator was 
used for the design of eco-drivings and tested in collaboration with Renfe and Adif, and 
important energy savings were measured (Sicre et al., 2012). 

4.2.1. TRAIN DYNAMICS SIMULATION MODEL 

The simulation model determines at each time step the position 𝑠(𝑡), the speed 𝑣(𝑡) 
and the acceleration 𝑎(𝑡) of the train using information from the different modules and 
the equations of motion (4.1), (4.2) and (4.3). 

𝑑𝑠

𝑑𝑡
= 𝑣(𝑡) (4.1) 

 

𝑑𝑣

𝑑𝑡
=  𝑎(𝑡) (4.2) 

 

𝑎(𝑡) =
𝐹𝑚(𝑡) + 𝐹𝑏(𝑡) − (𝐹𝑟(𝑣) + 𝐹𝑔(𝑠))

𝜌 ∙ 𝑚
 (4.3) 

where 𝑚 is the train mass, 𝜌 is the dimensionless rotating mass factor, 𝐹𝑟(𝑣) is the 
running resistance and 𝐹𝑔(𝑠) includes the gravitational force caused by grades and the 

resistance caused by bends (modelled as equivalent grades). The force 𝐹𝑚(𝑡) is the 
motors electrical tractive/braking effort and force 𝐹𝑏(𝑡) is the effort of pneumatic 
brakes. Both forces are determined at each simulation step by the manual driving 
module as a function of the position and speed of the train, the driving commands and 
the speed limits. 

The initial and end conditions for 𝑠(𝑡) and 𝑣(𝑡) are expressed in (4.4) and (4.5). 

𝑠(0) = 𝑠0,                𝑣(0) = 𝑣0 (4.4) 
 

𝑠(𝑅𝑇) = 𝑠𝑒𝑛𝑑, 𝑣(𝑅𝑇) = 0 (4.5) 

where 𝑠0 and send are the train initial position and the position of the arrival station. 
The parameter 𝑣0 represents the initial speed of the train which is equal to zero when 
𝑠0 is the position of the departure station. 𝑅𝑇 is the running time of the trip between 
𝑠0 y 𝑠𝑒𝑛𝑑. 

The value of 𝐹𝑚(𝑡) is bounded by a maximum electrical traction effort curve and a 
maximum electrical braking effort curve which are dependent on the train speed as 
shown in Eq. (4.6) and Figure 4-1. Pneumatic brakes force 𝐹𝑏(𝑡) is set to 0 when the 
motors are tractioning or coasting (Eq. (4.7) and (4.8)).  
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When a train is passing through a neutral zone, auxiliary systems cannot be fed from 
catenary, thus motors apply at least a constant braking effort 𝐹𝑁𝑍 to maintain the 
charge of the batteries that feed auxiliary systems along neutral zones (see Eq. (4.9)). 

𝐹𝑚𝑖𝑛(𝑣) ≤  𝐹𝑚(𝑡) ≤ 𝐹𝑚𝑎𝑥(𝑣) (4.6) 
 

𝐹𝑏(𝑡) ≤ 0 (4.7) 
 

𝐹𝑏(𝑡) = 0                     𝑖𝑓 𝐹𝑚(𝑡) ≥ 0   (4.8) 
 

𝐹𝑚(𝑡) ≤ 𝐹𝑁𝑍                𝑖𝑓 𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡
𝑙 ≤ 𝑠(𝑡) ≤ 𝑠𝑛𝑧𝑒𝑛𝑑

𝑙       𝑓𝑜𝑟    𝑙 = 1, 2, … , 𝑍 (4.9) 

where 𝐹𝑚𝑎𝑥(𝑣) and 𝐹𝑚𝑖𝑛(𝑣) are respectively the value of maximum electrical traction 
effort and maximum electrical braking effort that depend on the speed of the train 
(𝑣).The total braking effort is the electrical braking effort plus the pneumatic braking 
effort (blending). The pneumatic braking effort complements the electrical one if it is 
necessary to achieve the deceleration command. 

The parameters 𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡
𝑙  and 𝑠𝑛𝑧𝑒𝑛𝑑

𝑙  are the initial and the final position of the neutral 
zone 𝑙 being 𝑍 the total number of neutral zones. 

 
Figure 4-1. Maximum Electrical Traction/Braking curves of the train motor 

Running resistance (𝐹𝑟(𝑣)) is determined by means of Davis formula as shown in Eq. 
(4.10) whereas the gravitational resistance (𝐹𝑔(𝑠)) is calculated using Eq. (4.11). 

𝐹𝑟(𝑣) = 𝐴 + 𝐵 ∙ 𝑣 + 𝐶 ∙ 𝑣
2 (4.10) 

 

𝐹𝑔(𝑠) = 𝑔 ∙ 𝑚 ∙ 𝑝(𝑠) (4.11) 

where 𝐴, 𝐵 and 𝐶 are positive coefficients, 𝑔 is the gravity acceleration and 𝑝(s) is the 
average equivalent grade. The value of the average equivalent grade is obtained as the 
average grade affecting the complete length of the train plus the equivalent grade 
associated to the resistance produced by bends.  

4.2.2. TRAIN ENERGY CONSUMPTION SIMULATION MODEL 

The simulation model also calculates the energy consumed by the train at each time 
step. The electrical power consumed by the train measured at the pantograph and the 
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estimation of the power consumed at the substation is obtained from the following 
expressions: 

𝑃𝑚𝑒𝑐(𝑡) = 𝐹𝑚(𝑡) ∙ 𝑣(𝑡) (4.12) 
 

𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡) =
𝑃𝑚𝑒𝑐(𝑡)

µ𝑇(𝑣, 𝑓𝑟)
+ 𝑃𝑎𝑢𝑥 

𝑖𝑓 𝑃𝑚𝑒𝑐 ≥ 0 𝑎𝑛𝑑 𝑛𝑜𝑡(𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡
𝑙 ≤ 𝑠(𝑡) ≤ 𝑠𝑛𝑧𝑒𝑛𝑑

𝑙 ) 

𝑓𝑜𝑟    𝑙 = 1, 2, … , 𝑍 

(4.13) 
𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡) = 𝑃𝑚𝑒𝑐(𝑡) ∙ µ𝐵(𝑣, 𝑓𝑟) + 𝑃𝑎𝑢𝑥 𝑖𝑓 𝑃𝑚𝑒𝑐 < 0 𝑎𝑛𝑑 𝑛𝑜𝑡(𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡

𝑙 ≤ 𝑠(𝑡) ≤ 𝑠𝑛𝑧𝑒𝑛𝑑
𝑙 ) 

𝑓𝑜𝑟    𝑙 = 1, 2, … , 𝑍 

𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡) = 0 𝑖𝑓 𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡
𝑙 ≤ 𝑠(𝑡) ≤ 𝑠𝑛𝑧𝑒𝑛𝑑

𝑙   

𝑓𝑜𝑟    𝑙 = 1, 2, … , 𝑍 

 

𝑃𝑠𝑠(𝑡) = 𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡) + 𝑟(𝑠) ∙ (
𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡)

𝑈 ∙ 𝑐𝑜𝑠 𝜑
)

2

 

 

𝑖𝑓 𝑛𝑜𝑡(𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡
𝑙 ≤ 𝑠(𝑡) ≤ 𝑠𝑛𝑧𝑒𝑛𝑑

𝑙 ) 

𝑓𝑜𝑟    𝑙 = 1, 2, … , 𝑍 

 (4.14) 
𝑃𝑠𝑠(𝑡) = 0 𝑖𝑓 𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡

𝑙 ≤ 𝑠(𝑡) ≤ 𝑠𝑛𝑧𝑒𝑛𝑑
𝑙   

𝑓𝑜𝑟    𝑙 = 1, 2, … , 𝑍 

where 𝑃𝑚𝑒𝑐(𝑡) is the mechanical power, 𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡) is the electrical power 

measured at the pantograph and 𝑃𝑠𝑠(𝑡) is the electrical power measured at the 
substation. The power consumed by auxiliary systems is modelled by a constant value 
𝑃𝑎𝑢𝑥. The electrical chain efficiency is modelled for the traction case µ𝑇(𝑣, 𝑓𝑟) and the 
braking case µ𝐵(𝑣, 𝑓𝑟). Furthermore, the efficiency is modelled as function of the train 
speed (𝑣) and the ratio 𝑓𝑟 of the motor force divided by the maximum motor force 
(𝑓𝑟 = 𝐹𝑚 𝐹𝑚𝑎𝑥⁄ ). The line voltage 𝑈 is modelled as a constant (the nominal line voltage) 
and the power factor (cos𝜑) is also modelled as a constant. The electrical line resistance 
𝑟(𝑠) is dependent on the position of the train, as it increases linearly with the distance 
to the substation. 

The energy consumed by the train measured at the pantograph and the train energy 
consumption measured at the substation are calculated by means of equations (4.15) 
and (4.16).  

𝐸𝐶𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡) = ∫ 𝑃𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡) ∙ 𝑑𝑡
𝑡

0

 (4.15) 

 

𝐸𝐶𝑠𝑠(𝑡) = ∫ 𝑃𝑠𝑠(𝑡) ∙ 𝑑𝑡
𝑡

0

 (4.16) 

where 𝐸𝐶𝑝𝑎𝑛𝑡𝑜𝑔𝑟𝑎𝑝ℎ(𝑡) and 𝐸𝐶𝑠𝑠(𝑡) are respectively the energy consumed measured 

at the pantograph and the substation. 

4.2.3. MANUAL DRIVING SIMULATION MODEL 

4.2.3.1. COMMAND MATRIX MODEL 

The speed profiles to be executed by the driver must be defined by commands that can 
be easily applied. The speed profiles obtained as a solution in the optimisation process 
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are defined using the Command Matrix (𝐶𝑚) proposed in (Sicre et al., 2012). 𝐶𝑚 is a 
command matrix that divides the journey into 𝑛𝑠 sections where the driver has to apply 
a certain driving command. The first 𝑛𝑠 − 1 sections are defined by a value of holding 
speed without braking command. In these sections the driver applies traction when it 
is needed to reach and maintain a speed value. If braking is needed to maintain the 
speed command, the driver will apply coast (null traction). The last section (𝑛𝑠) is 
defined by a coasting command. In this section, the driver has to coast up to the braking 
curve to stop at the station. The orders collected in 𝐶𝑚 are high level driving commands 
that do not affect the train safety performance. That means that if the train needs to 
brake to observe a speed limitation and the driving command demands coast or 
traction, the driver will apply the service brake. An example of a train journey that 
makes use of a holding speed without braking command and a coasting command 
before the final braking is shown in Figure 4-2. 

 
Figure 4-2. Train journey using a 250 km/h holding speed without braking command and a coasting 

command before the final braking 

The command matrix 𝐶𝑚 is as a matrix of 𝑛𝑠 − 1 rows and 2 columns. The first column 
(𝑠𝑐𝑘 values) contains the points of the track (position) where the sections end. The 
beginning of the first section is defined by the starting point of the journey (𝑠0). The 
beginning of the other sections is defined by the position of the end of the previous 
section 𝑠𝑐𝑘 − 1. The second column represents the values of the holding speed without 
braking command (𝑣𝑐𝑘) that will be applied in that section. The last section (𝑛𝑠) is not 
represented in the 𝐶𝑚 because it is the final coasting command. In Figure 4-3 an 
example of a 𝐶𝑚 of 4 sections is shown. 

 
Figure 4-3. Command matrix of four sections 

When selecting the value of 𝑛𝑠 parameter, it is necessary to balance its effect on the 
energy consumption and its effect on passengers’ comfort and drivers’ performance. 
The number of possible solutions that the train can perform increases when 𝑛𝑠 is 
incremented. Consequently, the increase of the solution space can lead to higher 
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energy savings. However, the value of 𝑛𝑠 should be limited because the application of 
a high number of different driving commands may have a negative impact in 
passengers’ comfort and drivers’ execution.  

It is difficult to implement a command matrix 𝐶𝑚 with a high number of short sections 
in manual driving because it would demand frequent operations by drivers that could 
be stressful and non comfortable for them. Furthermore, in the transition from a section 
to another the driver will apply traction or coast to adapt the train speed to the new 
driving command depending on whether the new target speed is higher or lower than 
the previous one. If the number of sections (ns) is high, traction and coasting will be 
frequent and that will be perceived as unpleasant by passengers in a long distance 
travel. 

For these reasons the value of 𝑛𝑠 must be established by the railway operator 
depending on the journey length, comfort criteria and drivers requirements. 

4.2.3.2. DRIVING MODEL 

To emulate the human control of the train, a closed-loop proportional-integral regulator 
is used. The tractive/braking effort demanded by the control 𝑈𝑟𝑒𝑔(𝑡) is obtained at each 

simulation step using the following equations: 

𝑒(𝑡) = 𝑣𝑜𝑏𝑗(𝑡) − 𝑣(𝑡) (4.17) 
 

𝑈𝑝𝑟𝑜𝑝(𝑡) = 𝐾𝑝 ∙ 𝑒(𝑡) (4.18) 
 

𝑈𝑖𝑛𝑡(𝑡) =
𝐾𝑝

𝐾𝐼
∙
(𝑒(𝑡) + 𝑒(𝑡 − 𝑡𝑠))

2
+ 𝑈𝑖𝑛𝑡(𝑡 − 𝑡𝑠) (4.19) 

 

𝑈𝑟𝑒𝑔(𝑡) = 𝑈𝑝𝑟𝑜𝑝(𝑡) + 𝑈𝑖𝑛𝑡(𝑡)         𝑖𝑓 𝑣(𝑡) ≥ 𝑣𝑚𝑎𝑥(𝑡)   𝑜𝑟   𝑈𝑝𝑟𝑜𝑝(𝑡) + 𝑈𝑖𝑛𝑡(𝑡) ≥ 0 
(4.20) 

𝑈𝑟𝑒𝑔(𝑡) = 0                                          𝑖𝑓 𝑣(𝑡) < 𝑣𝑚𝑎𝑥(𝑡) 𝑎𝑛𝑑 𝑈𝑝𝑟𝑜𝑝(𝑡) + 𝑈𝑖𝑛𝑡(𝑡) < 0 

 

where 𝑈𝑟𝑒𝑔(𝑡) is the total tractive/braking effort demanded by the control, 𝑈𝑝𝑟𝑜𝑝(𝑡) is 

the proportional contribution to 𝑈𝑟𝑒𝑔(𝑡) and 𝑈𝑖𝑛𝑡(𝑡) is the integral contribution to 

𝑈𝑟𝑒𝑔(𝑡). 𝐾𝑝 and 𝐾𝐼 are the proportional and the integral constants respectively. The 

error of regulation 𝑒(𝑡) is calculated as the difference between the objective speed 
𝑣𝑜𝑏𝑗(𝑡) and the current speed of the train 𝑣(𝑡). The constant 𝑡𝑠 is the simulation time-

step and 𝑒(𝑡 − 𝑡𝑠) is the error of regulation in the previous simulation step. The 
minimum value for the total tractive/braking effort demanded is set to 0 when the train 
speed is below the maximum 𝑣𝑚𝑎𝑥(𝑡) to perform the holding speed without braking 
driving command (Eq. (4.20)) 

The objective speed 𝑣𝑜𝑏𝑗(𝑡) is obtained from the driving commands and the maximum 

speed 𝑣𝑚𝑎𝑥(𝑡) as shown in Eq. (4.21). The maximum speed 𝑣𝑚𝑎𝑥(𝑡) is obtained as a 
function of the ceiling speed in the position of the train, the braking curves calculated 
for each speed limit reduction and the final braking at station, as shown in Eq. (4.22). 
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𝑣𝑜𝑏𝑗(𝑡) = 𝑚𝑖𝑛(𝑣𝑚𝑎𝑥(𝑡), 𝑣𝑐𝑘)                𝑖𝑓 𝑠𝑐𝑘−1 ≤ 𝑠(𝑡) ≤ 𝑠𝑐𝑘 

𝑣𝑜𝑏𝑗(𝑡) = 0                                                𝑖𝑓 𝑠𝑐𝑛𝑠−1 < 𝑠(𝑡) 
(4.21) 

 

𝑣𝑚𝑎𝑥(𝑡) = 𝑚𝑖𝑛(𝑣𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑠), 𝑣𝑏(𝑠), 𝑣𝑓𝑏(𝑠))       (4.22) 
 

where 𝑣𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑠) is the ceiling speed at the position of the train, 𝑣𝑏(𝑠) is the braking 

curve of the next ceiling speed reduction and 𝑣𝑓𝑏(𝑠) is braking curve at the next station 

arrival. Braking curves are calculated as follows: 

𝑣𝑏(𝑠) = √𝑣𝑛𝑒𝑥𝑡
2 + 2 ∙ 𝑑𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ∙ (𝑠𝑛𝑒𝑥𝑡 − 𝑠)           (4.23) 

 

𝑣𝑓𝑏(𝑠) = √2 ∙ 𝑑𝑠𝑒𝑟𝑣𝑖𝑐𝑒 ∙ (𝑠𝑒𝑛𝑑 − 𝑠)       (4.24) 

where 𝑑𝑠𝑒𝑟𝑣𝑖𝑐𝑒 is the absolute value of the deceleration rate and 𝑠𝑛𝑒𝑥𝑡 is the position of 
the next ceiling speed reduction corrected with the train length. 

After that, the value of total traction/braking effort (𝐹𝑇𝐵(𝑡)) demanded to the train is 
obtained from 𝑈𝑟𝑒𝑔(𝑡) applying Eq. (4.25). The constraints related to the maximum 

traction force, maximum acceleration, maximum deceleration and force applied when 
traveling through neutral zones are applied to the output 𝑈𝑟𝑒𝑔(𝑡). 

𝐹𝑇𝐵(𝑡) = 𝑚𝑖𝑛(𝑈𝑟𝑒𝑔(𝑡), 𝐹𝑚𝑎𝑥(𝑣), 𝐹𝑚𝑎𝑥𝐴𝑐𝑐(𝑠, 𝑣), 𝐹𝑚𝑎𝑥𝐽𝑒𝑟𝑘(𝑡))  

𝑖𝑓 𝑈𝑟𝑒𝑔(𝑡) ≥ 0 𝑎𝑛𝑑 𝑛𝑜𝑡(𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡
𝑙 ≤ 𝑠(𝑡) ≤ 𝑠𝑛𝑧𝑒𝑛𝑑

𝑙 )   𝑓𝑜𝑟 𝑙 = 1, 2, … , 𝑍 

𝐹𝑇𝐵(𝑡) = 𝑚𝑎𝑥(𝑈𝑟𝑒𝑔(𝑡), 𝐹𝑚𝑎𝑥𝐷𝑒𝑐(𝑠, 𝑣), 𝐹𝑚𝑖𝑛𝐽𝑒𝑟𝑘(𝑡))  

          𝑖𝑓 𝑈𝑟𝑒𝑔(𝑡) < 0 𝑎𝑛𝑑 𝑛𝑜𝑡(𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡
𝑙 ≤ 𝑠(𝑡) ≤ 𝑠𝑛𝑧𝑒𝑛𝑑

𝑙 )   𝑓𝑜𝑟 𝑙 = 1, 2, … , 𝑍 

𝐹𝑇𝐵(𝑡) = 𝑚𝑎𝑥(𝑚𝑖𝑛 (𝑈𝑟𝑒𝑔(𝑡), 𝐹𝑁𝑍), 𝐹𝑚𝑎𝑥𝐷𝑒𝑐(𝑠, 𝑣), 𝐹𝑚𝑖𝑛𝐽𝑒𝑟𝑘(𝑡))   

  𝑖𝑓 𝑠𝑛𝑧𝑠𝑡𝑎𝑟𝑡
𝑙 ≤ 𝑠(𝑡) ≤ 𝑠𝑛𝑧𝑒𝑛𝑑

𝑙       𝑓𝑜𝑟    𝑙 = 1, 2, … , 𝑍 

(4.25) 

where 𝐹𝑚𝑎𝑥𝐴𝑐𝑐(s, 𝑣) and 𝐹𝑚𝑎𝑥𝐷𝑒𝑐(s, 𝑣) are respectively the effort for the maximum 
acceleration rate and the effort for the maximum deceleration rate. The variables 
𝐹𝑚𝑎𝑥𝐽𝑒𝑟𝑘(𝑡) and 𝐹𝑚𝑖𝑛𝐽𝑒𝑟𝑘(𝑡) are the maximum and minimum effort allowed to motors 

and brakes to limit the jerk. 

The limitations due to maximum acceleration and maximum deceleration 
(𝐹𝑚𝑎𝑥𝐴𝑐𝑐(s, 𝑣) and 𝐹𝑚𝑎𝑥𝐷𝑒𝑐(s, 𝑣)) are taken into account to consider passengers’ 
comfort and are calculated using Eq. (4.26) and Eq. (4.27). The constraints presented in 
Eq. (4.28) and (4.29) limit the train’s jerk, which may affect the passengers’ comfort 
(Chang et al., 1999; Chang and Sim, 1997; Chang and Xu, 2000; Wang et al., 2011).   

 

 

𝐹𝑚𝑎𝑥𝐽𝑒𝑟𝑘(𝑡) = 𝐹𝑚(𝑡 − 𝑡𝑠) + 𝐹𝑏(𝑡 − 𝑡𝑠) + (𝑗𝑚𝑎𝑥 ∙ 𝜌 ∙ 𝑚) ∙ ∆𝑡 (4.28) 

𝐹𝑚𝑎𝑥𝐴𝑐𝑐(𝑠, 𝑣) = 𝑎𝑚𝑎𝑥 ∙ 𝜌 ∙ 𝑚 + (𝐹𝑟(𝑣) + 𝐹𝑔(𝑠)) (4.26) 

𝐹𝑚𝑎𝑥𝐷𝑒𝑐(𝑠, 𝑣) = 𝑑𝑚𝑎𝑥 ∙ 𝜌 ∙ 𝑚 + (𝐹𝑟(𝑣) + 𝐹𝑔(𝑠)) (4.27) 
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𝐹𝑚𝑖𝑛𝐽𝑒𝑟𝑘(𝑡) = 𝐹𝑚(𝑡 − 𝑡𝑠) + 𝐹𝑏(𝑡 − 𝑡𝑠) − (𝑗𝑚𝑎𝑥 ∙ 𝜌 ∙ 𝑚) ∙ ∆𝑡 (4.29) 

where 𝑎𝑚𝑎𝑥 is a positive constant that represents the maximum acceleration rate, 𝑑𝑚𝑎𝑥 
is a negative constant that represent the maximum deceleration rate and 𝑗𝑚𝑎𝑥 is a 
constant that represents the maximum jerk allowed to the force applied by the train. 

Finally, the values of 𝐹𝑚(𝑡) and 𝐹𝑏(𝑡) to be applied in the train model and energy 
consumption model presented in Sections 4.2.1 and 4.2.2 are obtained from Eq. (4.30) 
and Eq.(4.31), where 𝐹𝑇𝐵(𝑡) is the total traction/braking effort previously calculated. 
The maximum electrical braking effort is considered to calculate the blending between 
electrical braking effort and pneumatic braking effort.  

