

MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

TRABAJO FIN DE MÁSTER

SCENARIO GENERATION FOR THE COMPARISON OF

AUTOMATED VEHICLE VARIANTS

Autor: Javier Martín Baroja

Director: Stefan Riedmaier

Madrid

Junio de 2019

MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL

TRABAJO FIN DE MÁSTER

SCENARIO GENERATION FOR THE COMPARISON OF

AUTOMATED VEHICLE VARIANTS

Autor: Javier Martín Baroja

Director: Stefan Riedmaier

Madrid

Junio de 2019

1

SCENARIO GENERATION FOR THE COMPARISON OF

AUTOMATED VEHICLE VARIANTS

Autor: Martín Baroja, Javier.

Director: Riedmaier, Stefan.

Entidad colaboradora: Technical University of Munich.

RESUMEN DEL PROYECTO

1. Introducción

En los próximos años el sector de la automoción sufrirá varios cambios importantes. Uno

de ellos es el uso de vehículos autónomos. Estos vehículos producirán mejoras

remarcables en la forma en la que viajamos, ya que permitirán viajes más cómodos y

seguros. Sin embargo, la industria automotriz necesita superar algunos desafíos hasta que

esta tecnología esté lista para su uso generalizado. Uno de los principales retos es la

validación de vehículos autónomos. Por validación se entiende el desarrollo de métodos y

pruebas que aseguren que los vehículos sean lo suficientemente seguros para conducir en

las carreteras. Hasta entonces los vehículos no pueden ser vendidos al público.

Los procesos de validación se dividen en dos grupos principales: pruebas físicas y

simulaciones. Las pruebas físicas consisten en la conducción de un prototipo de un

vehículo real en la carretera y la recopilación de datos para verificar que el

comportamiento del vehículo es el correcto. Los principales problemas con estas pruebas

son los altos costes, el gran consumo de tiempo y la dificultad para realizar maniobras

muy específicas [1]. Una alternativa y complemento a las pruebas físicas es el uso de

simulaciones. En las simulaciones se diseña un entorno virtual y se crea un modelo del

vehículo autónomo para simular su movimiento en este entorno virtual. El uso de

simulaciones con escenarios virtuales se ha utilizado para la validación de sistemas

avanzados de asistencia al conductor (ADAS) o de vehículos automatizados [2]. Una

alternativa a este método es usar una simulación en un entorno virtual para comparar dos

sistemas. En este trabajo, el objetivo es desarrollar un método que genere escenarios

virtuales específicos para comparar dos sistemas y descubrir en qué situaciones

específicas se maximiza la diferencia de comportamiento entre los dos sistemas.

El proceso de generación de escenarios consiste en realizar variaciones en un escenario

base con una determinada carretera y una determinada situación de tráfico. Antes de

2

comenzar el proceso se definen las especificaciones geométricas de la carretera. Los

vehículos que conducen en esta carretera, así como sus movimientos y maniobras,

también deben describirse. A continuación, algunos de los parámetros que definen el

escenario se establecen como parámetros variables. Estos parámetros variables tienen

valores diferentes en cada prueba concreta, lo que permite diferentes escenarios en los que

el vehículo realiza pruebas de conducción.

Para el desarrollo del método, el primer paso es analizar el estado del arte existente. En

los últimos años, muchos investigadores han utilizado técnicas de generación de

escenarios para analizar sistemas avanzados de asistencia al conductor (ADAS) así como

vehículos autónomos [3]-[4]. En las pruebas el propósito era encontrar las situaciones más

críticas. Los trabajos utilizaron diferentes métodos para generar los casos de prueba

específicos. Estos métodos se pueden dividir en dos grupos: métodos de cobertura y

métodos de falsificación. El método de cobertura se basa en la selección aleatoria de los

valores para los parámetros variables del escenario [5]. Por otro lado, el método de

falsificación es un proceso iterativo [6]. En este último caso, los valores elegidos para los

primeros escenarios se eligen aleatoriamente, pero después, los resultados de las

simulaciones de los últimos escenarios simulados se utilizan para seleccionar el siguiente

conjunto de valores que definen los siguientes escenarios a simular.

2. Metodología

La estructura del problema se muestra en ¡Error! No se encuentra el origen de la

referencia.. En este método, el algoritmo selecciona valores para los parámetros variables

del escenario. Con estos valores, se define un escenario específico en el que se ejecutan

simulaciones para ambos sistemas. Después de la simulación, los resultados se envían de

vuelta al algoritmo, que evalúa esa solución específica a través de la función de aptitud.

Ilustración 1: Estructura del problema

3

En primer lugar, se elige el algoritmo para la selección de valores y la función de aptitud.

Los dos métodos para la selección de escenarios se introdujeron en el estado del arte: el

de cobertura y el de falsificación. Entre estos dos métodos para seleccionar los valores

que definen cada escenario específico, el método de falsificación es más complejo de

implementar. Sin embargo, como es un proceso iterativo, enfoca la búsqueda alrededor de

las áreas más prometedoras. La decisión es utilizar el método de falsificación como

método base para el método a desarrollar. Después se evalúan varios algoritmos utilizados

en los métodos de falsificación. Las opciones principales son los algoritmos evolutivos y

el algoritmo de aprendizaje por refuerzo. La aplicación del aprendizaje por refuerzo es

adecuada para casos donde una variable tiene muchos valores a lo largo de la simulación.

Sin embargo, éste no es el caso para el proceso de generación de escenarios, donde se

utilizan muchas variables y muchas de ellas tienen un valor fijo durante la simulación.

Así, el algoritmo evolutivo se elige como el algoritmo encargado de seleccionar los

valores de los parámetros variables.

El algoritmo evolutivo necesita una función de aptitud para saber la calidad de una

solución determinada. La función de aptitud toma los resultados de una simulación en un

escenario concreto y calcula un valor escalar que indica la calidad de esa solución

específica. En el caso de estudio, en primer lugar, la simulación se ejecuta para un

escenario específico (con ciertos valores para los parámetros variables). Los resultados de

esta simulación se envían a la función de aptitud, que necesita calcular un valor para

especificar cómo de diferentemente se comportan los dos sistemas para esa solución

determinada (o conjunto de valores de parámetros variables). Un alto valor de aptitud

indica que los dos sistemas se comportaron de manera muy diferente, que es el objetivo

buscado. Por otro lado, un valor de aptitud cercano a cero significa que los dos sistemas

hicieron prácticamente lo mismo. La fórmula específica aplicada para calcular la aptitud

es la fórmula de error porcentual absoluto medio. Esta fórmula se selecciona porque la

diferencia entre los resultados de los dos sistemas se mide como un porcentaje entre las

diferencias de resultados en cada punto. Este valor es adimensional, por lo que varias

magnitudes diferentes se pueden utilizar para calcular el valor de la aptitud, por ejemplo,

la posición y la velocidad.

Antes de comenzar a ejecutar el método es necesario realizar algunas configuraciones.

Los algoritmos evolutivos tienen cuatro parámetros principales: tamaño de la población,

número de generaciones, tasa de recombinación y tasa de mutación. Dependiendo de sus

4

valores, el proceso de optimización puede ser más o menos eficiente. Pero los valores

exactos varían de un problema a otro. Existe información sobre cómo los cambios en los

valores de estos parámetros influyen en los resultados. El proceso para elegir los valores

comienza con la selección de algunos valores típicos recomendados. A continuación, se

prueban diferentes valores con el propósito de encontrar los valores que conducen a un

mejor funcionamiento. Estas pruebas que cambian los valores de los parámetros del

algoritmo evolutivo tienen lugar en el primer experimento.

La definición del escenario y la simulación se realizan mediante el uso del software de

simulación. El algoritmo a cargo de seleccionar los valores para definir escenarios

específicos y el código para controlar el software de simulación se implementa con el

lenguaje de programación Python.

3. Resultados

Después de seleccionar el algoritmo, la función de aptitud, comprender los parámetros del

algoritmo evolutivo e implementar todo, el método está listo para ejecutarse. Se realizan

dos experimentos. El primer experimento es la prueba de concepto y sirve para

seleccionar los valores para los parámetros del algoritmo evolutivo. En el segundo

experimento, se comparan varios algoritmos para descubrir cuál puede encontrar un mejor

resultado. El segundo experimento también sirve para comprobar que el método funciona

en diferentes escenarios.

En el primer experimento se define un escenario consistente en una maniobra de

adelantamiento. El proceso de optimización se ejecuta varias veces. En cada ronda de

simulación, se evalúan 500 puntos. Eso significa que se simulan 500 escenarios

específicos. Sin embargo, los valores de los parámetros del algoritmo evolutivo cambian

de una ronda de simulación a otra. El algoritmo evolutivo específico utilizado es el

algoritmo genético. Estos diferentes casos se ejecutan para averiguar qué conjunto de

valores para los parámetros del algoritmo genético funcionan mejor.

Ilustración 2: Maniobra de adelantamiento

5

En el segundo experimento, se define un nuevo escenario base. En este caso, se trata de

una maniobra de cambio de carril de un camión hasta el carril donde conduce el vehículo

autónomo. Los objetivos en este segundo experimento son diferentes. Uno de los

objetivos es verificar si los valores seleccionados en el primer experimento para los

parámetros del algoritmo genético también funcionan correctamente en un escenario

distinto. El primer experimento es el conjunto de entrenamiento y el segundo experimento

es el conjunto de prueba. El otro objetivo es la comparación entre diferentes algoritmos.

El mismo escenario base se optimiza con cuatro algoritmos diferentes para comparar su

rendimiento. Los cuatro algoritmos son dos algoritmos evolutivos (algoritmo genético y

estrategias de evolución) y dos algoritmos de cobertura (muestreo de Monte Carlo y

muestreo latino hipercúbico).

Ilustración 3: Maniobra de cambio de carril

Después de ejecutar estas simulaciones, los resultados muestran que los dos métodos de

cobertura obtienen mejores resultados que los dos algoritmos evolutivos. Es decir, pueden

encontrar escenarios específicos en los que la diferencia entre los dos sistemas a comparar

es mayor. Esto se puede ver en la Ilustración 4, donde las mejores soluciones encontradas

con muestreo latino hipercúbico (LH) y Monte Carlo (MC) tienen un valor de aptitud más

alto. Hasta ahora, los dos métodos de cobertura son una opción más adecuada ya que son

más fáciles de implementar y pueden encontrar mejores resultados.

Ilustración 4: Resultados de aptitud para los 4 algoritmos

6

Pero el experimento no termina aquí dado que se llevan a cabo más rondas de

simulaciones. En las siguientes optimizaciones, el número de evaluaciones en el software

de simulación aumenta de 500 a 2500. Este cambio se realiza para ver si el número

anterior de simulaciones era demasiado bajo para los algoritmos evolutivos. Los dos

algoritmos que se ejecutan con la mayor cantidad de simulaciones son el algoritmo

genético y el muestreo latino hipercúbico. Los resultados obtenidos muestran que el

algoritmo evolutivo mejora significativamente con este aumento en el número total de

simulaciones en la búsqueda. Ese no es el caso del muestreo latino hipercúbico cuyos

resultados son muy similares a los del caso anterior. Las últimas rondas de simulación se

llevan a cabo con el uso de un método mixto que combina los métodos de cobertura y los

algoritmos evolutivos. Los resultados indican que el método mixto produce una pequeña

mejora en la solución en comparación con los otros métodos utilizados.

4. Conclusión

Este experimento muestra que, para el escenario analizado, los métodos de cobertura son

una opción más adecuada que los algoritmos evolutivos porque son más fáciles de

implementar y pueden encontrar mejores soluciones. Eso significa que encuentran

escenarios específicos donde la diferencia entre los dos sistemas es mayor. La otra opción

adecuada es el método mixto, que es más complejo pero fue de capaz de una pequeña

mejora en los resultados.

Los experimentos realizados son útiles para verificar el funcionamiento correcto de este

método en algunos escenarios y también sirven para comparar diferentes algoritmos para

la selección del escenario. A partir de este punto, se pueden realizar mejoras futuras

aumentando la cantidad de parámetros de entrada que configuran el escenario para tener

situaciones más personalizadas. Otro desarrollo adicional sería utilizar el método en otras

herramientas de simulación para verificar si el método también funciona correctamente.

Este método tiene algunas aplicaciones posibles en el desarrollo de vehículos

automatizados. Una de estas posibles aplicaciones es comparar dos modelos virtuales. Por

ejemplo, cuando se lanza una nueva versión y el objetivo es comparar su rendimiento en

una carretera virtual en comparación con la versión anterior. Otra posible aplicación sería

utilizar este método para comparar un sistema real con un modelo virtual del sistema. Eso

7

indicaría cómo de bien se ajusta el modelo al sistema real. Esto es importante porque si un

modelo es muy realista, las simulaciones realizadas con ese modelo son más verídicas.

5. Bibliografía

[1] N. Kalra, S. M. Paddock, „Driving to Safety: How Many Miles of Driving Would It

Take to Demonstrate Autonomous Vehicle Reliability?“.

[2] Q. Xia, J. Duan, F. Gao, T. Chen und C. Yang, „Automatic Generation Method of

Test Scenario for ADAS Based on Complexity“ in SAE Technical Paper Series,

2017.

[3] J. Zhou und L. d. Re, „Reduced Complexity Safety Testing for ADAS & ADF“,

IFAC-PapersOnLine, Jg. 50, Nr. 1, S. 5985–5990, 2017.

[4] L. Huang, Q. Xia, F. Xie, H.-L. Xiu und H. Shu, „Study on the Test Scenarios of

Level 2 Automated Vehicles“ in 2018 IEEE Intelligent Vehicles Symposium (IV),

Changshu, Jun. 2018, S. 49–54.

[5] S. Khastgir et al., „Test Scenario Generation for Driving Simulators Using

Constrained Randomization Technique“ in SAE Technical Paper Series, 2017.

[6] M. Koren, S. Alsaif, R. Lee und M. J. Kochenderfer, „Adaptive Stress Testing for

Autonomous Vehicles“ in 2018 IEEE Intelligent Vehicles Symposium (IV),

Changshu, Jun. 2018 - Jun. 2018, S. 1–7.

8

9

Scenario Generation for the Comparison of Automated Vehicle

Variants

1. Introduction

In the next years the automotive sector will have several important changes. One of these

is the use of autonomous vehicles. These vehicles will produce notorious improvements

on how we travel as they will allow for more comfortable and safer journeys.

Nevertheless, the automotive industry needs to overcome some challenges until this

technology is ready for a widespread use. One of the main challenges is the validation of

autonomous vehicles. By validation it is meant the development of methods and tests that

ensure that the vehicles are safe enough to drive in the roads. Before that, the vehicles

cannot be sold to the public.

The processes for validation are divided into two main groups: physical tests and

simulations. Physical tests consist on driving a prototype of a real car in the road for a

long distance and gather data to check that the vehicle’s behavior is correct. The main

problems with physical tests are the high costs, the high time consumption and the

difficulty to perform very specific maneuvers [1]. An alternative and complement to the

physical tests is the use of simulations. In the simulations a virtual environment is

designed and a model of the autonomous vehicle is created for different tests in this

virtual environment. The use of simulations with virtual scenarios has been used for

validation methodology of specific driver assistance systems or automated vehicles [2]. A

derivation of this idea is to use a simulation in a virtual environment to compare two

systems. In the thesis the objective is to develop a method that generates specific virtual

scenarios to compare two systems and find out in which specific situations the behavior

difference between the two systems is maximized.

The scenario generation process consists on making variations to a base scenario with a

certain road and traffic situation. So before starting the process some road geometry

specifications are defined. The vehicles that are driving in this road as well as their

maneuvers also need to be defined. Then some of the parameters to define the scenario

are stated as variable parameters. These variable parameters will have different values

from one test case to another, allowing for different scenario situations where the vehicle

to test drives.

10

For the method development the first step is to analyze the existing literature. In the last

years many researchers have used scenario generation techniques to analyze advanced

driver assistance systems (ADAS) and autonomous vehicles [3]-[4]. In the tests the

purpose was to find the most critical situations. The papers used different approaches to

generate the specific test cases. These methodologies can be divided into two groups:

coverage approach and falsification approach. The coverage approach is based on a

random selection of the values for the variable parameters [5]. On the other hand, the

falsification approach is an iterative process [6]. The values chosen for the first points are

randomly chosen but after that the results from the simulations of the current points are

used to select the next set of values to simulate.

2. Methodology

The problem structure is shown in Figure 1. In this method, the algorithm selects values

for the variable parameters of the scenario. With these values, a specific scenario to test is

defined. The simulator runs simulations in this specific scenario for both systems. After

the simulation, the results are sent back to the algorithm, which evaluates that specific

solution through the fitness function.

Figure 1: Method structure

First of all, the algorithm for values selection and the fitness function are chosen. The two

approaches for the selection of scenarios were introduced in the state of the art. Between

these two approaches to select the values that define each specific scenario, the

falsification approach is more complex to implement. Nevertheless as it is an iterative

process it focuses the search around the most promising areas. The decision is to use the

falsification approach as the base method for the thesis. Then, several algorithms used in

falsification approaches are evaluated. The main options are the evolutionary algorithms

11

and the reinforcement learning algorithm. The application of reinforcement learning is

suitable for cases where a variable has many values along the simulation. However for the

scenario generation process, many variables are used and many of them have a fixed

value during the simulation. So the evolutionary algorithm is chosen as the algorithm in

charge of selecting the variable parameter values.

The evolutionary algorithm needs a fitness function to know how good a certain solution

is. The fitness function takes the results of a certain test case simulation and calculates a

scalar value which indicates the quality of that specific solution. In the thesis case, firstly

the simulation is run for a specific scenario (with certain values for the variable

parameters). The results from this simulation are sent to the fitness function that needs to

calculate one value to specify how different the two systems behaved for that certain

solution (or set of variable parameter values). A big fitness value indicates that the two

systems behaved very differently, which is the objective searched. On the other hand a

fitness value close to zero means that the two systems did almost the same. The specific

formula applied to calculate the fitness is the mean absolute percentage error (MAPE)

formula. The formula is selected because the difference is measured as a percentage

between the results differences at each point. This value is dimensionless so several

different magnitudes can be summed into the same fitness value, for example position and

speed.

Before starting to run the method it is necessary to make some configurations. The

evolutionary algorithms have four main parameters: population size, number of

generations, crossover rate and mutation rate. Depending on their values the optimization

process can be more or less efficient. But the exact values vary from a problem to another.

There is some literature on how the changes in these parameters values influence the

results. The process to choose the values starts with selecting some recommended typical

values. Then, different values are tested with the purpose of finding the values that lead to

a better performance. These tests that change the values of the evolutionary algorithm

parameters take place in the first experiment.

The scenario definition and simulation is done through the use of simulation software.

The algorithm in charge of selecting the values to define specific scenarios and the code

to control the simulation software is implemented with python programming language.

12

3. Results

After selecting the algorithm, the fitness function, understanding the evolutionary

algorithm parameters and implementing everything, the method is ready to be run. Two

experiments are carried out. The first experiment is the proof of concept and serves to

select the values for the evolutionary algorithm parameters. In the second experiment,

several algorithms are compared to find out which one can find a better result. The second

experiment also serves to check that the method works in different scenarios.

In the first experiment an overtaking maneuver scenario is defined. The optimization

process is run several times. On each simulation round, 500 points are evaluated. That

means that 500 specific scenarios are simulated. However, the evolutionary algorithm

parameter values change from one simulation round to another. The specific evolutionary

algorithm used is the genetic algorithm. These different cases are run to find out which set

of values for the genetic algorithm parameters work better.

