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Abstract in English Language
Author: Zhao Yuan
Affiliation: KTH Royal Institute of Technology
Title: Convex Optimal Power Flow Based on Second-Order Cone Programming: Mod-
els, Algorithms and Applications
Language: English
Keywords: Optimal Power Flow, Second-Order Cone Programming, Distribution Lo-
cational Marginal Pricing, Wind Power, Super Grid

Optimal power flow (OPF) is the fundamental mathematical model to optimally
operate the power system. Improving the solution quality of OPF can help the power
industry save billions of dollars annually. Past decades have witnessed enormous re-
search efforts on OPF since J. Carpentier proposed the fully formulated alternating
current OPF (ACOPF) model which is nonconvex. This thesis proposes three convex
OPF models (SOC-ACOPF) based on second-order cone programming (SOCP) and
McCormick envelope. The underlying idea of the proposed SOC-ACOPF models is
to drop assumptions of the original SOC-ACOPF model by convex relaxation and
approximation methods. A heuristic algorithm to recover feasible OPF solution from
the relaxed solution of the proposed SOC-ACOPF models is developed. The qual-
ity of solutions with respect to global optimum is evaluated using MATPOWER and
LINDOGLOBAL. A computational comparison with other SOC-ACOPF models in
the literature is also conducted. The numerical results show robust performance of
the proposed SOC-ACOPF models and the feasible solution recovery algorithm. We
then propose to speed up solving large-scale SOC-ACOPF problem by decomposition
and parallelization. We use spectral factorization to partition large power network to
multiple subnetworks connected by tie-lines. A modified Benders decomposition algo-
rithm (M-BDA) is proposed to solve the SOC-ACOPF problem iteratively. Taking the
total power output of each subnetwork as the complicating variable, we formulate the
SOC-ACOPF problem of tie-lines as the master problem and the SOC-ACOPF prob-
lems of the subnetworks as the subproblems in the proposed M-BDA. The feasibility
of the proposed M-BDA is analytically proved. A GAMS grid computing framework
is designed to compute the formulated subproblems in parallel. The numerical results
show that the proposed M-BDA can solve large-scale SOC-ACOPF problem efficiently.
Accelerated M-BDA by parallel computing converges within few iterations. Finally,
various applications of our SOC-ACOPF models and M-BDA including distribution lo-
cational marginal pricing (DLMP), wind power integration and ultra-large-scale power
network or super grid operation are demonstrated.

2





Abstract in Spanish Language
Autor: Zhao Yuan
Afiliación: KTH Royal Institute of Technology
T́ıtulo: Flujo de potencia óptimo convexo basado en programación cónica de segundo
orden: modelos, algoritmos y aplicaciones
Idioma: Inglés
Palabras clave: Flujo óptimo de potencia, Programación cónica de segunda orden,
Distribución de precios marginales locales, Enerǵıa eólica, Supergrid

El flujo óptimo de potencia (OPF) es el modelo matemático fundamental para
operar óptimamente el sistema eléctrico de potencia. La mejora de la calidad de la
solución del OPF puede ayudar al sector eléctrico a ahorrar billones de dólares anual-
mente. En las pasadas décadas ha habido enormes esfuerzos de investigación sobre
OPF desde que J. Carpentier propuso la formulación completa del modelo OPF de
corriente alterna (ACOPF) que es no lineal y no convexo. Esta tesis propone tres mod-
elos OPF convexos (SOC-ACOPF) basados en programación cónica de segundo orden
(SOCP) y programación no lineal de McCormick. La idea subyacente de los modelos
SOC-ACOPF propuestos es sustituir los supuestos del modelo SOC-ACOPF original
mediante métodos de relajación convexa y aproximación. Se desarrolla un algoritmo
heuŕıstico para recuperar la solución OPF factible a partir de la solución relajada de
los modelos SOC-ACOPF propuestos. La calidad de las soluciones con respecto al
óptimo global se evalúa utilizando MATPOWER y LINDOGLOBAL. También se re-
aliza una comparación computacional con otros modelos SOC-ACOPF existentes en la
literatura cient́ıfica. Los resultados numéricos obtenidos muestran un comportamiento
robusto de los modelos SOC-ACOPF propuestos y del algoritmo de soluciones viables.
A continuación, se propone acelerar la resolución de un problema SOC-ACOPF a gran
escala por descomposición y paralelización. Se utiliza factorización espectral para di-
vidir una gran red eléctrica en varias subredes conectadas por ĺıneas de enlace. Se
propone un algoritmo de descomposición Benders modificado (M-BDA) para resolver
el problema SOC-ACOPF de forma iterativa. Tomando la potencia total de cada
subred como factor variable, se formula el problema SOC-ACOPF de ĺıneas de en-
lace como el problema principal y los problemas SOC-ACOPF de las subredes como
los subproblemas en el M-BDA propuesto. La factibilidad del M-BDA es probada
anaĺıticamente. Se diseñó un entorno de red de cálculo GAMS para calcular los sub-
problemas formulados en paralelo. Los resultados numéricos muestran que el M-BDA
propuesto puede resolver eficientemente el problema SOC-ACOPF a gran escala. El
M-BDA acelerado por cálculo paralelo converge en pocas iteraciones. Finalmente, se
analizan y demuestran diversas aplicaciones de los modelos SOC-ACOPF y M-BDA
incluyendo la distribución de los precios marginales locales (DLMP), la integración de
la enerǵıa eólica y la red de enerǵıa de ultra-gran escala o supergrid.
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Sammanfattning

Optimalt strömflöde (OPF) kan anses vara den grundläggande matematiska modellen
för att optimalt driva ett elkraftsystem. Förbättring av OPF-lösningens kvalitet kan
hjälpa kraftindustrin att spara miljarder dollar årligen. De senaste decennierna har
präglats av enorma forskningsinsatser p̊a OPF sedan J. Carpentier föreslog växelströms-
modellen OPF (ACOPF) som är olinjär och icke konvex. Denna avhandling föresl̊ar
tre konvexa OPF-modeller sk SOCP (SOC-ACOPF) vilka är baserad p̊a andra ord-
ningens konprogrammering och sk McCormick envelope. Den underliggande idén
med de föreslagna SOC-ACOPF-modellerna är att släppa antaganden om den ur-
sprungliga SOC-ACOPF-modellen med konvexa relaxeringar och approximationsme-
toder. En heuristisk algoritm för att återf̊a en möjlig OPF-lösning av de föreslagna
SOC-ACOPF-modellerna har utvecklats. Kvaliteten p̊a lösningar med avseende p̊a
globalt optimum utvärderas med hjälp av MATPOWER och LINDOGLOBAL. En
beräkningsmässig jämförelse med andra SOC-ACOPF-modeller i litteraturen utförs
ocks̊a. De numeriska resultaten visar robust prestanda för de föreslagna SOC-ACOPF-
modellerna och tillhörande algoritmer. Vi föresl̊ar sedan att p̊askynda lösningen
av storskaligt SOC-ACOPF-problem genom sönderdelning och parallellisering. Vi
använder spektralfaktorisering för att partitionera stora nätverksnätverk till flera delnät
kopplade av bindningar. En modifierad Benders nedbrytningsalgoritm (M-BDA) föresl̊as
lösa SOC-ACOPF-problemet iterativt. Med den totala effekten av varje delnät som
komplicerad variabel formulerar vi SOC-ACOPF-problemet med bindningar som hu-
vudproblemet och SOC-ACOPF-problemen i delnätverk som delproblem i den föreslagna
M-BDA. Genomförandet av det föreslagna M-BDA är analytiskt bevisat. En GAMS
grid computing ram är utformad för att beräkna de formulerade delproblemen par-
allellt. De numeriska resultaten visar att den föreslagna M-BDA effektivt kan lösa
storskaligt SOC-ACOPF-problem. Accelererad M-BDA genom parallell databehan-
dling konvergerar inom f̊a iterationer. Slutligen härleddes och demonstrerades olika
tillämpningar av v̊ara SOC-ACOPF-modeller och M-BDA, inklusive distribution av
lokal marginalprissättning (DLMP), vindkraftintegration och ultra-storskaligt nätverks-
eller supernätverk.
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Abstract in Dutch Language
Auteur: Zhao Yuan
Affiliatie: KTH Royal Institute of Technology
Titel: Convexe Optimale Powerflowberekening Gebaseerd op Tweede-Orde Cone Pro-
grammering: Modellen, Algoritmes en Toepassingen
Taal: Engels
Trefwoorden: Optimale elektriciteitstroom, Tweede-orde Cone Programmeren, Distri-
bution Locational Marginal Pricing, Windenergie, Super Grid

Optimal power flow (OPF) is het fundamenteel- wiskundige model om het elek-
triciteitsysteem optimaal te opereren. Het verbeteren van de oplossingskwaliteit van
OPF kan de energieindustrie jaarlijks miljarden dollars besparen. De afgelopen de-
cennia zijn er grote onderzoeksinspanningen verricht op het gebied van OPF, sinds
J. Carpentier een nonconvex model voor wisselstroom OPF (ACOPF) ontwikkelde.
Dit proefschrift stelt drie convexe OPF modellen voor (SOC-ACOPF), gebaseerd
op tweede-orde cone programmering (SOCP) en McCormick-enveloppen. Het on-
derliggende idee van de voorgestelde SOC-ACOPF modellen is het loslaten van aan-
names in het oorspronkelijke SOC-ACOPF model door convexe relaxaties en be-
naderingsmethoden. Een heuristisch algoritme is ontwikkeld om toegelaten OPF-
oplossingen te herstellen uit de gerelaxeerde oplossingen van de voorgestelde SOC-
ACOPF modellen. De kwaliteit van de oplossingen met betrekking tot het globale
optimum is geëvalueerd met behulp van MATPOWER en LINDOGLOBAL. De reken-
tijd is vergeleken met andere SOC-ACOPF modellen in de literatuur. De numerieke
resultaten tonen aan dat de prestaties van de voorgestelde SOC-ACOPF modellen
en het algoritme voor het identificeren van toegelaten oplossingen robuust zijn. Ver-
volgens stellen wij voor om het oplossen van het grootschalig SOC-ACOPF-probleem
te versnellen door middel van decompositie en parallelisatie. We gebruiken spectrale
factorisatie om een groot stroomnetwerk te verdelen in meerdere subnetwerken die
door de verbindingslijnen worden verbonden. Wij stellen een gemodificeerd Ben-
ders decompositiealgoritme (M-BDA) voor om het SOC-ACOPF probleem iteratief
op te lossen. Met de totale stroomuitvoer van elk subnetwerk als de complicerende
variabele formuleren we het SOC-ACOPF-probleem van verbindingen als het hoofd-
probleem en de SOC-ACOPF-problemen van de subnetwerken als de subproblemen
in de voorgestelde M-BDA. De haalbaarheid van het voorgestelde M-BDA wordt an-
alytisch bewezen. Wij hebben een GAMS grid computing-raamwerk ontwikkeld om
de geformuleerde subproblemen parallel te berekenen. De numerieke resultaten tonen
aan dat de voorgestelde M-BDA het grootschalige SOC-ACOPF probleem efficiënt
kan oplossen. De door parallel rekenen versnelde M-BDA convergeert binnen enkele
iteraties. Tenslotte worden diverse toepassingen van onze SOC-ACOPF-modellen
en M-BDA afgeleid en aangetoond, inclusief distribution locational marginal pric-
ing (DLMP), de integratie van windenergie en het beheer van een ultra-grootschalig
netwerk of supernetwerk.
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Chapter 1

Introduction

This Chapter gives a overview of the research topics in this thesis. The motivation
of our research work is also explained. As a summary of the research results, we list
the publications in peer-reviewed journals and conference proceedings. The submitted
patents applications for our techniques are also listed.

1.1 Background and Motivation

Optimal power flow (OPF) is an indispensable tool in fairly wide areas of applica-
tions and its applications are still expanding [1–6]. The challenges of integrating large
amount of renewable energy, increasing multi-terminal high voltage DC (HVDC) con-
nections and growing number of prosumers in distribution grid are now pushing the
electricity industry to seek more accurate, reliable and efficient OPF tools. Since the
AC power flow constraints are complex, nonlinear and nonconvex in nature, enormous
research efforts have been put into developing efficient algorithms to solve OPF during
the past decades. References [7] and [8] summarize methods to solve OPF in the early
stages ranging from linear, nonlinear and quadratic programming to Newton-based
algorithm and interior point method (IPM). Evolutionary- and intelligence-based ap-
proaches to solve OPF can be found in [9] and [10]. Traditionally, the direct current
OPF (DCOPF) as an estimation of full alternating current OPF (ACOPF) is perva-
sively employed for large-scale power system calculations [11]. With fast development
of smart grids [12], distribution network is now in the unprecedented interest of ad-
vanced monitoring and control [13]. Distribution networks have a larger resistance
to reactance (R/X) ratio as compared to the transmission network. Accordingly, the
DCOPF results of distribution networks need to be carefully used. Besides, the op-
eration points and nodal prices obtained from solving ACOPF in transmission and
distribution networks are more accurate [14,15]. Accordingly, accurate and fast meth-
ods to solve ACOPF is in demand. However, after five decades of research, ACOPF
remains lacking a thorough solution algorithm [1].

Solving OPF in a decentralized way is favourable in many aspects. Power network
is either historically, geographically or technically partitioned into several zones or
subnetworks to reduce the complexity of operation, control or planning [16, 17]. For
example, Nord Pool operates the electricity market of Sweden over four well-defined
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bidding areas from the north to the south [18]. Ten regions (California, MISO, New
England, New York, Northwest, PJM, Southeast, Southwest, SPP and Texas) of the
USA power system are separately operated by the corresponding independent system
operators (ISOs) [19]. One fundamental reason of operating the power system by
network partitions is that the dimension of the Hessian matrix and Jacobian matrix
during the iterations of the optimization is reduced. It is then easier for the solver
to address small-scale optimization problems. Another advantage of decentralized
operation is that the OPF problems of multiple subnetworks can be solved in a parallel
manner. In facing growing penetrations of distributed energy resources (DERs) which
may exceed the capability of centralized operation, parallel and decentralized operation
could be a feasible solution [20].

One important recent application of OPF is distribution locational marginal pricing
(DLMP) which can reflect the value of energy and network in the dimension of both
time and location. Smart grid advocates envisage a future in which small customers are
responsive to local market conditions with devices that reduce electricity consumption
at times of high prices and increase consumption at times of low prices. The increasing
penetration of devices capable of responding to market prices is increasing the need
for, and the utility of, improved distribution pricing signals. Efficient distribution
pricing signals reflect both losses and congestion on the distribution network. Such
prices vary across both time and locations and reflect the short-run marginal cost of
the transportation of electricity from one point on the distribution network to another.
The time-of-use pricing is proposed in [21]. In this mechanism different price level is
defined for different time periods of the day. The drawback of time-of-use pricing is
that real peak time periods can be deviated from the pre-defined hours in the pricing
structure. As an improvement, the critical-peak pricing is discussed in [22]. The
critical-peak pricing introduces flexible critical price hours during one year combined
with time-of-use pricing. The critical time in critical-peak pricing is broadcasted to
consumers well before happening. The real-time pricing is also proposed and discussed
in literature [23, 24]. In real-time pricing, prices vary with an hourly basis. However,
the distribution networks lack proper locational price signals for the growing small
prosumers and distributed energy resources [25]. Reference [26] proposes distribution
network use-of-system charges to convey locational signals to distribution network
users. Authors in [26] justify their distribution network charges based on absence of
DLMPs. In [27], long-run incremental cost pricing (LRIC) and forward cost pricing
(FCP) are introduced as distribution charging methodologies for Great Britain. These
methodologies offer locational messages in their pricing mechanism. In recent years
there has been rapidly increasing interest in locational marginal pricing of distribution
networks, especially to facilitate integration of distributed energy resources [28]. The
benefit of DLMPs for charging management of electric vehicles is discussed in [29].
References [30,31] discuss boosting of demand-side responses using DLMPs. Reference
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[32] demonstrates how DLMPs can alleviate congestion caused by high penetration
of electric vehicles (EVs) and heat pumps (HPs). By using Danish driving pattern,
reference [32] show that without DLMP, the low system price at 24:00 motivates all EVs
for charging. Also, the peak conventional demand at 18:00 leads to unavailable line
capacity for HP demands causing congestion. When DLMP is applied, EV charging
demands are spread to 23:00 and 5:00 and HP produce more heat before 18:00 to
deal with the forecasted high price at 18:00 (thermal dynamics of the house structure
and air help to maintain the room temperature in a short time interval). Reference
[33] proposes to integrate DLMPs and optimization in controlling future distribution
networks where electronic devices are enabled to receive control signals generated from
DLMP. We solve the computation and coordination challenges of implementing DLMP
in this thesis.

More efficient OPF models can also be used to integrate renewable energy sources
such as wind power. The Voltage Source Converter (VSC) based multi-terminal DC
(VSC-MTDC) system and Flexible AC Transmission System (FACTS) are playing
important roles in integrating intermittent renewable energy resources [34]. On the
one hand, VSC-MTDC and FACTS can be applied to remove congestion in heavily
loaded power systems [35]. On the other hand, FACTS devices can be used to en-
hance transfer capacity [36]. Claus et al. [37] point out that flexible hybrid AC-DC
systems are inevitable in the future smart grid. The importance of VSC-MTDC sys-
tems and FACTS is further emphasized by [38], which investigates the benefits of
FACTS devices in the IEEE 57-Bus test system with high penetration of wind power.
After installing FACTS devices, the total savings of the net present value (NPV) over
20 years amount to $49.45 million. The most relevant literature regarding the opti-
mal operation of power network including VSC-MTDC system and FACTS devices
are generally modeled in an ACOPF problem. We use SOC-ACOPF model in this
thesis to tackle the challenge of wind power integration in a stochastic programming
framework.

Our OPF models and algorithms are applicable for the European ultra-high volt-
age power grid which is evolving to a super grid with more high voltage AC (HVAC)
and high voltage DC (HVDC) interconnections [39]. The major advantage of building
a super grid is balancing energy consumption and generation across the continent [40].
Larger transmission capacity between renewable energy abundant areas and load cen-
ters means more efficient complementary energy use in dimension of both location and
time. It is cost beneficial to fully exploit the renewable energy resources by expand-
ing the power transmission network throughout Europe [41]. In facing the Energy
Roadmap 2050 issued by the European Commission, an ambitious 80% reduction of
green house gas emissions (GHG) by the year of 2050 compared with 1990 has been set
out [39,42]. Since electricity covers around 20% of energy consumption [39], exploiting
the huge potential of the electricity sector in achieving the EU2050 target is critical.
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The energy dispatch coordination problem of super grid is addressed in this thesis.

1.2 List of Publications and Patents

My PhD research work is summarized by following publications and patents:
Peer-Reviewed Journals included in the Journal Citation Report (JCR)

[J6]. Z. Yuan, M. R. Hesamzadeh. Second-Order Cone AC Optimal Power Flow:
Convex Relaxations and Feasible Solutions, Journal of Modern Power Systems
and Clean Energy, 2018 (Submitted).
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1.3 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2 proposes the convex OPF models. The numerical performances of
the proposed OPF models compared with other models are examined through
various IEEE test cases.

Chapter 3 presents the sequential tightness algorithm to improve feasibility of
the OPF solutions. The decentralized OPF solution algorithm based on modified
Benders decomposition is proposed and explained in detail. All the proposed
algorithms are numerically validated.

Chapter 4 demonstrates the application of our convex OPF models in DLMP
and coordinating TSO-DSO operations. The concepts of generalized bid func-
tion and hierarchical economic dispatch mechanism are proposed to address the
computational and coordinational challenges of implementing DLMP.

Chapter 5 deals with the challenge of integrating wind power by stochastic conic
programming and high performance computing. A scenario-based decomposition
approach is proposed to tackle large number of wind power scenarios.

Chapter 6 sets up the concept of power synergy hub (PSHub) to coordinate
the energy dispatch for ultra-large-scale power grid or super grid. We show
that the modified Benders decomposition algorithm can serve as an efficient
approach to coordinate the energy dispatch of multiple nations or regions across
the continent. Fast convergence of the proposed approach is demonstrated for
power networks with up to 9241 nodes.



Chapter 2

Convex Optimal Power Flow Models

2.1 Introduction

Recent developments in ACOPF research can be mainly classified into four branches:
(1) convexification [43–45], relaxation and approximation [2, 46–48]; (2) decentralized
or distributed algorithms [49, 50]; (3) addressing uncertainty [51, 52] and (4) global
optimality [53]. Convex relaxation techniques can give useful bound of ACOPF ob-
jective function. Convexity also guarantees finding global solution by using mature
solution algorithms (e.g. IPM). Considering commercially available solvers (such as
MOSEK [54]) for solving convex problems, the remaining task is to tighten the re-
laxations used in the convexification. It is in this sense that mathematical relaxation
techniques that can properly convexify ACOPF are important. Though assuming no
lower bound for active power generation to exactly convexify mesh networks are not
realistic, the proposed branch flow model in [44] as a convex relaxation of ACOPF is
very important and useful. Reference [43] gives exact convex relaxations of OPF under
some assumptions on network parameters. Based on the branch flow approach, authors
in [55] present an ACOPF model using second-order cone programming (SOCP) and it
shows accurate solutions for several IEEE test cases when the objective is transmission
loss minimization. A cone-programming-based OPF for radial distribution networks
is proposed in [56]. Reference [13] points out that power loss minimization objective
function for the developed SOCP-based ACOPF is always exact. For other objective
functions than power loss minimization, the proposed model in [13] requires develop-
ing new solution algorithms. Reference [13] continues to improve its cone relaxation
by generating tight cutting planes. For radial networks, sufficient conditions regarding
network property and voltage upper bound under which the proposed relaxed ACOPF
can give global ACOPF solution are derived in [43]. Reference [57] formulates a two-
stage stochastic mixed-integer second order cone program (MISOCP) to model the
trade-off between investment in AC and MTDC networks.

Another promising convexification approach for ACOPF is to use Semi-Definite
Programming (SDP) [58, 59]. The computational limits of SDP are shown in [60].
Efficient algorithms for solving SDP-based ACOPF model remain to be found [58].
Regarding ACOPF in large-scale power networks, SDP-based ACOPF takes much
more CPU time than SOCP-based ACOPF. The pioneering work using matrix com-
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bination and decomposition techniques by authors in [61] to accelerate SDP-based
ACOPF show that more than 1000 seconds solver time are required to compute cases
with around 3000 buses. Important analysis and results from [62–64] show that SDP
relaxations are exact only for limited types of problems. Even for a 2-bus 1-generator
power system, SDP-based ACOPF can be infeasible and inexact [65]. In cases where
the exactness is not guaranteed, solutions of SDP-based ACOPF rarely have physical
meanings.

Results from [48] show that Quadratic Convex (QC) relaxation of ACOPF may
produce some improvements in accuracy over SOCP-based ACOPF but with reduced
computational efficiency. The feasible region relationship of SOCP, SDP and QC ap-
proaches are analyzed in [48]. The SDP and QC approaches give tighter relaxations
than the SOCP approach but they are not equivalent to each other. In terms of com-
putational performance, the QC and SOCP approaches are much faster and reliable
than the SDP approach [48]. Based on first-order Taylor expansion, a current-voltage
formulation for ACOPF is proposed in [2, 66]. The advantages of the current-voltage
formulation are that the approximated ACOPF problem is linear and much faster to
be solved than nonlinear formulations. However, an iterative algorithm is required to
check the violations of nonconvex ACOPF constraints and then to construct the inner
or outer bounds of the approximations. The network flow (NF) and copper plate (CP)
models for ACOPF are proposed in [67]. The NF and CP models bring significant
computational advantage at the cost of reduced accuracy. They either require more
complex solution algorithms [2, 66] or may result in infeasible solutions [67]. Authors
in [68] propose three different relaxation methods to improve SOCP-based ACOPF.
The arctangent constraints in the rectangular formulation of ACOPF are convexified
by McCormick relaxations, polyhedral envelopes and dynamically generated linear in-
equalities [68]. The results show prominent computational efficiency of the SOCP
approach over the SDP approach [68].

Regarding the feasibility of the relaxed solutions, three types of sufficient conditions
about power injections, voltage magnitudes and phase angles to guarantee obtaining
exact solutions are proposed in [64]. Authors in [68] strengthen the relaxations of
SOCP-based ACOPF model by dynamically generating linear valid inequalities to
separate solutions of SOCP-based ACOPF from other relaxed constraints. However, it
is not guaranteed that feasible solution can be always recovered by this approach. The
complementarity conditions in the Karush-Kuhn-Tucker (KKT) system of DCOPF are
used in [69] to recover feasible solution of ACOPF.

Accordingly, the main contributions of the current Chapter are:

1. Three SOC-ACOPF models based on second-order cone relaxations, Taylor ex-
pansions and McCormick envelops are proposed;
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2. A heuristic algorithm is proposed to recover a feasible solution of ACOPF from
the relaxed solution;

3. A computational comparison with other SOCP-based ACOPF formulations in
the literature is conducted.

The rest of this Chapter is organized as follows. Section II presents mathematical
formulations of the proposed SOC-ACOPF models. Section III proposes the heuristic
algorithm to recover feasible solutions. Section IV discusses numerical results for
various IEEE test cases under different load scenarios. Section V concludes.

2.2 AC Optimal Power Flow

2.2.1 Full AC Optimal Power Flow Model

It is assumed that the electric networks are three phase and balanced. The full AC OPF
model (based on the validated branch flow model [44,55]) is formulated in optimization
problem (2.1). Note psl , qsl represent receiving end power flows in [55] which are
different in our formulation. So some constraints are accordingly different. The term
s in psl , qsl , vsl , Vsl is not an index but only to imply the meaning of sending end of
line l. The term r in vrl , Vrl is not an index but only to imply the meaning of receiving
end of line l. The term d in pdn , qdn is not an index but only to imply the meaning
of power demand. Similar reasoning holds for the term o in pol , qol which is to denote
the meaning of power loss.

Minimize
Ω

f(pn, qn, pol , qol) (2.1a)

subject to

pn − pdn =
∑

l

(A+
nlpsl − A−nlpol) +GnVn, ∀n ∈ N (2.1b)

qn − qdn =
∑

l

(A+
nlqsl − A−nlqol)−BnVn, ∀n ∈ N (2.1c)

pol =
p2
sl

+ q2
sl

Vsl
Rl, ∀l ∈ L (2.1d)

qol =
p2
sl

+ q2
sl

Vsl
Xl, ∀l ∈ L (2.1e)
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Vsl − Vrl = 2Rlpsl + 2Xlqsl −Rlpol −Xlqol , ∀l ∈ L (2.1f)

vslvrl sin θl = Xlpsl −Rlqsl , ∀l ∈ L (2.1g)

p2
sl

+ q2
sl
≤ Kl, ∀l ∈ L (2.1h)

Vn = v2
n, ∀n ∈ N (2.1i)

vminn ≤ vn ≤ vmaxn , ∀n ∈ N (2.1j)

θminl ≤ θl ≤ θmaxl , ∀l ∈ L (2.1k)

pminn ≤ pn ≤ pmaxn , ∀n ∈ N (2.1l)

qminn ≤ qn ≤ qmaxn , ∀n ∈ N (2.1m)

Where Ω = {pn, qn, psl , qsl , pol , qol , Vn, vn, θl} ∈ < is the set of decision variables. De-
pending on the applications, the objective function f(pn, qn, pol , qol) can be the eco-
nomic cost of energy production, network power loss or security margin. In this thesis,
we use the quadratic or linear cost function of energy production in MATPOWER [70]
directly. Equations (2.1b) and (2.1c) represent the active and reactive power balance.
A+
nl and A−nl are the incidence matrices of the network with A+

nl = 1, A−nl = 0 if n
is the sending end of line l, and A+

nl = −1, A−nl = 1 if n is the receiving end of line
l. Vsl = v2

sl
and Vrl = v2

rl
are voltage magnitude squares. Equations (2.1d)-(2.1e)

represent active power and reactive power loss. θl = θsl−θrl is the voltage phase angle
difference of line l. Equations (2.2d)-(2.1g) are derived by taking the magnitude and
phase angle of the voltage drop phasor along line l respectively [44, 55]. Constraints
(2.1j)-(2.1m) are bounds for voltage magnitude, voltage phase angle difference, active
power generation and reactive power generation. This model is nonconvex because of
the nonconvex constraints (2.1d), (2.1e), (2.1g) and (2.1i). Current available nonlinear
programming solvers are unable to efficiently find the global optimal solution of this
nonconvex model.

The objective function f of typical economic dispatch is quadratic:

f(pn) =
∑

n

αnp
2
n + βnpn (2.1n)

Where αn, βn are cost parameters of the active power generation. If we can convexify
the nonconvex power flow constraints (2.1d), (2.1e), (2.1g) and (2.1i), minimizing
quadratic objective function over a convex feasible region is a convex optimization
problem.

2.2.2 SOC-ACOPF: Model P

The proposed SOC-ACOPF models are derived using line sending-end power injections
and voltage phase angle difference variables. In this way, we can directly obtain voltage
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phase angle solutions from the models. Note that in some of the derived models,
voltage square variables are included (voltage can be recovered from the model by
taking the root of the voltage square solutions). Model P of the SOC-ACOPF is set
out in (2.2), [55].

Minimize
Ω

f(pn, qn, pol , qol) (2.2a)

subject to

(2.1b)− (2.1c), (2.1j)− (2.1m)

Kl ≥ pol ≥
p2
sl

+ q2
sl

Vsl
Rl, ∀l ∈ L (2.2b)

polXl = qolRl, ∀l ∈ L (2.2c)

Vsl − Vrl = 2Rlpsl + 2Xlqsl −Rlpol −Xlqol , ∀l ∈ L (2.2d)

θl = Xlpsl −Rlqsl , ∀l ∈ L (2.2e)

Constraints (2.2b)-(2.2c) represent active power and reactive power loss. The left side
of (2.2b) bounds pol (which equivalently bounds capacity of line l). Equation (2.2e) is
approximated from the nonconvex constraint (2.1g). This approximation is based on
following assumptions:

(a) Voltage magnitude product vslvrl is approximately equal to 1 per-unit in (2.1g);

(b) Voltage phase angle difference across each line is small enough such that sin θl ≈
θl.

2.2.3 SOC-ACOPF: Model R

To drop assumption (a) in Model P, we use the following bilinear transformation:

vslvrl =
1

4
[(vsl + vrl)

2 − (vsl − vrl)2], ∀l ∈ L (2.3a)

If we introduce auxiliary variable vml as:

vml = vslvrl , ∀l ∈ L (2.3b)

And repeat transformation (2.3a) then the left side of equation (2.1g) can be replaced
by:

vmlθl =
1

4
[(vml + θl)

2 − (vml − θl)2], ∀l ∈ L (2.3c)
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Introducing new variables uxl , wxl , uvl and wvl as:

uxl = vsl + vrl , ∀l ∈ L (2.3d)

wxl = vsl − vrl , ∀l ∈ L (2.3e)

uvl = vml + θl, ∀l ∈ L (2.3f)

wvl = vml − θl, ∀l ∈ L (2.3g)

Equations (2.3a) and (2.3c) can be expressed by the new variables uxl , wxl , uvl and wvl
as:

vslvrl =
1

4
(u2

xl
− w2

xl
), ∀l ∈ L (2.3h)

vmlθl =
1

4
(u2

vl
− w2

vl
), ∀l ∈ L (2.3i)

The quadratic functions u2
xl
, w2

xl
, u2

vl
and w2

vl
are relaxed as following convex cones:

uxal ≥ u2
xl
, ∀l ∈ L (2.3j)

wxal ≥ w2
xl
, ∀l ∈ L (2.3k)

uval ≥ u2
vl
, ∀l ∈ L (2.3l)

wval ≥ w2
vl
, ∀l ∈ L (2.3m)

The upper bounds are expressed linearly:

uxal ≤ (ūxl + uxl)uxl − ūxluxl , ∀l ∈ L (2.3n)

wxal ≤ (w̄xl + wxl)wxl − w̄xlwxl , ∀l ∈ L (2.3o)

uval ≤ (ūvl + uvl)uvl − ūvluvl , ∀l ∈ L (2.3p)

wval ≤ (w̄vl + wvl)wvl − w̄vlwvl , ∀l ∈ L (2.3q)

Where constraints (2.3j)-(2.3m) are second-order cones and constraints (2.3n)-(2.3q)
are McCormick envelopes. ūxl , w̄xl , ūvl and w̄vl are upper bounds of the correspond-
ing variables. uxl , wxl , uvl and wvl are lower bounds of the corresponding variables.
The variables vsl and vrl are linked to their squares Vsl and Vrl by following convex
constraints.

Vn ≥ v2
n, ∀n ∈ N (2.3r)

Vn ≤ (v̄n + vn)vn − v̄nvn, ∀n ∈ N (2.3s)

Where v̄n and vn are upper and lower bounds of voltage magnitude. Constraint (2.3s)
tightens the cone relaxations in (2.3r). In Model R of SOC-ACOPF, we replace con-
straints (2.2e) of optimization problem (2.2) by constraints (2.3d)-(2.3g), (2.3j)-(2.3m),
(2.3n)-(2.3q), (2.3r)-(2.3s) and constraints (2.3h)-(2.3i) where the quadratic functions
u2
xl
, w2

xl
, u2

vl
and w2

vl
are replaced by uxal , wxal , uval and wval , the term vslvrl is replaced

by vml , the term vmlθl is replaced by Xlpsl −Rlqsl .
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2.2.4 SOC-ACOPF: Model T

To drop assumption (b) of Model R, we propose to apply Taylor series expansion to
approximate Sine function:

sin θl = θl −
θ3
l

6
+

θ5
l

120
+O(θ7

l ), ∀l ∈ L (2.4a)

As a trade off between model complexity and accuracy, fifth-order Taylor series expan-
sion is selected. The approximation error is less than 0.45% for |θl| < π

2
. Repeating the

bilinear transformation procedure similar in Model R derived in the previous Section,
we have:

uθ2l = θ2
l ; uθ3l = θ3

l ; uθ5l = θ5
l , ∀l ∈ L (2.4b)

θ3
l =

1

4
[(θl + uθ2l )

2 − (θl − uθ2l )
2], ∀l ∈ L (2.4c)

θ5
l =

1

4
[(uθ2l + uθ3l )

2 − (uθ2l − uθ3l )
2], ∀l ∈ L (2.4d)

We introduce auxiliary variables to formulate relaxations of quadratic equations:

hxl = θl + uθ2l , ∀l ∈ L (2.4e)

yxl = θl − uθ2l , ∀l ∈ L (2.4f)

hvl = uθ2l + uθ3l , ∀l ∈ L (2.4g)

yvl = uθ2l − uθ3l , ∀l ∈ L (2.4h)

uvl = vml + (θl −
uθ3l
6

+
uθ5l
120

), ∀l ∈ L (2.4i)

wvl = vml − (θl −
uθ3l
6

+
uθ5l
120

), ∀l ∈ L (2.4j)

Higher order terms of θl can be expressed similarly by introducing new auxiliary
variables. Again, as in Model R, using uvl and wvl variables, we have:

uθ3l =
1

4
(h2

xl
− y2

xl
), ∀l ∈ L (2.4k)

uθ5l =
1

4
(h2

vl
− y2

vl
), ∀l ∈ L (2.4l)

vslvrl sin θl ≈
1

4
(u2

vl
− w2

vl
), ∀l ∈ L (2.4m)
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Similarly, auxiliary variables hxal , yxal , hval and yval are proposed:

hxal ≥ h2
xl
, ∀l ∈ L (2.4n)

yxal ≥ y2
xl
, ∀l ∈ L (2.4o)

hval ≥ h2
vl
, ∀l ∈ L (2.4p)

yval ≥ y2
vl
, ∀l ∈ L (2.4q)

Quadratic functions are bounded above by:

hxal ≤ (hxl + hxl)hxl − hxlhxl , ∀l ∈ L (2.4r)

yxal ≤ (yxl + y
xl

)yxl − yxlyxl , ∀l ∈ L (2.4s)

hval ≤ (hvl + hvl)hvl − hvlhvl , ∀l ∈ L (2.4t)

yval ≤ (yvl + y
vl

)yvl − yvlyvl , ∀l ∈ L (2.4u)

Where hxl , yxl , hvl and yvl are upper bounds of the corresponding variables. hxl , yxl
, hvl

and y
vl

are lower bounds of the corresponding variables. uθ2l is bounded as follows:

uθ2l ≥ θ2
l , ∀l ∈ L (2.4v)

uθ2l ≤ θ
2

l , ∀l ∈ L (2.4w)

Where θ
2

l is the upper bound of θ2
l . In Model T of SOC-ACOPF, we replace con-

straints (2.2e) of optimization problem (2.2) by constraints (2.3d)-(2.3e), (2.3j)-(2.3m),
(2.3n)-(2.3q), (2.3r)-(2.3s), (2.4e)-(2.4j), (2.4n)-(2.4q), (2.4r)-(2.4u), (2.4v)-(2.4w) and
constraints (2.3h), (2.4k)-(2.4m) where quadratic functions u2

xl
, w2

xl
, h2

xl
, y2

xl
, h2

vl
, y2

vl
,

u2
vl

and w2
vl

are replaced by uxal , wxal , hxal , yxal , hval , yval , uval and wval , the term
vslvrl is replaced by vml , the term vslvrl sin θl is replaced by Xlpsl −Rlqsl .

2.2.5 SOC-ACOPF: Model E

Nonconvex term in the left side of equation (2.1g) can be directly replaced by its
convex envelopes described in [71]. Employing (2.3b) and introducing new variables
zθl = sin θl and zhl = vsvr sin θl, we have:

vslvrl sin θl = vmlzθl , ∀l ∈ L (2.5a)

zhl = Xlpsl −Rlqsl , ∀l ∈ L (2.5b)
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Convex envelopes for zhl = vmlzθl are:

zhl > vmlzθl + zθlvml − vmlzθl , ∀l ∈ L (2.5c)

zhl > vmlzθl + zθlvml − vmlzθl , ∀l ∈ L (2.5d)

zhl 6 vmlzθl + zθlvml − vmlzθl , ∀l ∈ L (2.5e)

zhl 6 vmlzθl + zθlvml − vmlzθl , ∀l ∈ L (2.5f)

Where vml , zθl are lower bounds and vml , zθl are upper bounds for their corresponding
variables. Convex envelopes for vml = vslvrl are:

vml > vslvrl + vrlvsl − vslvrl , ∀l ∈ L (2.5g)

vml > vslvrl + vrlvsl − vslvrl , ∀l ∈ L (2.5h)

vml 6 vslvrl + vrlvsl − vslvrl , ∀l ∈ L (2.5i)

vml 6 vslvrl + vrlvsl − vslvrl , ∀l ∈ L (2.5j)

Where vsl and vrl are lower bounds and vsl and vrl are upper bounds for their corre-
sponding variables. Convex envelopes for zθl are:

zθl > cos(
θl
2

)(θl +
θl
2

)− sin(
θl
2

), ∀l ∈ L (2.5k)

zθl 6 cos(
θl
2

)(θl −
θl
2

) + sin(
θl
2

), ∀l ∈ L (2.5l)

Where θl is the upper bound of θl. Constraints (2.5c) to (2.5l) are linear. Constraints
(2.5k)-(2.5l) are valid for 0 < θl <

π
2
. Bounds of the variables can be determined

a priori. In Model E of SOC-ACOPF, we replace constraint (2.2e) of optimization
problem (2.2) by constraints (2.3r)-(2.3s) and (2.5b)-(2.5l). Accordingly, assumptions
(a) and (b) are not required in Model E.

2.3 Feasibility

In case the AC feasibility is violated by the solutions of the derived SOC-ACOPF
models, we propose here a heuristic algorithm to recover feasible solutions from the
relaxed solutions. The heuristic technique is summarized in Algorithm 1. We use the
relaxed solutions of the active power generation p∗n from the SOC-ACOPF models.
If p∗n solutions are feasible for all the ACOPF constraints, we can confirm that we
have found the global optimal solution of ACOPF. Otherwise, we propose to fix pn =
p∗n for the cheap generators and take the pn′ of the marginal generator (the most
expensive generator in N∗) as a variable. Where N∗ ⊆ N is a dynamic set initiated
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as ∀n ∈ N∗, p∗n > 0. N∗ is updated by removing the element n
′

which is the index of
the marginal generator in each iteration. This process is repeated until the ACOPF
is feasible in Algorithm 1. cn is the marginal cost of generator at node n. imax is
the maximum number of allowed iterations. We show in Section V that the feasible
solution can be recovered by this algorithm normally in few iterations.

Algorithm 1: Feasible Solution Recovery Algorithm

Input: Solution of SOC-ACOPF p∗n;
Output: Feasible Solution of ACOPF p∗∗n ;
Initialization;
i = 1;
Define N∗ ⊆ N such that ∀n ∈ N∗, p∗n > 0;
pn = p∗n ;
do

if cn′ = Max {cn} ,∀n, n′ ∈ N∗ then
Replace pn′ = p∗

n′ by pmin
n′ < pn′ < pmax

n′ ;

N∗ = N∗ \ n′
;

Solve ACOPF;
i = i+ 1;

while ACOPF is not feasible and i < imax;

2.4 Numerical Results

All the SOC-ACOPF models are implemented in GAMS and solved by MOSEK. A
computer with 2.4GHz CPU and 8GB RAM is deployed for the simulations (except
Section V.2). Solutions of ACOPF from MATPOWER [70] and LINDOGLOBAL are
set as the benchmarks. The LINDOGLOBAL solver employs branch-and-cut methods
to find the global optimal solution. MATPOWER uses MATLAB built-in Interior
Point Solver (MIPS) to solve nonconvex ACOPF. If a solution is not found, we denote
the corresponding result as ’NA’.

2.4.1 Performance of SOC-ACOPF models

Base case

The SOC-ACOPF objective values are listed in Table 2.1. When LINDOGLOBAL
cannot converge, we use the recovered best feasible solutions from Table 2.3 as the
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benchmark. The LINDOGLOBAL solver is able to find global solutions for IEEE14-
bus, IEEE57-bus and IEEE118-bus cases. For larger networks, the number of variables
and constraints exceed the limits of LINDOGLOBAL. The results of MATPOWER
and LINDOGLOBAL are very close. All proposed SOC-ACOPF models give very
close results as compared to MATPOWER and LINDOGLOBAL solutions. Compared
to LINDOGLOBAL results, the objective values of IEEE14-bus case from Model T
and Model E are bit higher. The reason is that the voltage phase angle constraint
0 < θl <

π
2

is included in Model E while this is not necessary for the nonconvex
ACOPF model in GAMS solved by LINDOGLOBAL (this can also be due to different
accuracy tolerances used by different solvers). The computation time results are listed
in Table 2.2. Model P requires least computation time while Model T requires the
most. This is because model complexity increases as we increase model accuracy. All
proposed SOC-ACOPF models are computationally competitive with MATPOWER.
The proposed SOC-ACOPF models require much less computation time as compared
to MATPOWER for large-scale network cases (1354pegase and 2869pegase cases in
Table 2.2). our proposed SOC-ACOPF models are valid for both radial and mesh
networks.

To compare the computational performance of different SOCP-based ACOPF for-
mulations, we have also implemented the ACOPF models in [44] and [48]. The results
are listed in Table 2.1 and Table 2.2. It is worth to mention that the model in ref-
erence [48] takes much longer time than our proposed SOC-ACOPF models to be
converted to the executable model format in GAMS (though the solver CPU time is
short). In general, the model in reference [44] has the least number of constraints and
requires less computational time. However, this model is not valid for mesh networks
because there is no voltage phase angle constraint in this model (the reported results
of this model are relaxed solutions for mesh networks). For the model in reference [48],
MOSEK in GAMS cannot converge for the IEEE57-bus test case.

Table 2.1: Objective value ($)

Test Case IEEE14 IEEE57 IEEE118 IEEE300 1354pegase 2869pegase
Model P 8078.84 41696.94 129619.50 719381.80 74053.90 133877.00
Model R 8075.22 41711.78 129339.60 718301.60 74096.14 133875.40
Model T 8106.73 41713.25 129625.50 721368.40 74100.85 133931.40
Model E 8092.32 41711.78 129376.00 718546.27 74040.99 133934.70

Model in [44] 8072.42 41673.10 129330.74 718091.78 74006.84 133866.95
Model in [48] 8073.16 NA 129325.68 719451.23 73974.56 133823.28
MATPOWER 8081.53 41737.79 129660.70 719725.11 74069.35 133999.29

LINDOGLOBAL 8081.54 41737.93 129660.54 NA NA NA
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Table 2.2: Computation time (s)

Test Case IEEE14 IEEE57 IEEE118 IEEE300 1354pegase 2869pegase
Model P 0.08 0.09 0.09 0.25 0.76 1.97
Model R 0.06 0.11 0.27 1.29 2.78 10.94
Model T 0.12 0.25 0.54 1.48 3.92 11.47
Model E 0.09 0.17 0.36 0.64 2.50 9.72

Model in [44] 0.08 0.11 0.13 0.25 0.64 1.23
Model in [48] 0.07 NA 0.09 0.22 2.56 6.82
MATPOWER 0.11 0.12 0.30 0.48 8.58 18.66

LINDOGLOBAL 0.20 2.31 27.10 NA NA NA

Load scenarios

We evaluate the performance of the proposed SOC-ACOPF models under different
load scenarios and compare the results with MATPOWER results. The incremental
load scenarios are generated from 10% to 100% of the load (both active and reactive)
in the base case. The results are shown in Fig. 2.1, Fig. 2.2, Fig. 2.3, Fig. 2.4,
Fig. 2.5 and Fig. 2.6. To demonstrate the relaxation performance, we also plot the
maximum value of relaxation gaps Gapol in these figures. The maximum relaxation
gap Gapol is calculated by:

Gapol = max
l

{
pol −

p2
sl

+ q2
sl

Vsl
Rl

}
(2.6)

For IEEE14-bus, 57-bus, 118-bus and 300-bus cases, Gapol < 10−6 is valid for all the
load scenarios. For load scenarios when MATPOWER cannot converge, the MOSEK
solver is convergent for our proposed models however with large relaxation gaps (In
these cases, large relaxation gap can serve as an indicator for un-convergence of the
original ACOPF model). These results show robustness of the proposed SOC-ACOPF
models over the load scenarios.