 

𝐹𝑚(𝑡) = 𝐹𝑇𝐵(𝑡)                                          𝑖𝑓 𝐹𝑇𝐵(𝑡) ≥ 0

𝐹𝑚(𝑡) = 𝑚𝑎𝑥(𝐹𝑇𝐵(𝑡), 𝐹𝑚𝑖𝑛(𝑣))           𝑖𝑓 𝐹𝑇𝐵(𝑡) < 0
 (4.30) 

 

𝐹𝑏(𝑡) = 0                                                    𝑖𝑓 𝐹𝑇𝐵(𝑡) ≥ 0

𝐹𝑏(𝑡) = 𝑚𝑖𝑛(𝐹𝑇𝐵(𝑡) − 𝐹𝑚𝑖𝑛(𝑣), 0)      𝑖𝑓 𝐹𝑇𝐵(𝑡) < 0
 (4.31) 

4.2.4. DELAY RESPONSE MODEL 

In urban railway lines, where headway between consecutive trains is small, traffic 
disturbances lead to frequent perturbed speed profiles of trains tracking the preceding 
one (Carvajal-Carreño et al., 2016). Instead, in low traffic density high-speed lines (like 
the Spanish ones) delays are less frequent and caused by temporary speed limitations 
(due to either civil or maintenance works, or to adverse weather conditions), or by 
changes in the target arrival time (due to on-line rescheduling).  

When a train is affected by these situations, the nominal driving has to be updated to a 
faster speed profile to arrive on time at the next station. 

The typical behaviour of the drivers when facing delays was explained in (Sicre et al., 
2014) and it is called “immediate” delay recover strategy. It consists in driving the train 
as fast as possible when the delay is detected until the train is circulating on time. At 
this moment, the driver coasts to link with the nominal driving commands. This delay 
recovery strategy is not energy efficient because the driver does not make an optimal 
use of the time margins. The flow chart of the process used by the simulator to model 
the immediate delay recover strategy is shown in Figure 4-4. 
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Figure 4-4. Immediate delay recover strategy 

The DMOOP modelling explained in Section 4.3 can be used to recover delays in an 
energy efficient manner. When a delay is detected, the nominal driving is substituted 
by a speed profile from the Pareto front, taking into account the running time required 
to arrive on time and the energy consumption of the optimal solutions. This procedure 
is explained in detail in the following section. 

4.3. DYNAMIC MULTI-OBJECTIVE OPTIMISATION MODEL BASED ON 
SIMULATION FOR THE ON-LINE DRIVING REGULATION PROBLEM  

The on-line regulation problem of a high-speed train is modelled as a DMOOP and the 
objective function includes two objectives (see Eq. (4.32)): 

𝑀𝑖𝑛 𝑓(𝑋) = (𝑅𝑇(𝑋), 𝐸𝐶(𝑋)) (4.32) 

where 𝑅𝑇(𝑋) and 𝐸𝐶(𝑋) are the simulated running time and the energy consumption 
of the solution 𝑋. A solution 𝑋 is a set of driving commands gathered in a 𝐶𝑚. This 
solution is optimal and included in the resulting optimal Pareto front if 𝑋 is not 
dominated by any other solution, that is, no other solution provides both lower 𝑅𝑇 and 
lower 𝐸𝐶. 

During each iteration of the dynamic problem, each solution 𝑋 is simulated to calculate 
its running time 𝑅𝑇(𝑋) and its energy consumption 𝐸𝐶(𝑋) starting from the current 
position and speed of the train, up to the destination (see Figure 4-5). The simulation is 
performed applying equations (4.1) to (4.31).  

The objective function is subject to the following constraint: 

𝑣𝑐𝑘(𝑋) > 𝑣𝑐𝑚𝑖𝑛           𝑓𝑜𝑟 𝑘 = 1, 2, … , 𝑛𝑠 − 1 (4.33) 

Delay 
calculation

Delay(t, Cm) > Threshold?
NO

𝑣𝑜𝑏𝑗 (𝑡) = min(𝑣𝑚𝑎𝑥 (𝑡), 𝑣𝑐𝑘)                𝑖𝑓 𝑠𝑐𝑘−1 ≤ 𝑠(𝑡) ≤ 𝑠𝑐𝑘  
 

     Obtain 
      from     Cm 

𝑣𝑜𝑏𝑗 (𝑡) = min(𝑣𝑚𝑎𝑥 (𝑡), 𝑣𝑐𝑘)                𝑖𝑓 𝑠𝑐𝑘−1 ≤ 𝑠(𝑡) ≤ 𝑠𝑐𝑘  
 

YES

Delay 
calculation

Delay(t, Cm) ≤ 0?
NOYES

𝑣𝑜𝑏𝑗 (𝑡) = 𝑣𝑚𝑎𝑥 (𝑡)   
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The possible values of holding speed without braking commands (𝑣𝑐𝑘) are limited by a 
lower bound (𝑣𝑐𝑚𝑖𝑛) with the objective of not exploring solutions that can drive the 
train at low speeds that can be perceived as unpleasant by the passengers. Other 
restrictions are included via the train simulator model such as speed limits, maximum 
and minimum motor force. 

The aim of the model is to find the Pareto front of the possible speed profiles that the 
train can perform in the journey and to track its variations during the train travel. The 
solutions that are in the optimal front are the non-dominated solutions. These solutions 
are those that cannot be improved at the same time in both energy consumption and 
running time. 

The dynamic optimisation is applied to the on-line regulation problem because there is 
a continuous variation in the evaluation function due to the train movement. As the 
train travels, the results obtained using the simulator for the same solutions (running 
time up to the station and energy consumption) varies while the distance to the station 
decreases, and the number of solutions in the Pareto front decreases as well. 

Figure 4-5 shows the variation of the Pareto front and 3 possible speed profiles at 4 
different instants in the train movement. The optimisation uses as initial conditions the 
current position and speed of the train at each case represented (first instant: s0 = 0 and 
v0 = 0, second instant: 𝑠0  =  250 and 𝑣0  =  240, third instant: 𝑠0  =  270 and 𝑣0  =
 230, fourth instant: 𝑠0  =  290 and 𝑣0  =  190). Running time and energy consumption 
of the Pareto front solutions only take into account the journey from the current train 
position to the arrival.   

A filter is implemented to discard solutions with high running time in order to reduce 
the search space to the useful speed profiles for the train. This upper bound is given by 
the flat-out running time plus two times the remaining time margin at the optimisation 
instant. To filter the solutions with high running times, the model checks if the running 
time associated to each solution exceeds the upper bound. In this case, the algorithm 
evaluates that solution as a dominated solution and assigns the worst possible 
punctuation to its fitness value. 

The optimisation is carried out repeatedly each time period 𝑡𝑐 (calculation time), 
updating the Pareto curve of optimal solutions. Shorter calculation times provide a 
better tracking of the current situation of the train, but the number of iterations that 
the optimisation algorithm can use to find a solution is reduced. Thus, the parameter 𝑡𝑐 
must be adjusted carefully. 

This DMOOP model is solved by means of a population-based optimisation algorithm. 
Two algorithms are chosen to compare their results solving the proposed dynamic 
model: DNSGA-II (Dynamic Non-dominated Sorting Genetic Algorithm II) and DMOPSO 
(Dynamic Multi-Objective Particle Swarm Optimisation algorithm). These algorithms are 
explained in the following subsections. 
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Instant 1 
𝑠0  =  0 𝑘𝑚 𝑎𝑛𝑑 𝑣0  =  0 𝑘𝑚/ℎ 

Instant 2 
𝑠0  =  250 𝑘𝑚 𝑎𝑛𝑑 𝑣0  =  240 𝑘𝑚/ℎ 

 

   

Instant 3 
𝑠0  =  270 𝑘𝑚 𝑎𝑛𝑑 𝑣0  =  230 𝑘𝑚/ℎ 

Instant 4 
𝑠0  =  290 𝑘𝑚 𝑎𝑛𝑑 𝑣0  =  190 𝑘𝑚/ℎ 

   

 
Figure 4-5. Variation of the Pareto front and some possible drivings during a train travel 

4.3.1. DNSGA-II ALGORITHM FOR THE DYNAMIC ECO-DRIVING CALCULATION 

DNSGA-II (Deb et al., 2007) algorithm is based on NSGA-II (Deb et al., 2002) but 
incorporates several mechanisms to take advantage of the knowledge obtained in the 
past. This knowledge allows the algorithm to improve its response working under 
dynamic environments. DNSGA-II is a multi-objective searching algorithm that imitates 
the natural selection and the natural genetic mechanisms. This algorithm evolves a 
population of individuals (solutions) through iterations using crossover and mutation 
operators. To share knowledge between different optimisation processes, DNSGA-II 
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uses as the initial population of every optimisation, part of the result population of the 
previous optimisation carried out. 

The first execution of the algorithm (𝑒𝑥 = 1) is launched before the departure of the 
train. This initial execution is computed in the same way as the static NSGA-II and it is 
used to obtain the initial set of optimal solutions and to decide the efficient driving that 
the train will perform during the journey fulfilling the schedule. The first execution starts 
creating a parent population 𝑃0

1 of 𝑛𝑝𝑜𝑝 random solutions. Mutation and crossover 

operators are used to generate 𝑛𝑝𝑜𝑝 individuals of the offspring population 𝑄0
1. The 

mutation and crossover operators applied in this algorithm were proposed in (Sicre, 
2013). After that, 𝑃0

1 and 𝑄0
1 are joined to generate the result population 𝑅0

1 of size 
2𝑛𝑝𝑜𝑝. Each solution 𝑋 of the population is a command matrix containing speed 

commands 𝑣𝑐𝑘 and it is simulated by means of equations (4.1) to (4.31), calculating the 
associated running time and energy consumption. 

Then, domination level is used to sort 𝑅0
1 population and unfeasible solutions are 

eliminated. Domination level of each solution is calculated as the number of solutions 
that dominate it. A zero value of domination level means that the individual is a non-
dominated solution.  

Once the 𝑅0
1 population is ranked, the parent population for the next iteration 𝑃1

1 is 
generated obtaining the 𝑛𝑝𝑜𝑝 solutions of 𝑅0

1 with the lowest domination level. This 

process is performed adding solutions in sets of individuals that share the same 
domination level. If a set of solutions cannot be included because it exceeds the size of 
the parent population, the crowding distance operator (CD) (Raquel and Naval,Jr., 2005) 
is applied to that set of solutions to select the ones that will be part of 𝑃1

1. CD operator 
calculates the distance, in terms of the optimisation objectives, of a solution to the 
individuals that surround it. Therefore, the solutions of the last set of individuals are 
included in 𝑃1

1 in decreasing order of CD until the parent population is filled. This way, 
the zones with low density of solutions are prioritised.  

Once 𝑃1
1 is created, the next iteration of the algorithm starts generating the offspring 

population 𝑄1
1 using crossover and mutation operators and, after that, a new result 

population 𝑅1
1 is created. Again, each solution 𝑋 of the population is simulated by means 

of equations (4.1) to (4.31). This process is repeated until a number of iterations 𝑖𝑡𝑚𝑎𝑥 
is reached (𝑖𝑡 = 𝑖𝑡𝑚𝑎𝑥). The final result of that execution 𝑒𝑥 = 1 of the algorithm is the 

set of solutions with 0 domination level of the last result population 𝑅𝑖𝑡𝑚𝑎𝑥
1 .  

The regulation system then selects among these optimal solutions, the one with the 
lowest energy consumption from those that have a running time lower than or equal to 
the scheduled running time (see section 3.3). The driving commands of the selected 
speed profile are shown to the driver to be executed and the train starts its travel. 

During the train journey the algorithm will be executed at time intervals of 𝑡𝑐 seconds 
using as initial conditions the current position and the speed of the train (𝑠𝑡𝑟𝑎𝑖𝑛 and 
𝑣𝑡𝑟𝑎𝑖𝑛) at that moment (see Figure 4-5). Since these executions are used on-line to 
update the Pareto front, they will be limited by a time bound 𝑡𝑐 and not by the number 
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of iterations. When the calculation time reaches 𝑡𝑐 the algorithm is stopped, the Pareto 
front is updated and a new execution of the algorithm is started. 

To accelerate the optimisation process and improve solutions, DNSGA-II takes 
advantage of the information of previous executions. Thereby, the starting parent 
population of an on-line execution of the algorithm 𝑃0

𝑒𝑥 is not generated randomly as 
in the first execution. Instead, it is generated using the result population of the previous 
execution (𝑒𝑥 − 1), re-evaluating those solutions and applying a diversity mechanism 
(Deb et al., 2007). These mechanisms are applied to the re-evaluated result population 
𝑅𝑒𝑛𝑑
𝑒𝑥−1 in order to increase the diversity of the initial parent population of execution 𝑒𝑥. 

There are two versions of DNSGA-II depending on the diversity mechanism applied: 

 DNSGA-II-A: a percentage ζ% of the result population is replaced by randomly 
created individuals. 

 DNSGA-II-B: a percentage ζ% of the result population is replaced by mutated 
solutions of randomly selected individuals of the population. 

Figure 4-6 shows the flow chart of DNSGA-II. 

 
Figure 4-6. Flow chart of DNSGA-II 

4.3.2. DMOPSO ALGORITHM FOR THE DYNAMIC ECO-DRIVING CALCULATION 

The second algorithm selected to solve the DMOOP of the high-speed train regulation 
is the DMOPSO (Salazar Lechuga, 2009) that is the extension of MOPSO algorithm 
(Coello et al., 2004) to dynamic problems. As in the previous case, DMOPSO is based on 
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MOPSO but including some mechanisms to take advantage of the previous knowledge. 
DMOPSO imitates the behaviour of insects swarming together to hunt for food. In this 
algorithm, a set of particles moves through iterations within the search space. The 
particles position is updated using a velocity that depends on the best position found 
by each particle (pbest) and the best position found by the whole swarm (gbest). As in 
the previous case, past knowledge is shared between different optimisation processes. 
DMOPSO uses as the initial position of the particle the last position where the particles 
were in the previous optimisation carried out. Furthermore, the Pareto front obtained 
in the last optimisation process is shared with the following optimisation.   

As in the DNSGA-II algorithm, the first execution of the DMOPSO is carried out before 
the departure of the train and this first execution (𝑒𝑥 = 1) is exactly as the static 
MOPSO. A set of particles is generated randomly and their velocity vectors are also 
generated randomly. Then the positions of the particles are compared and the non-
dominated solutions are stored in an external archive 𝐴. The solutions in 𝐴 are sorted 
using CD operator in decreasing order, to give more priority to the zones of the Pareto 
front with low density of solutions.  Then, the pbest of each particle is updated as its 
current position and gbest is randomly selected from the archive 𝐴 giving more 
probability to the solutions that are in the top of 𝐴. 

The position of the particles is updated for the next iteration 𝑖𝑡 using Eq. (4.34) and Eq. 
(4.35). 

𝑉𝑃𝑗(𝑖𝑡) = 𝑤 ∙ 𝑉𝑃𝑗(𝑖𝑡 − 1) + 𝑐1 ∙ 𝑟1 (𝑃𝑗 − 𝑋𝑗(𝑖𝑡 − 1)) + 𝑐2 ∙ 𝑟2 (𝑃𝑔 − 𝑋𝑗(𝑖𝑡 − 1)) (4.34) 

𝑋𝑗(𝑖𝑡) = X𝑗(𝑖𝑡 − 1) + 𝑉𝑃𝑗(𝑖) (4.35) 

where X𝑗(𝑖𝑡) the position and VP𝑗(𝑖𝑡) is the speed of particle 𝑗 at iteration 𝑖𝑡. Position 

𝑃𝑗 is the pbest of particle 𝑗 and position 𝑃𝑔 is the gbest for the whole swarm. Constants 

𝑐1 and 𝑐2 are “social factors” and determine the weight of the distance to pbest and 
gbest.  𝑟1 and 𝑟2 are random numbers between 0 and 1 and 𝑤 is the “inertia” that 
determines the weight of the previous velocities. 

Once the new position of the particles in iteration 𝑖𝑡 is calculated, archive 𝐴 is updated 
adding new non-dominated solutions and deleting the solutions that are dominated by 
the new ones. The pbest of each solution is updated to the current position of the 
particle if it dominates the previous pbest. In other case, the previous pbest remains. To 
select gbest, the solutions in 𝐴 are sorted in decreasing order of CD. Then, the position 
gbest is updated selecting randomly a solution from 𝐴 giving higher probability to the 
solutions in the top of the archive. 

At this first execution, the process explained is repeated updating the Pareto front 
stored in 𝐴 until a number of 𝑖𝑡𝑚𝑎𝑥 iterations is reached. When the optimisation 
finishes, the system selects from 𝐴 the speed profile with the lowest energy 
consumption from those with a running time lower than or equal to the commercial 
running time. The solution is given to the driver and the train starts the journey. 

The following executions 𝑒𝑥 of the algorithm will be started at intervals of 𝑡𝑐 seconds 
using as initial conditions the position and the speed of the train at those moments. 
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These on-line executions will be limited by a calculation time of 𝑡𝑐 and not by number 
of iterations. When the calculation time reaches 𝑡𝑐 the algorithm is stopped and the 
solutions contained in 𝐴 are provided to the system to update the Pareto front. Then, a 
new execution is started. 

The executions carried out during the journey do not start with a random set of 
particles. Instead, the particles stored in 𝐴 at the previous execution (𝑒𝑥 − 1) are used 
and their positions are re-evaluated under the new conditions. This way, the past 
knowledge obtained in the previous executions is included in the dynamic algorithm. 

To calculate the pbest of each particle in the first iteration of an execution 𝑒𝑥,  two 
mechanism were proposed in (Salazar Lechuga, 2009) that result in two versions of 
DMOPSO: 

 DMOPSO-A uses Responsea that sets pbest of the particle to its current position 
if the current position dominates pbest. In other case, the previous pbest 
remains. 

 DMOPSO-B uses Responseb that sets pbest to current position of the particle. 

Once pbest is updated, gbest is selected from 𝐴 and, using this information, the position 
and the velocity of each particle is updated using Eq. (4.34) and Eq. (4.35). 

Figure 4-7 shows the flow chart of DMOPSO. 

 
Figure 4-7. Flow chart of DMOPSO 

strain = send?

END

YES NO
Initial conditions

s0 = strain

v0 = vtrain

Initial conditions

s0 = sstarting point

v0 = 0

Update gbest

Update pbest

Random swarm 
and velocities

Update velocity 
and position of 
each particle

Update A

ex = 1

i = 0

i < I?  

ex = 1?  

i ++

YES

YES

YES

Reevaluation

i = 0 ex++

Provide solution

NO

NO

NO

Update A

Update pbest using
Responsea

OR
Responseb

calculation 

time = 0

calculation 

time = 0

calculation time 

< tc?



 Balancing energy consumption and risk of delay in high-speed trains 

 

74 
 

4.3.3. ON-LINE SPEED PROFILE SELECTION 

During the journey, the Pareto front is calculated by the optimisation algorithm and 
updated every 𝑡𝑐 seconds. However, a new set of commands is not presented to the 
driver, unless a significant delay arises (over a threshold value). This way, the system 
does not change continuously the driving commands.  

When the train delay exceeds the threshold, the system firstly warns the driver to apply 
the flat-out speed profile. Flat-out driving is used to check when it is possible to reduce 
the delay. When the delay starts to decrease, the system selects and displays the new 
driving commands from the updated Pareto front. The speed profile selected is the one 
that allows the train to arrive on time consuming the lowest amount of energy. 

As was previously illustrated, the result of the optimisation algorithms is a set of non-
dominated solutions. For this reason, an online decision maker is implemented to select 
the most appropriated driving commands to each situation. When a new speed profile 
is needed, the decision maker calculates the objective running time subtracting the 
current time to the nominal arrival time. With this information, the online decision 
maker selects the solution that fulfils at the same time the following conditions: 

 The solution chosen must have an associated running time lower than or equal 
to the objective running time. This way, it is ensured that the train will arrive on 
time at the destination. 

 The solution chosen must have an associated running time as close as possible 
to the objective running time. This way, it is ensured that the train will consume 
the lowest amount of energy for the objective of time imposed. 

If the slack time is consumed there will not be a solution that complies with the first 
condition. In this case, the decision maker selects flat-out driving.  

In Figure 4-8 the flow chart of the on-line speed profile selection process is depicted, as 
well as its relation with the dynamic optimisation algorithm. 
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Figure 4-8. On-line speed profile selection 
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Figure 4-9. Nominal speed profile observing the temporary speed limitation 

4.4.1. ALGORITHMS CONVERGENCE ANALYSIS 

The DMOOP formulation of the regulation problem is applied in this case study to 
compensate the schedule deviation caused by the unexpected temporary speed 
limitation. DNSGA-II and DMOPSO are applied to solve the optimisation problem and 
their respective versions are tested in order to select the best configuration of each 
algorithm. Finally the performance of the versions selected of DNSGA-II and DMOPSO 
are compared. 

The test that has been carried out to check the algorithms performance is based on two 
threads of simulation. The main thread simulates the whole journey of the train 
matching the simulation clock with the real-time clock. The secondary thread carries 
out the dynamic optimisation algorithm that makes several fast simulations to evaluate 
possible solutions. Both threads were executed using an Intel Core i7-2600 CPU@3.4 
GHz and 16GB of RAM. 

A test consists in the simulation of a train travel. Initially, the nominal speed profile is 
calculated before departure, the train starts the journey following nominal commands, 
and then it faces an unexpected speed limitation. When the delay is detected, a delay 
response strategy is applied to obtain a new speed profile, the train follows the new 
driving commands and finally arrives at the next station. 

To analyse and compare the convergence of the algorithms, they are executed and the 
new commands are applied (displayed to the driver) when the train has left the 
temporary speed restriction. 30 iterations are allowed for the optimisation that 
provides the new speed profile with the objective of studying in detail the behaviour of 
the algorithms 

Hypervolume metric (Jiménez et al., 2013) is used in these tests to measure and 
compare the quality of the Pareto fronts obtained. Hypervolume measures the piece of 
the search space that is not dominated by any solution of the Pareto front. It is a quality 
metric that asses not only the proximity of the result to the real Pareto front, but also 
the spread of the solutions obtained. Hypervolume is calculated as shown in Eq. (4.36). 

𝐻𝑉 = 1 −

∑ [(𝑓𝑛𝑜
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𝑗
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(4.36) 
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where 𝑓𝑞
𝑚𝑎𝑥 and 𝑓𝑞

𝑚𝑖𝑛 are the maximum and the minimum values of the 𝑞𝑡ℎ objective. 

𝑁𝐼 represents the number of individuals that form the Pareto front obtained from the 
optimisation algorithm and 𝑛𝑜 is the number of objectives in the problem. The variable 

𝑓𝑞
𝑗
 is the value of the objective 𝑞 for the individual 𝑗 and 𝑓𝑞

𝑠𝑢𝑝𝑞
𝑗

 is the value of the 

objective 𝑞𝑡ℎ for the solution higher adjacent to individual 𝑗 in the 𝑞𝑡ℎ objective. The 
value of 𝑓𝑛𝑜

𝑚𝑎𝑥 is taken from the maximum value of the objective 𝑛𝑜. On the other 

hand, 𝑓𝑛𝑜
𝑗

 is the value of the objective no for the individual 𝑗. 

Due to the random search nature of the algorithms, different solutions can be obtained 
for similar situations. To obtain a robust analysis, the hyper volume results provided are 
the mean value of 10 tests in the same journey.  

4.4.1.1. DNSGA-II-A AND DNSGA-II-B CONVERGENCE ANALYSIS 

Versions A and B of DNSGA-II presented in Section 4.3.1 are analysed and compared 
with the application of the static NSGA-II at each interval 𝑡𝑐. It is necessary to balance 
between a better tracking of the current situation of the train and the number of 
iterations that the algorithms can perform. With this purpose, two values of the 
parameter 𝑡𝑐 were used to make the comparisons: 60 s and 120 s. Note that the train 
simulator includes the behaviour of the onboard signalling system with a control cycle 
of 250 ms. The driving module of the simulator is in charge of generate the 
traction/braking effort taking into account the command matrix and the signalling 
system speed limits and braking curves. Therefore, safety requirements are fulfilled 
because the braking curves are calculated four times every second although the Pareto 
front of  high level manual driving commands solutions is updated every 60/120 s. 