Figure 2: Overtaking maneuver (Scenario 1)

In the second experiment, a new base scenario is defined. In this case it is a cut-in

maneuver from a truck in to the lane where the ego-vehicle is driving. The objectives in

this second experiment are different. One of the objectives is to check if the values

selected for the genetic algorithm parameters also perform well in a new scenario. The

first experiment is the training set and the second experiment is the test set. The other

objective is the comparison between different algorithms. The same base scenario is

optimized with four different algorithms to compare their performance. The four

algorithms are two evolutionary algorithms (genetic algorithm and evolution strategies)

and two coverage approaches (Monte Carlo sampling and Latin Hypercube sampling).

13

Figure 3: Cut-in maneuver (Scenario 2)

After running these simulations, the results show that the two coverage methods obtained

better results than the two evolutionary algorithms. That is, they can find specific

scenarios in which the difference between the two systems to compare was greater. That

can be seen in Figure 4, where the best solutions found with Latin Hypercube Sampling

(LH) and Monte Carlo (MC) have a higher fitness value. So far the two coverage

approaches are a more suitable option as they are simpler to implement and they could

find better results.

Figure 4: Fitness results for the 4 algorithms

But the experiment does not end here as more simulation rounds are run. In the following

optimizations, the number of point evaluations in the simulation software is increased

from 500 to 2500. This change is done to see if the previous number of simulations was

too low for the evolutionary algorithms. The two algorithms to run with the increased

number of simulations are the genetic algorithm and the Latin Hypercube sampling. The

results obtained show that the evolutionary algorithm improves significantly with this

increase in the total number of simulations in the search. That is not the case for the latin

hypercube sampling which performs very similar to the case before. The last simulation

rounds are carried out with the use of a mixed method that combines the coverage

approaches and the evolutionary algorithms. Based on the results the mixed method

produces a small improvement in the solution compared to the other methods used.

14

4. Conclusion

This experiment shows that for the scenario tested the coverage approaches are a more

suitable option than the evolutionary algorithms because they are easier to implement and

they can find better solutions. That means that they find specific scenarios where the

difference between the two systems is greater. The other suitable option is the mixed

method, which is more complex but could improve the results.

The experiments carried out are useful to check the correct operation of this method in

some scenarios and also served to compare different algorithms for the scenario selection.

From this point, future improvements can be done by increasing the number of input

parameters that configure the road in order to have more customized scenarios. Another

further development would be to use the method in other simulations to check whether the

method work also correctly.

This method has some possible applications in the development of automated vehicles.

One of these possible applications is to compare two virtual models. For example, when a

new version is released and the objective is to compare its performance on a virtual road

compared to the previous version. Other possible application would be to use this method

to compare a real system with a virtual model of the system. That would indicate how

accurate the model and the real system are. So if a model is very realistic, the simulations

made with that model are more useful for validation.

5. References

[1] N. Kalra, S. M. Paddock, „Driving to Safety: How Many Miles of Driving Would It

Take to Demonstrate Autonomous Vehicle Reliability?“.

[2] Q. Xia, J. Duan, F. Gao, T. Chen und C. Yang, „Automatic Generation Method of

Test Scenario for ADAS Based on Complexity“ in SAE Technical Paper Series,

2017.

[3] J. Zhou und L. d. Re, „Reduced Complexity Safety Testing for ADAS & ADF“,

IFAC-PapersOnLine, Jg. 50, Nr. 1, S. 5985–5990, 2017.

[4] L. Huang, Q. Xia, F. Xie, H.-L. Xiu und H. Shu, „Study on the Test Scenarios of

Level 2 Automated Vehicles“ in 2018 IEEE Intelligent Vehicles Symposium (IV),

Changshu, Jun. 2018, S. 49–54.

15

[5] S. Khastgir et al., „Test Scenario Generation for Driving Simulators Using

Constrained Randomization Technique“ in SAE Technical Paper Series, 2017.

[6] M. Koren, S. Alsaif, R. Lee und M. J. Kochenderfer, „Adaptive Stress Testing for

Autonomous Vehicles“ in 2018 IEEE Intelligent Vehicles Symposium (IV),

Changshu, Jun. 2018 - Jun. 2018, S. 1–7.

16

I

Table of Content

List of Abbreviations ... III

Symbols ... V

1 Introduction .. 1

1.1 Problem statement ... 1

1.2 Thesis motivation ... 2

1.3 Structure .. 2

2 State of the Art ... 5

2.1 Autonomous vehicles and validation ... 5

2.2 Scenario generation methods ... 7

2.2.1 Coverage methods ... 7

2.2.2 Falsification method .. 11

2.3 Differential analysis .. 17

2.4 Optimization algorithms .. 18

2.4.1 Evolutionary algorithms... 18

2.4.2 Genetic algorithm .. 20

2.4.3 Continuous genetic algorithm ... 22

2.4.4 Evolution strategies ... 23

2.4.5 Reinforcement learning ... 25

2.5 Summary about the State of the Art ... 27

3 Methodology .. 31

3.1 Process for Scenario definition .. 32

3.2 Algorithm selection .. 35

3.2.1 Falsification algorithm ... 36

3.2.2 Coverage algorithm .. 37

3.3 Fitness function .. 38

3.4 Evolutionary algorithms configuration .. 42

3.4.1 Algorithm quality ... 43

3.4.2 End condition .. 43

Table of Content

II

3.4.3 Influence of the evolutionary algorithm parameters .. 45

3.4.4 State of the Art for the selection of parameter values ... 46

3.5 Implementation on Python and Simulation Software 48

4 Results .. 53

4.1 Evolutionary algorithm calibration ... 54

4.1.1 Scenario definition .. 54

4.1.2 Genetic algorithm parameters .. 57

4.1.3 Simulations results .. 59

4.2 Comparison between algorithms .. 65

4.2.1 Scenario definition .. 65

4.2.2 Four algorithms for performance comparison ... 68

4.2.3 Simulation results for the four algorithms .. 69

4.2.4 Algorithm comparison summary ... 77

4.2.5 Solution improvements ... 77

4.3 Simulations results summary and future challenges 81

5 Conclusion ... 85

List of figures ... i

List of tables ... iii

Bibliography .. v

Appendix .. ix

III

List of Abbreviations

ADAS Advanced Driver Assistance Systems

ES Evolution Strategies

GA Genetic Algorithm

LHS Latin Hypercube Sampling

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MC Monte Carlo

MES Mean Squared Error

RMES Root Mean Squared Error

V

Symbols

Symbols Unit Description

 M System 1 position

 km/h System 1 speed

 m System 2 position

 Km/h System 2 speed

1

1 Introduction

The autonomous car is a new technology in development that is expected to have a great impact

in the future. It will change the way in which we see now transportation. Before the driverless

cars are allowed to be sold to the public and allowed to circulate freely in the roads, it should be

demonstrated that they are safe enough. The road and traffic situations possibilities are very

large and the autonomous cars should be ready to overcome any of them without accidents.

1.1 Problem statement

The tests required to demonstrate the safety can be divided into real tests and simulations. The

real tests consist of cars driving in real roads. But in order to guarantee the safety, the number of

kilometers driven needs to be very high. Another problem is that the majority of scenarios are

very simple for the car, but it is in some specific difficult scenarios where the attention needs to

be focused in order to solve possible problems. So the physical tests are expensive, time-

consuming and have more difficulty to test specific cases.

Another tool to test driverless cars safety complementary to the real test is the use of simula-

tions. Thanks to these tools, a huge amount of tests can be made in short time and smaller cost.

The focus of simulations is usually on finding the adequate scenarios to verify the car safety.

With simulators thousands of scenarios can be created for the tests. Therefore, it needs to be

some method to identify critical scenarios where the car does not drive safely and could have an

accident.

Several studies have focused lately in this area with the objective of generating scenarios that

lead to a critical situation. This specific area has been the subject of study in recent papers.

However, other possible applications can be derived based on these methods. A promising ap-

plication is the creation of a method that compares two systems. The objective would be to find

specific scenarios in which the behavior of the two systems differ the most. A similar concept

has been developed for aircraft applications. In the case of autonomous cars, this method could

be applied to compare a real part with its virtual model and check how accurate the model is. If

1 Introduction

2

tests are not valid. It could be possible that the system performs successfully in certain scenario

during a simulation but it does some mistakes in the same scenario in real life.

1.2 Thesis motivation

The thesis objective is the development of a generic method to compare two systems in a simu-

lation environment. This method can be a useful help for the validation processes in

autonomous vehicles. For the application of this method to a specific scenario, first the parame-

ters that define the scenario are divided into fixed parameters and variable parameters. The

fixed parameters are constant for all tests whereas the variable parameters can change from one

test to another. In this situation two different vehicles or systems are tested. The method is re-

sponsible of trying different combinations of the variable parameters with the purpose of

finding specific scenarios in which the difference between the two systems behavior is maxim-

ized.

The method is planned to be generic so that it can work in many different scenarios. The only

difference is that before running the method, it is necessary to choose which ones are the varia-

ble parameters and define the constraints for the values of these variable parameters.

1.3 Structure

After the problem statement and the project objective definition, the next step is to explain how

this new method was developed. The thesis structure is exposed next:

 The first part is the state of the art chapter. First of all, an introduction to autonomous

vehicles and validation is found. Then the concept of scenario generation is introduced

and some important research about this topic is analyzed. Besides, some optimization

algorithms that can be applied to solve the problem are explained.

 The following chapter is the project methodology. In this chapter the different algorithm

possibilities are evaluated. After that the method is developed. This includes the deci-

sions about fitness function, algorithm quality measurement and choosing the

parameters for the algorithm. The last part of the methodology chapter shows how the

method was implemented with software tools. Simulation software was required for the

1 Introduction

3

scenarios definition and simulation. The code for the optimization algorithm and to con-

trol the simulation was developed with Python.

 After that comes the results chapter. This chapter deals with the specific scenarios to

simulate as well as their results. Two different scenarios are tested here. The first part

simulates a scenario with the focus on calibrating the algorithm. A scenario is defined

including its input and output parameters. The results are analyzed to understand which

parameter values lead to better results. After that a second scenario is simulated. On the

second one, several different algorithms are tested to find out which one is more suitable.

 Finally there is a conclusion chapter that includes a summary of the project, paying spe-

cial attention to the most important points.

1 Introduction

4

5

2 State of the Art

2.1 Autonomous vehicles and validation

Car transport is one of the main means

over 250 million of passenger cars [1]. That is approximately one car for every two citizens.

The reason for this large number is that these vehicles allow the owners a lot of autonomy for

travelling. During the last decades there has been a huge development in the automotive sector.

The improvements have been mainly motivated by economic, environmental, comfort and safe-

ty factors. The economic motivations are reducing the fuel consumption and keeping a

competitive price on the vehicles. The environmental improvements include the reduction in the

engines emissions. The automobiles comfort has been improved by the addition of driving as-

sistance systems. Finally the safety development is concerned with avoiding accidents and

reducing the damage in the case of an accident. Despite these important improvements, another

important development will produce a big change in the automobile sector in the next years.

This new development is the autonomous car.

The autonomous vehicles will allow for a higher safety in the road and a more comfortable

travel for the car owner. Regarding the comfort, the driver will not have to pay attention to the

road anymore and will be able to do other activities while travelling in a car. The second ad-

vantage is the improved safety. Nowadays one of the main problems with cars is the number of

accidents and victims produced by them. Only in Germany 3180 people died in traffic accidents

in 2017 [2]. That is a traffic-related death of about 4 people per 100.000 inhabitants per year. In

2000 about 7500 people died in vehicle accidents in Germany, more than double of the current

numbers. Even after this notorious decrease, a big effort is stablished into improving the car

safety. The estimation is that in 94% of car crashes, the critical reason that produced the acci-

dent can be assigned to the actions of the driver [3]. With the introduction and expansion of

autonomous vehicles it is expected that the number of casualties produced by road accident will

be close to zero in 2050 [4].

2 State of the Art

6

The economic impact is also expected to be huge. It is estimated that the automatic driving in-

dustry will increase its annual output value around 7 trillion dollars [5].

Nevertheless, the autonomous vehicles commercialization is more complex than other assis-

tance systems. The autonomous car responsibility is much greater so the validation processes

are far more complicated. In order to allow the sale of driverless cars, it should be demonstrated

that they are safe enough. The validation is done through different vehicle tests. The tests re-

quired to demonstrate the safety can be divided into real tests and simulations. The real tests

consist of vehicles driving on real roads. An example of road test is carried out by Broggi et al.

[6]. But to demonstrate the safety, the cars need to drive many kilometers. According to Winner

et al. [7] more than 100 million of kilometers need to be driven to demonstrate that autonomous

vehicles are as safe as manually driven vehicles. In other papers the number is even greater.

Kalra and Paddock [8] claim that 440 million of kilometers are necessary to demonstrate that

autonomous vehicles can perform better than humans. Therefore it is very expensive and time-

consuming to drive these big amounts of kilometers. Another problem associated to physical

tests is the difficulty to analyze very specific scenarios.

The other tool to test driverless cars safety is the use of simulations. Autonomous cars simula-

tors are of great importance for the development of this new technology. They can perform a

huge amount of simulations that in the case of using a real car would be very time consuming

and high costly. In order to perform simulations it is necessary to generate scenarios. That refers

to the process of defining all the parameters for the scenario in which the software or hardware

are tested. Scenario generation is usually focused on finding critical scenarios. When using car

simulators, the number of possible scenarios that can be analyzed is huge. The majority of them

are very simple for the autonomous car to drive without any problem. Therefore, it is important

to have some method that can search for specific scenarios which lead to critical situations.

Another option is to use scenario generation to perform a differential analysis. That is a compar-

ison between two systems. A differential analysis could be useful for example to compare two

different autonomous car models. Another possible application is to compare a new update of

some model with its previous version. Or it could compare a hardware part with its virtual mod-

el to check how accurate the model is. This is a promising research area as there is no specific

work in differential analysis application for autonomous vehicles. In order to carry out differen-

tial analysis it is required to develop a method based on scenario generation.

2 State of the Art

7

2.2 Scenario generation methods

The term scenario generation is used for the setting of a road with a specific traffic situation on

a simulator. The scenario generation includes the parameter setting for the road size and shape.

It also includes the definition of other traffic vehicles that are driving on that road as well as

their position and speed. Other objects such as pedestrians or bicycles can also be found. Some

research on scenario generation for autonomous cars can be easily found. Many scientists have

applied different methods in order to find critical scenarios on autonomous cars or driving assis-

tance systems simulations.

On the scenario generation papers, the objective is often to find the most critical situations. In

order to find these situations an algorithm makes variations in some of the parameters that con-

figure the scenario. The different scenario generation methods used by many researchers can be

divided into two groups depending on the criterion applied to determine how to variate the pa-

rameters. These two groups are coverage and falsification. Some of these studies on scenario

generation are analyzed next. These studies show different applications of scenario generation

for autonomous cars. The specific scenarios to test are different from one study to another. In

addition, different algorithms are used for the validation process. The scenario generation pro-

cess can run through simulators or can be based in mathematical models.

2.2.1 Coverage methods

By coverage method it is understood a process in which a set of points is randomly selected

around the whole parameter space. The algorithm carries out one simulation with the parameter

values corresponding to each point. But the points are chosen before starting the individual sim-

ulations so no feedback is given to know which area contains points that are having better

results (in terms of objective function). The point selection is done in a way which tries to cover

as homogeneously as possible the parameter space. Some scientists have studied scenario gen-

eration with the application of coverage methods. Some of these studies are commented next.

Scenario generation can be applied with the objective of computing the occupancy of an auto-

mated car on the road with the use of reachable sets [9]. In this study a model was created with

the vehicle dynamics characteristics to calculate what area the car occupies after a certain ma-

neuver. That is important to know if some traffic situations will lead to a collision or the vehicle

would be able to avoid it. To do that, a set of possible initial states was stablished, under a set of

2 State of the Art

8

possible inputs and parameters. With these parameters, the ego-vehicle and other traffic partici-

pant possible states were calculated. The safety verification is based on mathematical models of

how the vehicle behaves. Therefore, the result will only be good if the models are precise. The

test maneuvers that were checked include evasive maneuver, moose test and cornering. The

algorithm used by the authors is rapidly exploring random trees (RRTs). The objective followed

with this algorithm was to cover the area around a reference trajectory. The verification proce-

dure will calculate whether a planned trajectory in a scenario is safe. For that it calculates the

occupancy of the ego-vehicle and checks that it does not intersect with the occupancy of other

vehicles or obstacles.

Another application of scenario generation can be done through a model based validation ap-

proach to validate an Advanced Driver Assistance System (ADAS) [10]. In this study, the first

part consists in the system tuning. First the KPIs for the experiment are stablished, which are

safety, fuel performance and driver comfort. Then, the researchers look for the parameters

which have more influence have into these KPIs. In order to do that, a sensitivity analysis is

carried out on 10 tuning parameters. The scenario for this sensitivity analysis consists of an ego-

vehicle following a preceding vehicle. The sensitivity analysis used a robust neural network and

found the 5 parameters that have a notorious influence on the system behavior. After tuning the

system, the researchers proceed to the model validation. Here a parameter space coverage is

determined using Design of Experiments (DOE). The scenario selection process for the valida-

tion consists of a vehicle cutting in from the right. New KPIs are selected, which include

minimum clearance distance and minimum headway time. They define a criterion for critical

situation and run the experiment.

Figure 2.1: Vehicle occupancy calculation [9]

2 State of the Art

9

Huang et al. [11] analyze some features that are included in level 2 autonomous cars through

test scenarios. Level 2 functions include assistance systems such as adaptive cruise control

(ACC), active lane changing control and active lane keeping control. The test scenarios used for

validation include different combination of vehicles surrounding the ego-vehicle. For each ve-

hicles position combination, test scenarios are defined by setting different motions and

maneuvers on the ego-vehicle and the other vehicles. The scenario to test was formed by a three

lanes road. For the cases definition, the area around the ego-vehicle was divided into eight

quadrants. The cases were defined depending on how many vehicles were around the ego-

vehicle and in which of these quadrants they were located. So they paid special attention to the

relative position of the other traffic vehicles respect to the autonomous car.

Figure 2.2: Possible positions for traffic vehicles [11]

The ego-vehicle could perform five different driving maneuvers: going straight, left and right

lane change and moving laterally left and right. These different movements for the ego-vehicle

and other participant vehicles are combined to generate test scenarios.

Another study is concerned about the huge sample space of inputs for the verification and vali-

dation of Advanced Driver Assistance Systems (ADAS) [12]. To solve this problem the

proposal includes the use of randomization techniques to generate scenarios. There are two lev-

els of randomization process: test scenario randomization and test case randomization. A test

scenario can have many test cases, each of those includes some variation but they are included

in the same test scenario if the environmental conditions are kept the same way. The randomiza-

tion method is applied in a driving simulation environment. The specific system to be tested in

the scenarios was an automatic emergency braking system (AEB). The AEB system was im-

plemented in a real hardware unit whereas the rest was done in a driving simulator environment.

2 State of the Art

10

Most of the cases were focused on creating different tests cases but maintaining the same road

for all cases. Another application of scenario generation can be the creation of roads. Kim et al.

[13] develop an automatic road network generator. The paper is focused on building a road en-

vironment for simulations. The generator will receive the information about the number of

curves, distance between curves and the curvatures. With this information it will create virtual

roads in 3D. The framework should be able to generate several road structures based on the

curve coverage criteria. The coverage criterion refers to the curves information mentioned be-

fore. But instead of having fixed values about the road characteristics, what is given is a range

of values for each parameter. The scenario generated parameters should fulfill all these criteria.

These scenarios can be used to test assistance systems such as adaptive cruise control and lane

keeping assistance.

Xia et al. [14] propose another method for testing driver assistance systems that automatically

generates test scenarios. The researchers are concerned about developing a bench test that is

more efficient than previous testing methods and can cover more scenarios. They also devel-

oped an index to represent how complex a certain test case is. First the influence factors of the

driver assistance system are listed. The factors can be continuous or discrete. Only the discrete

factors are used for the test to reduce the number of test cases. But some of the continuous fac-

tors are discretized. For the test, the real camera is used but the environment is virtually

generated. The test cases are generated by combining different values of the factors previously

selected with an N-wise combinatorial testing method. In the test, the assistance system needs to

recognize the environment (signs, lane marks) in a road.