2.4.2 Feasible Solution

The heuristic algorithm in Section IV for recovering feasible solution is validated nu-
merically in this Section. We use the IPOPT solver in GAMS to solve the nonconvex
ACOPF model. A desktop with 3.4GHz CPU and 32GB RAM is used to implement
Algorithm 1. For all the relaxed solutions of SOC-ACOPF models listed in Table 2.1,
the feasible solutions are recovered within a few iterations. The objective function val-
ues of the recovered feasible solutions are listed in Table 2.3. The CPU time required
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Figure 2.1: IEEE14-bus objective values and relaxation gaps for various load scenarios
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Figure 2.2: IEEE57-bus objective values and relaxation gaps for various load scenarios
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Figure 2.3: IEEE118-bus objective values and relaxation gaps for various load scenarios
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Figure 2.4: IEEE300-bus objective values and relaxation gaps for various load scenarios
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Figure 2.5: 1354pegase objective values and relaxation gaps for various load scenarios
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Figure 2.6: 2869pegase objective values and relaxation gaps for various load scenarios
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for the computation are reported in Table 2.4. For ease of comparison, the results
from MATPOWER and LINDOGLOBAL are listed again in Table 2.3 and Table 2.4.
For 1354pegase and 2869pegase, feasible solutions with lower objective function val-
ues than the solutions from MATPOWER are recovered. The feasible solutions from
the models in [44] and [48] are also recovered and reported. For the most test cases,
feasible solutions recovered from our models have lower operation cost as compared to
those recovered from models in [44] and [48].

Table 2.3: Objective values of the recovered feasible solution ($)

Test Case IEEE14 IEEE57 IEEE118 IEEE300 1354pegase 2869pegase
Model P 8086.61 41738.11 129660.92 719900.86 74064.77 133987.76
Model R 8081.63 41738.15 129668.43 719536.08 74064.77 133991.67
Model T 8106.73 41738.14 129668329 719516.79 74064.77 133991.67
Model E 8091.10 41738.15 129667.12 719526.16 74064.77 133991.67

Model in [44] 8081.63 41738.15 129668.43 719522.19 74064.77 133991.67
Model in [48] 8081.63 NA 129670.80 720335.29 74064.77 133991.67
MATPOWER 8081.53 41737.79 129660.70 719725.11 74069.35 133999.29

LINDOGLOBAL 8081.54 41737.93 129660.54 NA NA NA

Table 2.4: Computation time of the feasible solution recovery algorithm (s)

Test Case IEEE14 IEEE57 IEEE118 IEEE300 1354pegase 2869pegase
Model P 0.11 1.05 1.44 14.55 45.90 234.61
Model R 0.18 1.50 2.41 24.56 41.77 769.16
Model T 0.26 1.22 1.37 15.13 69.55 140.58
Model E 0.12 1.17 3.03 131.55 33.91 525.00

Model in [44] 0.22 1.59 4.08 15.28 58.61 203.69
Model in [48] 0.25 NA 3.47 13.42 19.45 127.30
MATPOWER 0.11 0.12 0.30 14.53 8.58 18.66

LINDOGLOBAL 0.20 2.31 27.10 NA NA NA
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2.5 Conclusions

Three second-order cone models (Model R, Model T and Model E) for ACOPF are
proposed using convex relaxation and approximation techniques. Compared with other
SOCP-based ACOPF formulations in the literature, our formulations are valid for both
mesh and radial power networks. The numerical results show that the proposed SOC-
ACOPF models can give accurate results. This accuracy improvement is achieved
with similar computation time as compared to MATPOWER. The quality of results
with respect to the global solution is also checked using LINDOGLOBAL solver in
GAMS. The performance of the proposed SOC-ACOPF models under various power
load scenarios is investigated numerically. A computational comparison of different
SOCP-based ACOPF formulations shows the strong convergence performance of the
proposed SOC-ACOPF models. To recover feasible solutions from the relaxed solutions
of the proposed SOC-ACOPF models, we develop a heuristic feasible solution recovery
algorithm. This algorithm is capable of recovering the feasible solutions from all the
relaxed solutions of the proposed SOC-ACOPF models in the test cases.





Chapter 3

Tightness and Decomposition Algo-
rithms

3.1 Introduction

Decentralized approaches to solve the OPF problem mainly include Lagrangian relax-
ation [72], Benders decomposition (BD) [73], Dantzig-Wolfe decomposition [74] and
Alternating Direction Method of Multipliers (ADMM) [75]. A comprehensive sum-
mary of distributed algorithms for optimization and control of power system can be
found in [16]. Lagrangian relaxation approach relaxes the coupling constraints between
the subnetworks and generally only approximated solutions can be guaranteed [72].
BD and Dantzig-Wolfe decomposition require to firstly formulate the master problem
and subproblem and then iterate until the solutions converge [73,74]. BD is widely used
to solve the security constrained unit commitment (SCUC) problem and transmission
expansion planning (TEP) problem which can be regarded as expanded applications
of OPF [76–78]. In SCUC and TEP, mostly the integer variables are taken as the com-
plicating variables to formulate the master problem and subproblem of BD [76–78].
Message exchanges among the subnetworks are required by ADMM [75]. Generally,
when more subnetworks are partitioned, more iterations are required for ADMM to
converge [75]. Reference [79] investigates three ADMM-based decentralized DCOPF
solution algorithm with different communication strategies. It shows numerically that
the convergence performance can be improved by enhancing the data exchange with
the central controller (or coordinator). The network partitioning approach is also im-
portant for the convergence performance [79]. Authors in [80] solve the stochastic
SOCP-based ACOPF by ADMM for radial distribution networks. The updates of the
variables and multipliers are decomposed by each node and each scenario. As a result,
it requires large number of iterations to converge (over 3000 iterations are required
for a 50-node test case with 500 scenarios) [80]. Using ADMM, a comprehensive in-
vestigation of decomposing nonconvex ACOPF down to the individual node level is
conducted by [20]. The results show that convergence speed of ADMM largely de-
pends on test cases. The nonconvexity of ACOPF also requires a suitable selection
of the penalty factors of ADMM to guarantee the convergence [20]. Reference [81]
proposes a parametric quadratic programming approach to solve the regional correc-

44
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tion equation in the proposed fully distributed interior point method (F-DIPM) to
solve ACOPF. The power network is partitioned to several regions geographically.
Then boundary variables associated with the tie-lines are duplicated for each region.
A unidirectional ring communication is employed to transmit the information about
boundary variables during each Newton-Raphson iteration. Various test cases show
the robust convergence of F-DIPM. However, the network partitioning problem is not
systematically addressed in [81].

Graph theory shows that the network-partitioning problem is NP-hard [82, 83].
Accordingly, various heuristic approaches such as geometric approach and flow-based
approach have been proposed to solve the network-partitioning problem [82]. Authors
in [84] define the electrical distance based on the network admittance parameter as a
measure to distinguish strongly connected buses from weakly connected buses. The
electrical distance between the buses within each partitioned zone are minimized while
the electrical distance between buses of different partitioned zones are maximized in
the multi-attribute network partitioning problem [84]. Reference [17] improves the
Modularity Index in the community-detection based network-partition algorithm such
that both network topology and reactive power capability are taken into account.
The goal in [17] is to control the zonal voltage of distribution network in a parallel
processing approach. Authors in [85] show promising advantages of solving ACOPF
by the optimality condition decomposition based algorithm. The effects of network
partitioning on the computation efficiency are also investigated in [85]. However,
the proposed intelligent network partitioning method in [85] requires to first solve
the ACOPF problem. Considering the complexity of different network-partitioning
methods, we use spectral factorization [86] to partition the power networks in this
Chapter.

Accordingly, the main contributions of this Chapter are:

1. A sequential tightness algorithm to improve AC feasibility of the solutions from
our SOC-ACOPF models.

2. A modified Benders decomposition algorithm (M-BDA) approach based on net-
work partitions is proposed for solving large-scale SOC-ACOPF problem.

3. The feasibility of the proposed M-BDA is analytically proved. Since the proposed
M-BDA is modified from the original Benders decomposition, the feasibility proof
of M-BDA is necessary.

4. Parallel computing is employed to accelerate the computation.

The proposed solution algorithm (based on network partitions, M-BDA and paral-
lel computing) actually provides a feasible framework to speed up large-scale SOC-
ACOPF computations. As an important contribution, there is no message exchange
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requirement among the subnetworks in the proposed approach. Our decomposition
approach also requires few number of iterations and it is robust to the number of
partitioned subnetworks. The rest of this Chapter is organized as follows. Section
II explains the sequential tightness algorithm. Two theorems are presented in this
Sections to show important properties of SOC-ACOPF. Section III explains the net-
work partitioning approach based on spectral factorization. Section IV details the
M-BDA. The feasibility of the formulated master problem and subproblem in M-BDA
is analytically proved. The parallel computing structure to accelerate the proposed
M-BDA is also designed in this Section. Section V discusses numerical results for
various IEEE test cases. The power network partitions based on spectral factorization
are also plotted. Section VI concludes.

3.2 Sequential Tightness Algorithm

The conic relaxations in (2.2b) are not guaranteed to be tight. To deal with this
problem, we propose a sequential algorithm to improve the tightness. This sequential
algorithm is based on Theorem 1 and Theorem 2 below:

Theorem 1. Assume that:
(1). the objective function of nonconvex ACOPF (2.1) and the proposed SOC-ACOPF
is convex;
(2). nonconvex ACOPF (2.1) has exactly one global optimal solution (p∗sl , q

∗
sl
, p∗ol);

(3). non-exact optimal solution (if exists) of SOC-ACOPF p
′
ol
> p∗ol.

Then, constraint pol ≤ p∗ol guarantees the tightness of constraint (2.2b).

Proof. Firstly, we consider the case that SOC-ACOPF is exact (the relaxations are
tight). The proof of theorem 1 is based on theorem 3 in reference [43] which proves that
second-order conic optimal power flow (SOPF) has at most one optimal solution when
SOPF is exact for a radial network. Because our SOC-ACOPF model has one more
constraint (2.1g) (to make our model valid for both radial and meshed networks) than
the SOPF model described in reference [43], we are actually reducing the feasible region
of SOPF in reference [43]. This means that either we keep the unique optimal solution
in the feasible region or we exclude the optimal solution. For both cases, the conclusion
that there is at most one global optimal solution of SOC-ACOPF when SOC-ACOPF
is exact is still valid. Assume the exact optimal solution of SOC-ACOPF is peol . If
peol 6= p∗ol , then peol must be the global optimal solution of the nonconvex ACOPF
since f e ≤ f ∗. Where f e and f ∗ are the value of objective function for SOC-ACOPF
and the nonconvex ACOPF respectively. This contradicts our assumption that there
is exactly one global optimal solution of the nonconvex ACOPF. So peol 6= p∗ol is not
valid. Constraint pol ≤ p∗ol is feasible for SOC-ACOPF when it is exact.
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When SOC-ACOPF is not exact, assume (p
′
sl
, q

′
sl
, p

′
ol
, V

′
sl

) is the optimal solution
of SOC-ACOPF after we have put the constraint pol ≤ p∗ol :

p∗ol ≥ p
′

ol
≥ p

′2
sl

+ q
′2
sl

V ′
sl

Rl (3.1)

If p
′
ol
6= p

′2
sl

+q
′2
sl

V ′
sl

Rl, then:

p
′

ol
> p∗ol (3.2)

(3.2) contradicts (3.1). So p
′
ol
6= p

′2
sl

+q
′2
sl

V ′
sl

Rl is not valid. Constraint (2.2b) must be

tight.

Theorem 1 shows that as long as we have a good estimation of p∗ol , then we can
tighten constraint (2.2b). The problem is that it is difficult to estimate p∗ol before
solving nonconvex ACOPF. We propose the following theorem to design the tightness
algorithm.

Theorem 2. If the assumptions in theorem 1 hold and the decreasing sequence pol,i ≤
pol,i−1 converges to p∗ol which is the optimal solution of nonconvex ACOPF, then se-
quential constraints pol ≤ pol,i guarantee the tightness of constraint (2.2b).

Proof. The proof of theorem 2 is based on theorem 1 and Squeeze Theorem. We
denote here the sequential optimization problem constrained by pol ≤ pol,i as SOC-
ACOPF-i where i is the index for the sequence. Because SOC-ACOPF is assumed
to be feasible for pol ≤ p∗ol and pol,i ≥ p∗ol , SOC-ACOPF-i is always feasible. If the
solution of SOC-ACOPF-i is denoted as (p∗sl,i, q

∗
sl,i
, p∗ol,i, V

∗
sl,i

), we have:

pol,i ≥ p∗ol,i ≥
p∗2sl,i + q∗2sl,i

V ∗sl,i
Rl (3.3)

From Theorem 1, pol ≤ p∗ol guarantees the tightness of equation (2.2b):

lim
i→+∞

p∗2sl,i + q∗2sl,i
V ∗sl,i

Rl = p∗ol (3.4)

And we have assumed in theorem 2 that sequence pol,i ≤ pol,i−1 converges to p∗ol :

lim
i→+∞

pol,i = p∗ol (3.5)



48 CHAPTER 3. TIGHTNESS AND DECOMPOSITION ALGORITHMS

According to Squeeze Theorem, (3.3)-(3.5) imply:

lim
i→+∞

p∗ol,i = p∗ol (3.6)

In other words, the solutions of sequential optimization SOC-ACOPF-i converge
to where equation (2.2b) is tight.

Theorem 2 suggests we can find optimal solution of SOC-ACOPF by solving se-
quential SOC-ACOPF-i. The challenge is how to design or calculate the proper se-
quence pol,i converging to p∗ol,i. Here we propose to begin with a rather rough estimation
of p∗ol and then iteratively improve the estimation quality. The numerical results show
that the proposed tightness algorithm can make the relaxation in constraint (2.2b)
tight.

Given (2.1h), the initial estimation Kol,0 is simply calculated by (3.7):

Kol,0 =
Kl

V min
sl

Rl (3.7)

Where V min
sl

is the lower bound of Vsl . The sequential SOC-ACOPF-i is then con-
strained by (3.8):

pol ≤ Kol,i, ∀l ∈ L (3.8)

Where Kol,i, i ∈ {0, 1, 2, ..., imax} is the ith estimation of p∗ol . The tightness algorithm
works by iteratively reducing the upper bounds Kol,i of power loss constraints that

violate tightness criterion ε. If pol−
p2sl

+q2sl
Vsl

Rl > ε, Kol,i+1 = αlKol,i, where 0 < αl < 1 is

the decreasing parameter. The proposed sequential tightness algorithm is summarized
in Algorithm 2.
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Algorithm 2: Sequential Tightness Algorithm

Input: ACOPF Parameters;
Output: Tight Optimal Solution of SOC-ACOPF;
Initialization;

Kol,0 = Kl
Vminsl

Rl;

do
Solve SOC-ACOPF (Model E) with constraint (3.8);

εl = pol −
p2sl

+q2sl
Vsl

Rl;

if εl > ε then
i = i+ 1;
Kol,i = αlKol,i;

ε̄l = maxl{εl};
while ε̄l > ε and i < imax;

This algorithm is illustrated in Fig. 3.1 where X∗ denotes the final solution. imax

denotes the maximum number of iterations specified a priori. The original nonconvex
feasible region of ACOPF is plotted with solid line in Fig. 3.1. The convex feasible
region of proposed SOC-ACOPF is plotted with dashed line in Fig. 3.1. We will show
the performance of this algorithm in Section 3 of this Chapter. It is worth to mention
that the proposed sequential tightness algorithm can only tighten the relaxation in
(2.2b). Because there are additional relaxations we have introduced in (2.5c)-(2.5l),
the final solutions of the proposed SOC-ACOPF model are generally not tight for
the constraint (2.1g) in ACOPF. Using interior point method to solve the proposed
SOC-ACOPF model in polynomial time complexity does not violate the NP-hardness
proof [87, 88] of ACOPF because the proposed SOC-ACOPF is still a relaxed model
of ACOPF.

i

Figure 3.1: The conceptual diagram of the proposed sequential tightness algorithm
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3.3 Power Network Partitioning

Power network topology can be always equivalently represented by a graph G = (N,L)
with a vertex set N denoting nodes and an edge set L denoting lines or branches.
This implies we can use graph-partitioning algorithms to partition a power network.
A k̄ partition of N defines k̄ disjoint subsets of N as P = {N1, N2, ..., Nk̄}. If the
partitioning cost of cutting line l (allocating the ends of the line to two separate
subnetworks) is cl, the total cost of partition P is C(P ) =

∑
l∈τ cl where τ is the set

of lines with nodes belonging to different subnetworks i.e. the set of tie-lines. Higher
cl means higher possibility that line l is to be kept in one subnetwork. There can be
various strategies to set cl. If all cl parameters are equal, the network partitioning
algorithm will result in least number of tie-lines. In this Chapter, we set cl = 1 for
all lines in order to obtain minimal number of tie-lines after the network partitioning.
The network partitioning problem is formulated in (3.7) [86]:

Maximize
M

trace
(
MTCM

)
(3.7a)

subject to ‖M‖F =
√
n̄ (3.7b)

MTM ≤ εIk̄k̄ (3.7c)

Mnk ∈ {0, 1} , n = 1, ..., n̄, k = 1, ..., k̄ (3.7d)

where M is n̄× k̄ orthogonal k̄-partition matrix with Mnk = 1 if n ∈ Nk and Mnk = 0
if n /∈ Nk. ‖M‖F =

√
trace (MTM) is Frobenius norm. Constraint (3.7b) is valid

because M is a k̄-partition matrix if and only if each row of M is the canonical basic
of Rk [86]. C is the n̄ × n̄ cost matrix of the network. Cin = cl if i and n are the
connecting nodes of line l. Cin = 0 if i and n are not the connecting nodes of line l.
The Ik̄k̄ is k̄ × k̄ unit matrix. Constraint (3.7c) models an ε-bounded partition (the
maximum number of nodes of all subnetworks is ε). C, Ik̄k̄ and ε are parameters of
optimization problem (3.7). The objective is to minimize the total cost of partitioning.
This is valid because [86]:

C(P ) = In̄
TCIn̄ − trace

(
MTCM

)
(3.7e)

where In̄ is n̄-vector with all elements equal to one. Here we use a simple spectral
factorization algorithm to solve (3.7). Spectral factorization uses matrix eigenvalue
decomposition techniques to solve this n̄-bounded network partitioning problem when
C is doubly stochastic (C can be normalized to a doubly stochastic matrix if it is
not). According to spectral theorem, real symmetric cost matrix C can always be
diagonalized as QCQT = D, where Q is orthogonal matrix and D is diagonal matrix.
Suppose Z = QM , we have:

trace
(
MTCM

)
= trace

(
MTQTDQM

)
= trace

(
ZTDZ

)
(3.7f)
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Where QTZ is a k̄ partition matrix, D = I and Max[trace
(
MTCM

)
] = n̄. The

solution of M is:

M∗ = arg min
M

∥∥M −QTZ
∥∥
F

(3.7g)

This is because:

∥∥M −QTZ
∥∥2

F
= n̄+ ‖Z‖F − 2

n̄∑

n=1

M̂k′nMnk′ (3.7h)

Where M̂ = QTZ and Mnk′ = 1. To minimize
∥∥M −QTZ

∥∥
F

, k′ should satisfy

M̂k′n = Max[M̂kn]. This is the projection algorithm proposed in [86] by which the
partition matrix M is recovered given matrix Z. Z = (E ′1Q

T )−1 is a k̄ × k̄ matrix
obtained from the clustering algorithm proposed in [86] where QE = UR is a QR-

factorization. E = [E
(1)
n×k, E

(2)
n×(n−k)] is a permutation matrix. It is worth to mention

that the graph-partitioning algorithm we used here can solve (3.7) approximately and
therefore global optimal solution is not guaranteed to be found. We show in Section V
that even by using the approximated solutions of network partitioning problem (3.7),
the computation efficiency can still be improved.

3.4 Proposing M-BDA and the Parallel

Computing

Model E of SOC-ACOPF derived in Chapter 2 of this thesis is used here to formulate
the M-BDA. Other proposed SOC-ACOPF models (Model R and Model T) can also
be used. The key contribution is that we decompose SOC-ACOPF by taking the total
power generation of each subnetwork as the complicating variable in formulating the
proposed M-BDA. This formulation shows very fast convergence performance. We first
decompose the large-scale power network to k̄ subnetworks using the power network
partitioning algorithm described in Section III. The SOC-ACOPF of each subnetwork
is taken as a subproblem in the proposed M-BDA. The subproblem k is formulated in
(3.8).

CostSk,j = Minimize
∑

∀n∈Nk,l∈Lk

f(pgn , qgn , pol , qol) (3.8a)

subject to (2.1b)− (2.1c), (2.1j)− (2.1m), (2.2b)− (2.2d), (2.5b)− (2.5l)

∀n ∈ Nk, l ∈ Lk (3.8b)
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∑

n∈Nk

pn = P sum
k,j : µPk,j, ∀k ∈ K, j ∈ J (3.8c)

∑

n∈Nk

qn = Qsum
k,j : µQk,j, ∀k ∈ K, j ∈ J (3.8d)

Where (3.8b) refers to the power flow constraints for all lines and nodes located in
subnetwork k. Nk and Lk are the sets of nodes and lines located in the subnetwork k.
P sum
k,j and Qsum

k,j are the solutions of subnetwork total power generation from the master

problem of the proposed M-BDA in iteration j. µPk,j and µQk,j are the dual variables
for corresponding constraints used for constructing Benders cuts. To guarantee the
feasibility of all the subproblems in M-BDA, we allow load increment or decrement
for all the nodes in the network. Thus the power balance constraints (2.1b)-(2.1c) in
(3.8b) are modified as:

pn − Pdn = ∆P+
dn
−∆P−dn +

∑

l∈Lk

(A+
nlpsl − A−nlpol) +GnVn, ∀n ∈ Nk, l ∈ Lk (3.8e)

qn −Qdn = ∆Q+
dn
−∆Q−dn +

∑

l∈Lk

(A+
nlqsl − A−nlqol)−BnVn, ∀n ∈ Nk, l ∈ Lk (3.8f)

Where non-negative variables ∆P+
dn

and ∆Q+
dn

are the load increments. Non-negative
variables ∆P−dn and ∆Q−dn are the load decrements. The load increment and decrement

are penalized in the objective function using the penalty parameters CP+
dn
, CP−

dn
, CQ+

dn
, CQ−

dn
.

Note the solutions of tie-line variables are obtained by solving the formulated mas-
ter problem (3.9) of M-BDA. To force the solutions of tie-line voltage variables to be
same as the solutions from the master problem (3.9), we also include penalty terms for
the tie-line voltage variables in the objective function of the subproblem. Cv

n, C
θ
n are

positive penalty parameters. Minimizing quadratic objective function over a convex
feasible region is a convex optimization problem. This is formulated as:

CostSk,j = Minimize
∑

∀n∈Nk,l∈Lk

f(pn, qn, pol , qol)

+
∑

n∈Nk

(CP+
dn

∆P+
dn

+ CP−
dn

∆P−dn + CQ+
dn

∆Q+
dn

+ CQ−
dn

∆Q−dn)

+
∑

n∈Nk∩Nτ ,j∈J

[Cv
n(vn − vMn,j)2 + Cθ

n(θn − θMn,j)2] (3.8g)

Although some load increments or decrements may exist at the beginning of the iter-
ations, the final solution of the proposed M-BDA does not have these increments or
decrements. This is because the cost of these increments and decrements are very high
and they will iteratively converge to zero. Our simulations show that this method is
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more efficient to guarantee the feasibility of the subproblems than using the method
of the original feasibility cut approach in Benders decomposition (the MOSEK solver
can not converge after several hours when using the original feasibility cut approach).

The master problem of the proposed M-BDA is formulated in (3.9):

Minimize CostM =
∑

k∈K

CostSk (3.9a)

subject to (2.1b)− (2.1c), (2.1j)− (2.1m), (2.2b)− (2.2d), (2.5b)− (2.5l) ∀l ∈ τ
(3.9b)

CostSk ≥ CostSk,j−1 + µPk,j−1

(
P sum
k,j − P sum

k,j−1

)
+ µQk,j−1

(
Qsum
k,j −Qsum

k,j−1

)
,

∀k ∈ K, j ∈ J (3.9c)

Where (3.9b) refers to the power flow constraints of all the tie-lines. P sum
k,j−1 and Qsum

k,j−1

are the decisions of the previous iteration which are considered as parameters in the
current iteration. The decisions of P sum

k,j and Qsum
k,j are made in the master problem

(3.9) by considering the expanding Benders cuts (3.9c) and tie-line constraints (3.9b).
We model each subnetwork as a single virtual node in the master problem. This
is conceptually illustrated in Fig. 3.3, 3.4 and 3.5 in Section V. Constraints (3.9c)
are Benders cuts from subproblems. µPk,j−1 and µQk,j−1 are dual variable solutions of
equations (3.8c)-(3.8d) in subnetwork k at the previous iteration j − 1.

As the iterations proceed, more Benders cuts from the subnetworks are iteratively
included into the master problem. After solving the master problem, all the sub-
problems can be solved in parallel. The proposed parallel computing structure using
the M-BDA is illustrated in Fig. 3.2. The master problem is responsible for giving
solutions of tie-line power flows and the subproblems are responsible for giving solu-
tions of subnetwork power flows. There is no communication requirement between the
subproblems. In each iteration, firstly the master problem is solved and then all the
subproblems are solved in parallel. In the network partitioning algorithm, we assign
same partition cost cl to all lines. This minimizes the number of tie-lines which in
turn minimizes the size of the master problem. We summarize the parallel computing
management algorithm in Algorithm 3.
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Figure 3.2: The proposed parallel computing structure using M-BDA

Algorithm 3: Parallel Computing Management Algorithm

Initialization: j = 1;
do

Generate SOC-ACOPF model (3.9) for the tie-lines:
SOC-ACOPF-Master;

Assign SOC-ACOPF-Master to Thread-m;
Execute Thread-m;
Broadcast P sum

k,j and Qsum
k,j to Thread-k for k ∈ K;

k = 1;
do

Generate SOC-ACOPF model (3.8) for the subnetwork-k:
SOC-ACOPF-k;

Assign SOC-ACOPF-k to Thread-k;
k = k + 1;

while k < kmax;
do

if thread-k is ready then
Collect solutions from Thread-k;

Send CostSk,j, µ
P
k,j and µQk,j to Thread-m;

Release Thread-k;
while SOC-ACOPF thread is nonempty ;
j = j + 1 ;

while
∑
k∈K CostSk,j−Cost

M∑
k∈K CostSk,j

> 2% and j < jmax;

Release Thread-m;
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Theorem 3. If the original SOC-ACOPF model (without decomposition) is feasible,
the formulated master problem (3.9) of the proposed M-BDA is feasible.

Proof. We prove theorem 3 by mathematical induction. We prove firstly the formu-
lated master problem (3.9) is feasible at iteration j = 1. Afterwards, we prove for any
iteration j

′ ∈ J , if the formulated master problem (3.9) is feasible for j = j
′

then it is
feasible for the next iteration j = j

′
+ 1.

Step 1: The formulated master problem (3.9) is feasible for j = 1. We prove
this by constructing one feasible solution for the formulated master problem (3.9) of
the proposed M-BDA. Assume Ω0 = {pn,0, qn,0, psl,0 , qsl,0 , pol,0 , qol,0 , vn,0, θl,0} ∈ < is one
feasible solution of the original SOC-ACOPF model, Ω0 is also feasible for constraints
(3.9b) in the master problem (3.9) of the proposed M-BDA. Note it is not necessarily
required that the feasible solution Ω0 is optimal for the original SOC-ACOPF model.

We construct the feasible solution P sum
k,j,0 , Q

sum
k,j,0, P

sum
k,j−1,0 and Qsum

k,j−1,0 as:

P sum
k,j,0 =

∑

n∈Nk

pn,0 (3.10a)

Qsum
k,j,0 =

∑

n∈Nk

qn,0 (3.10b)

P sum
k,j−1,0 =

∑

n∈Nk

pn,0 (3.10c)

Qsum
k,j−1,0 =

∑

n∈Nk

qn,0 (3.10d)

If we use Ω0, P
sum
k,j,0 , Q

sum
k,j,0, P

sum
k,j−1,0 and Qsum

k,j−1,0, then constraint (3.9c) becomes:

CostSk ≥ CostSk,j−1 + µPk,j−1

(
P sum
k,j,0 − P sum

k,j−1

)
+ µQk,j−1

(
Qsum
k,j,0 −Qsum

k,j−1

)
, ∀k ∈ K

(3.10e)

Which is:

CostSk ≥ CostSk,j−1, ∀k ∈ K (3.10f)

No matter what values µPk,j−1 and µQk,j−1 are chosen at j = 1, constraint (3.10f) is

always feasible since we do not have upper bound for CostSk . The feasible objective
solution is:

CostM,0 = Min[
∑

k∈K

CostSk ] =
∑

k∈K

CostSk,j−1 (3.10g)
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Which is actually the lower bound of the non-negative term
∑

k∈K Cost
S
k,j−1. Thus

we successfully construct a feasible solution of the master problem as Ω0, P
sum
k,j,0 , Q

sum
k,j,0

with objective value of CostM,0. This means the master problem is feasible for j = 1.
Step 2: If the formulated master problem (3.9) is feasible for j = j

′
,

then it is feasible for j = j
′
+ 1. We prove this step by showing that there is at

least one feasible solution for iteration j = j
′
+ 1 which can always be constructed

by using the feasible solution for j = j
′
. Suppose one feasible solution for iteration

j = j
′

is Ωj′ , P
sum
k,j′ ,0

, Qsum
k,j′ ,0

with master problem and subproblem objective values as

CostM,j
′
,0, CostS,j

′
,0

k . We construct the feasible solution for j = j
′
+ 1 as:

P sum
k,j′+1,0

= P sum
k,j′ ,0

(3.10h)

Qsum
k,j′+1,0

= Qsum
k,j′ ,0

(3.10i)

The added Benders cuts at iteration j = j
′
+ 1 is:

CostSk ≥ CostS
k,j′

+ µP
k,j′

(
P sum
k,j′+1,0

− P sum
k,j′ ,0

)
+ µQ

k,j′

(
Qsum
k,j′+1,0

−Qsum
k,j′ ,0

)
, ∀k ∈ K

(3.10j)

Or equivalently:

CostSk ≥ CostS
k,j′
, ∀k ∈ K (3.10k)

We show in following that no matter what value CostS
k,j′

takes, we can always construct

a feasible solution for the master problem. If there exists:

CostS
k,j′
≥ CostS,j

′
,0

k , ∀k ∈ K (3.10l)

the feasible solution of CostSk for j = j
′
+ 1 is CostS

k,j′
. Accordingly, feasible objective

solution is CostM,j
′
+1,0 =

∑
k∈K Cost

S
k,j′

.

Otherwise, if there exists k ∈ K ′ ⊂ K such that:

CostS
k,j′
≤ CostS,j

′
,0

k , ∀k ∈ K ′ ⊂ K (3.10m)

we replace these CostSk by CostS,j
′
,0

k (∀k ∈ K ′ ⊂ K). The feasible solution of CostSk is{
CostS

k,j′
,∀k /∈ K ′ ⊂ K

}
∪
{
CostS,j

′
,0

k ,∀k ∈ K ′ ⊂ K
}

. Accordingly, feasible objective

solution for iteration j = j
′
+ 1 is:

CostM,j
′
+1,0 =

∑

k/∈K′⊂K

CostS
k,j′

+
∑

k∈K′⊂K

CostS,j
′
,0

k (3.10n)

Combining Step 1 and Step 2, we have proven that the formulated master problem
(3.9) is always feasible as long as the original SOC-ACOPF model is feasible.
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Theorem 4. If the original SOC-ACOPF model (without decomposition) is feasible,
the necessary and sufficient condition for the feasibility of the formulated subproblem
(3.8) of the proposed M-BDA is:

∑

n∈Nk

pminn ≤ P sum
k,j ≤

∑

n∈Nk

pmaxn , ∀k ∈ K, j ∈ J (3.11a)

∑

n∈Nk

qminn ≤ Qsum
k,j ≤

∑

n∈Nk

qmaxn , ∀k ∈ K, j ∈ J (3.11b)

Proof. We firstly prove (3.11) is necessary for the feasibility of subproblem (3.8) i.e.
if subproblem (3.8) is feasible then (3.11) holds. Suppose the feasible solution of
subproblem (3.8) at iteration j ∈ J is Ωj = {pn,j, qn,j, psl,j , qsl,j , pol,j , qol,j , vn,j, θl,j} ∈ <,
from (3.8c)-(3.8d) of (3.8) we have:

∑

n∈Nk

pn,j = P sum
k,j , ∀k ∈ K, j ∈ J (3.12a)

∑

n∈Nk

qn,j = Qsum
k,j , ∀k ∈ K, j ∈ J (3.12b)

Ωj is feasible for constraints (3.9b) of (3.9), so:

pminn ≤ pn,j ≤ pmaxn , ∀n ∈ Nk (3.12c)

qminn ≤ qn,j ≤ qmaxn , ∀n ∈ Nk (3.12d)

Obviously,
∑

n∈Nk

pminn ≤
∑

n∈Nk

pn,j ≤
∑

n∈Nk

pmaxn (3.12e)

∑

n∈Nk

qminn ≤
∑

n∈Nk

pn,j ≤
∑

n∈Nk

qmaxn (3.12f)

From (3.12a)-(3.12b) and (3.12e)-(3.12f), the expression (3.11) holds.
Next, we prove (3.11) is sufficient for the feasibility of subproblem (3.8) i.e. if

(3.11) holds, subproblem (3.8) is feasible.
Again, we assume Ω0 = {pn,0, qn,0, psl,0 , qsl,0 , pol,0 , qol,0 , Vn,0, θl,0} ∈ < is one feasible

solution of the original SOC-ACOPF model. Obviously, {psl,0 , qsl,0 , pol,0 , qol,0 , vn,0, θl,0}
is feasible for constraints (2.1j)-(2.1m), (2.2b)-(2.2d) and (2.5b)-(2.5l) in (3.8b) of
(3.8). The remaining constraints are (2.1b)-(2.1c) and (3.8c)-(3.8d). We construct the
feasible solution of pn, qn at iteration j as pn,j, qn,j:

pn,j = pn,0 + ∆P+
dn
−∆P−dn , ∀n ∈ Nk, l ∈ Lk (3.12g)

qn,j = qn,0 + ∆Q+
dn
−∆Q−dn , ∀n ∈ Nk, l ∈ Lk (3.12h)
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Substitute (3.12g)-(3.12h) in (2.1b)-(2.1c) (modified as constraints (3.8e)-(3.8f)), we
have:

pn,0 + ∆P+
dn
−∆P−dn − Pdn = ∆P+

dn
−∆P−dn +GnVn,0

+
∑

l∈Lk

(A+
nlpsl,0 − A−nlpol,0), ∀n ∈ Nk, l ∈ Lk (3.12i)

qn,0 + ∆Q+
dn
−∆Q−dn −Qdn = ∆Q+

dn
−∆Q−dn −BnVn,0

+
∑

l∈Lk

(A+
nlqsl,0 − A−nlqol,0), ∀n ∈ Nk, l ∈ Lk (3.12j)

Or equivalently:

pn,0 − Pdn =
∑

l

(A+
nlpsl,0 − A−nlpol,0) +GnVn,0, ∀n ∈ Nk, l ∈ Lk (3.12k)

qn,0 −Qdn =
∑

l

(A+
nlqsl,0 − A−nlqol,0)−BnVn,0, ∀n ∈ Nk, l ∈ Lk (3.12l)

Which is feasible since Ω0 is a feasible solution. To construct the feasible solutions of
the load increment or decrement variables, we consider feasibility of the constraints
(3.8c)-(3.8d):

∑

n∈Nk

pn,j =
∑

n∈Nk

(pn,0 + ∆P+
dn
−∆P−dn) = P sum

k,j , ∀k ∈ K, j ∈ J (3.12m)

∑

n∈Nk

qn,j =
∑

n∈Nk

(qn,0 + ∆Q+
dn
−∆Q−dn) = Qsum

k,j , ∀k ∈ K, j ∈ J (3.12n)

Since (3.11) holds, we can express P sum
k,j and Qsum

k,j as:

P sum
k,j = λk,j

∑

n∈Nk

pmaxn + (1− λk,j)
∑

n∈Nk

pminn (3.12o)

Qsum
k,j = λk,j

∑

n∈Nk

qmaxn + (1− λk,j)
∑

n∈Nk

qminn (3.12p)

Where 0 ≤ λk,j ≤ 1. Similarly, we can express pn,0, qn,0 as:

pn,0 = λPn,0p
max
n + (1− λPn,0)pminn (3.12q)

qn,0 = λQn,0q
max
n + (1− λQn,0)qminn (3.12r)
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Where 0 ≤ λn,0 ≤ 1. By which we can construct the feasible solution of ∆P+
dn
,∆P−dn ,∆Q

+
dn

and ∆Q−dn . If λPk,j ≥ λPn,0 and λQk,j ≥ λQn,0, we have:

∆P+
dn

= (λPk,j − λPn,0)(pmaxn − pminn ), ∀n ∈ Nk (3.12s)

∆P−dn = 0, ∀n ∈ Nk (3.12t)

∆Q+
dn

= (λQk,j − λQn,0)(qmaxn − qminn ), ∀n ∈ Nk (3.12u)

∆Q−dn = 0, ∀n ∈ Nk (3.12v)

Otherwise If λPk,j < λPn,0 or λQk,j < λQn,0, then:

∆P+
dn

= 0, ∀n ∈ Nk (3.12w)

∆P−dn = (λPn,0 − λPk,j)(pmaxn − pminn ), ∀n ∈ Nk (3.12x)

∆Q+
dn

= 0, ∀n ∈ Nk (3.12y)

∆Q−dn = (λQn,0 − λQk,j)(qmaxn − qminn ), ∀n ∈ Nk (3.12z)

(3.12s)-(3.12z) guarantee the non-negativity of variables ∆P+
dn
,∆P−dn ,∆Q

+
dn
,∆Q−dn , the

feasibility of (3.8c)-(3.8d) (equality) as well as the feasibility of pn,j and qn,j (satisfying
the constraints (2.1l)-(2.1m)).

3.5 Numerical Results

3.5.1 The Performance of Sequential Tightness Algorithm

The results of SOC-ACOPF with sequential tightness algorithm are reported in Table
3.1 and Table 3.2. Note some constraints (reactive power loss) of the SOC-ACOPF
model in this numerical test are different than model E in Chapter 2. So some results
are accordingly different in these tables. The relaxation gap of constraints (2.2b) is
calculated as:

Gpol = max
l

{
pol −

p2
sl

+ q2
sl

Vsl
Rl

}
(3.13)

The stopping criteria for the SOC-ACOPF iteration is Gpol < 10−9. In all reported
cases, the Gpol indicator is less than 10−9. The optimality gap of the proposed SOC-
ACOPF is measured in:

Gpf =
f ∗ − f
f ∗

× 100% (3.14)
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Table 3.1: The performance of sequential tightness algorithm: objective solution

Case
Objective [$]

Gpol Gpf [%]
SOC-ACOPF MATPOWER Global

IEEE14 8076.99 8081.53 8078.80 0 0.02
IEEE57 41673.08 41737.79 41698.64 0 0.06
IEEE118 129619.60 129660.70 129626.45 0 0.01
IEEE300 718109.18 719725.11 719459.62 0 0.18

Table 3.2: The performance of sequential tightness algorithm: computation time

Case
CPU time [s]

SOC-ACOPF MATPOWER Global
IEEE14 0.10 0.11 0.20
IEEE57 0.19 0.12 2.31
IEEE118 0.33 0.30 27.1
IEEE300 3.10 0.40 257.68

In the calculation of Gpf , f
∗ is the global solution of nonconvex ACOPF calculated by

LINDOGLOBAL and f is the solution of proposed SOC-ACOPF found by MOSEK
solver. As we can see from Table 3.1, the results from SOC-ACOPF is very close to
the global solutions obtained by LINDOGLOBAL.

3.5.2 The Power Network Partitioning

The network partitioning algorithm is implemented in MATLAB [86]. We use the
power network data from MATPOWER. The GAMS Grid Computing facility [89]
is employed for implementing the proposed parallel computing. All simulations are
run on a computer with 2.4GHz CPU and 8GB RAM. The results of power network
partitioning by spectral factorization are listed in Table 3.3 and Table 3.4. For each
test case, we partition the network from two to eight subnetworks. The ’Partition’
column in Table 3.3 and Table 3.4 lists the total number of subnetworks which is the
parameter used in the network partitioning problem (3.7). Subnetworks are formed
such that collection of them constructs the original power network. For small net-
works, when more subnetworks are partitioned, there can be only one bus for some
partitioned subnetworks. Thus, there is no line inside these single-bus subnetworks.
The spectral factorization algorithm is capable of partitioning all test cases in rea-
sonable time. Generally, the computation time increases when more subnetworks are
partitioned. The CPU time of partitioning large power networks is higher than the
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Figure 3.3: IEEE14-bus network partitions (two subnetworks) and its master problem
representation

Figure 3.4: IEEE57-bus network partitions (three subnetworks) and its master problem
representation

Figure 3.5: IEEE118-bus network partitions (four subnetworks) and its master prob-
lem representation
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one for partitioning small power networks. Fig. 3.3, Fig. 3.4 and Fig. 3.5 are plotted
to visualize some representative partitions for IEEE14-bus, IEEE57-bus and IEEE118-
bus test cases. We use different colors to distinguish different partitioned subnetworks
in these figures. The corresponding master problem of the proposed M-BDA for each
partitioned network is also illustrated. We do not plot all the tie-lines in the represen-
tative master problems in these figures. Detailed results about the tie-lines are listed
in Table 3.4.

3.5.3 Accelerated M-BDA Using GAMS Parallel Computing

The results of accelerated M-BDA using GAMS parallel computing are listed in Table
3.5. The ’Relative Gap’ column shows the gap between the upper bound and lower
bound of M-BDA. For all these test cases, M-BDA converges to very close solutions
to single-stage SOC-ACOPF without decomposition. With the increase of partition
depth (more subnetworks and fewer nodes in each subnetwork), the SOC-ACOPF
problem complexity is decreasing. All test cases converge within five iterations. Com-
pared with the computation time of single-stage SOC-ACOPF in Chapter 1, the com-
putational efficiency improvement is more prominent in large test cases.
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Table 3.3: Results of power network partitioning

Test Case Partition No. of Nodes in Subnetworks No. of Lines in Subnetworks

IEEE14

2 6, 8 11, 6
3 3, 5, 6 2, 7, 6
4 4, 2, 3, 5 4, 1, 2, 7
5 2, 2, 5, 3, 2 1, 1, 7, 2, 1
6 3, 3, 2, 2, 2, 2 3, 3, 1, 1, 1, 1
7 2, 1, 3, 2, 2, 1, 3 1, 0, 2, 1, 1, 0, 3
8 3, 1, 2, 2, 1, 2, 2, 1 3, 0, 1, 1, 0, 0, 1, 0

IEEE57

2 18, 39 19, 55
3 12, 21, 24 12, 25, 35
4 27, 11, 10, 9 38, 13, 10, 9
5 11, 10, 7, 9, 20 11, 12, 6, 9, 29
6 6, 7, 20, 8, 10, 6 6, 8, 29, 7, 12, 5
7 7, 6, 10, 10, 9, 5, 10 7, 7, 12, 14, 7, 4, 10
8 6, 9, 5, 7, 9, 4, 6, 11 5, 10, 6, 7, 9, 3, 5, 15

IEEE118

2 79, 39 121, 60
3 38, 35, 45 51, 55, 70
4 25, 38, 37, 18 29, 60, 57, 23
5 22, 16, 27, 19, 34 27, 17, 45, 23, 51
6 23, 16, 18, 17, 30, 14 29, 23, 25, 21, 48, 18
7 15, 12, 8, 18, 16, 16, 33 19, 16, 10, 27, 19, 19, 47
8 21, 15, 6, 16, 15, 12, 16, 17 29, 20, 6, 19, 19, 16, 19, 25

IEEE300

2 116, 184 159, 246
3 116, 89, 95 159, 113, 127
4 35, 87, 98, 80 37, 117, 132, 114
5 80, 105, 45, 33, 37 105, 135, 62, 39, 52
6 54, 52, 48, 33, 60, 53 74, 59, 65, 39, 84, 69
7 34, 59, 35, 37, 81, 21, 33 47, 80, 37, 52, 113, 25, 39
8 34, 33, 53, 35, 35, 21, 35, 54 47, 39, 77, 42, 50, 25, 37, 74

1354pegase

2 828, 526 1211, 753
3 585, 428, 341 830, 644, 479
4 311, 253, 319, 471 481, 352, 443, 659
5 178, 377, 297, 246, 256 253, 536, 460, 337, 355
6 363, 87, 67, 217, 319, 301 510, 135, 85, 293, 446, 465
7 120, 255, 72, 288, 152, 225, 242 180, 363, 97, 443, 211, 311, 322
8 168, 151, 120, 243, 186, 102, 260, 124 242, 210, 180, 331, 274, 138, 354, 193

2869pegase

2 1899, 970 2929, 1633
3 600, 903, 1366 1026, 1526, 2010
4 975, 457, 531, 906 1512, 647, 852, 1532
5 377, 509, 528, 789, 666 536, 818, 849, 1213, 1108
6 562, 355, 412, 392, 771, 377 944, 585, 644, 621, 1187, 536
7 354, 312, 579, 322, 508, 580, 214 501, 485, 915, 535, 754, 972, 354
8 324, 532, 295, 214, 312, 288, 554, 350 544, 791, 491, 354, 485, 464, 876, 494
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Table 3.4: Computation time of power network partitioning

Test Case Partition No. of Tie-lines CPU Time [s]

IEEE14

2 3 0.02
3 5 0.02
4 6 0.03
5 8 0.03
6 10 0.03
7 12 0.04
8 14 0.05

IEEE57

2 6 0.03
3 8 0.03
4 10 0.04
5 13 0.04
6 13 0.04
7 19 0.05
8 20 0.05

IEEE118

2 5 0.03
3 10 0.04
4 17 0.04
5 23 0.05
6 22 0.05
7 29 0.06
8 33 0.06

IEEE300

2 6 0.06
3 12 0.06
4 11 0.07
5 18 0.07
6 21 0.09
7 18 0.09
8 20 0.12

1354pegase

2 27 0.56
3 38 0.59
4 56 0.66
5 50 0.65
6 57 0.67
7 64 0.72
8 69 0.92

2869pegase

2 20 1.20
3 20 1.25
4 39 1.43
5 58 1.51
6 65 1.45
7 66 1.62
8 83 2.10
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Table 3.5: Accelerated M-BDA by GAMS parallel computing

Test Case Partition Upper Bound [$] Lower Bound [$] Relative Gap CPU Time [s]

IEEE14

2 8156.28 8067.17 1.09% 0.16
3 8115.84 8043.42 0.89% 0.20
4 8107.18 8043.43 0.79% 0.14
5 8102.82 8057.13 0.56% 0.20
6 8127.95 8080.57 0.58% 0.28
7 8099.13 7967.99 1.62% 0.31
8 8119.83 8073.33 0.57% 0.28

IEEE57

2 41801.64 41647.12 0.37% 0.30
3 41871.87 41428.57 1.06% 0.25
4 41798.99 41624.31 0.42% 0.22
5 41924.35 41675.16 0.59% 0.44
6 41814.77 41445.73 0.88% 0.45
7 41956.47 41376.34 1.38% 0.25
8 41848.47 41518.08 0.79% 0.37

IEEE118

2 130025.49 129261.01 0.59% 0.33
3 130847.44 128976.06 1.43% 0.76
4 130066.45 129182.29 0.68% 0.39
5 130201.72 128631.17 1.21% 0.63
6 131015.94 129089.14 1.47% 0.36
7 130725.29 128393.25 1.78% 0.39
8 129620.15 128955.16 0.51% 0.59

IEEE300

2 722485.13 712303.53 1.41% 0.86
3 721442.74 709941.27 1.59% 0.55
4 724036.39 717468.50 0.91% 1.03
5 724084.83 712925.47 1.54% 0.59
6 724038.39 709888.48 1.95% 0.70
7 719765.51 716539.87 0.45% 0.52
8 720591.14 714182.86 0.89% 0.47

1354pegase

2 74041.62 74041.60 0.00% 3.98
3 74198.12 74038.80 0.21% 4.17
4 74040.36 74040.36 0.00% 1.51
5 74040.91 74040.91 0.00% 1.51
6 74040.42 74040.42 0.00% 1.30
7 74040.82 74040.82 0.00% 1.61
8 74041.01 74040.99 0.00% 0.91

2869pegase

2 133938.47 133886.16 0.04% 11.83
3 134455.42 133409.29 0.78% 14.26
4 133940.19 133869.50 0.05% 6.72
5 134122.31 131618.32 1.87% 8.70
6 133915.61 133915.57 0.00% 3.42
7 133928.71 133928.70 0.00% 3.15
8 135021.76 132710.79 1.71% 5.34
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3.6 Conclusions

The tightness of the relaxation from the power loss constraints in the SOC-ACOPF
model can be improved by the proposed sequential tightness algorithm. An accelerated
M-BDA using parallel computing is proposed to tackle the complexity of large-scale
SOC-ACOPF problem. The formulation, feasibility proof and fast convergence of the
proposed M-BDA are the main contributions from the current Chapter. The numerical
results show that the M-BDA accelerated by GAMS grid computing can reduce SOC-
ACOPF problem scale as well as computation time. The advantage of solving SOC-
ACOPF in a decomposed way is that we reduce the dimension of Hessian matrix and
Jacobian matrix during the iterations of interior point method. This is very useful
for large-scale power networks where the number of variables and constraints of the
formulated SOC-ACOPF exceed the solver limit. Another advantage of the proposed
decomposition is that, by keeping the boundary of different subnetworks or zones
for the power system, the data privacy of each operation area can be protected. A
coordinator who is solving the master problem of the proposed M-BDA does not need
to know the network configuration of the subnetworks. All the required information
by the coordinator is communicated through the Benders cuts. We prove analytically
the feasibility of M-BDA. The convergence of the proposed approach is guaranteed by
the convexity of the SOC-ACOPF model according to [73].