Table 4-1 presents the tuned parameters for all the DNSGA-II versions and NSGA-II. 

Initial population 
size (𝑛𝑝𝑜𝑝) 

Number of 
crossover 

Number of 
mutations 

Number of sections 
in 𝐶𝑚 (𝑛𝑠) 

Diversity mechanism 
parameter (ζ) 

40 13 26 4 15 % 

Table 4-1. Tuned parameters of DNSGA-II algorithm 

Figure 4-10 shows the evolution of the mean value of the Hypervolume metric through 
the iterations of the DNSGA-II and NSGA-II algorithms. The algorithms that make the 
calculation with 𝑡𝑐  =  60 𝑠 carry out 5 iterations and the algorithms with 𝑡𝑐  =  120 𝑠 
carry out 9 iterations. Two vertical lines highlight the results for 5 and 9 iterations in the 
figure. In the case of the static NSGA-II there is no difference between the results for 
𝑡𝑐  =  60 𝑠 and 𝑡𝑐  =  120 𝑠 because it does not use the previous history and always 
starts with a random population. 

Figure 4-10 shows that DNSGA-II outperformed clearly the static NSGA-II because the 
use of previous knowledge allows it to start with a population closer to the real optima. 
This way the optimisation process is accelerated and less number of iterations are 
necessary to converge. 
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Figure 4-10. Mean value of normalised Hypervolume during the evolution of the DNSGA-II versions 

It can be observed that the algorithms with 𝑡𝑐  =  120 𝑠 start from a population with a 
value of 𝐻𝑉 larger than the algorithms with 𝑡𝑐  =  60 𝑠. The final results obtained for 
𝑡𝑐  =  60 𝑠 show a low value of 𝐻𝑉 although the algorithms with 𝑡𝑐  =  120 𝑠 carry out 
more iterations. Furthermore, using a low value of 𝑡𝑐 has the advantage of updating the 
Pareto front with a higher frequency. 

Regarding version A and B of DNSGA-II, the results demonstrate that DNSGA-II-A 
provides solutions with higher quality than DNSGA-II-B. The substitutions of individuals 
of the first population by random individuals instead of mutated individuals make that 
the algorithm starts from a point closer to the optimal solution, converging with a lower 
number of iterations. 

4.4.1.2. DMOPSO-A AND DMOPSO-B CONVERGENCE ANALYSIS 

As in the previous case, versions A and B of DMOPSO presented in Section 4.3.2 are 
applied to the high-speed train regulation problem and compared with static MOPSO. 
The values of 𝑡𝑐 used in this study are 60 s and 120 s. Table 4-2 presents the tuned 
parameters of DMOPSO algorithms. 

Swarm size 
(𝑛𝑠𝑤𝑎𝑟𝑚) 

Social factor 
(𝑐1) 

Social factor 
(𝑐2) 

Inertia 
weight (𝑤) 

Top of 𝐴 
select 

Top of 𝐴 select 
probability 

40 2 2 0.2 3 % 99 % 

Table 4-2. Tuned parameters of DMOPSO algorithm 

The evolution of the 𝐻𝑉 metric through the iterations is shown in Figure 4-11. As in the 
previous section, two vertical lines highlight in the figure the results for 5 and 9 
iterations as these are the number of iterations that the algorithm is capable to carry 
out with 𝑡𝑐  =  60 𝑠 and 𝑡𝑐  =  120 𝑠 respectively. 
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Figure 4-11. Mean value of normalised Hypervolume during the evolution of the DMOPSO versions 

The conclusions obtained are similar to the ones obtained in the convergence analysis 
of DNSGA-II. DMOPSO outperformed MOPSO because the use of the previous 
knowledge accelerates the optimisation. DMOPSO with 𝑡𝑐  =  60 𝑠 has better results 
than DMOPSO with 𝑡𝑐  = 120 𝑠. 

DMOPSO version A presents lower values of 𝐻𝑉 than version B. The use of the history 
contained in pbest instead of substituting it for the current position of the particle 
makes that the algorithm find an initial better Pareto front accelerating the 
convergence. 

4.4.1.3. DNSGA-II AND DMOPSO COMPARISON 

The results of DNSGA-II-A and DMOPSO-A with 𝑡𝑐  =  60 𝑠 are compared in Figure 4-12. 

 

Figure 4-12. Mean value of normalised HV evolution of DNSGA-II-A and DMOPSO-A using tc = 60 s 

As can be seen, DMOPSO-A initial population has a value of 𝐻𝑉 lower than DNSGA-II-A, 
and it obtains finally a better Pareto front. 

4.4.2. ENERGY CONSUMPTION ANALYSIS 

In this section the energy savings using DMOOP formulation are compared with the 
“immediate” delay recover strategy. The train regulation problem is solved using 
DMOPSO-A and DNSGA-II-A with 𝑡𝑐  =  60 𝑠 because, as explained in the previous 
section, these are the algorithms that obtain better results. In addition, the static 
version of MOPSO is included in the comparison to show the benefits of the dynamic 
formulations in terms of energy savings. 
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Table 4-3 presents the mean value and the standard deviation of the energy 
consumption and train delay at the end of the journey for 10 tests. Regenerative energy 
is taken into account to obtain the net energy consumption, and it is calculated at the 
pantograph and at the substations considering the electrical network loses.  

In view of the results, it can be concluded that the use of a static optimisation algorithm 
such as MOPSO can produce relevant energy savings (5.6%) compared with the 
immediate delay recover strategy. However, dynamic algorithms improve these results: 
DNSGA-II provides 6.9% of energy savings and DMOPSO provides 7.8%. Furthermore, 
the results of energy consumption obtained by DMOPSO are less spread than the results 
obtained by MOPSO and DNSGA-II since the standard deviation of the DMOPSO results 
has a lower value. 

The quality of the obtained Pareto front affects energy consumption in two ways. On 
one hand, when solutions are close to the real optima the energy consumption is close 
to the minimum. On the other hand, the number of solutions in the Pareto front and 
their spread affects the energy consumption. As explained in Section 4.2.4 the speed 
profile selected to recover a delay will be the one that presents the lowest energy 
consumption from those in the Pareto front that have an associated running time lower 
than the objective. Therefore, the smaller the gap between solutions, the closer the 
running time to the objective running time and, consequently, the lower the energy 
consumption. This effect can be checked in the train delay at the arrival presented in 
Table 4-3. 

 
Pantograph net 

energy consumption 
(MWh) 

Substation net 
energy consumption 

(MWh) 

Delay at 
the arrival 

(s) 

Immediate delay recover 1.043 1.170 -38.00 

Mean value 

MOPSO 0.985 1.104 -16.60 

DMOPSO 0.965 1.078 -7.80 

DNSGA-II 0.976 1.089 -16.20 

Standard deviation 

MOPSO 0.01776 0.02071 11.56 

DMOPSO 0.00344 0.00349 2.60 

DNSGA-II 0.00909 0.01047 6.03 

Mean value of the variations 
compared with the 

immediate delay recover 

MOPSO 5.51% 5.66%  

DMOPSO 7.39% 7.82%  

DNSGA-II 6.40% 6.95%  

Table 4-3. Mean value of energy savings and delays obtained by DMOOP for the complete journey 

DNSGA-II produces 1.2% of increment in the result of energy saving compared with 
MOPSO although the delay at arrival results are similar (16 s ahead). This improvement 
on the energy consumption is because the solutions of DNSGA-II are closer to the real 
optima. DMOPSO improves energy savings in 2.1% and 0.9% compared with MOPSO 
and DNSGA-II respectively. This improvement is achieved not only because solutions are 
closer to the real optima, but also due to the reduction of gaps in the Pareto front. As a 
result, the time that the train arrives ahead is reduced with the DMOPSO algorithm (7.8 
s). 
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The speed profiles obtained by the DMOPSO algorithm and the “immediate” delay 
recover strategy (the typical behaviour of drivers) are compared in Figure 4-13. In the 
“immediate” delay recover strategy, when the delay is detected and the train leaves the 
speed limitation, it has accumulated 1 minute and 20 seconds of delay and it starts flat 
out driving. The delay is made up at 267 km and then the train stars coasting to link with 
the nominal speed profile. As a result, the train arrives at the station 38 s ahead. 

The speed profile obtained by DMOPSO is clearly different. When the train leaves the 
speed limitation (230 km) it accelerates and when delay starts to be recovered (236 km) 
the system selects a speed profile from the Pareto front and the driver executes the 
new set of driving commands. This solution is the result of the last optimisation carried 
out (with the initial condition 𝑠0  =  234 𝑘𝑚). As can be seen in Figure 4-13, the new 
speed profile distributes the delay recovery along the rest of the distance to run. This 
way, the energy consumption is reduced using eco-driving. 

 

 
Figure 4-13. Speed profiles and delay evolution of “immediate” delay recover strategy and DMOPSO. 

4.5. CONCLUSIONS AND CONTRIBUTIONS 

This chapter of the thesis proposes a dynamic multi-objective optimisation model based 
on accurate simulation of the train motion to handle the real-time regulation of a high-
speed train using eco-driving. The model calculates the Pareto front of the possible 
speed profiles before the departure of the train. After that, during the journey, this 
Pareto front is updated at time intervals by an optimisation algorithm that adapts it to 
the new conditions of the train. Using this model, a set of energy efficient speed profiles 
is always available to be executed when it is necessary to change the nominal driving 
commands to perform a new speed profile with a different running time associated. 

Two algorithms have been tested to solve the dynamic model: DNSGA-II and DMOPSO. 
These algorithms are the dynamic extension of NSGA-II and MOPSO that have been 
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demonstrated suitable to eco-driving problems. Both algorithms take advantage of the 
solutions obtained in previous executions to accelerate the optimisation process. 

Versions A and B of DMOPSO have been compared with the two versions of DNSGA-II 
and the static algorithms MOPSO and NSGA-II. The results demonstrate that the 
dynamic algorithms outperformed their static versions tracking the changes in the 
Pareto front. Furthermore, the Pareto front provided by DMOPSO-A has an associated 
better Hypervolume metric and convergence. 

To analyse the energy benefits of the dynamic models, MOPSO, DMOPSO and DNSGA-
II have been applied to obtain a new speed profile when an unexpected temporary 
speed limitation affects the train. These algorithms have been compared with the 
typical behaviour of drivers: the “immediate” delay recover strategy.  

The solutions obtained applying a static algorithm such as MOPSO provide important 
energy savings (5.6% of the whole trip energy) compared with the “immediate” delay 
recover strategy.   

However, these energy savings can be improved significantly using the dynamic version 
of the algorithms. The best performance is obtained by the DMOPSO, which has 
associated energy savings of 7.8%. 

It has been shown that the simulation of the train motion can be applied in real-time to 
recover delays minimizing the energy consumption, with the associated advantages of 
model flexibility and accuracy. 

The main contributions of this chapter are: 

 A dynamic multi-objective optimisation model of the online eco-driving of high-
speed trains. 

 The assessment of the performance of two versions of DNSGA-II solving the online 
eco-driving problem. 

 The assessment of the performance of two versions of DMOPSO solving the online 
eco-driving problem. 

 The comparison of the results obtained by DNSGA-II and DMOPSO. 

 The delay response mechanism based on a continuously updated Pareto front. 

 The analysis of the energy savings that can be obtained by means of the proposed 
dynamic model compared with the static models and the typical delay response 
method applied by drivers. 
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CHAPTER 5 

5. BALANCING ENERGY CONSUMPTION AND RISK OF 
DELAY IN HIGH-SPEED TRAINS 

5.1. INTRODUCTION 

In the previous chapter, a dynamic multi-objective optimisation model was proposed 
for the real-time regulation of a high-speed train. Furthermore, two algorithms with 
different configurations were tested and compared with the performance of static 
algorithms. The study did not take into account the uncertainty of the solutions 
obtained.  

To take into account punctuality requirements, besides using an accurate model, it is 
necessary to model the uncertainty associated to HSR operation. For this reason, in the 
present chapter the model proposed will be extended to incorporate all the main 
sources of uncertainty that are present in the real operation of a high-speed train. 

The main uncertainty in HSR regulation is associated with the contingencies that may 
occur in the line. Contingencies are usual situations that produce delays and are related 
to temporary speed limitations and traffic perturbations. The commercial running time 
between two stations is designed using a time margin in timetables to deal with 
contingencies. If necessary, this margin is available to make up delays and, if not, it is 
consumed during the train travel to perform efficient speed profiles. If the margin is 
quickly consumed during the journey, the train could perform an efficient speed profile 
but it might not be able to react to unexpected delays. On the other hand, the speed 
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profiles that retain the time margin until the end of the journey are highly energy 
consuming but more robust to contingencies in the line. In the literature, it was not 
found an eco-driving work that takes into account the robustness of solutions to 
contingencies in the line. 

In addition, it is also important to model the uncertainty associated with manual driving, 
considering that there are always small deviations in the application of driving 
commands. The uncertainty in these parameters is usually better represented using 
fuzzy knowledge modelling (Bellman and Zadeh, 1970). The main advantages of using 
fuzzy modelling are its capacity to work with imprecise or incomplete data and its 
flexibility and simplicity to be implemented providing fast calculation times. The 
information of how drivers apply driving commands is usually incomplete or non-
existent because each driver has its own driving style. Uncertainty model by means of 
fuzzy knowledge has been applied in several studies related to eco-driving. GA is used 
in (Bocharnikov et al., 2007) to obtain the optimal speed profile in urban DC railways 
where the running time and energy consumption of the solutions are represented by 
fuzzy sets. In (Cucala et al., 2012b), a model to design jointly timetable and speed 
profiles using a fuzzy model of delays and punctuality constraints is proposed to be 
applied in an offline manner. The algorithm proposed in (Carvajal-Carreño et al., 2014) 
obtains the Pareto curve of speed profiles for urban automatically driven railways 
where the uncertainty in mass value is modelled using fuzzy sets. In (Sicre et al., 2014), 
the uncertainty in the application of manual driving commands is modelled using fuzzy 
knowledge, considering the fluctuations in the holding speed command and the 
variability in the response time in the update of driving commands. However, the model 
proposed does not take into account the perturbations caused by contingencies. 

In this chapter of the thesis a new real-time eco-driving algorithm is proposed to obtain 
the energy efficient speed profile that the train must perform during its journey to fulfil 
punctuality requirements. This algorithm uses a detailed train simulation model to 
obtain the optimal solutions. Moreover, the speed profiles obtained are defined by a 
set of holding speed without braking commands. One of the main contributions of this 
piece of research is the definition of the “risk of delay in arrival” (RD) and its inclusion 
in the optimisation problem as a third objective to take into account the uncertainty of 
line contingencies. RD depends on the time margin consumption rate of the speed 
profile. Considering this, the objectives of the optimisation algorithm are not only 
running time and energy consumption, as usual in the literature, but also a third 
objective that is the risk of delay in arrival. The uncertainty in the manual application of 
driving commands is modelled by means of fuzzy numbers.  

To overcome the computational time limitations when optimising using detailed 
simulation models, the algorithm proposed states the problem as a dynamic multi-
objective optimisation problem (DMOOP) (Helbig and Engelbrecht, 2014) as was 
proposed in Chapter 4. DMOOPs are multi-objective optimisation problems with at least 
one objective changing over time. The product of a multi-objective optimisation 
algorithm is the set of non-dominated solutions, also called Pareto front. In the case of 
the HSR regulation, the Pareto front is a set of speed profiles, each of them with 
different driving commands and different running time, energy consumption and RD. 
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When it is necessary to update the running time, for instance, when a delay arises, a 
new speed profile is selected from the Pareto front.  

The running time, energy consumption and RD of solutions in the Pareto front are 
changing continuously during the journey because of the train movement. Thus, the 
algorithm has to update the Pareto front periodically under the new circumstances. 

The new algorithm proposed is an hybrid optimisation technique where the Non-
dominated Sorting Genetic Algorithm III (NSGA-III) (Deb and Jain, 2014) is combined 
with the fuzzy modelling of the driving commands and designed to solve DMOOPs. 
NSGA-III was selected as the base of the proposed algorithm because it has 
demonstrated good performance solving three-objective problems. 

The chapter is organised as follows. Section 5.2 presents the fuzzy manual driving 
model. The new parameter risk of delay in arrival is defined in section 5.3. The proposed 
DNSGA-III-F algorithm is presented in Section 5.4. In Section 5.5, the algorithm to 
update the driver’s commands in real-time is described. The results of the application 
of the algorithm to a case study of a real high-speed line are analysed in Section 5.6. 
Finally, section 5.7 details the main conclusions obtained in this piece of research. 

5.2. FUZZY MANUAL DRIVING MODEL 

The fuzzy driving model used in this chapter of the thesis was proposed by Sicre et al. 
in (Sicre et al., 2014). This model is based on the Command Matrix model (𝐶𝑚) that 
makes use of the holding speed without braking driving described in Chapter 4. The 
model deals with the vagueness associated with manual driving by expressing the 
holding speed and changing points in 𝐶𝑚 by means of fuzzy numbers. 

Human drivers can hold the speed of the train with precision. However, it is expected 
certain fluctuations around the holding speed value during the journey. To model this 
variability each holding speed value in 𝐶𝑚 will be represented using a symmetrical 
triangular fuzzy number 𝑣�̃�𝑘 whose core is the value of 𝑣𝑐𝑘 contained in the crisp 𝐶𝑚 
and whose support is a constant ∆𝑣 as shown in Eq. (5.1). 

𝜇 𝑣�̃�𝑘(𝑦) =

{
 
 
 

 
 
 0                             𝑖𝑓 𝑦 ≤ 𝑣𝑐𝑘 −
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2
 

2

∆𝑣
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∆𝑣
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 (5.1) 

On the other hand, human drivers do not change the driving commands exactly at the 
changing positions 𝑠𝑐𝑘 and the change is made with certain anticipation or delay. This 
deviation is modelled as a fuzzy anticipation/delay time in the application of a new 
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command (�̃�𝑎/𝑑). The fuzzy anticipation/delay time will lead to an advance/delay 

distance from the crisp changing position 𝑠𝑐𝑘 resulting in a fuzzy changing position (𝑠�̃�𝑘). 
The fuzzy number 𝑠�̃�𝑘 can be obtained as the sum of the crisp value 𝑠𝑐𝑘 and the product 
of the fuzzy numbers 𝑣�̃�𝑘 and �̃�𝑎/𝑑 (Gao et al., 2009) as shown in Eq. (5.2) (see Figure 

5-1). 

𝑠�̃�𝑘 = 𝑠𝑐𝑘 + 𝑣�̃�𝑘 ∙ �̃�𝑎/𝑑 (5.2) 

The shape of the membership function of �̃�𝑎/𝑑 is also modelled as a symmetrical 

triangular fuzzy number whose core is 0 and whose support is the constant ∆𝑡 as shown 
in Eq. (5.3) (see Figure 5-1). 

𝜇 �̃�𝑎/𝑑(𝑦) =

{
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 (5.3) 

Triangular shape is used for the membership functions of 𝑣�̃�𝑘 and �̃�𝑎/𝑑. However, the 

optimisation algorithm proposed is also valid for other membership functions (linear, 
exponential, hyperbolic, piece-wise linear (Xiao et al., 2012) and S-shaped (Chang, 2010; 
Vasant et al., 2012)). 

 

Figure 5-1. Fuzzy holding speed and fuzzy anticipation/delay time 

5.3. RISK OF DELAY IN ARRIVAL 

A measure is proposed to calculate, for each solution, its risk of delay in arrival. This 
measure is based on the evolution of the time margin of the train.  

The commercial running time between two stations is designed using a margin in 
timetable, also called slack time, to deal with delays. Margin is calculated at each 
position using Eq. (5.4). 
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𝑀𝑎𝑟𝑔𝑖𝑛(𝑠) = (𝐴𝐻𝑐𝑜𝑚 − 𝐻𝑐𝑢𝑟𝑟𝑒𝑛𝑡) − 𝐴𝑇𝑓𝑙𝑎𝑡(𝑠, 𝑣) (5.4) 

where 𝑀𝑎𝑟𝑔𝑖𝑛(𝑠) is the margin of the train at position 𝑠, 𝐴𝐻𝑐𝑜𝑚 is the commercial 
arrival time which is a fixed value given by the timetable, 𝐻𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is the current time 
and 𝐴𝑇𝑓𝑙𝑎𝑡(𝑠, 𝑣) is the running time of the flat-out driving , i.e. the fastest possible 

driving, from the current position of the train (𝑠) and the current speed of the train (𝑣). 

In other words, margin is the maximum delay that the train can recover applying the 
fastest speed profile to arrive on-time at the next station. Eco-driving consists in using 
the margin to perform a slower speed profile than the flat-out driving saving energy 
(Cucala et al., 2012b). 

The margin consumption rate of a speed profile determines the sensitivity of this driving 
to arrive late at the next station. If the margin is quickly consumed during the journey, 
the train could perform an efficient speed profile but it might not be able to react to 
unexpected delays. Contrary, the speed profiles that retain the margin up to the end of 
the journey might consume more energy but are more robust to delays during the train 
travel. Therefore, the margin consumption rate of a speed profile is related to the risk 
of delay in arrival. 

The measure proposed is called 𝑅𝐷 and can be calculated using the following formula: 

𝑅𝐷 = 1 −
∫ 𝑀𝑎𝑟𝑔𝑖𝑛(𝑠) ∙ 𝑑𝑠
𝑠𝑒𝑛𝑑
𝑠0

𝑀𝑎𝑟𝑔𝑖𝑛𝑡𝑜𝑡 ∙ (𝑠𝑒𝑛𝑑 − 𝑠0)
 (5.5) 

where 𝑀𝑎𝑟𝑔𝑖𝑛𝑡𝑜𝑡 is the total margin at the beginning of the journey, 𝑠0 is the position 
of the train at the beginning of the optimisation execution and 𝑠𝑒𝑛𝑑 is the position of 
the train at the end of the journey. 

The calculation of 𝑅𝐷 is based on the integral of the margin over the space. The result 
of the integral depends on the amount of margin retained by the train at each position, 
i.e. depends on the speed profile applied. The value of this integral is greater as lower 
is the margin consumption rate. Besides, the integral is normalised dividing it by the 
initial margin multiplied by the total running distance. Notice that the margin consumed 
by the train during the journey cannot be recovered, so the initial margin is the 
maximum one. Finally, the normalised value of the integral is subtracted from one to 
give higher values of 𝑅𝐷 to solutions with higher risk of delay in arrival. Thus, the 𝑅𝐷 
will be equal to zero for the flat-out driving since it does not consume margin during the 

journey (∫ 𝑀𝑎𝑟𝑔𝑖𝑛(𝑠) ∙ 𝑑𝑠
𝑠𝑒𝑛𝑑
𝑠0

= 𝑀𝑎𝑟𝑔𝑖𝑛𝑡𝑜𝑡 ∙ (𝑠𝑒𝑛𝑑 − 𝑠0)). The other possible speed 

profiles will always perform higher running times and, as a consequence, the value of 
𝑅𝐷 will be greater than zero. 

The value of RD can be understood as the area contained over the margin curve and the 
straight line with margin value equal to the initial margin in a margin vs position graph. 
In  an example of a graphical representation of RD is shown. 



 Balancing energy consumption and risk of delay in high-speed trains 

 

88 
 

 

Figure 5-2. Graphical representation of RD 

5.3.1. RELATIONSHIP OF THE RISK OF DELAY IN ARRIVAL WITH THE RUNNING 
TIME AND THE ENERGY CONSUMPTION 

The optimisation process detailed in Section 5.5 has as objective the minimisation of 
running time, energy consumption and risk of delay. It is well-known that the energy 
consumption and running time are conflicting objectives. That means that improving 
one objective causes that the other objective worsens. 