In another paper about advanced drive assistance systems and automated driving functions

(ADAS and ADF) the objective is to reduce the testing complexity [15]. One proposal is the use

of a test case catalogue to cover the main critical situations. The scenarios tested take place in

highways. In the basic test cases, the ego-vehicle can only perform one kind of maneuver. First

the critical maneuver corresponds to longitudinal movement. The test cases include front-end

and rear-end collision between ego-vehicle and other vehicle driving in the road. On the second

set of tests the focus is on the lateral movement. The test cases check the possible front-end and

rear-end collision when the ego-vehicle changes the lane. After the definition of the basic test

cases, complex test cases can be created by combining several basic cases.

2 State of the Art

11

The last coverage approach is based on ontologies. That is the use of expert knowledge to iden-

tify the scenarios which are more difficult for the car to handle. The scenario creation process is

more creative than systematic. Knowledge-based systems can be used for scenario generation in

the development and validation of automated driving functions [16]. In this case the expert

knowledge is applied to computer models. For example the design of a traffic situation and the

interaction between all the traffic participants is based on this knowledge. The traffic knowledge

can be separated into several layers and the interaction between layers should also be modelled.

The studies commented before were focused on creating scenarios for autonomous car testing.

But the particularity of them is that they used a coverage method during the analysis step. That

means that they were stablishing different points to cover the search space during the simulation.

2.2.2 Falsification method

Other test scenario studies use another approach that can be named as falsification. There is a

main difference between the falsification approaches and coverage approaches. The coverage

approaches tried to stablish a lot of points with the parameters values to cover the search space

homogeneously. The falsification approach uses a different method. It stablishes first a few

points on the search space. After evaluating the results on those points with an objective func-

tion, it uses that information to choose the next points to analyze. So it has some feedback in

order to have a better guidance on how to select the following points. For example, if the objec-

tive is to maximize the objective function value, then the points which gave a higher value after

Figure 2.3: Test cases for vehicle testing [15]

2 State of the Art

12

a simulation round will be selected. Based on these points, new points are selected and a new

simulation is done. This process is repeated iteratively.

The first falsification method tries to generate automatically traffic situations for which it is

hard to obtain a safe motion plan [17]. That refers to situations with a small solution space that

is enough to avoid a collision. Some situations recorded from real traffic are taken and the ap-

proach is applied to increase the criticality. In order to do that the initial states of all traffic

participants are optimized until the desired size of drivable area is ob-

tained. The value of the desired drivable area is decided manually depending on what level of

criticality is searched in the test. For that the drivable area of the ego-vehicle is computed. If the

scenario includes other traffic participants then their drivable area is also computed and this area

is removed from the allowed space for the ego-vehicle. One scenario example is a road with

obstacles on both sides. As they increase the size of an obstacle the drivable area gets reduced

until it reaches a specific value previously fixed. The drivable area was modeled mathematically

and the problem was formulated as a Quadratic Programming Problem. Three scenarios are

tested with this method: one is about obstacle evasion. The second one is an urban road situa-

tion with two lanes. All the vehicles drive there in the same direction. The last scenario is a rural

road. It also has two lanes but one for each direction.

Figure 2.4: Drivable area calculation [17]

2 State of the Art

13

In another study the objective is to reduce the testing effort for driverless vehicles [18]. In this

paper a stochastic optimization method is used in order to minimize a cost function and find

faulty behavior regions. The method is an iterative approach that will lead the tests cases to

critical regions in the parameter space. Instead of running the optimization algorithm directly on

the system, a surrogate model of the system was designed. This surrogate model is less compu-

tationally expensive. The algorithm can be used in black box problems. At the beginning, the

algorithm receives a search space and makes an initial sampling. After each iteration the algo-

rithm will zoom in and reduce the size of the new sampling set. For the optimization task the

algorithms used were the Differential Evolution genetic optimization algorithm and Particle

Swarm optimization. The testing scenario was an emergency brake maneuver for a passenger

car. In this scenario the car was driving on the highway and encounters an obstacle. The brake

system needs to brake to avoid the car collision against the obstacle.

Another interesting research develops a method to identify critical scenarios based on simula-

tions [19]. This method is formed by a simulation-based toolchain. The purpose is the

identification of scenarios that are critical for the current level of development of the autono-

mous vehicle. The simulation framework is formed by the vehicle dynamics simulation, a traffic

simulation as environment and a cooperation simulation. A scenario is defined by a set of pa-

rameters which are constrained between some maximum and minimum values. But inside this

parameter space the number of possible scenarios that can be created is huge. The selection of

the parameters values can be made through opinions, catalogues and recorded data. But the sce-

narios defined by these metrics can neglect critical scenarios. In this method, the toolchain

creates specific scenarios by selecting different values for the parameters of the logical scenario

automatically. The objective is to identify critical scenarios over the entire parameter range.

One of the scenarios analyzed is a highway with three lanes and three vehicles driving. The ego-

vehicle is driving on the right lane and the other two vehicles are on the middle lane. In this

scenario the ego-vehicle performs a lane change so it is positioned in the gap between the other

two vehicles.

2 State of the Art

14

Another testing option for autonomous vehicles is trough adaptive stress testing [20]. The ap-

proach is based on changing elements in the environment to produce a collision of the vehicle.

With that the decision making of the autonomous vehicles is tested. The novelty of the study is

that the problem is formulated as a Markov decision process. The problem is solved with the

application of a deep reinforcement learning algorithm to find probable failure cases. The deep

reinforcement learning algorithm is also compared with Monte Carlo Tree Search (MCTS) to

check which option performs better. The scenario where the simulation takes place is a road

with two lanes and a pedestrian crosswalk. In the road there is a single autonomous car ap-

proaching this pedestrian crosswalk. One or more pedestrians cross the road depending on the

case. The different test cases are defined by giving different values to the pedestrians position

and speed. The algorithm is the one in charge of selecting the values for the position and speed.

The first case had only one pedestrian but more were added to later tests. The results found were

that the reinforcement learner was able to find collisions with a smaller number of calls than the

Monte Carlo method.

Lindlar [21] proposes the application of evolutionary testing to automate tests. By evolutionary

testing it is understood a method to solve testing problems with evolutionary algorithms. The

evolutionary algorithm is in charge of selecting suitable test cases. The main application of the

proposed method is for embedded software testing. These tests include complicated data se-

quences. The scenario chosen for the testing process is formed by two vehicles driving in the

same lane. The vehicle on the back is the vehicle where a system is tested whereas the vehicle

Figure 2.5: Highway scenario for testing [19]

2 State of the Art

15

on the front is a traffic vehicle. The front vehicle speed has many variations during the test and

the vehicle behind needs to avoid getting too close to the other vehicle.

Another case of automatic test generation for autonomous cars is based on the use of S-TaLiRo

toolbox [22]. This approach generates automatically test cases to test motion controllers in au-

tonomous vehicles. The tests are performed in simulation environments. Initial states and inputs

are updated by stochastic optimization methods with the objective of achieving small robustness

values. The robustness metric tells how far a system is from failing to meet the safety require-

ments. In this method the toolbox uses a global optimization method to minimize robustness. At

the beginning a sample space is created. The initial states and input functions values are sam-

pled. The output trajectory is obtained and supplied to the function that evaluates the robustness.

The evaluation function returns one value that is a measure of how close the simulation is to

reach an unsafe state. The scenario is a straight road with two lanes. The inputs are the target

speed for the vehicle to test and the speed and lateral position for the other vehicle. In this sce-

nario two vehicles under test are driving on the right lane. A third vehicle drives on the left lane

and suddenly starts a lane change maneuver to the right lane.

A similar study to the previous ones is the automatic test case generation with gradient descent

optimization [23]. The concern is about high-fidelity models because the test cases generation

requires long time. To improve that they use low-fidelity models to drive the test generation

process. The gradient descent method is based on computing the gradients of the system dy-

namics to search for a minimizer. The function that refers to the system performance is the one

that they try to minimize. As the system dynamics function can be nonlinear, an alternative is to

use a low-fidelity model derived from the complex model to guide the search. The system tested

was a Full Range Adaptive Cruise Control (FRACC). The scenario can be defined as stop and

go. The vehicle to test follows another vehicle that is increasing and decreasing its speed during

the whole simulation.

Scenario generation is used for many applications as explained in the previous papers. The typi-

cal systems and scenarios to test are quite varied. Besides, the selection method for the test

cases changes from one study to another. In order to have a better comprehension, the papers

are summarized in Table 2.1: Scenario generation papers summaryTable 2.1.

2 State of the Art

16

Table 2.1: Scenario generation papers summary

Optimization method Scenarios tested Reference

Rapidly exploring random trees Evasive maneuver, moose test & corner-

ing

[9]

DOE Cut in [10]

Manually selected test cases 3 lanes road with vehicles around ego-

vehicle

[11]

Randomization techniques Emergency braking system [12]

Coverage criteria Road generation [13]

N-wise combinatorial testing Environment recognition in a road [14]

Test case catalogue Front-end rear-end collision [15]

Ontologies Lane change [16]

Quadratic programming problem &

Binary search

Obstacle evasion & highway with two

lanes

[17]

Differential evolution, GA & PSO Emergency braking maneuver [18]

Parameter change through toolchain Lane change [19]

MCTS and reinforcement learning Pedestrian crosswalk in a road [20]

Evolutionary algorithms ACC [21]

Optimization method from S-

TaLiRo

Cut in [22]

Gradient descent method ACC [23]

2 State of the Art

17

2.3 Differential analysis

In all the papers mentioned before, the simulations were focused on autonomous vehicles sce-

narios. In those simulations the objective was to find critical scenarios for the autonomous cars.

Nevertheless, the objective searched in differential analysis is different. Scenario generation for

differential analysis refers to the comparison of two systems in variable scenario to find the sit-

uations where the differences in behavior are maximized. There is no research on scenario

generation for differential analysis applied to autonomous cars. However there exists a study

about differential analysis in the aircraft sector.

Lee et al. [24] developed a differential analysis to compare aircraft anti-collision systems. A

new version had been developed for an anti-collision system and the purpose was to compare

this new version with the previous version. What they wanted to check is whether the new ver-

sion was able to suffer any possible accident that did not happen on the previous version. For

that they drove two simulated systems with the objective of maximizing the differences between

their outcomes. The process to compare the two systems formulated the test as a sequential de-

cision process and optimized it with the use of reinforcement learning algorithms.

To define the problem, two instances of the simulator were created. One of the instances con-

tained the new system while the second instance contained the base system. The rest of the

instances were the same for both cases, including the environmental conditions.

Figure 2.6: Differential analysis with Reinforcement Learning structure

2 State of the Art

18

The comparison between the two systems is made through two output variables. One of them is

a variable that indicates whether a crash happened and the other one is the missed distance in

case that a crash did not happen. These variables are included in the reward function of the rein-

forcement learner and will be used to guide the search into the scenarios with a greater

difference between the systems behavior.

2.4 Optimization algorithms

As it was stated, the thesis objective is to find the specific parameters on a scenario that maxim-

ize the difference between two systems driving in the same scenario. A scenario is defined with

some fixed parameters and some variable parameters. In order to obtain these specific values

that maximize the difference some method or algorithm needs to be designed. This algorithm

will be in charge of selecting different value combinations or parameters that define the scenario.

The two targets will be to find the parameters that maximize the difference between the two

systems and to have a method that does not consume a lot computationally.

In the problem stated there are no formulas that calculate the output based on the inputs. What

needs to be analyzed is a black box problem where the simulation software receives some input

values and after being executed it gives some output values. There is no function that gives the

output values as a combination of input values. So approaches based on function derivations are

not valid. Some interesting algorithms than can be applied to solve the problem were used on

the scenario generation papers previously mentioned. Two of them are explained next. These

methods are evolutionary algorithms and reinforcement learning algorithms.

2.4.1 Evolutionary algorithms

One interesting approach to solve the problem is by the use of evolutionary algorithms. Evolu-

tionary algorithms include a group of several algorithms which are based on natural selection

and biological evolution processes. Some of the evolutionary algorithms are listed next:

 Genetic algorithm

 Genetic programming

 Evolutionary programming

2 State of the Art

19

 Gene expression programming

 Evolution strategy

 Differential evolution

 Neuroevolution

 Learning classifier system

In these algorithms each set of values to be evaluated is called individual and a group of indi-

viduals is called population. The evolutionary algorithms work iteratively. In each iteration

there is a set of possible solutions (or individuals). This set of individuals at a specific iteration

is called generation. Then the individuals in the generation are evaluated. Based on each indi-

There are five steps in an evolutionary algorithm, which are explained next:

 Initial population: The initial population is defined by the creation of random individuals.

 Evaluation: For each individual or set of solutions the objective value is computed. That

means that the information in each individual is processed through some method or

software. The information obtained from this process is what is called objective value.

 b-

jective values previously obtained. This function is called fitness function and it is

crucial for the algorithm performance.

 Selection. Some individuals are chosen for reproduction based on their fitness value.

 Reproduction. This process involves the creation of new individuals for the new genera-

tion by means of crossover and mutation processes.

Figure 2.7: Evolutionary algorithms structure [25]

2 State of the Art

20

2.4.2 Genetic algorithm

Genetic algorithms are a subclass of evolutionary algorithms. They are used in optimization

problems and like the other evolutionary algorithms they are based on the theory of natural se-

lection and evolutionary biology. These algorithms are useful for searching through large and

complex data sets. They are able to find reasonable solutions to complicated problems as they

can solver unconstrained and constrained optimization issues. Genetic algorithms are usually

applied to binary set of solutions where the individuals are sets of binary numbers.

The steps for all evolutionary algorithms were explained before (crossover, selection and muta-

tion). However depending on the specific algorithm, the order of these steps applications is

different. Besides, each algorithm has peculiarities concerning the selection, crossover and mu-

tation processes. At the beginning of the algorithm an initial population is randomly created.

After that the algorithm runs iteratively.

The selection, crossover and mutation operators for genetic algorithms are presented next [26]:

 Selection. This step is what makes it possible to focus on the solutions that are perform-

ing better and discard the solutions with bad results. To use the selection step, the fitness

value for each individual at the current generation should be previously calculated.

Based on this fitness value the selection operator chooses individuals with a probability

proportional to their fitness.

 (2.1)

This method is also known as the roulette wheel. That is because the graphical represen-

tation of this process looks like the roulette wheel game. The wheel is divided in as

many sectors as the population size. One sector corresponds to each individual. The sec-

tor sizes are different and are bigger the higher the fitness value for that individual is.

2 State of the Art

21

 Crossover. In this step, new individuals (offspring) are created for the new generation as

a combination of two individuals of the current generation (parents). The crossover can

be one-point crossover, N-point crossover and uniform crossover. The one-point crosso-

ver is done by cutting the two strings that are the parents at a random position. Then the

two tails are swapped. The N-point is like the one-point but instead of cutting the strings

at one position, it cuts the strings at N different positions and swaps some parts of the

string. Uniform crossover consists on going one by one through every position and at

every position randomly choose to copy the number from one parent or the other.

 Mutation. This operator is in charge of changing randomly some bits in the individuals.

This random change is done to improve the generation variety and explore more search

space. The problem with a high mutation is that some good solutions can be lost from

one generation to the next one.

Some of the problem that can be found in genetic algorithms is that the algorithm can find good

solutions in one of the iterations but this solution can be altered through crossover and mutation

and this solution would get lost. In order to avoid losing some of the best solutions found at a

certain point in the optimization the concept of elitism is introduced [27]. Elitism takes some of

the best values in a population and sends them to the new generation without alteration. With

that the best solutions found at that moment are preserved.

Figure 2.8: Roulette wheel selection process

2 State of the Art

22

2.4.3 Continuous genetic algorithm

The binary genetic algorithm is able to solve many different problems. The binary GA is the

one in which each individual is formed by a string of binary values. Nevertheless in some prob-

lem the variable are real values. Transforming each real value into a binary number requires a

lot of bits, depending on the number size and the decimals precision. Another option is to repre-

sent this real number with floating numbers [28]. This alternative needs less storage than the

binary genetic algorithm as one single floating-point number contains the number information

instead of several bits of integers. The continuous genetic algorithm can also be called real-

valued genetic algorithm. The structure used for the continuous genetic algorithm is the same

than for the common genetic algorithm. The main difference is that variables are represented by

floating-point numbers. The rest of the algorithm works the same way.

The process is summarized next. As extracted from [29], at the beginning an initial population

is randomly created. In continuous genetic algorithm each individual is an array of several real

numbers. Each real number refers to a certain parameter. For the random initialization it is nec-

essary to define the boundaries for these real numbers. That is made according to the problem

definition. For example the first number on each individual could have a real value between 10

and 40. If the problem does not have a limitation for some parameter then it is recommended to

define artificially a boundary around a promising area to search.

After random initialization for the first population, the rest of the steps are the same as for

common genetic algorithm. The selection process will choose some individuals based on their

fitness value. The crossover operator will create new individuals and the mutation will perform

some random alterations to these new individuals. The mutation operator has also some value

limitations, the same way as the initial population. In binary genetic algorithm the mutation

operator will select some elements and change the value from 0 to 1 or from 1 to 0. In continu-

ous genetic algorithm when the operator selects an element to alter, the new number can be

constrained or not. Constraining the new number is the common option. That is made that way

in order to search a new point around the current point, which is more probable to give good

solutions. The constraints for the mutation operator can be done stablishing a range around the

current number in which the new random number needs to be. The constraint can also be set by

choosing the new number with a normal function with a mean equal to the current value and

some standard deviation.

As a summary, some of the characteristics and reasons to use genetic algorithms are the next:

 Genetic algorithm is an iterative optimization process

2 State of the Art

23

 It is based on three operators: crossover, selection and mutation

 Genetic algorithm work with probabilistic selection rules instead of deterministic selec-

tion rules.

 Its search does not proceed from a single point but from a population of points. So it can

avoid getting stuck in a local optimum solution.

2.4.4 Evolution strategies

Evolution strategies is another algorithm in the group of evolutionary algorithms. It is also

based on natural selection processes. This algorithm is a global optimization method and is

widely used for real value solution spaces. It is commonly used for black box optimization pro-

cesses. Those are the ones where no functional expression is given so the derivatives cannot be

calculated.

The algorithm also uses the three mechanisms that are common for all evolutionary algorithms:

recombination, mutation and selection. Nevertheless the use is different than for the genetic

algorithms.

A summary of how evolution strategies work is explained next as extracted from [30]- [31]:

First the recombination (or crossover) operator is applied. It selects some parents and combines

them to create new solutions. The number of new solutions is defined by the parameter . Then

the new solutions are subjected to some changes through the mutation step and the fitness is

calculated. After that some individuals are selected for the new generation. The number of se-

This process is repeated through several iterations

until the end condition is met. Termination condition is typically defined by reaching a fitness

value or by limiting the number of iteration.

The three operators, recombination, mutation and selection, work very similar than for the case

of the genetic algorithm. The main differences are in the selection process. For the genetic algo-

rithm the selection process is done at the moment of selecting the parents for the crossover

operation. What the selection did was to choose parents with a probability proportional to their

fitness. In evolution strategies the parents are selected randomly for the crossover. Then the

mutation process is applied the same way as for the genetic algorithm. After that is when the

selection operator appears. It is in charge of selecting the best individuals and these ones are

going to be the next generation. The selection process takes the candidate individuals for the

2 State of the Art

24

next generation ordered from best fitness value to worst. From this group of individuals it se-

 Next the three operators are explained in detail.