Chapter 4

Distribution Locational Marginal Pric-
ing

4.1 Introduction

Given the very large number of nodes in distribution networks, the complexity involved
in calculating DLMPs must be properly addressed. Decentralized dispatch is an at-
tractive solution in smart grids [90–92]. To address the complexity, a decentralized
OPF calculated by a Lagrangian-based decomposition procedure is proposed in [93].
Reference [94] reduces high-voltage radial distribution networks to simple networks
by feeder reduction techniques. Reference [95] proposes the decentralized economic
dispatch for smart grids using the concept of self-organizing dynamic agents. A dis-
tributed multi-agent paradigm is proposed in [96] to calculate DLMPs.

Reference [96] reports the DLMPs in a 12-bus distribution network calculated by
both DCOPF and ACOPF. The results show that DLMPs from ACOPF are higher
than the ones from DCOPF (this is partly because marginal loss costs are included in
the ACOPF approach). The DLMP difference between DCOPF and ACOPF is larger
in congestion cases (DLMP of bus 1 is 78.33$/MWh by DCOPF but 149.99$/MWh
by ACOPF). On the other hand, reference [29] calculates DLMPs by DCOPF because
of the ACOPF complexity in distribution networks with a large number of nodes.

Limitations on the ability to share network information is another issue in calculat-
ing DLMPs. The importance of coordination between the distribution and transmis-
sion network layer is discussed in [97] and [98]. This issue is significant for the operation
of a power system with large-scale integration of distributed energy resources.

We can distinguish two main challenges in implementing DLMPs: (1) Computa-
tional complexity: The DCOPF assumptions are not often valid in distribution grids
with high resistance to reactance (R/X) ratio [99]. On the other hand, the ACOPF
in distribution networks with a large number of nodes might not be computationally
tractable. This demands an OPF formulation which is accurate enough and at the
same time which can be solved efficiently for distribution networks with a large number
of nodes. (2) Sharing of network information: the correct calculation of DLMPs needs
full information of the whole transmission, distribution and local network. Sharing
of detailed network information between different network layers might not be feasi-

68
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ble or practical. In this Chapter, these two challenges of implementing DLMPs are
addressed.

For the computation complexity challenge, we propose a convexified ACOPF (model
E of SOC-ACOPF) based on second-order cone relaxation [43, 44, 55]. The tightness
of the employed relaxation is enforced by a sequential tightness algorithm.

To address the issue of sharing information between different network layers, the
concept of GBF is proposed. The convexified ACOPF and the GBF are placed in a pro-
posed HED mechanism. We prove that if the GBFs are communicated, the proposed
HED achieves results very close to the global economic dispatch. We demonstrate the
proposed solutions to implementing DLMP by numerical simulations using a GAMS
model. The rest of this Chapter is organized as follows. Section II introduces the
concept of HED mechanism and GBF. Section III presents the numerical results and
discussions. The convergence of HED mechanism is proved numerically. As the com-
munication requirement between network operators, the capacity of GBF is shown to
be small. Section IV concludes the advantages of the proposed SOC-ACOPF approach,
HED mechanism and GBF.

4.2 The Hierarchical Economic Dispatch

To define hierarchical economic dispatch (HED), we should firstly explain the tra-
ditional centralized economic dispatch (CED). We assume here centralized economic
dispatch as one system operator dispatching all generations in transmission, distri-
bution and local networks. To fulfill this dispatch task, the system operator should
obtain all network information about his responsible area. Mathematically, CED is
to solve ACOPF problem (2.1) or SOC-ACOPF Model E. The CED is a very large
scale optimization problem considering the enormous nodes, lines and DERs. To re-
lease the complexity of CED, we propose the HED mechanism in this Chapter. HED
actually decompose CED by Benders decomposition. We show that Benders cuts in
this proposed hierarchical economic dispatch have specific economic meanings in the
defined GBF.

4.2.1 Decomposing the Economic Dispatch

We propose a three-level dispatch mechanism with each network operator responsible
for its own network. The network layers are connected through tie-lines. At the third
level, local network or microgrid operators (LNOs) carry out their own dispatch con-
sidering local network constraints. LNOs communicate dispatch results through the
proposed GBFs to the second level of hierarchy. At the second level, the distribution
network operators (DNOs) run another optimization problem taking into account the
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submitted GBFs from all connected LNOs and the second-level network constraints.
The results of the second level optimization is packed in the form of GBFs and sub-
mitted to the first level of hierarchy. At the first level of hierarchy, transmission
network operator (TNO) solves the dispatch problem of transmission network taking
into account the submitted GBFs from DNOs. Once the top level of the hierarchy is
completed, the dispatch results are determined and the resulting nodal prices can be
computed and communicated back down to the hierarchy. This is illustrated in Fig.
4.1.
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Figure 4.1: The conceptual diagram of the proposed HED mechanism

4.2.2 Generalized Bid Function

The concept of GBF is proposed to avoid communicating detailed network and regional
bid information between dispatch levels. The HED problem for LNOs contingent on
the total power generation is set out in (4.1).

Fk(P
sum
k,j ) =Minimize

∑

n∈Nk

f(pn, qn) (4.1a)

subject to (2.1b)− (2.1c), (2.1j)− (2.1m), (2.2b)− (2.2d), (2.5b)− (2.5l)
∑

n∈Nk

pn = P sum
k,j : (αk,j) (4.1b)
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Where Fk is the cost of local network dispatch as a function of its total power gen-
eration P sum

k,j . k ∈ K is the index of the LNO. f(pn, qn) is the generation cost of the
local DGs. Nk is the set of local nodes. j ∈ Jk is the index of GBFs. If we use
S(P sum

k,j ) to denote the feasible region of (pn, qn) as a function of P sum
k,j . The optimiza-

tion value function Fk(P
sum
k,j ) is convex because: (1). f(pn, qn) is jointly convex on{

(pn, qn, P
sum
k,j ) | (pn, qn) ∈ S(P sum

k,j ), P sum
k,j ∈ <+

}
; (2). S(P sum

k,j ) is convex on <+; and
(3). <+ is convex (see proposition 2.1 in reference [100]). Fk can be approximated
from below by a set of affine functions as in (4.2) shown by Fig. 4.2.

Generalized Bid Function

k
sum

k

j

1j 

Figure 4.2: Approximation of a convex cost function by affine functions

Fk(P
sum
k,j ) ≥ F̂k,j + α̂k,j

(∑

n∈Nk

pn − P̂ sum
k,j

)
, ∀j ∈ Jk, ∀k ∈ K (4.2)

We define GBF as the set of parameters of the affine approximator (4.2). These
parameters are communicated through set LNOk = {(F̂k,j, α̂k,j, P̂ sum

k,j ) : j ∈ Jk} to the
DNO. Once all LNOk sets are communicated, the DNO solves the following dispatch
problem (4.3).

Gv(P
sum
v,j ) =Minimize

∑

n∈Nv

f(pn, qn) +
∑

k∈K

Fk (4.3a)

subject to (2.1b)− (2.1c), (2.1j)− (2.1m), (2.2b)− (2.2d), (2.5b)− (2.5l)
∑

n∈Nv

pn = P sum
v,j : (αv,j) (4.3b)

Same as Fk, Gv is also a convex optimization value function based on proposition 2.1
in reference [100]. Gv can be approximated from below by affine functions (4.4b).
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v ∈ V is the index of the DNO. The parameters of these affine functions are commu-
nicated through set DNOv = {(Ĝv,j, α̂v,j, P̂

sum
v,j ) : j ∈ Jv} to TNO. TNO solves the

optimization problem (4.4).

Minimize
∑

n∈Nt

ft(pn, qn) +
∑

v∈V

Gv (4.4a)

subject to (2.1b)− (2.1c), (2.1j)− (2.1m), (2.2b)− (2.2d), (2.5b)− (2.5l)

Gv(P
sum
v,j ) ≥ Ĝv,j + α̂v,j

(∑

n∈Nv

pn − P sum
v,j

)
, ∀j ∈ Jv, ∀v ∈ V (4.4b)

Once optimization problem (4.4) is solved, TNO finds the nodal prices. It also com-
municates the total power generation requirement P̂ sum

v,ĵ
to DNOs (ĵ is the index of

final GBF for which the HED converges). Given P̂ sum
v,ĵ

, DNOs find the nodal prices

for their networks. The DNO also communicates P̂ sum
k,ĵ

to the connected LNOs. LNOs

then calculate the nodal prices for their local networks. The underlying mathemati-
cal structure behind the HED mechanism is the Benders decomposition approach. If
the problem is convex, it is proved that optimal solution can be found within finite
iterations [101].

Algorithm 4: Hierarchical Economic Dispatch Mechanism

Initialization;
TNO solve transmission network dispatch (4.4);

TNO broadcast P̂ sum
v,ĵ

to DNOs;

DNOs solve distribution network dispatch (4.3);

DNOs broadcast P̂ sum
k,ĵ

to LNOs;

DNOs submit DNOk to TNO;
LNOs solve local network dispatch (4.2);
LNOs submit LNOk to DNO;

4.3 Numerical Results and Discussions

Simulations are run on a computer with Intel i7-2760QM 2.4 GHz CPU and 8 GB of
RAM.
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4.3.1 Convergence of Hierarchical Economic Dispatch

The IEEE342-node network [102] is modified here to illustrate the operation of the
proposed HED. This test case has transmission network (nodes P1-P4, P7-P8), distri-
bution network (nodes P5-P6, P9-P390) and local networks (nodes S193-S240 in the
eight spot 277/480V networks). The local networks are connected to the distribution
network by transformers denoted as X3, X4 to X22 in Fig. 4.5. One 50 MW generator
is located in the transmission network. Each 13.2 kV distribution feeder is equipped
with one 7.5 MW DG. We distribute 48 DGs among all nodes of the local networks
(one 3 MW DG at each node). To simulate congestion in the distribution network and
local networks, we increase the load levels in all the local networks by four times and
then reduce the tie-line transformer capacity (X10-X18 is reduced to 3 MVA and X21-
X22 is reduced to 4 MVA). We assume all generators are dispatchable. To accelerate
computation, we design a GAMS grid computing structure to assign the dispatch task
of each network to different threads as demonstrated in Fig. 4.4.

LN1

LN3

LN5

LN7

LN2

LN4

LN6

LN8

Distribution Feeder

1

2

Transformer

Transmission

Distribution

Figure 4.3: The hierarchy of the modified IEEE342-node test system

vDNO kLNO

,
sum

v jP ,
sum

k jP

Figure 4.4: The GAMS grid computing structure of hierarchical economic dispatch

The dispatch results of HED are listed in Table 4.1 and Table 4.2. We denote
the case of no congestion as the base case in this Chapter. The congestion cases
are denoted as the corresponding congested transformers in Table 4.1 and Table 4.2.
CED results denoted as ’C’ are also listed. The HED results (denoted as ’H’) converge
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Figure 4.5: Local low voltage networks

to the solution very close to centralized dispatch dispatch cost. All cases converge
within three iterations shown in Fig. 4.6. Because of approximations used in HED
mechanism, the final cost of HED is a bit different from centralized dispatch (the
difference is within 1% after three iterations). The CPU time for computation is
within 1.8 second. If the LNOs and DNO submit their GBFs (i.e. parameters of three
affine approximators in one package) to the next higher hierarchy, the HED converges
in one iteration. It is worth to mention that Benders decomposition is a way to build
GBFs in HED. HED does not work in an iterative way.

4.3.2 Distribution Locational Marginal Price

The nodal prices are shown in Fig. 4.7. All nodal prices are very close to each other
in the base case. The only differences in the nodal prices are due to the marginal cost
of energy loss. This can be clearly observed from the small price spikes at the ending
nodes (S193, S198, S203, S210, S217, S224, S231 and S236) of each local network.
The congested distribution transformers are indicated in the legend of Fig. 4.7. When
congestion happens, the nodes located in the local network have higher prices. The
consumers with price-responsive load can response to these higher prices. This can be
observed by comparing consumer payment and DG income when congestion happens
with the ones in the base case. We plot the total payment of consumers in the local
networks in Fig. 4.8. The payment difference as compared to the base-case payments
is also shown in Fig. 4.8. The congestion management potential of DLMP can be
further demonstrated by the income increase of DGs when congestion happens. This
is shown in Fig. 4.9. When congestion happens, the increased nodal prices give local
DGs strong incentive to produce more energy.
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Table 4.1: The results of the active power dispatch from HED mechanism, C: Cen-
tralized dispatch, H: HED

Network Generator
Base Case [MW] x10-x11-x12 [MW] x13-x14-x15 [MW]

C H C H C H
Transmission 1 50.00 50.00 50.00 50.00 50.00 50.00

Distribution

2 7.50 7.50 7.50 7.50 7.50 7.50
3 7.50 7.50 7.50 7.50 7.50 7.50
4 7.50 7.50 7.50 7.50 7.50 7.50
5 7.50 7.50 7.50 7.50 7.50 7.50
6 7.50 7.50 7.50 7.50 7.50 7.50
7 7.50 7.50 7.50 7.50 7.50 7.50
8 7.50 7.50 7.50 7.50 7.50 7.50
9 5.93 5.96 0.99 0.94 0.14 0.15

Local 4
29 0.00 0.00 2.89 3.00 0.00 0.00
30 0.00 0.00 1.40 2.07 0.00 0.00

Local 5
36 0.00 0.00 0.00 0.00 2.44 3.00
37 0.00 0.00 0.00 0.00 0.17 2.86
38 0.00 0.00 0.00 0.00 0.18 0.00

Local 6
43 0.00 0.00 0.00 0.00 0.00 0.00
44 0.00 0.00 0.00 0.00 0.00 0.00
45 0.00 0.00 0.00 0.00 0.00 0.00

Local 8
53 0.00 0.00 0.00 0.00 0.00 0.00
54 0.00 0.00 0.00 0.00 0.00 0.00
55 0.00 0.00 0.00 0.00 0.00 0.00

Total Cost [e] 731.67 732.25 757.91 755.09 766.93 762.38

4.3.3 Results of Generalized Bid Function

The GBFs are listed in Table 4.3-Table 4.7. We sum the F̂k,j and Ĝv,j parameters in
the GBFs for all networks and list the accumulated results in the last row of the Table
4.3-Table 4.7. The LNOs submit their calculated GBFs to the DNO. Accordingly,
the DNO takes into account submitted GBFs from LNOs and prepares its GBFs to
be submitted to the TNO. The TNO calculates the dispatch instructions and nodal
prices will be communicated back down to the hierarchy. Note that LNOs only need
to submit their GBFs to the DNO. Bids from the 48 local DGs are not required to be
submitted to the DNO. In other words, with GBFs, the network layers would not need
to share their detailed network information between each others. Table 4.3-Table 4.7
demonstrate the communication burden of HED is small.
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Table 4.2: The results of the active power dispatch from HED mechanism, C: Cen-
tralized dispatch, H: HED

Network Generator
x16-x17-x18 [MW] x21-x22 [MW]

C H C H
Transmission 1 50.00 50.00 50.00 50.00

Distribution

2 7.50 7.50 7.50 7.50
3 7.50 7.50 7.50 7.50
4 7.50 7.50 7.50 7.50
5 7.50 7.50 7.50 7.50
6 7.50 7.50 7.50 7.50
7 7.50 7.50 7.50 7.50
8 7.50 7.50 7.50 7.50
9 0.10 0.10 0.05 0.04

Local 4
29 0.00 0.00 0.00 0.00
30 0.00 0.00 0.00 0.00

Local 5
36 0.00 0.00 0.00 0.00
37 0.00 0.00 0.00 0.00
38 0.00 0.00 0.00 0.00

Local 6
43 2.44 3.00 0.00 0.00
44 2.87 2.97 0.00 0.00
45 0.65 0.00 0.00 0.00

Local 8
53 0.00 0.00 2.98 3.00
54 0.00 0.00 3.00 3.00
55 0.00 0.00 0.00 0.13

Total Cost [e] 769.15 766.96 769.15 776.38

4.4 Conclusions

This Chapter proposes solutions to practical challenges of implementing locational
marginal prices in distribution networks. The challenges considered here include (1)
the computational complexity of nodal prices in ACOPF and (2) the network informa-
tion which potentially must be communicated. We propose to apply the SOC-ACOPF
model to calculate nodal prices in a distribution network. The proposed SOC-ACOPF
model can be solved efficiently to global optimality while it has more accurate re-
sults than DCOPF. The issue of network information sharing is addressed through
the proposed concept of GBF. The HED mechanism is also proposed to decompose
the dispatch task of multiple connected networks. A three-level network is considered.
At the third level, LNOs communicate the dispatch cost of their networks through
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Figure 4.6: The convergence of the proposed HED mechanism
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Figure 4.7: The nodal prices in local networks
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Table 4.3: The GBFs in base case

Network
j = 1 j = 2 j = 3

P sum α P sum α P sum α
DNO 21.60 8.00 58.46 18.00 58.46 18.00
LNO1 7.20 24.00 0.00 20.00 0.00 19.98
LNO2 6.64 24.50 0.00 20.50 0.00 20.48
LNO3 10.17 26.50 0.00 21.00 0.00 20.98
LNO4 10.67 27.00 0.00 21.50 0.00 21.47
LNO5 10.86 27.50 0.00 22.00 0.00 21.98
LNO6 10.88 28.00 0.00 22.50 0.00 22.48
LNO7 6.25 27.00 0.00 23.00 0.00 22.95
LNO8 8.37 27.50 0.00 23.50 0.00 23.45

Cost [e] 1825.28 632.25 632.25

Table 4.4: The GBFs in case of x10-x11-x12 congestion

Network
j = 1 j = 2 j = 3

P sum α P sum α P sum α
DNO 20.32 8.00 53.44 18.00 53.44 18.00
LNO1 7.10 24.00 0.00 19.98 0.00 20.00
LNO2 6.55 24.50 0.00 20.48 0.00 20.49
LNO3 10.00 26.50 0.00 20.98 0.00 20.99
LNO4 13.77 27.50 5.07 23.50 5.07 23.50
LNO5 10.69 27.50 0.00 21.98 0.00 21.99
LNO6 10.71 28.00 0.00 22.48 0.00 22.49
LNO7 6.16 27.00 0.00 22.98 0.00 22.98
LNO8 8.28 27.50 0.00 23.48 0.00 23.48

Cost [e] 1876.40 655.09 655.09
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Table 4.5: The GBFs in case of x13-x14-x15 congestion

Network
j = 1 j = 2 j = 3

P sum α P sum α P sum α
DNO 20.03 8.00 52.65 18.00 52.65 18.00
LNO1 7.08 24.00 0.00 20.00 0.00 20.00
LNO2 6.53 24.50 0.00 20.50 0.00 20.50
LNO3 9.97 26.50 0.00 21.00 0.00 21.00
LNO4 10.47 27.00 0.00 21.50 0.00 21.50
LNO5 14.58 28.00 5.86 24.00 5.86 24.00
LNO6 10.68 28.00 0.00 22.50 0.00 22.49
LNO7 6.14 27.00 0.00 23.00 0.00 22.99
LNO8 8.27 27.50 0.00 23.50 0.00 23.49

Cost [e] 1888.70 662.38 662.38

the proposed GBFs. At the second level, DNO runs another optimization considering
its own network conditions and submitted GBFs of the LNOs. The results of this
optimization are packed in the form of GBFs and communicated to the first level
of hierarchy i.e. TNO. Once the optimization problem of the first level of hierarchy
is solved, the dispatch results and nodal prices are communicated back down to the
hierarchy. The convergence of HED mechanism is guaranteed by the convexity of
the SOC-ACOPF. The simulation results show the utility of proposed mechanism for
implementing nodal pricing in distribution and local networks.
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Table 4.6: The GBFs in case of x16-x17-x18 congestion

Network
j = 1 j = 2 j = 3

P sum α P sum α P sum α
DNO 20.03 8.00 52.60 18.00 0.00 18.00
LNO1 7.08 24.00 0.00 20.00 0.00 20.00
LNO2 6.53 24.50 0.00 20.50 0.00 20.50
LNO3 9.97 26.50 0.00 21.00 0.00 21.00
LNO4 10.47 27.00 0.00 21.50 0.00 21.49
LNO5 10.66 27.50 0.00 22.00 0.00 21.99
LNO6 14.66 28.50 5.97 24.50 5.97 24.50
LNO7 6.14 27.00 0.00 23.00 0.00 22.99
LNO8 8.27 27.50 0.00 23.50 0.00 23.49

Cost [e] 1892.15 666.96 666.96

Table 4.7: The GBFs in case of x21-x22 congestion

Network
j = 1 j = 2 j = 3

P sum α P sum α P sum α
DNO 20.00 8.00 52.54 18.00 52.54 18.00
LNO1 7.08 24.00 0.00 19.96 0.00 20.00
LNO2 6.53 24.50 0.00 20.46 0.00 20.49
LNO3 9.96 26.50 0.00 20.97 0.00 20.99
LNO4 10.47 27.00 0.00 21.47 0.00 21.49
LNO5 10.65 27.50 0.00 21.94 0.00 21.99
LNO6 10.67 28.00 0.00 22.44 0.00 22.49
LNO7 6.14 27.00 0.00 22.95 0.00 22.99
LNO8 12.45 31.50 6.13 27.50 6.13 27.50

Cost [e] 1900.90 676.38 676.38



Chapter 5

Integrating Wind Power by Stochas-
tic Conic Programming

5.1 Introduction

One severe challenge of operating the power network including VSC-MTDC system
and FACTS is the stochastic nature of renewable energy such as wind power. To
consider the uncertainty of wind power, authors in [103] propose a scenario generation
method that contains wind power forecast errors and fluctuation distribution. The in-
terdependence structure of prediction errors in generating wind scenarios is the focus
of [104]. Reference [105] describes a local search algorithm to determine the operation
points of two HVDC systems connecting Jeju Island to the Korean Peninsula. The
potential of demand responses to deal with the uncertainty of wind power are investi-
gated by [106] using a stochastic programming approach. Reference [107] formulates
a stochastic nonconvex multi-period OPF model to integrate wind generation through
HVDC system. The HVDC type considered in this work is line-commutated converters
HVDC (LCC-HVDC). The power generations of thermal generators are taken as the
first-stage variables (fixed for all wind power scenarios) and the second stage-variables
(determined according to each wind power scenario) include the wind power genera-
tions and HVDC operation points. Although [107] models multiple wind farms, the
total number of considered wind power scenarios is limited to twelve. Reference [108]
minimizes the wind power spillage by formulating a stochastic non-convex OPF model
including FACTS devices. Similarly, the power outputs of thermal (conventional) gen-
erators are fixed for all wind power scenarios. The second-stage variables include the
wind power outputs and the control variables of FACTS devices. We use the same
approach in [107,108] to divide first-stage and second-stage variables in the stochastic
programming model of this Chapter.

Considering the uncertainty of wind in the VSC-MTDC system and FACTS leads
to a severe computational challenge. For example, if we consider the case of Sweden,
there are currently around 38 wind farms [109]. If each wind farm were operated by
an individual company, and only two possible scenarios for wind output are taken
into account, the total number of scenarios to be analyzed by the transmission sys-
tem operator (TSO) would be 238. The scale of the formulated OPF problem grows

82
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exponentially. This large-scale computational challenge is considered in [110], where
parallel computation is used to solve a multi-objective security constrained OPF model
considering 1000 wind power scenarios. The parallel computation carried out in MAT-
LAB takes more than two hours to find the solutions. As an improvement, the maxi-
mum number of wind power scenarios addressed in this Chapter is up to 10000. The
contributions of this Chapter are:

1. We use the SOC-ACOPF model (Model P, based on the work from [111, 112])
which is convex and can be solved efficiently by the interior point method (IPM).
Compared with the SOCP-based ACOPF model in [111, 112], we explicitly in-
clude voltage phase angle variables in the model and thus these solutions can be
obtained directly from our model; Furthermore, we extend the model to include
both mono-polar and bi-polar VSC-MTDC system;

2. A methodology to generate representative wind power scenarios of multiple wind
farms based on wind speed measurements and wind turbine models are proposed;

3. Based on the formulated SOC-ACOPF model and wind power scenario genera-
tion methodology, the optimal operation of power network including VSC-MTDC
system and FACTS devices is formulated in a stochastic SOC-ACOPF model to
consider the uncertainties of wind power;

4. The large-scale computational challenge up to 10000 wind power scenarios is
addressed by the proposed M-BDA and parallel computation approaches; One
fundamental reason of the improved performance is, by using M-BDA, we ac-
tually reduce the dimension of the Hessian matrix and Jacobian matrix during
the iteration of the deployed IPM-based solver (MOSEK). The efficient design
of the parallel computation structure in GAMS platform is another reason of the
improved performance.

The rest of this Chapter is organized as follows. Section II formulates the exact nonlin-
ear model of the hybrid AC-DC power network including FACTS devices. Section III
proposes the convexification and approximation methods of the SOC-ACOPF model.
Section IV introduces the wind power scenario generation methodology. Section V
presents the stochastic SOC-ACOPF model. Section VI describes the parallel compu-
tation structure in GAMS platform based on the proposed M-BDA of the stochastic
SOC-ACOPF model. Section VII presents the numerical results and discusses the
efficiency of the proposed approaches. Finally, Section VIII concludes this Chapter.
The modelling approach in Section 5.2 and Section 5.3 of this Chapter is based on the
work from [112].
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5.2 Hybrid AC-DC Network and FACTS Models

In this Section we model the AC network, the VSC-MTDC system and FACTS devices.

5.2.1 The AC Network

We use the constraints of SOC-ACOPF (Model P [(2.1b)-(2.1c), (2.1j)-(2.1m),(2.2b)-
(2.2e)]) to model the AC network. To distinguish AC network from the DC network,
we have specified the sets nAC , lAC (to replace the sets N,L) for all the indexes at the
end of the corresponding constraints.

5.2.2 The VSC-MTDC System

The DC Side

The equivalent circuit in Fig. 5.1 is used to derive the constraints for the AC-DC grid
and the VSC stations. In Fig. 5.1, PCC is short for point of common coupling. PC
is the AC bus coupling with the DC bus of VSC. The VSC is connected with PCC
through a coupling transformer. RCse, RCsh are resistors to model the ohmic losses of
VSC. We define nDC to represent the set of DC buses, and lDC to represent the set

PCC PC DC
l
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,loss T
q

T
X

,loss T
p

,loss Cse
p

T
R
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R

,loss Csh
p

Csh
R

'l
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l
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q

VSC

nv 'n
v

Coupling Transformer

Figure 5.1: The equivalent circuit of VSC-MTDC system

of DC lines connected to the VSC. In order to distinguish from the AC network, we
have specified the sets nDC , lDC for all the indexes at the end of each constraint. The
active power balance equation at each DC bus can be written as:

pn =
∑

l∈lDC

(A+
nlpsl − A−nlplossl) +Gnv

2
n, ∀n ∈ nDC (5.1a)

where pn is the injected active power at DC bus n. For mono-polar DC connections
shown in Fig. 5.2, we define lDCmono ∈ lDC as the set of monopole DC link. The power
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l
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Figure 5.2: The monopole MTDC connection

loss of each monopole DC line is formulated as:

plossl =
p2
sl

v2
sl

Rl, ∀l ∈ lDCmono (5.1b)

The voltage square drop across each monopole DC link is:

v2
sl
− v2

rl
=v2

sl
− (vsl −∆vl)

2

=v2
sl
− v2

sl
−∆v2

l + 2vsl∆vl

=2vslIslRl − (IslRl)
2

=2pslRl − plosslRl, ∀l ∈ lDCmono (5.1c)

Where ∆vl = vsl − vrl is the voltage drop of the DC link. Isl is the current of the DC
link. We make use of psl = vslIsl and plossl = I2

sl
Rl in the derivations of (5.1c). It

is worth to mention that although we use ∆vl, Isl to derive (5.1c), these variables are
not included in our proposed SOC-ACOPF model. The solutions of these variables
can be recovered by the solutions of psl , vsl , vrl . For bipolar DC connections shown in
Fig. 5.3, we define lDCbi ∈ lDC as the set of bi-polar DC line. The power loss of each
bipolar DC line is formulated as (Note here Rl is the total resistance of the bi-polar
DC link):

plossl =
p2
sl

4v2
sl

Rl, ∀l ∈ lDCbi (5.1d)

Similarly, the voltage drop across each bi-polar DC link is:

v2
sl
− v2

rl
= pslRl − plosslRl, ∀l ∈ lDCbi (5.1e)

Equations (5.1d)-(5.1e) are valid because psl = 2vslIsl for bipolar DC link. The rela-
tionship between AC and DC sides are represented using voltage and power couplings.
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Figure 5.3: The bipolar MTDC connection

We define nPC as the set of AC buses coupling with the DC buses of VSC. As it is
shown in Fig. 5.1, the DC side voltage at each station is related to AC side voltage
by:

vn =
v′n

2
√

2
mn,n′ , ∀n ∈ nPC ,∀n′ ∈ nDC (5.1f)

where mn,n′ indicates the modulation index for the converter between the bus n and
n′. In practice the modulation index is bounded as 0.5 ≤ mn,n′ ≤ 1. Several steady
state models for converter loss have been used in the literature [113], [114]. In this
Chapter, we consider the loss model proposed in [114] where the converter losses are
represented by a series resistor (RCse) on the AC side and a shunt resistor (RCsh) on
the DC side (See Fig. 5.1). The loss of the shunt resistor RCsh can be calculated as:

ploss,Csh =
v2
n′

RCsh

, ∀n′ ∈ nDC (5.1g)

The AC Side

Define lV SC as the converter line (from the DC bus to the PC bus) and lPC as the AC
line coupling with the converter (from the PC bus to the PCC bus). The sending end
power of the converter line can be obtained by:

psl = psl′ − ploss,Csh, ∀l ∈ lPC ,∀l′ ∈ lV SC (5.1h)

qsl = qC , ∀l ∈ lPC ,∀l′ ∈ lV SC (5.1i)

Where qC is the reactive power output of the voltage converter station in the VSC-
MTDC system. The constraints for the AC side of each station are derived using the
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equivalent circuit shown in Fig. 5.1. As it is shown, coupling transformer and phase
reactor can be simply modeled as an AC line. Therefore constraints (2.2d) and (2.2e)
together with following equations can be applied to each VSC station. The ploss,T ,
ploss,Cse, qloss,T and qloss,Cse are obtained in a similar way as (2.1d) and (2.1e) in the
following equations:

ploss,T =
p2
sl

+ q2
sl

v2
sl

RT , ∀l ∈ lPC (5.1j)

qloss,T =
p2
sl

+ q2
sl

v2
sl

XT , ∀l ∈ lPC (5.1k)

ploss,Cse =
p2
sl

+ q2
sl

v2
sl

RCse, ∀l ∈ lPC (5.1l)

where RT and XT are resistance and reactance of the coupling transformer.

5.2.3 FACTS Devices

The FACTS devices considered in this Chapter include static synchronous compensator
(STATCOM) and static VAR compensator (SVC).
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Figure 5.4: The equivalent circuit of STATCOM

The coupling transformer between the VSC in STATCOM and connecting point
to the network can be modeled as an AC line (See Fig. 5.4). Similar as the MTDC
model, lPC is defined as the coupling transformer line from the PC bus to the PCC
bus. The STATCOM can be modeled using the following set of equations.

qrl = qsl − qloss,T , ∀l ∈ lPC (5.2a)

prl = psl − ploss,T , ∀l ∈ lPC (5.2b)

v2
sl
− v2

rl
= 2RTpsl + 2XT qsl −RTploss,T −XT qloss,T , ∀l ∈ lPC (5.2c)
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The losses of STATCOM are modeled by:

qloss,T =
p2
sl

+ q2
sl

v2
sl

XT , ∀l ∈ lPC (5.2d)

ploss,T =
p2
sl

+ q2
sl

v2
sl

RT , ∀l ∈ lPC (5.2e)

A shunt resistor in the DC side of the converter is used to model the switching losses.
The DC side voltage of STATCOM is related to the AC side voltage as follows:

vn =
vn′

2
√

2
mn,n′ , ∀n ∈ nPC ,∀n′ ∈ nDC (5.2f)

The switching losses are calculated by:

ploss,sw =
v2
n′

Rsw

, ∀n′ ∈ nDC (5.2g)

SVC

nv

l
sq
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b

Figure 5.5: The equivalent circuit of SVC

The equivalent circuit of SVC is shown in Fig. 5.5. We define lSV C as the set of
SVC line (from the SVC device to the connected AC bus). The SVC is modeled as
a variable susceptance with upper and lower bounds BMax

l , BMin
l [115]. Accordingly,

the SVC constraints are:

qsl = −blv2
sl
, ∀l ∈ lSV C (5.2h)

BMin
l ≤ bl ≤ BMax

l , ∀l ∈ lSV C (5.2i)



5.3. CONVEXIFICATION AND APPROXIMATION 89

5.3 Convexification and Approximation

The convexfication and approximation of the hybrid AC-DC network and FACTS
models are derived in this Section. The convexification is based on second-order cone
programming. The approximation is based on small voltage phase angle difference
assumption and voltage magnitude assumption for power transmission network.

5.3.1 Formulation

We define a new variable Vn = v2
n for both AC and DC bus voltage magnitudes to

linearize some constraints related with the voltage. Accordingly, Vsl = v2
sl
, Vrl = v2

rl
.

The voltage solutions can be recovered by vn =
√
Vn from the solutions of Vn. Note

we do not include Vn = v2
i , Vsl = v2

sl
, Vrl = v2

rl
in the model in order to avoid non-

convexity. As long as the voltage solutions can be recovered finally, it is not necessary
to include these constraints in the model. Using Vn, Vsl , Vrl , constraints (5.1c) and
(5.1e) are rewritten as:

Vsl − Vrl = 2pslRl − plosslRl, ∀l ∈ lDCmono (5.3a)

Vsl − Vrl = pslRl − plosslRl, ∀l ∈ lDCbi (5.3b)

Constraints (5.2c) can be rewritten as:

Vsl − Vrl = 2RTpsl + 2XT qsl −RTploss,T −XT qloss,T , ∀l ∈ lPC (5.3c)

Constraints (5.1g) and (5.2g) are rewritten as:

ploss,Csh =
Vn
RCsh

, ∀n ∈ nDC (5.3d)

ploss,sw =
Vn
Rsw

, ∀n ∈ nDC (5.3e)

Also constraints (5.2h)-(5.2i) can be rewritten as:

−BMax
l Vsl ≤ qsl ≤ −BMin

l Vsl , ∀l ∈ lSV C (5.3f)

Squaring both sides of (5.1f) and (5.2f) and using Vn = v2
n give us:

Vn =
Vn′

8
m2
n,n′ , ∀n ∈ nPC ,∀n′ ∈ nDC (5.3g)

Considering:

MMin
n,n′ ≤ m2

n,n′ ≤MMax
n,n′ (5.3h)
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One can obtain the following linear constraint equivalent with (5.3g)-(5.3h):

8Vn
MMax

n,n′
≤ Vn′ ≤ 8Vn

MMin
n,n′

, ∀n ∈ nPC ,∀n′ ∈ nDC (5.3i)

The last step is to handle the nonlinear constraints associated with power loss. First
we obtain a linear relation between active power and reactive power loss:

plosslXl = qlosslRl, ∀l ∈ lAC (5.3j)

We replace all equalities in the form of (2.1d), (5.1b), (5.1d) and (5.2d) with the
following inequalities:

qMax
lossl
≥ qlossl ≥

p2
sl

+ q2
sl

Vsl
Xl, ∀l ∈ lAC (5.3k)

pMax
lossl
≥ plossl ≥

p2
sl

Vsl
Rl, ∀l ∈ lDCmono (5.3l)

pMax
lossl
≥ plossl ≥

p2
sl

4Vsl
Rl, ∀l ∈ lDCbi (5.3m)

Where qMax
lossl

is the upper bound of reactive power loss for AC line. pMax
lossl

is the upper
bound of active power loss. These bounds are security constraints. These inequalities
are now in the form of rotated second-order cone [116,117] which is convex. Using the
approximation Wsl ≈ 1, If Kl is the squared operation capacity of line l, qMax

lossl
, pMax

lossl
are determined by:

qMax
lossl

=
Kl

Vsl
Xl ≈ KlXl, ∀l ∈ lAC (5.3n)

pMax
lossl

=
Kl

Vsl
Rl ≈ KlRl, ∀l ∈ lDCmono (5.3o)

pMax
lossl

=
Kl

4Vsl
Rl ≈

Kl

4
Rl, ∀l ∈ lDCbi (5.3p)

At this stage, all constraints derived for the hybrid AC-DC network, and FACTS
devices are either linear or conic constraints. With this formulation the power flow
constraints has been convexified. We denote this convex ACOPF model as SOC-
ACOPF.

5.4 Wind Power Scenario Generation

In this Section we propose a methodology to generate wind power scenarios based
on on-site measurements of wind speed and two different wind turbine models. The
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proposed methodology is capable of generating scenarios for multiple wind farms,
possibly owned by different companies, with any number of wind turbines. The flow
chart of the wind power scenario generation methodology is illustrated by Fig. 5.6. The
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Figure 5.6: Flow chart of the wind power scenario generation methodology

first step of our wind power scenario generation methodology consists of adequately
modeling the probability distribution of wind speed measurements. Both Weibull
and Rayleigh distributions can be used to fit wind speed measurements data. In this
Chapter, we use the wind speed measurements from Näsudden in Sweden and fit one
Weibull and one Rayleigh distribution π(U) to the measurements data. Note that
U represents wind speed. The wind speed measurements and fitted distributions are
demonstrated in Fig. 5.7. In the second step of our methodology we obtain the power
output of wind turbines depending on the wind speed. In particular, we consider
two different wind turbine models: the VESTAS-V90/3.0 [118] and the MERVENTO-
3.6/118 [119]. For both wind turbine models there exist available power curve data
sheets that link wind speed to power output at discrete given wind speeds. In order to
generalize this information to be able to handle any value U of possible wind speeds,
we interpolate these between the existing points, which yield continuous curves f(U)
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Figure 5.7: Weibull and Rayleigh distributions of wind speed measurement

that relate wind speed U to power output P . These curves are shown in Fig. 5.8.
And more generally, with t being the index for wind turbines and j representing the
scenario P (t, j) = f(Ut,j). Third, we want to obtain the probability of each wind
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Figure 5.8: Power curves of two wind turbine models

power scenario, but in order to do so let us briefly discuss the notation. We consider
different wind farms e ∈ E. Let t ∈ e represent the wind turbines that belong to
wind farm e. We assume the most general case i.e. wind farms are independent of
each other. This could be interpreted as each wind farm is owned by an individual
company. If the wind farms were all owned by the same company our methodology
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still holds, however, the case would be less complex. Each wind farm (or company) e
considers a certain set of wind power scenarios je ∈ Je. Therefore, the total number of
scenarios that has to be considered is the combination of all the wind power scenarios
of all the independent wind farms (companies), i.e., the cardinality of J : card(J) =∏

e card(Je). As an example, consider that we have four wind farms, and each of
them considers three different power output scenarios. Then, the total number of
different scenarios/combinations j of the power output of all wind farms is 34 = 81(j =
1, 2, ..., 81 in this case), as shown in Fig. 5.9. Scenario j = 1 corresponds to the case
where each wind farm considers its first power output scenario. In scenario j = 2 the
first three wind farms consider their first power output scenario, and the last wind farm
considers its second power output scenario, etc. In the following equation let je(j) be
the power output scenario of wind farm e that corresponds to combination/scenario j.
Then the probability πj of each scenario can be calculated as (5.4). The probabilities
of the example of 81 scenarios are given in Fig. 5.10.

πj =
∏

e

∑
t∈e π(Ut,je(j))∑

t∈e,je∈Je π(Ut,je(j))
(5.4)

Note that wind speed Ut,je is generated from the fitted distributions in the first
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Figure 5.9: Power output of 81 wind power scenarios

step of the methodology. Then P (t, je) is calculated according to the power output
curves in the second step of the methodology. The probabilities of each scenario are
calculated in the third step of the methodology. Finally, we assume that wake effects
and turbulence losses of all wind farms are 15%, which yields the total maximum wind
power generation of each wind farm e in scenario j as 0.85

∑
t∈e P (t, je), which is the
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Figure 5.10: Probability values of 81 wind power scenarios

parameter pMax
ei,j

(maximum active power generation from wind farms) used in model

(5.5a)-(5.5u). The parameter qMax
ei,j

(maximum reactive power generation from wind
farms) in model (5.5a)-(5.5u) is generated by specifying the range of power factors
of the wind farms (linear relationship between qMax

ei,j
and pMax

ei,j
is settled by the wind

farms).
Finally, it is important to point out that when the number of wind farms increases,

the combined wind power scenarios will increase exponentially. To deal with this
challenge, we propose the M-BDA and parallel computation technique explained in
Section VI.

5.5 Stochastic SOC-ACOPF Model

We formulate the problem of optimal operation of VSC-MTDC system and FACTS
as a two stage stochastic programming problem in (5.5a)-(5.5u). We assume the wind
power forecast is scenario-based which is a widely used approach to consider uncer-
tainties. The objective is to minimize the expected dispatch cost

∑
n∈nAC C(pn) +∑

j∈J,e∈E πjCe,j(pen,j) in which
∑

i∈iAC C(pn) is the dispatch cost of thermal genera-
tors and

∑
j∈J,e∈E,n∈nAC πjCe,j(pen,j) is the expected dispatch cost of all wind farms

(generally all thermal generators and wind turbines are connected to AC buses). The
dispatch decisions include the power generations from both thermal generators and
wind farms. The first-stage decision is to dispatch the active power generations of
thermal generators Ω1 = {pn} ∈ <. The solution of Ω1 is feasible for all wind power
scenarios. This is because thermal generators are dispatched before the realization of
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wind power. Because the reactive power generations qn,j of thermal generators can be
adjusted fast according to each scenario, these variables are considered as the second-
stage variables. The wind power generations pen,j , qei,j (active and reactive power),
operation points of VSC-MTDC system and FACTS constitute the set of second-stage
decision variables as Ω2 = {qn,j, qen,j , qen,j , psl,j , qsl,j , ∀l ∈ lV SC ∪ lPC ∪ lSV C} ∈ <.
Where e ∈ E is the index of wind farms, J is the set of wind power generation sce-
narios. The set Ω2 is solved according to each wind power scenario j with probability
πj. It is worth to mention that since we have also considered the operational cost Ce,j
of the wind farms, not all wind power pMax

en,j
are dispatched in the final decisions made

by the operator. The amount of dispatched wind power is constrained by network
conditions represented by (5.5b)-(5.5u). Note that the wind farms are connected to
the power network through the VSC-MTDC system. The power balance constraints
(5.5b)-(5.5c) are also valid for these connections. Because the transmission line power
flow variables psl,j , qsl,j are also scenario-based, the feasibility of power balance con-
straints (5.5b)-(5.5c) can be guaranteed though the first-stage decision variables pi are
fixed for all the wind power scenarios.