It is necessary to demonstrate the existence of a Pareto front to propose a three-
objective optimisation with running time, energy consumption and risk of delay in 
arrival as objectives. In other words, it is necessary to demonstrate the existence of non-
dominated solutions in the problem. Non-dominated solutions are those that cannot be 
improved in all the objectives at the same time. 

To demonstrate the existence of non-dominated solutions in the three dimensions 
solution space proposed, the simplest case of eco-driving calculation is used. This case 
is the optimisation of a train driving on a flat track, with a constant speed limit of 300 
km/h and neglecting the effect of the regenerated energy. In all the following cases, the 

commercial running time established in the timetable is  𝐴𝐻𝑐𝑜𝑚
1. 

Optimal control theory establishes that the optimal driving, for an objective running 
time 𝑅𝑇1,  consists of a maximum acceleration phase, a holding speed phase at certain 
speed, a coasting phase and a maximum braking phase (Howlett, 1990). Assume that 
the speed profile 1 presented in Figure 5-3 is the solution that minimises the energy 

consumption for a running time 𝑅𝑇1 = 𝐴𝐻𝑐𝑜𝑚
1
 using a 𝐶𝑚 with 𝑛𝑠 = 2, i.e. one holding 

speed command followed by a coasting command. This speed profile has associated a 

running time 𝑅𝑇1 = 𝐴𝐻𝑐𝑜𝑚
1, an energy consumption 𝐸𝐶1 and a risk of delay in arrival 

𝑅𝐷1.  

It is obvious that the risk of delay in arrival of speed profile 1 can be improved by 
reducing the objective running time. Thus, the speed profile 2 is obtained, which is 

represented in Figure 5-3 and whose running time is 𝑅𝑇2 < 𝐴𝐻𝑐𝑜𝑚
1. Solution 2 

improves the risk of delay in arrival and the running time of solution 1. However, the 
energy consumption is increased and, for that reason, solutions 1 and 2 are non-
dominated. 
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Figure 5-3. Comparison of two energy optimal speed profiles with different running time 

In the previous example, the lower the running time, the lower the risk of delay in 
arrival. However solutions can be found with the same running time and different values 
of RD. For instance, it can be easily found a solution with the minimum risk of delay in 

arrival that meets the objective running time 𝐴𝐻𝑐𝑜𝑚
1. This solution consists in, using a 

𝐶𝑚 with 𝑛𝑠 = 2, a holding speed command at maximum speed followed by a coasting 

command at the position needed for achieving a running time equal to 𝐴𝐻𝑐𝑜𝑚
1. Thus, 

speed profile 3 is obtained and represented in Figure 5-4. Comparing solutions 1 and 3 
it can be found that both have the same running time by definition. Besides, the risk of 
delay in arrival of solution 3 is lower than result of solution 1 because solution 3 retains 
the initial margin up to the coasting phase, while solution 1 is consuming the margin 
along the journey reducing it constantly as can be seen in Figure 5-4. Looking at the 
energy consumption, it can be found that solution 3 demands more energy given that 

solution 1 is the energy optimal solution for the running time 𝐴𝐻𝑐𝑜𝑚
1. Therefore, it can 

be concluded that solutions 1 and 3 are non-dominated solutions because speed profile 
3 improves the risk of delay in arrival of solution 1, maintaining the same running time 
but worsening the energy consumption. Moreover, it can be concluded that the risk of 
delay in arrival does not depend directly on the running time of the solution. 

It is not possible to find a solution that dominates speed profile 3. To find a solution 
with RD lower than solution 3, it is necessary to build a solution 4 that has a larger 
holding speed phase at maximum speed. Solution 4 will present higher energy 
consumption compared with solution 3 in any case. Therefore, although running time 
and risk of delay are improved, the energy consumption objective worsens. 
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Figure 5-4. Comparison of two speed profiles with the same running time but different risk of delay in 

arrival 

Varying the maximum holding speed and the start position of coasting a continuous 
solution space can be found with the same running time that solution 1 and with 
different values of RD.  

Finally, a Pareto surface can be obtained repeating the previous procedure for other 
running times for Solution 1. This demonstrates the existence of non-dominated 
solutions in the three dimensions of the problem. These solutions are equally valid and 
the selection of one of them depends of the preferences of the decision maker. 

5.4. DYNAMIC NSGA-III WITH FUZZY PARAMETERS (DNSGA-III-F) FOR THE 
ON-LINE DRIVING REGULATION PROBLEM 

In this section, the train driving is optimised considering 3 objectives: running time, 
energy consumption and risk of delay in arrival. These objectives are conflicting, 
therefore the result of the algorithm will be a three-dimensional Pareto surface. The 
Pareto front is composed of a set of optimal solutions, where each solution is a 
command matrix. On the other hand, apart from obtaining the Pareto front, the 
proposed algorithm has to track its variations during the train movement. 

The running time, energy consumption and risk of delay in arrival of a solution, i.e. of a 
set of driving commands, depend on the position and speed of the train. Figure 5-5 
shows an example of the variation of the Pareto front during a train travel. This figure 
depicts the Pareto front obtained by means of an optimisation and three possible speed 
profiles that the train can perform at 3 different instants during a train journey. During 
this journey, the train is following a nominal speed profile and the Pareto surface is 

0

50

100

150

200

250

300

350

221 241 261 281 301

Sp
e

e
d

 (k
m

/h
)

Position (km)

Speed limit Solution 1 Solution 3

0

50

100

150

200

250

300

221 241 261 281 301

M
ar

gi
n

 (s
)

Position (km)

Solution 1 Solution 3



Comillas Pontifical University, ICAI School of Engineering, Institute for Research in Technology 
Train eco-driving optimisation based on simulation models 

 

 

91 
 

recalculated as the train moves. The nominal speed profile is always represented by a 
blue line in the speed vs space graphs. Instant 1 is the departure, thus, the position of 
the train is the departure station and the speed of the train is 0. From this initial 
conditions, multiple speed profiles can be performed with different values of running 
time, energy consumption and RD. In Figure 5-5, the optimal speed profiles for this 
instant are represented by the Pareto surface of blue dots and three examples of these 
speed profiles are shown in the green, blue and brown lines in the speed vs position 
graph of Instant 1.  

In Instant 2, the train is at 250 km position with a speed of 240 km/h. From these initial 
conditions, a variety of speed profiles can be applied that are calculated for a shorter 
section of the line (from the current position up to the arrival station). The Pareto 
solutions of Instant 2 are represented by the Pareto surface of orange dots and three 
examples of these speed profiles are shown in the green, blue and brown lines in the 
speed vs position graph of Instant 2. These solutions are different from the solutions 
obtained in Instant 1 because most of Instant 1 optimal speed profiles have a speed 
different from 240 km/h at 250 km position. Later, in Instant 3 the train is at 270 km 
position travelling at 230 km/h. From these conditions, the number of possible speed 
profiles that can be applied are reduced because the journey length is shorter. This is 
shown in the Pareto surface represented by yellow dots, which is smaller because the 
results in running time, energy consumption and risk of delay are lower and because 
the variety of possibilities is reduced. 

As can be seen, the running time and the energy consumption of the Pareto solutions 
are lower at later time instants because the remaining distance to arrival decreases. 

Furthermore, as the train moves the maximum difference in running time, energy 
consumption and risk to future delays are reduced. The reason is that as the running 
distance decreases, the number of different speed profiles that the train can perform is 
reduced. 

Considering the above, the Pareto front of the possible solutions varies continuously 
during the train travel because the position and the speed of the train varies 
continuously. Thus, it is necessary to discretise the continuous changes of the problem 
to perform successive optimisations in order to track Pareto front variations. With this 
aim, the train travel is divided into periods of 𝑡𝑐 seconds. During each period, the 
conditions of the problem are considered as constant and an execution of the algorithm 
will be carried out. Each execution of the algorithm will use the position and the speed 
of the train at the beginning of the period as initial conditions of the simulation model 
that evaluates the solutions. Thus, at the end of each period the Pareto front is updated 
to the changing conditions of the train. 
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Instant 1 
s0 = 0 km and v0 = 0 km/h 

Pareto Surfaces

                        

 

Instant 2 
s0 = 250 km and v0 = 240 km/h 

 

Instant 3 
s0 = 270 km and v0 = 230 km/h 

 
 

Figure 5-5. Variation of the Pareto front and some possible speed profiles during a train travel 

To accelerate the optimisation process and improve the quality of the solutions 
obtained, a re-initialisation mechanism is included in the algorithm to take advantage 
of the information of previous executions. It is expected that the problem conditions 
will change smoothly during the train travel. As a consequence, the Pareto front 
obtained at the end of a period should be similar to the one obtained in the previous 
period. Therefore, it is useful to initialise each new execution of the optimisation with 
the optimal solutions obtained in the previous one. This way, the algorithm starts from 
a population close to the real optimal front reducing dramatically the calculation time 
needed to converge. 

Dynamic Multi Objective Optimisation (DMOO) algorithms apply this strategy to the 
reduce de calculation time allowing a frequent update of the Pareto Front. 

As described in section 3.2, the driving parameters of a solution X are modelled as fuzzy 
numbers, thus its associated running time, energy consumption and risk of delay are 
fuzzy numbers. 

This way, the problem is modelled as a DMOO problem with fuzzy parameters, and the 
objective function includes three objectives (Eq.(5.6)): 

𝑀𝑖𝑛 𝑓(𝑋) = (𝑅�̃�(𝑋), 𝐸�̃�(𝑋), 𝑅�̃�(𝑋)) (5.6) 
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where 𝑅�̃�(𝑋), 𝐸�̃�(𝑋) and 𝑅�̃�(𝑋) are the fuzzy running time, energy consumption and 
risk of delay in arrival of the solution 𝑋. Minimizing these three fuzzy objectives 
demands the application of fuzzy dominance concepts which are explained in Section 
5.4.2. In addition, a procedure based on α-cut arithmetic is proposed in Section 5.4.4 to 
reduce the calculation time of the algorithm. 

A new dynamic NSGA-III algorithm with fuzzy parameters DNSGA-III-F to obtain the 
Pareto surface of the possible speed profiles during a high-speed train travel is 
proposed. 

5.4.1. DNSGA-III-F FLOWCHART 

The crisp NSGA-III algorithm (Deb and Jain, 2014) is a version of the well-known NSGA-
II algorithm to solve many-objective problems. The NSGA-III algorithm has shown its 
suitability when solving problems of three or more objectives. The basic framework of 
NSGA-III is similar to the previous NSGA-II. A population of solutions evolves through 
iterations and the individuals of this population are classified into groups with the same 
domination level. The domination level of an individual is calculated as the number of 
solutions that dominate that specific individual. Notice that the Pareto front found by 
the algorithm will be the set of solutions with dominance level equal to zero. In NSGA-
III, elitism is introduced in each group using a spread operator based on reference points 
(instead of the crowding distance operator used in NSGA-II). Solutions with the same 
domination level are sorted attending to its distance to a predefined reference point. 
This way, the diversity of solutions is promoted obtaining well-spread Pareto fronts. 

A new dynamic algorithm with fuzzy parameters is proposed based on the static NSGA-
III, using the Pareto front of an execution as the initial population of the next one, and 
including the uncertainty associated to the train driving. 

The flowchart of the proposed DNSGA-III-F algorithm is shown in Figure 5-6.  

The first execution 𝑒𝑥 is launched before the train departure and the initial parent 
population 𝑃0

1 is generated randomly (size 𝑛𝑝𝑜𝑝). The initial position of the train 𝑠0 is 

the departure station 𝑠𝑑𝑒𝑝, and the initial speed 𝑣0 is zero. This parent population is 

evaluated simulating each solution. The offspring population 𝑄𝑖𝑡
𝑒𝑥 is generated at each 

iteration it applying cross-over and mutation operators to individuals in the parent 
population. The cross-over operator constructs a new solution from two individuals of 
the parent population. Thus, the 𝐶𝑚 of the new solution will be formed taking part of 
the 𝐶𝑚 of a parent solution and part of the 𝐶𝑚 of the other parent solution. On the 
other hand, the mutation operator takes the 𝐶𝑚 of a parent solution and varies 
randomly the value of a command matrix item. The mutation and crossover operators 
applied in this algorithm were proposed in (Sicre, 2013). 

This offspring population is evaluated and a result population 𝑅𝑖𝑡
𝑒𝑥 is generated joining 

𝑃𝑖𝑡
𝑒𝑥 and 𝑄𝑖𝑡

𝑒𝑥. The fuzzy dominance is calculated to obtain the domination level of each 
individual in 𝑅𝑖𝑡

𝑒𝑥, and a selection criterion is applied to select the individuals that will 
survive 𝑆𝑃𝑖𝑡

𝑒𝑥 for the next generation to form the next parent population 𝑃𝑖𝑡+1
𝑒𝑥 . 
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Figure 5-6.  Flow chart of DNSGA-III-F 

The stopping criterion of the first execution of the algorithm is given by a maximum 
number of iterations 𝑖𝑡𝑚𝑎𝑥, and it is executed while the train is stopped at the departure 
station. The stopping criterion of the following executions is the computation time 𝑡𝑐. 

When a new execution ex of the algorithm starts, the previous result population 𝑅𝑖𝑡
𝑒𝑥 at 

𝑒𝑥 − 1 is used as the initial population, and a diversity mechanism is applied to increase 
the searching ability of the population. Two mechanisms are used in the DNSGA-III-F 
algorithm to be compared, based on those proposed by Deb et al. in (Deb et al., 2007): 

 Random Mechanism: a percentage ζ% of the result population is replaced by 
randomly created individuals. 

 Mutation Mechanism: a percentage ζ% of the result population is replaced by 
mutated solutions of randomly selected individuals of the population. 

Then, this population is re-evaluated using the initial conditions of the current execution 
(current position strain and speed 𝑣𝑡𝑟𝑎𝑖𝑛 of the train). Fuzzy dominance is calculated 
and the selection criterion is applied to obtain the next parent population. 
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The calculation time required for each iteration depends mostly on the calculation time 
of the simulator. Solutions are evaluated at each iteration by means of the simulator, 
thus, compared with the computational cost of the population evaluation, the 
calculation time of the rest of the modules can be practically neglected. 

The value of the parameter 𝑡𝑐 (maximum calculation time) must be adjusted carefully. 
The optimisation is performed repeatedly at each time period 𝑡𝑐. Therefore, shorter 
calculation times provide better tracking of the current situation of the train because 
the Pareto front is updated more often. However, the number of iterations that the 
optimisation algorithm can use to find a solution is lower. On the contrary, if the value 
of 𝑡𝑐 is large, the algorithm will have many iterations to find a good Pareto front but it 
could be outdated because the conditions of the problem may change significantly. 

When the computation time 𝑡𝑐 is completed, the new Pareto surface obtained is 
provided to the Algorithm to update driver’s commands which is in charge of deciding 
when a new set of driving commands has to replace the current ones. 

In the following subsections, a more detailed description about the fuzzy dominance 
calculation and the selection criterion will be provided. 

5.4.2. FUZZY DOMINANCE 

The selection criterion of the individuals that will survive at the next generation is based 
on the domination level of each solution, as previously indicated. The domination level 
of a solution is calculated as the number of solutions that dominate that point.  

As the solutions are defined by means of fuzzy driving commands, the resulting 3 
objectives of each solution are fuzzy numbers as well, and the dominance concept has 
to be expressed in fuzzy terms. An individual A fuzzy dominates another B if it fuzzy 
dominates for each objective i:  

�̃� ≺ �̃� =∩ �̃� ≺𝑗 �̃� (5.7) 

where 𝑗 = 1, 2, 3 and the three objectives are the fuzzy running time, energy 
consumption and risk of delay in arrival. 

Therefore, the fuzzy dominance of a solution A over a solution B can be defined as the 

intersection of the three objectives as 𝑅�̃�(𝐵) > 𝑅�̃�(𝐴) and 𝐸�̃�(𝐵) > 𝐸�̃�(𝐴) and 

𝑅�̃�(𝐵) > 𝑅�̃�(𝐴) (Carvajal-Carreño et al., 2014). 

In order to calculate the fuzzy dominance, the min t-norm is used, and the fuzzy 

numbers 𝑅�̃�(𝐴), 𝑅�̃�(𝐵), 𝐸�̃�(𝐴), 𝐸�̃�(𝐵), 𝑅�̃�(𝐴) and 𝑅�̃�(𝐵) are compared in terms of 
the necessity measure (Dubois and Prade, 1983), to calculate the strong fuzzy 
dominance (Carvajal-Carreño et al., 2014). Thus, the solution A fuzzy dominates B if 

𝑁 (𝑅�̃�(𝐵) > 𝑅�̃�(𝐴)) ≥ 𝑁𝑑 and 𝑁 (𝐸�̃�(𝐵) > 𝐸�̃�(𝐴)) ≥ 𝑁𝑑 and 𝑁 (𝑅�̃�(𝐵) >

𝑅�̃�(𝐴)) ≥ 𝑁𝑑.  

In Eq. (5.8), the fuzzy dominance of A over B with the min t-norm is represented. 
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𝑚𝑖𝑛

(

 
 
𝑁 (𝑅�̃�(𝐵) > 𝑅�̃�(𝐴)) 

𝑁 (𝐸�̃�(𝐵) > 𝐸�̃�(𝐴)) 

𝑁 (𝑅�̃�(𝐵) > 𝑅�̃�(𝐴))
)

 
 
≥ 𝑁𝑑 (5.8) 

where 𝑁𝑑 is the required level of necessity for the fuzzy comparison. 

Notice that the necessity measure of 𝑅�̃�(𝐵) > 𝑅�̃�(𝐴) is equal to one minus the 

possibility of 𝑅�̃�(𝐵) ≤ 𝑅�̃�(𝐴) as shown in Eq. (5.9). 

𝑁 (𝑅�̃�(𝐵) > 𝑅�̃�(𝐴)) = 1 − ∏(𝑅�̃�(𝐵) ≤ 𝑅�̃�(𝐴)) (5.9) 

Thus, the equation 𝑁 (𝑅�̃�(𝐵) > 𝑅�̃�(𝐴)) > 𝑁𝑑  can be written as: 

∏(𝑅�̃�(𝐵) ≤ 𝑅�̃�(𝐴)) < 1 − 𝑁𝑑 (5.10) 

A graphical representation of the previous relation is shown in Figure 5-7. This figure 

shows that A dominates B regarding the running time objective because 𝑁 (𝑅�̃�(𝐵) >

𝑅�̃�(𝐴)) > 𝑁𝑑 

 

Figure 5-7.  Representation of fuzzy dominance of A over B. 

5.4.3. SELECTION OPERATOR  

The DNSGA-III-F algorithm uses a set of reference points to promote the spread of 
solutions in the population. This reference set can be provided by the users based on 
their knowledge or can be generated in a structured manner. In this work Das and 
Dennis’ systematic approach is applied (Das and Dennis, 1998). This method places the 
reference points on a normalised hyper-plane, which is equally inclined to all objective 
axes and has an intercept of one on each axis. The number of points (𝐻) obtained 
depends on the number of objectives (𝑛𝑜) and the number of divisions desired along 
each objective (𝑛𝑑): 

𝐻 = (
𝑛𝑜 + 𝑛𝑑 − 1

𝑛𝑑
) (5.11) 

In Figure 5-8 an example with 𝑛𝑑 = 4 and 15 reference points is shown. 

𝑅𝑇 (𝐴) 𝑅𝑇 (𝐵) 

𝑁 (𝑅𝑇 (𝐵) > 𝑅𝑇 (𝐴)) 

∏(𝑅𝑇 (𝐵) < 𝑅𝑇 (𝐴)) 
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Figure 5-8. Fifteen reference points placed on a normalised hyper-plane using Das and Dennis’ systematic 

approach 

The niche preservation operator associates the population individuals with the 
reference points. Before doing that, individuals’ objective values are normalised as 
shown in Eq. (5.12). 

𝑛𝑓𝑞
𝑗
=
𝑓𝑞
𝑗
− 𝑧𝑞

𝑚𝑖𝑛

𝑏𝑞
              𝑞 = 1, 2, 3 (5.12) 

where 𝑓𝑞
𝑗
 is the original value in the objective 𝑞 of the individual 𝑗 and 𝑛𝑓𝑞

𝑗
 is its 

normalised result in the objective 𝑞. The value of 𝑧𝑞
𝑚𝑖𝑛 is the minimum value of the 

objective 𝑞 found in the set of individuals where niche preservation operator is applied. 

The value of 𝑏𝑞 is equal to the maximum value of 𝑓𝑞
𝑗
− 𝑧𝑞

𝑚𝑖𝑛 found in the set of 

individuals. 

Once the normalisation is completed, the individuals in 𝑆𝑃𝑖𝑡 are associated to a 
reference point. The association needs to generate the reference line of each reference 
point. Reference lines are built joining the reference point with the origin. Thereafter, 
for each individual in 𝐹𝑙, the perpendicular distance of the normalised objectives to the 
reference lines are calculated. An individual is associated to a reference point if its 
reference line is the closest to this normalised population member. 

When the association process is finished, the niche count of each reference point 𝑟 is 
calculated (𝑛𝑐𝑟) as the number of individuals of  𝑆𝑃𝑖𝑡 associated with the reference point 
𝑟. Then, the selection operator works as follows: 

The reference points with the minimum niche count are identified and, among then, a 
reference point 𝑟 is randomly selected. 
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If there is one or more individuals in 𝐹𝑙  associated to the reference point selected, the 
individual with the shortest distance to its reference line is included in the set of 
solutions that will survive. The niche count of the reference point selected is 
incremented by one. 

If there is no individual in 𝐹𝑙  associated to the reference point selected, it is not 
considered. 

This process is repeated until the size of the set of surviving solution is equal to 𝑛𝑝𝑜𝑝. 

5.4.3.1. ADAPTIVE EVOLUTION OF REFERENCE POINTS  

After the application of the niche preservation operation, the parent population for the 
following iteration is created and the niche count of each reference point is updated. 
As the number of reference points is similar to 𝑛𝑝𝑜𝑝, it is expected that 𝑛𝑐𝑟 = 1 for all 

the reference points, i.e. all the reference points have associated at least one population 
member. However, it is possible that some reference points 𝑟 have 𝑛𝑐𝑟 ≥ 2. That means 
that other reference points do not have an associated member. If there are many 
useless reference points, a certain fraction of the population is pushed to be spread but 
the rest of the population will be randomly selected, which would affect to the diversity 
of the Pareto front. 

To avoid this, the adaptive evolution of reference points proposed in (Jain and Deb, 
2014) is applied in DNSGA-III-F. A simplex of 3 points is included for every reference 
point with 𝑛𝑐𝑟 ≥ 2 using the Das and Dennis’ method with 𝑛𝑑 = 1 and having a 
distance between points equal to the distance between two consecutive reference 
points in the original simplex as shown in Figure 5-9. The centroid of every simplex 
added is a reference point with 𝑛𝑐𝑟 ≥ 2. 

 

Figure 5-9. Addition of reference points 

After that, the included reference points that lay outside the boundaries of the original 
reference set are eliminated. Furthermore, if there are coincident reference points, only 
one is retained and the rest are eliminated. 
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5.4.4. DNSGA-III-F RESOLUTION 

To improve the computational time of the algorithm, it is possible to apply the 𝛼-cut 
arithmetic if the three  objectives are monotonous functions of the command matrix 
parameters (Chanas et al., 1984).  

To determine if a solution A dominates a solution B, the algorithm has to calculate the 
upper or the lower limits of the 𝛼 -cuts of the fuzzy 𝑅𝑇, 𝐸𝐶 and 𝑅𝐷 (see Figure 5-7). To 
obtain the 𝛼 -cuts efficiently, it is necessary to determine whether 𝑅𝑇, 𝐸𝐶 and 𝑅𝐷 are 
increasing or decreasing functions of the speed command 𝑣𝑐𝑘 and the 
anticipation/delay time 𝑡𝑎/𝑑. 