Biologically recombination consists on mixing the genetic material of two parents. In evolution

strategies recombination is used to combine the information on two or more individuals in order

to create a new solution. Recombination operators for two parents are more common but it is

also possible to use more than two. The number of parents which will be used on each recombi-

t

recombination and intermediate recombination. Dominant recombination combines the genes of

all parents. As the individuals are arrays of real numbers, the recombination operator goes one

by one through all the positions in the array. For each position it chooses one real number from

that same position but from one of the parents. With this process it is expected that the real

numbers on each position in the array that lead to better fitness values (good genes) are spread

over the rest of the population. The other recombination operator is intermediate recombination.

Here the new individual is created by making the average of each component for all parents.

Mutation is the second operator on evolution strategies. It randomly changes some number in

the individuals in order to have more variety and explore more areas. In individuals which are

formed by binary numbers, as in genetic algorithms, mutation consists on changing some of

these numbers from 0 to 1 or the opposite. However when working with real value numbers,

mutation is different. When changing some number the possibilities are too many, so what is

usually made is to delimit the new random value. One option to delimit this value is to choose it

by summing to the current value another number obtained from a normal distribution with 0

The selection operator is in charge of choosing the fittest individuals. Selection can be em-

ployed in two different ways: When selecting parents for the crossover (mating selection) or by

selecting the best individuals out of a set of solutions (survival selection). Evolution strategies

n-

eration. The survival selection can be comma selection and plus selection. The plus selection

selects the best individuals out of a group formed by the parents and the offspring in that itera-

tion. On the other hand the comma selection selects the fittest individuals only out of the

offspring individuals.

2 State of the Art

25

2.4.5 Reinforcement learning

Reinforcement learning is one of the three machine learning categories. Machine learning algo-

rithms are usually divided into three groups: supervised learning, unsupervised learning and

reinforcement learning.

Supervised learning is a method that learns to classify data from a set of training examples.

Once it has adjusted some parameters it can predict the results from new data. Some examples

of supervised learning algorithms are linear regression and logistic regression.

The second group in machine learning is unsupervised learning. Here the algorithms receive

some information and the objective is to classify these data points into groups or clusters. Some

of the common unsupervised learning algorithms are k-means and anomaly detection.

The third category is reinforcement learning and it is the one interesting for the thesis. Rein-

forcement learning is defined as a problem where the agent learns behavior through trial and

error interactions with a dynamic environment. Reinforcement Learning: A Survey. An exam-

ple of reinforcement learning algorithm is Q-learning.

Some terms need to be defined to correctly understand how reinforcement learning works:

 Reward function: This function is in charge to value how good or bad a certain selected

action in a specific state is.

 Action (A). Possible moves than an agent can make when it is at a certain state

 State (S). Specific situation or configuration where the agent is at a specific moment.

 Agent. It is the subject that takes actions.

 Environment. The world where the agent moves and interacts. The environment re-

ceives the state and the action of the agent and it returns a reward.

 Policy. The policy is responsible to select an action at each state.

 Value. It is the expected long-term return of current state under current policy.

2 State of the Art

26

To sum up in reinforcement learning an agent goes through different steps. On each step the

agent receives an input and the current state (s) of the environment. After that the agent chooses

an action (a) that will generate an output. This action changes the environment state and the

e

the actions that will lead in the long run to maximize the sum of rewards [33].

Reinforcement learning has many differences compared to supervised learning problems. In

reinforcement learning there is no data provided with some inputs and its outputs. Instead after

choosing an action it receives a reward but does not know which action would lead to a maxi-

mum reward in the long run. For that the agent needs to collect data about actions, states,

transitions and rewards.

Reinforcement learning is often modeled as a Markov Decision Process (MDP). MDP is a

mathematical framework used to model decision making in situations where outcomes are part-

ly random and partly under the control of a decision maker [34].

One main difference between reinforcement learning and supervised learning is that the first

one needs to explore the environment, whereas supervised learning algorithms are purely ex-

ploitative. Reinforcement learning algorithms work with the balance of exploration and

exploitation. Exploration is based on trying different things and comparing them to the ones

before to check if they are better or not. Exploitation is using the things that have worked better

in the previous steps.

The possible applications of reinforcement learning algorithm nowadays include a wide variety

of options. One of the applications is for resource management in computers [35]. In this case

the algorithm needs to allocate limited resources to several tasks. Another current application is

to control traffic lights in the cities [36]. The reinforcement learner was used to solve the traffic

Figure 2.9: Reinforcement Learning structure

2 State of the Art

27

congestion problem that many big cities suffer. Through this technique the coordination be-

tween several traffic lights can be done more efficiently. Reinforcement learning can also be

applied to robotics [37] or to the chemistry industry, where this algorithm was used to optimize

chemical reactions [38].

2.5 Summary about the State of the Art

The topics covered in the chapter are divided into three groups: an introduction to autonomous

vehicles validation, a discussion about scenario generation papers and an overview about some

optimization algorithms.

On the first part, the current methods to ensure that an autonomous vehicle is safe were dis-

cussed. As a car can produce severe accidents and the autonomous software will have a lot of

responsibility, current effort is put into creating validation methods that can check whether an

autonomous vehicle is safe or not. After the vehicles are validated they should be allowed to be

sold to the public and drive next to other thousands of vehicles. The tests to check driving assis-

tance systems and autonomous vehicles are divided into physical tests and simulations. The

physical tests are carried out by driving a real car in the roads. As the possible cases that a car

may find in the road are huge, the requirements for validation include a very big number of kil-

ometers driven with the autonomous vehicle. In addition, physical test are quite expensive to

elaborate.

Another option for testing that can complement the physical tests is simulation testing. In these

cases the systems are tested through virtual environments. If it is only one part to test, the test

can be formed by the real part and a simulated environment. In other occasions the vehicle dy-

namics is virtually modeled and the whole test is carried out in a computer. Some vehicle

simulators are able to reproduce a real car behavior very closely.

After the introduction to validation, some of the latest research on scenario generation was ana-

lyzed. These studies were divided into two groups depending on the way of selecting the test

cases. Coverage and falsification approaches are the two ways of making decisions for scenario

generation. Coverage methods are based on searching a lot of random points in the scenario

variables search space. In falsification approaches the objective is to use the information from

the previously analyzed scenarios cases to choose the next test cases.

2 State of the Art

28

The scenario generation studies have important differences between them. That is because the

objectives, simulation tools, optimization techniques and scenarios to test differ from one paper

to another. Some of these differences are summarized.

The general purpose in scenario generation is to develop a method that can choose different test

cases in certain scenarios to check some system functionality. But the specific objective set for

the scenario testing was not always the same. Some of the scenarios are focused on testing an

autonomous vehicle by finding critical situations. Other studies are focused on calculating the

drivable area of the ego-vehicle in different traffic situations. In addition, some studies tested a

specific driving assistance system whereas in other cases the whole autonomous vehicles were

tested.

Concerning the vehicle modelling, in some papers a mathematical model of the vehicle dynam-

ics was developed. On the other hand other studies used already developed vehicle simulation

software. Besides, the scenario options analyzed have a lot of variety. A common option is a

vehicle performing a braking maneuver to avoid a collision against an obstacle or another vehi-

cle. Highways are a common scenario were ACC system can be tested as well as lane change

maneuvers. Another scenario that was used is a crosswalk on a road. In most cases the road

geometry was kept constant for all the test cases but there is also a case for automatic generation

of roads.

The algorithm that selects the variable values is also different. Some of the options include rein-

forcement learning and evolutionary algorithms. In other papers specific toolboxes are used that

use their own optimization method. The random selection of values is also a valid option.

Another interesting study was focused on differential analysis. In this case the scenario to test

was not formed by an autonomous vehicle but by an aircraft. The test wanted to compare a cur-

rent version of an anti-collision system with a base system. With this comparison, the purpose

was to find some cases in which the new version suffered an accident but not the previous ver-

sion.

From these papers, important knowledge could be gathered to solve the problem stated in the

thesis. The optimization methods will be discussed to find which one is more suitable. Besides,

the method developed needs to be generic. So it can work in many scenarios. After the method

implementation at least one scenario needs to be chosen to check that the method is working.

Some of the scenarios present in the papers will probably be chosen for the test.

2 State of the Art

29

The last part of the chapter summarizes some of the optimization methods that can be used to

solve the problem of selecting and optimizing the variables values for a scenario. The algo-

rithms explained were evolutionary algorithm and reinforcement learning algorithms. The

algorithms evaluation and selection process are explained in the methodology chapter.

2 State of the Art

30

31

3 Methodology

Some papers were presented which contained methods for scenario generation. That previous

work should be a base to decide how to solve the problem stated in the thesis. Given a driving

find the specific variable parameters values which maximize the difference between two sys-

tems (two cars) when they drive at that scenario. The scenario definition, car specifications and

driving simulation was done with the help of simulation software. After the problem statement

some decisions needed to be taken about how to develop this problem. These decisions included

scenario definition, method used for optimization and the configuration that needed to be done

for this method to work correctly.

The scenario definition means choosing interesting scenarios where the simulation takes place

and selecting the fixed and the variable parameters. Then a method needed to be chosen for the

maximization problem. The method was in charge of selecting the variable parameters values to

define the road scenario that was sent to the simulation software to carry out the simulation.

This method needed to select the parameters with the purpose of finding the optimal results.

Once the algorithm was selected, the next step was to configure this algorithm and to define the

remaining parameters for the problem.

Figure 3.1: Problem structure

3 Methodology

32

Figure 3.1 shows the general problem structure. This chapter is first focused on scenario genera-

tion and algorithm selection. After that all decisions concerning the algorithm definition are

explained. Finally the implementation is carried out. In the implementation step, the simulation

software is explained and all the code needed for the algorithm and simulation control is written.

With the implementation finished the method is ready to work.

3.1 Process for Scenario definition

In simulations, scenarios represent the roads and traffic situations that a vehicle can find when it

is driving. Several features need to be defined to create a scenario. The first part is formed by

the physical road. The parameters to define the road give information about the road shape and

size. These parameters are the road geometry, the lane width and the number of lanes. Other

parameters can include the pavement friction and the height of each stretch of the road. Road

definition also includes driving restrictions such as speed limits, traffic lights as well as driving

directions on each lane. The second part on scenario definition is related to the participants on

the road. These participants are the vehicle to simulate as well as other cars and trucks that are

also driving. Participants can also be bicycles and pedestrians for the case of urban scenarios.

Finally a scenario is not complete until the maneuvers are defined. The maneuvers indicate what

is going to be the behavior of the ego-vehicle during the simulation. The maneuver commands

will tell the car the changes concerning acceleration, braking and steering. The maneuver defini-

tions are also applied to other traffic vehicles, not only the ego-vehicle.

One example of a simulation scenario is shown in Figure 3.2. This scenario is formed by a

highway with three lanes. The ego-vehicle is the yellow vehicle in the central lane and a truck

drives in the right lane. To complete the scenario definition it would be necessary to define the

maneuvers for both vehicles.

3 Methodology

33

After defining how a simulation scenario is defined, the focus is on deciding what kinds of sce-

narios are interesting to analyze for the master thesis case. The main idea is to have a scenario

with some fixed parameters and some variable parameters. Given this scenario the objective is

to change the variable parameters in order to maximize some criterion. In most scenario genera-

tion papers the objective was to find the most critical situations. However, for this case the

developed algorithm changes the variable parameters to maximize the difference between two

cars (two systems) driving on the same scenario.

After this, it is necessary to decide which scenarios are useful for the simulations and which

parameters are going to be fixed and which are going to be variable. Interesting scenarios for

simulation need to have sudden changes on other traffic participants or difficult situations for

the ego-vehicle. If the scenario is too simple, the simulation is not going to provide new infor-

mation. For example if the car is driving alone on a straight highway, it does not need to make

any maneuver. More complex scenarios are created instead so the ego-vehicle needs to make

adjustments in its speed and direction. Some scenarios that are used for vehicle testing were

analyzed in the state of the art chapter. This summary is shown in Table 2.1. Some of the typi-

cal test scenarios are roads with two lanes. Sometimes the driving direction of the two lanes is

the same and other times it is the opposite. About the maneuver it is common that they involve

changing lanes. One of this lane change maneuvers is an overtake maneuver. Another option is

a lane change of the ego-vehicle into a lane where another vehicle is already driving. A cut in

scenario can also be tested where a vehicle changes lane and positions itself in front of the ego-

vehicle. Other common scenarios include braking maneuvers produced because the vehicle

Figure 3.2: Driving scenario example

3 Methodology

34

finds other vehicles, pedestrians or obstacles in the middle of the road. Active cruise control

systems are commonly tested with scenario generation methodology. In these cases a vehicle

drives on the road with variable speed and the ego-vehicle adapts its speed to the speed of a

preceding vehicle.

The scenarios are divided in three levels depending on the abstraction: functional, logical and

concrete scenarios [39]. Functional scenarios include a general description of the elements that

compose it. By logical scenarios it is understood the scenarios in which the range for its pa-

rameters is defined. Finally a concrete scenario includes the exact values that all of its

parameters take. When testing autonomous vehicles, the common procedure is to set a logical

scenario for the study. This scenario has some fixed parameters and some variables than can

have values between a specific range. Then, for each test case, a set of values is chosen for the

variables. Therefore, each test case is formed by a concrete scenario.

After choosing the scenario, some of the parameters are set as fixed parameters and others as

variable parameters. These variable parameters are the ones that the algorithm is allowed to

change. The scenario geometry is in most cases fixed for the scenario generation papers. An

alternative is explained by Kim et al. [13], where a method generates automatically a road net-

work. However, other parameters which are involved with the vehicles movement and

maneuver may have more impact into having different vehicle behavior. So the road geometry

parameters are set as fixed parameters. The variable parameters are usually the initial traffic

situation and the maneuvers. The initial traffic situation means the position and speed of every

vehicle at the beginning of the simulation. The parameters related to maneuvers control the

changes in speed and position of the vehicles during the simulation as well as the timing of

these maneuvers. For example, a scenario could be defined as a straight road that is 500 meter

long and has three lanes. These are considered as part of the geometry so they do not change

from one simulation to another. The scenario could have another vehicle apart from the ego-

vehicle. The variable parameters could be the two vehicles initial position and speed. Besides if

the ego-vehicle performs a maneuver in the simulation, a variable parameter could be the exact

moment when this maneuver happens or other parameters that control the maneuver characteris-

tics.

3 Methodology

35

3.2 Algorithm selection

The thesis objective is the maximization of the difference between two systems driving at the

same road scenario. The road is defined in a simulation software with some fixed parameters

and some variable parameters. The purpose is to find which of these variable parameters make a

bigger difference between the behavior of one system and the other. As the simulation software

works like a black box, the procedure is to send different combinations of these variable param-

eters to the simulation software to find a good solution. The algorithm selection is concerned

with finding a suitable method to select these variable parameters to send to the simulator. The

perfect method maximizes the probability of finding good solutions in a scenario.

Scenario generation methods can be divided in two different groups according to the way of

approaching the problem. These two groups are coverage and falsification. These two groups

include different methods that can be used to choose the parameters that are sent to the simula-

tion software. After defining a scenario to analyze with some fixed parameters and variable

parameters, the algorithms select the variable parameters for each simulation. These two ap-

proaches were analyzed on the state of the art chapter and their main characteristics are

summarized next:

The coverage approach is focused on choosing many points homogeneously distributed around

the search space. For the scenario case, the variable parameters are constrained between some

values. The search space will have as many dimensions as number of parameters and there will

be a maximum number of points to analyze. Then a coverage method will divide this search

space in as many areas as maximum number of points and these areas are homogeneously dis-

tributed. After this division of the search space into different areas the method will choose one

point from each area. All the selected points will be sent to the simulation software.

The other approach is falsification. In the coverage approach all points are selected before start-

ing the simulations. On the contrary the falsification approach chooses the points based on the

information obtained from previously simulated points. The process is divided in several itera-

tions. On each generation this method uses the information from the previous simulation results

to select the new iteration points. The advantage of this method is that it focuses more in the

most promising areas and barely selects points from areas with bad results. The inconvenient of

this method is the possibility of getting stuck in some local optima.

Both methods can have some advantages and some problems. Falsification approaches have the

advantage of focusing the search around the best values found at the previous evaluations. With

3 Methodology

36

that they avoid losing time searching in areas not interesting and allow for a better search on

promising areas. On the other hand falsification approaches get easily stuck on local optima and

need more complex algorithms compared to coverage approaches. Based on this evaluation, the

decision is to develop some falsification method with certain complexity but that could lead to

better results. After optimizing a scenario with a falsification method, some coverage method

was also used to compare the results performance. The coverage methods are much easier so it

did not take so long to configure and could alert from problems when falsification methods get

stuck in local maximums.

Table 3.1: Three methods evaluation for scenario generation case

 Coverage Falsification

Complexity Low High

Problems Dispersity at the

search

Can get stuck in

a local maximum

3.2.1 Falsification algorithm

The first objective is developing some falsification approach to make the differential analysis

between two systems. The algorithm selects parameters to send to the simulation software but it

sees the simulation software as a black box. Some promising approaches that use the falsifica-

tion approach and could be used for black box optimization problems are evolutionary

algorithms and reinforcement learning algorithms. These algorithm were also applied in some

papers related to scenario generation commented on the state of the art section. So it is clear that

they could be useful for this kind of applications.

The suitability of each kind of algorithm depends on what kind of scenarios are going to be ana-

lyzed. Reinforcement learning is suitable for scenarios where some of the subjects, for example

another vehicle, need to make several decisions during the simulation time. In this case the rein-

forcement learner controls the steering and the acceleration and braking of the other vehicle.

The reinforcement learner tries different combination of accelerating and steering maneuver and

it searches for the situations with better rewards (or fitness values). On the other hand when the

scenario has parameters that are going to have fix values during each simulation, it does not

make sense to use the reinforcement learning approach. Instead an evolutionary algorithm can

3 Methodology

37

be in charge of selecting the parameters. For example if the initial and constant speed of a vehi-

cle is a parameter, then it can be described with one value for the whole length of that specific

simulation. In terms of complexity the reinforcement learning is more complex and requires

more computational effort to run than evolutionary algorithms.

Therefore, if the parameters to optimize in the scenario are a sequential process a reinforcement

learning algorithm looks like a promising approach. For example if the variable parameter is the

steering wheel position along one simulation and the learner can make several changes of the

steering wheel position. The different positions of the steering wheel are the sequential process.

An evolutionary algorithm can also be used for sequential decisions processes if the number of

decisions is not very high or if the reinforcement learning looks too complex to develop.

On the other hand, if the parameters do not change as a sequential process a better approach is

the use of evolutionary algorithms. That is when the parameters have a value that is going to be

constant in the simulation. For example one parameter is the constant speed of one of the traffic

vehicles. This speed does not change during one simulation so it is not a sequential decision

process.

The final decision is to use evolutionary algorithms because a lot of scenarios have many varia-

ble parameters which keep a constant value during each simulation. These parameters are

mainly values for different positions and velocities for the vehicles in the scenario. Evolutionary

algorithm is a category that includes several algorithms that have a common structure. The spe-

cific evolutionary algorithms that are adopted are the genetic algorithm and evolution strategies.

3.2.2 Coverage algorithm

This kind of algorithms selects points distributed around all the search space. So for the differ-

entiation process a coverage algorithm would choose first all the points to simulate in the

software and after the selection of all the points the simulation starts. So the algorithm does not

receive feedback on how the points are performing. These approaches are not iterative. From

the point of view of the exploration-exploitation trade-off they are full exploration.

The simplest algorithm is to select random values for the input parameters. This method is

called Monte Carlo method. Given a problem with three input parameters constrained between

some maximum and minimum values and with 500 points to simulate on the simulation soft-

ware, the algorithm would select 500 points. Each of these points would have the 3 input

3 Methodology

38

parameters chosen randomly between the correspondent maximum and minimum values for

each parameter.