Minimize
Ω=Ω1∪Ω2

Cost =
∑

n∈nAC

C(pn) +
∑

j∈J,e∈E,n∈nAC

πjCe,j(pen,j) (5.5a)

subject to

pn + pen,j − pdn =
∑

l∈lAC

(A+
nlpsl,j − A−nlplossl,j) +GnVn,j, ∀n ∈ nAC , j ∈ J (5.5b)

qn,j + qen,j − qdn =
∑

l∈lAC

(A+
nlqsl,j − A−nlqlossl,j)−BnVn,j, ∀n ∈ nAC , j ∈ J (5.5c)

qMax
lossl
≥ qlossl,j ≥

p2
sl,j

+ q2
sl,j

Wsl,j

Xl, ∀l ∈ lAC , j ∈ J (5.5d)

plossl,jXl = qlossl,jRl, ∀l ∈ lAC , j ∈ J (5.5e)

Vsl,j − Vrl,j = 2Rlpsl,j + 2Xlqsl,j −Rlplossl,j −Xlqlossl,j , ∀l ∈ lAC , j ∈ J (5.5f)

θl,j = Xlpsl,j −Rlqsl,j , ∀l ∈ lAC , j ∈ J (5.5g)

pn =
∑

l∈lDC

(A+
nlpsl,j − A−nlplossl,j) +GnVn,j, ∀n ∈ nDC , j ∈ J (5.5h)

pMax
lossl
≥ plossl,j ≥

p2
sl,j

Wsl,j

Rl, ∀l ∈ lDCmono (5.5i)

pMax
lossl
≥ plossl,j ≥

p2
sl,j

4Wsl,j

Rl, ∀l ∈ lDCbi (5.5j)

Vsl,j − Vrl,j = 2psl,jRl − plossl,jRl, ∀l ∈ lDCmono, j ∈ J (5.5k)



96
CHAPTER 5. INTEGRATING WIND POWER BY STOCHASTIC CONIC

PROGRAMMING

Vsl,j − Vrl,j = psl,jRl − plossl,jRl, ∀l ∈ lDCbi, j ∈ J (5.5l)

−BMax
l Vsl,j ≤ qsl,j ≤ −BMin

l Vsl,j , ∀l ∈ lSV C , j ∈ J (5.5m)

ploss,Csh,j =
Vn,j
RCsh

, ∀n ∈ nDC , j ∈ J (5.5n)

ploss,sw,j =
Vn,j
Rsw

, ∀n ∈ nDC , j ∈ J (5.5o)

8Vn,j
MMax

n,n′
≤ Vn′,j ≤

8Vn,j
MMin

n,n′
, ∀n ∈ nPC ,∀n′ ∈ nDC , j ∈ J (5.5p)

V Min
i ≤ Vn,j ≤ V Max

i , ∀n ∈ nAC ∪ nDC ∪ nPC , j ∈ J (5.5q)

qMin
en,j
≤ qei,j ≤ qMax

en,j
, j ∈ J, e ∈ E (5.5r)

pMin
en,j
≤ pei,j ≤ pMax

en,j
, j ∈ J, e ∈ E (5.5s)

qMin
n ≤ qn ≤ qMax

n , ∀n ∈ nAC ∪ nDC (5.5t)

pMin
n ≤ pn ≤ pMax

n , ∀n ∈ nAC ∪ nDC (5.5u)

Parameters πj, p
Max
en,j

, pMin
en,j

, qMax
en,j

, qMin
en,j

are generated in the wind power scenario gener-
ation methodology explained in Section IV. The optimization problem (5.5a)-(5.5u)
minimizes the expected power generation cost considering the uncertainties of wind
power. If we use convex (generally quadratic) cost function for Cost, because both
the objective and constraints are convex, this minimization problem is convex. This is
further validated by the numerical results in Section VII of this Chapter through us-
ing MOSEK solver in GAMS which can only solve convex problem. Hence, the global
optimal solutions can be obtained by solving (5.5a)-(5.5u). The challenge is, when
large number of wind scenarios are considered, the scale of the optimization problem
(5.5a)-(5.5u) can exceed the capability of solvers. We explain in the next Section of
this Chapter how to deal with this challenge by decomposition.

5.6 Decomposition of Stochastic SOC-ACOPF

If we assume the OPF problem is feasible (at least one solution exists), then strong
duality holds for the formulated SOC-ACOPF model. Thus Benders decomposition is
applicable here to solve the large-scale stochastic SOC-ACOPF problem in a decom-
posed way. In Benders decomposition, the original large-scale optimization problem is
decomposed into a master problem and several subproblems. The objective solution
of the master problem gives the lower bound of the original optimization problem (we
consider minimization problem here). The subproblems can give upper bound of the
objective in the original minimization problem. With the proceed of the iterations, the
lower bound and upper bound given by the master problem and subproblems gradually
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converge. The challenges are how to formulate the master problem and subproblems
in the decomposition and how to accelerate the iterations. These challenges are ad-
dressed in this Section. Taking the first-stage decision variables Ω1 = {pn} ∈ < as
the complicating variables in Benders decomposition, we can decompose the stochastic
SOC-ACOPF (5.5a)-(5.5u). The master problem of the proposed M-BDA is formu-
lated as:

Minimize
Ω1

Cost =
∑

n∈nAC

C(pn) + Costw (5.6a)

subject to (5.5u)

Costw ≥ Costw,k +
∑

n∈nAC

µpn,k(pn − p̂n,k), ∀k ∈ K (5.6b)

Where p̂n,k is the dispatched active power (first-stage decision) at iteration k. Con-
straint (5.6b) is the Benders cut which expands iteratively in order to take more
information from the subproblem into account. Costw,k =

∑
nCost

n
w is the sum of

objective solutions in the subproblems at iteration k. Costnw is the objective of sub-
problem n (the expected cost of wind power generations). µpn,k is the dual variable
solution of equation (5.7b) at iteration k (equal to zero in the first iteration) in the
subproblem. The subproblem of the proposed M-BDA is:

Minimize
Ω2

Costnw =
∑

j∈jn,e∈E,n∈nAC

πjCe,j(pen,j) (5.7a)

subject to (5.5b)− (5.5t)

pn = p̂n,k : µpn,k, ∀k ∈ K (5.7b)

Where ∪Tn jn = J is a division of the wind power scenario set J . N =
∑
n is the

total number of threads settled in the parallel computation. The scenarios assigned
to subproblem n are included in the set jn. To guarantee the feasibility of all the
subproblems in M-BDA, we allow load shedding for all the buses in the network.
We set the cost parameters of load shedding much larger than the most expensive
generators in the network. Although some loads may not be fully met at the beginning
of the iterations, the final solutions of M-BDA cover all these loads (because the cost
is too expensive and will be iteratively met by generations in the original network).
Our simulations show that this method is more efficient to guarantee the feasibility
of the subproblems than using the method of the original feasibility cut in Benders
decomposition (the MOSEK solver can not converge after several hours when using
the original feasibility cut approach).

As the iterations proceed, more Benders cuts are iteratively included into the
master problem. After solving the master problem (5.6), all subproblems can be
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computed in parallel. The proposed parallel computation structure of stochastic
SOC-ACOPF using the proposed M-BDA is illustrated in Fig. 5.11. The Master
problem is responsible to give solutions of the first-stage decision variable Ω1 =
{pn} ∈ < while subproblems yield solutions of the second-stage decision variable
Ω2 = {qn,j, pen,j , qen,j , psl,j , qsl,j , ∀l ∈ lV SC ∪ lPC ∪ lSV C} ∈ <. There is no commu-
nication requirement between the subproblems.

Scenario 1

Scenario 2

Scenario J

Scenario 3First-Stage 
Decision

Second-Stage 
Decision

Sub-Problem 1

Sub-Problem 2

Sub-Problem N

Master-Problem

Parallel Benders Decomposition

Serial Benders Decomposition      Single-Stage Solution Approach

Figure 5.11: Solution approaches of the stochastic SOC-ACOPF model

5.7 Numerical Results

5.7.1 Solving Stochastic SOC-ACOPF by M-BDA and
Parallel Computation

The test case network configuration is shown in Fig. 5.12. Two wind farms are
connected to the IEEE30-bus network through a five-terminal VSC-MTDC system
(D1-D5). The VSC-MTDC system is connected to bus 1, bus 15 and bus 30 in the
IEEE30-bus network. There are twenty VESTAS-V90/3.0 wind turbines in the first
wind farm and thirty MERVENTO-3.6/118 wind turbines in the second wind farm.
Two STATCOM devices (located at bus 4 and bus 18) and two SVC devices (located
at bus 14 and bus 21) are connected in the AC network. The proposed wind power
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scenario generation methodology is implemented in MATLAB. The stochastic SOC-
ACOPF model and M-BDA are coded in GAMS and solved by MOSEK [54]. The test
cases with 10, 100 and 1000 wind power scenarios are run on a computer with Intel
i7-2760QM 2.4 GHz CPU and 8 GB of RAM. Simulations of the 10000 wind power
scenarios test case are performed at PDC Center for High Performance Computing
(PDC-HPC) in KTH Royal Institute of Technology. The deployed computation node
at PDC-HPC has 48 CPU cores (3.00 GHz Intel Xeon Processor E7-8857) and 1 TB of
RAM in total. In order to compare the performance of different solution approaches,
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Figure 5.12: The IEEE30-bus network with two wind farms integrated by VSC-MTDC
system

following solution approaches are defined:

1. Single-Stage solution approach. The stochastic programming for all wind
power scenarios are formulated and solved as one single stochastic optimization
problem. This approach is set as the benchmark to compare with the proposed
M-BDA approach.
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2. Parallel M-BDA solution approach. The subproblems in M-BDA are solved
in parallel during each iteration. This approach is proposed to improve the com-
putational efficiency when large number of wind power scenarios are considered.

3. Serial M-BDA solution approach. The subproblems in M-BDA are solved
in serial during each iteration. This solution approach is to demonstrate the
efficiency of the proposed parallel computation structure in GAMS.

The proposed M-BDA stops when the upper bound and lower bound of the objective
is within 2%. The solution approaches are illustrated in Fig. 5.11. In Fig. 5.11, we
assign two wind power scenarios to each subproblem for ease of illustration. In the
computation of large number of wind power scenarios, we can assign more scenarios
to each subproblem to distribute the computation burden to each thread more evenly.
The numerical results of objective values are summarized in Table 5.1. We can see
that solutions by M-BDA are all very close (relative error less than 2%) to the single-
stage solution. The objective solutions are different for different test cases because the
generated wind power scenarios (probability values and maximum power outputs) are
different. When considering 10000 wind power scenarios, MOSEK cannot converge
using the single-stage approach. The proposed M-BDA shows strong convergence
capability and finds all the optimal solutions.

We list the CPU computation time for the single-stage and M-BDA approaches in
Table 5.2. For the test cases of 10, 100 and 1000 scenarios, we set 4 threads for the
parallel computation. 30 threads are set for the parallel computation of 10000 scenarios
test case. In all test cases, parallel M-BDA is faster than the serial execution. In the
test case of 10000 scenarios, parallel computation outperform the single-stage approach
in terms of both computation speed and convergence capability. The single-stage
approach cannot converge within 184.27 seconds. Even though for small numerical
examples the single-stage solution approach is faster than M-BDA, it is important
to point out that for large-scale cases, the single-stage optimization problem did not
converge due to the curse of dimensionality. The proposed M-BDA, however, found
the global optimal solution faster than it took MOSEK to determine that if there
is a convergence problem. Therefore, our solution approach is useful for large-scale
computation. It is worth to mention that even though we use a small network in which
there are 30 buses, the total number of wind power scenarios that we have considered
here show that the scale of the stochastic SOC-ACOPF model is very large. This is
demonstrated by the total number of constraints of each test case in Table 5.2. Note
that the total number of constraints in Table 5.2 refers to the coded model in GAMS
which, in general, has more constraints than the mathematical model represented in
(5.5a)-(5.5u).

The convergence of the proposed M-BDA is shown in Fig. 5.13. When the number
of wind power scenarios increases, the required number of iterations of M-BDA also
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Table 5.1: Objective value

No. of Scenarios Single-Stage[$]
M-BDA

No. of Threads Upper Bound[$] Lower Bound[$]
10 320.26 4 325.01 319.69
100 320.06 4 324.33 319.87
1000 380.65 4 382.77 380.46
10000 NA 30 378.55 371.67

Table 5.2: Computation time

No. of Scenarios No. of Constraints Single-Stage [s]
M-BDA [s]

Serial Parallel
10 450 0.23 1.94 0.59
100 4500 1.72 11.12 3.86
1000 45000 28.74 296.98 70.87
10000 450000 184.27 6191.58 116.34

increases. The efficiency of the proposed M-BDA can be observed in that even in the
case of 10000 scenarios, the M-BDA converges within 13 iterations.
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Figure 5.13: The convergence of M-BDA

To show the benefits of the stochastic programming, we calculate the Value of
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Stochastic Solution (V SS) according to [120] as:

V SS = CostD∗ − CostS∗ (5.8a)

Where CostD∗ is the objective value of deterministic solution, CostS∗ is the objective
value of stochastic solution. V SS is a measure of the benefits to model the uncertain
power outputs of wind farms as scenario-based variables instead of using the expected
values. CostD∗ is obtained by firstly replacing the wind power maximum generation
parameters pMax

en,j
, qMax
en,j

with the expected values:

pMax
en,j0

=
∑

j

πjp
Max
en,j

(5.8b)

qMax
en,j0

=
∑

j

πjq
Max
en,j

(5.8c)

Then we solve the model (5.5a)-(5.5u) (in this way there is only one scenario j = j0 in
the model) to find the deterministic solution of the first-stage decision variables pD∗n .
After obtaining pD∗n , we fix the first-stage decision variables as:

pn = pD∗n (5.8d)

Afterwards, we solve the stochastic model (5.5a)-(5.5u) again to find CostD∗. Note,
in this step, the second-stage parameters pMax

en,j
, qMax
en,j

are not fixed as expressed in
(5.8b)-(5.8c) and any number of wind power scenarios are allowed.

The results of V SS are listed in Table 5.3. Significant benefits of stochastic pro-
gramming are observed when large number of wind power scenarios are considered.
The reason for large value of V SS in cases having large number of wind power scenar-
ios is because the value of lost load (VoLL) parameter is large in our test cases. These
results show that, when large number of wind power scenarios are considered, it is
very hard to find the deterministic solution CostD∗ without load shedding. As a com-
parison, the stochastic programming approach can always find the optimal solutions
efficiently.
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Table 5.3: Value of stochastic solution (V SS)

No. of Scenarios
Solution [$]

V SS [$]
Deterministic Stochastic

10 478.71 320.26 158.45
100 532.77 320.06 212.71
1000 9924.11 380.65 9543.46
10000 65960.41 378.55 65581.86

5.8 Conclusions

We propose a stochastic SOC-ACOPF model to optimally operate the power network
incorporating VSC-MTDC system and FACTS devices in the context of scenario-based
forecast of wind power. Both mono-polar and bipolar MTDC connections are modeled.
STATCOM and SVC as FACTS devices are integrated in a unified modelling approach
in the proposed SOC-ACOPF model. The SOC-ACOPF is a convex optimization
problem which can be solved efficiently to global optimality. Using the wind speed
measurements and the wind turbine models, we are able to generate representative
power generation scenarios from multiple wind farms. Finally, we propose to use M-
BDA to address the computational challenge of large-scale power system operations.
When 10000 wind scenarios are considered, a single-stage stochastic SOC-ACOPF
model is not tractable even by high performance computing. As a comparison, the
proposed parallel computation in GAMS based on M-BDA is capable of solving the
stochastic SOC-ACOPF model and accelerating the computations. Large values of
V SS show the significant benefits of using stochastic SOC-ACOPF when large number
of wind power scenarios are considered. The results of this Chapter demonstrate the
great potential of stochastic conic programming, high performance computing and M-
BDA in dealing with the severe challenge of integrating large-scale wind power which
is inevitable in the future of power system.



Chapter 6

Coordinated Energy Dispatch for Su-
per Grid

6.1 Introduction

Recent years have witnessed the promising development of super grid worldwide. In
Europe, the e-Highway2050 project has been implemented to identify weak power
transmission lines and resolve these constraints for future decarbonized economy [42].
Reference [41] finds that 228,000km of new lines are required to be cost-optimally
built for the European power network before 2050. Around e200 billion investment
for updating the European transmission infrastructure is expected to be in place up
to the year of 2020 [39]. China is planning to install 13 to 20 extra 800kV to 1300kV
HVDC lines from 2014 onwards to transmit approximately 1300GW of solar, wind and
hydro-power generation to the southeast population centers [40]. It is estimated by the
international energy agency (IEA) that the total investment of China on updating the
transmission network reaches more than $4 trillion by the year of 2040 [40]. Using unit
commitment model, the impact analysis of inter-regional transmission power network
expansion in China by authors in [121] show that large economic benefits can be
achieved.

To optimally operate an ultra-large-scale super grid is challenging in many as-
pects. Though more flexible control can be gained through the deployment of FACTS,
phase-shifting transformers (PSTs) and VSC-MTDC, the unplanned power flow is still
one of the main challenges to operate the super grid [39]. By investigating the im-
pacts of inter-regional grid transmission in China, reference [121] shows that efficient
dispatch mechanism across regions accounting for generation efficiency should be es-
tablished. Reference [122] proposes a decomposition-coordination algorithm to find the
sub-optimal solution of the integrated electrical and heating system. The algorithm
in [122] works by dividing the system into two subsystems and then iteratively adjust-
ing the coordinated variables which are at the boundary of the electrical and heating
system. The numerical results show that it requires 15 iterations to converge for a test
case with 6 nodes of electrical network and 31 nodes of heating network. However,
the convergence of the coordination mechanism in [122] cannot be guaranteed because
of the nonconvex model. As improvements, our model used in this Chapter is convex

104
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and the convergence is guaranteed.

The optimal operation of the power network is generally formulated as an OPF
problem [123, 124]. Since the formulated OPF model of operating the super grid is a
very large-scale optimization problem, distributed approaches to solve the OPF model
are useful to make the problem tractable for the optimization solver. These distributed
solution approaches mainly include Lagrangian relaxation [72], BD [73,101], Dantzig-
Wolfe decomposition [74] and ADMM [75] (for a comprehensive literature review of
distributed or decentralized OPF solution approaches, please refer to the Introduction
Section of Chapter 3).

Three main research gaps are identified from the literature review:

1. The coordination of energy dispatch of different nations or regions for the super
grid has not been well discussed; Without an efficient coordination mechanism,
it is hard to operate the super grid optimally.

2. The speed up of distributed solution algorithm to solve large-scale ACOPF prob-
lem is still in demand to assist real-time decision making to operate the super
grid.

In this spirit, we propose in this Chapter the concept of power synergy hub (PSHub)
to coordinate the energy dispatch of the super grid. We show that the mathematical
foundation of energy dispatch coordination operation in PSHub is the modified BD.
We propose an improved convex ACOPF model based on SOCP which is SOC-ACOPF
(Model P). The proposed SOC-ACOPF model does not introduce new variables except
the voltage magnitude square Vn. To obtain an equivalent linear representation of
the line capacity limit (2.1h), we use the approximation Vsl ≈ 1 (per unit value).
Two approximations sinθl ≈ θl and vslvrl ≈ 1 (per unit value) for convexifying the
nonconvex constraint (2.1g) are introduced in our model. Moreover, the proposed
SOC-ACOPF model is valid for both radial and mesh power networks. These are
the main differences of our model compared with other SOC-ACOPF models in the
literature [44,48,125]. To accelerate the coordination process in the PSHub, we propose
a parallel computation structure in GAMS. The fast convergence of the energy dispatch
coordination in PSHub and the proposed SOC-ACOPF model are demonstrated by
numerical results for large-scale power networks up to 9241 nodes. The rest of this
Chapter is organized as follows. Section II proposes the concept of PSHub. Section III
formulates the modified BD as the mathematical foundation of PSHub energy dispatch
coordination operations. Section IV designs the parallel computation structure in
GAMS. Section V presents the numerical results and discussions. Section VI concludes
the advantages of the proposed approaches in this Chapter.
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6.2 Proposing the Power Synergy Hub

In this Section, we firstly show the severe challenge of operating the super grid and
then propose the solution to this challenge as PSHub. An overview of the key functions
of the PSHub are explained.

Figure 6.1: Visualizing the European super grid

To demonstrate the challenging scale of operating the super grid, we plot the
network layout of the European high voltage transmission networks (750kV, 400kV,
380kV, 330kV, 220kV, 154kV, 150kV, 120kV and 110kV) in Fig. 6.1. The network
data is based on the Pan European Grid Advanced Simulation and State Estimation
(PEGASE) project [126]. The important metrics of the power network and the cor-
responding OPF model are listed in Table 6.1. It is beyond the capability of current
available optimization solvers to efficiently solve one single OPF model to find the
global optimal solution, not to mention the gigantic requirement of RAM capacity for
the computers. For example, the LINDOGLOBAL solver which is a powerful global
nonlinear programming solver in GAMS currently cannot solve optimization problems
with more than 3000 variables and 2000 constraints. One practical way to deal with
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Figure 6.2: The conceptual diagram of PSHub

Table 6.1: Scale of operating the super grid

Super Grid Model
Metrics of Network Data Metrics of OPF Model

Nodes Lines Generators Variables Constraints
1354pegase 1354 1991 260 11192 20393
2869pegase 2869 4582 510 25086 45590
9241pegase 9241 16049 1445 85568 155087

this challenge is to keep operating the regional power networks by current regional
energy management system (EMS) centers and then coordinate the EMS in an effi-
cient mechanism. We propose the concept of PSHub to implement the coordination
mechanism of the super grid. This is illustrated in Fig. 6.2. Regional EMS represented
as blue circles in Fig. 6.2 is operating the national or regional power networks. The
HVDC and HVAC (represented as blue lines with arrows in Fig. 6.2) are connecting
the networks of different nations or regions. While the regional EMS is operating its
own power network, it is not sufficient to achieve global optimum for the super grid. It
is impossible to guarantee the feasibility and security of the tie-line HVDC and HVAC
connections without coordinating the operations of all the regional EMS centers. To
coordinate the operations of the regional EMS centers, bi-directional communication
between PSHub with regional EMS is required. The regional EMS submits informa-
tion of its own network conditions to the PSHub. The PSHub then commands the
operation points to each regional EMS taking the constraints of tie-line HVDC and
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HVAC connections into account.
Mathematically speaking, the function of PSHub is like a global optimization algo-

rithm which iterates the local optimal solutions obtained by the regional EMS centers
and coordinates the individual EMS by determining its total power output and the
power flows of the tie-lines, in order to achieve global optimality in the super grid.
There are two fundamental problems to be solved by the PSHub:

1. What information is required to communicate from the regional EMS centers to
the PSHub (represented as orange lines with arrows in Fig. 6.2)?

2. How to coordinate the energy dispatch of multiple regional EMS centers in order
to achieve global optimal targets?

We prove in following Sections of this Chapter that the proposed modified BD is not
only an efficient approach to implement the coordination mechanism in PSHub but
also leads to solutions very close to the global optimal targets for the super grid.
The formulated Benders cuts are the information required to be communicated from
regional EMS centers to the PSHub. These constitute two main contributions of this
Chapter.

6.3 Mathematical Foundation of PSHub:

Modified Benders Decomposition

In this Section, we show that how modified BD can be used as the mathematical
foundation of energy dispatch coordination in PSHub. In BD, the original large-scale
optimization problem is decomposed to a master problem and several subproblems.
The objective solution of the master problem gives the lower bound of the original op-
timization problem (we consider minimization problem here). The objective solutions
of the subproblems can give upper bound of the objective in the original minimization
problem. With the proceed of the iterations, the lower bound and upper bound given
by the master problem and subproblems finally converge. The challenges are how
to formulate the master problem and subproblems in the decomposition and how to
accelerate the convergence. These challenges are addressed in this Section. We also
propose to deal with the feasibility problem of the subproblem in the modified BD by
an efficient way without using the original Benders feasibility cuts approach.

The key observation and contribution in this Chapter is that, if we take the total
power generations of the regional power networks as the complicating variables in for-
mulating the modified BD, the modified BD can serve as the mathematical foundation
of the energy dispatch coordination implemented by the PSHub. The total power gen-
erations of the regional power networks are actually the operation points to be found
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by the regional EMS centers. The energy dispatch of each regional power network k is
a subproblem in the modified BD algorithm. The master problem of the modified BD
is the energy dispatch coordination of the PSHub. The subproblem k in the modified
BD is formulated in (6.1).

CostEMS
k = Minimize

Ω

∑

∀n∈Nk,l∈Lk

f(pn, qn, pol , qol) (6.1a)

subject to (2.1b)− (2.1c), (2.1j)− (2.1m), (2.2b)− (2.2e),

∀n ∈ Nk, l ∈ Lk (6.1b)
∑

n∈Nk

pn = P sum
k,j : µPk,j (6.1c)

∑

n∈Nk

qn = Qsum
k,j : µQk,j (6.1d)

Where CostEMS
k is the cost of energy production for regional power network k. (6.1b)

refers to the power flow constraints for all lines and nodes located in regional network
k. Nk and Lk are sets of the nodes and lines located in the regional power network
k. P sum

k,j and Qsum
k,j are the solutions of total power generations in regional power

networks from the master problem of the modified BD at iteration j. µPk,j and µQk,j
are dual variables for the corresponding constraints used for constructing the Benders
cuts. The objective solution of the subproblem (6.1) is the upper bound of the energy
dispatch for each regional EMS center.

To guarantee the feasibility of the subproblem, we have added one more generator
with large capacity at each bus of the regional power networks. The marginal genera-
tion cost of the added generators is larger than the most expensive generators in the
original regional power networks (note these added generators do not exist and are
only used as variables in the model). In this way the final converged dispatch results
do not include generations from these added generators (cheap generators are more
preferred to be dispatched because we minimize the generation cost as the objective).
This is another contribution of this Chapter to deal with the feasibility problems of
the subproblems in the modified BD. This approach is more efficient than the tra-
ditional Benders feasibility cuts approach which cannot converge within hours in our
simulations. The numerical failure of MOSEK solver [54] using the traditional Benders
feasibility cut approach in solving ultra-large-scale ACOPF indicates that a modified
BD should be developed. As a comparison, the proposed approach converges very fast.
In this way, the power balance constraints (2.1b) and (2.1c) in (6.1b) are modified as
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(6.1e) and (6.1f):

pn + p+
n − Pdn =

∑

l∈Lk

(A+
nlpsl − A−nlpol) +GnVn, ∀n ∈ Nk, l ∈ Lk (6.1e)

qn + q+
n −Qdn =

∑

l∈Lk

(A+
nlqsl − A−nlqol)−BnVn, ∀n ∈ Nk, l ∈ Lk (6.1f)

Where p+
n and q+

n are the active power and reactive power generations from the added
generators. The objective function in the subproblem (6.1) is modified as (6.1g):

CostSk,j = Minimize
∑

∀n∈Nk,l∈Lk

f(pn, qn, pol , qol) +
∑

n∈Nk

(Cp+
n p+

n + Cq+
n q+

n ) (6.1g)

Where Cp+
n and Cq+

n are the marginal cost parameters of active power and reactive
power generations from the added generators. The Benders feasibility cuts are used
to remove infeasible solutions from the searching space of the solver. However, if
the infeasible region of the searching space is very complex and large, using Benders
feasibility cuts will be very time-consuming. This is because it is required to generate
many Benders feasibility cuts in order to remove possible infeasible solutions from
the searching space. Our approach to guarantee the feasibility of the subproblems
can avoid detecting the feasibility procedure of BD. In this way, the computational
efficiency is improved.

The lower bound of objective for energy dispatch for all the regional EMS centers
is obtained by solving the master problem of the modified BD. The master problem
of the modified BD is formulated in (6.2).

Minimize
Ω

CostPSHub =
∑

k∈K

CostEMS
k (6.2a)

subject to (2.1b)− (2.1c), (2.1j)− (2.1m), (2.2b)− (2.2e), ∀l ∈ τ (6.2b)

CostEMS
k ≥ CostEMS

k,j + µPk,j

(∑

n∈Nk

(pn + p+
n )− P sum

k,j

)

+ µQk,j

(∑

n∈Nk

(qn + q+
n )−Qsum

k,j

)
, ∀k ∈ K, j ∈ J (6.2c)

Where CostPSHub refers to the total cost of energy production for the super grid.
(6.2b) represents the power flow constraints of tie-lines (transmission lines connecting
different EMS regions). τ is defined as the set of all tie-lines. We model each regional
power network as a single virtual node in the master problem. Constraint (6.2c)
includes Benders cuts from the subproblems. µPk,j and µQk,j are dual variable solutions
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of equations (6.1c)-(6.1d) in regional power network k (which is equal to zero at the
first iteration). The master problem is responsible to give solutions of total power
output of regional power networks and tie-line power flows. The subproblems are
responsible to give solutions of subnetwork power flows. The master problem is always
feasible because it is actually a relaxed problem of the original SOC-ACOPF model.
As the iterations proceed, more Benders cuts from the regional networks are iteratively
included into the master problem (this process is interpreted as the communication
between PSHub and all regional EMS centers). After solving the master problem, all
the subproblems can be computed in parallel which we explain in the next Section.
If the original problem is convex (the proposed SOC-ACOPF model is convex), it
is proved that the optimal solution can be found within finite iterations [73, 101].
The procedure of using the modified BD to operate the super grid is explained in
Fig. 6.4. A graphical illustration of the relationship between the master problem and
subproblems in the modified BD is plotted in Fig. 6.5. To show the difference of the
modified BD with the traditional BD, we also plot the flow chart of traditional BD
in Fig. 6.3. As we have mentioned, our modified BD avoids the steps of checking
subproblems feasibility and generating the Benders feasibility cuts in the iterations.

6.4 Accelerating the Implementation of Modified

BD by Parallel Computation

As the the modified BD in PSHub is solved in an iterative way, the execution can be
accelerated by parallel computation. We explain in this Section the proposed parallel
computation structure in GAMS [89]. The performance of the parallel computation is
validated by the numerical results in the next Section.

The proposed parallel computation structure of the energy dispatch coordination
by PSHub is illustrated in Fig. 6.5. The parallel computation structure is implemented
in GAMS platform and it is based on the modified BD. The parallel computation is
comprised of one Parallel Loop and one Collect Loop. The Parallel Loop complies all
the subproblems in the modified BD and submits each subproblem to one thread to
be executed by one core of the CPU. Since the subproblems are actually the energy
dispatch of regional EMS centers, we denote the threads of the subproblems in Fig.
6.5 by ’EMS-1’, ’EMS-2’, ..., ’EMS-k’. The Collect Loop repeatedly checks the solu-
tion status of each thread and then saves the solutions as long as the solutions are
available. The threads of solved subproblems are released in order to avoid over using
the computer disk capacity. Because there is no communication requirement among
the subproblems, the capability of multi-CPU computers can be utilized to the most.
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Figure 6.5: The parallel computation management in PSHub

6.5 Numerical Results

In this Section, the performance of energy dispatch coordination by PSHub accelerated
by parallel computation is demonstrated. All the models are coded in GAMS and
solved by the MOSEK solver. All simulations are run on a computer with Intel i7-
2760QM 2.4 GHz CPU and 8 GB RAM.

6.5.1 Performance of Energy Dispatch Coordination by
PSHub

To demonstrate the performance of energy dispatch coordination, we compare the
results of PSHub with the centralized energy dispatch where the nonconvex ACOPF
is solved as one single optimization problem in MATPOWER [70]. MATPOWER
uses MATLAB built-in Interior Point Solver (MIPS) to solve nonconvex ACOPF. The
solutions obtained from MATPOWER are local optimal solutions. We summarize the
metrics of the regional networks in Table 6.2. The ’EMS’ column lists the total number
of regional EMS centers that are coordinated by the PSHub.

Base Case

In this base case, we use the power load data in the original power networks. We list
the objective value results and computational CPU time in Table 6.3. The required
number of iterations, generated Benders cuts and solution accuracy are summarized
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Table 6.2: Metrics of regional EMS and power networks

Test Case EMS Number of Tie-Lines Number of Nodes in Regional Networks

1354pegase
2 27 828, 526
4 56 311, 253, 319, 471
8 69 168, 151, 120, 243, 186, 102, 260, 124

2869pegase
2 20 1899, 970
4 39 975, 457, 531, 906
8 83 324, 532, 295, 214, 312, 288, 524, 350

9241pegase
2 15 4122, 5119
4 51 1200, 1754, 3253, 3034
8 126 1247, 735, 509, 1887, 1489, 922, 1597, 855

in Table 6.4. The relative gap in Table 6.4 is calculated as in (6.3):

Relative Gap =
Upper Bound− Lower Bound

Upper Bound
× 100% (6.3)

Because the overall super grid is a fixed network, more regional EMS centers mean
smaller scale for each regional power network. So the required computation time, in
general, will decrease with the increasing of EMS centers. This is because each regional
EMS center dispatch is computed by the proposed parallel computation. However, as
we can notice from the results of the 2869pegase test case, the computation time of
coordinating 4 regional EMS centers is more than the computation time of coordinat-
ing 2 regional EMS centers. This result shows that the computation time does not
only depend on the network scale but also the specific network structure. The com-
municated Benders cuts from all the regional EMS to PSHub are equal to the number
of iterations times the number of regional EMS centers.

The centralized dispatch results in Table 6.3 are obtained from MATPOWER which
solves the nonconvex ACOPF model and can only guarantee local optimal solutions.
The PSHub coordination results are obtained by solving our convex SOC-ACOPF
model using our proposed modified BD approach. The decentralized SOC-ACOPF
approach converges to very close results compared with the centralized solutions of
SOC-ACOPF model in Table 6.3. The comparison in Table 6.3 is to demonstrate both
the advantages of convex SOC-ACOPF model over the nonconvex ACOPF model in
MATPOWER and the advantages of PSHub coordination over centralized dispatch.
Since the SOC-ACOPF is convex, the solutions are guaranteed to be global opti-
mal. The benefits of global economy improvements are because of the advantage of
global optimality over local optimality. The computational efficiency improvement is
because of the advantage of the modified BD using parallel computation. From a tech-
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nical perspective, the regional EMS is always required to be involved to coordinate
the operations with other regional EMS as long as the power grid is interconnected.
Otherwise, the security of the power grid cannot be guaranteed. From an economic
perspective, the results of regional EMS from PSHub coordination are very close to
centralized dispatch (solve the SOC-ACOPF model as one single optimization with-
out using the modified BD). This is guaranteed by the convergence of the modified
BD. The convergence means the final results can converge to the centralized solution
of the decision variables which ensure that the economic cost of regional EMS also
converges to the solution of centralized solution. In summary, the fast convergence of
the coordination by PSHub shows strong coordination capability. By using parallel
computation, the required computation time for more EMS centers does not increase.
On the contrary, the efficient parallel computation management algorithm is capable
of accelerating the computations. This is highly appreciated in online decision making
applications where the computation time is limited.

Table 6.3: PSHub coordination results: base case

Test Case
PSHub Coordination Centralized Dispatch

Objective [$]
EMS CPU Time [s] Objective [$] CPU Time [s]

Upper Bound Lower Bound

1354pegase
74009.46 74009.45 2 1.05

74069.35 8.5874822.49 72726.67 4 1.47
74009.47 74009.45 8 0.41

2869pegase
133902.29 133902.21 2 4.82

133999.29 18.66134582.33 132578.46 4 6.38
134112.36 133791.95 8 1.22

9241pegase
314273.05 314273.03 2 58.78

315912.43 85.11316425.87 311537.62 4 29.05
314597.18 314597.11 8 13.79

Load Scenarios

To validate the robustness of the coordination mechanism by PSHub, we simulate
the power load scenarios from 70% to 90% of the original load data. Because the
centralized energy dispatch by MATPOWER cannot converge for most cases when the
power loads are below 70% or above 100% of the original load data, we do not show
the results for these load scenarios. The results are demonstrated in Fig. 6.6, Fig. 6.7
and Fig. 6.8. For all the considered load scenarios, the coordinated energy dispatch by
PSHub converge to very close objective values compared with the centralized dispatch
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Table 6.4: Iterations, Benders cuts and solution accuracy

Test Case EMS No. of Iterations No. of Benders Cuts Relative Gap

1354pegase
2 3 6 0.00%
4 3 12 2.80%
8 3 24 0.00%

2869pegase
2 3 6 0.00%
4 4 16 1.49%
8 3 24 0.24%

9241pegase
2 3 6 0.00%
4 3 12 1.54%
8 3 24 0.00%

by MATPOWER. The required computation time of PSHub is less than the CPU
time of centralized dispatch. These results show that coordinated energy dispatch by
PSHub is robust against the considered load scenarios.
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6.6 Conclusions

Coordinating the energy dispatch across continent is a challenging task of future super
grid operations. With the large-scale integration of renewable energy to the power
system, more transmission expansions are required to connect these renewable energy
resources in remote areas either onshore or offshore. It is hard to efficiently operate the
super grid without an international or inter-regional coordination mechanism. This
Chapter contributes to the literature by proposing the SOC-ACOPF model and the
PSHub concept to solve this challenge. Specifically, we have solved three problems of
operating the super grid:

1. How to approximately find the global optimal operating points of the power
network? The solution is the improved convex SOC-ACOPF model;

2. How to coordinate the energy dispatch of different nations or regions and reduce
the communication burden? The solution is the modified BD algorithm;

3. How to execute the coordination of ultra-large-scale power network fast enough
to assist online decision making? The solution is the proposed parallel compu-
tation structure.

By coordinating the energy dispatch of regional EMS centers, global optimal en-
ergy dispatch targets can be achieved. The coordination in PSHub is based on the
modified BD algorithm and the proposed convex SOC-ACOPF model. The advantage
of using convex SOC-ACOPF model is that the convergence of modified BD can be
guaranteed. The fast and strong convergence capability of the proposed coordination
mechanism implemented in PSHub is demonstrated by the proposed parallel compu-
tation approach. The numerical results of various number of regional power networks
and load scenarios show that the coordinated energy dispatch by PSHub is robust.
Compared with other distributed ACOPF solution algorithms in the literature, the
main advantages of the proposed modified BD are three-fold:

1. Instead of using the original Benders feasibility cuts approach, we can guarantee
the feasibility of the formulated subproblems in the modified BD by adding one
more generator at each node of the power network with larger marginal cost.
Our approach converges within one minute CPU time for power networks up to
9241 nodes. The original Benders feasibility cuts approach cannot converge after
several hours in our simulations.

2. Since we formulate the modified BD by taking the total power generations of
the regional power networks as the complicating variables, no other detailed
information except the Benders cuts is required to be communicated from the
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regional power networks to the PSHub. This formulation can largely reduce
the communication burden to coordinate the super grid. Since the parameters
of the Benders cuts are required to be communicated from the regional power
networks to the PSHub in each iteration, the reduced communication burden
is also because our modified BD approach requires less iterations to converge
compared with the traditional BD.

3. The privacy of information for the regional power networks can be protected
since the boundaries between different regional power networks are still kept.
No transfer of information between different regional power networks is required.
The only two-way communication is between the PSHub and individual regional
power network. This is largely due to our novel formulation of the modified
BD which takes the total power outputs of the regional power networks as the
complicating variables. In other words, if we take other variables as the compli-
cating variables to formulate the master problem and subproblems of BD, the
information privacy of regional power network may not be well protected.





Chapter 7

Closure

This Chapter summarizes the main conclusions of this thesis. Future research work
to be conducted is directed.

7.1 Concluding Remarks

Proposing new models, solution algorithms and applications of SOC-ACOPF is the
main contribution of this dissertation. One of the targets of the proposed SOC-ACOPF
models and sequential tightness algorithm is to improve the solution quality of SOC-
ACOPF model which can optimally operate the power system. The proposed M-
BDA is to accelerate the computational efficiency to assist real-time decision making.
Through various test cases based on real power networks, the applications in DLMP,
wind power integration and super grid coordination, the applicability of the proposed
models and algorithms are proved.

In Chapter 2, detailed mathematical formulations of the proposed SOC-ACOPF
models are presented. The improvements of the solutions from SOC-ACOPF com-
pared with the global optimal solution from the LINDOGLOBAL solver in GAMS
are demonstrated numerically. Feasible solutions can be recovered from the relaxed
solutions of SOC-ACOPF models by using the proposed heuristic feasible solution
recovery algorithm.

Chapter 3 proposes the sequential tightness algorithm to improve the AC feasibility
of the solutions from the SOC-ACOPF models. Solutions with better AC feasibility
mean more realistic operation points (voltages, power flows, etc.) for the power net-
work. For large-scale SOC-ACOPF problem, we prove analytically and numerically
that the proposed M-BDA is an efficient decentralized solution approach compared
with the centralized solution approach.

Chapter 4 solves two practical challenges of implementing DLMP: the computa-
tional challenge and the TSO-DSO coordination challenge. We propose the concept
of GBF which can be regarded as a unified communication format between TSO and
DSO. Considering the large-scale penetration of DERs, the proposed HED mechanism
relaxes the energy dispatch burden by assigning the dispatch task to multiple power
network operators i.e. TSO and DSO.

122
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Chapter 5 proposes a scenario decomposition based M-BDA to solve the challenge
of large number of wind power scenarios when using stochastic optimization to operate
the power network with VSC-MTDC system and FACTS devices. By using HPC, this
M-BDA approach combined with our designed parallel computing architecture shows
strong convergence capability and computational efficiency.

Chapter 6 finally uses SOC-ACOPF and M-BDA to coordinate the energy dispatch
of the super grid across the continent. We actually prove that SOC-ACOPF and M-
BDA can serve as the mathematical foundations of the proposed concept of PSHub
coordinating the energy dispatch of multiple nations or regions.

7.2 Future Work

The power network is expanding either to connect more renewable energy from remote
areas which may be far from the load centers, or to provide electricity for rural devel-
oping areas. The scale of resulted optimization model to operate the power network is
growing. Improving the accuracy and computational efficiency of the proposed SOC-
ACOPF models is one main direction of future research work. We are now working
on accurate linearization of the SOC-ACOPF model since linear programming is more
easier to solve.

The penetration of DERs in the distribution network is accelerating due to various
policy supports and technology advancements. Fully activating all possible flexibilities
from DERs by DLMP is very important to benefit the power network, producers and
consumers. There are still some unsolved problems in implementing DLMP such as the
market power issue. Investigating this issue is critical to provide insights and decision
supports for the policy makers. The market power issue in the context of DLMP can
be another direction of future research work.
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A Modified Benders Decomposition Algorithm to
Solve Second-Order Cone AC Optimal Power Flow

Zhao Yuan, Student Member, IEEE, and Mohammad Reza Hesamzadeh, Senior Member, IEEE

Abstract—This paper proposes to speed up solving large-
scale second-order cone AC optimal power flow (SOC-ACOPF)
problem by decomposition and parallelization. Firstly, we use
spectral factorization to partition large power network to multi-
ple subnetworks connected by tie-lines. Then a modified Benders
decomposition algorithm (M-BDA) is proposed to solve the SOC-
ACOPF problem iteratively. Taking the total power output of
each subnetwork as the complicating variable, we formulate the
SOC-ACOPF problem of tie-lines as the master problem and the
SOC-ACOPF problems of the subnetworks as the subproblems in
the proposed M-BDA. The feasibility and optimality (preserving
the original optimal solution of the SOC-ACOPF model) of the
proposed M-BDA are analytically and numerically proved. A
GAMS grid computing framework is designed to compute the
formulated subproblems of M-BDA in parallel. The numerical
results show that the proposed M-BDA can solve large-scale
SOC-ACOPF problem efficiently. Accelerated M-BDA by parallel
computing converges within few iterations. The computational
efficiency (reducing computation CPU time and computer RAM
requirement) can be improved by increasing the number of
partitioned subnetworks.

Index Terms—Optimal power flow, Network partitioning, Mod-
ified Benders decomposition, Feasibility and optimality proof,
Parallel computing.

NOMENCLATURE

Sets:
N Nodes or Buses.
L Lines.
K Networks.
Nk Nodes at subnetwork k.
Lk Lines at subnetwork k.
τ Tie-lines (lines connecting different subnetworks).
Nτ Nodes at the ends of tie-lines.
J Iterations.

Parameters:
A+
nl, A

−
nl Node to line incidence matrix.

Xl Reactance of line l.
Rl Resistance of line l.
Gn Shunt conductance at bus n.
Bn Shunt susceptance at bus n.
Pdn Active power demand at bus n.
Qdn Reactive power demand at bus n.
Kl Bound of active power loss of line l.
cl Partitioning cost of cutting line l.
C Cost matrix of network partition.
n̄, k̄ Cardinality of set N and set K.
CP+
dn

, CP−dn , Cvn, C
θ
n Penalty cost parameters.

The authors are with Electricity Market Research Group (EMReG), Depart-
ment of Electric Power and Energy Systems, School of Electrical Engineering,
KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden. Email:
yuanzhao@kth.se, mrhesamzadeh@ee.kth.se

Variables:
pn Active power generation at bus n.
qn Reactive power generation at bus n.
psl Active power flow at the sending end of line l.
qsl Reactive power flow at the sending end of line l.
pol Active power loss of line l.
qol Reactive power loss of line l.
vn Voltage magnitude at bus n (lower case).
vsl Voltage at the sending end of line l (lower case).
vrl Voltage at the receiving end of line l (lower case).
Vn Voltage magnitude square at bus n (upper case).
Vsl Voltage at the sending end of line l (upper case).
Vrl Voltage at the receiving end of line l (upper case).
θl Voltage phase angle difference of line l.
θsl Voltage phase angle at the sending end of line l.
θrl Voltage phase angle at the receiving end of line l.
M Network partition matrix.
CostM Objective of master problem.
CostSk,j Objective of subnetwork k at iteration j.
P sumk,j Total active power generation of subnetwork k

at iteration j
Qsumk,j Total reactive power generation of subnetwork k

at iteration j

I. INTRODUCTION

POWER network is, either historically or technically, par-
titioned into several zones or subnetworks to reduce the

complexity of operation, control or planning tasks [1], [2].
For example, Nord Pool operates the electricity market of
Sweden over four well-defined bidding areas from the north to
the south [3]. Ten regions (California, MISO, New England,
New York, Northwest, PJM, Southeast, Southwest, SPP and
Texas) of the USA power system are separately operated by the
corresponding independent system operators (ISOs) [4]. One
fundamental technical reason of operating the power system by
network partitions is that the dimension of the Hessian matrix
and Jacobian matrix during the iterations of the optimization is
reduced. It is then easier for the solver to address small-scale
optimization problems. Another advantage of decentralized
operation is that the optimal power flow (OPF) problems of
multiple subnetworks can be solved in a parallel manner. In
facing growing power network expansions and accelerating
penetrations of distributed energy resources (DERs) which
may exceed the capability of centralized operation, parallel
and decentralized operation could be a feasible solution [5].