Regarding the holding speed command, it is obvious that the running time always 
decreases as the trains runs faster, thus, the running time is a decreasing function of 
the speed. Similarly, the faster the speed of the train, the lower the risk of delay 
(decreasing function). The energy consumption is an increasing function of the value of 
holding speed command because of the increase in the movement resistance. 

Regarding the anticipation/delay time in the application of a new command speed 𝑡𝑎/𝑑, 

two cases can be distinguished: 

 Case A. The next holding speed command is higher than the previous one 
( 𝑣𝑐𝑘 < 𝑣𝑐𝑘+1). Therefore, the higher the 𝑡𝑎/𝑑, the later the driving command 

will be updated and the higher will be the time using a slower driving command. 
As a consequence, the higher 𝑡𝑎/𝑑, the higher the running time and risk of delays 

and the lower the energy consumption will be obtained. 

 Case B. The next holding speed command is lower than the previous one 
𝑣𝑐𝑘 > 𝑣𝑐𝑘+1. Therefore, the higher 𝑡𝑎/𝑑, the later the driving command will be 

updated and the higher will be the time of driving using a faster driving 
command. As a consequence, the higher 𝑡𝑎/𝑑, the lower the running time and 

risk of delays and the higher the energy consumption will be obtained. 

Taking into account the previous relationships, the upper limit of the 𝛼-cuts of the fuzzy 
running time 𝑅𝑇𝛼 can be calculated simulating with the lower limmit of the same 𝛼-cut 
of the fuzzy speed 𝑣𝑐𝑘,𝛼  (as 𝑅𝑇 is decreasing with 𝑣), and in Case A, with the upper limit 

of the anticipation/delay time  𝑡𝑎
𝑑⁄ ,
 𝑘,𝛼 (increasing function), while in case B with the 

lower limit  𝑡𝑎
𝑑⁄
 𝑘,𝛼 (decreasing function): 

𝑅𝑇𝛼 = 𝐹(𝑣𝑐𝑘,𝛼 ,  𝑡𝑎 𝑑⁄ , 𝑘,𝛼  𝑖𝑛 𝑐𝑎𝑠𝑒 𝐴,   𝑡
𝑎
𝑑⁄
 𝑘,𝛼 𝑖𝑛 𝑐𝑎𝑠𝑒 𝐵)  (5.13) 

On the other hand, the lower limit of the 𝛼-cut of the fuzzy running time 𝑅𝑇𝛼 can be 

calculated as:  

𝑅𝑇𝛼 = 𝐹(𝑣𝑐𝑘,𝛼 ,  𝑡𝑎 𝑑⁄ , 𝑘,𝛼  𝑖𝑛 𝑐𝑎𝑠𝑒 𝐴,   𝑡
𝑎
𝑑⁄
 𝑘,𝛼 𝑖𝑛 𝑐𝑎𝑠𝑒 𝐵)  (5.14) 

Similarly, the upper limits and the lower limits of the 𝛼–cuts of the fuzzy energy 
consumption and the fuzzy risk of delay can be calculated as indicated in equations 
(5.15), (5.16), (5.17) and (5.18): 
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𝐸𝐶𝛼 = 𝐹(𝑣𝑐𝑘,𝛼 ,  𝑡𝑎 𝑑⁄ , 𝑘,𝛼  𝑖𝑛 𝑐𝑎𝑠𝑒 𝐴,   𝑡
𝑎
𝑑⁄
 ,𝑘,𝛼 𝑖𝑛 𝑐𝑎𝑠𝑒 𝐵)  (5.15) 

 
𝐸𝐶𝛼 = 𝐹(𝑣𝑐𝑘,𝛼 ,  𝑡𝑎 𝑑⁄ , 𝑘,𝛼  𝑖𝑛 𝑐𝑎𝑠𝑒 𝐴,   𝑡

𝑎
𝑑⁄
 ,𝑘,𝛼 𝑖𝑛 𝑐𝑎𝑠𝑒 𝐵)  (5.16) 

 
𝑅𝐷𝛼 = 𝐹(𝑣𝑐𝑘,𝛼 ,  𝑡𝑎 𝑑⁄ , 𝑘,𝛼  𝑖𝑛 𝑐𝑎𝑠𝑒 𝐴,   𝑡

𝑎
𝑑⁄
 𝑘,𝛼 𝑖𝑛 𝑐𝑎𝑠𝑒 𝐵)  (5.17) 

 
𝑅𝐷𝛼 = 𝐹(𝑣𝑐𝑘,𝛼 ,  𝑡𝑎 𝑑⁄ , 𝑘,𝛼  𝑖𝑛 𝑐𝑎𝑠𝑒 𝐴,   𝑡

𝑎
𝑑⁄
 𝑘,𝛼 𝑖𝑛 𝑐𝑎𝑠𝑒 𝐵)  (5.18) 

The previous relationship can be seen graphically in Figure 5-10. 

 
Figure 5-10. Fastest and slowest case for a given value of α 

The resolution of DNSGA-III-F algorithm makes use of the 𝛼-cut arithmetic to improve 
the computational efficiency. It can be described following these steps: 

1. Generation of the initial population of the algorithm first execution 𝑒𝑥 = 1, 
launched at the departure station. This initial parent population (𝑃0

1) is composed 
by 𝑛𝑝𝑜𝑝 individuals generated randomly, and the following constraints are applied 

to ensure the comfort of the resulting speed profiles. Eq. (5.19) establishes a lower 
bound (𝑣𝑐𝑚𝑖𝑛) for driving commands to avoid low speed during the train travel. On 
the other hand, Eq. (5.20) establishes the minimum position (𝑠𝑐𝑚𝑖𝑛) from where the 
train can start to coast before the final braking. The objective of these limitations is 
to avoid the train being driven at low speeds that can be perceived as unpleasant by 
passengers. 

𝑣𝑐𝑘(𝑋) > 𝑣𝑐𝑚𝑖𝑛 (5.19) 

𝑠𝑐𝑛𝑠−1(𝑋) > 𝑠𝑐𝑚𝑖𝑛 (5.20) 

2. The initial conditions of the simulation model in the first execution of the algorithm 
are the position of the departure station and a zero value for the initial speed. 

3. The parent population is evaluated using the simulator. For each individual, given a 
necessity level for the dominance requirement 𝑁𝑑,  the upper and lower limits of 𝛼-
cuts for 𝛼 = 1 − 𝑁𝑑 of the fuzzy running time, energy consumption and risk to delay 
in arrival  are calculated by means of  equations (5.13)-(5.18). The cores of these 
fuzzy numbers are calculated in a similar way. 

4. Generation of the offspring population. At each iteration it, the offspring population 
(𝑄𝑖𝑡
𝑒𝑥) is composed of 𝑛𝑜𝑓𝑓 individuals generated applying crossover and mutation 

operators to individuals in the parent population 𝑃𝑖𝑡
𝑒𝑥. Restrictions (5.19) and (5.20) 

are also applied in the offspring generation process. 
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5. The offspring population is evaluated using the simulator as described in step 3 with 
the parent population. 

6. Generation of the result population. The result population of iteration 𝑖𝑡 (𝑅𝑖𝑡
𝑒𝑥) is 

generated joining 𝑃𝑖𝑡
𝑒𝑥 and 𝑄𝑖𝑡

𝑒𝑥. 
7. Fuzzy dominance. To calculate domination level of each individual, the members of 

the population are compared in the following way. 

Given two solutions A and B, A dominates B if 𝑅𝑇�̅�(𝐴) <  𝑅𝑇𝛼(𝐵) and 𝐸𝐶�̅�(𝐴) <

 𝐸𝐶𝛼(𝐵) and 𝑅𝐷�̅�(𝐴) <  𝑅𝐷𝛼(𝐵) comparing lower and upper limit with  

𝛼 = 1 − 𝑁𝑑 , where is the necessity level imposed for the dominance comparison. 
Besides, solutions with high running time are discarded during the algorithm 
execution to reduce the search space. To filter the solutions with higher running 
time, the algorithm checks if the core of the fuzzy running time associated to each 
solution exceeds a threshold. In this case, the algorithm evaluates that solution as a 
dominated solution and assigns the worst possible score to its domination level. The 
threshold is given by the flat-out running time plus two times the remaining time 
margin. 

8. Generation of next parent population 𝑃𝑖𝑡+1
𝑒𝑥 . The selection operator described in 

section 5.4.3, based on the niche count, is applied to the result population to obtain 
the members of the population that will survive at the next iteration. 

9. Execution stopping criteria. Two stopping criteria are defined: 

 The first execution of the algorithm is performed before the departure of the 
train. Therefore, the stopping criterion applied is a maximum number of 
iterations 𝑖𝑡𝑚𝑎𝑥. 

 The rest of the executions of the algorithm are performed online during the train 
travel. Therefore, to track adequately the Pareto front changes, a maximum 
calculation time 𝑡𝑐 is applied as the stopping criterion. 

10. Initialisation of the next algorithm execution. Once the execution of the algorithm 
is finished, the Pareto surface is updated and the initial conditions for the simulation 
model are set to the current position and speed of the train. A diversity mechanism, 
Random Mechanism or Mutation Mechanism, is applied in the last iteration result 
population 𝑅𝑖𝑡

𝑒𝑥. The population obtained is simulated to obtain the results of the 
individuals under the new initial conditions. Thereafter, fuzzy dominance and 
selection operator are applied to generate the initial parent population 𝑃0

𝑒𝑥 of the 
new algorithm execution. 

11. The process is repeated from step 4 up to the arrival station. 

5.5. ALGORITHM TO UPDATE DRIVER’S COMMANDS   

In low traffic density high-speed lines (like the Spanish ones) delays are less frequent 
than in urban lines. They are caused typically by temporary speed limitations, due to 
civil o maintenance works, or to adverse weather conditions.  

When a train is affected by these situations, the nominal driving has to be updated to a 
faster speed profile to arrive on time at the next station.  
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In the previous section, it was described that the Pareto surface of possible speed 
profiles is calculated by DNSGA-III-F every cycle of 𝑡𝑐 seconds. Despite that, the set of 
driving commands to be applied by the driver are not changed unless it is necessary to 
perform a different speed profile, i.e. unless a significant delay arises (over a threshold 
value). Thus, the driving commands are not continuously changed. 

When the train delay exceeds the threshold, flat-out driving is applied to check when it 
is possible to reduce the delay. When the delay starts to decrease, the system selects 
the new driving commands to be applied from the last updated Pareto front. The speed 
profile selected is the one that makes up the delay in arrival balancing the energy 
consumption and the risk of future delays. Therefore, an online decision maker is 
needed to select the most appropriated driving commands. When a new speed profile 
is needed, the algorithm to update the driver’s commands calculates the objective 
running time. Thereafter, it selects from the Pareto front the set of solutions whose 
running time is equal or lower to the objective running time. 

The running time associated to each solution is a fuzzy number as was explained before. 
A necessity of punctuality level 𝑁𝑝 is configured to compare the fuzzy running time with 

the objective running time. Therefore, the set of solutions that fulfils the objective 
running time are those that meet the following comparison: 

𝑅𝑇𝛼𝑝̅̅ ̅̅ (𝐴) ≤  𝑇𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 (5.21) 

where 𝑅𝑇𝛼𝑝̅̅ ̅̅ (𝐴) is the upper limit of the 𝛼-cut of running time of a solution 𝐴 from the 

Pareto front corresponding to the necessity of punctuality (𝛼𝑝 = 1 − 𝑁𝑝). 𝑇𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 is 

the objective running time. 

Finally, the selected solution is the one with the minimum value for the following fitness 
function: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝑤𝑒𝑐 ∙ 𝐸𝐶(𝐴) + 𝑤𝑟𝑑 ∙ 𝑅𝐷(𝐴) (5.22) 

where 𝐸𝐶(𝐴) and 𝑅𝐷(𝐴) are the core values of the fuzzy energy consumption and risk 
of delay in arrival of a solution 𝐴. The constants 𝑤𝑒𝑐 and 𝑤𝑟𝑑 are the weighting factors 
of energy consumption and risk of delay in arrival. 

Parameters 𝑤𝑒𝑐 and 𝑤𝑟𝑑 are configured by the operator based on their preferences and 
the state of the traffic complying  𝑤𝑒𝑐 + 𝑤𝑟𝑑 = 1. 

5.6. CASE STUDY 

DNSGA-III-F algorithm has been tested in a case study using real data from a Spanish 
high-speed line. As in Chapter 4, the stretch analysed runs from Calatayud to Zaragoza 
and its length is 85.4 km. The high-speed train is a Talgo-Bombardier class 102. This train 
has two motors of 8 MW and 200 kN of maximum traction effort. The train is 200 m 
long and its empty weight is 324 t. The operational restrictions 𝑣𝑚𝑖𝑛 and 𝑥𝑚𝑖𝑛 for the 
driving commands are set to 150 km/h and 50 km respectively to avoid low speed 
phases in the middle of the journey.  
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The tests that have been carried out to check the algorithm performance are based on 
two threads of simulation. The main thread simulates the whole journey of the train 
matching the simulation clock with the real-time clock. The secondary thread carries 
out the dynamic optimisation algorithm that makes many fast simulations to evaluate 
possible solutions. Both threads were executed using an Intel Core i7-2600 CPU@3.4 
GHz and 16GB of RAM. 

The DNSGA-III-F tuned parameters used in the case study are presented in Table 5-1. 
The number of sections in 𝐶𝑚 has been set to 4. Therefore, the algorithm has to 
optimise 8 variables that are contained in the command matrix of the possible solutions. 
On the other hand, the configuration parameters for the fuzzy numbers are presented 
in Table 5-2. 

Parent 

population 

size (𝑛𝑝𝑜𝑝) 

Offspring 

population 

size (𝑛𝑜𝑓𝑓) 

Number of 

crossover 

Number of 

mutations 

Number of 

sections in Cm 

(𝑛𝑠) 

Diversity 

mechanism 

parameter (ζ) 

Calculation 

time (𝑡𝑐) 

100 50 20 30 4 15 % 60 s 

Table 5-1. Tuned parameters of DNSGA-III-F algorithm 

 

Support of fuzzy 

holding speed (∆𝑣) 

Support of fuzzy 

anticipation/delay time (∆𝑡) 

Necessity for dominance 

comparison (𝑁𝑑) 

Necessity of 

punctuality (𝑁𝑝) 

3 km/h 2 s 0.6 0.6 

Table 5-2. Configuration parameters of fuzzy numbers 

5.6.1. DNSGA-III-F CONVERGENCE ANALYSIS 

To analyse the performance of the algorithm presented in this paper, the train is 
simulated to face a disturbance that leads to accumulate a delay. This disturbance is an 
unexpected temporary speed limitation of 90 km/h located between 229 km and 230 
km. If the driver does not change the nominal speed profile calculated at the beginning 
of route, the train would arrive at the next station 1 minute and 20 seconds late. Figure 
5-11 represents the nominal speed profile affected by the unexpected speed limitation. 

DNSGA-III-F has been applied to solve this optimisation problem and the Random 
Mechanism and Mutation Mechanism are compared in order to select the best 
configuration of the algorithm. 

 
Figure 5-11. Nominal speed profile observing the temporary speed limitation 
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Initially, the nominal speed profile is calculated before departure (first execution of the 
algorithm), the train starts the journey following these initially optimised nominal 
commands, and the Pareto front is updated along the trip. Then, the train faces an 
unexpected speed limitation and when the delay is detected, a new solution is selected 
and the new commands are displayed to the driver when the train has left the 
temporary speed restriction. At this moment, 30 iterations are allowed for the 
execution of the algorithm with the objective of studying in detail its convergence   

Hypervolume metric (Jiménez et al., 2013) is used to compare the quality of the Pareto 
fronts obtained. The Hypervolume measures the piece of the search space that is not 
dominated by any solution of the Pareto front. It is a quality metric that assesses not 
only the proximity of the result to the real Pareto front, but also the spread of the 
solutions obtained. The Hypervolume is calculated in this paper using the algorithm for 
calculating a Lebesgue measure proposed in (Fleischer, 2003). 

Due to the random search nature of evolutionary algorithms, different solutions can be 
obtained for similar situations. To obtain a robust analysis, the Hypervolume results 
provided are the mean value of 20 tests in the same journey.  

The performance of DNSGA-III-F using Random and Mutation mechanisms is analysed 
and compared with the application of a static version of DNSGA-III-F where the 
population is generated randomly at the beginning of each execution. 

Figure 5-12 shows the evolution of the mean value of the Hypervolume metric through 
the iterations of DNSGA-III-F algorithm. Furthermore, the performance of the algorithm 
using tc = 60 s is compared with tc = 100 s. The algorithm can perform 5 iterations using 
a calculation time of 60 s whereas it can perform 12 iterations using a calculation time 
of 120 s. As shown in Figure 5-12, at iteration 5 the DNSGA-III-F algorithm, using both 
initialisation mechanisms, has practically converged for tc = 60 s. For tc = 100 s, it can be 
seen that DNSGA-III-F algorithm has converged at iteration 12. However, the results 
obtained for both versions of DNSGA-III-F at iteration 5 using 60 s of calculation time 
are better than the results obtained for both versions of DNSGA-III-F at iteration 12 
using 100 s of calculation time. It can be observed in the figure that the HV of the initial 
population is better for tc = 60 s because the result of the previous execution was 
obtained using more recent initial conditions. For that reason, it achieves better results 
in less number of iterations.  Moreover, the use of a lower value of tc presents the 
advantage of refreshing the Pareto front more frequently. 
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Figure 5-12. Mean value of Hypervolume during the evolution of the DNSGA-III-F 

On the other hand, the static version is far from converging at that iteration 5 and it is 
close to stabilise at iteration 12. The static version of the algorithm starts from a 
randomly generated population as usual in genetic algorithms and its results are 
independent of the calculation time given that it does not depend on previous 
populations. Therefore, it starts from worse initial populations than the dynamic version 
and takes much longer to converge to a good solution. The use of the population of 
previous execution allows the algorithm to start from a population closer to the real 
optima accelerating the optimisation process. This way, the dynamic algorithm only 
takes a few iterations to update the previous Pareto front to the new train conditions 
during the travel. Thus, the comparison of the static version with the dynamic version 
demonstrates that, in 5 iterations, the dynamic algorithm converged for tc = 60 s. 

The comparison of the two diversity mechanisms in DNSGA-III-F shows that the results 
of Mutation Mechanism outperformed results of Random Mechanism using both 
calculation time values. Thus, it is preferable to introduce diversity in the first 
population of each execution by means of mutated individuals rather than random 
individuals. During the train travel, changes in Pareto front are smooth and, therefore, 
the Pareto front from an execution will be similar to the Pareto front of the following 
executions. As a consequence, mutated individuals from the previous execution will be 
closer to real optima than random individuals. 

The computation cost of the optimisation depends mainly on the number of solution 
evaluations required. Each solution evaluation costs 0.15 s on average because of the 
detailed simulation. The computational cost of the evaluation module at each iteration 
is 7.5 s on average. This value can be obtained multiplying the evaluation cost of one 
solution by 50 members of the offspring population. Therefore, the computational cost 
of the other modules of the algorithm can be neglected compared with the time 
required by the evaluation module. 
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5.6.2. DELAY RESPONSE ANALYSIS FACING ONE TEMPORARY SPEED 
LIMITATION 

This section compares the performance of the train facing a delay using DNSGA-III-F 
algorithm or applying the “immediate” delay recover strategy. The delayed situation 
described in Figure 5-11 is used to perform this analysis. 

The “immediate” delay recover strategy is the typical behaviour of drivers when the 
train is delayed (Sicre et al., 2014). It consists in driving the train as fast as possible when 
the delay is detected until the train is circulating on time. At this moment, the driver 
coasts to link with the nominal driving commands. This delay recovery strategy is not 
energy efficient because the driver does not make an optimal use of the time margins. 

In the application of the DNSGA-III-F algorithm, Mutation Mechanism is used because, 
as explained before, it is the configuration that provides better results. 

The mean value of energy consumption and delay at the end of the journey for 20 tests 
are presented in Table 5-3. Regenerative energy is taken into account to obtain the net 
energy consumption, and it is calculated at pantograph and estimated at substations 
considering the electrical network loses. 

 

Pantograph net 

energy consumption 

(MWh) 

Substation net 

energy consumption 

(MWh) 

Delay at 

the arrival 

(s) 

Immediate delay recover 1.043 1.170 -38.0 

Mean value 

𝑤𝑒𝑐 = 1 𝑤𝑟𝑑 = 0 0.975 1.089 -14.4 

𝑤𝑒𝑐 = 0.7 𝑤𝑟𝑑 = 0.3 0.986 1.038 -14.6 

𝑤𝑒𝑐 = 0.5 𝑤𝑟𝑑 = 0.5 1.030 1.152 -21.75 

Mean value of the 

variations compared 

with the immediate 

delay recover 

𝑤𝑒𝑐 = 1 𝑤𝑟𝑑 = 0 6.48% 6.92%  

𝑤𝑒𝑐 = 0.7 𝑤𝑟𝑑 = 0.3 5.40% 5.65%  

𝑤𝑒𝑐 = 0.5 𝑤𝑟𝑑 = 0.5 1.23% 1.47%  

Table 5-3. Mean value of energy savings and delays obtained by DNSGA-III-F for the complete journey 

The results demonstrate that the application of DNSGA-III-F algorithm to make up a 
delay provides energy savings compared with the typical “immediate” delay recover 
strategy (from 6.9 % to 1.5 %). These energy savings are higher if the weighting factor 
of the energy consumption in the algorithm to update driver’s commands is high. Table 
5-3 shows that the energy savings are reduced when the risk of delay in arrival is 
penalised more. Besides, it can be observed that the time that the train arrives in 
advance is also higher as higher is the weighting factor of the risk of delay in arrival. 
That means that the train is capable of overcoming higher delays during the journey. 

The results of a single test are used hereafter to show the benefits of taking into account 
the risk of delay in arrival when selecting a speed profile. Figure 5-13 shows the Pareto 
surface used by the Algorithm to update driver’s commands.  
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Figure 5-13. Pareto front used to obtain the speed profile for recovering accumulated delay 

The green square represents the solution with the lowest energy consumption 
associated (most efficient solution) that fulfils the fuzzy punctuality requirement 
(imposed necessity level Np = 0.6). In order words, it is the solution that the system 
would select if 𝑤𝑒𝑐 = 1 and 𝑤𝑟𝑑 = 0. The red diamond represents the solution that the 
system would select if 𝑤𝑒𝑐 = 0.7 and 𝑤𝑟𝑑 = 0.3 (balanced solution). The energy 
consumed by these solutions from the update of the commands up to the destination 
differs just 3%. 

However, the solution obtained with 𝑤𝑒𝑐 = 0.7 presents an RD of 0.27 while solution 
obtained with 𝑤𝑒𝑐 = 1 presents an RD of 0.34. 

Figure 5-14 shows the impact of these solutions on the risk of delay variable. It 
represents the speed profile and the evolution of the time margin for 3 different 
solutions: the “immediate” delay recover strategy, the most efficient solution (obtained 
with 𝑤𝑒𝑐 = 1) and the balanced solution (obtained with 𝑤𝑒𝑐 = 0.7). As can be seen, the 
“immediate” delay recover strategy runs as close as possible to the speed limits until 
the delay is recovered and thus, its energy consumption is higher. However, in the 
balanced solution and in the efficient solution, the speed of the train is usually far from 
the speed limits in order to save energy. The delay is also recovered in these cases 
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because the train is driven faster than the nominal speed profile presented in Figure 
5-11. 