Monte Carlo method is a suitable option for the optimization problem. Nevertheless, other cov-

erage approaches try to cover the parameter space more homogeneously. That is the case of

Latin Hypercube Sampling (LHS) algorithm [40]. This algorithm divides the search space in

rows and columns and it takes points so that two points do not coincide in the same row and

column. For example in a 2D search space with 100 points, Latin Hypercube algorithm would

divide the space into 100 rows and 100 columns. If the first point is on row number three and

column number four, then the rest of the points can be neither in row three nor in column four.

Another possible algorithm is orthogonal sampling. It works the same way as the Latin Hyper-

cube with the addition of a new element. Apart from rows and columns, it also divides the

search space into cells. So when looking for 100 points, this algorithm would divide the search

space into 100 rows, 100 columns and 100 cells. And only one point can be selected in each

row, each column and each cell.

3.3 Fitness function

One important element in evolutionary algorithms is the fitness function. The fitness function is

in charge of giving one value that explains how good or bad a certain solution is. It needs the

results obtained at the simulation of a certain set of solutions (or individual) and transforms this

output information into a scalar value. The evolutionary algorithm calculates the fitness value of

each individual and in each generation. The selection step needs these values in order to com-

pute the next generation. Given a generation where each of its individuals has already been

simulated, the selection operator chooses the individuals with a higher fitness value and uses

them for the following generations. Besides, the fitness value at the end of the simulation indi-

cates the best solutions found in that simulation. This value is necessary to analyze the

algorithm quality. After trying different parameters to calibrate an evolutionary algorithm the

decision on the algorithm performance is based on the best solutions found. That is the solutions

with higher fitness value. In addition the fitness value can also be used to compare the perfor-

mance of different algorithms. Therefore the fitness function is of critical importance for the

-defined fitness function improves the solution search and

makes it possible to find the desired result with fewer generations.

3 Methodology

39

The fitness function is different for each problem and depends on the specific requirements. In

the case of this thesis the objective that is searched concerns the difference maximization be-

tween two systems driving at the same scenario. For each individual the simulation software

receives some inputs about the scenario characteristics. After the simulation, the software pro-

vides the algorithm two sets of outputs. One set of outputs for each system. The output values

contain information from the car gathered during the simulation. This information can include

physic parameters like position, speed and acceleration but also information about sensors. In

order to make the explanation in this subchapter easier two output parameters are chosen: longi-

tudinal position and speed.

The method used for the fitness function needs to transform the output variables information of

two systems into a single scalar value that expresses how different these two systems behave.

Some of the possible methods to obtain this value are common methods used for statistics. They

include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error

(MAE) and Mean Absolute Percentage Error (MAPE). These methods mentioned are common-

ly used to compare estimations and real results. They receive a set of points and for each point a

real value and a predicted value is included. Then the mathematical formulas of these methods

are applied to obtain one value that expresses how big the error of the whole set of points is. For

the case of the thesis instead of comparing estimations with predictions, the comparison will be

between the results on system one and system two. That is between the different positions and

velocities obtained after simulating the two systems.

On the following these methods are analyzed to see if they are suitable for the fitness function

and which one can perform in a better way.

Mean Squared Error (MSE) measures the average of the square of errors. At each point it takes

the difference between the two systems (A and B) and elevates it to the power of two. As the

difference is squared this method gives special importance to the values that are very different.

If the difference is duplicated then the MSE value is multiplied by four.

 (3.1)

Root Mean Squared Error is very similar to MSE. The only difference is that after calculating

the value, it makes the square root of this value. So if we want to make a ranking with several

individuals and a fitness value assigned to each individual, the order is going to be the same

3 Methodology

40

when using MSE and RMSE. The difference would be that the fitness value for RMSE is in the

order of magnitude of the position and speed differences.

 (3.2)

A third possible method is the Mean Absolute Error (MAE). This metric measures the error as a

difference in absolute value for all points and makes the average. Whereas MSE and RMSE

penalized more the big errors in specific points (because it adds the square value of the error),

MAE penalizes all differences the same way. So MAE should be used when all the errors need

to be penalized the same way and RMSE in the case where it is preferred to give more im-

portance to big errors compared to small errors.

 (3.3)

Another option to measure differences is with the use of Mean Average Percentage Error

(MAPE). This method is similar to MAE. It calculates the absolute value of the difference at

each point, but after that it divides this difference between the first value. By doing that, the

result obtained is the error as a percentage of the point value.

 (3.4)

To better understand the difference of MAPE a small example is introduced. Supposed that two

points in the simulation give the following results and the objective is to compare the speed

differences between two vehicles:

Point 1: Speed of vehicle 1: 10km/h. Speed difference between vehicle 1 and 2: 5km/h

Point 2: Speed of vehicle 1: 50km/h. Speed difference between vehicle 1 and 2: 5km/h

At point 1: MAPE = 0.5

At point 2: MAPE = 0.1

3 Methodology

41

So having 2 points with the same difference (5km/h), RMSE and MAE would give the same

error to point 1 and to point 2 because they only take into account the speed difference. On the

other hand MAPE gives different results because it takes into account the percentage of that

difference compared to the speed value.

Another advantage of MAPE is that its value is a percentage error so several magnitudes can be

calculated together and expressed as a scalar value. For example calculating differences be-

tween position, speed and acceleration and having a unique fitness value that expresses how

much the difference is. With RMSE and MAE that would be more complicated because posi-

tion and speed have different measure units so summing into one final fitness value them is

somehow arbitrary.

 difference wants to be calculated and ex-

pressed into a single fitness value. If the speed difference is 10km/h and the position difference

is 60m (using MAE), then the fitness value could be calculated by summing this two quantities.

Fitness value = 60 + e-

tween meters and kilometers per hour. And why not summing speed difference in kilometers

per hour and position difference in kilometers instead of meters.

MAPE solves this problem. There is no problem of summing different units as all the differ-

ences are stated as percentage values. Besides, the final value is the mean of percentages errors

so some information can be obtained just by looking at the number. If for example the fitness

obtained is 5 using MAPE, then we can know that the average between the differences at the

points observed is 5%. So the position and speed differences between the two systems will be

5% as average for the every point.

If another method such as RMSE or MAE was used, a final fitness value would be difficult to

f-

ferent magnitudes (position and speed).

Based on the previous analysis the most suitable method to use for the fitness function is the

Mean Average Percentage Error (MAPE). The evolutionary algorithm code has one function

where it calculated the fitness value of a specific solution. The algorithm receives the results

obtained in the simulator with a specific solution and applies the MAPE formula to the speed

and positions values measured in the simulation for the two systems. With this formula it ob-

tains one scalar value. This scalar value is the fitness value for that specific solution. The fitness

value is needed for the selection step on the evolutionary algorithms. The fitness value gives

3 Methodology

42

also information about how good the final solution is. Therefore, it is used to compare several

algorithms performance. It can also serve as a comparison between different variations of the

same algorithm.

Table 3.2: Possibilities for Error estimation to use on fitness function

 MSE RMSE MAE MAPE

Error

measurement

Quadratic to
the difference

Quadratic to
the difference

Proportional to
the difference

As a percentage
of the differ-

ence

Units of

measurement

With units
(km/h or m)

With units
(km/h or m)

With units
(km/h or m)

No units as it is
a percentage

3.4 Evolutionary algorithms configuration

Once the evolutionary algorithm has been selected and its code developed, it still remains an

important step. This was the parameter selection for the algorithms. Parameter selection consists

on the customization of an algorithm with the objective of obtaining a better performance.

These algorithm parameters can be divided into two groups: structural parameters and numeri-

cal parameters [41]. Structural parameters are the main factors that affect the algorithm

performance. The code needs to be changed in order to alter these parameters. These parameters

include the coding scheme, operator types and stopping criterion. On the other hand numerical

parameters are formed by the population size at each generation, the number of generations, the

mutation rate and the crossover rate. Once the code is finished these numerical parameters are

easily changed. Some other parameters can also be adjusted depending on the specific algorithm

used. An evolutionary algorithm with the right parameters can give results orders of magnitude

better than the same algorithm with bad parameters definition [42]. Some quality measurement

method needs to be defined in order to evaluate how good or bad certain solution is. The solu-

tion quality depends on the parameters selected for the algorithm. The other part that needs to

be defined and which is related to the algorithm quality is the end condition.

3 Methodology

43

3.4.1 Algorithm quality

The next step is to define how to measure an evolutionary algorithm quality. The two common

ways to measure an evolutionary algorithm performance are solution quality and algorithm

speed [42]. For solution quality method a specific computational limit is stablished. This limit

can be for the project case setting a maximum number of simulations in the simulation software

(for example one thousand simulations). After this limit has been reached the best solutions of

each algorithm are compared. This is done by using the fitness value obtained. With this infor-

mation the best algorithms will be the ones that obtain a better fitness value. The second method

stopping the algorithm only when a specified fitness value has been reached. Then the best al-

gorithms are the ones that require less time to reach this value. The problem with that is that it is

difficult to estimate how long it will take for the algorithm to reach that certain value. So the

algorithm can be running for days without reaching that value.

3.4.2 End condition

are three possible options for the end condition. The first one is by limiting the computational

effort. That is by stablishing a maximum number of simulations. The advantage is that the total

computation time is limited but the problem is that the algorithm can stop before reaching a

solution good enough. This maximum number of simulations for the evolutionary algorithms is

the result of the population size multiplied by the number of generations. This end condition

allows to compare several algorithms by comparing the final fitness value. That is by measuring

the performance as solution quality.

The second end condition is to set a certain objective value that we want to obtain. Then the

algorithm will run until this value is reached. This method is more suitable for the cases where it

is known before the value that is needed. The problem with that is that it is difficult to estimate

how long it will take for the algorithm to reach that certain value. So the algorithm can be run-

ning for days without reaching that value. The algorithm performance would be measured by

analyzing the computation time needed to reach that value.

A third option for final condition definition is to compare the results in a generation with the

results on the generation before and finishing when this difference is smaller than certain

threshold.

3 Methodology

44

Table 3.3: End condition and Algorithm Quality

 End condition Algorithm Quality measurement

Option 1 Limited number of simulations

(computational limit)

Compare final fitness value

Option 2 Reach certain fitness value Compare number of simulations needed

to reach this value (System speed)

Option 3 Improvement between generations

is smaller than a threshold

Check both final fitness value and num-

ber of simulations needed

From these three options to define the end condition, the one with the limited number of compu-

tations looks better as it is easy to predict the total simulation time and it allows for an easy

comparison between different algorithms efficiency. The problem with the second option is that

the fitness value that is going to be obtained is not known, not even its order of magnitude. So if

the fitness value set as end condition is too high, the algorithm will never reach this point. And

the disadvantage of option 3 is that it can make the algorithm stop too early or too late. If the

population size is too large, the algorithm needs a lot of generations to converge so the compu-

tational load can be huge. On the other hand, an evolutionary algorithm can have a constant

fitness for a few generations and after those continue to improve the solution. But with the 3rd

end condition the algorithm would stop in these few generations with stagnation, even if they

are between the first generations. So the simulation would be very short.

As explained before, by stablishing a number of computations limitation, the parameters of

population size and number of generations depend on the value of each other. That is because

the maximum number of computations is calculated as the population size multiplied by the

number of generations. But it is still necessary to decide whether to have a bigger population

size or a greater number of generations.

3 Methodology

45

3.4.3 Influence of the evolutionary algorithm parameters

Different genetic algorithm problems can need very different parameters values for a successful

performance. The parameters that configure a genetic algorithm are population size, number of

generations, mutation rate and crossover rate. It is not clear which specific parameter values

should be used for a random genetic algorithm problem [43]. The procedure to choose the best

parameters is complicated. One way to do it is by conventions [42]. But this method is very

inaccurate. It can serve as estimation on how to start but will not lead to the best results. A bet-

ter option is trying to understand the interaction between these parameters before choosing the

values.

This interaction is influenced by what is called the exploration-exploitation trade-off. To under-

stand this exploration-exploitation trade-off first both terms are defined. Basically exploration is

concerned with trying a lot of different values and covering a big search area. On the other hand

exploitation is defined as deepen the search around some specific values or region in the search

space.

In general when changing some of the evolutionary algorithm parameters we can improve one

of these two terms (exploration or exploitation) but decrease the other one. Having a huge ex-

ploration would mean an algorithm with a single generation but a lot of points to search on that

generation. The problem with that is that the algorithm cannot focus on the most promising are-

as to search for better values. Each new point to evaluate is randomly selected. On the other

hand an algorithm which maximizes exploitation but has minimum exploration would have

only one value per generation and will always look other points around that one. This will prob-

ably lead to a point stuck in a local optimum being unable to reach the global optimum.

How does each parameter affect to the exploration and exploitation? First of all the population

size and the number of generations are analyzed. These two parameters need to be explained at

the same time because they are dependent of each other. That is because the evolutionary algo-

rithm end condition was set as the algorithm reaching a maximum number of simulations

previously defined. The population size and the number of generations will be set so that the

product between these two parameters is equal to this maximum number of simulations. So an

increase in one of these two parameters means a decrease in the other parameter. Population

size is linked to exploration. As a reminder in evolutionary algorithms the population size is the

number of individuals (or solutions) which are computed at each generation. So the larger this

number is, the more search space is covered in one generation. On the other hand the number of

generations is closely related to exploitation. In an algorithm with a large number of generations,

3 Methodology

46

it deepens the search around some specific areas. That happens because the evolutionary algo-

rithm looks for new solutions near the points that had previously given good fitness values. As a

summary a high population size will lead to a big search space whereas a high number of gener-

ations will conduce to focus the search on specific areas. The equilibrium between these two

variables is not so easy to find and it depends on the problem. In a problem with a lot of local

optima, a greater population size (exploration) may help to find a better solution. However in a

problem with few local optima an approach with more generations (exploitation) will have bet-

ter expectations.

The other factors that influence this exploration-exploitation trade-off are the mutation rate and

the crossover rate. The mutation rate states the probability that some element inside an individ-

ual is randomly changed to a new one. These random changes are responsible to improve the

variability so that the algorithm can search new points around the current solution. Therefore,

the bigger the mutation rate is, the greater exploration the algorithm has. The problem with a

high mutation rate is that it can eliminate current good solutions reached after several genera-

tions. Then, a big mutation rate means low exploitation.

The last parameter is crossover rate. This parameter indicates the probability that an offspring

(or new individual) is created as a combination between two parents (two individuals from the

previous generation). The other possibility for a new offspring is that the new individual is a

copy of only one parent. An algorithm with 0% crossover rate would be pure exploitation. It

would take the solutions from the first generation and never combine them. The algorithm

would only make mutations from each individual solution. On the other hand a 100% crossover

rate means that every new offspring is a combination of two parent individuals. So a low cross-

over rate produces high exploitation. But a high crossover rate does not mean high exploration

as the new individuals contain information from the previous solutions. Therefore, high crosso-

ver rate produces equilibrium between exploration and exploitation. Crossover rate has usually

high values but never reaches 100%. That is done to bring some of the best solutions from one

generation to the next one without modification. It is called elitism. So with a crossover rate

around 70-80% most of the new individuals would be combinations of two parents. And the rest

of the new individuals would be a copy of some of the parents which had a high fitness value.

3.4.4 State of the Art for the selection of parameter values

Once this interaction is understood, some research is analyzed where different values are tried

to find the best parameters combination. Deb and Agrawal [43] try different GA parameters on

3 Methodology

47

typical functions to analyze which parameters lead to better results. They set a maximum num-

ber of function evaluations and change the three parameters stated before: population size,

crossover rate and mutation rate. The researchers test the parameters effect on different func-

tions. Some of these functions were unimodal, four-peaked and multimodal functions. In

unimodal function the maximum number of function evaluations is set to 500 and the best per-

formance is found for a population size close to 10. That value is quite small compared to the

number of generations as the maximum number of generations was 500/10 = 50. For the analy-

sis on the four-peaked function the computational load is increased from 500 to 9000. The

results show that the optimal population size has a value between 100 and 200. For this case the

population size and the number of generations have values in the same order of magnitude. The

last case is the one about multimodal functions. Because of the complexity of this function the

computational load is increased from nine thousand to forty five thousand. For this function the

population size needed to reach good results was much greater than for the case of other func-

tions. The best performance is obtained for a population size of about one thousand.

In this case the population size is much bigger as the number of generations, which has a value

about 50. In addition, it is observed that in multimodal functions the crossover operator is im-

portant for a good result. To sum up, the functions which have more peaks or local optima need

a higher number of function evaluations to find the optimal solution. Besides, the population

size compared to the number of generations increases when the function has more peaks.

Other research is focused about the optimal population size [44]. On this paper there is not a

limit of computations as it was stablished for this case. Instead the algorithm runs until it con-

Figure 3.3: Genetic algorithm performance for different parameters [43]

3 Methodology

48

verges. The results obtained inform about how the solution improves with the population size

until it reaches a point where the population is too big and the convergence is quite difficult.

When analyzing the impact of these parameters, Boyabatli and Sabuncuoglu [41] conclude that

the effect of crossover rate is insignificant for their studied case. Besides they also analyze the

impact of mutation rate and state that a mutation probability of 0.4 is the most convenient value

for their case of study.

The parameters selected for an evolutionary algorithm can be constant during the optimization

process but can also vary. This parameter change is called parameter control [42]. For some

advanced problems the use of variable parameters can be a promising option. Laoufi et al. [45]

change the crossover and mutation rate depending on the fitness value that the current points

have. High values of mutation and crossover rate mean higher exploration and less exploitation.

What the adaptive algorithm does is to increase the value of these parameters when the popula-

tion is close to getting stuck in a local optimum and reduce their values when the population is

too scattered. But the development of a control strategy for these parameters is quite complex.

Some papers mention typical values for the evolutionary algorithms. Some research suggests a

crossover rate between 0.5 and 0.7, a population size of 100 and a mutation rate between 0.01

0.1 [42]. Other possible values are a crossover rate between 0.65 and 1 and a mutation rate = 1/n

[41].

For the case of study the process starts with typical parameter values. Several simulations runs

are carried out changing some of the algorithm parameters from one run to the next one in order

to improve the algorithm performance. Besides, the results are analyzed. The new parameters

set to test are decided based on these results and the knowledge about parameters interaction.

3.5 Implementation on Python and Simulation Soft-
ware

After choosing the algorithm, its parameters and the scenarios to simulate, the next step is to

implement it all. The scenarios definition and simulations are carried out with vehicle simula-

tion software. This is software to test vehicles. This software allows the creation of customized

scenarios as well as a precise definition of the vehicles to simulate.

3 Methodology

49

For the algorithm design Python programming language is used. The script also includes the

code for the control of the simulation software and for the information exchange. The sequence

is the following: First of all the code containing the optimization algorithm chooses some pa-

rameters to simulate. Then the simulation software scenario is updated with this information.

After that, the simulation start order is given. After the simulation is finished, the results are

read. These results are sent to the algorithm. The algorithm calculates some fitness value with

the information from the results. Based on the fitness value, the algorithm chooses the points for

the next generation.

The general structure of the whole Python code is shown in Figure 3.4:

 Main block. This block contains the main function that is in charge of calling the im-

portant functions in the rest of the code. These functions can be divided into two groups:

the ones related to the optimization algorithm and the ones to control the simulation

software.

 In the main function, the instances for the simulation software control file are ini-

tialized here with the scenario file names and the path. The instance for the

evolutionary algorithm is also initialized here and including the parameters (popu-

lation size, crossover rate and mutation rate.

Figure 3.4: Code structure

3 Methodology

50

 After defining the instances, the population is initialized and the code enters a loop.

Inside the loop the evolutionary algorithm functions will be called iteration after

iteration.

 The main file also calls the function that saves the final results and plots the fig-

ures.