Early research about the feasibility, applicability and com-
parison of decentralized OPF algorithms using auxiliary prob-
lem principle (APP), the predictor-corrector proximal multi-
plier method and alternating direction method are proposed or
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demonstrated by [6]–[8]. Decentralized approaches to solve
the OPF problem also include Lagrangian relaxation [9],
Benders decomposition (BD) [10], Dantzig-Wolfe decompo-
sition [11] and Alternating Direction Method of Multipliers
(ADMM) [12]. A comprehensive summary of distributed
algorithms for optimization and control of power system can
be found in [1]. Lagrangian relaxation approach relaxes the
coupling constraints between the subnetworks and generally
only approximated solutions can be guaranteed [9]. BD and
Dantzig-Wolfe decomposition require to firstly formulate the
master problem and subproblem, and then iterate until the
solutions (of the master problem and subproblem) converge
[10], [11]. BD is widely used to solve the security constrained
unit commitment (SCUC) problem and transmission expansion
planning (TEP) problem which are expanded applications
of OPF [13]–[15]. In SCUC and TEP, mostly the integer
variables are taken as the complicating variables to formulate
the master problem and subproblem of BD [13]–[15]. Message
exchanges among the subnetworks are required by ADMM
[12]. Generally, when more subnetworks are partitioned, more
iterations are required for ADMM to converge [12]. Reference
[16] investigates three ADMM-based decentralized DCOPF
solution algorithm with different communication strategies. It
shows numerically that the convergence performance can be
improved by enhancing the data exchange with the central con-
troller (or coordinator). The network partitioning approach is
also important for the convergence performance [16]. Authors
in [17] solve the stochastic second-order cone programming
(SOCP) based ACOPF by ADMM for radial distribution
networks. The updates of the variables and multipliers are
decomposed by each node and each scenario. As a result, it
requires large number of iterations to converge (over 3000 iter-
ations are required for a 50-node test case with 500 scenarios)
[17]. Using ADMM, a comprehensive investigation of decom-
posing nonconvex ACOPF down to the individual node level
is conducted by [5]. The results show that convergence speed
of ADMM largely depends on test cases. The nonconvexity
of ACOPF also requires a suitable selection of the penalty
factors of ADMM to guarantee the convergence [5]. Reference
[18] proposes a parametric quadratic programming approach
to solve the regional correction equation in the proposed
fully distributed interior point method (F-DIPM) to solve
ACOPF. The power network is partitioned to several regions
geographically. Then boundary variables associated with the
tie-lines are duplicated for each region. A unidirectional ring
communication is employed to transmit the information about
boundary variables during each Newton-Raphson iteration.
Various test cases show the robust convergence of F-DIPM.
Authors in [19] use ADMM to solve the semi-definite rogram-
ming (SDP) based relaxed ACOPF model for the formulated
unbalanced microgrid. The fast convergence of ADMM over
sub-gradient based method is demonstrated by test cases of the
IEEE37-node feeder partitioned to four areas and a 10-node
microgrid partitioned to three areas in [19]. As a improvement,
we consider much larger power networks in this paper. By
deriving and proving the closed form solutions for the OPF
subproblems, [20] speed up the convergence of ADMM for
radial distribution networks. Both mesh and radial power

networks are addressed in this paper.
Graph theory shows that the network-partitioning problem is

NP-hard [21], [22]. Accordingly, various heuristic approaches
such as geometric approach and flow-based approach have
been proposed to solve the network-partitioning problem [21].
Authors in [23] define the electrical distance based on the
network admittance parameter and then use it as a measure to
distinguish strongly connected buses from weakly connected
buses. The electrical distance between the buses within each
partitioned zone are minimized while the electrical distance
between buses of different partitioned zones are maximized in
the multi-attribute network partitioning problem [23]. Refer-
ence [2] improves the Modularity Index in the community-
detection based network-partition algorithm such that both
network topology and reactive power capability are taken
into account. The goal in [2] is to control the zonal voltage
of distribution network using a parallel processing approach.
Authors in [24] show promising advantages of solving ACOPF
by decomposing the optimality conditions. The effects of
network partitioning on the computation efficiency are also
investigated in [24]. However, the proposed intelligent network
partitioning method in [24] requires to first solve the ACOPF
problem. Considering the complexity of different network-
partitioning methods, we use spectral factorization [25] to
partition the power networks in this paper.

Two challenges can be identified to solve the large-scale
SOC-ACOPF problem in a decentralized way: (1) How to de-
compose the problem efficiently? The problem-decomposition
algorithm should be computationally fast; (2) How to ef-
ficiently coordinate the objectives of the decomposed sub-
problems such that the final solutions converge to global
optimality? Here, the global optimality means the SOC-
ACOPF problem is solved in a single programming model.
Accordingly, the main contributions of this paper are:

1) A modified Benders decomposition algorithm (M-BDA)
based on network partitions is proposed for solving
large-scale SOC-ACOPF problem. The computation is
accelerated by parallel computing;

2) The feasibility of the proposed M-BDA is analytically
and numerically proved. Since the proposed M-BDA is
modified from the original Benders decomposition, the
feasibility proof of M-BDA is provided. We also prove
that the original optimal solution of the SOC-ACOPF
model is preserved by the proposed M-BDA.

The proposed solution algorithm (based on network parti-
tions, M-BDA and parallel computing) provides an efficient
framework to speed up large-scale SOC-ACOPF computations.
As an important contribution, there is no message exchange
requirement among the subnetworks in the proposed approach.
Our decomposition approach also requires few number of
iterations to converge for the test cases in this paper and it is
robust to the number of partitioned subnetworks. The rest of
this paper is organized as follows. Section II explains the SOC-
ACOPF model. Section III presents the network partitioning
approach based on spectral factorization. Section IV details
the formulations of M-BDA. The feasibility and optimality
of the formulated master problem and subproblem in M-
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BDA is analytically proved. The parallel computing structure
to accelerate the proposed M-BDA is also designed in this
section. Section V discusses numerical results for various
IEEE test cases and power network partitions. The power
network partitions based on spectral factorization are also
plotted. Section VI concludes.

II. THE SOC-ACOPF MODEL

The SOC-ACOPF model, as a convex relaxation of the
nonconvex ACOPF model, is summarized here in (1) [26].
The convexity, accuracy and applicability of this model have
been proved by our work in [26]. The objective function (1a)
can be any convex function of the decision variables.

Minimize
Ω

f(pn, qn, pol , qol) (1a)

subject to

pn − Pdn =
∑

l

(A+
nlpsl −A−nlpol) +GnVn, ∀n ∈ N (1b)

qn −Qdn =
∑

l

(A+
nlqsl −A−nlqol)−BnVn, ∀n ∈ N (1c)

Kl ≥ pol ≥
p2
sl

+ q2
sl

Vsl
Rl, ∀l ∈ L (1d)

polXl = qolRl, ∀l ∈ L (1e)
Vsl − Vrl = 2Rlpsl + 2Xlqsl −Rlpol −Xlqol , ∀l ∈ L (1f)
zhl = Xlpsl −Rlqsl , ∀l ∈ L (1g)

zhl > vminml
zθl + zminθl

vml − vminml
zminθl

, ∀l ∈ L (1h)
zhl > vmaxml

zθl + zmaxθl
vml − vmaxml

zmaxθl
, ∀l ∈ L (1i)

zhl 6 vminml
zθl + zmaxθl

vml − vminml
zmaxθl

, ∀l ∈ L (1j)

zhl 6 vmaxml
zθl + zminθl

vml − vmaxml
zminθl

, ∀l ∈ L (1k)

vml > vminsl
vrl + vminrl

vsl − vminsl
vminrl

, ∀l ∈ L (1l)
vml > vmaxsl

vrl + vmaxrl
vsl − vmaxsl

vmaxrl
, ∀l ∈ L (1m)

vml 6 vminsl
vrl + vmaxrl

vsl − vminsl
vmaxrl

, ∀l ∈ L (1n)

vml 6 vmaxsl
vrl + vminrl

vsl − vmaxsl
vminrl

, ∀l ∈ L (1o)

zθl > cos(
θmaxl

2
)(θl +

θmaxl

2
)− sin(

θmaxl

2
), ∀l ∈ L (1p)

zθl 6 cos(
θmaxl

2
)(θl −

θmaxl

2
) + sin(

θmaxl

2
), ∀l ∈ L (1q)

Vn ≥ v2
n, ∀n ∈ N (1r)

Vn ≤ (vmaxn + vminn )vn − vmaxn vminn , ∀n ∈ N (1s)

V minn ≤ Vn ≤ V maxn , ∀n ∈ N (1t)

pminn ≤ pn ≤ pmaxn , ∀n ∈ N (1u)

qminn ≤ qn ≤ qmaxn , ∀n ∈ N (1v)

Where Ω = {pn, qn, psl , qsl , pol , qol , Vn, θl} ∈ < is the set
of decision variables. zhl , zθl and vml are the introduced
auxiliary variables to derive the SOC-ACOPF model. Equa-
tions (1b) and (1c) represent the active and reactive power
balance. A+

nl and A−nl are incidence matrix of the network
with A+

nl = 1, A−nl = 0 if n is the sending end of line l
and A+

nl = −1, A−nl = 1 if n is the receiving end of line
l. Constraints (1d)-(1e) represent active power and reactive
power loss. Constraint (1d) is the convex relaxation of the
active power loss by rotated cone. The left side of (1d) bounds

pol (which equivalently bounds capacity of line l). Vsl = v2
sl

and Vrl = v2
rl

are voltage magnitude squares. θl = θsl − θrl
is the voltage phase angle difference of line l. Constraints
(1g)-(1s) are convex hulls of the nonconvex AC power flow
constraint vslvrl sin θl = Xlpsl−Rlqsl . (1g)-(1s) are valid for
0 < θmaxl < π

2 and positive V minn , V maxn parameters. Note the
term s in psl , qsl , vsl , Vsl is not an index but only to imply
the meaning of sending end of line l. The term r in vrl , Vrl is
not an index but only to imply the meaning of receiving end
of line l. The term d in Pdn , Qdn is not an index but only to
imply the meaning of power demand. Similar reasoning holds
for the term o in pol , qol which is to denote the meaning of
power loss, the term h in zhl which is to denote the meaning of
convex hull, the term θ in zθl which is to denote the meaning of
auxiliary variable related to phase angle, and the term m in vml
which is to denote the meaning of auxiliary variable related
to voltage. Compared with the SOCP-based ACOPF model in
[27] which is valid for only radial power networks (since the
model does not include constraints related with voltage phase
angle variables), our model (1) is valid for both mesh and
radial power networks. In section V of this paper, we give
numerical comparisons and more explanations of our SOC-
ACOPF model and the model in [27].

III. POWER NETWORK PARTITIONING

Power network topology can be always equivalently rep-
resented by a graph G = (N,L) with a vertex set N
denoting the nodes or buses and an edge set L denoting the
lines or branches. This implies we can use graph-partitioning
algorithms to partition a power network. A k̄ partition of N
defines k̄ disjoint subsets of N as P = {N1, N2, ..., Nk̄}. If
the partitioning cost of cutting line l (allocating the ends of
the line to two separate subnetworks) is cl, the total cost of
partition P is C(P ) =

∑
l∈τ cl where τ is the set of lines

with nodes belonging to different subnetworks i.e. the set of
tie-lines. Higher cl means higher possibility that line l is to
be kept in one subnetwork (if we minimize the total cost of
partitioning). There can be various strategies to set cl. If all cl
parameters are equal, the network partitioning algorithm will
result in least number of tie-lines. In this paper, we set cl = 1
for all lines in order to obtain minimal number of tie-lines after
the network partitioning. The network partitioning problem is
formulated in (2) [25]:

Maximize
M

trace
(
MTCM

)
(2a)

subject to ‖M‖F =
√
n̄ (2b)

MTM ≤ εIk̄k̄ (2c)
Mnk ∈ {0, 1} , n = 1, ..., n̄, k = 1, ..., k̄ (2d)

where M is n̄× k̄ orthogonal k̄-partition matrix with Mnk =
1 if n ∈ Nk and Mnk = 0 if n /∈ Nk. ‖M‖F =√
trace (MTM) is Frobenius norm. Constraint (2b) is valid

because M is a k̄-partition matrix if and only if each row of
M is the canonical basic of Rk [25]. C is the n̄ × n̄ cost
matrix of the network. Cin = cl if i and n are the connecting
nodes of line l. Cin = 0 if i and n are not the connecting
nodes of line l. The Ik̄k̄ is k̄ × k̄ unit matrix. Constraint
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(2c) models an ε-bounded partition (the maximum number
of nodes of all subnetworks to be partitioned is ε). C, Ik̄k̄
and ε are the parameters of optimization problem (2). The
objective is to minimize the total cost of partitioning. This is
valid because C(P ) = In̄

TCIn̄ − trace
(
MTCM

)
[25]. The

network partitioning problem (2) can be solved approximately
by the spectral factorization algorithm proposed in [25]. We
show in Section V that even by using the approximated
solutions of network partitioning problem (2), the computation
efficiency of SOC-ACOPF can still be improved. Please note
by using this power network partitioning algorithm, we are not
re-organizing the current operational setting of geographically
partitioned power network which already exists. This power
network partitioning algorithm is executed in the computer and
the aim is to solve large-scale SOC-ACOPF problem more
efficiently when centralized solution approach requires much
computational time and computer RAM capacity.

IV. PROPOSING M-BDA AND THE PARALLEL COMPUTING

The SOC-ACOPF model explained in Section II is used
here to formulate the M-BDA. The key contribution is that
we decompose SOC-ACOPF by taking the total power gen-
eration of each subnetwork as the complicating variable in
formulating the proposed M-BDA. This formulation shows
very fast convergence performance. We first decompose the
large-scale power network to k̄ subnetworks using the power
network partitioning algorithm described in Section III. The
SOC-ACOPF of each subnetwork is taken as a subproblem
in the proposed M-BDA. The subproblem k of the proposed
M-BDA is formulated in (3).

CostSk,j = Minimize
∑

∀n∈Nk,l∈Lk
f(pgn , qgn , pol , qol) (3a)

subject to (1b)− (1v), ∀n ∈ Nk, l ∈ Lk (3b)∑

n∈Nk
pn = P sumk,j : µPk,j , ∀k ∈ K, j ∈ J

(3c)∑

n∈Nk
qn = Qsumk,j : µQk,j , ∀k ∈ K, j ∈ J

(3d)

Where (3b) refers to the power flow constraints for all lines
and nodes located in subnetwork k. Nk and Lk are the sets of
nodes and lines located in the subnetwork k. P sumk,j and Qsumk,j

are the solutions of subnetwork total power generation from
the master problem of the proposed M-BDA in iteration j. µPk,j
and µQk,j are the dual variables for corresponding constraints
used for constructing Benders cuts. To guarantee the feasibility
of all the subproblems in M-BDA, we allow load increments
or decrements for all the nodes in the network. Thus the power
balance constraints (1b)-(1c) in (3b) are modified as:

pn − Pdn = ∆P+
dn
−∆P−dn +

∑

l∈Lk
(A+

nlpsl −A−nlpol)

+GnVn, ∀n ∈ Nk, l ∈ Lk (3e)

qn −Qdn = ∆Q+
dn
−∆Q−dn +

∑

l∈Lk
(A+

nlqsl −A−nlqol)

−BnVn, ∀n ∈ Nk, l ∈ Lk (3f)

Where non-negative variables ∆P+
dn

and ∆Q+
dn

are the load
increments. Non-negative variables ∆P−dn and ∆Q−dn are the
load decrements. The load increments and decrements are
penalized in the objective function using the penalty param-
eters CP+

dn
, CP−dn , CQ+

dn
and CQ−dn . Note the solutions of tie-

line variables are obtained by solving the formulated master
problem (4) of M-BDA. To force the solutions of tie-line
voltage variables to be same as the solutions from the master
problem (4), we also include penalty terms for the tie-line
voltage variables in the objective function of the subproblem.
Cvn, C

θ
n are positive penalty parameters. Minimizing quadratic

objective function over a convex feasible region is a convex
optimization problem. This is formulated as:

CostSk,j = Minimize
∑

∀n∈Nk,l∈Lk
f(pn, qn, pol , qol)

+
∑

n∈Nk
(CP+

dn
∆P+

dn
+ CP−dn ∆P−dn

+ CQ+
dn

∆Q+
dn

+ CQ−dn ∆Q−dn)

+
∑

n∈Nk∩Nτ ,j∈J
[Cvn(vn − vMn,j)2

+ Cθn(θn − θMn,j)2] (3g)

Where vMn,j , θ
M
n,j are the voltage and phase angle solutions

from the master problem (4) at iteration j. Although some
load increments or decrements may exist at the beginning of
the iterations, the final solution of the proposed M-BDA does
not have these increments or decrements. This is because the
cost of these increments and decrements are very high and
they will iteratively converge to zero. Our simulations show
that this method is more efficient to guarantee the feasibility
of the subproblems than using the feasibility cut approach in
the original Benders decomposition (the MOSEK solver can
not converge after several hours for the test cases in our paper
when using the original feasibility cut approach. we believe
the numerical failure of MOSEK using the original Benders
feasibility cuts approach is because the infeasible region of
the SOC-ACOPF is very complex and hard to be removed by
the feasibility cuts).

The master problem of the proposed M-BDA is formulated
in (4):

Minimize CostM =
∑

k∈K
CostSk (4a)

subject to (1b)− (1v), ∀l ∈ τ (4b)

CostSk ≥ CostSk,j−1 + µPk,j−1

(
P sumk,j − P sumk,j−1

)

+ µQk,j−1

(
Qsumk,j −Qsumk,j−1

)
, ∀k ∈ K, j ∈ J (4c)

Where (4b) refers to the power flow constraints of all the tie-
lines. P sumk,j−1 and Qsumk,j−1 are the decisions of the previous
iteration which are considered as parameters in the current
iteration. The decisions of P sumk,j and Qsumk,j are made in
the master problem (4) by considering the expanding Ben-
ders cuts (4c) and tie-line constraints (4b). We model each
subnetwork as a single virtual node in the master problem.
This is conceptually illustrated in Fig. 2, 3 and 4 in Section
V. Constraints (4c) are Benders cuts from the subproblems.
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µPk,j−1 and µQk,j−1 are dual variable solutions of equations
(3c)-(3d) in subnetwork k at the previous iteration j − 1. As
the iterations proceed, more Benders cuts from solving the
subproblems are iteratively included into the master problem.
After solving the master problem, all the subproblems can be
solved in parallel. The proposed parallel computing structure
using the proposed M-BDA is illustrated in Fig. 1. The
master problem is responsible for giving solutions of tie-line
power flows and lower bound of the objective function. The
solutions of subnetwork power flows and upper bound of the
objective function are given by the subproblems. There is
no communication requirement between the subproblems. In
each iteration, firstly the master problem is solved and then
all the subproblems are solved in parallel. Since we assign
the same partitioning cost cl to all lines, the number of tie-
lines of the network partitions are minimized which in turn
minimizes the size of the master problem. We summarize the
parallel computing management algorithm in Algorithm 1. The
parallelization of the subproblems include one Parallel Loop
which generates threads of all the subproblems and one Collect
Loop which repeatedly checks the status of the threads and
stores the solutions when available. To avoid overloading of
the computer disk capacity, the subproblem thread Thread-k
is released after the solutions are collected.

Large-Scale Power Network

Subnetwork-1

ACOPF

Subnetwork-k

ACOPF

Master

Problem
Subproblem-1 Subproblem-k

Thread-1 Thread-k

Tie-Line

Partition

Benders’

Cuts

Benders’

Cuts
Thread-m

1, 1,
,

sum sum

j jP Q
, ,
,

sum sum

k j k jP Q

Fig. 1. The proposed parallel computing structure using M-BDA

Theorem 1. If the original SOC-ACOPF model (without
decomposition) is feasible, the formulated master problem (4)
of the proposed M-BDA is feasible.

Proof. We prove theorem 1 by mathematical induction. We
prove firstly the formulated master problem (4) is feasible at
iteration j = 1. Afterwards, we prove for any iteration j

′ ∈ J ,
if the formulated master problem (4) is feasible for j = j

′

then it is feasible for the next iteration j = j
′
+ 1.

Step 1: The formulated master problem (4) is feasible for
j = 1. We prove this by constructing one feasible solution for
the formulated master problem (4) of the proposed M-BDA.
Assume Ω0 = {pn,0, qn,0, psl,0 , qsl,0 , pol,0 , qol,0 , vn,0, θl,0} ∈
< is one feasible solution of the original SOC-ACOPF model,
Ω0 is also feasible for constraints (4b) in the master problem
(4) of the proposed M-BDA. Note it is not necessarily required
that the feasible solution Ω0 is optimal for the original SOC-
ACOPF model.

We construct the feasible solution P sumk,j,0 , Q
sum
k,j,0, P

sum
k,j−1,0

Algorithm 1: Parallel Computing Management Algorithm
Initialization: j = 1;
do

Generate SOC-ACOPF model (4) for the tie-lines:
SOC-ACOPF-Master;

Assign SOC-ACOPF-Master to Thread-m;
Execute Thread-m;
Broadcast P sumk,j and Qsumk,j to Thread-k for k ∈ K;
k = 1;
do

Generate SOC-ACOPF model (3) for the
subnetwork-k: SOC-ACOPF-k;

Assign SOC-ACOPF-k to Thread-k;
k = k + 1;

while k < kmax;
do

if thread-k is ready then
Collect Solutions from Thread-k;
Send CostSk,j , µ

P
k,j and µQk,j to Thread-m;

Release Thread-k;
while SOC-ACOPF thread is nonempty;
j = j + 1 ;

while
∑
k∈K CostSk,j−CostM∑

k∈K CostSk,j
> 2% and j < jmax;

Release Thread-m;

and Qsumk,j−1,0 as:

P sumk,j,0 =
∑

n∈Nk
pn,0 (5a)

Qsumk,j,0 =
∑

n∈Nk
qn,0 (5b)

P sumk,j−1,0 =
∑

n∈Nk
pn,0 (5c)

Qsumk,j−1,0 =
∑

n∈Nk
qn,0 (5d)

If we use Ω0, P
sum
k,j,0 , Q

sum
k,j,0, P

sum
k,j−1,0 and Qsumk,j−1,0, then con-

straint (4c) becomes:

CostSk ≥ CostSk,j−1 + µPk,j−1

(
P sumk,j,0 − P sumk,j−1,0

)

+ µQk,j−1

(
Qsumk,j,0 −Qsumk,j−1,0

)
, ∀k ∈ K (5e)

Which is:

CostSk ≥ CostSk,j−1, ∀k ∈ K (5f)

No matter what values µPk,j−1 and µQk,j−1 are chosen at
j = 1, constraint (5f) is always feasible since we do not have
upper bound for CostSk . The feasible objective solution is:

CostM,0 = Min[
∑

k∈K
CostSk ] =

∑

k∈K
CostSk,j−1 (5g)

Which is actually the lower bound of the non-negative term∑
k∈K Cost

S
k,j−1. Thus we successfully construct a feasible

solution of the master problem as Ω0, P
sum
k,j,0 , Q

sum
k,j,0 with

objective value of CostM,0. This means the master problem
is feasible for j = 1.
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Step 2: If the formulated master problem (4) is feasible
for j = j

′
, then it is feasible for j = j

′
+ 1. We prove this

step by showing that there is at least one feasible solution for
iteration j = j

′
+1 which can always be constructed by using

the feasible solution for j = j
′
. Suppose one feasible solution

for iteration j = j
′

is Ωj′ , P
sum
k,j′ ,0

, Qsum
k,j′ ,0

with master problem

and subproblem objective values as CostM,j
′
,0, CostS,j

′
,0

k .
We construct the feasible solution for j = j

′
+ 1 as:

P sum
k,j′+1,0

= P sum
k,j′ ,0 (5h)

Qsum
k,j′+1,0

= Qsum
k,j′ ,0 (5i)

The added Benders cut at iteration j = j
′
+ 1 is:

CostSk ≥ CostSk,j′ + µP
k,j′

(
P sum
k,j′+1,0

− P sum
k,j′ ,0

)

+ µQ
k,j′

(
Qsum
k,j′+1,0

−Qsum
k,j′ ,0

)
, ∀k ∈ K (5j)

Or equivalently:

CostSk ≥ CostSk,j′ , ∀k ∈ K (5k)

We show in following that no matter what value CostS
k,j′

takes, we can always construct a feasible solution for the
master problem (4). If there exists:

CostS
k,j′ ≥ Cost

S,j
′
,0

k , ∀k ∈ K (5l)

The feasible solution of CostSk for j = j
′

+ 1 is CostS
k,j′

.

Accordingly, feasible objective solution is CostM,j
′
+1,0 =∑

k∈K Cost
S
k,j′

.

Otherwise, if there exists k ∈ K ′ ⊂ K such that:

CostS
k,j′ ≤ Cost

S,j
′
,0

k , ∀k ∈ K ′ ⊂ K (5m)

We replace these CostSk by CostS,j
′
,0

k (∀k ∈ K ′ ⊂ K). The
feasible solution of CostSk is

{
CostS

k,j′
,∀k /∈ K ′ ⊂ K

}
∪{

CostS,j
′
,0

k ,∀k ∈ K ′ ⊂ K
}

. Accordingly, the feasible objec-

tive solution of the master problem (4) for iteration j = j
′
+1

is:

CostM,j
′
+1,0 =

∑

k/∈K′⊂K
CostS

k,j′ +
∑

k∈K′⊂K
CostS,j

′
,0

k

(5n)

Combining Step 1 and Step 2, we have proven that the
formulated master problem (4) is always feasible as long as
the original SOC-ACOPF model is feasible.

Theorem 2. If the original SOC-ACOPF model (without de-
composition) is feasible, the necessary and sufficient condition
for the feasibility of the formulated subproblem (3) of the
proposed M-BDA is:

∑

n∈Nk
pminn ≤ P sumk,j ≤

∑

n∈Nk
pmaxn , ∀k ∈ K, j ∈ J (6a)

∑

n∈Nk
qminn ≤ Qsumk,j ≤

∑

n∈Nk
qmaxn , ∀k ∈ K, j ∈ J (6b)

Proof. We firstly prove (6) is necessary for the feasibility of
subproblem (3) i.e. if subproblem (3) is feasible then (6) holds.
Suppose the feasible solution of subproblem (3) at iteration
j ∈ J is Ωj = {pn,j , qn,j , psl,j , qsl,j , pol,j , qol,j , vn,j , θl,j} ∈
<, from (3c)-(3d) of (3) we have:

∑

n∈Nk
pn,j = P sumk,j , ∀k ∈ K, j ∈ J (7a)

∑

n∈Nk
qn,j = Qsumk,j , ∀k ∈ K, j ∈ J (7b)

Ωj is feasible for constraints (4b) of (4), so:

pminn ≤ pn,j ≤ pmaxn , ∀n ∈ Nk (7c)

qminn ≤ qn,j ≤ qmaxn , ∀n ∈ Nk (7d)

Obviously,
∑

n∈Nk
pminn ≤

∑

n∈Nk
pn,j ≤

∑

n∈Nk
pmaxn (7e)

∑

n∈Nk
qminn ≤

∑

n∈Nk
pn,j ≤

∑

n∈Nk
qmaxn (7f)

From (7a)-(7b) and (7e)-(7f), the expression (6) holds.
Next, we prove (6) is sufficient for the feasibility of subprob-

lem (3) i.e. if (6) holds, subproblem (3) is feasible. Again, we
assume Ω0 = {pn,0, qn,0, psl,0 , qsl,0 , pol,0 , qol,0 , Vn,0, θl,0} ∈
< is one feasible solution of the original SOC-ACOPF model.
Obviously, {psl,0 , qsl,0 , pol,0 , qol,0 , vn,0, θl,0} is feasible for
constraints (1d)-(1v) in constraint (3b) of (3). The remaining
constraints are (1b)-(1c) (which are modified as (3e)-(3f))
and (3c)-(3d). We construct the feasible solution of pn, qn at
iteration j as pn,j , qn,j :

pn,j = pn,0 + ∆P+
dn
−∆P−dn , ∀n ∈ Nk, l ∈ Lk (7g)

qn,j = qn,0 + ∆Q+
dn
−∆Q−dn , ∀n ∈ Nk, l ∈ Lk (7h)

Substitute (7g)-(7h) in (3e)-(3f), we have:

pn,0 + ∆P+
dn
−∆P−dn − Pdn = ∆P+

dn
−∆P−dn +GnVn,0

+
∑

l∈Lk
(A+

nlpsl,0 −A−nlpol,0), ∀n ∈ Nk, l ∈ Lk (7i)

qn,0 + ∆Q+
dn
−∆Q−dn −Qdn = ∆Q+

dn
−∆Q−dn −BnVn,0

+
∑

l∈Lk
(A+

nlqsl,0 −A−nlqol,0), ∀n ∈ Nk, l ∈ Lk (7j)

Or equivalently:

pn,0 − Pdn =
∑

l

(A+
nlpsl,0 −A−nlpol,0)

+GnVn,0, ∀n ∈ Nk, l ∈ Lk (7k)

qn,0 −Qdn =
∑

l

(A+
nlqsl,0 −A−nlqol,0)

−BnVn,0, ∀n ∈ Nk, l ∈ Lk (7l)

Which are feasible since Ω0 is a feasible solution. To con-
struct the feasible solutions of the power load increments or
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decrements variables, we consider feasibility of the constraints
(3c)-(3d):

∑

n∈Nk
pn,j =

∑

n∈Nk
(pn,0 + ∆P+

dn
−∆P−dn)

= P sumk,j , ∀k ∈ K, j ∈ J (7m)
∑

n∈Nk
qn,j =

∑

n∈Nk
(qn,0 + ∆Q+

dn
−∆Q−dn)

= Qsumk,j , ∀k ∈ K, j ∈ J (7n)

Since (6) holds, we can express P sumk,j and Qsumk,j as:

P sumk,j = λPk,j
∑

n∈Nk
pmaxn + (1− λPk,j)

∑

n∈Nk
pminn (7o)

Qsumk,j = λQk,j

∑

n∈Nk
qmaxn + (1− λQk,j)

∑

n∈Nk
qminn (7p)

Where 0 ≤ λk,j ≤ 1. Similarly, we can express pn,0, qn,0 as:

pn,0 = λPn,0p
max
n + (1− λPn,0)pminn (7q)

qn,0 = λQn,0q
max
n + (1− λQn,0)qminn (7r)

Where 0 ≤ λn,0 ≤ 1. By which we can construct the feasible
solution of ∆P+

dn
,∆P−dn ,∆Q

+
dn

and ∆Q−dn . If λPk,j ≥ λPn,0
and λQk,j ≥ λ

Q
n,0, we have:

∆P+
dn

= (λPk,j − λPn,0)(pmaxn − pminn ), ∀n ∈ Nk (7s)

∆P−dn = 0, ∀n ∈ Nk (7t)

∆Q+
dn

= (λQk,j − λ
Q
n,0)(qmaxn − qminn ), ∀n ∈ Nk (7u)

∆Q−dn = 0, ∀n ∈ Nk (7v)

Otherwise If λPk,j < λPn,0 or λQk,j < λQn,0, then:

∆P+
dn

= 0, ∀n ∈ Nk (7w)

∆P−dn = (λPn,0 − λPk,j)(pmaxn − pminn ), ∀n ∈ Nk (7x)

∆Q+
dn

= 0, ∀n ∈ Nk (7y)

∆Q−dn = (λQn,0 − λQk,j)(qmaxn − qminn ), ∀n ∈ Nk (7z)

(7s)-(7z) guarantee the non-negativity of variables
∆P+

dn
,∆P−dn ,∆Q

+
dn
,∆Q−dn , the feasibility of (3c)-(3d)

(equality) as well as the feasibility of pn,j and qn,j expressed
in (7g)-(7h) (satisfying the constraints (1u)-(1v)).

Theorem 3. If the original SOC-ACOPF model (without
decomposition) is feasible and condition (6) holds, the optimal
solution of the original SOC-ACOPF model is preserved by
the proposed M-BDA.

Proof. Since the convergence of M-BDA is guaranteed by
the convexity of the SOC-ACOPF model which has been
proved by [10], the remaining task is to prove the convergent
optimal solution of M-BDA is exactly the optimal solution
of the original SOC-ACOPF model. The proof of Theorem 3
is straightforward based on the Theorem 1 and Theorem 2.
Note we have actually proved in Theorem 1 that any feasible
solution of the original SOC-ACOPF model is also feasible
for the formulated master problem (4) of M-BDA. We denote
the optimal solution of the original SOC-ACOPF model as
Ω∗ = {pn,∗, qn,∗, psl,∗ , qsl,∗ , pol,∗ , qol,∗ , Vn,∗, θl,∗} ∈ <. Since

Ω∗ is also feasible for the original SOC-ACOPF model, we
can set the feasible solutions Ω0 used in the proof of Theorem
1 as:

Ω0 = Ω∗ (8a)

Again, we can use mathematical induction to prove Ω∗ is
always feasible for the master problem (4). Firstly, we prove
Ω∗ is feasible for the master problem (4) at iteration j = 1.
According to the Step 1 of the proof for Theorem 1, if
we set Ω0 = Ω∗, we can construct the feasible solution
P sumk,j,∗ , Q

sum
k,j,∗, P

sum
k,j−1,∗ and Qsumk,j−1,∗ as:

P sumk,j,∗ =
∑

n∈Nk
pn,∗ (8b)

Qsumk,j,∗ =
∑

n∈Nk
qn,∗ (8c)

P sumk,j−1,∗ =
∑

n∈Nk
pn,∗ (8d)

Qsumk,j−1,∗ =
∑

n∈Nk
qn,∗ (8e)

Same reasoning through the Step 1 of the proof for Theorem
1, we can prove Ω∗, P sumk,j,∗ , Q

sum
k,j,∗ is feasible for the master

problem (4) at iteration j = 1. Then we prove Ω∗ is feasible
for the master problem (4) at iteration j = j

′
+ 1 if Ω∗ is

feasible at iteration j = j
′
. Since Ω∗ is feasible at iteration

j = j
′
, at Step 2 of the proof for Theorem 1, we can set:

Ωj′ = Ω∗ (8f)

P sum
k,j′ ,0 = P sum

k,j′+1,0
=
∑

n∈Nk
pn,∗ (8g)

Qsum
k,j′ ,0 = P sum

k,j′+1,0
=
∑

n∈Nk
qn,∗ (8h)

Same reasoning through Step 2 of the proof for Theorem 1,
we can prove Ω∗ is feasible for the master problem (4) at
iteration j = j

′
+ 1. Up to now, we have proved Ω∗ is always

feasible for the master problem (4).
Next, we prove Ω∗ is the optimal convergent solution of

M-BDA by contradiction. Suppose the convergent solution of
M-BDA is Ω′ 6= Ω∗. Since Ω∗ is the optimal solution of the
original SOC-ACOPF model, we have:

∑

k∈K
CostS∗k <

∑

k∈K
CostS

′
k = CostM

′
(8i)

Where CostS∗k is the optimal objective solution for the
subproblem (3) using Ω∗. CostS

′
k is the convergent optimal

objective solution for the subproblem (3) using Ω′ . CostM
′

is the convergent optimal objective solution for the master
problem (4). Because we have proved Ω∗ is always feasible
for the master problem (4) (and thus still feasible when M-
BDA converges), and we know:

CostM∗ < CostM
′

(8j)

Where CostM∗ is the feasible objective solution for the master
problem (4) using Ω∗. Relationship expressed by (8j) contra-
dicts with the assumption that CostM

′
is the optimal objective

solution of the master problem (4) (Ω′ is the convergent
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optimal solution). Thus Ω′ 6= Ω∗ cannot hold. The convergent
optimal solution must be Ω∗. Note it is not required that Ω∗
is feasible for all iterations of the subproblem (3). As long
as the master problem (4) can converge to Ω∗ and gives
P sumk,j,∗ =

∑
n∈Nk pn,∗, Q

sum
k,j,∗ =

∑
n∈Nk qn,∗ as parameters

to the subproblem (3) (in the final iterations of M-BDA), the
final convergent optimal solution is Ω∗.

V. NUMERICAL RESULTS

All computations are run on a computer with 2.4GHz CPU
and 8GB RAM. We use the power network data from MAT-
POWER directly [28]. The network partitioning algorithm is
implemented in MATLAB [25]. The GAMS Grid Computing
Facility [29] is employed for implementing the proposed
parallel computing.

A. Comparison of SOC-ACOPF models

To compare our SOC-ACOPF model with the SOCP-based
ACOPF model in [27], we implement both models in GAMS
and solve the models for various IEEE test cases by MOSEK
solver. Note we implement the active power loss constraint
(1d) in GAMS coding of the SOC-ACOPF model which is
different from the implementation in our work in [26]. Accord-
ingly, there are some minor numerical differences compared
with the results in [26]. As benchmarks of the comparisons,
we use the results from MATPOWER which gives local
optimal solutions of the nonconvex ACOPF model and the
results from LINDOGLOBAL solver in GAMS which can
give global optimal solutions of the nonconvex ACOPF model.
MATPOWER uses MATLAB built-in Interior Point Solver
(MIPS) to solve nonconvex ACOPF. The LINDOGLOBAL
solver employs branch-and-cut methods to find the global
optimal solution. If a solution is not found, we denote the
corresponding result as ’NA’.

The results are listed in Table I. For all test cases, our
SOC-ACOPF model can give very close results compared
with LINDOGLOBAL. Compared to MATPOWER and LIN-
DOGLOBAL results, the objective value of IEEE14-bus from
our SOC-ACOPF model is bit higher. The reason of this is
that the voltage phase angle constraint 0 < θl <

π
2 is included

in our SOC-ACOPF model (this constraint is required by the
convex envelopes expressed by constraint (1g) to (1q)) while
this is not necessary for the nonconvex ACOPF model in
MATPOWER and GAMS solved by LINDOGLOBAL (the
reason can also be due to numerical accuracy tolerance differ-
ences of different solvers). For IEEE300-bus, 1354pegase and
2869pegase, LINDOGLOBAL cannot solve these test cases
since the model scale exceed the limit of LINDOGLOBAL.
In these test cases, we compare the results with MATPOWER
which are still very close to our results. It is worth to mention
that the results of mesh power networks from the model in [27]
are much relaxed solutions since this model does not include
constraints related to voltage phase angle. It can be seen from
the results in Table I that lower objective values are obtained
from the model in [27] compared with our SOC-ACOPF
model. However, less AC feasibility can be guaranteed from
the solutions of the model in [27]. In terms of computation

time, the model in [27] requires the least computation time
since this model has the least number of constraints. LIN-
DOGLOBAL requires the most the computation time to find
a global optimal solution. Our model takes less computation
time than MATPOWER. Because we have included the voltage
phase angle constraints (1g) to (1q) in our SOC-ACOPF model
to make it valid for both mesh and radial power networks, the
computation time is larger than the model in [27].

B. The power network partitioning

Fig. 2. IEEE14-bus network partitions (two subnetworks) and the master
problem representation

Fig. 3. IEEE57-bus network partitions (three subnetworks) and the master
problem representation

Fig. 4. IEEE118-bus network partitions (four subnetworks) and the master
problem representation
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TABLE I
COMPARISON OF SOC-ACOPF MODELS

Test Case Objective Value [$] Computation CPU Time [s]
SOC-ACOPF Model in [27] MATPOWER LINDOGLOBAL SOC-ACOPF Model in [27] MATPOWER LINDOGLOBAL

IEEE14-bus 8092.32 8072.42 8081.53 8081.54 0.09 0.08 0.11 0.20
IEEE57-bus 41711.78 41673.10 41737.79 41737.93 0.17 0.11 0.12 2.31
IEEE118-bus 129376.00 129330.74 129660.70 129660.54 0.36 0.13 0.30 27.10
IEEE300-bus 718546.27 718091.78 719725.11 NA 0.64 0.25 0.48 NA

1354pegase [30] 74040.99 74006.84 74069.35 NA 2.50 0.64 8.58 NA
2869pegase [30] 133934.70 133866.95 133999.29 NA 9.72 1.23 18.66 NA

TABLE II
RESULTS OF POWER NETWORK PARTITIONING

Test Case Partition Number of Nodes in Subnetworks Number of Lines in Subnetworks Number of Tie-lines CPU Time [s]

IEEE14-bus

2 6, 8 11, 6 3 0.02
3 3, 5, 6 2, 7, 6 5 0.02
4 4, 2, 3, 5 4, 1, 2, 7 6 0.03
5 2, 2, 5, 3, 2 1, 1, 7, 2, 1 8 0.03
6 3, 3, 2, 2, 2, 2 3, 3, 1, 1, 1, 1 10 0.03
7 2, 1, 3, 2, 2, 1, 3 1, 0, 2, 1, 1, 0, 3 12 0.04
8 3, 1, 2, 2, 1, 2, 2, 1 3, 0, 1, 1, 0, 0, 1, 0 14 0.05

IEEE57-bus

2 18, 39 19, 55 6 0.03
3 12, 21, 24 12, 25, 35 8 0.03
4 27, 11, 10, 9 38, 13, 10, 9 10 0.04
5 11, 10, 7, 9, 20 11, 12, 6, 9, 29 13 0.04
6 6, 7, 20, 8, 10, 6 6, 8, 29, 7, 12, 5 13 0.04
7 7, 6, 10, 10, 9, 5, 10 7, 7, 12, 14, 7, 4, 10 19 0.05
8 6, 9, 5, 7, 9, 4, 6, 11 5, 10, 6, 7, 9, 3, 5, 15 20 0.05

IEEE118-bus

2 79, 39 121, 60 5 0.03
3 38, 35, 45 51, 55, 70 10 0.04
4 25, 38, 37, 18 29, 60, 57, 23 17 0.04
5 22, 16, 27, 19, 34 27, 17, 45, 23, 51 23 0.05
6 23, 16, 18, 17, 30, 14 29, 23, 25, 21, 48, 18 22 0.05
7 15, 12, 8, 18, 16, 16, 33 19, 16, 10, 27, 19, 19, 47 29 0.06
8 21, 15, 6, 16, 15, 12, 16, 17 29, 20, 6, 19, 19, 16, 19, 25 33 0.06

IEEE300-bus

2 116, 184 159, 246 6 0.06
3 116, 89, 95 159, 113, 127 12 0.06
4 35, 87, 98, 80 37, 117, 132, 114 11 0.07
5 80, 105, 45, 33, 37 105, 135, 62, 39, 52 18 0.07
6 54, 52, 48, 33, 60, 53 74, 59, 65, 39, 84, 69 21 0.09
7 34, 59, 35, 37, 81, 21, 33 47, 80, 37, 52, 113, 25, 39 18 0.09
8 34, 33, 53, 35, 35, 21, 35, 54 47, 39, 77, 42, 50, 25, 37, 74 20 0.12

1354pegase [30]

2 828, 526 1211, 753 27 0.56
3 585, 428, 341 830, 644, 479 38 0.59
4 311, 253, 319, 471 481, 352, 443, 659 56 0.66
5 178, 377, 297, 246, 256 253, 536, 460, 337, 355 50 0.65
6 363, 87, 67, 217, 319, 301 510, 135, 85, 293, 446, 465 57 0.67
7 120, 255, 72, 288, 152, 225, 242 180, 363, 97, 443, 211, 311, 322 64 0.72
8 168, 151, 120, 243, 186, 102, 260, 124 242, 210, 180, 331, 274, 138, 354, 193 69 0.92

2869pegase [30]

2 1899, 970 2929, 1633 20 1.20
3 600, 903, 1366 1026, 1526, 2010 20 1.25
4 975, 457, 531, 906 1512, 647, 852, 1532 39 1.43
5 377, 509, 528, 789, 666 536, 818, 849, 1213, 1108 58 1.51
6 562, 355, 412, 392, 771, 377 944, 585, 644, 621, 1187, 536 65 1.45
7 354, 312, 579, 322, 508, 580, 214 501, 485, 915, 535, 754, 972, 354 66 1.62
8 324, 532, 295, 214, 312, 288, 554, 350 544, 791, 491, 354, 485, 464, 876, 494 83 2.10

The results of power network partitioning by spectral factor-
ization are listed in Table II. For each test case, we partition the
power network from two to eight subnetworks. The ’Partition’
column in Table II lists the total number of subnetworks
which is the parameter used in the power network partitioning
problem (2). Subnetworks are formed such that collection of
them constructs the original power network. For small power
networks, when more subnetworks are partitioned, there can
be only one bus for some partitioned subnetworks. Thus, there
is no line inside these single-bus subnetworks. The spectral
factorization algorithm is capable of partitioning all test cases

in reasonable time. Generally, the computation time increases
when more subnetworks are partitioned. The CPU time of
partitioning large power networks is higher than the one for
partitioning small power networks. Fig. 2, Fig. 3 and Fig. 4 are
plotted to visualize some representative partitions for IEEE14-
bus, IEEE57-bus and IEEE118-bus test cases. We use different
colors to distinguish different partitioned subnetworks in Fig.
2, Fig. 3 and Fig. 4. The corresponding master problem of the
proposed M-BDA for each partitioned power network is also
conceptually illustrated. Note we do not plot all the tie-lines
in the representative master problems in Fig. 2, Fig. 3 and Fig.
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TABLE III
ACCELERATED M-BDA BY GAMS PARALLEL COMPUTING

Test Case Centralized Solution Approach Accelerated M-BDA
Objective [$] CPU Time [s] Partition Upper Bound [$] Lower Bound [$] Relative Gap CPU Time [s]

IEEE14-bus 8092.32 0.09

2 8156.28 8067.17 1.09% 0.16
3 8115.84 8043.42 0.89% 0.20
4 8107.18 8043.43 0.79% 0.14
5 8102.82 8057.13 0.56% 0.20
6 8127.95 8080.57 0.58% 0.28
7 8099.13 7967.99 1.62% 0.31
8 8119.83 8073.33 0.57% 0.28

IEEE57-bus 41711.78 0.17

2 41801.64 41647.12 0.37% 0.30
3 41871.87 41428.57 1.06% 0.25
4 41798.99 41624.31 0.42% 0.22
5 41924.35 41675.16 0.59% 0.44
6 41814.77 41445.73 0.88% 0.45
7 41956.47 41376.34 1.38% 0.25
8 41848.47 41518.08 0.79% 0.37

IEEE118-bus 129376.00 0.36

2 130025.49 129261.01 0.59% 0.33
3 130847.44 128976.06 1.43% 0.76
4 130066.45 129182.29 0.68% 0.39
5 130201.72 128631.17 1.21% 0.63
6 131015.94 129089.14 1.47% 0.36
7 130725.29 128393.25 1.78% 0.39
8 129620.15 128955.16 0.51% 0.59

IEEE300-bus 718546.27 0.64

2 722485.13 712303.53 1.41% 0.86
3 721442.74 709941.27 1.59% 0.55
4 724036.39 717468.50 0.91% 1.03
5 724084.83 712925.47 1.54% 0.59
6 724038.39 709888.48 1.95% 0.70
7 719765.51 716539.87 0.45% 0.52
8 720591.14 714182.86 0.89% 0.47

1354pegase [30] 74040.99 2.50

2 74041.62 74041.60 0.00% 3.98
3 74198.12 74038.80 0.21% 4.17
4 74040.36 74040.36 0.00% 1.51
5 74040.91 74040.91 0.00% 1.51
6 74040.42 74040.42 0.00% 1.30
7 74040.82 74040.82 0.00% 1.61
8 74041.01 74040.99 0.00% 0.91

2869pegase [30] 133934.70 9.72

2 133938.47 133886.16 0.04% 11.83
3 134455.42 133409.29 0.78% 14.26
4 133940.19 133869.50 0.05% 6.72
5 134122.31 131618.32 1.87% 8.70
6 133915.61 133915.57 0.00% 3.42
7 133928.71 133928.70 0.00% 3.15
8 135021.76 132710.79 1.71% 5.34

4. Detailed results about the tie-lines are listed in Table II.

C. Accelerated M-BDA using GAMS parallel computing

The MOSEK solver in GAMS is used to solve the SOC-
ACOPF model, the master problem and subproblem in the
proposed M-BDA. The results of accelerated M-BDA using
GAMS parallel computing are listed in Table III. For com-
parison, the results of centralized solution approach (without
decomposition) of SOC-ACOPF are also listed. The ’Rela-
tive Gap’ column shows the gap between the upper bound
and lower bound of M-BDA calculated as Relative Gap =
Upper Bound−Lower Bound

Upper Bound × 100%. For all these test cases, M-
BDA converges to very close solutions to single-stage SOC-
ACOPF without decomposition. With the increase of partition
depth (more subnetworks and fewer nodes in each subnet-
work), the SOC-ACOPF problem complexity is decreasing.
All test cases converge within few iterations. Compared with
the computation time of the centralized solution approach,
the computational efficiency improvement is more prominent
in large test cases. Our results of improved computational
efficiency by varying the power network partitions show

promising approach of using sufficient off-line simulations to
identify the most efficient power network partitions for a given
power network.