 

 
Figure 5-14. Speed profiles and delay evolution of “immediate” delay recover strategy and DNSGA-III-F 

At the beginning of the journey the 3 solutions start with 4 minutes of time margin. 
However, the unexpected speed restriction drastically reduces the margin to 2 minutes 
and 30 seconds. From this point, the different solutions applied to make up the delay 
present different time margin evolution. The most robust solution is the “immediate” 
delay recover strategy because it maintains the margin of 2 minutes and 30 seconds up 
to position 270 km. Furthermore, it arrives 38 seconds in advance. However, this 
solution has the highest energy consumption, as shown in Table 5-3. 

Solutions obtained by DNSGA-III-F are more energy efficient than the previous one. The 
most efficient solution is continuously reducing the time margin while the balanced 
solution keeps the time margin (2 minutes and 30 seconds) constant up to position 250 
km. After that position, the balanced solution always maintains 30 seconds over the 
margin of the most efficient solution up to 280 km. That means that the balanced 
solution could recover delays 30 seconds higher than the most efficient solution. At the 
end of the journey the balanced solution arrives 16 seconds in advance while the most 
efficient solution practically arrives at the commercial arrival time. 

It will depend on the preference of the railway operator to give more importance to 
energy consumption or to ensure the punctuality, and thus, the tuning of the weighting 
factors should reflect this preferred balance. 
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5.6.3. DELAY RESPONSE ANALYSIS FACING TWO TEMPORARY SPEED 
LIMITATION 

This section analyses in more detail the effect of taking into account the risk of delay 
when choosing a solution from the Pareto front. A case study of a train facing two delays 
during the journey is used to illustrate how energy optimal solutions can lead to delays 
if the risk is not taken into account. When the train departs, it faces immediately an 
unexpected temporary speed limitation of 70 km/h between 221 km and 223 km 
positions. This first speed limitation produces 1 minute of delay if the nominal speed 
profile is not changed. After that, the train faces a new unexpected delay caused by a 
temporary speed limitation of 90 km/h between 273 km and 274 km positions. This new 
restriction increases 2 minutes the delay of the train at the arrival if no actions are 
taken. In Figure 5-15 it is represented the nominal speed profile in the journey 
described. 

 
Figure 5-15. Nominal speed profile observing two temporary speed limitations 

The proposed DNSGA-III-F algorithm using the Mutation Mechanism is applied during 
this journey to change the speed profile of the train when the delays are detected. 

When the train departs its speed is limited by 70 km/h and this situation causes an 
increase of the delay. A new speed profile is selected from the Pareto surface obtained 
by the algorithm to reduce the delay. This surface is presented in Figure 5-16. In this 
figure, the green square represents the most efficient solution that can be selected to 
recover the delay, i.e. the solution obtained with 𝑤𝑒𝑐 = 1 and 𝑤𝑟𝑑 = 0. The red 
diamond represents a balanced solution that takes into account not only energy 
consumption but also risk of delay. The balanced solution is obtained using 𝑤𝑒𝑐 = 0.7 
and 𝑤𝑟𝑑 = 0.3. 

From this point, two scenarios are studied. In the first scenario, the train changes its 
nominal speed profile and applies the most efficient solution after the first speed 
limitation. In the second scenario, the train changes its nominal speed profile and 
applies the balanced solution after the first speed limitation. Figure 5-17 and Table 5-4 
show the results obtained at this point where the second speed limitation is not 
expected. 
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Figure 5-16. Pareto front used to obtain the speed profile for recovering the first accumulated delay 

As can be seen, both solutions would lead to recover the delay at the next station if the 
second delay does not exist. The most efficient solution would result in less energy 
consumption than the balanced solution. However, it can be seen looking at the Pareto 
surface depicted in Figure 5-16 that the balanced solution has associated a less value of 
RD. The RD value of the balanced solution is 0.216 whereas the RD value of the most 
efficient solution is 0.399. This will be an important factor when facing the second delay 
of the journey. 

 
Pantograph net energy 

consumption (MWh) 

Substation net energy 

consumption (MWh) 

Expected Delay at the 

arrival 

(s) 

Most efficient speed profile 0.956 1.041 -23 

Balanced speed profile 1.001 1.100 -35 

Table 5-4. Results of energy consumption and delays obtained by DNSGA-III-F for the complete journey of 

a train observing only a first speed limitation of 70 km/h 

After the application of one the new speed profile, the train continues its journey until 
it faces a new speed limitation of 90 km/h in 273 km position. Due to this limitation, the 
delay increases again and a different speed profile is needed to arrive on time. In the 
case of the application of the most efficient solution, the train has not available any 
solution that fulfils the required arrival time. This is because it consumed an important 
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amount of its margin during the journey to save energy. Therefore, after the second 
delay, the only possible solution is to apply flat-out driving and the train will arrive late. 

 

 
Figure 5-17. Speed profiles and margin evolution of DNSGA-III-F solutions when the train faces only a first 

speed limitation of 70 km/h 

On the other hand, in the case of the application of the balanced solution, the train has 
available several solutions to recover the delay. Therefore, the algorithm selects one of 
those. In Figure 5-18 it is represented the resulting speed profiles at the end of the 
journey for the two cases analysed. 

As can be seen, the application of the balanced solution makes the train run faster than 
the most efficient solution before the second limitation. That maintains the train margin 
above 150 s before it faces the second speed limitation. This way, after surpassing the 
90 km/h limitation, the train has enough margin to arrive on time at the next station. 
Moreover, it can be observed that the margin allows coasting before the final braking 
from 286 km. 

On the other hand, the most efficient solution runs slower to save energy but it is 
consuming its margin constantly. When the train faces the second limitation, the margin 
is totally consumed and, as a consequence, there is no solution that makes up the delay 
at the arrival. For this reason, the flat-out driving is applied from this point to minimise 
the final delay. 
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Figure 5-18. Speed profiles applied to recover the two delays faced by the train at the end of the journey 

Table 5-5 shows the results obtained at the end of the journey in terms of energy 
consumption and delay at the arrival produced by the two cases studied. The results 
indicate that the most efficient solution produces less energy consumption. However, 
that solution arrives at the next station practically 1 minute late. On the other hand, the 
balanced solution that takes into account the risk of delay is able to arrive on time with 
6 seconds in advance. 

 
Pantograph net energy 

consumption (MWh) 

Substation net energy 

consumption (MWh) 

Delay at the arrival 

(s) 

Most efficient speed profile 1.097 1.213 58 

Balanced speed profile 1.147 1.276 -6 

Table 5-5. Results of energy consumption and delays obtained for the complete journey of a train 

observing two speed limitations 

Figure 5-19 depicts the Pareto surface obtained by the DNSGA-III-F algorithm after the 
second speed limitation in the case of application of the balanced solution. The red 
diamond represents the solution selected by the algorithm to recover the second delay. 
As can be seen, the difference in risk of delay value for solutions with similar running 
time is not very significant because of the short distance to arrival and because the 
margin is small at that position. Therefore, the weight of the risk of delay in the selection 
of the speed profile is limited and a solution with lower energy consumption that fulfils 
the objective time is chosen in that case. 
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Figure 5-19. Pareto front used to obtain the speed profile for recovering accumulated delay at the second 

speed limitation of 90 km/h 

5.7. CONCLUSIONS AND CONTRIBUTIONS 

A regulation algorithm for high-speed trains has been proposed to obtain efficient 
speed profiles during the train travel. The algorithm calculates the Pareto front of the 
possible speed profiles before the departure of the train. After that, during the journey, 
this Pareto front is updated periodically. Using this method, a set of energy efficient 
speed profiles is always available to be executed when it is necessary to change the 
nominal driving commands due to an accumulated delay. 

The proposed algorithm optimises not only the energy consumption and running time 
(typical in the literature), but also a new objective named as risk of delay in arrival. This 
objective is firstly introduced in this thesis and measures the robustness of a speed 
profile to arrive on time at the next station. The risk of delay in arrival is calculated based 
on the evolution of the time margin during the train travel. Running time, energy 
consumption and risk to delay in arrival are conflicting objectives and the result of the 
optimisation is a three-dimensional Pareto front. 
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A new optimisation algorithm has been proposed, DNSGA-III-F, that is a 3 objective 
dynamic algorithm with fuzzy parameters.  This dynamic algorithm is able to calculate 
the Pareto front of optimal solutions and also to track its changes during the train travel. 
It is executed periodically to update the Pareto front and it uses solutions from previous 
executions to accelerate the optimisation process.  

Furthermore, the uncertainty associated to the manual driving is modelled by means of 
fuzzy numbers and hybridised with the algorithm. 

To ensure the real applicability of the algorithm solutions, a detailed simulator is used 
by the algorithm to evaluate the performance of the possible speed profiles.   

The energy benefits of the proposed DNSGA-III-F algorithm have been analysed 
applying it to obtain a new set of driving commands when an unexpected delay affects 
the train. These results have been compared with the typical behaviour of drivers: the 
“immediate” delay recover strategy. Using DNSGA-III-F important energy savings can be 
obtained (6.9%). However, the energy savings will depend on the preference of the 
operator and the importance given to risk of delay in arrival. 

The method proposed is flexible and the operator can reflect the preferred balance 
when the algorithm selects a solution from Pareto front. Thus, the operator could give 
priority to solutions that have more capacity to recover delays or to solutions that are 
more energy efficient. In other words, the railway operator could reduce the energy 
consumption at the minimum level without compromising the quality of the service.  

The main contributions of this chapter are: 

 The definition of risk of delay in arrival. 

 The introduction of risk of delay in arrival as a third objective in the eco-driving 
problem. 

 A dynamic three-objective algorithm with fuzzy parameters (DNSGA-III-F) to solve 
the online eco-driving of high-speed trains. 

 The fuzzy delay response mechanism based on a continuously updated Pareto front. 

 The analysis of the different energy savings that can be obtained giving different 
degrees of importance to the risk of delay. 



 

 
 

CHAPTER 6 

6. ECO-DRIVING IN ATO OVER ERTMS 

6.1. INTRODUCTION 

There are many years of experience in the development and application of ATO systems 
in urban railways. During these years, ATO has been expanding in many mass transit 
systems because of the benefits that it provides. The use of ATO provides more regular 
and predictable travel times compared with the manual operation. This leads to an 
increase of the transport capacity in the system as well as an increase of the punctuality 
results. Moreover, the energy consumption is reduced using ATO systems because eco-
driving can be executed more easily (Emery, 2017). The passenger comfort is also 
improved using automatic operation given that the speed profiles performed are 
smoother and calculated off-line to fulfil this type of constraint. 

Benefits provided by ATO are also common objectives in mainline operation. However, 
the application of ATO is more complex in a mainline system. There are several 
differences between mainline and mass transit system that affect the implementation 
of automatic operation. Urban railways are usually operated by a single administration 
while multiple operators could participate in a long distance train travel. Besides, the 
number of different types of trains are very limited compared with mainline operation 
where the types of trains, composition and characteristics are multiple. Another 
important issue is that, typically, there is a single vendor that provides the signalling 
system and the automatic control in an urban line. Contrary, mainlines are 
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characterised by having multiple companies providing signalling equipment in different 
track sections. 

These differences are some of the reasons why the ATO implementation in mainline 
systems is still under development. In view of these difficulties, interoperability arises 
as the keystone in the development of ATO for long distance travels. 

In terms of interoperability there is much work done thanks to ERTMS (European 
Railway Traffic Management System). ERTMS was born as part of a project undertook 
by the European Commission to develop the specification of a standardised signalling 
system (Council Directive, 1996). The aim of this system is to ensure interoperability of 
European trains and to improve safety, capacity and economic effectiveness. The 
ERTMS is composed by two main subsystems: ETCS (European Train Control System) 
and GSM-R (Global System for Mobile Communications - Railways). ETCS is in charge of 
the control and safety of the traffic while GSM-R is in charge of communications. ERTMS 
is a successful system, which is implemented in many European railway lines. 
Furthermore, it is continuing its expansion reaching countries from other continents. 

Thus, linking ATO to ERTMS is a good opportunity to solve the interoperability problems 
for ATO systems. With this aim, a TEN-T project (TEN-T - ATO project, 2016) has been 
developed to include ATO in the ERTMS specification and the group of signalling 
companies, UNISIG, is working on it. The new ATO over ERTM standard will specify the 
requirements that this system must comply to drive the train automatically and to be 
interoperable.  

It is expected that ATO over ERTMS real applications will be in service in the next years. 
Several projects are currently under development to implement ATO over ERTMS in real 
lines as the Mexico-Toluca project developed by CAF Signalling (Villalba, 2016) and the 
Thameslink project in London developed by Siemens (Burton, 2009). The commissioning 
of these projects is expected from 2019. 

The requirements of the ATO over ERTMS establish new functions that are usually 
assigned to human drivers. Among them, it can be found speed control, accurate 
stopping and door opening and closing. Different equipment is needed to perform these 
tasks. Thus, it is necessary to differentiate between the trackside equipment and the 
on-board equipment. The trackside equipment is in charge of suppling the information 
of the track profile in the route, the operational restrictions and the timetable assigned 
to the train. On the other hand, the on-board equipment is in charge of collecting all 
this information, generating the speed profile to fulfil the timetable, driving the train 
and informing about the train status.  

As can be seen, the on-board equipment will need algorithms to calculate the train 
speed profile. Furthermore, as energy efficiency is one of the main goals of ATO over 
ERTMS, these algorithms have to be designed using eco-driving principles.  

The way in which the speed profile must be calculated will depend on the timetable and 
how it is defined. The time information sent to the on-board equipment could be the 
nominal timetable, or a timetable generated by complex algorithms for traffic 
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regulation purposes. Timetable information is provided by means of timing points. 
These points are defined as a set of the following information: 

 Type of point: Departure, passing or arrival. 

 Position of the point. 

 Time assigned. 

The on-board ATO equipment generates the speed profile that the train must perform 
to comply with the timing points. By this way, the interoperability of train is ensured. 
Each train is responsible of generating its own speed profile following its own rules or 
driving commands to meet the target times. 

Compared with the studies presented in previous chapters of this thesis, the algorithms 
needed by the on-board ATO system must be capable of generating speed profiles that 
not only meet a target running time minimising energy consumption as usual, but also 
meet intermediate timing points. This introduces new constraints to the speed profile 
optimisation problem that can be defined in the form of target time windows. 

Some works in the literature studied similar problems where the train control is 
restricted by intermediate time targets. In (Pudney et al., 2011) a method is proposed 
to modify optimal speed profiles in order to meet intermediate timing points. This 
method starts with an optimal speed profile obtained in the basis of Pontryagin’s 
Maximum Principle that meets the arrival time to the next station. Then, a constructive 
algorithm modifies the initial speed profile adding new holding speed phases to meet 
the intermediate timing points. Although the method founds feasible speed profiles, 
the energy efficiency is not guaranteed.  

In (T. Albrecht et al., 2013) the problem of speed profile optimisation subject to 
intermediate time windows or target points is discussed. Time restrictions are usually 
located in junctions, passing stations or positions where a faster train overtakes a slower 
one. Thus, intermediate target times are needed to meet the timetable. The train path 
envelope is proposed in this paper to define the train driving. Train path envelope 
defines a set of bounds to the feasible train driving that can be formed by intermediate 
target times and/or target speed ranges. These bounds can be obtained as a result of 
the planned timetable or provided by a traffic control and conflict resolution system as 
proposed in ON-TIME project (Quaglietta et al., 2016) where train path envelope is 
applied. The application of Pontryagin’s Maximum Principle and dynamic programming 
are proposed in that paper to solve the eco-driving problem subject to a train path 
envelope. 

The problem of obtaining the optimal speed profile of two trains travel in the same 
direction in a flat track was studied in (Albrecht et al., 2015). The safe separation of the 
two trains is ensured not allowing them to occupy the same track section at the same 
time. With this objective, the track is divided into sections defined by signal positions 
and section clearance times are specified. The clearance time of a section can be based 
on a timetable and defined the latest allowed exit time for the leading train and the 
earliest possible entry time for the following train. As a result of this definition, 
clearance times establish target times in the middle of the journey for both trains. The 
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problem is solved applying Pontryagin’s Maximum Principle to derive the optimal train 
control regimes and obtaining the switching points between them. This work was 
extended to non-level tracks in (Albrecht et al., 2018). 

Other authors have also studied the optimal train control given a train path envelope 
for the case of single and multiple trains (Wang and Goverde, 2017, 2016a, 2016b). The 
characteristics of the signalling system are taken into account and the so-called green 
wave policy is applied to avoid interferences between trains. In these cases, the 
pseudoespectral method is used to transform the problem into a mixed-integer linear 
programming problem and to solve it using commercial solvers. 

As can be seen, all these works make use of analytical procedures to obtain optimal 
speed profiles that meet intermediate time constraints. Previous chapters of this thesis 
have mentioned the limitations imposed to the train dynamic model by analytical 
methods. Therefore, in this chapter of the thesis a Nature Inspired Technique combined 
with simulation is proposed to solve the eco-driving problem subject to final and 
intermediate timing points. 

This chapter presents the ATO over ERTMS eco-driving optimisation problem as well as 
the Nature Inspired algorithm proposed to solve it. In Section 6.2, the eco-driving 
problem is described. Then, Section 6.3 presents the proposed algorithm to solve the 
optimisation problem and the constraint handling technique. Section 6.4 presents the 
case study and analyses the performance of the algorithm and the effect of the targets 
imposed by the timing points. Finally, Section 6.5 presents the main conclusions 
obtained in this chapter. 

6.2. PROBLEM DESCRIPTION 

ATO over ERTMS can be applied either urban railways or mainline systems. However, 
its main purpose is the application in the complex operation of mainline system. ERTMS 
is the mandatory signalling system for European high-speed trains although it has been 
applied in a variety of systems. For this reason, this study will continue the trend 
followed in Chapters 4 and 5 of this thesis of focusing on high-speed railways. 

ATO over ERTMS specification establishes that the on-board equipment must calculate 
the speed profile to be followed in order to meet the timing points. Thus, the eco-driving 
defined is a mono-objective optimisation problem with the aim of minimising the 
energy consumption. The optimisation problem is subject to time constraints. Time 
constraints are derived from the timing points and impose several time objectives in the 
middle and the end of the journey. According to the ATO over ERTMS specification, the 
objective times imposed by the timing points must be met with a certain time window. 
Therefore, there is some flexibility in the timetable meeting. 

Thus, the eco-driving problem defined above can be formulated as: 
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Find 𝑋 which minimises 

𝐸𝐶(𝑋) (6.1) 

subject to 

|𝑂𝑇𝑙 − 𝑡𝑙(𝑋)| < 𝜀𝑙 ,         𝑙 = 1,… , 𝐿 (6.2) 

where 𝐸𝐶(𝑋) is the energy consumption of solution 𝑋, 𝑡𝑙(𝑋) is the resulting passing 
time of solution 𝑋 in the timing point 𝑙 located at position 𝑠𝑙, 𝑂𝑇𝑙 is the objective time 
for the point 𝑙,  𝜀𝑙 is the time window allowed to the passing point 𝑙 and 𝐿 is the number 
of timing points inluding the arrival point at the station. 

In this piece of research, each possible solution 𝑋 is the set of holding speed without 
braking commands and a final coasting command collected in the command matrix 𝐶𝑚 
presented in Chapter 4 (Sicre et al., 2012).  

A 𝐶𝑚 is composed by 𝑛𝑠 sections where the ATO applies certain driving command. The 
first 𝑛𝑠 − 1 sections are holding speed without braking commands. Although holding 
speed without driving command was proposed to be applied manually, it also can be 
applied by an ATO. It is a more energy efficient way to negotiate steep downhills 
compared with the common holding speed commands. Furthermore, it ensures the 
comfortability of the speed profile limiting the sudden changes in train acceleration. 
The use of several holding speed commands is needed to meet the intermediate timing 
points because it is difficult to meet several intermediate time goals using only one 
holding speed command. The final driving command defines a coasting period before 
the final braking.  

The commands contained in 𝐶𝑚 are subject to a minimal speed restriction for the 
holding speed without braking commands (𝑣𝑐𝑚𝑖𝑛) and a minimum position from which 
the train can start the final coasting command (𝑠𝑐𝑚𝑖𝑛). Thus, it is ensured that the train 
does not run at low speed that can be perceived as unpleasant by passengers. 

The problem defined can be classified as a Constrained Numerical Optimisation Problem 
(CNOP). CNOPs are optimisation problems in the presence of constraints (Mezura-
Montes and Coello Coello, 2011). As was pointed out in the introduction of this chapter, 
this piece of research studies the application of Nature Inspired Techniques to the ATO 
over ERTMS eco-driving problem.  

Several algorithms have been applied in the literature to solve CNOPs such as Genetic 
Algorithm (GA), Particle Swarm Optimisation (PSO), Evolutionary Strategies (ES) or 
Differential Evolution (DE). It can be found in the study of the literature that there is a 
preference for the application of Differential Evolution algorithm to solve CNOPs 
compared with other algorithms (Mezura-Montes and Coello Coello, 2011). For this 
reason, DE has been selected to solve the ATO over ERTMS eco-driving problem. The 
next chapter explains in detail the characteristics of the DE algorithm proposed. 
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6.3. DIFFERENTIAL EVOLUTION ALGORITHM FOR THE ATO OVER ERTMS 
ECO-DRIVING PROBLEM 

Storn and Price proposed the DE algorithm for solving non-linear, non-convex, multi-
modal and non-differentiable functions defined in the continuous space (Storn and 
Price, 1997). DE and its variants are considered one of the most competitive and 
versatile technique among evolutionary algorithms. Moreover, it has been applied to a 
variety of engineering and real-life problems (Das and Suganthan, 2011). 

Among the advantages of DE compared with other methods it can be highlighted its 
simplicity and its straightforward implementation. Furthermore, the parameters to be 
tuned are very few. However, DE has provided excellent results solving not only non-
constrained optimisation problems (Das et al., 2009) but also CNOPs (Li et al., 2010). 

The procedure of DE algorithm is similar to other evolutionary algorithms. It starts from 
a population of solutions that are randomly created. This population evolves through 
iterations creating new solutions from previous individuals and selecting the best ones. 
The main difference of DE is that the new solutions are generated using a mutation 
operator based on scaled differences of distinct members of the population. Thus, the 
search moves of the algorithm tend to be self-adapted to the difference between 
surviving solutions. 

6.3.1. DIFFERENTIAL EVOLUTION FLOWCHART 

The DE procedure starts with the initialisation process. The initial population is created 
producing random individuals that respects the minimum speed and minimum position 
of the final coast command. This population is evaluated using the train simulator to 
obtain the energy consumption, passing times at the timing points and the fitness of 
each individual. Then, the population is sorted in rising fitness value. 

After that, the algorithm creates for each individual a donor/mutant vector. The donor 
vector is created perturbing the best solution of the population with the difference 
between two randomly selected individuals (Das et al., 2016). It can be obtained using 
the following expression: 

𝐷𝑉𝑗 = 𝑋𝑏𝑒𝑠𝑡 + 𝐹(𝑋𝑅1 − 𝑋𝑅2) (6.3) 

where 𝐷𝑉𝑗 is the donor vector of the individual 𝑗, 𝑋𝑏𝑒𝑠𝑡 is the best individual of the 

population, 𝐹 is a parameter called scaling factor, 𝑅1 and 𝑅2 are two different randomly 
generated integer numbers, 𝑋𝑅1 is the individual in the position 𝑅1 in the population 

and 𝑋𝑅2 is the individual in the position 𝑅2 in the population. 