 The evolutionary algorithm block is another file that contains all the evolutionary algo-

rithm functions. The function to generate the first population is defined here. The

evolutionary algorithm operators (selection, crossover and mutation) functions are also

defined in this file. This block also contains the fitness calculation and the sorting func-

tion. Finally some functions in this block are in charge of saving the results and drawing

some graphs for a better interpretation of the results. This code is different when using

the coverage approaches as they do not need the crossover, mutation and selection steps.

 The blocks on the left in Figure 3.4 have all the code related to open and control the

simulation Software. The block denominated Simulation Software control is in charge

of giving the order to run the simulation. In order to do that, this file controls the func-

tions in the three small blocks: update parameters, execute Simulation Software and read

results.

 After receiving a group of individuals to simulate in the simulation soft-

ware it will first call the update function. Before starting the optimization

process a scenario needs to be beforehand defined. But some changes are

produced to this scenario along the simulation. The update parameters file

will update these changes just before every simulation.

 The second sub-block is in charge of executing the simulation software.

When the scenario has been updated, the Simulation Software control file

calls the function in the Execute Simulation Software block. This function

sends the starting order and receives a warning when the simulation has

concluded.

 The third sub-block reads the results from the simulation just made. It has

access to a file that is created after every simulation. With this information

it interprets and gets the output variables that are necessary for the algo-

rithm.

3 Methodology

51

The other part in implementation is concerned with the simulation software. This is advanced

software for vehicles simulation. To carry out a simulation it is necessary to first define some

parameters. These parameters include the road, the vehicle to simulate, the other vehicles (traf-

fic on the road) and the maneuver for all the vehicles.

The road definition lets the user freely decide the shape of the roads, the number of intersections

and lanes number on each road. The length and width of each road can also be customized. It

also allows setting speed limits that can be different on each stretch and including traffic lights

to control the traffic flow. In the case of one or more road intersections, the routes that the ego-

vehicle and other vehicles are going to follow are also stablished here. Some decoration ele-

ments can also be added. For the simulation in the thesis the scenarios are quite simple and are

formed by a straight road with two lanes.

Figure 3.5: Road definition in the simulation software

The vehicle needs to be chosen after defining the road. The software allows for a precise cus-

tomization on the vehicle in many areas such as dimensions, engine, suspension, tires and

aerodynamics. It is also possible to configure the sensors that the vehicle includes. The software

offers a list of vehicles already configured. As the focus was on changing the scenario situation,

most of the vehicles parameters were left unchanged and only some small adjustments were

made. Apart from the ego-vehicle to simulate, one can also include other traffic vehicles in the

scenario to have a more realistic situation.

Finally the maneuvers need to be created. The maneuvers give information about how the car

needs to behave during the simulation. The maneuver indicates the position, speed or accelera-

tion that the car needs to have at different points in time during the simulation. The other

vehicles that are considered traffic can also have maneuvers defined.

After deciding the scenarios needed for the experiments, they are implemented into this simula-

tion software. The road geometry, all the vehicles participating and their respective maneuvers

3 Methodology

52

are created into a base file that is updated with the variable parameter values before each simu-

lation.

To sum up this chapter, firstly the process of scenario generation is explained. After that comes

the evaluation about the suitable algorithms for the problem. Some of the options are analyzed

and finally the evolutionary algorithm is selected. Other simpler algorithms like Monte Carlo

method are explained as they can be used to compare the performance of the evolutionary algo-

rithm. Then, the concept of fitness function is introduced and a specific formula to calculate it is

decided. The fitness function calculates how good a certain solution is. Later, the focus is on the

configuration of the evolutionary algorithm. It includes selecting the end condition and under-

standing how to choose the parameters for the population size, number of generations, crossover

rate and mutation rate. Finally the implementation is explained. The vehicle simulation software

is presented and the code structure is developed with Python programming language. The code

part includes the optimization algorithm and the instructions to control the simulation software.

53

4 Results

In the previous chapter the methodology for the optimization problem is described. The algo-

rithms to use are selected as well as some decisions concerning the implementation into the

code. After the algorithm implementation, the method is ready to be used to generate scenarios

in simulations. The remaining steps before the simulations can be run are divided into two

groups: scenario definition and algorithm parameter selection.

Scenario definition includes deciding the specific scenario to simulate and choosing which are

going to be the input and the output parameters. A scenario is created by defining the road and

traffic conditions in the simulation software. The input parameters are the variable parameters

from the scenario. As a reminder the objective of the method is to find a specific scenario where

the difference between two systems is maximized. The scenario is given by some fixed parame-

ters and some variable parameters. The variable parameters are the ones that are going to

change from one simulation to another in order to find the specific values of these variable pa-

rameters that maximize the systems differences. These variable parameters can also be called

input parameters as they are the parameters that the simulation software is going to receive as

inputs from the main code. The output parameters are the results that after each simulation are

sent back from the simulation software to the main code. The fitness value is calculated with the

information from the output parameters through the application of the corresponding fitness

function.

By algorithm parameter selection it is meant the selection of some values for the evolutionary

algorithm parameters. These parameters are the population size, the number of generations, the

mutation rate and the crossover rate. There is not a perfect value for these parameters as every

problem is different.

On the first part of the results chapter some simulations are carried out. This serves as a proof of

concept to check that the algorithm and simulation software are working fine. The other objec-

tive of the first round of simulations is to calibrate the evolutionary algorithm. That means that

some simulations will be run with different algorithm parameters to find out which values are

more appropriate for this kind of problem.

4 Results

54

The second round of simulations is formed by the testing of different algorithms. Several simu-

lations are carried out on the same scenario. However, the algorithm in charge of selecting the

parameters is different in each round of simulations. With the simulations results, the different

algorithm are evaluated to check which one has a greater performance.

The fact of having two different scenarios to test also serves as a way for checking that the ge-

netic algorithm with some specific parameter values can solve several different scenarios. The

first scenario can be seen as a training set for the algorithm parameters. Then the second scenar-

io is the test set and it can be found out whether the parameter value selection was done

correctly.

4.1 Evolutionary algorithm calibration

First of all some tests are carried out to check that the implementation was done correctly and to

calibrate the parameters that control the evolutionary algorithm. The idea is to find some values

for the genetic algorithm parameters that make the search process more efficient. These values

for the genetic algorithm parameters are not only useful for this specific scenario. As explained

in the previous chapter, different problem require different genetic algorithm performance and

there are not standard values that always perform well. However, for the case of study, even if

the scenarios are different, there are still a lot of common elements in the problem structure.

Therefore, the values obtained for these specific scenarios can also be used for other scenarios.

4.1.1 Scenario definition

In order to start the simulations a scenario needs to be defined. The scenario has to be a situa-

tion that a car can find when driving on a road. A scenario with a single car driving on a straight

road at constant speed is very simple and does not require any change in the car speed or steer-

ing. Therefore, it is recommended that the scenario includes some maneuvers. There is no

specific scenario that is required to test as the method should work for any scenario. Several

different scenarios are used in other scenario generation papers. All these scenarios are shown

in Table 2.1. From the mentioned scenarios, the interesting ones are the ones which contain

both steering and speed changes along the simulations. If the maneuvers are more complex, the

possible behavior differences between the two vehicles should also be larger. Based on this, the

scenario selected for the first simulation is an overtaking maneuver. This scenario happens in a

4 Results

55

highway with two lanes. At the beginning the ego-vehicle is driving on the right lane after a

truck. The ego- -vehicle gets close

to the truck it starts the overtaking maneuver. It changes to the left lane and after overtaking the

truck it drives back to the right lane.

This scenario contains many fixed parameters during the simulations but some other parameters

are selected to be variable. The value of the variable parameters is different from one simulation

to another. These variable parameters are the ones that changed in order to maximize the differ-

ence between the two systems. For this case three variable parameters are selected. These three

parameters and its constraints are the following:

 Parameter 1: Ego-vehicle speed. Between 20 50 km/h

 Parameter 2: Truck speed. Between 0 10 km/h

 Parameter 3: Distance between the ego-vehicle and the truck at the beginning of the

simulation. Between 60 140 m

These three parameters can also be called input parameters. They are the parameters that the

algorithm chooses and sends to the simulation software. So they are the inputs that the simula-

tion software receives before each simulation. It is possible to select more input parameters for a

better scenario customization. However, each extra input parameter adds an extra dimension to

the search space. So the problem would require a higher computational effort to find good solu-

tions. Therefore, these three parameters are selected as they are the main parameters that control

the vehicle maneuvers. The three input parameters cannot have any value as they are con-

strained between a maximum and a minimum. The constraints are necessary to ensure that the

ego-vehicle speed is always greater than the truck speed. If that was not the case, then the over-

take maneuver would never happen. The constraint for the distance is defined to avoid the

distance being too large or too small. If it is too large, the vehicle needs a lot of time to reach the

Figure 4.1: Scenario to simulate: Overtaking maneuver

4 Results

56

truck. If it is too small, the ego-vehicle starts the simulation too close to the truck and may have

problems to start the overtaking maneuver.

The output parameters also need to be selected. To understand how the output parameters are

chosen it is important to understand how the maximization method works. The process for the

optimization is the following: First the algorithm chooses one set of solutions. That means se-

lecting one value for each of the three input parameters (ego-vehicle speed, second vehicle

speed and distance between the ego-vehicle and the other vehicle at the beginning of the simula-

tion). The information about the three inputs of that specific solution is sent to the simulation

software. The scenario is updated and two simulations are done in the same scenario, one simu-

lation for each of the two systems. The two systems are two different car models for the ego-

vehicle. The simulation results from the two simulations are saved. The simulation results pa-

rameters that are selected as output parameters are sent back to the algorithm. With the output

parameters values for that solution, the algorithm calculates a fitness value.

Therefore, the output parameter selection depends on the specific fitness function selected. For

the first simulations, the fitness function calculates the difference between the final position and

final speed of the two systems. These two variables are selected because they are the ones

which should have a greater difference at the end of the simulations. So the final position of the

first car at the end of the simulation is compared with the final position of the second car at the

end of its simulation. The same happens for the final speed. This is a simple version of the fit-

ness function. After the first set of simulations the fitness function is updated in order to obtain

a more accurate fitness value. The formula for the fitness function used on the first set of maxi-

mization processes is shown next:

 (4.1)

Therefore, the output parameters are:

 Sf1: Position of the ego-vehicle at the end of the first simulation (system number one) in

meters.

 Vf1: Velocity of the ego-vehicle at the end of the first simulation (system number one) in

kilometers per hour.

 Sf2: Position of the ego-vehicle at the end of the second simulation (system number two)

in meters.

4 Results

57

 Vf2: Velocity of the ego-vehicle at the end of the second simulation (system number two)

in kilometers per hour.

With that the scenario and its input and output parameters are defined. The next step is selecting

which ones are going to be the two systems that are going to be compared. The two systems are

the two vehicles to be simulated and compared. There needs to be some differences between the

two vehicles to be able to compare them. Some examples of possible differences could be

achieved by the use of different vehicles, by changing some of the mechanical or physical pa-

rameters of the vehicles, by changing sensors or by using different vehicle software. For the

first case of study these two systems are two different car models available at the simulation

software. As they are different models, they have different engines, mass, suspension, etc. So

they behave differently when driving in the simulation.

4.1.2 Genetic algorithm parameters

The scenario is defined with its input and output parameters. Besides, the two systems are speci-

fied. After that comes the algorithm parameter selection. The algorithm in charge of selecting

the values for the input parameters was a genetic algorithm. The general structure of the genetic

algorithm was explained in the previous chapter. But some genetic algorithm parameters have

to be decided before starting the simulations. In genetic algorithms there are no standard values

for these parameters that are valid for all problems. Some values may work better in some cases

and worse in other. These genetic algorithm parameters are:

 Population size

 Number of generations

 Mutation rate

 Crossover rate

In this first part the objective is to try different combinations of these parameters to find out

which values work better. The idea is making several simulation rounds. In all of these simula-

tion rounds the scenario, input and output parameters as well as the two cars are exactly the

same. The only difference is the genetic algorithm parameters.

It is a difficult task to select the right genetic algorithm parameters. Some studies were ex-

plained in the previous chapter for a better understanding of how each parameter influences the

4 Results

58

result. These studies serve to select some of the initial values for these parameters and also to be

able to analyze the results. The process to calibrate is the following: First a computational load

is defined. This is the number of solutions that are simulated in each test run. A solution (a set

of input parameters values) is what defines a specific test case in a scenario. The end condition

for the algorithm is set as reaching a certain number of simulations. That is the computational

load. The limit set is 500 simulations for all the simulation rounds. The limit could be much

larger. But as the simulations require some time, having thousands of simulations would mean

to have each round of simulations running for days. Because of the limited computational re-

sources, this limit was set to a value of 500. The crossover rate is also given a fixed value of

80% inside the range suggested by Boyabatli and Sabuncuoglu [41]. The crossover rate is kept

the number of generations are dependent of each other as its product should be the computa-

tional load.

 (4.2)

Some combinations of these two values are tried. The population size values were between 10

and 25 and the number of generations between 20 and 50.

The last parameter to define is the mutation rate. The value for this parameter was more compli-

cated to be defined correctly. Some suggestions were to use a value about 1/n = 1/3 = 0.33

(where n is the number of input parameters). In the experiment, many different values were

tried starting from 10% up until 50%. The following table shows the different parameters com-

binations that are tried in the simulations:

Table 4.1: Genetic algorithm parameters for test cases

 1 2 3 4 5 6 7

Crossover rate (%) 80 80 80 80 80 80 80

Mutation rate (%) 10 20 20 30 30 40 50

Population size 10 10 20 10 20 20 25

Number of generations 50 50 25 50 25 25 20

Computational load 500 500 500 500 500 500 500

4 Results

59

4.1.3 Simulations results

After the genetic algorithm parameter selection, the simulations are run.

Several topics need to be explained regarding which genetic algorithm parameters give better

results, which scenario solutions are the ones that maximize the difference between the two cars

and how the iteration process works.

Table 4.2: Best solution found at eac

Case 1 2 3 4 5 6 7

Car speed (input 1) 33,6 23,3 32,2 20,9 31,2 30,4 29,4

Truck speed (input 2) 4,2 3,4 0,7 5,1 4,4 9,9 3,9

Initial distance (input 3) 42,3 45,4 67,3 94,4 42 43,3 45,8

Fitness 34,6 30,1 30,7 16,7 40,6 35,1 30

First in most cases the best solution has a fitness value between 40 and 50. Nevertheless the

solution point at which the best values for each case were found is quite different. That means

that this optimization problem has a lot of local optima. That is a sign that this kind of problem

is what is called a multimodal problem [46]. Some of the input parameters tend to have similar

values independently from the case. For example the input parameter number three (initial dis-

tance) has a value between 40 and 45 for all cases but two. And in one of these exceptions, in

case number four, the best solutions obtained have a very bad fitness value. That is because in

case four the search gets stuck in a bad local optimum. Parameter number two (truck speed)

seems quite disperse so it may not have a great impact on the fitness value. Input parameter two

is constrained between 0 and 10 and the solutions have values all over this range. In input pa-

rameter number one (car speed) some common values can be found as in all cases this value is

between 20 and 35 (and it is constrained between 25 and 50).

After a general overview of the results it is the time to analyze the optimization process of each

case in more detail.

4 Results

60

Some problems found when the number of generations is much bigger than the population size

are that they got stuck easily in local optima with bad values. That is what happened in cases 1,

2 and 4. In these cases the population size is 10 and the number of generations is 50. In Figure

4.2 it is shown the fitness evolution for case number two. The figure shows at each generation

(or iteration) one fitness value. This is the fitness value obtained by the best point in that genera-

tion. It is possible to see that after the tenth generation the solution does not improve. The

algorithm is looking all the time around one local optimum and is not able to escape and search

new solutions. That search is very inefficient as most of the simulations are being carried out

approximately using the same solutions.

Figure 4.2 is showing the results for case 2 but the same happened on case 4. Some box plots

are drawn for a better results analysis. In the next box plots for case number 4 (Figure 4.3, Fig-

ure 4.4 and Figure 4.5) the values in the iterative process during the simulations are displayed.

There are three box plots, each of them shows information about one of the input parameters.

The box plots show what values of that specific input parameter were used in each generation.

On the first generation the values are very disperse as the initialization is done randomly. But

after a few generations the values chosen for each input parameter are very concentrated into

some small range. Converging into some values does not need to be bad. The problem with this

case is that the converging process is very quick. In just 4 generations the range gets very small

so the algorithm covers a very small part of the search space.

Figure 4.2: Fitness results for Test case 2

4 Results

61

Figure 4.3: Input 1 values distribution for Test case 2

Figure 4.4: Input 2 values distribution for Test case 2

Figure 4.5: Input 3 values distribution for Test case 2

4 Results

62

In contraposition to those previous cases, case number 5 is analyzed next. This is the case that

gave the best fitness result. The genetic algorithm parameters used are a bigger population size

(20) and a smaller number of generations (25). The mutation rate has a greater value (30%) in

order to have more exploration. The optimization process looks better as the algorithm does not

converge so quickly as before. That is a good sign because it means that the algorithm covered

better the search space. That can be seen in Figure 4.7, Figure 4.8 and Figure 4.9. Furthermore

the algorithm keeps improving the solution after many generations in opposition to the other

case where the best fitness value got stuck after few generations.

Figure 4.6: Fitness results for test case 5

4 Results

63

Figure 4.7: Input 1 values distribution for test case 5

Figure 4.8: Input 2 values distribution for test case 5

Figure 4.9: Input 3 values distribution for test case 5

4 Results

64

The last case to analyze is case number 7. Here the population size is even greater (25) than

before and the mutation rate is also increased (50%). Regarding the solution convergence it can

be seen that the input parameters values have quite a big range during all the simulations. That

can have some advantages by searching in more different areas but this dispersion is also caused

by the big mutation rate. Having a mutation rate so high was problematic because the solutions

change too much from one generation to the next one. With that some good solutions can get

lost.

Several conclusions can be obtained from the previous results. First of all the trade-off between

population size and number of generations can be analyzed. If the number of generations is

quite big and the population size is too small, the optimization process does not perform very

well. A bigger population size will improve the search by having a greater coverage. It can im-

prove the exploration while decreasing the exploitation. Of course the computational load can

also be increased to increase either the population size or the number of generations. A good set

of values for this case with 500 maximum simulations is to have a population size between 20

and 25 and the number of generations between 20 and 25. Secondly a mutation rate around 30%

looks like a good option. As each solution is formed by three input parameters, a value of 1/n =

1/3 = 0.33 should work well. So a mutation rate between 30% and 40 % is chosen. And the

crossover rate is set to 80%. After finding these values for the genetic algorithm parameters, the

idea is to use them also in other scenarios. If the maximum number of simulations is kept at 500

and the number of input parameters is kept at 3, then the same parameter values should work

Figure 4.10: Input 1 values distribution for test case 7

4 Results

65

fine to test other scenarios. Changing the number of input parameters would mean a change in

the mutation rate according to the rule of 1/n. Besides, if the total number of simulations is in-

creased, the population size and the number of generations would also increase.

4.2 Comparison between algorithms

The first round of simulations is useful to see which evolutionary algorithm parameters work

better for the difference maximization problem that is covered in the thesis. The population size

and number of generations trade-off can be better understood by analyzing the algorithm evolu-

tion along the iterations. Also the crossover and mutation rate are set to appropriate values.

Many changes are presented in this second round of simulations. Firstly the new objective is the

comparison between different optimization algorithms. In the previous subchapter the optimiza-

tion process was always done with the use of a genetic algorithm. In each set of simulations the

difference was the genetic algorithm parameters. However, in the new simulations, several algo-

rithms are used to optimize the scenario. And the algorithms performance is compared to find

which option is more suitable. The scenario to analyze is also different. The method developed

to maximize the differences between two vehicles needs to be applicable not only in one case

but in many different scenarios. Having a new scenario is necessary to check that the method

can also work correctly in other cases.