VI. CONCLUSION

An accelerated M-BDA using parallel computing is pro-
posed to tackle the complexity of large-scale SOC-ACOPF
problem. The formulation, feasibility and optimality proof,
and fast convergence of the proposed M-BDA are the main
contributions of the current paper. The numerical results show
that the M-BDA accelerated by GAMS grid computing can
reduce SOC-ACOPF problem scale (reduce the RAM require-
ment for the computer) as well as computation time. The
advantage of solving SOC-ACOPF in a decomposed way is
that we reduce the dimension of Hessian matrix and Jacobian
matrix during the iterations of interior point method. This is
very useful for large-scale power networks where the number
of variables and constraints of the formulated SOC-ACOPF
exceed the solver limit. Another advantage of the proposed
decomposition is that, by keeping the boundaries between
different subnetworks or zones in the power system, the data
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privacy of each operation zone can be protected. A coordinator
who is solving the master problem of the proposed M-BDA
does not need to know the detailed network configuration
of the subnetworks. All the required information (from the
subnetworks) by the coordinator is communicated through
the Benders cuts. We prove the feasibility and optimality
of M-BDA analytically and numerically. The convergence of
the proposed approach is guaranteed by the convexity of the
SOC-ACOPF model [10]. Future research can be directed on
examining the proposed approaches for larger power networks.
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Distribution Locational Marginal Pricing by
Convexified ACOPF and Hierarchical Dispatch

Zhao Yuan, Student Member, IEEE, Mohammad Reza Hesamzadeh, Senior Member, IEEE, and Darryl R. Biggar

Abstract—This paper proposes a hierarchical economic dis-
patch (HED) mechanism for computing distribution locational
marginal prices (DLMPs). The HED mechanism involves three
levels: The top level is the national (regional) transmission
network, the middle level is the distribution network, while the
lowest level reflects local embedded networks or microgrids. Each
network operator communicates its generalized bid functions
(GBFs) to the next higher level of the hierarchy. The GBFs
approximate the true cost function of a network by a series
of affine functions. The concept of Benders cuts are employed
in simulating the GBFs. The AC optimal power flow (ACOPF)
is convexified and then used for dispatching generators and
calculating GBFs and DLMPs. The proposed convexification is
based on the second order cone reformulation. A sequential
optimization algorithm is developed to tighten the proposed
second order cone relaxation of ACOPF. The properties of the
sequential tightness algorithm are discussed and proved. The
HED is implemented in the GAMS grid computing platform.
The GBFs and DLMPs are calculated for the modified IEEE 342
node low voltage test system. The numerical results show the
utility of the proposed HED and GBF in implementing DLMP.

Index Terms—Convexified ACOPF, Hierarchical economic dis-
patch, Generalized bid function, DLMP.

NOMENCLATURE

Sets:
N Nodes.
L Lines.
Parameters:
Anl, Bnl Node to line incidence matrix.
xl, rl Reactance and resistance.
gn, bn Shunt conductance and susceptance.
Kl Squared power capacity of line l.
pminn , pmaxn Lower and upper bound of pn.
qminn , qminn Lower and upper bound of qn.
pdn , qdn Active and reactive power demand.
Variables:
pn, qn Active and reactive power generation.
psl , qsl Active and reactive power injection.
pol , qol Active and reactive power loss.
vn, Vn Voltage magnitude and voltage square.
vsl , vrl Sending and receiving end voltage.
Vsl , Vrl Sending and receiving end voltage square.
θl Voltage phase angle difference.
θsl , θrl Sending end and receiving end phase angle.

Z. Yuan and M. R. Hesamzadeh are with Electricity Market Research
Group (EMReG), School of Electrical Engineering, KTH Royal Institute
of Technology, Stockholm, SE-10044, Sweden. Email: yuanzhao@kth.se,
mrhesamzadeh@ee.kth.se

D. R. Biggar is with the Australian Competition and Consumer Commis-
sion, Melbourne, Australia.

I. INTRODUCTION

SMART GRID advocates envisage a future in which small
customers are responsive to local market conditions with

devices that reduce electricity consumption at times of high
prices and increase consumption at times of low prices. The
increasing penetration of devices capable of responding to
market prices is increasing the need for, and the utility of,
improved distribution pricing signals. Efficient distribution
pricing signals reflect both losses and congestion on the
distribution network. Such prices vary across both time and
locations and reflect the short-run marginal cost of the trans-
portation of electricity from one point on the distribution
network to another.

In recent years there has been rapidly increasing interest in
locational marginal pricing of distribution networks, especially
to facilitate integration of distributed energy resources [1]. The
benefit of distribution locational marginal prices (DLMPs) for
charging management of electric vehicles is discussed in [2].
References [3], [4] discuss boosting of demand-side responses
using DLMPs. Reference [5] demonstrates how DLMPs can
alleviate congestion caused by high penetration of electric
vehicles (EV) and heat pumps (HP). Reference [6] proposes
to integrate DLMPs and optimization in controlling future
distribution networks where electronic devices are enabled to
receive control signals generated from DLMP.

Given the very large number of nodes in typical distribution
networks, the complexity involved in calculating DLMPs must
be properly addressed. Decentralized dispatch is an attractive
solution in smart grids [7]–[9]. To address the complexity,
a decentralized optimal power flow (OPF) calculated by a
Lagrangian-based decomposition procedure is proposed in
[10]. Reference [11] reduces high-voltage radial distribution
networks to simple networks by feeder reduction techniques.
Reference [12] proposes the decentralized economic dispatch
for smart grids using the concept of self-organizing dynamic
agents. A distributed multi-agent paradigm is proposed in [13]
to calculate DLMPs.

Reference [13] reports the DLMPs in a 12-bus distribution
network calculated by both direct current OPF (DCOPF)
and alternating current OPF (ACOPF). The results show that
DLMPs from ACOPF are higher than the ones from DCOPF
(this is partly because marginal loss costs are included in the
ACOPF approach). The DLMP difference between DCOPF
and ACOPF is larger in congestion cases (DLMP of bus 1 is
78.33$/MWh by DCOPF but 149.99$/MWh by ACOPF). On
the other hand, reference [2] calculates DLMPs by DCOPF
because of the ACOPF complexity in distribution networks
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with a large number of nodes.
Limitations on the ability to share network information is

another issue in calculating DLMPs. The importance of co-
ordination between the distribution and transmission network
layer is discussed in [14] and [15]. This issue is significant for
the operation of a power system with large-scale integration
of distributed energy resources.
We can distinguish two main challenges in implementing

DLMPs: (1) Computational complexity: The DCOPF assump-
tions are not often valid in distribution grids with high re-
sistance to reactance (R/X) ratio [16]. On the other hand, the
ACOPF in distribution networks with a large number of nodes
might not be computationally tractable. This demands an OPF
formulation which is accurate enough and at the same time
which can be solved efficiently for distribution networks with
a large number of nodes. (2) Sharing of network information:
the correct calculation of DLMPs needs full information of the
whole transmission, distribution and local network. Sharing of
detailed network information between different network layers
might not be feasible or practical. In this paper, these two
challenges of implementing DLMPs are addressed.
For the computation complexity challenge, we propose a con-

vexified ACOPF based on second order cone relaxation (SOC-
ACOPF) [17]–[19]. The tightness of the employed relaxation
is enforced by a sequential tightness algorithm. Though Semi-
Definite Programming (SDP) based ACOPF ( [20]–[22]) is
also one approach to solve ACOPF, the computational limits
of SDP are shown in [23]. Efficient algorithms for solving
SDP-based ACOPF model remains to be found [20]. SDP
relaxations are exact only for limited types of problems [24]–
[26]. Even for a 2-bus 1-generator system, SDP-based ACOPF
can be infeasible and inexact [27]. [28] formulate the load flow
problem of radial distribution network as conic programming
by defining new variables. Our formulations do not need to
define these new variables. [29] make use of polynomial op-
timization problem (POP) based ACOPF and then relaxed the
POP model by second order cone programming. A hierarchy
of SOCP problems is solved to obtain the bounds of ACOPF.
The constraints in the hierarchy [29] are increasing during the
solution process. On the contrast, the number of the constraints
in the sequential tightness algorithm proposed in our paper
does not grow in the solution process. By replacing the positive
semidefinite condition with its necessary SOCP constraints,
reference [30] formulate a mixed SDP/SOCP approach to
improve the computational performance of the moment relax-
ations of ACOPF. But the numerical computation results from
[30] show that the mixed SDP/SOCP are still not as fast as
pure SOCP based ACOPF compared with our results. [31] use
current square variables to formulate the SOCP relaxation of
ACOPF and then recover voltage phase angle from solutions of
other variables. In our SOC-ACOPF formulation, we explicitly
include voltage phage angle variables. Thus the voltage phase
angle solutions can be obtained directly.
To address the issue of sharing information between different

network layers, the concept of GBF is proposed. The convex-
ified ACOPF and the GBF are placed in a proposed HED
mechanism. We prove that if the GBFs are communicated,
the proposed HED achieves results very close to the global

economic dispatch. We demonstrate the proposed solutions to
implementing DLMP by numerical simulations using a GAMS
model. The rest of this paper is organized as follows. Section
II explains the convex SOC-ACOPF model and sequential
tightness algorithm. Two theorems are presented in this sec-
tions to show important properties of SOC-ACOPF. Section
III introduces the concept of HED mechanism and GBF.
Section IV present the numerical results and discussions. The
convergence of HED mechanism is proved numerically. As the
communication requirement between network operators, the
capacity of GBF is shown to be small. Section V concludes
the advantages of the proposed SOC-ACOPF approach, HED
mechanism and GBF.

II. CONVEXIFIED ACOPF
A. Second order cone and convex envelope

The original nonconvex ACOPF (based on branch flow model
[17], [19]) is formulated in optimization problem (1).

Minimize
Ω

f(pn, qn, pol , qol) (1a)

subject to

pn − pdn =
∑

l

(Anlpsl −Bnlpol) + gnVn, ∀n ∈ N (1b)

qn − qdn =
∑

l

(Anlqsl −Bnlqol)− bnVn, ∀n ∈ N (1c)

pol =
p2
sl

+ q2
sl

Vsl
rl, ∀l ∈ L (1d)

polxl = qolrl, ∀l ∈ L (1e)
Vsl − Vrl = 2rlpsl + 2xlqsl − rlpol − xlqol , ∀l ∈ L (1f)
vslvrl sin θl = xlpsl − rlqsl , ∀l ∈ L (1g)

p2
sl

+ q2
sl
≤ Kl, ∀l ∈ L (1h)

Vn = v2
n, ∀n ∈ N (1i)

vminn ≤ vn ≤ vmaxn , ∀n ∈ N (1j)

θminl ≤ θl ≤ θmaxl , ∀l ∈ L (1k)

pminn ≤ pn ≤ pmaxn , ∀n ∈ N (1l)

qminn ≤ qn ≤ qmaxn , ∀n ∈ N (1m)

Where Ω = {pn, qn, psl , qsl , pol , qol , Vn, vn, θl} ∈ < is the
set of decision variables. Equations (1b) and (1c) represent
the active and reactive power balance. Anl and Bnl are the
incidence matrices of the network with Anl = 1, Bnl = 0
if n is sending end of branch l, and Anl = −1, Bnl = 1 if
n is receiving end of branch l. Equations (1d)-(1e) represent
active power and reactive power loss. Equations (1f)-(1g) are
derived by taking the magnitude and phase angle of voltage
drop phasor along line l respectively [17], [19]. Constraints
(1j)-(1m) are bounds for voltage magnitude, voltage phase
angle difference, active power generation and reactive power
generation. Constraints (1d), (1g) and (1i) are nonconvex
constraints in the optimization problem (1). Using second
order cones [19], constraint (1d) can be relaxed to the rotated
second order cone constraint in (2).

pol ≥
p2
sl

+ q2
sl

Vsl
rl, ∀l ∈ L (2)
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The nonconvex constraint (1g) can be written as zhl
= xlpsl−

rlqsl where zhl
= vml

zθl , vml
= vslvrl and zθl = sin θl. The

nonconvex terms vml
zθl , vslvrl and sin θl can be replaced

by their convex hulls. We assume vminml
, zminθl

, vminsl
, vminrl

are lower bounds and vmaxml , zmaxθl
, vmaxsl

, vmaxrl
are upper

bounds for the corresponding variables. The convex hull of
the nonconvex terms are derived in (3) which are linear and
convex. Equations (3i)-(3j) are valid for 0 < θmaxl < π

2
[32]. Bounds of the variables can be determined a priori. The
convex hull of vslvrl sin θl is expressed by three parts in (3).
The first part include constraints (3a)-(3d). These constraints
are the convex hull of zhl

= vml
zθl . The second part include

constraints (3e)-(3h). These constraints are the convex hull
of vml

= vslvrl . The third parts include (3i)-(3j). These
constraints are the convex hull of zθl = sin θl.

zhl
> vminml

zθl + zminθl
vml
− vminml

zminθl
, ∀l ∈ L (3a)

zhl
> vmaxml

zθl + zmaxθl
vml
− vmaxml

zmaxθl
, ∀l ∈ L (3b)

zhl
6 vminml

zθl + zmaxθl
vml
− vminml

zmaxθl
, ∀l ∈ L (3c)

zhl
6 vmaxml

zθl + zminθl
vml
− vmaxml

zminθl
, ∀l ∈ L (3d)

vml
> vminsl

vrl + vminrl
vsl − vminsl

vminrl
, ∀l ∈ L (3e)

vml
> vmaxsl

vrl + vmaxrl
vsl − vmaxsl

vmaxrl
, ∀l ∈ L (3f)

vml
6 vminsl

vrl + vmaxrl
vsl − vminsl

vmaxrl
, ∀l ∈ L (3g)

vml
6 vmaxsl

vrl + vminrl
vsl − vmaxsl

vminrl
, ∀l ∈ L (3h)

zθl > cos(
θmaxl

2
)(θl +

θmaxl

2
)− sin(

θmaxl

2
), ∀l ∈ L (3i)

zθl 6 cos(
θmaxl

2
)(θl −

θmaxl

2
) + sin(

θmaxl

2
), ∀l ∈ L (3j)

In a similar way the convex hull of constraint (1i) is derived
in (4).

Vn ≥ v2
n, ∀n ∈ N (4a)

Vn ≤ (vmaxn + vminn )vn − vmaxn vminn , ∀n ∈ N (4b)

Using (2), (3) and (4), the optimization problem (1) can
now be reformulated as a second order cone (SOC) program.
This proposed SOC-ACOPF represented by [(1a)-(1c),(1e)-
(1f),(1j)-(1m)] can be solved efficiently using interior point
method (IPM) [33].

B. Sequential tightness algorithm

The conic relaxations in (2) are not guaranteed to be tight.
To deal with this problem, we propose a sequential algorithm
to improve the tightness. This sequential algorithm is based
on Theorem 1 and Theorem 2 below:

Theorem 1
Assume that:
(1). the objective function of nonconvex ACOPF (1) and the
proposed SOC-ACOPF is convex;
(2). nonconvex ACOPF (1) has exactly one global optimal
solution (p∗sl , q

∗
sl
, p∗ol);

(3). non-exact optimal solution (if exists) of SOC-ACOPF
p
′
ol
> p∗ol .

Then, constraint pol ≤ p∗ol guarantees the tightness of con-
straint (2).

Proof. Firstly, we consider the case that SOC-ACOPF is exact
(the relaxations in (2)-(4) are tight). The proof of theorem 1
is based on theorem 3 in reference [18] which proves that
second order conic optimal power flow (SOPF) has at most
one optimal solution when SOPF is exact for a radial network.
Because our SOC-ACOPF model has one more constraint
(1g) (to make our model valid for both radial and meshed
networks) than the SOPF model described in reference [18],
we are actually reducing the feasible region of SOPF in
reference [18]. This means that either we keep the unique
optimal solution in the feasible region or we exclude the
optimal solution. For both cases, the conclusion that there is
at most one global optimal solution of SOC-ACOPF when
SOC-ACOPF is exact is still valid. Assume the exact optimal
solution of SOC-ACOPF is peol . If peol 6= p∗ol , then peol must
be the global optimal solution of the nonconvex ACOPF since
fe ≤ f∗. Where fe and f∗ are the value of objective function
for SOC-ACOPF and the nonconvex ACOPF respectively. This
contradicts our assumption that there is exactly one global
optimal solution of the nonconvex ACOPF. So peol 6= p∗ol is
not valid. Constraint pol ≤ p∗ol is feasible for SOC-ACOPF
when it is exact.
When SOC-ACOPF is not exact, assume (p

′
sl
, q
′
sl
, p
′
ol
, V
′
sl

)
is the optimal solution of SOC-ACOPF after we have put the
constraint pol ≤ p∗ol :

p∗ol ≥ p
′
ol
≥ p

′2
sl

+ q
′2
sl

V ′sl
rl (5)

If p
′
ol
6= p

′2
sl

+q
′2
sl

V ′sl
rl, then:

p
′
ol
> p∗ol (6)

(6) contradicts (5). So p
′
ol
6= p

′2
sl

+q
′2
sl

V ′sl
rl is not valid. Constraint

(2) must be tight.

Theorem 1 shows that as long as we have a good estimation
of p∗ol , then we can tighten constraint (2). The problem is that
it is difficult to estimate p∗ol before solving nonconvex ACOPF.
We propose the following theorem to design the tightness
algorithm.

Theorem 2
If the assumptions in theorem 1 hold and the decreasing
sequence pol,i ≤ pol,i−1 converges to p∗ol which is the optimal
solution of nonconvex ACOPF, then sequential constraints
pol ≤ pol,i guarantee the tightness of constraint (2).

Proof. The proof of theorem 2 is based on theorem 1 and
L’Hopital’s rule. We denote here the sequential optimization
problem constrained by pol ≤ pol,i as SOC-ACOPF-i where
i is the index for the sequence. Because SOC-ACOPF is
assumed to be feasible for pol ≤ p∗ol and pol,i ≥ p∗ol , SOC-
ACOPF-i is always feasible. If the solution of SOC-ACOPF-i
is denoted as (p∗sl,i, q

∗
sl,i
, p∗ol,i, V

∗
sl,i

), we have:

pol,i ≥ p∗ol,i ≥
p∗2sl,i + q∗2sl,i

V ∗sl,i
rl (7)
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From theorem 1, pol ≤ p∗ol guarantees the tightness of
equation (2):

lim
i→+∞

p∗2sl,i + q∗2sl,i
V ∗sl,i

rl = p∗ol (8)

And we have assumed in theorem 2 that sequence pol,i ≤
pol,i−1 converges to p∗ol :

lim
i→+∞

pol,i = p∗ol (9)

According to L’Hopital’s rule, (7)-(9) imply:

lim
i→+∞

p∗ol,i = p∗ol (10)

In other words, the solutions of sequential optimization SOC-
ACOPF-i converge to where equation (2) is tight.

Theorem 2 suggests we can find optimal solution of SOC-
ACOPF by solving sequential SOC-ACOPF-i. The challenge
is how to design or calculate the proper sequence pol,i con-
verging to p∗ol,i. Here we propose to begin with a rather rough
estimation of p∗ol and then iteratively improve the estimation
quality. The numerical results show that the proposed tightness
algorithm can make the relaxation in constraint (2) tight.
Given (1h), the initial estimation Kol,0 is simply calculated

by (11):

Kol,0 =
Kl

V minsl

rl (11)

Where V minsl
is the lower bound of Vsl . The sequential SOC-

ACOPF-i is then constrained by (12):

pol ≤ Kol,i, ∀l ∈ L (12)

Where Kol,i, i ∈ {0, 1, 2, ...,M} is the ith estimation of
p∗ol . The tightness algorithm works by iteratively reducing
the upper bounds Kol,i of power loss constraints that violate

tightness criterion ε. If pol−
p2sl

+q2sl
Vsl

rl > ε, Kol,i+1 = αlKol,i,
where 0 < αl < 1 is the decreasing parameter. The proposed
sequential tightness algorithm is summarized in algorithm 1.
This algorithm is illustrated in Fig. 1 where X∗ denotes the

Algorithm 1: Sequential tightness algorithm
Input: ACOPF Parameters;
Output: Tight Optimal Solution of SOC-ACOPF ;
Initialization ;
Kol,0 = Kl

Vmin
sl

rl ;

do
Solve SOC-ACOPF (1a)-(1c), (1e)-(1f), (1j)-(1m),
(2), (3), (4) with constraint (12) ;

εl = pol −
p2sl

+q2sl
Vsl

rl ;
if εl > ε then

i = i+ 1;
Kol,i = αlKol,i ;

ε̄l = maxl{εl} ;
while ε̄l > ε and i < M ;

final solution. M denotes the maximum number of iterations

specified a priori. The original nonconvex feasible region of
ACOPF is plotted with a solid line in Fig. 1. The convex
feasible region of proposed SOC-ACOPF is plotted with a
dashed line in Fig. 1. We will show the performance of this
algorithm in Section 3 of this paper. It is worth to mention that
the proposed sequential tightness algorithm is only tight for
the relaxation in (2). Because there are additional relaxations
we have introduced in (3a)-(4b), the final solutions of the
proposed SOC-ACOPF model are generally not tight for the
constraint (1g) in ACOPF. Using interior point method to solve
the proposed SOC-ACOPF model in polynomial time does not
violate the NP-hardness proof [34], [35] of ACOPF because
the proposed SOC-ACOPF is still a relaxed model of ACOPF.

i

Fig. 1. The conceptual diagram of the proposed sequential tightness algorithm

III. THE HIERARCHICAL ECONOMIC DISPATCH

To define hierarchical economic dispatch (HED), we should
firstly explain the traditional centralized economic dispatch
(CED). We assume here centralized economic dispatch as one
system operator dispatching all generations in transmission,
distribution and local networks. To fulfill this dispatch task,
the system operator should obtain all network information
about his responsible area. Mathematically, CED is to solve
ACOPF problem (1) or SOC-ACOPF [(1a)-(1c),(1e)-(1f),(1j)-
(1m)]. The CED is a very large scale optimization problem
considering the enormous nodes, lines and DERs. To release
the complexity of CED, we propose the HED mechanism
in this paper. HED actually decompose CED by Benders
decomposition. We show that Benders cuts in this proposed
hierarchical economic dispatch have specific economic mean-
ings in the defined GBF.

A. The hierarchical economic dispatch mechanism

We propose a three-level dispatch mechanism with each
network operator responsible for its own network. The network
layers are connected through tie lines. At the third level, local
network or microgrid operators (LNOs) carry out their own
dispatch considering local network constraints. LNOs com-
municate dispatch results through the proposed GBFs to the
second level of hierarchy. At the second level, the distribution
network operators (DNOs) run another optimization problem
taking into account the submitted GBFs from all connected
LNOs and the second-level network constraints. The results of
the second level optimization is packed in the form of GBFs
and submitted to the first level of hierarchy. At the first level
of hierarchy, transmission network operator (TNO) solves the
dispatch problem of transmission network taking into account
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the submitted GBFs from DNOs. Once the top level of the
hierarchy is completed, the dispatch results are determined and
the resulting nodal prices can be computed and communicated
back down to the hierarchy. This is illustrated in Fig. 2.
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Fig. 2. The conceptual diagram of the proposed HED mechanism

B. Generalized bid function

The concept of GBF is proposed to avoid communicating de-
tailed network and regional bid information between dispatch
levels. The HED problem for LNOs contingent on the total
power generation is set out in (13).

Fk(P sumk,j ) =Minimize
∑

n∈Nk

f(pn, qn) (13a)

subject to (1b), (1c), (1e), (1f), (1j)− (1m)

(2), (3), (4), (12)∑

n∈Nk

pn = P sumk,j : (αk,j) (13b)

Where Fk is the cost of local network dispatch as a function
of its total power generation P sumk,j . k ∈ K is the index of
the LNO. f(pn, qn) is the generation cost of the local DGs.
Nk is the set of local nodes. j ∈ Jk is the index of GBFs. If
we use S(P sumk,j ) to denote the feasible region of (pn, qn)
as a function of P sumk,j . The optimization value function
Fk(P sumk,j ) is convex because: (1). f(pn, qn) is jointly convex

on
{

(pn, qn, P
sum
k,j ) | (pn, qn) ∈ S(P sumk,j ), P sumk,j ∈ <+

}
;

(2). S(P sumk,j ) is convex on <+; and (3). <+ is convex (see
proposition 2.1 in reference [36]). Fk can be approximated
from below by a set of affine functions as in (14) shown by
Fig. 3.

Fk(P sumk,j ) ≥ F̂k,j + α̂k,j

(∑

n∈Nk

pn − P̂ sumk,j

)

∀j ∈ Jk, ∀k ∈ K (14)

We define GBF as the set of parameters of the affine approx-
imator (14). These parameters are communicated through set
LNOk = {(F̂k,j , α̂k,j , P̂ sumk,j ) : j ∈ Jk} to the DNO. Once all

Generalized Bid Function

k

sum

k

j

1j 

Fig. 3. Approximation of a convex cost function by affine functions

LNOk sets are communicated, the DNO solves the following
dispatch problem (15).

Gv(P
sum
v,j ) =Minimize

∑

n∈Nv

f(pn, qn) +
∑

k∈K
Fk (15a)

subject to (1b), (1c), (1e), (1f), (1j)− (1m)

(2), (3), (4), (12), (14)∑

n∈Nv

pn = P sumv,j : (αv,j) (15b)

Same as Fk, Gv is also a convex optimization value function
based on proposition 2.1 in reference [36]. Gv can be approx-
imated from below by affine functions (16b). v ∈ V is the
index of the DNO. The parameters of these affine functions are
communicated through set DNOv = {(Ĝv,j , α̂v,j , P̂ sumv,j ) :
j ∈ Jv} to TNO. TNO solves the optimization problem (16).

Minimize
∑

n∈Nt

ft(pn, qn) +
∑

v∈V
Gv (16a)

subject to (1b), (1c), (1e), (1f), (1j)− (1m)

(2), (3), (4), (12)

Gv(P
sum
v,j ) ≥ Ĝv,j + α̂v,j

(∑

n∈Nv

pn − P sumv,j

)

∀j ∈ Jv, ∀v ∈ V (16b)

Once optimization problem (16) is solved, TNO finds the
nodal prices. It also communicates the total power generation
requirement P̂ sum

v,ĵ
to DNOs (ĵ is the index of final GBF

for which the HED converges). Given P̂ sum
v,ĵ

, DNOs find the
nodal prices for their networks. The DNO also communicates
P̂ sum
k,ĵ

to the connected LNOs. LNOs then calculate the nodal
prices for their local networks. The underlying mathematical
structure behind the HED mechanism is the Benders decompo-
sition approach. The proposed HED relaxes the decomposition
of economic dispatch by taking P sumk(v),j as the complicating
variables instead of the tie-line power flows psl, qsl. This leads
to fewer GBFs when multiple tie-lines exist. In this way, DNOs
or LNOs do not need to submit GBFs for each tie-line (Fk and
Gv are not functions of tie-line power flows). Constraints (14)
and (16b) are actually Benders cuts for aggregated tie lines. If
the problem is convex, it is proved that optimal solution can
be found within finite iterations [37].
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Algorithm 2: Hierarchical Economic Dispatch Mechanism
Initialization;
TNO solve transmission network dispatch (16);
TNO broadcast P̂ sum

v,ĵ
to DNOs;

DNOs solve distribution network dispatch (15);
DNOs broadcast P̂ sum

v,ĵ
to LNOs;

DNOs submit DNOk to TNO;
LNOs solve local network dispatch (14);
LNOs submit LNOk to DNO;

IV. NUMERICAL RESULTS AND DISCUSSION

The proposed SOC-ACOPF and its tightness algorithm are
examined through several case studies. Then the proposed
HED is simulated. All the models are coded in GAMS.
MATPOWER and LINDOGLOBAL are used for comparison.
Simulations are run on a PC with Intel i7-2760QM 2.4 GHz
CPU and 8 GB of RAM.

A. The performance of proposed SOC-ACOPF

The results of SOC-ACOPF with sequential tightness algo-
rithm are reported in Table I and Table II. The relaxation gap
of constraints (2) is calculated as:

Gpol = max
l

{
pol −

p2
sl

+ q2
sl

Vsl
rl

}
(17)

The stopping criteria for the SOC-ACOPF iteration is Gpol <
10−9. In all reported cases, the Gpol indicator is less than
10−9. The optimality gap of the proposed SOC-ACOPF is
measured in Gpf = f∗−f

f∗ × 100%. In the calculation of Gpf ,
f∗ is the global solution of nonconvex ACOPF calculated by
LINDOGLOBAL and f is the solution of proposed SOC-
ACOPF found by MOSEK solver.

TABLE I
THE PERFORMANCE OF SEQUENTIAL TIGHTNESS ALGORITHM:

OBJECTIVE SOLUTION

Case Objective [$]
Gpol Gpf [%]SOC matpower Global

IEEE14 8076.99 8081.53 8078.80 0 0.02
IEEE57 41673.08 41737.79 41698.64 0 0.06
IEEE118 129619.60 129660.70 129626.45 0 0.01
IEEE300 718109.18 719725.11 719459.62 0 0.18

TABLE II
THE PERFORMANCE OF SEQUENTIAL TIGHTNESS ALGORITHM:

COMPUTATION TIME

Case CPU time [s]
SOC matpower Global

IEEE14 0.10 0.11 0.20
IEEE57 0.19 0.12 2.31

IEEE118 0.33 0.30 27.1
IEEE300 3.10 0.40 257.68

As we can see from Table I, the results from SOC-
ACOPF is very close to the global solutions obtained by
LINDOGLOBAL.

B. Convergence of hierarchical economic dispatch

The IEEE 342 node network [38] is modified here to illustrate
the operation of the proposed HED. This test case has trans-
mission network (nodes P1-P4, P7-P8), distribution network
(nodes P5-P6, P9-P390) and local networks (nodes S193-S240
in the eight spot 277/480V networks). The local networks are
connected to the distribution network by transformers denoted
as X3, X4 to X22 in Fig. 6. One 50 MW generator is located
in the transmission network. Each 13.2 kV distribution feeder
is equipped with one 7.5 MW distributed generator (DG). We
distribute 48 DGs among all nodes of the local networks (one
3 MW DG at each node). To simulate congestion in the distri-
bution network and local networks, we increase the load levels
in all the local networks by four times and then reduce the tie-
line transformer capacity (X10-X18 is reduced to 3 MVA and
X21-X22 is reduced to 4 MVA). We assume all generators are
dispatchable. To accelerate computation, we design a GAMS
grid computing structure to assign the dispatch task of each
network to different threads as demonstrated in Fig. 5.
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2

Transformer

Transmission

Distribution

Fig. 4. The hierarchy of the modified IEEE 342 node test system
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Fig. 5. The GAMS grid computing structure of hierarchical economic dispatch
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The dispatch results of HED are listed in Table III. We
denote the case of no congestion as the base case in this
paper. CED results denoted as ’C’ are also listed. The HED
results (denoted as ’H’) converge to the solution very close to
centralized dispatch dispatch cost. All cases converge within
three iterations shown in Fig. 7. Because of approximations
used in HED mechanism, the final cost of HED is a bit
different from centralized dispatch (the difference is within 1%
after three iterations). The CPU time for computation is within
1.8 second. If the LNOs and DNO submit their GBFs (i.e.
parameters of three affine approximators in one package) to
the next higher hierarchy, the HED converges in one iteration.
It is worth to mention that Benders decomposition is a way to
build GBFs in HED. HED does not work in an iterative way.
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Fig. 7. The convergence of the proposed HED mechanism

C. Distribution locational marginal price

The nodal prices are shown in Fig. 8. All nodal prices
are very close to each other in the base case. The only
differences in the nodal prices are due to the marginal cost
of energy loss. This can be clearly observed from the small
price spikes at the ending nodes (S193, S198, S203, S210,
S217, S224, S231 and S236) of each local network. The
congested distribution transformers are indicated in the legend
of Fig. 8. When congestion happens, the nodes located in the
local network have higher prices. The consumers with price-
responsive load can response to these higher prices. This can
be observed by comparing consumer payment and DG income
when congestion happens with the ones in the base case. We
plot the total payment of consumers in the local networks in
Fig. 9. The payment difference as compared to the base-case
payments is also shown in Fig. 9. The congestion management
potential of DLMP can be further demonstrated by the income
increase of DGs when congestion happens. This is shown in
Fig. 10. When congestion happens, the increased nodal prices
give local DGs strong incentive to produce more energy.

D. The generalized bid function

The GBFs are listed in Tables IV-VIII. We sum the F̂k,j
and Ĝv,j parameters in the GBFs for all networks and list the
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TABLE III
THE RESULTS OF THE ACTIVE POWER DISPATCH FROM HED MECHANISM, C: CENTRALIZED DISPATCH, H: HED

Network Generator Base Case [MW] x10-x11-x12 [MW] x13-x14-x15 [MW] x16-x17-x18 [MW] x21-x22 [MW]
C H C H C H C H C H

Transmission 1 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Distribution

2 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
3 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
4 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
5 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
6 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
7 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
8 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
9 5.93 5.96 0.99 0.94 0.14 0.15 0.10 0.10 0.05 0.04

Local 4 29 0.00 0.00 2.89 3.00 0.00 0.00 0.00 0.00 0.00 0.00
30 0.00 0.00 1.40 2.07 0.00 0.00 0.00 0.00 0.00 0.00

Local 5 36 0.00 0.00 0.00 0.00 2.44 3.00 0.00 0.00 0.00 0.00
37 0.00 0.00 0.00 0.00 0.17 2.86 0.00 0.00 0.00 0.00
38 0.00 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00

Local 6
43 0.00 0.00 0.00 0.00 0.00 0.00 2.44 3.00 0.00 0.00
44 0.00 0.00 0.00 0.00 0.00 0.00 2.87 2.97 0.00 0.00
45 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00

Local 8
53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.98 3.00
54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 3.00
55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13

Total Cost [e] 731.67 732.25 757.91 755.09 766.93 762.38 769.15 766.96 769.15 776.38

accumulated results in the last row of the Tables IV-VIII. As
in Tables III-VII, the LNOs submit their calculated GBFs to
the DNO. Accordingly, the DNO takes into account submitted
GBFs from LNOs and prepars its GBFs to be submitted to
the TNO. The TNO calculates the dispatch instructions and
nodal prices will be communicated back down to the hierarchy.
Note that LNOs only need to submit their GBFs to the DNO.
Bids from the 48 local DGs are not required to be submitted
to the DNO. In other words, with GBFs, the network layers
would not need to share their detailed network information
between each others. Table IV - Table VIII demonstrate the
communication burden of HED is small.

TABLE IV
THE GBFS IN BASE CASE

Network j = 1 j = 2 j = 3
P sum α P sum α P sum α

DNO 21.60 8.00 58.46 18.00 58.46 18.00
LNO1 7.20 24.00 0.00 20.00 0.00 19.98
LNO2 6.64 24.50 0.00 20.50 0.00 20.48
LNO3 10.17 26.50 0.00 21.00 0.00 20.98
LNO4 10.67 27.00 0.00 21.50 0.00 21.47
LNO5 10.86 27.50 0.00 22.00 0.00 21.98
LNO6 10.88 28.00 0.00 22.50 0.00 22.48
LNO7 6.25 27.00 0.00 23.00 0.00 22.95
LNO8 8.37 27.50 0.00 23.50 0.00 23.45

Cost [e] 1825.28 632.25 632.25

V. CONCLUSION

This paper proposes solutions to practical challenges with
implementing locational marginal prices in distribution net-
works. The challenges considered here include (1) the compu-
tational complexity of nodal prices in AC optimal power flow
and (2) the network information which potentially must be
communicated. We propose a SOC-ACOPF to calculate nodal
prices in a distribution network. The proposed SOC-ACOPF
can be solved efficiently to global optimality while it has more

TABLE V
THE GBFS IN CASE OF X10-X11-X12 CONGESTION

Network j = 1 j = 2 j = 3
P sum α P sum α P sum α

DNO 20.32 8.00 53.44 18.00 53.44 18.00
LNO1 7.10 24.00 0.00 19.98 0.00 20.00
LNO2 6.55 24.50 0.00 20.48 0.00 20.49
LNO3 10.00 26.50 0.00 20.98 0.00 20.99
LNO4 13.77 27.50 5.07 23.50 5.07 23.50
LNO5 10.69 27.50 0.00 21.98 0.00 21.99
LNO6 10.71 28.00 0.00 22.48 0.00 22.49
LNO7 6.16 27.00 0.00 22.98 0.00 22.98
LNO8 8.28 27.50 0.00 23.48 0.00 23.48

Cost [e] 1876.40 655.09 655.09

TABLE VI
THE GBFS IN CASE OF X13-X14-X15 CONGESTION

Network j = 1 j = 2 j = 3
P sum α P sum α P sum α

DNO 20.03 8.00 52.65 18.00 52.65 18.00
LNO1 7.08 24.00 0.00 20.00 0.00 20.00
LNO2 6.53 24.50 0.00 20.50 0.00 20.50
LNO3 9.97 26.50 0.00 21.00 0.00 21.00
LNO4 10.47 27.00 0.00 21.50 0.00 21.50
LNO5 14.58 28.00 5.86 24.00 5.86 24.00
LNO6 10.68 28.00 0.00 22.50 0.00 22.49
LNO7 6.14 27.00 0.00 23.00 0.00 22.99
LNO8 8.27 27.50 0.00 23.50 0.00 23.49

Cost [e] 1888.70 662.38 662.38

accurate results than DCOPF. The tightness of the relaxation
from the power loss constraints in the SOC-ACOPF can be
guaranteed by the proposed sequential tightness algorithm.
The issue of network information sharing is addressed through
the proposed concept of GBF. The HED mechanism is also
proposed to decompose the dispatch task of multiple connected
networks. A three-level network is considered. At the third
level, LNOs communicate the dispatch cost of their networks
through the proposed GBFs. At the second level, DNO runs
another optimization considering its own network conditions
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TABLE VII
THE GBFS IN CASE OF X16-X17-X18 CONGESTION

Network j = 1 j = 2 j = 3
P sum α P sum α P sum α

DNO 20.03 8.00 52.60 18.00 0.00 18.00
LNO1 7.08 24.00 0.00 20.00 0.00 20.00
LNO2 6.53 24.50 0.00 20.50 0.00 20.50
LNO3 9.97 26.50 0.00 21.00 0.00 21.00
LNO4 10.47 27.00 0.00 21.50 0.00 21.49
LNO5 10.66 27.50 0.00 22.00 5.97 21.99
LNO6 14.66 28.50 5.97 24.50 0.00 24.50
LNO7 6.14 27.00 0.00 23.00 0.00 22.99
LNO8 8.27 27.50 0.00 23.50 0.00 23.49

Cost [e] 1892.15 666.96 666.96

TABLE VIII
THE GBFS IN CASE OF X21-X22 CONGESTION

Network j = 1 j = 2 j = 3
P sum α P sum α P sum α

DNO 20.00 8.00 52.54 18.00 52.54 18.00
LNO1 7.08 24.00 0.00 19.96 0.00 20.00
LNO2 6.53 24.50 0.00 20.46 0.00 20.49
LNO3 9.96 26.50 0.00 20.97 0.00 20.99
LNO4 10.47 27.00 0.00 21.47 0.00 21.49
LNO5 10.65 27.50 0.00 21.94 0.00 21.99
LNO6 10.67 28.00 0.00 22.44 0.00 22.49
LNO7 6.14 27.00 0.00 22.95 0.00 22.99
LNO8 12.45 31.50 6.13 27.50 6.13 27.50

Cost [e] 1900.90 676.38 676.38

and submitted GBFs of the LNOs. The results of this opti-
mization are packed in the form of GBFs and communicated
to the first level of hierarchy i.e. TNO. Once the optimization
problem of the first level of hierarchy is solved, the dispatch
results and nodal prices are communicated back down to the
hierarchy. The convergence of HED mechanism is guaranteed
by the convexity of the SOC-ACOPF. The simulation results
show the utility of proposed mechanism for implementing
nodal pricing in distribution and local networks. The proposed
mechanism is tested in a stationary environment. Studying the
impact of uncertainty is a possible future extension of this
work.
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� A hierarchical coordination mechanism to coordinate the dispatch of TSO and DSO.
� A convex AC optimal power flow (AC OPF) model to calculate power flows.
� A unified communication format for TSO and DSO communication.
� A parallel computation algorithm to accelerate the coordinated dispatch.
� The effect of DERs on the voltage amplitude and phase angle are investigated.

a r t i c l e i n f o

Article history:
Received 9 November 2016
Received in revised form 8 February 2017
Accepted 10 March 2017

Keywords:
DERs
Economic dispatch
Hierarchical coordination
Generalized bid function
Benders decomposition
Grid computing

a b s t r a c t

This paper proposes a hierarchical coordination mechanism for coordinating the economic dispatch of
transmission system operator (TSO) and distribution system operator (DSO). The challenge of dispatching
large-scale distributed energy resources (DERs) is addressed. The coordination problem of dispatching
energy and reserve is formulated. Benders decomposition is the underlying mathematical foundation
of the proposed hierarchical coordination mechanism. We define the generalized bid function to approx-
imate the dispatch cost of distribution network by a series of affine functions. The generalized bid func-
tion is communicated from DSO to TSO. By using convex AC optimal power flow model, the convergence
of hierarchical coordination is guaranteed. A grid computing structure in General Algebraic Modeling
System (GAMS) to accelerate the computation is proposed. The generalized bid function is simulated
for various test cases. We also demonstrate the effect of DERs on the voltage magnitude and phase angle.
The numerical results show that the hierarchical coordination using the generalized bid function con-
verges to very close results compared with the results of centralized dispatch. Hierarchical coordination
is capable of managing various network congestion scenarios and power loads. The generalized bid func-
tion provides a unified format of communication between TSO and DSO.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The large scale integration of distributed energy resources
(DERs) in the distribution network is profoundly reshaping the
operation of entire power system [1–3]. Due to the great technical
and economic benefits from DERs [2,4], various support schemes
for DERs such as tax reduction, feed-in tariff and subsidy have been
implemented around the world [1]. As a good example, electric
vehicle (EV) owners in the Netherlands can save around 5300€ over
four years because of the incentive policies from the government
[1]. The support schemes from the government together with

technology advancement create an inevitable future of large-
scale integration of DERs in distribution network.

Despite the proved benefits that DERs can provide [5,6], DERs
are also challenging TSO and DSO to operate the power network
in a more coordinated mode [7–10]. It is critical to coordinate
the access of resources and data management between TSO and
DSO to fully release the potential flexibilities from DERs [7,8].
These flexibilities include balancing supply and demand, network
congestion management and voltage control. Ref. [10] investigates
six grid operation challenges and possible future cooperations
between TSO and DSO. The operation challenges mentioned in
[10] include congestion of transmission-distribution interface, con-
gestion of transmission lines, balancing, voltage support, black
start and protection. By analyzing the Generalized Nash Equilibri-
ums (GNEs) of incremental coordination scenarios between the
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TSO and the DSO, Ref. [9] shows that significant cost reductions can
be achieved if the degree of TSO-DSO coordination is high for pro-
viding the ancillary services. In Portugal, the Inter Control Centre
Protocol (ICCP) link enables the TSO and the DSO to share network
information for improving visibility of both transmission network
and distribution network [11]. It is demonstrated in [12] that reac-
tive power exchange between the operating areas of the TSO and
the DSO can converge within a few iterations if grid models of both
sides are iteratively updated. In order to optimize the charging and
discharging behaviors of EVs, Ref. [13] proposes to let the TSO coor-
dinate the generations in the temporal dimension while the DSO
optimize the spatial distribution of EVs. Up to now, incorporating
energy and reserve dispatch of DERs into the coordination mecha-
nism between TSO and DSO capable of managing network conges-
tions has not been well discussed in the literature. In this paper,
the resource access and data management problem of TSO-DSO
coordination mentioned in [7,8] are addressed.

