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RESUMEN DEL PROYECTO 

1. Introducción 

En los próximos años el sector de la automoción sufrirá varios cambios importantes. Uno 

de ellos es el uso de vehículos autónomos. Estos vehículos producirán mejoras 

remarcables en la forma en la que viajamos, ya que permitirán viajes más cómodos y 

seguros. Sin embargo, la industria automotriz necesita superar algunos desafíos hasta que 

esta tecnología esté lista para su uso generalizado. Uno de los principales retos es la 

validación de vehículos autónomos. Por validación se entiende el desarrollo de métodos y 

pruebas que aseguren que los vehículos sean lo suficientemente seguros para conducir en 

las carreteras. Hasta entonces los vehículos no pueden ser vendidos al público. 

Los procesos de validación se dividen en dos grupos principales: pruebas físicas y 

simulaciones. Las pruebas físicas consisten en la conducción de un prototipo de un 

vehículo real en la carretera y la recopilación de datos para verificar que el 

comportamiento del vehículo es el correcto. Los principales problemas con estas pruebas 

son los altos costes, el gran consumo de tiempo y la dificultad para realizar maniobras 

muy específicas [1]. Una alternativa y complemento a las pruebas físicas es el uso de 

simulaciones. En las simulaciones se diseña un entorno virtual y se crea un modelo del 

vehículo autónomo para simular su movimiento en este entorno virtual. El uso de 

simulaciones con escenarios virtuales se ha utilizado para la validación de sistemas 

avanzados de asistencia al conductor (ADAS) o de vehículos automatizados [2]. Una 

alternativa a este método es usar una simulación en un entorno virtual para comparar dos 

sistemas. En este trabajo, el objetivo es desarrollar un método que genere escenarios 

virtuales específicos para comparar dos sistemas y descubrir en qué situaciones 

específicas se maximiza la diferencia de comportamiento entre los dos sistemas. 

El proceso de generación de escenarios consiste en realizar variaciones en un escenario 

base con una determinada carretera y una determinada situación de tráfico. Antes de 
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comenzar el proceso se definen las especificaciones geométricas de la carretera. Los 

vehículos que conducen en esta carretera, así como sus movimientos y maniobras, 

también deben describirse. A continuación, algunos de los parámetros que definen el 

escenario se establecen como parámetros variables. Estos parámetros variables tienen 

valores diferentes en cada prueba concreta, lo que permite diferentes escenarios en los que 

el vehículo realiza pruebas de conducción. 

Para el desarrollo del método, el primer paso es analizar el estado del arte existente. En 

los últimos años, muchos investigadores han utilizado técnicas de generación de 

escenarios para analizar sistemas avanzados de asistencia al conductor (ADAS) así como 

vehículos autónomos [3]-[4]. En las pruebas el propósito era encontrar las situaciones más 

críticas. Los trabajos utilizaron diferentes métodos para generar los casos de prueba 

específicos. Estos métodos se pueden dividir en dos grupos: métodos de cobertura y 

métodos de falsificación. El método de cobertura se basa en la selección aleatoria de los 

valores para los parámetros variables del escenario [5]. Por otro lado, el método de 

falsificación es un proceso iterativo [6]. En este último caso, los valores elegidos para los 

primeros escenarios se eligen aleatoriamente, pero después, los resultados de las 

simulaciones de los últimos escenarios simulados se utilizan para seleccionar el siguiente 

conjunto de valores que definen los siguientes escenarios a simular. 

 

2. Metodología 

La estructura del problema se muestra en ¡Error! No se encuentra el origen de la 

referencia.. En este método, el algoritmo selecciona valores para los parámetros variables 

del escenario. Con estos valores, se define un escenario específico en el que se ejecutan 

simulaciones para ambos sistemas. Después de la simulación, los resultados se envían de 

vuelta al algoritmo, que evalúa esa solución específica a través de la función de aptitud. 

 

Ilustración 1: Estructura del problema 
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En primer lugar, se elige el algoritmo para la selección de valores y la función de aptitud. 