4.2.1 Scenario definition

As stated before, the second experiment will be carried out in a different scenario. This second

round of simulations serve as a test set to check if the algorithm from the first experiment also

performs correctly in this second case. The scenario to simulate for this case is a cut-in maneu-

ver. This is another of the typical maneuvers that are used for autonomous systems validation as

shown in Table 2.1. The scenario happens also in a highway with two lanes. At the beginning of

this scenario, the ego-vehicle is driving on the left lane and a truck drives on the right lane. The

-vehicle. After

some time driving, the truck changes to the left lane until it is situated just in front of the other

vehicle. The ego-vehicle, which is equipped with an active cruise control, reduces its speed if

the truck is too close.

4 Results

66

The same way as in the previous scenario, it is necessary to define some input and output pa-

rameters. The fitness function and the two systems to compare also need to be selected. The

input parameters correspond to the parameters from the scenario that change from one simula-

tion to the next. The input parameters selected for the cut-in scenario were the same than for the

first case. The scenario is expected to simulate a situation in a highway so the vehicles speed is

higher than in the previous case. The input parameters and their constraints are:

 Input parameter 1: Ego-vehicle speed. Between 80 130 km/h

 Input parameter 2: Truck speed. Between 80 130 km/h

 Input parameter 3: Distance between the ego-vehicle and the truck at the beginning of

the simulation. Between 40 200 m

The fitness function is defined differently than before. The new version is more complex but the

fitness value calculated is far more precise. This is achieved in two ways: first of all, several

values of the ego- the simulation are measured. Instead of

several points. At each of these time points, the output variables are measured. This allows hav-

ing a more detailed knowledge about these variables evolution along the simulation. In addition,

the formula used to transform the position and speed values into one scalar value is different.

 was

explained in detail in the methodology chapter. As a summary at each point in time, this method

takes the position or speed between the two vehicles (two systems) and calculates its difference

as a percentage.

Figure 4.11: Second scenario to simulate - Cut in maneuver

4 Results

67

 (4.3)

The output parameters are the ego-vehicle position and speed at different points in time. Now

that the fitness functions takes into account the output variable values at several points during

the simulation, having the vehicle position as the only output variable could be possible and

would give an accurate fitness value. But in other scenario tests, the fitness function may re-

quire several output variables. As it should be possible to use this method in different scenario

tests, the use of at least two output variables is more interesting. With that it can be demonstrat-

ed that the method can work with several output variables. And the MAPE formula result is

dimensionless so it is possible to utilize variables that have different units. So the two output

variables are the vehicle position and speed. Moreover, having more output variables leads to a

fitness value that reflects better the differences between the systems.

Therefore, the output parameters are:

 S1: Array with the ego- a-

tion (system number one) in meters.

 V1: Array with the ego- a-

tion (system number one) in kilometers per hour.

 S2: Array with the ego- m-

ulation (system number two) in meters.

 V2: Array with the ego- u-

lation (system number two) in kilometers per hour.

The remaining decision is about the two systems. In the first case the two systems were two

different vehicle models. That is also the case on the second case but with some differences.

The ACC sensor is updated so it was not the same for the two vehicles. In one of the vehicles

the range of the ACC sensor is left to its standard value of 150 meters whereas on the other ve-

hicle it is reduced to 100 meters. The motivation for this change in the sensor is to have some

difference between the two systems not only in the dynamics behavior but also in the assistance

systems.

4 Results

68

4.2.2 Four algorithms for performance comparison

For the maximization process of the scenario, several algorithms are used. The results are com-

pared to check which algorithm can have a great performance in these cases and why. There are

four different algorithms selected:

 Genetic algorithm (GA)

 Evolution Strategies (ES)

 Monte Carlo method (MC)

 Latin Hypercube sampling (LHS)

The first one is the genetic algorithm. It was previously explained and properly calibrated by

having some simulations. The second algorithm is another evolutionary algorithm called evolu-

tion strategies. This algorithm is quite similar to the genetic algorithm so its implementation

was easily done. The motivation for the use of this algorithm is that it is commonly used for real

number optimization processes, as it is the case in the thesis. The other two algorithms to use

were Monte Carlo method and Latin Hypercube sampling. These two methods are coverage

methods. That means that they do not divide the optimization problem into several iterations

and use the results from the previous iterations to help the selection of possible solutions. They

select points randomly or almost randomly around the search space and send them to the car

simulator.

The comparison is made by checking which method can find solutions with a greater quality. In

order the do that, the computational load is the same for all the methods and the fitness value of

the best individuals found by each method is compared. The fitness value is at first used for the

comparison of different individuals during the evolutionary algorithm optimization. Neverthe-

less, the fitness value of the final result is also a good way to measure the algorithm quality to

find a good solution. So the fitness value is stablished as the metric to compare several algo-

rithms. To have the same computational load, a limit in the number of simulations is set at the

same value for the four algorithms. The number of simulations was set to 500. Each of these

500 simulations includes one simulation for system 1 and one simulation for system 2 with the

same input parameters. After finishing the 500 simulations, the best solutions found with each

method are selected and its fitness value compared.

The two coverage methods, Monte Carlo method and Latin Hypercube sampling, do not have

any algorithm parameter to set. On the other hand, the two evolutionary algorithms need some

values for its parameters. The values for these parameters are chosen based on the results of the

4 Results

69

previous scenario simulations where different values for these parameters were tested. Although

the previous experiments to find the evolutionary parameter values were only made for the ge-

netic algorithm, the same parameters are used for the evolution strategies. As the genetic algo-

algorithm and the evolution strategies structure is very similar, the assumption is that the same

parameter values are valid for both algorithms. The parameters are and the values selected are:

 Population size: 20-25

 Number of generations: 20-25

 Mutation rate: 30%

 Crossover rate: 80%

 (only for evolution strategies): 20

 - 60

With that the four algorithms are ready and the simulations can be carried out.

4.2.3 Simulation results for the four algorithms

The results analysis is divided in several steps. First it is focused on analyzing which algorithm

found the best solutions. So the highest fitness values reached by each algorithm are compared.

After that the analysis is focused on the input parameters that lead to those good solutions and

find out the relation between the different solutions. Finally the good scenarios will be analyzed

in order to understand why those specific input parameters values lead to a great difference be-

tween the two vehicles (high fitness value).

Figure 4.12 includes the fitness results for several simulations.

What the figure shows are eight different column graphs, one for each simulation run. On each

simulation run, the three (or four) best points are selected. Each column graph contains the fit-

ness value obtained for these best points.

4 Results

70

Figure 4.12: Fitness values for the best solutions in each simulation run

Moreover, there are eight column graphs and only four algorithms because each algorithm is

run twice. This is done because the simulations are not deterministic. For the Monte Carlo

method and the Latin Hypercube sampling, the points chosen to analyze are randomly selected.

In evolutionary algorithms, the first generation is also randomly selected. And the crossover and

mutation operators work with some randomness. Therefore, when several simulations are done

through an evolutionary algorithm, the points used along the simulation process are different,

even if the algorithm parameters are kept constant. This randomness could lead to results that

are exceptionally good or bad because of good or bad luck at the search. By running each algo-

rithm several times it is expected to reduce possible outliers in the results. The second

simulation with each algorithm was necessary to check how big this variation corresponding to

good luck or bad luck in the search is.

Based on these fitness results the coverage approaches, which are Latin hypercube sampling

and Monte Carlo method, obtain better solutions than the evolutionary algorithms. They find

higher fitness points even though in the two coverage approaches the algorithm implementation

is simpler. The evolutionary algorithms are not able to find any solution with a fitness value

greater than 7. Their best points have a fitness value around 5 and 6. On the other hand the cov-

erage approaches find several solutions with a fitness value greater than 7. Other remarks can be

made by looking more into detail at the Latin hypercube sampling and Monte Carlo method. In

4 Results

71

Figure 4.12 the three or four best points are shown. But if the rest of the points are checked the

conclusion is that only about the 10 best values out of the 500 in the whole simulation give me-

dium or good quality values (with a fitness value equal or greater than 4). In the coverage ap-

approaches the differences between the best solutions and the worst is quite big. The results in

the evolutionary algorithms are different. These algorithms provided several solutions with a

fitness value very close to each other. The reason for this is due to the optimization process that

constitutes evolutionary algorithms. As they are iterative processes, though there is a trend to

convergence as more generations are created. Therefore, the final generation contains individu-

als which have a lot of similarities between each other. That is why the fitness value is also

quite similar for many of the individuals that belong to the last generation in evolutionary algo-

rithms. To sum up the two coverage methods can find better solutions. But out of the 500 points

chosen to simulate, most of them are bad options and only a few of them obtain a great fitness

value. On the other hand, evolutionary algorithms cannot find such good solutions. But it is

observed some similarities between the individuals in the last generation due to the algorithm

convergence.

The second part of the results interpretation is focused on the input parameter values obtained.

The values of the ego-vehicle speed (first input parameter) at the best points found in the simu-

lations are shown in Figure 4.13. The figure is similar to the one before but instead of showing

the fitness value of the best points, the values for the first input parameter are displayed.

Figure 4.13: Input 1 values for the best solutions in each simulation run

4 Results

72

What can be observed generally is that the values are quite dispersed. There are no points in the

range 80 100 but in the range 100-130 the dispersion is big. The same behavior is observed

for the truck speed (second input parameter). There is a lot of variety on the values where the

best fitness was obtained. The case is different for the truck initial position (third input parame-

ter). In this specific parameter it is observed a convergence into a range of values between 40

60 meters for most of the good solutions.

Figure 4.14: Input 2 values for the best solutions in each simulation run

Figure 4.15: Input 3 values for the best solutions in each simulation run

4 Results

73

Two conclusions can be obtained from the input parameters values information. First of all, the

value of the third input (truck initial position) is quite important in order to obtain a good solu-

tion. In most of the cases this parameters value is constrained between 40 and 60 meters. There

are a few exceptions where this parameters value is over 140 meters but in those cases the fit-

ness value obtained was not so good compared to the best points in all of the simulations. So a

low value in the third parameter is critical to find a good solution. On the first and second input

parameter, a convergence around some values is not observed. In the first input parameter, the

values observed are usually high but scattered distributed. In the second input parameter the

values are even more disperse. So it can be inferred that the third input is the more critical value

to find a good solution and the second input is the one which has smaller effect into the results.

This dispersion in the second parameter and convergence around some value for the third pa-

rameter can be observed in the evolutionary algorithms optimization process in Figure 4.16 and

Figure 4.17.

Figure 4.16: Input 2 values distribution for Genetic Algorithm

Figure 4.17: Input 3 values distribution for Genetic Algorithm

4 Results

74

The box plot shows the values for the second input and third input that were used during one of

the genetic algorithm optimization process. Each box corresponds to all the values used in one

generation. This algorithm selects the new input parameters values based on which values lead

to higher fitness in the generation before. The box plots show this high convergence for the

third input parameter and the dispersion for the second input parameter. That is because a low

value for the third input parameter was a clear sign for the genetic algorithm that the results

were better.

The second conclusion deals with the dispersion. The fact of having so much dispersion in the

input parameters is an indicator that the problem has a lot of local optima around the search

space. The problem function is not defined but works as a multimodal function. This kind of

function has a lot of maximum or minimum points around the parameters space. The next figure

shows an example of multimodal function for a two dimensional problem.

That makes the maximization process more complicated. The evolutionary algorithms try to

exploit the search into an area but they get stuck very easily in some local optima. So after sev-

eral generations they are not able to increase considerably the solution. This can be graphically

seen in Figure 4.19 and Figure 4.20. The horizontal axis shows the number of the generation (or

iteration) and the vertical axis is the fitness value obtained at that specific generation. The dif-

ferent lines show the four best solutions at each generation. The blue line is the best solution at

each generation, the orange line is the second best solution, the green line the third and the red

line the fourth.

Figure 4.18: Multimodal function [47]

4 Results

75

It is common to observe that the best fitness value do not improve significantly from one gener-

ation to the next one. The best point found in the first generation had a fitness value around 5 or

could be improved by increasing the exploration and decreasing exploitation. That could be

done by changing the evolutionary algorithm parameters. Increasing the population size would

mean a higher exploration. That would imply that the number of generations is lowered in order

to keep the total number of simulations constant. A lower number of generations means a

smaller exploitation.

Figure 4.19: Fitness value evolution through several generations for the Evolution Strategies

Figure 4.20: Fitness value evolution through several generations for genetic algorithm

4 Results

76

Finally the interpretation of the input parameters values in the scenario comes. The motivation

is to understand why some specific input parameters values lead to a great difference between

the two cars behavior in the same scenario. The result on the best point found is shown next:

Table 4.3: Results for the best point found

Parameter Value Minimum Maximum

Ego- vehicle speed (input 1) 127,7 80 km/h 130 km/h

Truck speed (input 2) 104,5 80 km/h 130 km/h

Initial distance (input 3) 61,8 40 m 200 m

In this specific scenario the ego-vehicle starts the simulation driving at a about 127,7 km/h

whereas the truck drives at 104,5 km/h and is situated 60 meters ahead of the car. After a few

seconds the truck starts a maneuver to change from the right lane to the left lane. So what is

obtained is a higher speed of the ego-vehicle respect to the truck. Besides, the vehicle speed

value is quite high. As a reminder the speed value was limited between 80 and 130 km/h. So the

speed value is very close to the maximum possible. Moreover, the initial distance between the

car and the truck is close to the minimum possible (the range was from 40 to 200 m). A graph is

provided where the ego-vehicle speed values are plotted. The simulations take place in the same

test case but one line is for the system 1 and the other line for the system 2.

Figure 4.21: Ego-vehicle speed profile during the simulations of both systems

4 Results

77

With the input parameters values explained and the information from the graph it should be

possible to have an idea about why this specific scenario leads to a big difference between the

two cars behavior (the two systems to test). The fact of the truck being close to the car produces

a big braking maneuver when the truck changes lane and is situated in front of the ego-vehicle.

In general big accelerations and big decelerations are prone to increase the differences if two

different cars are compared. The aggressive maneuvers lead to the vehicle being put to the limit

of its performance. If a vehicle has a faster dynamic response than the other one, then the differ-

ences at these maneuvers will be wide. Besides, the ACC range was set to different values. That

means that after the truck cuts in, one of the car tries to get more separated from the truck that

the other car. So one of the cars needs to reduce more the speed or keep it at a lower value for

longer.

4.2.4 Algorithm comparison summary

The second round of simulations consisted of a cut-in scenario where a truck was changing

from one lane to the other just in front of the ego-vehicle. The objective for this second scenario

is to compare the performance of different algorithms. The total number of simulations allowed

is set to a constant value of 500 for every algorithm and the best results obtained are compared.

The four algorithms are divided into two groups: the evolutionary algorithm and the coverage

methods. The best results are obtained in most cases for the coverage methods: Latin hypercube

sampling and Monte Carlo method. It is also observed that the problem had a lot of local optima.

That could be the reason why the coverage approaches performed better. As there are many

local optima, it is easy for the evolutionary algorithms to get stuck in some of those local optima.

So they cannot take full advantage of the iterative process. On the other hand the Latin Hyper-

cube and Monte Carlo method have a great exploration so they can perform better.

4.2.5 Solution improvements

One of the problems that the evolutionary algorithms find is that the problem had a lot of local

optima. The evolutionary algorithms try to improve the solution by searching in the area of pre-

vious good solutions thanks to the mutation operator. But if the problem has many local optima,

it is difficult to find the global optimum. The solution for that would be to increase the coverage.

Previously the simulations limit was set to 500. This value could be increased in order to have

4 Results

78

algorithms with higher population size and same number of generations. The higher population

size means that the algorithm can cover a larger number of points in each generation.

The first objective for the solution improvement is to check if finding a good value on the first

generation was very helpful for the algorithm. The experiment carried out consists on using the

same genetic algorithm for the cut-in scenario optimization. But in this case the initial popula-

tion contains one of the good solutions found in the previous optimizations with the Latin

hypercube sampling. Only that individual is manually included and the rest of the initial popula-

tion are randomly initialized like the cases before. Figure 4.22 shows the fitness corresponding

and the other colors shows the second best, third best and fourth best solutions fitness.

What the figure shows is that the algorithm is still able to improve the solution. So finding a

good value in the first population is critical for the evolutionary algorithms in order to find a

good final result. Increasing the population size improves the possibilities of finding a good

individual in the first generation. Therefore, increasing the population size is a suitable option to

find better points. It is not the same for the number of generations. Some of the evolutionary

algorithms optimization runs previously studied had already converged before the 20th genera-

tion. So improving only the number of generations does not look promising.

Figure 4.22: Fitness evolution for GA with a manually introduced point in the initial population

4 Results

79

Therefore, the conclusion obtained is that keeping the same number of generations and increas-

ing the population size could lead to better results. For that it would be necessary to increase the

total number of simulations. This value was previously set to 500 and for the following simula-

tions is increased to 2500. The algorithms to test with the new number of simulations are the

genetic algorithm and the Latin hypercube sampling. Two simulations are run with each algo-

rithm and the results are compared with the previous cases where only 500 simulations were

allowed.

Figure 4.23 shows the new fitness value results and its comparison with the previous cases.

Each bar graph is a simulation run. The four bar graphs at the top show the fitness results on the

previous simulations and the four bar graphs at the bottom show the new simulations results.

Each bar graph includes the fitness value corresponding to the three best solutions in that simu-

lation. In the case of the genetic algorithm, the additional simulations are helpful to find

solutions with higher fitness value. In the two new simulation runs they achieve a better result

than the previous cases. The best individuals found result in a fitness value around 7 and in one

individual it reached 9,7. In the previous cases, the best individuals had a fitness value between

4 and 6. That can be a sign that the population size in the previous cases was too small. In this

new simulation the population size is increased from around 25 to 125 and the number of gen-

Figure 4.23: Fitness results comparison between algorithms with 500 and 2500 simulations

4 Results

80

erations is kept at the same value. This higher population size increases the exploration and

lead to a better search.

On the other hand the Latin Hypercube sampling does not seem to improve with the number of

simulations. In fact, for these cases the best solutions found are worse than before. But that

should be because of bad luck in that specific search. As the points selection is done randomly,

the more points that are evaluated, the higher are the probabilities of finding a good solution.

But for the Latin Hypercube case, the improvement on the total number of simulations from 500

to 2500 does not seem to be a help for the solution improvement.

When comparing the algorithms for the new case with 2500 simulations, it is not so clear which

algorithm performs better. One of the Latin Hypercube did found a better point but that was not

the case for the other simulation.

One last experiment is performed. In this new simulation round the objective is to improve the

search algorithm based on all the information from the previous experiments. As the problem

has a lot of local optima, a high coverage is critical to find a good solution. But the iterative

process from the evolutionary algorithms can also be applied to improve the solutions. The new

concept was a mix of the two kinds of algorithms: coverage and evolutionary algorithms. The

new algorithm creates a big initial population and from this initial population the best individu-

als are selected and an iterative process is run. The iterative process will improve the solution

through the mutation and selection operators from the evolutionary algorithms. So it is a combi-

nation between Monte Carlo method and evolutionary algorithms.

Figure 4.24: Fitness values evolution for mixed algorithm

4 Results

81

This mixed algorithm is run with an initial population of 500 and another 500 simulations with

the evolutionary algorithm. The results obtained outperform other results obtained with only

evolutionary algorithms. In fact the best solution obtained from all simulation runs is obtained

with this method. The fitness value was almost 20.

4.3 Simulations results summary and future chal-
lenges

The results chapter contains several simulations with different algorithms and scenarios. The

most important results and analysis are summarized next.