Another critical issue of coordinating the economic dispatch of
TSO and DSO is the optimal power flow (OPF) problem. OPF is an
important tool to optimize the operations of power system
[14,15]. The objective functions of OPF range from power losses
[16,17], operation or investment cost [18,19], renewable energy
spillage [20] to stability margin of the power system [21,22]. The
constraints of OPF can include physics, security [23,24], stability
[25] and operation [26] conditions. Traditionally, DC OPF is widely
used in transmission network operations. Because the resistance to
reactance (R/X) ratio of distribution line is high, the assumptions of
DC OPF are not valid in distribution network [27]. In order to opti-
mize the operation of both transmission and distribution network,
an OPF tool which can be used by both TSO and DSO is necessary.
In fact, the AC OPF model is the only proper approach in optimizing
the operations of distribution network. However, current nonlinear
programming solver is not able to find the global optimal solution
of the AC OPF model because it is nonconvex. To deal with this
challenge, different relaxation and appoximation techniques have
been recently proposed in the literature for the AC OPF model
[28–31]. Second order cone programming (SOCP) based convex
AC OPF is a promising approach with good results [32]. Semi-
Definite Programming (SDP) is another convexification approach
for AC OPF [33–35]. Ref. [36] shows various limits of SDP computa-
tion. It is demonstrated by Ref. [33] that efficient algorithms for
solving SDP-based AC OPF remains to be found. Furthermore, only

limited types of problems are exact for SDP relaxations [37–39]. In
cases where the exactness is not guaranteed, SDP rarely gives solu-
tions with physical meanings. Considering the advantages of SOCP
over SDP, we improve the SOCP based AC OPF formulation in [32]
and use the improved model for dispatching both the transmission
network and the distribution network.

Past research have shown the capability of hierarchical frame-
work to coordinate CHP units and demand responses in the local
community level [40]. For the network operation level, our
research on hierarchical economic dispatch based on DC OPF also
proves convergent results [41,42]. [43] proposes a hierarchical con-
trol architecture to coordinate simultaneously different demand
responses. This hierarchical control architecture comprises three
loops exhibiting different response delay. As a comparison, our
approach have two coordination levels and the communication
between the coordination levels is unified. [44] proposes a hierar-
chical market structure by formulating the market participants’
profit maximization problem and market settlement problem in
a bi-level optimization framework. The interactions of microgrids,
load aggregators, generation companies and network operators are
investigated by solving the formulated dynamic game. However, as
we have mentioned, [44] ignores that DC OPF is not valid in distri-
bution network. In this paper, we propose a hierarchical mecha-
nism to efficiently coordinate the dispatch decisions of TSO and
DSO for energy and reserve considering large scale integration of
DERs. The proposed hierarchical coordination mechanism works
by communicating the generalized bid function (GBF) from DSO
to TSO. The GBF is defined as a unified communication format
between TSO and DSO. We demonstrate that the proposed hierar-
chical coordination mechanism is capable of dealing with various
network congestion scenarios. These scenarios include congestions
in the transmission network, congestions in the distribution net-
work and congestions in the transmission-distribution interface.
The proposed hierarchical framework based on the improved con-
vex AC OPF model is coded in GAMS platform. A grid computing
structure in GAMS is proposed to improve the computational effi-
ciency of the proposed hierarchical coordination mechanism. The
main contributions of this paper are: (1) we formulate a convex
AC OPF model because DC OPF is not valid in distribution network
even though DC OPF is used by some references in our paper; (2)
our coordination mechanism have a solid mathematical foundation
which is Benders decomposition and thus the convergence of

Nomenclature

Sets
N set of nodes
L set of lines
K set of networks

Parameters
Anl node to line incidence matrix
Bnl node to line incidence matrix
xl reactance of line l
rl resistance of line l
gn shunt conductance at node n
bn shunt susceptance at node n
Kl power capacity of line l
pmax
ol

upper bound of pol
qmax
sl

upper bound of qsl
pmin
n lower bound of pn

pmax
n upper bound of pn

qmin
n lower bound of qn

qmax
n upper bound of qn

hmin
l lower bound of hl
hmax
l upper bound of hl
pdn active power demand at node n
qdn reactive power demand at node n

Variables
pn active power generation at node n
qn reactive power generation at node n
prn active power reserve at node n
qrn reactive power reserve at node n
psl active power injection at the sending end of line l
qsl reactive power injection at the sending end of line l
pol active power loss of line l
qol reactive power loss of line l
vn voltage magnitude of node n
Vn voltage magnitude square of node n
hl voltage phase angle difference of line l
hsl voltage phase angle at the sending end of line l
hrl voltage phase angle at the receiving end of line l
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coordination is guaranteed; (3) the proposed concept of general-
ized bid function actually is a unified communication format
between TSO and DSO. The relationship of the proposed methods
are summarized in Fig. 1. The rest of this paper is organized as fol-
lows. Section II explains the proposed convex AC OPF model. The
economic dispatch of energy and reserve are formulated. Section III
introduces the hierarchical coordination mechanism and defines
the GBF. A flexible parallel computation management algorithm
is designed in GAMS. Section IV presents the numerical results
and discussions to validate the proposed methods. Section V con-
cludes the advantages of the proposed hierarchical coordination
mechanism.

2. Convex AC OPF model based on SOCP

In this section, we present the mathematical model of convex
AC OPF for economic dispatch. To deal with the uncertainties of
DERs by providing sufficient reserve, the dispatch of the reserve
service is also formulated.

We present here the convex AC OPF model based on the SOCP
approach [32]. This model can be solved efficiently by industrial-
scale interior point method solver such as MOSEK [45]. The accu-
racy of this model have been proved by Ref. [32].

The power balance constraints. The active power and reactive
power balance constraints are represented in Eqs. (1a) and (1b).
These constraints are linear equations because we use voltage
magnitude square variable Vn in the model. The actual voltage
magnitude can be recovered from the solutions of this model as
vn ¼ ffiffiffiffiffiffi

Vn
p

. Anl and Bnl are the incidence matrices of the network
with Anl ¼ 1;Bnl ¼ 0 if n is the sending end of branch l, and
Anl ¼ �1;Bnl ¼ 1 if n is the receiving end of branch l. These param-
eters are determined by the topology of the network.

pn � pdn ¼
X
l

ðAnlpsl
� Bnlpol

Þ þ gnVn; 8n 2 N ð1aÞ

qn � qdn ¼
X
l

ðAnlqsl
� Bnlqol

Þ � bnVn; 8n 2 N ð1bÞ

The power loss constraints. Eqs. (1c) and (1d) represent active
power and reactive power losses of transmission or distribution
lines.

pol
¼ p2

sl
þ q2

sl

Vsl

rl; 8l 2 L ð1cÞ

qol
¼ p2

sl
þ q2

sl

Vsl

xl; 8l 2 L ð1dÞ

These quadratic equality constraints are nonconvex. We propose to
relax (1d) to rotated cones expressed in (1e) in order to obtain a
convex model. The active power loss pol

can be obtained from the
linear relationship shown in (1f).

qmax
ol

P qol
P

p2
sl
þ q2

sl

Vsl

xl; 8l 2 L ð1eÞ

pol
xl ¼ qol

rl; 8l 2 L ð1fÞ
The upper bound of reactive power loss qmax

ol
is estimated from the

upper bound of line capacity as shown in (1g). The approximation
in (1g) is based on Vsl � 1 (per unit value) which is valid in normal
power system operations.

qmax
ol

¼ ½pmax
sl

�2 þ ½qmax
sl

�2
Vsl

xl ¼ K2
l

Vsl

xl � K2
l xl ð1gÞ

The voltage constraints. Eqs. (1h) and (1i) are derived by tak-
ing the magnitude and phase angle of the voltage drop phasor of
line l, respectively. hl is the voltage phase angle difference of line
l expressed in (1j).

Vsl � Vrl ¼ 2rlpsl
þ 2xlqsl

� rlpol
� xlqol

; 8l 2 L ð1hÞ
vslv rlhl ¼ xlpsl

� rlqsl
; 8l 2 L ð1iÞ

hl ¼ hsl � hrl ; 8l 2 L ð1jÞ
Eq. (1i) is nonconvex. If we assume vslv rl � 1 (per unit value),
Eq. (1i) can be linearized as (1k).

hl ¼ xlpsl
� rlqsl

; 8l 2 L ð1kÞ
The bounds of variables. Constraints (1l)–(1o) are the upper

and lower bounds for the considered variables.

Vmin
n 6 Vn 6 Vmax

n ; 8n 2 N ð1lÞ

hmin
l 6 hl 6 hmax

l ; 8l 2 L ð1mÞ
pmin
n 6 pn 6 pmax

n ; 8n 2 N ð1nÞ
qmin
n 6 qn 6 qmax

n ; 8n 2 N ð1oÞ
The reserve service. To mitigate real time unbalance of power

system or the uncertainty of renewable energy, it is very important
to schedule sufficient generation reserves. The constraints of gen-
eration reserve can be formulated as (1p) and (1q):

pn þ pr
n 6 pmax

n ; 8n 2 N ð1pÞ
qn þ qr

n 6 qmax
n ; 8n 2 N ð1qÞ

where pr
n; q

r
n are active power and reactive power reserve. One com-

mon practice is to determine the generation reserve requirement
according to the capacity of the largest generator in the network
[46,47]:X
n

pr
n P Max pmax

n

� �
; 8n 2 N ð1rÞX

n

qr
n P Max qmax

n

� �
; 8n 2 N ð1sÞ

Fig. 1. Relationship of the proposed methods.
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The convex AC OPFmodel. The proposed convex AC OPF model
is set out in (2). X ¼ fpn; qn; p

r
n; q

r
ng 2 R is the set of decision vari-

ables of the economic dispatch. We use quadratic objective func-
tion to represent the cost of active power generation and the cost
of reserve here. aE

n; b
E
n are parameters of the energy cost function.

aR
n; b

R
n are parameters of the reserve cost function. This minimiza-

tion problem is convex because both the objective and constraints
are convex. The improvements in (2) compared to the OPF model
in [32] are three folds. Firstly, we explicitly include the voltage
phase angle variables. The solutions of these variables can be
directly obtained by solving (2). Secondly, the capacity of lines
are constrained by implicitly constraining the reactive power loss
variable qol

in (2) while in [32] there are no constraints for the
capacity of lines. Thirdly, the generation reserves are considered
and formulated.

Minimize
X

f ðpnÞ ¼ aE
np

2
n þ bE

npn þ aR
n½pr

n�2 þ bR
np

r
n

subject to ð1aÞ-ð1bÞ; ð1eÞ-ð1fÞ; ð1hÞ-ð1jÞ-ð1kÞ; ð1lÞ-ð1oÞ
ð2Þ

If generation reserves are considered, constraints (1n) and (1o) can
be replaced by constraints (1p), (1q), (1r) and (1s).

3. The hierarchical coordination mechanism

3.1. Coordination of TSO-DSO dispatch

The proposed hierarchical coordination mechanism of TSO-DSO
economic dispatch is explained in this section. The generalized bid
function as a unified communication format between the TSO and
the DSO is defined. We show in this section that the mathematical
foundation of the hierarchial coordination mechanism is actually
Benders decomposition. The underlying mathematical structure
of the generalized bid function is Benders cut. To accelerate the
computation, a grid computing structure with an efficient parallel
computation management algorithm in GAMS is designed.

To investigate the problem of TSO-DSO coordination in the con-
text of large scale integration of DERs, It is important to firstly ana-
lyze the roles of various market players and network operators.
Generally, the distribution company (DISCO) owns and operates
the distribution network. DISCO can also sell electricity to the
energy consumers in its local area. DSO is same as DISCO. Network
operator is responsible for reliable and secure operation of the
power network. The TSO is responsible for the transmission net-
work. The distribution network is operated by the DSO. Microgrid
is defined as a local electric network with DERs and loads con-
nected. The microgrid can either connect with the main power sys-
tem or disconnect with the main power system [48]. In this paper,
we use the definition of the aggregator in Ref. [49] as a company
who acts as an intermediary between electricity end-users and
DER owners and the power system participants who wish to serve
these end-users or exploit the services provided by these DERs.
Load aggregator is a company who aggregate a group of loads
and participates the market by using the flexibilities of the load
(responsive load). Both microgrid and aggragator help operate
the DERs in a cluster. The difference between the microgrid and
the aggregator is that network operations are normally required
in the microgrid while the aggregator does not engage in the net-
work operations. Generation company is a company providing
energy, reserve or other relevant services to the power system.
Electricity retailer purchases energy from the wholesale market
and then sells the energy to the customers by offering contract of
fixed price or variable price. Current market setting allows the par-
ticipation of DERs and the direction of power flow is from the
transmission network to the distribution network. However, If
large scale DERs are connected to the distribution network, It is

almost impossible for one centralized network operator (e.g.
TSO) to operate a power system in such scale. The economic dis-
patch problem is very hard to solve if all the network constraints
of the distribution network are included. Without an efficient coor-
dination mechanism between TSO and DSO, the available services
from the DERs in distribution network are not visible for TSO. It is
very hard for a market participant to provide the coordination ser-
vice for the transmission and distribution network. The potential
approach is to design a coordination mechanism for TSO and DSO.

There are two fundamental problems for the coordination of
TSO-DSO economic dispatch. The first problem is how to decom-
pose the dispatch responsibility of transmission and distribution
network. In the hierarchical coordination mechanism, we propose
to assign the dispatch task of each network to the corresponding
system operator i.e. TSO is responsible to dispatch resources
located in the transmission network while the DERs located in
the distribution network are dispatched by DSO. The reliability
standards of the connected network should be strictly followed
by the owners of the DERs. If the DERs are not owned by DSO, some
form of contract between the owners of DERs and DSO should be
made in order to guarantee the reliability. In this arrangement,
DSO is carrying on the dispatch responsibility and active distribu-
tion network management (ADNM). Current operations of DSO are
mostly passive and only deal with uni-direction of power flow
from transmission network to distribution network. The over-
invested distribution network is rarely congested. However, the
increasing development of DERs in the distribution network not
only can cause bi-directional power flows between transmission
and distribution network but also can lead to congestions in the
distribution network. These challenges are pushing DSO to deploy
ADNM techniques. The proposed convex AC OPF model formulated
in (2) provides one of the most important tools for ADNM. The sec-
ond problem is what information should be communicated
between TSO and DSO in order to achieve efficient dispatch of
the whole system including both transmission and distribution
network. To address this problem, we propose the concept of gen-
eralized bid function (GBF) as a unified communication format
between the TSO and the DSO. The GBF is defined and explained
in detail in the following subsections. The hierarchical coordination
mechanism is illustrated in Fig. 2. In Fig. 2, the distribution net-
works are interfacing with the transmission network by step-
down transformers. Each DSO fulfills the power generation
requirement Psum from TSO. Because the capacities of DERs are gen-
erally small, we can assume they are price takers. Higher prices
caused by DERs when they are price makers can also be reflected
in the proposed GBF. It is worth to mention that the market power

TSO

DSO

GBF

sumP

DSO

GBF

sumP

DSO

GBF

sumP

DSO

GBF
sumP

Fig. 2. The hierarchical coordination mechanism.
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of DERs is a problem of market regulation and do not affect the for-
mulation of the hierarchical coordination mechanism in this paper.

3.2. Generalized bid function

To avoid communicating detailed network data and regional bid
information of DERs between TSO and DSO, the concept of GBF is
proposed. The underlying mathematical structure of GBF is the
Benders cut in Benders decomposition [50].

The economic dispatch for DSO contingent on the total power
generation requirement of its network is set out in (3).

DkðPsum
k;j Þ ¼ Minimize

X
n2Nk

f ðpn; qnÞ ð3aÞ

subject to ð1aÞ-ð1bÞ; ð1eÞ-ð1fÞ; ð1hÞ-ð1jÞ-ð1kÞ; ð1lÞ-ð1oÞ
8n 2 Nk; l 2 LkX
n2Nk

pn ¼ Psum
k;j : ðak;jÞ ð3bÞ

whereDk is thedispatch cost of thedistributionnetworkas a function
of its total power generation Psum

k;j . k 2 K is the index of the DSO.
f ðpn; qnÞ is the cost of power generation from the local DERs. Nk is
the set of nodes in distribution network k. Lk is the set of lines in dis-
tribution network k. j 2 Jk is the index of the GBF. Dk can be approxi-
mated by a set of affine functions in (4) which is illustrated by Fig. 3.

DkðPsum
k;j Þ P bDk;j þ âk;j

X
n2Nk

pn � bPsum
k;j

 !
; 8j 2 Jk; 8k 2 K ð4Þ

Definition 1. Generalized Bid Function. We define generalized bid
function as the set of parameters of the affine approximator
expressed in (4). These parameters are used by TSO to incorporate
the marginal cost of DERs located in distribution network to the
dispatch of the entire power system. In the proposed hierarchical
coordination mechanism, the generalized bid function is commu-

nicated from DSO through the set DSOk ¼ fðbDk;j; âk;j;
bPsum
k;j Þ : j 2 Jkg

to TSO.

It is important to distinguish the GBF from the cumulative bids
of DERs. Firstly, GBF implicitly includes all the bids from DERs.

Given bPsum
k;j , it reflects the marginal cost of the power generation

from the distribution network (where the DERs are located) as a
whole. Secondly, GBF is communicated from DSO to TSO while bids
of DERs are from DERs to DSO. In this sense, we assume there is a

market in the distribution network level for DERs. Thirdly, the
information size of GBF is generally much less than the cumulative
bids from DERs.

Once DSOk are communicated, the TSO solves the following dis-
patch problem (5).

Tv ¼ Minimize
X
n2Nv

f ðpn; qnÞ þ
X
k2K

Dk ð5Þ

subject to ð1aÞ-ð1bÞ; ð1eÞ-ð1fÞ; ð1hÞ-ð1jÞ-ð1kÞ; ð1lÞ-ð1oÞ; ð4Þ
8n 2 Nv ; l 2 Lv

where v 2 V is the index of the TSO. Nv is the set of nodes in trans-
mission network v. Lv is the set of lines in the transmission network
v. After optimization problem (5) is solved, the TSO communicates

the total power generation requirement bPsum
k;̂j

to the corresponding

DSO. (̂j the cardinality of the DSOk set). Given bPsum
k;̂j

, all the DSOs find

the dispatch results of their networks. The underlying mathematical
foundation of the hierarchical coordination mechanism is Benders
decomposition. The optimization problem (5) is actually the master
problem in Benders decomposition. The solution of the objective in
(5) is the lower bound of the dispatch cost. The upper bound of dis-
tribution network dispatch cost is obtained by solving (4) which is
actually the subproblem in Benders decomposition. Constraints (4)
are Benders cuts. Because we use convex AC OPF model, it is proved
that the optimal solution can be found within finite number of iter-
ations [51].

It is worth to mention that the ownership problem of distribu-
tion lines is in the distribution electricity market level. Bid strate-
gies related to different types of distribution line ownership and
the impacts are not in the TSO-DSO coordination level. Thus we
do not need to consider this problem in the proposed hierarchical
coordination mechanism.

3.3. Accelerated hierarchical coordination by grid computing

Generally, one transmission network is providing energy to
multiple distribution networks. The proposed hierarchical coordi-
nation mechanism is capable of coordinating TSO with multiple
DSOs. This is clearly shown in dispatch problem (5) where we
use the index k to differentiate multiple DSOs. Considering the
complexity of distribution networks and large scale penetration
of DERs, computation burden is one of the main challenges in coor-
dinating TSO with multiple DSOs. The solution proposed in this
paper to this computational challenge is grid computing. We
design a grid computing structure in GAMS to assign the dispatch
task of each network to one thread as demonstrated in Fig. 4. In
this way, the hierarchical coordination is accelerated.

GBF

2j =

1j =

kD

sum
kP

Fig. 3. Approximation of a convex cost function by affine functions.

Transmission
Network

Distribution
Network_n

TSODSO_2 DSO_k
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Call

Dispatch
Call

GBF GBF
CPU_1

Distribution
Network_1

Physical Layer

Cyber Layer

Fig. 4. GAMS grid computing structure of TSO-DSO hierarchical coordination
mechanism.
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The dispatch problem is firstly decomposed to parallel indepen-
dent threads by the Parallel Loop. This parallelization is based on
assigning the convex AC OPF models to different threads. The
thread of dispatching transmission network is firstly executed.
The solutions of dispatching transmission network are broadcasted
to other CPUs executing dispatch task of distribution networks. The
dispatch problems of distribution networks are solved by different
threads in parallel. During the Collect Loop, all the solutions of dis-
patch problems of distribution networks from the assigned threads
will be collected. The GBFs are then communicated to the thread of
dispatching transmission network which is in the status of waiting
for input. Because there is no communication requirement
between the threads executing DSO dispatch, the capability of
grid computing can be exploited to the most. The proposed grid
computing structure demonstrated in Fig. 4 is detailed in the grid
computing management Algorithm 1. The grid computing manage-
ment algorithm comprises one Parallel Loop and one Collect Loop.
We propose to design the parallelization based on the total number
of networks (transmission and distribution network). If the total
number of networks is kmax, an parallelization management loop
of kmax iterations is executed. The Collect Loop is responsible to
repeatedly check the solution status of each handle (of thread)
and collect available solutions. To avoid overloading of disk capac-
ity, the handles (of threads) which have been executed are
released. The frequency of handle release depends on available
disk space of the computer. The Collect Loop continues until all
the handles have been executed.

Algorithm 1. Grid Computing Management Algorithm

4. Numerical results and discussions

In this section, the performance of the convex AC OPF model for
economic dispatch is examined by several IEEE test cases [52]. The
hierarchical coordination mechanism for TSO-DSO economic dis-
patch is firstly validated by an intuitive 38-node test case for var-
ious network congestion scenarios. The effect of DERs on the
voltage magnitude and phase angles are analyzed. A large scale
IEEE network test case is then used to show the potential of the
proposed hierarchical coordination mechanism in practical appli-
cations. Moreover, the accurate results under various power loads
show that the proposed hierarchical coordination mechanism is
robust. All the models are coded in GAMS. Simulations are run
on a PC with Intel i7-2760QM 2.4 GHz CPU and 8 GB of RAM.

4.1. Performance of convex AC OPF model

We test the proposed SOCP based convex AC OPF model in (2)
by several IEEE network cases [52]. Data of the test cases are from
MATPOWER [53]. The results are listed in Tables 1 and 2. We use
MOSEK in GAMS to solve the proposed convex AC OPF model. MAT-
POWER uses MATLAB built-in Interior Point Solver (MIPS) to solve
the nonconvex AC OPF model. The proposed convex AC OPF model
converges for all these test cases reported in Tables 1 and 2. The
results of the proposed convex AC OPF model are very close to
those obtained from MATPOWER. The differences are due to the
approximations and relaxations used in the proposed convex AC
OPF model. The computation time of convex AC OPF in GAMS is
less than MATPOWER. This advantage of computation efficiency
is more prominent in large network test cases. These results show
that the convex AC OPF model is robust to network topology,
power loads and transmission line parameters.

4.2. Dispatch results of hierarchical coordination mechanism

The IEEE 14-node [52] transmission network (which represent
TSO network) is connected with two IEEE 13-node [52] feeders
as distribution networks (each IEEE 13-node feeder represents
one DSO network). The network configuration is shown in Fig. 5.
Note that IEEE 13-node test feeder is modified here for ease of
illustration and we assume the parameters of each branch are

Table 2
Computation time.

Case CPU time [s]

Convex AC OPF MATPOWER

IEEE14 0.08 0.11
IEEE57 0.09 0.12
IEEE118 0.09 0.30
IEEE300 0.25 0.40

1354pegase [54] 0.76 8.58
2869pegase [54] 1.97 18.66

Table 1
AC OPF objective.

Case Objective function value [$]

Convex AC OPF MATPOWER

IEEE14 8078.84 8081.53
IEEE57 41696.94 41735.91
IEEE118 129619.50 129626.20
IEEE300 719381.80 719834.40

1354pegase [54] 74101.36 74062.97
2869pegase [54] 133877.00 133978.50
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equal. Five generators are located in the transmission network. Ten
DERs are located randomly in the two distribution networks. The
power factors of DERs range from 0.71 to 1.00. We assume all gen-
erators are fully dispatchable. The base case means no congestion
in any network. The congestions are caused by increasing the
power loads in both transmission and distribution networks and
reducing the capacity of lines or transformers in corresponding
networks. Centralized dispatch results are calculated by assuming
that one dispatch center has full access to both transmission and
distribution network resources. Accordingly, the central dispatcher
runs the convex AC OPF model for the whole system including
transmission and distribution networks. The results of hierarchical
coordination is compared with the results of centralized dispatch
to show the performance of the hierarchical coordination. It is
worth to mention that Benders decomposition is a way to build
GBFs in the simulation of hierarchical coordination mechanism.
The hierarchical coordination does not work in an iterative way.
Each DSO calculates its GBFs and submit all of them in one package
to the TSO.

4.2.1. Base case
The dispatch results of hierarchical coordination mechanism are

listed in Table 3. The results of hierarchical coordination mecha-
nism are very close to those from the centralized dispatch. Because
of approximations used in the hierarchical coordination mecha-
nism, the final cost of dispatch is a bit different from centralized

dispatch. The relative difference of final dispatch costs between
hierarchical coordination and centralized dispatch is within 1%.
The CPU computation time of simulated hierarchical coordination
in the base case is 0.51 s which is longer compared with central-
ized dispatch. If the DSOs submit their GBFs (i.e. parameters of
affine approximators of their cost functions in one package) to
TSO, the hierarchical coordination converges in one iteration. Thus,
the CPU time of the real hierarchical coordination is around one
third of the CPU time in the simulations.

We report the parameters of the GBFs for all the DSOs and list
the results in Table 4. As shown in Table 4, the DSOs prepare their
GBFs to be submitted to the TSO. The TSO calculates the dispatch
instructions and power dispatch requirements will be communi-
cated back down to the DSO. Bids from the local DERs are not
required to be submitted to the TSO. In other words, by using
GBF, the TSO and the DSO do not need to share their detailed net-
work information with each other.

We show the impact of DERs on the voltage amplitude and
phase angle in Fig. 6. Because most energy are dispatched from
the generators in the transmission network, the voltage amplitude
and phase angle of the nodes in the transmission network are high.
The voltage rise due to the dispatch of DERs in the second distribu-
tion network is clearly demonstrated in Fig. 6.

To demonstrate how the marginal cost parameters affect the
results, we reduce the marginal cost of DERs in the second distribu-
tion network and increase the marginal cost of generators in the
transmission network. The dispatch results of hierarchical coordi-
nation mechanism are listed in Table 5. In this scenario, more
active power from DERs are dispatched (see Table 7). The GBFs
are listed in Table 6.

Fig. 5. Network configuration.

Table 3
Active power dispatch results base case.

Generator Dispatch [MW]

Centralized Coordinated

1 34.14 38.74
2 140.00 140.00
3 100.00 100.00
6 10.00 10.00
8 9.68 5.88
11 10.00 10.00
12 20.00 20.00

Cost [€] 4875.76 4884.26

CPU time [s] 0.13 0.51

Table 4
Generalized bid functions in the base case.

k j bDk;j [€] âk;j [€/MWh] bPsum
k;j [MW]

1 1 1509.74 32.00 55.62
2 126.56 15.00 8.44
3 279.41 22.00 15.88

2 1 911.34 36.00 40.59
2 250.28 19.00 15.28
3 530.00 19.03 30.00
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The impact of DERs on the voltage amplitude and phase angle
are shown by Fig. 7. Compared with the base case, more voltage
rise in the second distribution network is observed. This is because
more DERs are dispatched in the distribution network due to lower
marginal cost of DERs.

4.2.2. Congestion of transmission-distribution interface
The first congested transformer is located between node 14 and

node 17. The second one is located between node 13 and node 29.
The capacities of both transformers are reduced to 30 MVA.
Congestion of Transmission-Distribution Interface [10] is modeled

by these two congested transformers. The results show that the
proposed hierarchical coordination mechanism is capable of
managing network interface congestions. It can be observed that
when congestions happen, more DERs are activated to balance
the local loads. Moreover, in this congestion scenario, the CPU
computation time of the hierarchical coordination does not
increase compared with the Base Case. These numerical results
demonstrate the efficiency of the proposed parallel computation
algorithm.

The GBFs for this congestion scenario are listed in Table 8.
Congestion management of transmission-distribution interface by
the proposed hierarchical coordination mechanism does not neces-
sarily cause the DSO to submit more information to the TSO. Com-
pared with the Base Case, âk;j parameters in GBFs show that more
expensive DERs in distribution networks are dispatched in this

congestion scenario. bPsum
k;j parameters in Table 8 also show that

more power generation requirements of DERs are called by the
TSO to release the congestions.

The impact of DERs on the voltage amplitude and phase angle
by Fig. 8. It is interesting in this congestion scenario that the volt-
age amplitude in the distribution networks are lower compared
with the Base Case. Even without sufficient energy from the trans-
mission network due to the congestion of transmission-
distribution interface, the DERs are capable to support the voltage
in the distribution networks.

4.2.3. Congestion of transmission lines
The congestion of transmission lines are modeled by increasing

the power demand of both transmission and distribution networks.
Then, we reduce the capacity of the transmission line between
node 1 and node 2 to 100 MVA. The capacity of the transmission
line between node 6 and node 13 is reduced to 50 MVA. Because
these two lines are both located in the transmission network, we
refer this congestion scenario as congestion of transmission lines
[10]. These two lines are congested when the dispatch models
are solved. The results of centralized dispatch and the hierarchical
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Fig. 6. Voltage amplitude and phase angle in the base case.

Table 5
Active power dispatch results lower marginal cost of DERs.

Generator Dispatch [MW]

Centralized Coordinated

1 29.29 29.07
6 10.00 10.00
12 20.00 12.50
13 15.00 15.00

Cost [€] 5024.10 5007.75

CPU time [s] 0.11 0.22

Table 6
Generalized bid functions lower marginal cost of DERs.

k j bDk;j [€] âk;j [€/MWh] bPsum
k;j [MW]

1 1 1409.72 32.00 52.49
2 1265.63 15.00 8.44
3 279.41 22.00 15.88

2 1 553.80 20.00 38.69
2 132.00 12.00 11.00
3 367.50 15.00 27.50

Z. Yuan, M.R. Hesamzadeh / Applied Energy 195 (2017) 600–615 607



coordinated dispatch are listed in Table 9. More expensive genera-
tors in the transmission network are dispatched because of the
congestion. The increase of dispatch cost can be observed in both
centralized and coordinated dispatch.

Table 10 lists the GBFs in congestion of transmission lines. Com-
pared with the congestion of transmission-distribution interface,
this congestion scenario does not require to dispatch more expen-
sive DERs in the distribution networks. This can be clearly
observed from the âk;j parameters of the GBF results.

We show the impact of DERs on the voltage amplitude and
phase angle in Fig. 9. Both voltage amplitude rise and reduction
of nodes in the transmission can be observed because of the con-
gestions. These congested transmission lines do not prevent power
flows from the transmission to the distribution network. The volt-
age in the distribution networks are supported by the energy from
transmission network and DERs in the distribution networks.

4.2.4. Congestion of distribution feeders
This congestion scenario can happen when large number of EVs

are charged at the same time. The congestion of distribution feed-
ers are modeled by increasing the power demand of the transmis-
sion and the distribution networks. Then, we reduce the capacity of
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Fig. 7. Voltage amplitude and phase angle lower marginal cost of DERs.

Table 7
Active power dispatch results in congestion of transmission-distribution interface.

Generator Dispatch [MW]

Centralized Hierarchical

1 160.67 184.03
2 140.00 140.00
3 100.00 100.00
4 41.67 12.17
6 10.00 10.00
7 23.94 28.84
8 10.00 10.00
10 30.00 28.85
11 10.00 10.00
12 20.00 20.00
13 15.00 15.00
14 15.00 15.00
15 7.97 11.44

Cost [€] 11679.75 11685.80

CPU time [s] 0.14 0.24

Table 8
Generalized bid functions in congestion of transmission-distribution interface.

k j bDk;j [€] âk;j [€/MWh] bPsum
k;j [MW]

1 1 2421.16 35.00 83.75
2 1568.01 32.00 57.44
3 2215.98 32.00 77.69

2 1 2438.01 45.00 77.07
2 2184.94 45.00 71.44
3 2184.94 45.00 71.44

Table 9
Active power dispatch results in congestion of transmission lines.

Generator Dispatch [MW]

Centralized Hierarchical

1 176.13 178.31
2 140 140
3 100 100
4 100 100
5 19.10 95.93
6 10 10
7 30 0
8 10 5.88
10 30 0
11 10 10
12 20 20
14 9.11 0

Cost [€] 13043.61 13053.53

CPU time [s] 0.13 0.25
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the distribution feeder between node 17 and node 22 to 10 MVA.
The capacity of the distribution line between node 29 and node
34 is reduced to 10 MVA. Because these two feeders are both
located in the distribution network, we refer this congestion sce-
nario as congestion of distribution feeders. These two feeders are
congested when the dispatch models are solved. The results of cen-
tralized dispatch and the hierarchical coordinated dispatch are
listed in Table 11. Compared with the Base Case, this congestion
scenario causes more expensive generators and DERs in the trans-
mission and the distribution networks to be dispatched. After three
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Fig. 8. Voltage amplitude and phase angle in congestion of transmission-distribution interface.

Table 10
Generalized bid functions in congestion of transmission lines.

k j bDk;j [€] âk;j [€/MWh] bPsum
k;j [MW]

1 1680.74 32.00 60.96
1 2 126.56 15.00 8.44

3 279.41 22.00 15.88

1 1018.59 36.00 43.57
2 2 250.28 19.00 15.28

3 530.00 36.00 30.00
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iterations, the relative difference of dispatch cost for the central-
ized dispatch and coordinated dispatch is less than 1%.

The GBFs in the congestion of distribution lines scenario are
listed in Table 12. We can see that GBFs are capable of reflecting

the congestion information in the distribution network. âk;j

parameters in the GBFs show that the most expensive DERs are dis-

patched. bPsum
k;j parameters in the GBFs show that more power gen-

eration requirements from DERs are called by the TSO to release
the congestion of distribution lines and fulfill local power demand.

We show the impact of DERs on the voltage amplitude and
phase angle in Fig. 10. In this congestion scenario, the voltage of
the nodes located afterwards the congested feeders in the distribu-
tion networks are supported mostly by the local DERs. We can see
that the voltage amplitudes of these nodes are well in the range of
[0.99 1.03] (per unit value).

4.3. Convergence of hierarchical coordination mechanism

The convergence characteristics of hierarchical coordination
mechanism are shown in Fig. 11. After three iterations in the sim-
ulation, the relative differences of the upper bounds and lower
bounds of all test cases are within 2%. The fast convergence of Ben-
ders decomposition based simulation of the hierarchical coordina-
tion proves that the required information volume of GBF is small.
The hierarchical coordination of TSO-DSO dispatch is very efficient.
Because we use Benders decomposition in the simulation of hierar-
chical coordination, the simulation works in an iterative way.
However, as we have mentioned, the hierarchical coordination
converges in one iteration as long as the GBFs are submitted from
the DSO to the TSO as one package.

4.4. Coordination of both active power and generation reserves

The generation reserves are provided from all generators
including DERs to mitigate real time power unbalance and uncer-
tainty of renewable energy. The active power and reserve dispatch
results are listed in Table 13. The dispatch cost is higher compared
with the case of not providing generation reserves. The GBFs are
shown in Table 14. The cost information of both the active power

Table 11
Active power dispatch results in congestion of distribution feeders.

Generator Dispatch [MW]

Centralized Hierarchical

1 196.79 275.07
2 140.00 140.00
3 100.00 100.00
4 100.00 78.20
6 10.00 5.32
7 20.48 0.00
8 10.00 10.00
10 19.41 13.50
11 10.00 10.00
12 20.00 20
13 15.00 13.00
14 15.00 15
15 0.25 0.00

Cost [€] 13063.56 13078.30

CPU time [s] 0.12 0.23

Table 12
Generalized bid functions in congestion of distribution feeders.

k j bDk;j [€] âk;j [€/MWh] bPsum
k;j [MW]

1 1 1698.04 32.00 61.50
2 126.56 15.00 8.44
3 731.82 15.00 28.82

2 1 1313.90 18.96 43.96
2 2570.00 45.00 80.00
3 1590.19 40.00 58.00
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Fig. 10. Voltage amplitude and phase angle in congestion of distribution feeders.
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and reserve have been captured in the parameters of the GBF. We
can see that the proposed hierarchical coordination mechanism is
capable of coordinating both active power and generation reserves.
The fast convergence of the hierarchical coordination in this test
case shows the strong capability of the proposed parallel computa-
tion approach.

4.5. Application in large scale power network

The IEEE 342 node network [55] is modified here to illustrate
the application of the proposed hierarchical coordination mecha-
nism. The network is from the United Electric Light & Power

Company of New York. This test case has one 230 kV transmission
network (nodes P1-P4, P7-P8) and one 277/480 V distribution
network (nodes P5-P6, P9-P390, S193-S240). The meshed distribu-
tion network is connected to the transmission network by two
step-down transformers (230/132 kV D=D connection) shown in
Fig. 12. One 50 MW generator is located in the transmission
network. Each 13.2 kV distribution feeder is equipped with one
7.5 MWDG. To simulate the large scale integration of DERs, we dis-
tribute in total 48 DGs among all nodes of the local community
networks (one 3 MW DG at each node). The power factors of DERs
range from 0.89 to 1.00. The active power dispatch results are
listed in Table 15. The results of the GBFs are shown in Table 16.
We can see in this real network test case, the performance of the
hierarchical coordination mechanism is fast and accurate com-
pared with centralized dispatch. We show the impact of DERs on
the voltage amplitude and phase angle in Fig. 13. The voltage
spikes in the distribution network show clearly DERs in the distri-
bution feeders are dispatched. The meshed distribution network
also shows a very complex voltage profile.

To investigate the effect of power load on the results, we change
the power loads of all the 390 nodes (note the total number of
nodes in this test case is 390 not 342) in the network from 10%
to 100% of the load levels in the base case (because in the base case
we have increased the power loads to 5 times of the loads in the
original network data set, the power loads actually vary from
50% to 500% of the original loads.). Then the economic dispatch
problem is solved under different load levels. The results of the dis-
patch cost for centralized dispatch and hierarchical coordination
mechanism are shown in Fig. 14. The dispatch cost increases with
the increase of the power loads. For all the load levels, hierarchical
coordination mechanism converge to very close results compared
with the centralized dispatch. To demonstrate the accuracy of
the hierarchical coordination mechanism, we calculate the relative
error e of the results by:

e ¼ costH � costC
costC

� 100% ð6Þ

where costH is the dispatch cost of hierarchical coordination, costC is
the dispatch cost of centralized dispatch. The results of relative
error are shown in Fig. 15. In this large scale network test case,
the relative errors of the proposed hierarchical coordination mech-
anism for all the power load levels are less than 0.4%.
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Fig. 11. The convergence of the proposed hierarchical coordination mechanism.

Table 13
Dispatch results in coordination of both active power and generation reserves.

Generator Centralized [MW] Hierarchical [MW]

Energy Reserve Energy Reserve

1 138.02 0.00 148.69 0.00
2 31.93 248.07 147.60 132.40
3 115.67 84.33 0.00 200.00
6 0.00 25.00 0.00 2.50
8 20.00 5.00 6.25 5.00
11 4.36 15.64 0.00 20.00
12 15.64 4.36 20.00 0.00
14 0.00 0.00 2.86 0.00

Cost [€] 11242.09 11237.74

CPU time [s] 0.11 0.28

Table 14
Generalized bid functions in coordination of both active power and generation
reserves.

k j bDk;j [€] âk;j [€/MWh] bPsum
k;j [MW]

1 1 2283.26 32.00 61.69
2 509.25 17.00 5.44
3 646.75 22.00 6.25

2 1 1582.11 40.00 43.68
2 393.38 19.00 4.12
3 797.86 36.00 2.29
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5. Conclusions

This paper proposes a hierarchical coordination mechanism to
coordinate the economic dispatch of TSO and DSO. This is moti-
vated by the fact that more and more DERs are integrated to the
distribution network. Meanwhile the visibility of DERs to TSO is
very limited. Creating a coordination mechanism to loop both
TSO and DSO in activating the flexibilities from the DERs is essen-
tial. The issue of network information exchange between TSO and
DSO is addressed through the proposed concept of GBF. The hierar-
chical coordination mechanism is proposed to decompose the dis-
patch task of transmission network and distribution network. Two

levels are considered in the proposed hierarchy. At the second
level, DSO solves the economic dispatch considering its own net-
work constraints and DERs. The results of DSO dispatch are pack-
aged in the form of GBFs and communicated to the first level of
hierarchy i.e. TSO. Once the economic dispatch of the first level
of hierarchy is solved, the dispatch results are communicated back
down to the DSO in the second hierarchy. The convergence of hier-
archical coordination mechanism is guaranteed by the convexity of
the proposed SOCP based AC OPF. We simulate different scenarios
of possible network congestions in both transmission and distribu-
tion networks. The simulation is accelerated by the proposed grid
computing structure in GAMS environment. Results show that
the simulation of the proposed hierarchical coordination mecha-
nism can achieve very close results compared with centralized dis-
patch within three iterations. This means if DSO submit the GBFs in
one package, the real hierarchical coordination converge in one
iteration. The results of GBFs in all test cases demonstrate a unified
format of TSO-DSO dispatch communication. By formulating the
problem of scheduling generation reserves in the proposed convex
ACOPF model, we are able to demonstrate that the proposed hier-
archical coordination mechanism is capable of coordinating both
energy and reserves at the same time. The scheduled reserves are
useful to balance power system in real time considering the uncer-
tainty of renewable energy. The numerical results of IEEE342-node
test case show the potential of practical applications of the pro-
posed hierarchical coordination mechanism. The robustness of
the proposed hierarchical coordination mechanism is proved by
the accurate results under different load levels in the IEEE342-
node test case. Because the proposed hierarchical coordination
mechanism is based on the bids of DERs in the market and the bids
are generally in the same format, the implementation of this coor-
dination mechanism does not depend on what types of DERs are
connected in the distribution network. Using dynamic price signals
is one market mechanism to release the network congestions and
activating the flexibilities from DERs. For the aggregator, the
potential to profit by participating the retail market is large if
dynamic price signals are provided. The proposed hierarchical
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Fig. 13. Voltage amplitude and phase angle in large network.

Table 15
Active power dispatch results in large scale power network.

Generator Dispatch [MW]

Centralized Hierarchical

1 50.00 50.00
2 7.50 7.50
3 7.50 7.50
4 7.50 7.50
5 7.50 7.50
6 7.50 7.50
7 7.50 7.50
8 7.50 7.50
9 5.93 5.96

Cost [€] 73168.05 73234.11

CPU time [s] 0.12 0.23

Table 16
Generalized bid functions in large scale power network.

k j bDk;j [€] âk;j [€/MWh] bPsum
k;j [MW]

1 1 147.75 10.00 2.37
2 501.44 16.00 5.14
3 632.25 18.00 5.96
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coordination mechanism for TSO and DSO provides a way to guar-
antee the market is efficient for both transmission network and
distribution network.
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H I G H L I G H T S

• Propose the concept of Power Synergy Hub (PSHub) to operate the super grid.

• Compare the SOC-ACOPF model with DC OPF model and other convex AC OPF models.

• Formulate the modified Benders decomposition as the mathematical foundation of PSHub.

• Assist real-time operation of super grid by parallel computation in GAMS.

• Speed up the convergence of the modified Benders decomposition.
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A B S T R A C T

The challenge of operating ultra-large-scale power system or super grid is addressed in this paper. We set up the
concept of power synergy hub (PSHub) serving as the operation hub coordinating the energy dispatch of multiple
nations or regions across the continent to achieve global optimal targets. An efficient mechanism based on the
modified Benders decomposition (BD) is proposed to coordinate the operations of national or regional power
networks. The key contribution is that we take the total power outputs of regional power networks as the
complicating variables to formulate the master problem and subproblems in the modified BD. Instead of using
DC optimal power flow model (DC OPF), we propose to use convex AC optimal power flow model based on
second-order cone programming (SOC-ACOPF) to operate the super grid. A comprehensive investigation proves
that the SOC-ACOPF outperforms DC OPF in terms of accuracy. Numerical evaluations also show that our SOC-
ACOPF model has stronger convergence capability and computational efficiency over other considered SOC-
ACOPF models. The convergence of the modified BD is guaranteed by the convexity of SOC-ACOPF. A parallel
computation framework in GAMS is proposed to assist real-time operation of the super grid. Compared with
operating super grid in a centralized way, the modified BD approach shows stronger convergence capability,
computational efficiency and robustness.

1. Introduction

The European ultra-high voltage power grid is evolving to a super
grid with more high voltage AC (HVAC) and high voltage DC (HVDC)
interconnections [1]. The major advantage of building a super grid is
balancing energy consumption and generation across the continent [2].
Larger transmission capacity between renewable energy abundant areas
and load centers means more efficient complementary energy use in
dimension of both location and time. It is cost beneficial to fully exploit
the renewable energy resources by expanding the power transmission
network throughout Europe [3]. In facing the Energy Roadmap 2050
issued by the European Commission, an ambitious 80% reduction of

green house gas emissions (GHG) by the year of 2050 compared with
1990 has been set out [1,4]. Since electricity covers around 20% of
energy consumption [1], exploiting the huge potential of the electricity
sector in achieving the EU2050 target is critical.

Recent years have witnessed the promising development of super
grid worldwide. In Europe, the e-Highway2050 project has been im-
plemented to identify weak power transmission lines and resolve these
constraints for future decarbonized economy [4]. Ref. [3] finds that
228,000 km of new lines are required to be cost-optimally built for the
European power network before 2050. Around €200 billion investment
for updating the European transmission infrastructure is expected to be
in place up to the year of 2020 [1]. China is planning to install 13 to 20
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extra 800 kV to 1300 kV HVDC lines from 2014 onwards to transmit
approximately 1300GW of solar, wind and hydro-power generation to
the southeast population centers [2]. It is estimated by the international
energy agency (IEA) that the total investment of China on updating the
transmission network reaches more than $4 trillion by the year of 2040
[2]. Using unit commitment model, the impact analysis of inter-re-
gional transmission power network expansion in China by authors in
[5] show that large economic benefits can be achieved.

To optimally operate an ultra-large-scale super grid is challenging in
many aspects. Though more flexible control can be gained through the
deployment of flexible AC transmission system (FACTS), phase-shifting
transformers (PSTs) and voltage source converter based multi-terminal
DC transmission (MTDC), the unplanned power flow is still one of the
main challenges to operate the super grid [1]. By investigating the
impacts of inter-regional grid transmission in China, Ref. [5] shows that
efficient dispatch mechanism across regions accounting for generation
efficiency should be established. Ref. [6] proposes a decomposition-
coordination algorithm to find the sub-optimal solution of the in-
tegrated electrical and heating system. The algorithm in [6] works by
dividing the system into two subsystems and then iteratively adjusting
the coordinated variables which are at the boundary of the electrical
and heating system. The numerical results show that it requires 15
iterations to converge for a test case with 6 nodes of electrical network
and 31 nodes of heating network. However, the convergence of the
coordination mechanism in [6] cannot be guaranteed because of the
nonconvex model. As improvements, our model in this paper is convex
and the convergence is guaranteed.