Crossover operator is applied after obtaining the donor vectors for all the individuals in 
the population. Crossover consists in mixing the components of the donor vector with 
the components of the individual associated, also called target vector. Thus, the trial or 
offspring vector is generated. The crossover mechanism is performed on each of the 
components of the solutions. At each component, a randomly generated number 
between 0 and 1 is compared with a parameter 𝐶𝑟, called crossover rate. If the random 
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number is less or equal to the crossover rate, the trial vector will inherit the 
corresponding component of the donor vector. Otherwise, it inherits the component of 
the trial vector. The scheme can be formulated as follows: 

𝑇𝑉𝑗
ℎ = {

𝐷𝑉𝑗 
ℎ    𝑖𝑓 ℎ = 𝐾 𝑜𝑟 𝑟𝑎𝑛𝑑[0,1] ≤ 𝐶𝑟

𝑋𝑗 
ℎ                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6.4) 

where 𝑇𝑉𝑗
ℎ is the component ℎ of the trial vector associated with the individual 𝑗, 𝐷𝑉𝑗

ℎ 

is the component ℎ of the donor vector associated with the individual 𝑗, 𝑋𝑗
ℎ is the 

component ℎ of the individual 𝑗 and 𝐾 is a randomly generated number between 1 and 
the number of components. The equality ℎ = 𝐾 ensures that, at least, one component 
of the donor vector will be present in the trial vector. 

Once all the trial vectors are generated, they are simulated to obtain the results on 
energy consumption, the passing times at the timing points and the fitness of each of 
them. The simulation is carried out using the simulation model detailed in Chapter 4. 
After that, the selection process is performed. Selection consists in comparing the 
fitness of each individual with the fitness of its associated trial vector. If the fitness of 
the trial vector is less or equal to the fitness of the individual, the trial vector replaces 
the individual in the population. Otherwise, the individual is retained and the trial vector 
is erased. 

The process described before is repeated until a maximum number of iterations is 
reached. In Figure 6-1 the flowchart of the algorithm is presented. 

 

Figure 6-1. DE flowchart. 
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6.3.2. CONSTRAINT-HANDLING PROCESS 

Nature Inspired Techniques are unconstrained optimisation procedures. For this 
reason, there is a research field that investigates ways to incorporate the constraint-
handling into these algorithms (Coello Coello, 2002). Several constraint-handling 
techniques have been proposed in the literature to be incorporated in Nature Inspired 
algorithms. 

One of the most common techniques are the penalty functions. Penalty functions 
consist in including in the fitness function the non-compliance with the constraints 
multiplied by a penalty factor (Baeck et al., 1997). By this way, solutions with better 
fitness are solutions closer to be feasible. This is a straightforward way to incorporate 
constraints. However, penalty factors require a careful tuning that increases the 
number of control parameters of the algorithms. 

Other authors have proposed the separation of objective function and constraints. 
Thus, if the solution is feasible, its fitness value is equal to the objective function value. 
Otherwise, its fitness function is calculated based on the constrain violation (Powell and 
Skolnick, 1993). The idea is that feasible solutions always present better fitness values 
and move the population to the feasible space. 

Another popular approach are the feasibility rules. In (Deb, 2000) the application of the 
binary tournament selection combined with three feasibility criteria in genetic 
algorithms was proposed. These feasibility rules are: 

 The individual with the best value in the objective function is selected when two 
feasible solutions are compared. 

 The feasible individual is selected when a feasible solution is compared with an 
infeasible solution. 

 The solution with the lowest constraint violation is selected when two infeasible 
solutions are compared. 

Other authors used and adapted the feasibility rules for their application to other 
algorithms (Brest et al., 2006; Mezura-Montes et al., 2005; Zielinski and Laur, 2006). 

The use of decoders to solve CNOPs was proposed in (Kim and Husbands, 1998a, 
1998b). Decoders map the feasible region of the search space in an easier-to-sample 
space were the algorithm can perform better. Decoders are one of the most competitive 
techniques to handle constraints. However, their implementation is complex and 
requires a high computational cost to transform the search space. 

The approach presented in this thesis is a combination of feasibility rules with the 
separation of objectives and constraints. The fitness function is calculated differently 
for feasible and infeasible solutions. Thus, a feasible solution presents a fitness equal to 
its energy consumption. On the other hand, the fitness of infeasible solutions is 
calculated as sum of constraint violation plus the energy consumption of the flat-out 
driving (𝐸𝐶𝑓𝑙𝑎𝑡), i.e. the most energy consuming speed profile. By this way, an infeasible 
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solution will always present a higher fitness value than a feasible individual. The fitness 
calculation is expressed using equation (6.5). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 (𝑋) = {

𝐸𝐶 (𝑋)                                                                𝑖𝑓 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝐸𝐶𝑓𝑙𝑎𝑡 +∑max (|𝑂𝑇𝑙 − 𝑡𝑙(𝑋)| − 𝜀𝑙 , 0)

𝐿

𝑙=1

    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6.5) 

The use of this fitness expression in the selection procedure will always present a similar 
result than feasibility rules. This way, a feasible solution will be selected over an 
infeasible one when the fitness of trial and target vectors are compared. Furthermore, 
the most energy efficient vector will be chosen between two feasible solutions while 
the closer to feasibility will be chosen between two infeasible solutions. 

When ordering the population to find the best solution, the fitness value will split the 
population into two groups. The feasible solutions will appear in the first group and the 
infeasible ones will appear thereafter in the second group. Inside these groups the 
feasible solutions will be ordered in rising energy consumption order while the 
infeasible ones will be ordered in rising distance to feasibility. Thus, the best solution 
will appear always in the first place. 

6.4. CASE STUDY 

This section analyses the performance of the DE algorithm solving the problem 
proposed. As in Chapters 4 and 5, the case study uses real data from the Spanish high-
speed line that runs from Calatayud to Zaragoza. The length of the journey studied is 
85.4 km and the train is a Talgo-Bombardier train class 102. It is 200 m long and its 
empty weight is 324 t. The operational restrictions 𝑣𝑐𝑚𝑖𝑛 and 𝑠𝑐𝑚𝑖𝑛 for the driving 
commands are set to 150 km/h and 50 km respectively to avoid low speed phases in the 
middle of the journey. 

The proposed method is used to obtain the energy optimal speed profile that fulfils the 
arrival hour as well as the intermediate target points. Two cases are analysed: a journey 
with one intermediate timing point and a journey with two intermediate timing points. 
For the shake of simplicity, all the time windows 𝜀𝑙 have equal value. 

The performance of the DE algorithm proposed is compared with the performance of 
GA using the same constraint handling process. GA algorithm has been selected for this 
comparison because is one of the most used Nature Inspired Techniques solving the 
classical mono-objective eco-driving problem (Bocharnikov et al., 2010, 2007; Cucala et 
al., 2012b; Lu et al., 2013; Sicre et al., 2012; Wong and Ho, 2004b, 2003; Yang et al., 
2012). As DE algorithm, GA evolves a population of solutions, called individuals, through 
iterations. At the end of each iteration only the best individuals of the population 
survive while the rest of the population is eliminated. These surviving individuals are 
called the elite group. The population eliminated is replaced in the next iteration by the 
offspring individuals generated by means of mutation and crossover of the elite 
individuals. 
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Table 6-1 and Table 6-2 show the tuned parameters used in the DE algorithm and the 
GA applied to the case study. 

Population size 
Scaling factor 

(𝐹) 

Crossover rate 

(𝐶𝑟) 

Number of sections 

in Cm (𝑛𝑠) 

Number of iterations 

80 0.5 0.9 4 24 

Table 6-1. Tuned parameters of DE algorithm 

Population 

size 

Elite group 

size 

Number of 

crossover 

Number of 

mutations 

Number of sections 

in Cm (𝑛𝑠) 

Number of 

iterations 

120 40 26 52 4 24 

Table 6-2. Tuned parameters of GA 

As in previous chapters of this thesis, different solutions can be obtained in different 
executions of the same algorithm because of the random search nature of evolutionary 
algorithms. For this reason, the performance of the algorithms has been evaluated 
executing 20 tests for the same journey. 

6.4.1. ONE INTERMEDIATE TIMING POINT 

In this case a journey with one intermediate timing point beside the arrival timing point 
is studied. The intermediate timing point is located between the departure point (221.3 
km) and the arrival point (306.7 km) at position 264 km. The target times chosen for the 
timing points are based on the commercial timetable and are listed in Table 6-3 given 
that the departure time is at 0:00:00. 

Location of timing point Target time 

264 km 00:12:03 

306.7 km 00:26:00 

Table 6-3. Location and target of timing points in the case of one intermediate timing point 

Taking into account these restrictions, the algorithms are executed to obtain the speed 
profile of minimum consumption that fulfils the timing points. Three values for the time 
window have been used to study the influence of the constraint relaxation. These values 
are 1 second, 5 seconds and 10 seconds. 

Figure 6-2 depicts the evolution of the average value of the fitness of the best solution 
found by the GA throughout the iterations. In this figure, the 3 cases of time window 
value are represented. Furthermore, the area of this figure is divided into two areas by 
a horizontal line with value located in the position Fitness = 1.52. As was explained in 
Section 6.3.2 infeasible solutions have associated a fitness value equal to the energy 
consumption of the flat-out driving plus the constrain violation. In this case, the energy 
consumption of the flat-out driving is equal to 1.52 MWh. Therefore, if the fitness is 
greater than 1.52, i.e. it is located in the red area, the best solution found by the 
algorithm at that iteration is infeasible. Contrary, if the fitness is lower than 1.52, i.e. it 
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is located in the green area, the best solution found by the algorithm at that iteration 
fulfils the timing points restrictions. 

 

Figure 6-2. Evolution of the mean value of the fitness of the best solution found by the GA for the case 
of one intermediate timing point 

As can be observed, the GA is not capable of finding a feasible solution in 24 iterations. 
The evolution of the algorithm improves the fitness value of the best solution. In other 
words, the solutions found are closer to the feasible region. However, the fitness 
improvement between two iterations is too small to find a feasible solution in the 
iterations given. It can be seen, comparing the results for the different values of the 
time window, that solutions found are closer to the feasible region as the time window 
is increased. Increasing the time window gives more flexibility to fulfil the timing points.  

On the other hand, the results provided by the DE algorithm present a better 
performance. In Figure 6-3 the evolution of the mean value of fitness of the best 
solution found by the DE at each iteration is shown. The figure is divided into the 
infeasible red area and the feasible green area as in the previous case. 

 

Figure 6-3. Evolution of the mean value of the fitness of the best solution found by the DE algorithm for 
the case of one intermediate timing point 
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The results provided by the algorithm has shown its capability to find feasible solutions. 
In all the 20 tests the algorithm was capable to find a speed profile that meets the target 
times. As in the case of the GA, the greater the time window the easier for the algorithm 
to find a feasible solution. As can be seen in Figure 6-3, with a time window of 1s the 
algorithm found a feasible solution at iteration 8, with a time window of 5s the feasible 
solution is found in iteration 5 and with a time window of 10s the feasible solution is 
found at iteration 3. 

The DE algorithm is capable not only of finding a feasible solution but also of finding an 
energy efficient solution. Figure 6-4 shows the same results than in Figure 6-3 but 
zooming in the feasible region. This figure shows how the energy consumption of the 
best solution found by the algorithm is improved during the iterations. Furthermore, it 
can be observed how these improvements are stabilised at around 15 iterations. 
Therefore, it can be concluded that in 24 iterations the algorithm has converged to the 
optimal solution.  

If the three different time windows are compared, it can be seen that the energy 
consumption of the speed profile is better as higher is the value of the time window. 
This is mainly because the train can perform higher running time for the whole journey 
if there is more flexibility. A second order effect is that the more flexibility gives more 
freedom to perform different speed profiles that can be more efficient. 

 

Figure 6-4. Evolution of the mean value of the fitness of the best solution found by the DE algorithm in 
the feasible region for the case of one intermediate timing point 

The energy improvements found by the algorithm are non-trivial. It could be thought 
that once a speed profile that meets the timing points is found, the rest of feasible 
solutions will be similar. However, it is possible to obtain a variety of energy 
consumption results among the feasible speed profiles. For instance, in the case of 1 
second of time window (which is the most restrictive case), the most energy consuming 
solution found by the algorithm in all the executions and in all the iterations presents 
an energy result of 1.04 MWh while the most energy efficient solution presents a result 
of 0.96 MWh. This is a difference of 7.7%, which is a relevant figure in eco-driving 
studies.  
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Figure 6-5 shows the speed profile of the most efficient and most energy consuming 
solutions found by the algorithm as well as the timing points. Both solutions meet the 
target times but in different ways. The most efficient solution presents a smoother 
speed profile that coasts at 284 km position. On the other hand, the most energy 
consuming solution reduces its speed once it has passed the intermediate timing point. 
This causes that the train must coast later, at 292 km position, to meet the arrival target 
time. The difference of energy consumption is caused mainly because of the difference 
in the length of the coasting period. 

 

 

Figure 6-5. Speed profile and position evolution with time of the most efficient and most energy 
consuming solutions found by the algorithm for the case of one intermediate timing point 
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Location of timing point Target time 

250 km 00:09:10 

278 km 00:16:20 

306.7 km 00:26:00 

Table 6-4. Location and target of timing points in the case of 2 intermediate timing points 

Taking into account these objectives, the DE algorithm and the GA are executed to 
obtain the speed profile of minimum consumption that fulfils the timing points. As in 
the previous case, three values for the time window have been used to study the 
influence of the constraint relaxation. These values are the same than in the case of one 
intermediate timing point (1 second, 5 seconds and 10 seconds). 

Figure 6-6 shows the evolution of the average value of the fitness of the best solution 
found by the GA throughout the iterations for the 3 time window values. The figure is 
divided into the red infeasible area and the green feasible area. The results obtained 
are similar to those obtained in the previous case. The GA is not capable of finding a 
feasible solution in 24 iterations. Besides, solutions found are closer to the feasible 
region as the time window is increased.   

 

 

Figure 6-6. Evolution of the mean value of the fitness of the best solution found by the GA for the case 
of two intermediate timing points 
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Figure 6-7. Evolution of the mean value of the fitness of the best solution found by the DE algorithm for 
the case of two intermediate timing points 
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Figure 6-8. Evolution of the mean value of the fitness of the best solution found by the DE algorithm in 
the feasible region for the case of two intermediate timing point 

Figure 6-9 shows the speed profile of the most efficient and most energy consuming 
solutions found by the algorithm as well as the timing points. As can be observed both 
solutions meet the target times. These two speed profiles are more similar than those 
shown in the previous section in Figure 6-5. The main difference between these two 
solutions is that the efficient speed profile coasts at 285 km position while the most 
energy consuming solution does not apply coast and regulates speed. The difference of 
energy consumption is caused mainly by the coasting period. 

 

 

Figure 6-9. Speed profile and position evolution with time of the most efficient and most energy 
consuming solutions found by the algorithm for the case of two intermediate timing points 
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The same result than in the previous section has been obtained concerning the 
computational time. DE algorithm needs nearly 6 minutes to complete the 24 iterations 
demanded. 

6.4.3. EFFECT OF THE TARGET TIMES ON THE ENERGY CONSUMPTION  

In the two previous subsections, the energy variation that can be observed in different 
feasible solutions has been analysed. In this section, it is going to be studied the effect 
of the target selected for the timing points in the energy result.  

It seems clear that the arrival timing point has a decisive role in the energy consumed 
by a train because it determines the running time of the journey. The inverse 
relationship between the running time and the energy consumption has been widely 
studied in the literature and in this thesis. Usually, this time is imposed by the timetable 
so there is no much flexibility to modify it. 

On the other hand, intermediate target times can be selected with more flexibility. The 
intermediate timing points are planned to ensure the order of crossing trains and to 
ensure the safe separation between trains that run on the same track. Therefore, any 
intermediate target time can be selected provided that the previous criteria are met 
and the train is capable of fulfilling it. 

The intermediate timing points determine the average speed in the different sections 
of the track. They have an impact on the way the train can be driven and affect directly 
to the final energy consumption. For this reason, it is necessary to select these target 
times bearing in mind the effect on the consumption apart from the operational 
requirements. 

It can be taken the case of one intermediate timing point to illustrate the effect of the 
intermediate target time value on the energy consumption. If the intermediate target 
time is delayed, from the nominal 0:12:03 to 0:14:40, the train will have to perform a 
different speed profile to meet the new objectives although the arrival target time is 
maintained. Figure 6-10 shows the solution obtained by the algorithm with the delayed 
timing point compared with the solution obtained using the nominal timetable in 
Section 6.4.1. 

It can be seen how the new target time forces a slower driving in the first section of the 
track before the intermediate timing point compared with the nominal timetable 
solution. In the second section, the new timing point forces the application of flat-out 
driving. For this reason, the energy consumption obtained is greater (1.14 MWh) than 
the energy consumption obtained by the nominal timetable speed profile (0.96 MWh). 
This difference is 18.7% of energy consumption increase of the delayed timing point 
solution with respect to the nominal conditions. 
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Figure 6-10. Speed profile and position evolution with time of the solution found by the algorithm for 
the case of one intermediate delayed timing point 

Another example can be shown in the case of two intermediate timing points. If the 
target time of the point located at 278 km is reduced from the nominal timetable 
0:16:20 to 0:15:00, the running time available between the two intermediate timing 
points will be decrease. As the arrival timing point is not modified, the running time 
between the second intermediate timing point and the arrival will be increased. Figure 
6-11 depicts the effect of the modified timing points on the speed profile of the solution 
obtained by the DE algorithm compared with the nominal solution studied in Section 
6.4.2. 

The first section of the journey is very similar for both speed profiles because the first 
intermediate timing point has not changed. However, the modification of the second 
target time forces the train to run near the speed limits until it starts a long coast at 270 
km position. This long coast period allows the train to meet the increased time 
difference between the second timing point and the arrival target. On the other hand, 
the nominal solution applies a lower holding speed without braking command in the 
second section and starts to coast at 285 km position.  The results show that the 
modified timing point solution presents higher energy consumption (0.99 MWh) than 
the nominal speed profile (0.96 MWh). This is 3.1% energy consumption increase due 
to the modifications in the timing points. The energy consumption increases due to the 
period that the modified timing point solution drives close to the maximum speed 
limits. This period is more energy consuming because of the higher speed, and because 
the train cannot perform the small coasting sections associated to the holding speed 
without braking commands. The extra of energy consumed during that period is not 
compensated by the larger coasting period performed later. 
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Figure 6-11. Speed profile and position evolution with time of the solution found by the algorithm for 
the case of 2 intermediate timing points with modifications respect to the timetable 

These two examples have illustrated that it is important to find the most efficient speed 
profile given a set of timing points. However, the optimal train operation can only be 
achieved choosing wisely the target times of intermediate timing points. 

6.5. CONCLUSIONS AND CONTRIBUTIONS 

This chapter has presented the eco-driving problem defined by the requirements of the 
new ATO over ERTMS system. This eco-driving problem aims to minimise the energy 
consumption fulfilling the commercial arrival time to the next station. Furthermore, it 
is subject to new constraints compared with the classical eco-driving because of the 
intermediate target times imposed by the timing points during the journey. 

A Nature Inspired algorithm combined with a detailed simulation model have been 
proposed to solve this problem. The algorithm proposed to solve this eco-driving 
problem is the DE algorithm, which has been widely applied in the field of constraint 
optimisation. Furthermore, a fitness function has been defined to handle the new 
constraints in the problem. 

The performance of the DE algorithm has been compared with the well-known GA. 
These algorithms have been tested in two case studies where one and two intermediate 
timing points have been taken into account beside the arrival target time. The results 
have shown that the GA does not find feasible solutions in this difficult-to-solve 
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problem. Contrary, the DE algorithm proposed has demonstrated its capacity to find 
speed profiles that meet all the target times. 

Apart from finding feasible solutions, the algorithm is capable of finding which one has 
the lowest energy consumption. This task is not trivial since important energy variations 
have been obtained among feasible solutions. Thus, it has been observed 7.7% of 
energy variation the case of one intermediate timing point and 3.1% in the case of two 
intermediate timing points. The presence of more constraints reduces the feasible 
region making more similar the speed profiles that meet all the target times. For this 
reason, the energy differences observed in the case of two intermediate timing points 
are smaller compared with the case of one intermediate point. 

The time window allowed to meet the target times influences the performance of the 
algorithm and the energy consumption of the optimal solution. The greater the time 
window the greater the feasible region and the easier to find valid speed profiles. 
Furthermore, the energy consumption of the solution obtained is lower as greater is the 
time window. Increasing the time window flexibility to driving solutions and increases 
slightly the running time. 

The effect of the target time selected for the timing points on the energy consumption 
has also been shown. Important energy consumption variations have been obtained 
modifying the nominal timing points. For this reason, the minimum energy consumption 
on the train operation can achieved not only obtaining the best speed profile for a given 
timetable but also choosing the best possible target times (thus, designing an optimal 
timetable). 

Finally, the time required by the algorithm to perform the optimisation is around 6 
minutes. This time is adequate for an offline application. However, the calculation time 
is excessive to be applied online at the on-board equipment of the ATO over ERTMS. In 
the online application, the timing points can change during the journey and quick 
response times are required in the speed profile calculation. For this reason, future 
work is needed to improve the calculation speed of the algorithm. 

The main contributions of this chapter are: 

 The application of the DE algorithm to solve the eco-driving problem subject to time 
constraints along the journey to fulfil the ATO over ERTMS requirements. 

 The fitness function proposed to handle the constraints related to the timing points. 

 The comparison of the DE and the GA solving the constrained eco-driving problem. 

 The analysis of the influence of the number of timing points in the performance of 
the optimisation algorithm and in the energy consumption of the optimal solution 
obtained. 

 The demonstration of the important influence of the designed target times 
associated with the timing point in the energy consumption. 

 



 

 
 

CHAPTER 7 

7. CONCLUSIONS AND CONTRIBUTIONS 

7.1. CONCLUSIONS AND CONTRIBUTIONS 

This section collects the main conclusions obtained in the development of this thesis. 
They are detailed following the main sections in this document. 

OPTIMISATION ALGORITHMS FOR THE DESIGN OF ENERGY EFFICIENT ATO SPEED 
PROFILES IN METROPOLITAN LINES 

Nowadays, many metropolitan trains are equipped with Automatic Train Operation 
systems (ATO). These system drives the train automatically according to a speed profile 
defined a by pre-programmed set of driving commands in the trackside equipment. At 
each station, a set of pre-programmed ATO speed profiles are available with different 
running times and energy consumption. 

The new signalling technologies such as CBTC permit a better communication capacity 
and thus, the possible values of the ATO parameters that can be sent to the train (that 
is, the associated number of different possible speed profiles) is drastically higher. The 
exhaustive exploration of all the possible solutions is not advisable because of the high 
computational cost. Moreover, it has been shown that some of these new possible 
speed profiles are more efficient from the energy point of view (up to 20%) and are 
better distributed in a wide running time range. Consequently, it is important to apply 
algorithms that can find effectively the most efficient solutions to exploit the 
advantages of the new systems. 
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In the literature, the eco-driving problem is typically stated as a mono-objective 
optimisation problem where the result is a speed profile that fulfils a target time with 
the minimum energy consumption. However, other works state the eco-driving 
problem as a multi-objective optimisation problem. Usually, this problem has two 
conflicting objectives, which are energy consumption and running time, and the result 
is the Pareto front of solutions. Solutions in the Pareto front are the non-dominated 
solutions. Non-dominated solutions are those that cannot be improved in all the 
objectives at the same time.  

The multi-objective optimisation model has the advantage that the decision maker can 
select the most appropriate speed profile taking into account the trade-off between 
energy consumption and running time in view of Pareto front. For solving this task, 
Nature Inspired techniques and, in particular, population-based algorithms seem to be 
especially suited due to their abilities to search simultaneously for multiple Pareto 
optimal solutions and to perform better global search of the search space. 