On the first part of the chapter, some simulations are run with a genetic algorithm. These simu-

lations serve as a first proof of concept and to calibrate the genetic algorithm parameters. The

simulations take place in a scenario about an overtaking maneuver. It is a highway where the

ego-vehicle performs an overtake maneuver to a truck. The ego-vehicle speed, truck speed and

initial truck position are the input parameters. This scenario is run looking for the specific cases

where the difference between the two cars tested is bigger. The algorithm applied is the genetic

algorithm for all test cases but with different algorithm parameters in each case. The parameters

modified are the four important parameters for genetic algorithm tuning: population size, num-

ber of generations, crossover rate and mutation rate. These simulations results are analyzed

through some graphs and by observing the iterative process.

The second part of the chapter includes several simulations where different methods are used

for the input parameter value selection and optimization process. Moreover, the scenario for the

tests is new. In this case the scenario is a cut-in maneuver in a highway. A truck drives on the

right lane and at certain moment it changes to the left lane where the ego-vehicle drives. The

three input parameters are the same than for the previous scenario: Ego-vehicle speed, truck

speed and truck initial position. Instead of generating the test cases with the genetic algorithm,

four different methods are applied. The results are compared to find out which method performs

better. The four methods are divided into two groups: evolutionary algorithms and random

methods. The two evolutionary algorithms are genetic algorithm and evolution strategies. The

other two coverage methods are Monte Carlo method and Latin hypercube sampling. All the

methods run the same number of simulations and with the same input parameters.

4 Results

82

The results show that the two coverage methods can find better solutions. From the best solu-

tions analysis it is inferred that the optimization problem has many local optima. That is the

reason why the evolutionary algorithms do not perform well. Some improvements options are

later proposed. They are mainly focusing in increasing the evolutionary algorithms coverage.

For that, the maximum number of simulations is increased so that the population size can be

increased maintaining the number of generations constant. These changes allow an improve-

ment in the results obtained by the genetic algorithm.

The final simulation run is based on a mixed method which combines random sampling with

evolutionary algorithms. This method has a big initial population where the points are randomly

chosen and from this initial population it uses the mutation and selection operators to find new

solutions. This mixed method achieved a performance improvement compared to the other evo-

lutionary algorithms.

To sum up, the simulations results show that the coverage approaches based on random point

selection have a good performance in the scenario test. The scenario having a lot of local optima

makes it difficult for the evolutionary algorithm to search the best solutions as they would re-

quire a very big population size. The only method that could reach or improve the solution was

a mixed method with based on a big initial population randomly selected and then use an itera-

tive process based on the evolutionary algorithms.

Regarding further development in this project, it would be interesting to analyze new scenarios

to see if the same patterns that were found in the thesis occur also for other cases. The scenario

possibilities for vehicle testing are huge. The method could be applied to some of these scenari-

os to find behaviors difference between two systems.

Another interesting update would be to increase the number of input parameters from the cur-

rent 3 used in these tests. That can allow for a much more customized scenario. The problem

with a high number of input parameters is that the number of possible combinations is higher.

Therefore, the computational load to find the best points would increase significantly. The new

input parameters can be about the scenario environment. But an interesting application would

be that some of the new input parameters were related to the vehicles maneuvers. Instead of

having vehicles with constant speed, that can allow to have a variable speed profile for the dif-

ferent vehicles in the scenario.

Finally, the two systems to compare during the simulations were two different cars modeled

inside the simulator. A possible alternative in this is the use of a real system and compare it with

4 Results

83

the virtual version of that system. An example of this is the comparison between a camera and

its virtual version. The real camera records a scenario virtually generated and the virtual camera

receives the same scenario. Then the recognition systems can be compared, such as sign recog-

nition or other vehicles recognition. The combination between a real system and a virtual

system also opens the door to other experiments such as comparing data collected with a real

vehicle driving with data from virtual tests.

4 Results

84

85

5 Conclusion

The development of autonomous vehicles will produce many novelties and improvements in the

future way of travelling. But it is also an important challenge to the automotive industry as a lot

of changes will happen in the following years. One of these challenges is involved with the val-

idation of autonomous cars. That is, demonstrating that their driving abilities are good enough

to be allowed to drive autonomously together with other traditional vehicles.

The validation processes are based on physical tests with real cars and on simulations. The use

of simulations is widely extended because they allow for a cheaper and faster way to test specif-

ic driving situations. It is in this area of using simulations for the validation of autonomous cars

where the master thesis idea of comparing systems with simulations appears. The thesis is fo-

cused on developing a method that is able to generate specific scenarios to compare two

systems and find out in which specific situations the behavior difference between the two sys-

tems is amplified. So a logical scenario describing a driving situation is given with some of its

parameters set to fixed values and other parameters set to variable values. The method tries dif-

ferent combinations of the variable parameter values searching for a specific solution which

maximizes the difference between the two systems.

In order to develop this method, the first part includes the analysis of several scenario genera-

tion papers. These papers test advanced driving assistance systems and autonomous vehicles to

find critical situations. Based on this previous research, the different approaches to select test

cases are evaluated. One of the main questions is whether to use a random selection approach

(coverage) or an iterative process (falsification). The falsification approach is chosen as the base

method because it focuses the search in the most promising areas, even if it is more complex to

develop. Between the possible falsification approaches another evaluation is carried out to com-

pare the evolutionary algorithm and the reinforcement learning algorithm. In this case, the

evolutionary algorithm is selected as the algorithm in charge of selecting the parameter values

in the comparison process. The reason for this is the parameters that are later chosen as variable

parameters in the scenario. Reinforcement learning is useful for parameters that have different

values during the simulation and where the algorithm makes decisions. On the other hand, for

5 Conclusion

86

variable parameters with constant values during a simulation, the evolutionary algorithm can

perform better.

After the algorithm decision, several steps come to configure the fitness function and algorithm

parameters. The fitness function is defined through the mean absolute percentage error (MAPE)

formula. This formula serves to compare two sets of values and it gives a scalar value that indi-

cates how different the two systems compared are. This specific formula was chosen because

the difference is measured as a percentage between the value differences at each point and the

current value. This value is dimensionless so several different magnitudes can be summed into

the same fitness value.

The next part of the method development is the algorithm parameters configuration. The four

main parameters are population size, number of generations, crossover rate and mutation rate.

The problem is that each problem requires different genetic algorithm parameter values in order

to run with a high performance. The solution for this is divided in two parts: The first part in-

cludes the research to understand the interaction between the parameters to what is called the

exploration-exploitation trade-off. The research part also serves to find some standard values

that can be used as first values. The second part is related to test different parameter values to

find out which values perform better. These tests are run in the first experiment with the simula-

tion software.

In this first experiment a logical scenario is defined, which is an overtaking maneuver. But in-

stead of running simulations with a fixed set of values for the genetic algorithm parameters,

several test cases are defined. In each test case a specific combination of genetic algorithm pa-

rameter values is set. These cases are run to check which value combination works better.

After the first experiment, a second experiment with a different scenario is carried out. The ob-

jectives in this case are different. One objective is to check whether the genetic algorithm with

the previously selected parameter values can also work correctly in other scenarios. So the first

experiment would work as a training set and this second experiment as a test set. In the second

experiment another objective is the comparison between different algorithms in the same sce-

nario. Simulations controlled by four algorithms are run to find out which algorithm finds a

better solution. The four algorithms are two evolutionary algorithms (genetic algorithm and

evolution strategies) and two coverage methods (Monte Carlo sampling and Latin Hypercube

sampling). This second scenario is a cut-in maneuver from a truck in front of the ego-vehicle.

The first results show that the coverage methods can find better solutions than the evolutionary

algorithms. So in this first simulation rounds the coverage approaches are a better option as they

5 Conclusion

87

are easier to implement and able to find good solutions. More simulations are run in this second

scenario. In the next ones the limit of the number of simulations is increased from 500 to 2500

to check if the evolutionary algorithm can improve their performance with a wider search. The

algorithms run are the genetic algorithm and the Latin Hypercube sampling. In this case the

genetic algorithm can find better solutions than the same algorithm before whereas the Latin

Hypercube sampling does not have any significant change. The final experiment is performed

with a mixed method with the combination of coverage and evolutionary algorithms. This

mixed method is able to improve a little the solution compared to the previous methods.

To sum up, for the scenario tested the use of coverage approaches is a better option than the

evolutionary algorithms as they are easier to implement and the solutions that they find are

similar or better than the ones found by the other algorithms. The other possibility is a mixed

method which starts as a coverage approach and continues as an evolutionary algorithm. This

mixed method is more complex to develop and configure but their results are something better

than the ones obtained with other methods.

After the method development, comes the question about the future improvements and the pos-

sible applications that it may have. Regarding the improvements it would be interesting to

increase the number of input parameters. This would allow having a customized and very de-

tailed scenario.

This method can also have several applications in the world of automated vehicles and valida-

tion. One option is the comparison of two virtual models. For example, it could be applied to a

vehicle that is modelled with two different techniques giving two different models. Then with

the comparison test, the specific scenarios where the two virtual models behave more different-

ly can be found. And it can be checked why the difference is so big in that specific case. The

two virtual models to compare can also be a new model update and its previous version.

Another application area is related to the comparison between a virtual model and the real sys-

tem that the model wants to represent. In order to do this comparison, some concrete scenarios

should be specified. Then a physical test with the real vehicle or system can be carried out in

these specific scenarios and the model can be simulated in the scenario virtually defined. With

the results it would be possible to check in which specific cases the differences are greater.

Then, these specific cases can be analyzed in detail to understand the reason of this difference.

Therefore, the model can be improved and become more realistic.

88

i

List of figures

Figure 2.1: Vehicle occupancy calculation [9] ... 8

Figure 2.2: Possible positions for traffic vehicles [11] ... 9

Figure 2.3: Test cases for vehicle testing [15] .. 11

Figure 2.4: Drivable area calculation [17] ... 12

Figure 2.5: Highway scenario for testing [19] .. 14

Figure 2.6: Differential analysis with Reinforcement Learning structure 17

Figure 2.8: Evolutionary algorithms structure [25] .. 19

Figure 2.8: Roulette wheel selection process ... 21

Figure 2.9: Reinforcement Learning structure .. 26

Figure 3.1: Problem structure ... 31

Figure 3.2: Driving scenario example ... 33

Figure 3.3: Genetic algorithm performance for different parameters [43] 47

Figure 3.4: Code structure .. 49

Figure 3.5: Road definition in the simulation software .. 51

Figure 4.1: Scenario to simulate: Overtaking maneuver ... 55

Figure 4.2: Fitness results for Test case 2 .. 60

Figure 4.3: Input 1 values distribution for Test case 2 .. 61

Figure 4.4: Input 2 values distribution for Test case 2 .. 61

Figure 4.5: Input 3 values distribution for Test case 2 .. 61

Figure 4.6: Fitness results for test case 5 ... 62

Figure 4.7: Input 1 values distribution for test case 5.. 63

Figure 4.8: Input 2 values distribution for test case 5.. 63

Figure 4.9: Input 3 values distribution for test case 5.. 63

Figure 4.10: Input 1 values distribution for test case 7.. 64

Figure 4.11: Second scenario to simulate - Cut in maneuver ... 66

Figure 4.12: Fitness values for the best solutions in each simulation run 70

Figure 4.13: Input 1 values for the best solutions in each simulation run 71

Figure 4.14: Input 2 values for the best solutions in each simulation run 72

List of figures

ii

Figure 4.15: Input 3 values for the best solutions in each simulation run 72

Figure 4.16: Input 2 values distribution for Genetic Algorithm .. 73

Figure 4.17: Input 3 values distribution for Genetic Algorithm .. 73

Figure 4.18: Multimodal function [47] .. 74

Figure 4.19: Fitness value evolution through several generations for the Evolution Strategies 75

Figure 4.20: Fitness value evolution through several generations for genetic algorithm 75

Figure 4.21: Ego-vehicle speed profile during the simulations of both systems 76

Figure 4.22: Fitness evolution for GA with a manually introduced point in the initial population
.. 78

Figure 4.23: Fitness results comparison between algorithms with 500 and 2500 simulations . 79

Figure 4.24: Fitness values evolution for mixed algorithm .. 80

iii

List of tables

Table 2.1: Scenario generation papers summary ... 16

Table 3.1: Three methods evaluation for scenario generation case ... 36

Table 3.2: Possibilities for Error estimation to use on fitness function 42

Table 3.3: End condition and Algorithm Quality .. 44

Table 4.1: Genetic algorithm parameters for test cases ... 58

mulation ... 59

Table 4.3: Results for the best point found ... 76

List of tables

iv

v

Bibliography

Bibliography list

[1]

[2]

[3] National Highway Traffic Safety Administration and U.S. Department of Transportation,

sh Stats: Critical Reasons for Crashes Investigated in the National Motor Vehicle

[4] v-

EPoSS, 2015.

[5] ure: The Economic Impact of the Emerging Passenger

[6] A. Broggi, P. Cerri, S. Debattisti, M. C. Laghi, P. Medici, D. Molinari, M. Panciroli, A.

Public Road Urban Driverless- IEEE Trans. Intell.

Transport. Syst., Jg. 16, Nr. 6, S. 3508 3519, 2015.

[7] TU Darmstadt, 2013.

[8]

to Demonstrate Autonomous Vehicle Reliabilit

[9] -order models for the safety

verification of high- 2012 American Control Conference

(ACC), Montreal, QC, Jun. 2012 - Jun. 2012, S. 3559 3566.

[10] H. Beglerovic et al., -based safety validation of the automated driving functio

Proceedings, 8th International Munich Chassis Symposium 2017, P. P.

E. Pfeffer, Hg., Wiesbaden: Springer Fachmedien Wiesbaden, 2017, S. 309 329.

Bibliography

vi

[11] L. Huang, Q. Xia, F. Xie, H.-

2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, Jun.

2018 - Jun. 2018, S. 49 54.

[12] S. Khastgir et al., ng Simulators Using Constrained

SAE Technical Paper Series, 2017.

[13] -based automatic

Proceedings of the 13th In-

ternational Conference on Embedded Software - EMSOFT '16, Pittsburgh, Pennsylvania,

2016, S. 1 10.

[14]

SAE Technical Paper Series, 2017.

[15] IFAC-

PapersOnLine, Jg. 50, Nr. 1, S. 5985 5990, 2017.

[16] l-

opment of Au 2018 IEEE Intelligent Vehicles Symposium (IV),

Changshu, Jun. 2018 - Jun. 2018, S. 1813 1820.

[17] -Critical Test Scenarios for Colli-

2018 IEEE Intelligent Vehicles Symposium (IV),

Changshu, Jun. 2018 - Jun. 2018, S. 1326 1333.

[18]

2017 IEEE 20th International Conference on Intel-

ligent Transportation Systems (ITSC), Yokohama, Okt. 2017 - Okt. 2017, S. 1 6.

[19] -Based Identification of Criti-

SAE Intl. J CAV, Jg. 1, Nr. 2, S.

93 106, 2018.

[20] n-

2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, Jun. 2018

- Jun. 2018, S. 1 7.

[21] ,2012.

[22] -TaLiRo as an automatic test gen-

1475.

Bibliography

vii

[23] C. E. Tuncali, S. Yaghoubi, T. P. Pavlic und G. F

2017 13th IEEE

Conference on Automation Science and Engineering (CASE), Xi'an, Aug. 2017 - Aug.

2017, S. 1059 1064.

[24] R. Lee et al., rential Adaptive Stress Testing of Airborne Collision Avoidance Sys-

2018 AIAA Modeling and Simulation Technologies Conference, Kissimmee,

Florida, 01082018, S. 277.

[25] - 99, 2009.

[26] 23, 2000.

[27] International Series in Operations Research &

Management Science, Handbook of Metaheuristics, M. Gendreau und J.-Y. Potvin, Hg.,

Boston, MA: Springer US, 2010, S. 109 139.

[28]

University of North Carolina, 1991.

[29] Practical Genetic Algorithms, R. L. Haupt und S.

E. Haupt, Hg., Hoboken, NJ, USA: John Wiley & Sons, Inc, 2003, S. 51 66.

[30] SpringerBriefs in Applied Sciences and Technology,

A Brief Introduction to Continuous Evolutionary Optimization, O. Kramer, Hg., Cham:

Springer International Publishing, 2014, S. 15 26.

[31] A Visual Guide to Evolution Strategies. [Online] Verfügbar unter:

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/. Zugriff am: Mai. 15 2019.

[32] A Beginner's Guide to Deep Reinforcement Learning. [Online] Verfügbar unter:

https://skymind.ai/wiki/deep-reinforcement-learning. Zugriff am: Mai. 15 2019.

[33]

jair, Jg. 4, S. 237 285, 1996.

[34] F. S. Hillier, E. A. Feinberg und A. Shwartz, Handbook of Markov Decision Processes:

Methods and Applications. Boston: Springer US, 2002, p. 1-14.

[35] H. Mao, M. Alizadeh, I. Menache und S. e-

Proceedings of the 15th ACM Workshop on Hot Topics in

Networks - HotNets '16, Atlanta, GA, USA, 2016, S. 50 56.

Bibliography

viii

[36] -based multi-agent

IET Intell. Transp. Syst., Jg. 4, Nr. 2, S. 128,

2010.

[37] -to- Proceedings of the

2018 2nd International Conference on Mechatronics Systems and Control Engineering -

ICMSCE 2018, Amsterdam, Netherlands, 2018, S. 77 85.

[38]

ACS central science, Jg. 3, Nr. 12, S. 1337 1344, 2017.

[39] w

[40]

Technometrics, Jg. 21, Nr. 2, S. 239, 1979.

[41] Institu-

tional Knowledge at Singapore Management University, 2004.

[42] rs and Methods to Tune

Autonomous Search, Y. Hamadi, E. Monfroy und F. Saubion, Hg., Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2012, S. 15 36.

[43] e-

Kanpur Genetic Algorithms Laboratory (KanGAL), 1999.

[44]

[45]

Genetic Algorithms for power e International Journal of Applied Engi-

neering Research, 2006.

[46] M. Preuss, Multimodal optimization by means of evolutionary algorithms. Cham: Springer,

2015, p. 11-12.

[47] A. Zeblah, Multimodal function. [Online] Verfügbar unter:

https://www.researchgate.net/figure/Multimodal-function-see-online-version-for-

colours_fig2_223708478. Zugriff am: Mai. 15 2019.

ix

Appendix

Appendix A Result plots for overtake scenario .. xi

Appendix B Result plots for cut in scenario .. xvii

Appendix

x

Appendix

xi

Appendix A Result plots for over-
take scenario

Some of the results obtained in the first scenario simulation are shown next:

Figure A 1: Fitness for test case 2

Figure A 2: Fitness for test case 3

Figure A 3: Input 1 distribution for test case 4

Appendix

xii

Figure A 4: Input 2 distribution for test case 4

Figure A 5: Input 3 distribution for test case 4

Figure A 6: Fitness for test case 5

Figure A 7: Input 1 distribution for test case 5

Appendix

xiii

Figure A 8: Input 2 distribution for test case 5

Figure A 9: Input 3 distribution for test case 5

Figure A 10: Fitness for case 6

Figure A 11: Input 1 distribution for case 6

Appendix

xiv

Figure A 12: Input 2 distribution for case 6

Figure A 13: Input 3 distribution for case 6

Figure A 14: Fitness evolution for case 7

Figure A 15: Input 1 distribution for case 7

Appendix

xv

Figure A 16: Input 2 distribution for case 7

Figure A 17: Input 3 distribution for case 7

Appendix

xvi

Appendix

xvii

Appendix B Result plots for cut in
scenario

This subchapter contains graphs obtained during the simulations of the second scenario.

Figure B. 1: Fitness evolution with ES

Figure B. 2: Fitness evolution with ES (2)

Figure B. 3: Fitness evolution with GA

Appendix

xviii

Figure B. 4: Fitness evolution with GA (2)

Figure B. 5: Fitness evolution with LHS

Figure B. 6: Fitness evolution with MC

Figure B. 7: Fitness evolution with MC (2)