The optimal operation of the power network is generally formulated

as an optimal power flow problem (OPF) [7,8]. The objective functions
of OPF can be minimizing the power losses [9,10], minimizing the
operation or investment cost [11,12], maximizing the renewable energy
penetration [13] or maximizing the stability margin of the power
system [14,15]. OPF is constrained by network physics, security
[16,17], stability [18] and operation [19] conditions. In general, DC
OPF [20] formulation as an approximation of the AC OPF model is
widely used in transmission network operations. One major reason of
replacing the AC OPF model by DC OPF model is because current
nonlinear programming solvers are unable to efficiently find the global
optimal solution of the AC OPF model mainly because of its nonconvex
structure. There have been promising developments recently as various
relaxation and approximation techniques are proposed in the literature
for the AC OPF model [21–24]. Second-order cone programming
(SOCP) based convex AC OPF is a useful approach with good results
[25]. Semi-Definite Programming (SDP) is another convexification ap-
proach for AC OPF [26–28]. Ref. [29] shows various limits of SDP
computation. It is proved by authors in [26] that efficient algorithms
for solving SDP-based AC OPF remain to be found. Moreover, only
limited types of problems are exact for SDP relaxations [30–32]. In
cases where the exactness is not guaranteed, SDP rarely gives solutions
with physical meanings. Taking into account the advantages of SOCP
over SDP, we improve the SOCP-based AC OPF formulation in [25] and
use the improved model for the operation of super grid in this paper.
Compared with the AC OPF model in [25], we explicitly include voltage
phase angle variables in our model and thus the solutions of these
variables can be obtained directly by solving the model. In addition, the
bounds of power flow variables are equivalently formulated as the

Nomenclature

Sets

N set of nodes or buses
L set of lines or branches
K set of regional or national power networks
J set of iterations
τ set of tie-lines (connecting different national or regional

power networks)
Nk set of nodes or buses located in regional power network k
Lk set of lines or branches located in regional power network

k

Parameters

+Anl node to line incidence matrix
−Anl node to line incidence matrix

Xl reactance of line l
Rl resistance of line l
Gn shunt conductance at node n
Bn shunt susceptance at node n
Kl squared power capacity of line l
qo

max
l

upper bound of reactive power loss of line l
ps

max
l

upper bound of active power flow of line l
qs

max
l

upper bound of reactive power flow of line l
pn

min lower bound of active power generation at node n
pn

max upper bound of active power generation at node n
qn

min lower bound of reactive power generation at node n
qn

max upper bound of reactive power generation at node n
θl

min lower bound of voltage phase angle difference of line l
θl

max upper bound of voltage phase angle difference of line l
pdn active power demand at node n
qdn reactive power demand at node n
αn cost parameter of active power generation at node n

βn cost parameter of active power generation at node n
+

Cn
p cost parameter of active power generation at node n

(added generator)
+

Cn
q cost parameter of reactive power generation at node n

(added generator)

Variables

pn active power generation at node n
qn reactive power generation at node n

+pn active power generation at node n (added generator)
+qn reactive power generation at node n (added generator)

psl active power injection at the sending end of line l
qsl

reactive power injection at the sending end of line l
pol

active power loss of line l
qol reactive power loss of line l
vn voltage magnitude of node n (note this symbol is in the

lower case)
vsl voltage magnitude at the sending end of line l
vrl voltage magnitude at the receiving end of line l
Vn voltage magnitude square of node n (note this symbol is in

the upper case)
Vsl voltage magnitude square at the sending end of line l
Vrl voltage magnitude square at the receiving end of line l
θl voltage phase angle difference of line l
θsl voltage phase angle at the sending end of line l
θrl voltage phase angle at the receiving end of line l
Pk j

sum
, total active power output of regional network k at itera-

tion j
Qk j

sum
, total reactive power output of regional network k at

iteration j
μk j

P
, dual variable of regional network k at iteration j in the

modified BD
μk j

Q
, dual variable of regional network k at iteration j in the

modified BD
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bounds of the power loss variables in our model.
Since the formulated OPF model of operating the super grid is a very

large-scale optimization problem, distributed approaches to solve the
OPF model are useful to make the problem tractable for the optimiza-
tion solver. These distributed solution approaches mainly include
Lagrangian relaxation [33], BD [34,35], Dantzig-Wolfe decomposition
[36] and Alternating Direction Method of Multipliers (ADMM) [37].
Ref. [38] gives a comprehensive summary of distributed algorithms for
optimization and control of power system. Lagrangian relaxation ap-
proach relaxes the coupling constraints between the regional power
networks and generally only approximated solutions can be guaranteed
[33]. BD is widely used to solve the security constrained unit com-
mitment (SCUC) problem and transmission expansion planning (TEP)
problem which can be regarded as expanded applications of OPF
[39–42]. It is required to firstly formulate the master problem and
subproblem and then iterate until the solutions converge in BD and
Dantzig-Wolfe decomposition [34,36]. For SCUC and TEP, mostly the
integer variables are taken as the complicating variables to formulate
the master problem and subproblem of BD [39–41]. ADMM requires
message exchanges among the regional power networks [37]. Gen-
erally, when more regional power networks are to be operated, more
iterations are required for ADMM to converge [37]. Three ADMM-based
distributed DC OPF solution algorithms with different communication
strategies are investigated by [43]. It shows numerically that the con-
vergence performance can be improved by enhancing the data ex-
change with the central controller (or coordinator). Authors in [44]
solve the stochastic second-order cone programming (SOCP) based AC
OPF by ADMM for radial distribution networks. The updates of the
variables and multipliers are decomposed by each node and each sce-
nario. Due to the large number of scenarios and the decomposition
depth (down to each node and each scenario) considered in [44], it
requires more iterations to converge (over 3000 iterations are required
for a 50-node test case with 500 scenarios). The results of [45] de-
monstrate that convergence speed of ADMM largely depends on test
cases. A suitable selection of the penalty factors of ADMM is also re-
quired because of the nonconvexity of AC OPF to guarantee the con-
vergence [45]. Ref. [46] proposes a parametric quadratic programming
approach to solve the regional correction equation in the proposed fully
distributed interior point method (F-DIPM) to solve AC OPF. The power
network is partitioned to several regions geographically. Then
boundary variables associated with the tie-lines are duplicated for each
region. A unidirectional ring communication is employed to transmit
the information about boundary variables during each Newton-
Raphson iteration. Recent developments of using ADMM-based ap-
proaches to solve the gas-electric integrated optimal power flow pro-
blem (GEOPF) [47] and comparisons with Lagrange Relaxation (LR)
and augmented LR based decentralized methods by [48] show that it is
better to solve large-scale GEOPF in a decentralized way than a cen-
tralized approach in terms of information privacy, multiple system
operators coordination or computational efficiency. To address the
convergence issue of ADMM in dealing with nonconvex GEOPF model,
authors in [47] proposes a tailored ADMM approach in which the
binary variables in the GEOPF model are firstly relaxed and then a
feasible solution around the neighborhood of the relaxed solution is
found by the objective feasibility pump (OFP) method. Using SOCP
relaxation and McCormick envelope, the mixed integer nonlinear pro-
gramming (MINLP) GEOPF model is reformulated in [48] to a mixed
integer SOCP model (MISOCP) which is easier to be solved by using the
CPLEX solver. Ref. [49] solves the multi-area generation unit and tie-
line scheduling (MAUTS) problem in the context of wind power pene-
tration by using robust optimization (RO). The formulated RO model in
[49] is decomposed by augmented Lagrange decomposition and then
solved by ADMM. The nonconvexity in the formulated RO model due to
the integer variables is addressed by a heuristic alternating optimiza-
tion procedure (AOP) in which the generation unit commitment states
and tie-line phase angles are optimized and fixed alternately until

convergence [49].
Three main research gaps are identified from the literature review:

1. The coordination of energy dispatch of different nations or regions
for the super grid has not been well discussed; Without an efficient
coordination mechanism, it is hard to operate the super grid opti-
mally.

2. Though past research has validated the SOCP-based convex AC OPF
model, the AC feasibility of the convex AC OPF model is not thor-
oughly examined. Especially, the applicability compared with the
widely used DC OPF model.

3. The speed up of distributed solution algorithm to solve large-scale
AC OPF problem is still in demand to assist real-time decision
making to operate the super grid.

In this spirit, we propose in this paper the concept of power synergy
hub (PSHub) to coordinate the energy dispatch of the super grid. We
show that the mathematical foundation of energy dispatch coordination
operation in PSHub is the modified BD. We propose an improved
convex AC OPF model based on SOCP which is SOC-ACOPF. A com-
prehensive investigation of various IEEE test cases shows that the
proposed SOC-ACOPF model is better than the DC OPF model in terms
of AC feasibility performance. This means the operation points (power
flows, voltages, etc.) obtained by solving the proposed SOC-ACOPF
model can satisfy the real power network constraints better. The pro-
posed SOC-ACOPF model does not introduce new variables except the
voltage magnitude square Vn. To obtain an equivalent linear re-
presentation of the line capacity limit (1h), we use the approximation

≈V 1sl (per unit value). Two approximations ≈θ θsin l l and ≈v v 1s rl l
(per unit value) for convexifying the nonconvex constraint (1g) are
introduced in our model. Moreover, the proposed SOC-ACOPF model is
valid for both radial and mesh power networks. These are the main
differences of our model compared with other SOC-ACOPF models in
the literature [22,50,51]. A numerical comparison with other SOC-A-
COPF models in the literature is conducted to demonstrate the ad-
vantages of our model. To accelerate the coordination process in the
PSHub, we propose a parallel computation structure in GAMS. The fast
convergence of the energy dispatch coordination in PSHub and the
proposed SOC-ACOPF model are demonstrated by numerical results for
large-scale power networks up to 9241 nodes. The rest of this paper is
organized as follows. Section 2 proposes the concept of PSHub. Section
3 presents the exact AC OPF model, the SOC-ACOPF model and the
decoupled DC OPF model. Section 4 formulates the modified BD as the
mathematical foundation of PSHub energy dispatch coordination op-
erations. Section 5 designs the parallel computation structure in GAMS.
Section 6 presents the numerical results and discussions. Section 7
concludes the advantages of the proposed approaches in this paper.

2. Proposing the power synergy hub

In this section, we firstly show the severe challenge of operating the
super grid and then propose the solution to this challenge as PSHub. An
overview of the key functions of the PSHub are explained.

To demonstrate the challenging scale of operating the super grid, we
plot the network layout of the European high voltage transmission
networks (750 kV, 400 kV, 380 kV, 330 kV, 220 kV, 154 kV, 150 kV,
120 kV and 110 kV) in Fig. 1. The network data is based on the Pan
European Grid Advanced Simulation and State Estimation (PEGASE)
project [52]. The important metrics of the power network and the
corresponding OPF model are listed in Table 1. It is beyond the cap-
ability of current available optimization solvers to efficiently solve one
single OPF model to find the global optimal solution, not to mention the
gigantic requirement of RAM capacity for the computers. For example,
the LINDOGLOBAL solver which is a powerful global nonlinear pro-
gramming solver in GAMS currently cannot solve optimization pro-
blems with more than 3000 variables and 2000 constraints. One
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practical way to deal with this challenge is to keep operating the re-
gional power networks by current regional energy management system
(EMS) centers and then coordinate the EMS in an efficient mechanism.
We propose the concept of PSHub to implement the coordination me-
chanism of the super grid. This is illustrated in Fig. 2. Regional EMS
represented as blue circles in Fig. 2 is operating the national or regional
power networks. The high voltage DC lines (HVDC) as well as AC lines
(HVAC) (represented as blue lines with arrows in Fig. 2) are connecting
the networks of different nations or regions. While the regional EMS is
operating its own power network, It is not sufficient to achieve global
optimum for the super grid. It is impossible to guarantee the feasibility
and security of the tie-line HVDC and HVAC connections without co-
ordinating the operations of all the regional EMS centers. To coordinate
the operations of the regional EMS centers, bi-directional communica-
tion between PSHub with regional EMS is required. The regional EMS
submits information of its own network conditions to the PSHub. The
PSHub then commands the operation points to each regional EMS
taking the constraints of tie-line HVDC and HVAC connections into
account.

Mathematically speaking, the function of PSHub is like a global
optimization algorithm which iterates the local optimal solutions ob-
tained by the regional EMS centers and coordinates the individual EMS
by determining its total power output and the power flows of the tie-
lines, in order to achieve global optimality in the super grid. There are
two fundamental problems to be solved by the PSHub:

1. What information is required to communicate from the regional
EMS centers to the PSHub (represented as orange lines with arrows
in Fig. 2)?

2. How to coordinate the energy dispatch of multiple regional EMS
centers in order to achieve global optimal targets?

We prove in following sections of this paper that the proposed
modified BD is not only an efficient approach to implement the co-
ordination mechanism in PSHub but also leads to solutions very close to
the global optimal targets for the super grid. The formulated Benders
cuts are the information required to be communicated from regional
EMS centers to the PSHub. These constitute two main contributions of

this paper.

3. The optimal power flow model

The fundamental mathematical models of optimal power system
operations are presented in this section. The OPF models are generally
solved in the EMS centers frequently to find the optimal operation
points of the power network. We firstly present the full AC OPF model
which is nonconvex and difficult to find the global optimality. Then we
propose to use SOCP to convexify this AC OPF model. Finally, the
widely used decoupled DC OPF model is presented. This DC OPF model
is set as the benchmark in our paper to show the better AC feasibility of
the proposed SOC-ACOPF model.

3.1. Full AC optimal power flow model

The full AC OPF model (based on the validated branch flow model
[22,25]) is formulated in optimization problem (1). Note p q,s sl l

re-
present receiving end power flows in [25] which are different in our
formulation. So some constraints are accordingly different. The term s
in p q v V, , ,s s s sl l l l is not an index but only to imply the meaning of sending
end of line l. The term r in v V,r rl l is not an index but only to imply the
meaning of receiving end of line l. The term d in p q,d dn n is not an index
but only to imply the meaning of power demand. Similar reasoning
holds for the term o in p q,o ol l which is to denote the meaning of power
loss.

f p q p qMinimize ( , , , )n n o oΩ l l (1a)

∑− = − + ∀ ∈+ −p p A p A p G V n N

subject to

( ) ,n d
l

nl s nl o n nn l l
(1b)

∑− = − − ∀ ∈+ −q q A q A q B V n N( ) ,n d
l

nl s nl o n nn l l (1c)

=
+

∀ ∈p
p q

V
R l L,o

s s

s
l

2 2

l
l l

l (1d)

=
+

∀ ∈q
p q

V
X l L,o

s s

s
l

2 2

l
l l

l (1e)

− = + − − ∀ ∈V V R p X q R p X q l L2 2 ,s r l s l s l o l ol l l l l l (1f)

= − ∀ ∈v v θ X p R q l Lsin ,s r l l s l sl l l l (1g)

Fig. 1. Visualizing the European super grid.

Table 1
Scale of operating the super grid.

Super grid model Metrics of network data Metrics of OPF model

Nodes Lines Generators Variables Constraints

1354pegasea 1354 1991 260 11192 20393
2869pegase 2869 4582 510 25086 45590
9241pegase 9241 16049 1445 85568 155087

a Pan European Grid Advanced Simulation and State Estimation project.

Fig. 2. The conceptual diagram of PSHub.
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+ ⩽ ∀ ∈p q K l L,s s l
2 2
l l (1h)

= ∀ ∈V v n N,n n
2 (1i)

⩽ ⩽ ∀ ∈v v v n N,n
min

n n
max (1j)

⩽ ⩽ ∀ ∈θ θ θ l L,l
min

l l
max (1k)

⩽ ⩽ ∀ ∈p p p n N,n
min

n n
max (1l)

⩽ ⩽ ∀ ∈q q q n N,n
min

n n
max (1m)

where = ∈p q p q p q V v θΩ { , , , , , , , , }n n s s o o n n ll l l l R is the set of decision vari-
ables. Depending on the applications, the objective function
f p q p q( , , , )n n o ol l can be the economic cost of energy production, network
power loss or security margin. In this paper, we use the quadratic or
linear cost function of energy production in MATPOWER [53] directly.
Eqs. (1b) and (1c) represent the active and reactive power balance. +Anl
and −Anl are the incidence matrices of the network with = =+ −A A1, 0nl nl
if n is the sending end of line l, and = − =+ −A A1, 1nl nl if n is the receiving
end of line l. Eqs. (1d) and (1e) represent active power and reactive
power loss. Eqs. (1f) and (1g) are derived by taking the magnitude and
phase angle of the voltage drop phasor along line l respectively [22,25].
Constraints (1j), (1k), (1l), (1m) are bounds for voltage magnitude,
voltage phase angle difference, active power generation and reactive
power generation. This model is nonconvex because of the nonconvex
constraints (1d), (1e), (1g) and (1i). Current available nonlinear pro-
gramming solvers are unable to efficiently find the global optimal so-
lution of this nonconvex model.

3.2. Second-order cone AC optimal power flow model

The convexification and approximation of the full AC OPF model
are derived in this section. The convexification is based on SOCP. The
approximation is based on small voltage phase angle difference as-
sumption and voltage magnitude assumption for power transmission
network. Compared with the convex AC OPF model in [25], the im-
provements of the proposed SOC-ACOPF model in current paper are
twofold:

1. Voltage phase angle variables are explicitly included in the SOC-
ACOPF model so that the solutions of these variables can be ob-
tained directly by solving the proposed SOC-ACOPF model.

2. The upper bound of power flow for each line is constrained
equivalently by constraint (2c).

Note that in the proposed SOC-ACOPF model, we only use the
squared voltage variable Vn instead of the voltage variable vn in order to
exclude the nonconvex constraint (1i). The solution of vn can be re-
covered by =v Vn n in which Vn is solved directly from the proposed
SOC-ACOPF model.

Constraints (1d), (1e), (1g) and (1i) are nonconvex constraints in the
optimization problem (1). Using second-order cone [25], constraint
(1e) can be relaxed to the rotated second-order cone constraint in (2a).

⩾
+

∀ ∈q
p q

V
X l L,o

s s

s
l

2 2

l
l l

l (2a)

Constraint (1h) can be equivalently replaced by:

⩽ ∀ ∈q q l L,o o
max

l l (2b)

where the upper bound of reactive power loss qo
max
l

is estimated from
the upper bound of line capacity as shown in (2c). The approximation
in (2c) is based on ≈V 1sl (per unit value) which is valid in normal
power system operations.

=
+

= ≈
[ ] [ ]

q
p q

V
X K

V
X K Xo

max s
max

s
max

s
l

l

s
l l l

2 2

l
l l

l l (2c)

Nonconvex constraint (1d) can be replaced by the linear relationship
between pol

and qol
:

= ∀ ∈p X q R l L,o l o ll l (2d)

We use two approximations ≈θ θsin l l and ≈v v 1s rl l (per unit value) for
linearizing the equation given in (1g). These assumptions are valid for
transmission network under normal operations. Note that these as-
sumptions are only used to linearize (1g)–(2e):

= − ∀ ∈θ X p R q l L,l l s l sl l (2e)

Using (2a), (2b), (2d) and (2e), the optimization problem (1) can now
be reformulated as a SOCP problem. This proposed SOC-ACOPF model
represented by {(1a)–(1c), (1f), (1j)–(1m), (2a)–(2b), (2d)–(2e)} can be
solved efficiently to global optimum using interior point method (IPM)
[54]. The convexity of the proposed SOC-ACOPF model is further va-
lidated by the solutions from the MOSEK solver (an efficient convex
programming solver which can only solve convex models and detect
any nonconvexity in the model) in GAMS.

The objective function f of typical economic dispatch is quadratic:

∑= +f p α p β p( )n
n

n n n n
2

(2f)

where α β,n n are cost parameters of the active power generation.
Minimizing quadratic objective function over a convex feasible region
is a convex optimization problem.

3.3. Decoupled DC optimal power flow model

The decoupled DC OPF model is a widely used approximation of the
exact AC OPF model. It is set as the benchmark to validate the AC
feasibility of the proposed SOC-ACOPF model. We present the de-
coupled DC OPF model in (3) [55].

f p qMinimize ( , )n nΩ (3a)

∑− = + ∀ ∈p p A p G n N

subject to

( ) ,n d
l

nl s nn l
(3b)

∑− = − ∀ ∈q q A q B n N( ) ,n d
l

nl s nn l (3c)

= ∀ ∈p θ
X

l L,s
l

l
l (3d)

=
−

∀ ∈q
v v

X
l L,s

s r

l
l

l l

(3e)

(1h), (1j)–(1m) (3f)

where constraints (3b)–(3e) and (1j)–(1m) are linear. Constraint (1h) is
convex. So, if we use convex objective function (generally the objective
function is either linear or quadratic), this minimization model is
convex. This OPF model is decoupled because the active power flow psl
is only approximated by the voltage phase angle difference variable θl
while the reactive power flow qsl is calculated by voltage magnitude
variable vn. However, as we demonstrate later by the numerical results
of this paper, the AC feasibility of model (3) is worse compared with the
proposed SOC-ACOPF model.

4. Mathematical foundation of PSHub: modified Benders
decomposition

In this section, we show that how modified BD can be used as the
mathematical foundation of energy dispatch coordination in PSHub. In
BD, the original large-scale optimization problem is decomposed to a
master problem and several subproblems. The objective solution of the
master problem gives the lower bound of the original optimization
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problem (we consider minimization problem here). The objective so-
lutions of the subproblems can give upper bound of the objective in the
original minimization problem. With the proceed of the iterations, the
lower bound and upper bound given by the master problem and sub-
problems finally converge. The challenges are how to formulate the
master problem and subproblems in the decomposition and how to
accelerate the convergence. These challenges are addressed in this
section. We also propose to deal with the feasibility problem of the
subproblem in the modified BD by an efficient way without using the
original Benders feasibility cuts approach.

The key observation and contribution in this paper is that, if we take
the total power generations of the regional power networks as the
complicating variables in formulating the modified BD, the modified BD
can serve as the mathematical foundation of the energy dispatch co-
ordination implemented by the PSHub. The total power generations of
the regional power networks are actually the operation points to be
found by the regional EMS centers. The energy dispatch of each re-
gional power network k is a subproblem in the modified BD algorithm.
The master problem of the modified BD is the energy dispatch co-
ordination of the PSHub. The subproblem k in the modified BD is for-
mulated in (4).

∑=
∀ ∈ ∈

Cost f p q p qMinimize ( , , , )k
EMS

n N l L
n n o oΩ ,k k

l l
(4a)

∀ ∈ ∈n N l L
subject to (1a)–(1c), (1f), (1j)–(1m)
(2a)–(2b), (2d)–(2e) ,k k (4b)

∑ =
∈

p P μ:
n N

n k j
sum

k j
P

, ,
k (4c)

∑ =
∈

q Q μ:
n N

n k j
sum

k j
Q

, ,
k (4d)

where Costk
EMS is the cost of energy production for regional power

network k. (4b) refers to the power flow constraints for all lines and
nodes located in regional network k. Nk and Lk are sets of the nodes and
lines located in the regional power network k. Pk j

sum
, and Qk j

sum
, are the

solutions of total power generations in regional power networks from
the master problem of the modified BD at iteration j. μk j

P
, and μk j

Q
, are

dual variables for the corresponding constraints used for constructing
the Benders cuts. The objective solution of the subproblem (4) is the
upper bound of the energy dispatch for each regional EMS center.

To guarantee the feasibility of the subproblem, we have added one
more generator with large capacity at each bus of the regional power
networks. The marginal generation cost of the added generators is
larger than the most expensive generators in the original regional
power networks (note these added generators do not exist and are only
used as variables in the model). In this way the final converged dispatch
results do not include generations from these added generators (cheap
generators are more preferred to be dispatched because we minimize
the generation cost as the objective). This is another contribution of this
paper to deal with the feasibility problems of the subproblems in the
modified BD. This approach is more efficient than the traditional
Benders feasibility cuts approach which cannot converge within hours
in our simulations. The numerical failure of MOSEK solver [54] using
the traditional Benders feasibility cut approach in solving ultra-large-
scale AC OPF indicates that a modified BD should be developed. As a
comparison, the proposed approach converges very fast. In this way,
the power balance constraints (1b) and (1c) in (4b) are modified as (4e)
and (4f):

∑+ − = − + ∀ ∈ ∈+

∈

+ −p p P A p A p G V n N l L( ) , ,n n d
l L

nl s nl o n n k kn
k

l l
(4e)

∑+ − = − − ∀ ∈ ∈+

∈

+ −q q Q A q A q B V n N l L( ) , ,n n d
l L

nl s nl o n n k kn
k

l l
(4f)

where +pn and +qn are the active power and reactive power generations
from the added generators. The objective function in the subproblem
(4) is modified as (4g):

∑ ∑= + +
∀ ∈ ∈ ∈

+ + + +Cost f p q p q C p C qMinimize ( , , , ) ( )k j
S

n N l L
n n o o

n N
n
p

n n
q

n,
,k k

l l
k

(4g)

where +Cn
p and +Cn

q are the marginal cost parameters of active power
and reactive power generations from the added generators. The Benders
feasibility cuts are used to remove infeasible solutions from the
searching space of the solver. However, if the infeasible region of the
searching space is very complex and large, using Benders feasibility cuts
will be very time-consuming. This is because it is required to generate
many Benders feasibility cuts in order to remove possible infeasible
solutions from the searching space. Our approach to guarantee the
feasibility of the subproblems can avoid detecting the feasibility pro-
cedure of BD. In this way, the computational efficiency is improved.

Fig. 3. The flow charts of traditional BD and the
modified BD.
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The lower bound of objective for energy dispatch for all the regional
EMS centers is obtained by solving the master problem of the modified
BD. The master problem of the modified BD is formulated in (5).

∑=
∈

Cost CostMinimize PSHub

k K
k
EMS

Ω (5a)

∀ ∈l τ
subject to (1a)–(1c), (1f), (1j)–(1m)

(2a)–(2b), (2d)–(2e), (5b)

∑⩾ + + −
∈

+Cost Cost μ p p P( ( ) )k
EMS

k j
EMS

k j
P

n N
n n k j

sum
, , ,

k (5c)

∑+ + − ∀ ∈ ∈
∈

+μ q q Q k K j J( ( ) ) , ,k j
Q

n N
n n k j

sum
, ,

k (5d)

where CostPSHub refers to the total cost of energy production for the
super grid. (5b) represents the power flow constraints of tie-lines
(transmission lines connecting different EMS regions). τ is defined as
the set of all tie-lines. We model each regional power network as a
single virtual node in the master problem. Constraint (5d) includes
Benders cuts from the subproblems. μk j

P
, and μk j

Q
, are dual variable so-

lutions of Eqs. (4c) and (4d) in regional power network k (which is
equal to zero at the first iteration). The master problem is responsible to
give solutions of total power output of regional power networks and tie-
line power flows. The subproblems are responsible to give solutions of
subnetwork power flows. The master problem is always feasible be-
cause it is actually a relaxed problem of the original SOC-ACOPF model.
As the iterations proceed, more Benders cuts from the regional net-
works are iteratively included into the master problem (this process is
interpreted as the communication between PSHub and all regional EMS
centers). After solving the master problem, all the subproblems can be
computed in parallel which we explain in the next section. If the ori-
ginal problem is convex (the proposed SOC-ACOPF model is convex), it
is proved that the optimal solution can be found within finite iterations
[34,35]. The procedure of using the modified BD to operate the super
grid is explained in Fig. 3. A graphical illustration of the relationship
between the master problem and subproblems in the modified BD is
plotted in Fig. 4. To show the difference of the modified BD with the
traditional BD, we also plot the flow chart of traditional BD in Fig. 4. As
we have mentioned, our modified BD avoids the steps of checking
subproblems feasibility and generating the Benders feasibility cuts in
the iterations.

5. Accelerating the implementation of modified BD by parallel
computation

As the modified BD in PSHub is solved in an iterative way, the ex-
ecution can be accelerated by parallel computation. We explain in this
section the proposed parallel computation structure in GAMS [56]. The
performance of the parallel computation is validated by the numerical
results in the next section.

The proposed parallel computation structure of the energy dispatch
coordination by PSHub is illustrated in Fig. 4. The parallel computation
structure is implemented in GAMS platform and it is based on the
modified BD. The parallel computation is comprised of one Parallel
Loop and one Collect Loop. The Parallel Loop complies all the sub-
problems in the modified BD and submits each subproblem to one
thread to be executed by one core of the CPU. Since the subproblems
are actually the energy dispatch of regional EMS centers, we denote the
threads of the subproblems in Fig. 4 by ‘EMS-1’, ‘EMS-2’, …, ‘EMS-k’.
The Collect Loop repeatedly checks the solution status of each thread
and then saves the solutions as long as the solutions are available. The
threads of solved subproblems are released in order to avoid over using
the computer disk capacity. Because there is no communication re-
quirement among the subproblems, the capability of multi-CPU com-
puters can be utilized to the most.

6. Numerical results

In this section, we firstly investigate comprehensively the AC fea-
sibility of the proposed SOC-ACOPF model and the decoupled DC OPF
model. A numerical comparison of our SOC-ACOPF model with other
convex AC OPF models is also provided. The performance of energy
dispatch coordination by PSHub accelerated by parallel computation is
then demonstrated. All the models are coded in GAMS and solved by
the MOSEK solver. All simulations are run on a PC with Intel i7-
2760QM 2.4 GHz CPU and 8 GB RAM.

6.1. Comparison of SOC-ACOPF and decoupled DC OPF

We compare the AC feasibility of SOC-ACOPF and decoupled DC
OPF by various IEEE test cases [57]. These test cases are based on real
world power network configuration data. The AC feasibility is shown by
the gap of the equality constraints (1b)–(1g) between the full AC OPF
model and the SOC-ACOPF model or the decoupled DC OPF model. A
smaller absolute value of the gap means better AC feasibility. Zero gap
means the solutions are fully feasible. For IEEE14-Bus, IEEE57-Bus,
IEEE118-Bus and IEEE300-Bus, the absolute values of the AC feasibility
gaps are plotted directly, whereas for 1354pegase and 2869pegase
[52], we plot the histogram to summarize the statistics of the absolute
values of the AC feasibility gaps. Note that the left-side Y-axis denotes
the AC feasibility gap for the proposed SOC-ACOPF model. The right-
side Y-axis denotes the AC feasibility gap for the decoupled DC OPF
model. The X-axis of the histogram distributes the absolute values of the
AC feasibility gaps to 50 intervals. The Y-axis of the histogram is the
number of instances in each interval of the X-axis. The total number of
instances is equal to the total number of constraints for the corre-
sponding test case.

For ease of illustration, we categorize the equality constraints
(1b)–(1g) representing the AC feasibility into three groups:

1. Kirchhoff’s Current Law (KCL) constraints: active power balance
(1b) as KCL-P and reactive power balance (1c) as KCL-Q. The AC
feasibility gaps of these constraints are summarized in Figs. 5, 8, 11,
14, 17 and 20. These figures show the AC feasibility gap of the KCL
constraint at each bus;

2. Power Loss constraints: active power loss (1d) as Ploss and reactive
power loss (1e) as Qloss. The AC feasibility gap of these constraints
are summarized in Figs. 6, 9, 12, 15, 18 and 21. These figures show
the AC feasibility gap of the Power Loss constraint at each trans-
mission line;

3. Voltage Drop constraints: voltage drop magnitude (1f) as vΔ and
voltage drop phase angle (1g) as θ vΔ . The AC feasibility gap of these

Fig. 4. The parallel computation management in PSHub.
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constraints are summarized in Figs. 7, 10, 13, 16, 19 and 22. These
figures show the AC feasibility gap of the Voltage Drop constraint at
each transmission line.

Finally, to give an overall comparison, we list the maximum

absolute values of AC feasibility gaps of the proposed SOC-ACOPF
model and decoupled DC OPF model in Table 2. In all the test cases, the
AC feasibility of the proposed SOC-ACOPF model is much better than
the decoupled DC OPF model for the KCL and Power Loss constraints.
For the KCL and Power Loss constraints, AC feasibility of the proposed
SOC-ACOPF model is better than the decoupled DC OPF model. For the

Fig. 5. IEEE14-Bus AC feasibility of KCL constraints.

Fig. 6. IEEE14-Bus AC feasibility of power loss constraints.

Fig. 7. IEEE14-Bus AC feasibility of voltage drop constraints.

Fig. 8. IEEE57-Bus AC feasibility of KCL constraints.

Fig. 9. IEEE57-Bus AC feasibility of power loss constraints.

Fig. 10. IEEE57-Bus AC feasibility of voltage drop constraints.
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Voltage Drop constraints, there is no significant AC feasibility differ-
ence between the SOC-ACOPF model and the decoupled DC OPF model.
In summary, AC feasibility of the proposed SOC-ACOPF model is better
than the decoupled DC OPF model.

6.2. Comparison of SOC-ACOPF and other convex AC OPF models

To evaluate the performance of our SOC-ACOPF model with other
convex OPF models, we have also implemented the SOCP-based AC OPF
models in [22,51]. The results from nonconvex AC OPF model in MA-
TPOWER are used as the benchmark for the comparison. The results of

Fig. 11. IEEE118-Bus AC feasibility of KCL constraints.

Fig. 12. IEEE118-Bus AC feasibility of power loss constraints.

Fig. 13. IEEE118-Bus AC feasibility of voltage drop constraints.

Fig. 14. IEEE300-Bus AC feasibility of KCL constraints.

Fig. 15. IEEE300-Bus AC feasibility of power loss constraints.

Fig. 16. IEEE300-Bus AC feasibility of voltage drop constraints.
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various IEEE test cases are listed in Tables 3 and 4. Note the model in
[22] is only valid for radial power networks and the objective values
listed in Table 3 for this model are much relaxed solutions (lower ob-
jective values serving as the lower bounds of the objective solutions but
no guarantee of AC feasibility for mesh power networks) compared with

our SOC-ACOPF model and the model in [51] which are both valid for
mesh and radial power networks. The model in [22] requires less
computation time because there are less constraints in the model (no
voltage phase angle constraints and thus solutions of voltage phase
angle variables cannot be directly obtained from solving this model).

Fig. 17. 1354pegase AC feasibility of KCL constraints.

Fig. 18. 1354pegase AC feasibility of power loss con-
straints.
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For IEEE57-Bus and 9241pegase, MOSEK cannot converge for the
model in [51]. As a comparison, MOSEK can always converge to solu-
tions for our SOC-ACOPF model with acceptable computation time.

6.3. Performance of energy dispatch coordination by PSHub

To demonstrate the performance of energy dispatch coordination,
we compare the results of PSHub with the centralized energy dispatch
where the nonconvex AC OPF is solved as one single optimization

Fig. 19. 1354pegase AC feasibility of voltage drop
constraints.

Fig. 20. 2869pegase AC feasibility of KCL constraints.
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problem in MATPOWER [53]. MATPOWER uses MATLAB built-in In-
terior Point Solver (MIPS) to solve nonconvex AC OPF. The solutions
obtained from MATPOWER are local optimal solutions. We summarize
the metrics of the regional networks in Table 5. The ‘EMS’ column lists
the total number of regional EMS centers that are coordinated by the
PSHub.

6.3.1. Base case
In this base case, we use the power load data in the original power

networks. We list the objective value results and computational CPU
time in Table 6. The required number of iterations, generated Benders
cuts and solution accuracy are summarized in Table 7. The relative gap
in Table 7 is calculated as in (6):

Fig. 21. 2869pegase AC feasibility of power loss con-
straints.

Fig. 22. 2869pegase AC feasibility of voltage drop
constraints.
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=
−

×Relative Gap
Upper Bound Lower Bound

Upper Bound
100%

(6)

Because the overall super grid is a fixed network, more regional EMS

centers mean smaller scale for each regional power network. So the
required computation time, in general, will decrease with the in-
creasing of EMS centers. This is because each regional EMS center
dispatch is computed by the proposed parallel computation. However,
as we can notice from the results of the 2869pegase test case, the
computation time of coordinating 4 regional EMS centers is more than
the computation time of coordinating 2 regional EMS centers. This re-
sult shows that the computation time does not only depend on the
network scale but also the specific network structure. The commu-
nicated Benders cuts from all the regional EMS to PSHub are equal to

Table 2
Summary of the maximum absolute values of the AC feasibility gap.

Test case Model AC feasibility gap

KCL-P KCL-Q v|Δ | θ vΔ Ploss Qloss

IEEE14 SOC-ACOPF 1.17E−09 2.95E−09 7.73E−02 1.03E−02 1.12E−09 5.51E−10
Decoupled DC OPF 1.42E−09 2.47E−03 8.80E−02 4.87E−03 1.35E−01 4.43E−02

IEEE57 SOC-ACOPF 1.00E−08 8.59E−09 1.26E−01 5.35E−03 8.30E−02 2.91E−09
Decoupled DC OPF 1.68E−09 7.59E−03 1.11E−01 8.90E−03 2.34E−01 4.59E−02

IEEE118 SOC-ACOPF 2.89E−09 1.00E−08 7.48E−02 2.07E−02 5.65E−01 2.87E−10
Decoupled DC OPF 2.00E−08 3.51E−02 7.75E−02 1.12E−02 5.00E−01 5.88E−02

IEEE300 SOC-ACOPF 2.00E−08 2.00E−08 2.72E−01 2.57E−02 7.40E−01 1.70E−09
Decoupled DC OPF 4.86E−05 2.43E−01 1.82E−01 2.97E−02 3.34E+00 2.09E−01

1354pegase SOC-ACOPF 3.30E−07 3.11E−05 1.70E−01 5.34E−02 8.78E−01 1.32E−02
Decoupled DC OPF 7.00E−07 1.95E−01 2.31E−01 1.88E−02 2.73E+00 2.07E−01

2869pegase SOC-ACOPF 5.08E−06 1.76E−05 2.89E−01 7.63E−02 2.26E+00 1.72E−02
Decoupled DC OPF 4.01E−04 2.61E−01 2.32E−01 2.41E−02 2.10E+00 1.61E−01

Table 3
Objective value [$].

Test case SOC-ACOPF Model in [22] Model in [51] MATPOWER

IEEE14 8078.84 8072.42 8073.16 8081.53
IEEE57 41696.94 41673.10 NA 41737.79
IEEE118 129619.50 129330.74 129325.68 129660.70
IEEE300 719381.80 718091.78 719451.23 719725.11

1354pegase 74040.99 74006.84 73974.56 74069.35
2869pegase 133934.70 133866.95 133823.28 133999.29
9241pegase 313692.87 312212.00 NA 315912.43

Table 4
Computation CPU time [s].

Test case SOC-ACOPF Model in [22] Model in [51] MATPOWER

IEEE14 0.08 0.08 0.07 0.11
IEEE57 0.09 0.11 NA 0.12
IEEE118 0.09 0.13 0.09 0.30
IEEE300 0.25 0.25 0.22 0.48

1354pegase 0.76 0.64 2.56 8.58
2869pegase 1.97 1.23 6.82 18.66
9241pegase 14.73 4.98 NA 85.11

Table 5
Metrics of regional EMS and power networks.

Test case EMS Number of tie-
lines

Number of nodes in regional networks

1354pegase 2 27 828, 526
4 56 311, 253, 319, 471
8 69 168, 151, 120, 243, 186, 102, 260, 124

2869pegase 2 20 1899, 970
4 39 975, 457, 531, 906
8 83 324, 532, 295, 214, 312, 288, 524, 350

9241pegase 2 15 4122, 5119
4 51 1200, 1754, 3253, 3034
8 126 1247, 735, 509, 1887, 1489, 922,

1597, 855

Table 6
PSHub coordination results: base case.

Test case PSHub coordination Centralized dispatch

Objective [$] EMS CPU
time
[s]

Objective [$] CPU
time
[s]Upper bound Lower bound

1354pegase 74009.46 74009.45 2 1.05 74069.35 8.58
74822.49 72726.67 4 1.47
74009.47 74009.45 8 0.41

2869pegase 133902.29 133902.21 2 4.82 133999.29 18.66
134582.33 132578.46 4 6.38
134112.36 133791.95 8 1.22

9241pegase 314273.05 314273.03 2 58.78 315912.43 85.11
316425.87 311537.62 4 29.05
314597.18 314597.11 8 13.79

Table 7
Iterations, Benders cuts and solution accuracy.

Test case EMS Number of
iterations

Number of Benders
cuts

Relative gap

1354pegase 2 3 6 0.00%
4 3 12 2.80%
8 3 24 0.00%

2869pegase 2 3 6 0.00%
4 4 16 1.49%
8 3 24 0.24%

9241pegase 2 3 6 0.00%
4 3 12 1.54%
8 3 24 0.00%

Z. Yuan et al. Applied Energy xxx (xxxx) xxx–xxx

13



the number of iterations times the number of regional EMS centers.
The centralized dispatch results in Table 6 are obtained from MA-

TPOWER which solves the nonconvex AC OPF model and can only
guarantee local optimal solutions. The PSHub coordination results are
obtained by solving our convex SOC-ACOPF model using our proposed
modified BD approach. The decentralized SOC-ACOPF approach con-
verges to very close results compared with the centralized solutions of
SOC-ACOPF model in Table 3. The comparison in Table 6 is to de-
monstrate both the advantages of convex SOC-ACOPF model over the
nonconvex AC OPF model in MATPOWER and the advantages of PSHub

coordination over centralized dispatch. Since the SOC-ACOPF is
convex, the solutions are guaranteed to be global optimal. The benefits
of global economy improvements are because of the advantage of
global optimality over local optimality. The computational efficiency
improvement is because of the advantage of the modified BD using
parallel computation. From a technical perspective, the regional EMS is

Fig. 23. 1354pegase objective values for various load scenarios.

Fig. 24. 1354pegase computation time for various load scenarios.

Fig. 25. 2869pegase objective values for various load scenarios.

Fig. 26. 2869pegase computation time for various load scenarios.

Fig. 27. 9241pegase objective values for various load scenarios.

Fig. 28. 9241pegase computation time for various load scenarios.
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always required to be involved to coordinate the operations with other
regional EMS as long as the power grid is interconnected. Otherwise,
the security of the power grid cannot be guaranteed. From an economic
perspective, the results of regional EMS from PSHub coordination are
very close to centralized dispatch (solve the SOC-ACOPF model as one
single optimization without using the modified BD). This is guaranteed
by the convergence of the modified BD. The convergence means the
final results can converge to the centralized solution of the decision
variables which ensure that the economic cost of regional EMS also
converges to the solution of centralized solution. In summary, the fast
convergence of the coordination by PSHub shows strong coordination
capability. By using parallel computation, the required computation
time for more EMS centers does not increase. On the contrary, the ef-
ficient parallel computation management algorithm is capable of ac-
celerating the computations. This is highly appreciated in online deci-
sion making applications where the computation time is limited.

6.3.2. Load scenarios
To validate the robustness of the coordination mechanism by

PSHub, we simulate the power load scenarios from 70% to 90% of the
original load data. Because the centralized energy dispatch by
MATPOWER cannot converge for most cases when the power loads are
below 70% or above 100% of the original load data, we do not show the
results for these load scenarios. The objective value results are de-
monstrated in Figs. 23, 25 and 27. We also show the CPU time of the
computations in Figs. 24, 26 and 28. For all the considered load sce-
narios, the coordinated energy dispatch by PSHub converge to very
close objective values compared with the centralized dispatch by MA-
TPOWER. The required computation time of PSHub is less than the CPU
time of centralized dispatch. These results show that coordinated en-
ergy dispatch by PSHub is robust against the considered load scenarios.

7. Conclusions

Coordinating the energy dispatch across continent is a challenging
task of future super grid operations. With the large-scale integration of
renewable energy to the power system, more transmission expansions
are required to connect these renewable energy resources in remote
areas either onshore or offshore. It is hard to efficiently operate the
super grid without an international or inter-regional coordination me-
chanism. This paper contributes to the literature by proposing the SOC-
ACOPF model and the PSHub concept to solve this challenge.
Specifically, we have solved three problems of operating the super grid:

1. How to approximately find the global optimal operating points of
the power network? The solution is the improved convex SOC-
ACOPF model;

2. How to coordinate the energy dispatch of different nations or re-
gions and reduce the communication burden? The solution is the
modified BD algorithm;

3. How to execute the coordination of ultra-large-scale power network
fast enough to assist online decision making? The solution is the
proposed parallel computation structure.

The accuracy of the proposed SOC-ACOPF model is proved by a
comprehensive investigation of the numerical results from various IEEE
test cases. Compared with the widely used decoupled DC OPF model,
the AC feasibility of the proposed SOC-ACOPF model is better. This
means the solutions obtained by the proposed SOC-ACOPF model are
more accurate and realistic. A numerical comparison with other SOC-
ACOPF models in the literature also shows the computational ad-
vantages of our model. Thus, we demonstrate that the proposed SOC-
ACOPF model can be a good candidate for applications in operating the
large-scale super grid in real time.

By coordinating the energy dispatch of regional EMS centers, global
optimal energy dispatch targets can be achieved. The coordination in

PSHub is based on the modified BD algorithm and the proposed convex
SOC-ACOPF model. The advantage of using convex SOC-ACOPF model
is that the convergence of modified BD can be guaranteed. The fast and
strong convergence capability of the proposed coordination mechanism
implemented in PSHub is demonstrated by the proposed parallel com-
putation approach. The numerical results of various number of regional
power networks and load scenarios show that the coordinated energy
dispatch by PSHub is robust. Compared with other distributed AC OPF
solution algorithms in the literature, the main advantages of the pro-
posed modified BD are threefold:

1. Instead of using the original Benders feasibility cuts approach, we
can guarantee the feasibility of the formulated subproblems in the
modified BD by adding one more generator at each node of the
power network with larger marginal cost. Our approach converges
within one minute CPU time for power networks up to 9241 nodes.
The original Benders feasibility cuts approach cannot converge after
several hours in our simulations.

2. Since we formulate the modified BD by taking the total power
generations of the regional power networks as the complicating
variables, no other detailed information except the Benders cuts is
required to be communicated from the regional power networks to
the PSHub. This formulation can largely reduce the communication
burden to coordinate the super grid. Since the parameters of the
Benders cuts are required to be communicated from the regional
power networks to the PSHub in each iteration, the reduced com-
munication burden is also because our modified BD approach re-
quires less iterations to converge compared with the traditional BD.

3. The privacy of information for the regional power networks can be
protected since the boundaries between different regional power
networks are still kept. No transfer of information between different
regional power networks is required. The only two-way commu-
nication is between the PSHub and individual regional power net-
work. This is largely due to our novel formulation of the modified
BD which takes the total power outputs of the regional power net-
works as the complicating variables. In other words, if we take other
variables as the complicating variables to formulate the master
problem and subproblems of BD, the information privacy of regional
power network may not be well protected.
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