There are many Nature Inspired algorithms developed to solve multi-objective 
problems. However, only few of them have been applied to the eco-driving problem. In 
this thesis, MOPSO and NSGA-II algorithms for the optimal design of ATO speed profiles 
have been applied and compared based on the accurate simulation of the ATO and train 
motion.  

The assessment of the results obtained with both algorithms has been carried out using 
several metrics that compare the results of the algorithms with the points of the real 
Pareto front obtained using exhaustive simulation of the search space. These metrics 
measure the quality of the Pareto front obtained by the algorithms in terms of number 
of solutions obtained, diversity of solutions and distance to the real optimum. 

The results of the application of these algorithms to a case study show that MOPSO 
algorithm obtains more solutions than NSGA-II. Furthermore, solutions obtained by 
MOPSO are closer to the real Pareto front than solutions obtained by NSGA-II. Diversity 
measures indicate that the MOPSO solutions are better distributed in the objective 
space than the ones obtained by NSGA-II.  

From the point of view of the Railway Operator, the difference between the results of 
the algorithms can be translated in terms of energy consumption. For some running 
time values, the solutions obtained by MOPSO consume 10% less energy than those 
obtained by NSGA-II. 

The main contributions of chapter 2 are: 

 The application of the NSGA-II algorithm to the eco-driving problem defined by real 
ATO speed commands. 

 The use of several metrics to assess the performance of optimisation algorithms 
when solving the eco-driving problem. 

 The comparison between MOPSO algorithm and NSGA-II solving the eco-driving 
problem. 
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ROBUST SPEED PROFILES FOR THE AUTOMATIC TRAFFIC REGULATION SYSTEM IN 
METROPOLITAN LINES 

The study developed in chapter 2 does not take into account the uncertainty of the 
solutions obtained. The main sources of uncertainty of the train operation are the load 
and the train delays.  

The high precision of the ATO equipment in the execution of the pre-programmed 
driving parameters is practically just affected by the uncertainty in the mass of the train 
associated with the passengers load. The passenger load varies depending not only on 
the departure station but also on the moment of the observation. These variations 
produce different results on energy consumption. Besides, it causes variations in the 
running time produced by a set of pre-programmed driving parameters because the 
train resistance is dependant of the train mass. For the same reason, the load variations 
could cause variations in the shape of the speed profile making an expected 
comfortable solution to become non-comfortable. 

The other main source of uncertainty associated with the traffic operation is the 
occurrence of delays that must be corrected by the traffic regulator. The statistical 
distribution of delays determines the frequency with which the controller demands 
each pre-programmed ATO speed profile at each station. Typically, there are four speed 
profiles pre-programmed. The set of speed profiles is usually chosen equidistant in time. 
This approach is not energy optimal because the frequency of use of each speed profile 
is not taken into account. 

A new procedure to design energy efficient speed profiles to be programmed in the 
signalling equipment of a metropolitan system has been proposed in chapter 3 of the 
thesis.  

The proposed model is based on the calculation of the Pareto curve of the possible 
speed profiles that are robust against passenger load variations. Then, the set of speed 
profiles to be programmed in the signalling system is taken from the robust Pareto front 
by means of a PSO optimisation algorithm, considering energy efficiency and delay 
distribution in the line. 

Two algorithms for obtaining the robust Pareto front have been applied and compared 
using a case study. The first model is a robust multi-objective optimisation algorithm 
that makes use of a robust definition as a restriction. The second one is an alternative 
method based on the robustness of the solution to changes in its driving pattern. It has 
been shown that pattern-robustness requirement is more restrictive than definition of 
robustness type-II. Moreover, the pattern-robustness requirement is more useful 
because it guarantees the comfort of the speed profile. Besides that, the alternative 
procedure has found more solutions than the standard robust optimisation algorithm. 
For this reason, the pattern recognition gives to the designer more possible solutions to 
choose and, some of them, have lower energy consumption for a given running time. 

The proposed selection model including train delays information has been compared 
with the traditional selection method that distributes speed profiles uniformly in time. 
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Three different cases of delay distributions are considered: decreasing, increasing and 
uniform distributions. The first one represents stations where delays are frequent, the 
second distribution represents stations where trains are regulated frequently to reduce 
their time interval with the following train and the third distribution corresponds to an 
intermediate situation where running times are demanded with the same probability. 

The results show important energy savings, around 3 - 14%. This model has also been 
used to study the energy benefits obtained from increasing the number of speed 
profiles in the pre-programmed set. The typical size of this set is 4 and the energy 
consumption can be reduced 3.5% by the inclusion of two extra speed profiles. 

The main contributions of chapter 3 are: 

 The application of the robust optimisation method proposed in (Deb and Gupta, 
2005) combined with MOPSO algorithm to be applied in the ATO eco-driving 
problem. 

 A process to design robust and efficient ATO speed profiles based on the proposed 
pattern of the driving model. 

 The comparison between the method proposed in (Deb and Gupta, 2005) and the 
pattern-based method proposed in this thesis. 

 A model to select the optimal speed profiles from a Pareto front to be programmed 
in the ATO equipment based on the delay distribution in the line. 

 The application of PSO algorithm to obtain the optimal pre-programmed set of 
speed profiles of the traffic regulation system. 

 The assessment of the energy saving that can be obtained selecting optimally the 
pre-programmed set, using delay information and the energy savings that can be 
obtained increasing the number of speed profiles in the pre-programmed set. 

REAL TIME ECO-DRIVING OF HIGH-SPEED TRAINS 

Chapters 4, 5 and 6 of the thesis studied the case of eco-driving application in long-
distance lines, particularly, in high-speed railways. It is important to take this into 
account because there are important differences between urban and in high-speed 
railways that affect the eco-driving application.  

Metropolitan railways are highly automated systems where the distance between 
stations is short and the trains are typically driven by automatic train operation (ATO) 
equipment. The driving strategies applied in ATO equipped trains are basically: speed 
regulation and coasting-remotoring.  

On the other hand, high-speed trains are typically driven manually and the journeys 
between stations are long-distance travels. The driving strategies applied in HSR are 
speed regulation and its efficient version, holding speed without braking. 

Most of the eco-driving work in the literature is related to the offline planning of 
railways efficient driving. However, optimal speed profiles can also be obtained in the 
regulation stage as an on-line calculation. If the train is delayed, the offline eco-driving 
design is not valid anymore and a new on-line eco-driving calculus is required to recover 
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the delay in an energy efficient way. The main challenge of the on-line eco-driving 
application is the low computation time available to carry out the optimisation and the 
changing situations that may occur along the trip.  

Chapter 4 of the thesis has proposed a dynamic multi-objective optimisation model 
based on accurate simulation of the train motion to handle the real-time regulation of 
a high-speed train using eco-driving. The model calculates the Pareto front of the 
possible speed profiles before the departure of the train. After that, during the journey, 
this Pareto front is updated at time intervals by an optimisation algorithm that adapts 
it to the new conditions of the train. Using this model, a set of energy efficient speed 
profiles is always available to be executed when it is necessary to change the nominal 
driving commands to perform a new speed profile with a different running time 
associated. 

Two algorithms have been tested to solve the dynamic model: DNSGA-II and DMOPSO. 
These algorithms are the dynamic extension of NSGA-II and MOPSO that have been 
demonstrated suitable to eco-driving problems. Versions A and B of DMOPSO have 
been compared with the two versions of DNSGA-II and the static algorithms MOPSO 
and NSGA-II. The results demonstrate that the dynamic algorithms outperformed their 
static versions tracking the changes in the Pareto front. Furthermore, the Pareto front 
provided by DMOPSO-A has an associated better Hypervolume metric and 
convergence. 

To analyse the energy benefits of the dynamic models, MOPSO, DMOPSO and DNSGA-
II have been applied to obtain a new speed profile when an unexpected temporary 
speed limitation affects the train. These algorithms have been compared with the 
typical behaviour of drivers: the “immediate” delay recover strategy.  

The solutions obtained applying a static algorithm such as MOPSO provide important 
energy savings (5.6% of the whole trip energy) compared with the “immediate” delay 
recover strategy.   

However, these energy savings can be improved significantly using the dynamic version 
of the algorithms. The best performance is obtained by the DMOPSO, which has 
associated energy savings of 7.8%. 

The main contributions of chapter 4 are: 

 A dynamic multi-objective optimisation model of the online eco-driving of high-
speed trains. 

 The assessment of the performance of two versions of DNSGA-II solving the online 
eco-driving problem. 

 The assessment of the performance of two versions of DMOPSO solving the online 
eco-driving problem. 

 The comparison of the results obtained by DNSGA-II and DMOPSO. 

 The delay response mechanism based on a continuously updated Pareto front. 
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 The analysis of the energy savings that can be obtained by means of the proposed 
dynamic model compared with the static models and the typical delay response 
model applied by drivers. 

BALANCING ENERGY CONSUMPTION AND RISK OF DELAY IN HIGH-SPEED TRAINS 

In chapter 4, a dynamic multi-objective optimisation model was proposed for the real-
time regulation of a high-speed train. However, the uncertainty associated to the 
operation of the solutions obtained was not taken into account in the study. It is 
important to fulfil the punctuality requirements, apart from using an accurate model. 
For this reason, in this chapter the model proposed has been extended to incorporate 
all the main sources of uncertainty that are present in the real operation of a high speed 
train. 

The main uncertainty in high-speed traffic regulation is associated with the 
contingencies that may occur in the line. Contingencies are usual situations that 
produce delays and are related to temporary speed limitations and traffic 
perturbations. The commercial running time between two stations is designed using a 
time margin in timetables to deal with contingencies. If necessary, this margin is 
available to make up delays and, if not, it is consumed during the train travel to perform 
efficient speed profiles. If the margin is quickly consumed during the journey, the train 
could perform an efficient speed profile but it might not be able to react to unexpected 
delays. On the other hand, the speed profiles that retain the time margin until the end 
of the journey are highly energy consuming but more robust to contingencies in the 
line. 

In addition, it is also important to model the uncertainty associated with manual driving, 
considering that there are always small deviations in the application of driving 
commands. The uncertainty in these parameters is usually better represented using 
fuzzy knowledge modelling. The main advantages of using fuzzy modelling are its 
capacity to work with imprecise or incomplete data and its flexibility and simplicity to 
be implemented providing fast calculation times. The information of how drivers apply 
driving commands is usually incomplete or non-existent because each driver has its own 
driving style.  

A regulation algorithm for high-speed trains has been proposed in chapter 5 to obtain 
efficient speed profiles during the train travel. As in the previous chapter, the problem 
is stated as a dynamic multi-objective optimisation problem. Thus, the proposed 
algorithm calculates the Pareto front of the possible speed profiles before the departure 
of the train and, during the journey, updates it periodically. Therefore, a set of energy 
efficient speed profiles is always available to be executed when it is necessary. 

The proposed algorithm optimises not only the energy consumption and running time 
(typical in the literature), but also a new objective named as risk of delay in arrival. This 
objective is firstly introduced in this thesis and measures the robustness of a speed 
profile to arrive on time at the next station. The risk of delay in arrival is calculated based 
on the evolution of the time margin during the train travel. Running time, energy 
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consumption and risk to delay in arrival are conflicting objectives and the result of the 
optimisation is a three-dimensional Pareto front. 

Furthermore, the uncertainty associated to the manual driving is modelled by means of 
fuzzy numbers and hybridized with the algorithm. 

A new optimisation algorithm has been proposed, DNSGA-III-F, that is a 3 objective 
dynamic algorithm with fuzzy parameters.  This dynamic algorithm is able to calculate 
the Pareto front of optimal solutions and also to track its changes during the train travel. 
It is executed periodically to update the Pareto front and it uses solutions from previous 
executions to accelerate the optimisation process.  

The energy benefits of the proposed DNSGA-III-F algorithm have been analysed 
applying it to obtain a new set of driving commands when an unexpected delay affects 
the train. These results have been compared with the typical behaviour of drivers: the 
“immediate” delay recover strategy. Using DNSGA-III-F important energy savings can be 
obtained (6.9%). However, the energy savings will depend on the preference of the 
operator and the importance given to risk of delay in arrival. 

The method proposed is flexible and the operator can reflect the preferred balance 
when the algorithm selects a solution from Pareto front. Thus, the operator could give 
priority to solutions that have more capacity to recover delays or to solutions that are 
more energy efficient. In other words, the railway operator could reduce the energy 
consumption at the minimum level without compromising the quality of the service.  

The main contributions of chapter 5 are: 

 The definition of risk of delay in arrival. 

 The introduction of risk of delay in arrival as a third objective in the eco-driving 
problem. 

 A dynamic three-objective algorithm with fuzzy parameters (DNSGA-III-F) to solve 
the online eco-driving of high speed trains. 

 The fuzzy delay response mechanism based on a continuously updated Pareto front. 

 The analysis of the different energy savings that can be obtained giving different 
degrees of importance to the risk of delay. 

ECO-DRIVING IN ATO OVER ERTMS 

There are many years of experience in the development and application of ATO systems 
in urban railways. However, the application of ATO in a mainline system is under 
development nowadays because its application is more complex. There are several 
differences between mainlines and mass transit systems that affect the implementation 
of automatic operation. Urban railways are usually operated by a single administration 
while multiple operators could participate in a long distance line. The number of 
different types of trains are very limited in urban lines compared with mainline 
operation and, typically, there is a single vendor that provides the urban signalling 
system while mainlines are characterised by having multiple companies providing 
signalling equipment in different track sections. In view of these difficulties, 
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interoperability arises as the keystone in the development of ATO for long distance 
travels. 

In terms of interoperability there is much work done thanks to ERTMS. ERTMS was born 
as part of a project undertook by the European Commission to develop the specification 
of a standardized signalling system (Council Directive, 1996). The aim of this system is 
to ensure interoperability of European trains and to improve safety, capacity and 
economic effectiveness. 

Linking ATO to ERTMS is a good opportunity to solve the interoperability problems for 
ATO systems. With this aim, a TEN-T project (TEN-T - ATO project, 2016) has been 
developed to include ATO in the ERTMS specification and the group of signalling 
companies, UNISIG, is working on it. The new ATO over ERTM standard will specify the 
requirements that this system must comply to drive the train automatically and to be 
interoperable.  

The requirements of the ATO over ERTMS establish new functions that are usually 
assigned to human drivers. Among them, it can be found speed control, accurate 
stopping and door opening and closing. Different equipment is needed to perform these 
tasks. Thus, it is necessary to differentiate between the trackside equipment and the 
on-board equipment. The trackside equipment is in charge of suppling the information 
of the track profile in the route, the operational restrictions and the timetable assigned 
to the train. On the other hand, the on-board equipment is in charge of collecting all 
this information, generating the speed profile to fulfil the timetable, driving the train 
and informing about the train status.  

As can be seen, the on-board equipment will need algorithms to calculate the train 
speed profile. Furthermore, as energy efficiency is one of the main goals of ATO over 
ERTMS, these algorithms have to be designed using eco-driving principles.  

The way in which the speed profile must be calculated will depend on the timetable and 
how it is defined. Timetable information is provided by means of timing points. Timing 
points define positions in the track and the target departure/arriving/passing time for 
these points. 

The on-board ATO equipment generates the speed profile that the train must perform 
to comply with the timing points. By this way, the interoperability of train is ensured. 
Each train is responsible of generating its own speed profile following its own rules or 
driving commands to meet the target times. 

Compared with the studies presented in previous chapters of this thesis, the algorithms 
needed by the on-board ATO system must be capable of generating speed profiles that 
not only meet a target running time minimising energy consumption as usual, but also 
meet intermediate timing points. This introduces new constraints to the speed profile 
optimisation problem that can be defined in the form of target time windows. 

A Nature Inspired algorithm combined with a detailed simulation model have been 
proposed to solve this problem. The algorithm proposed to solve this eco-driving 
problem is the DE algorithm, which has been widely applied in the field of constraint 
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optimisation. Furthermore, a fitness function has been defined to handle the new 
constraints in the problem. 

The performance of the DE algorithm has been compared with the well-known GA. 
These algorithms have been tested in two case studies where one and two intermediate 
timing points have been taken into account beside the arrival target time. The results 
have shown that the GA does not find feasible solutions in this difficult-to-solve 
problem. Contrary, the DE algorithm proposed has demonstrated its capacity to find 
speed profiles that meet all the target times. 

Apart from finding feasible solutions, the algorithm is capable of finding which one has 
the lowest energy consumption. This task is not trivial since important energy variations 
have been obtained among feasible solutions. Thus, it has been observed 7.7% of 
energy variation the case of one intermediate timing point and 3.1% in the case of two 
intermediate timing points. The presence of more constraints reduces the feasible 
region making more similar the speed profiles that meet all the target times. For this 
reason, the energy differences observed in the case of two intermediate timing points 
are smaller compared with the case of one intermediate point. 

The time window allowed to meet the target times influences the performance of the 
algorithm and the energy consumption of the optimal solution. The greater the time 
window the greater the feasible region and the easier to find valid speed profiles. 
Furthermore, the energy consumption of the solution obtained is lower as greater is the 
time window. Increasing the time window flexibility to driving solutions and increases 
slightly the running time. 

The effect of the target time selected for the timing points on the energy consumption 
has also been shown. Important energy consumption variations have been obtained 
modifying the nominal timing points. For this reason, the minimum energy consumption 
on the train operation can achieved not only obtaining the best speed profile for a given 
timetable but also choosing the best possible target times (thus, designing an optimal 
timetable). 

Finally, the time required by the algorithm to perform the optimisation is around 6 
minutes. This time is adequate for an offline application. However, the calculation time 
is excessive to be applied online at the on-board equipment of the ATO over ERTMS. In 
the online application, the timing points can change during the journey and quick 
response times are required in the speed profile calculation. For this reason, future 
work is needed to improve the calculation speed of the algorithm. 

The main contributions of chapter 6 are: 

 The application of the DE algorithm to solve the eco-driving problem subject to time 
constraints along the journey to fulfil the ATO over ERTMS requirements. 

 The fitness function proposed to handle the constraints related to the timing points. 

 The comparison of the DE and the GA solving the constrained eco-driving problem. 
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 The analysis of the influence of the number of timing points in the performance of 
the optimisation algorithm and in the energy consumption of the optimal solution 
obtained. 

 The demonstration of the important influence of the designed target times 
associated with the timing point in the energy consumption. 
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consumption and risk of delay in high speed trains: A three-objective real-time eco-
driving algorithm with fuzzy parameters. Transportation Research Part C: Emerging 
Technologies 95, 652–678. https://doi.org/10.1016/j.trc.2018.08.009 

Fernández-Rodríguez, A., Fernández-Cardador, A., Cucala, A.P., 2018b. Real time eco-
driving of high speed trains by simulation-based dynamic multi-objective optimization. 
Simulation Modelling Practice and Theory 84, 50–68. 
https://doi.org/10.1016/j.simpat.2018.01.006 

Fernández-Rodríguez, A., Fernández-Cardador, A., Cucala, A.P., Domínguez, M., 
Gonsalves, T., 2015. Design of Robust and Energy-Efficient ATO Speed Profiles of 
Metropolitan Lines Considering Train Load Variations and Delays. IEEE Transactions on 
Intelligent Transportation Systems 16, 2061–2071. 
https://doi.org/10.1109/TITS.2015.2391831 

Domínguez, M., Fernández-Cardador, A., Cucala, A.P., Gonsalves, T., Fernández-
Rodríguez, A., 2014. Multi objective particle swarm optimization algorithm for the 
design of efficient ATO speed profiles in metro lines. Engineering Applications of 
Artificial Intelligence 29, 43–53. https://doi.org/10.1016/j.engappai.2013.12.015 

Conference presentations 

Fernández-Rodríguez, A., Fernández-Cardador, A., Cucala, A.P., 2015. Energy efficiency 
in high speed railway traffic operation: a real-time ecodriving algorithm, in: 2015 IEEE 
15th International Conference on Environment and Electrical Engineering (EEEIC). pp. 
325–330. https://doi.org/10.1109/EEEIC.2015.7165181  
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7.3. FUTURE WORK 

In this section, some research lines are propose to continue the work presented in this 
thesis.  

The first proposal would be the development of algorithms that need less number of 
configuration parameters. This is a usual concern in the research field of Nature Inspired 
algorithms. Parameters, such as the size of population or number of 
mutation/crossovers, are tuned depending on the problem characteristics. This feature 
demands an adjustment process when there are important changes in the 
characteristics of the problem to solve. The algorithms with less configuration 
parameters are more flexible and the tuning process is softer. 

Another improvement is the application of parallel computing techniques to accelerate 
the optimisation process. All the Nature Inspired algorithms applied during the 
development of this thesis are population based. The most computational expensive 
process of these algorithms is the population evaluation because it depends on the 
simulator. The population evaluation process can be parallelised resulting in a 
drastically reduction of the calculation times. 

Other future work can be classified attending to the topics studied in the thesis: 

Eco-driving in metropolitan lines 

Regarding to the studies on metropolitan railway systems there are some important 
future lines: 

 Optimisation of speed profiles defined by more complex driving parameters. 
This thesis has studied the typical set of driving parameters: braking 
deceleration rate, speed holding value, or coasting speed and remotoring speed. 
However, the improved communication capacity of new signalling systems, such 
as CBTC, allows not only to transmit driving parameters with more resolution 
but also to transmit speed profiles defined by more driving parameters. This 
way, applying the robust optimisation method presented in this thesis, new 
speed profiles can be found that could improve the energy consumption 
maintaining the robustness to load variations. 

 Improvement of the robust optimisation algorithm proposed: The method 
proposed demands several executions of several optimisation processes to 
obtain the Pareto front of each driving pattern identified. The information 
obtained by the algorithm about the exploration of the search space seeking 
solutions with one driving pattern could be very useful to speed up the following 
optimisation processes. 

 Development of new algorithms for the traffic regulation. The continuous 
communication provided by new signalling systems such as CBTC gives more 
flexibility to control trains movement from the centralised control centre. Thus, 
it is not necessary to wait until the trains arrive at the stations to change their 
driving commands if it is necessary. This provides a quicker response to traffic 
disturbances. With this purpose, new algorithms are needed to modify the 
driving commands of the train so the speed profile changes adequately to 
regulate quicker the traffic and in an energy efficient manner. 
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Eco-driving in high-speed lines 

Regarding to the studies on high-speed railway systems, the following future work can 
be identified: 

 The introduction in the simulation model of the uncertainty related to the 
climate conditions, such as temperature, wind or rain. This could allow to study 
if the eco-driving speed profiles are valid in all the conditions and obtain an 
efficient driving under a variety of climate conditions. 

 Estimation of the confidence interval of the results provided by simulators. A 
typical problem of train manufacturers is the confidence of their simulation 
results especially when making offers of new trains. The uncertainty models 
studied in this thesis as well as the proposed in the previous bullet point could 
help to delimit the confidence intervals. 

ATO over ERTMS 

Some of the future research about ATO over ERTMS has arisen during the analysis of 
the results obtained in this thesis: 

 Improvement of the calculation speed of the algorithm: the time required by the 
proposed algorithm to perform the optimisation is around 6 minutes. This time 
is adequate for an offline application. However, the calculation time is excessive 
to be applied online at the on-board equipment of the ATO over ERTMS. In the 
online application, the timing points can change during the journey and quick 
response times are required in the speed profile calculation. 

 Optimal intermediate target time selection: The selection of the time 
restrictions during the journey are not trivial. Important energy consumption 
variations have been obtained in this thesis modifying the nominal timing points. 
For this reason, the minimum energy consumption on the train operation can 
achieved not only obtaining the best speed profile for a given timetable but also 
choosing the best possible target times.  Thus, a future step would be an 
optimisation model for the design of timetable that fulfil the ATO over ERTMS 
requirements. This algorithm would be executed at the traffic control centre 
which is integrated in the ATO track-side system. 
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