Los dos métodos para la selección de escenarios se introdujeron en el estado del arte: el 

de cobertura y el de falsificación. Entre estos dos métodos para seleccionar los valores 

que definen cada escenario específico, el método de falsificación es más complejo de 

implementar. Sin embargo, como es un proceso iterativo, enfoca la búsqueda alrededor de 

las áreas más prometedoras. La decisión es utilizar el método de falsificación como 

método base para el método a desarrollar. Después se evalúan varios algoritmos utilizados 

en los métodos de falsificación. Las opciones principales son los algoritmos evolutivos y 

el algoritmo de aprendizaje por refuerzo. La aplicación del aprendizaje por refuerzo es 

adecuada para casos donde una variable tiene muchos valores a lo largo de la simulación. 

Sin embargo, éste no es el caso para el proceso de generación de escenarios, donde se 

utilizan muchas variables y muchas de ellas tienen un valor fijo durante la simulación. 

Así, el algoritmo evolutivo se elige como el algoritmo encargado de seleccionar los 

valores de los parámetros variables. 

El algoritmo evolutivo necesita una función de aptitud para saber la calidad de una 

solución determinada. La función de aptitud toma los resultados de una simulación en un 

escenario concreto y calcula un valor escalar que indica la calidad de esa solución 

específica. En el caso de estudio, en primer lugar, la simulación se ejecuta para un 

escenario específico (con ciertos valores para los parámetros variables). Los resultados de 

esta simulación se envían a la función de aptitud, que necesita calcular un valor para 

especificar cómo de diferentemente se comportan los dos sistemas para esa solución 

determinada (o conjunto de valores de parámetros variables). Un alto valor de aptitud 

indica que los dos sistemas se comportaron de manera muy diferente, que es el objetivo 

buscado. Por otro lado, un valor de aptitud cercano a cero significa que los dos sistemas 

hicieron prácticamente lo mismo. La fórmula específica aplicada para calcular la aptitud 

es la fórmula de error porcentual absoluto medio. Esta fórmula se selecciona porque la 

diferencia entre los resultados de los dos sistemas se mide como un porcentaje entre las 

diferencias de resultados en cada punto. Este valor es adimensional, por lo que varias 

magnitudes diferentes se pueden utilizar para calcular el valor de  la aptitud, por ejemplo, 

la posición y la velocidad. 

Antes de comenzar a ejecutar el método es necesario realizar algunas configuraciones. 

Los algoritmos evolutivos tienen cuatro parámetros principales: tamaño de la población, 

número de generaciones, tasa de recombinación y tasa de mutación. Dependiendo de sus 
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valores, el proceso de optimización puede ser más o menos eficiente. Pero los valores 

exactos varían de un problema a otro. Existe información sobre cómo los cambios en los 

valores de estos parámetros influyen en los resultados. El proceso para elegir los valores 

comienza con la selección de algunos valores típicos recomendados. A continuación, se 

prueban diferentes valores con el propósito de encontrar los valores que conducen a un 

mejor funcionamiento. Estas pruebas que cambian los valores de los parámetros del 

algoritmo evolutivo tienen lugar en el primer experimento. 

La definición del escenario y la simulación se realizan mediante el uso del software de 

simulación. El algoritmo a cargo de seleccionar los valores para definir escenarios 

específicos y el código para controlar el software de simulación se implementa con el 

lenguaje de programación Python. 

 

3. Resultados 

Después de seleccionar el algoritmo, la función de aptitud, comprender los parámetros del 

algoritmo evolutivo e implementar todo, el método está listo para ejecutarse. Se realizan 

dos experimentos. El primer experimento es la prueba de concepto y sirve para 

seleccionar los valores para los parámetros del algoritmo evolutivo. En el segundo 

experimento, se comparan varios algoritmos para descubrir cuál puede encontrar un mejor 

resultado. El segundo experimento también sirve para comprobar que el método funciona 

en diferentes escenarios. 

En el primer experimento se define un escenario consistente en una maniobra de 

adelantamiento. El proceso de optimización se ejecuta varias veces. En cada ronda de 

simulación, se evalúan 500 puntos. Eso significa que se simulan 500 escenarios 

específicos. Sin embargo, los valores de los parámetros del algoritmo evolutivo cambian 

de una ronda de simulación a otra. El algoritmo evolutivo específico utilizado es el 

algoritmo genético. Estos diferentes casos se ejecutan para averiguar qué conjunto de 

valores para los parámetros del algoritmo genético funcionan mejor.  

 

Ilustración 2: Maniobra de adelantamiento 
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En el segundo experimento, se define un nuevo escenario base. En este caso, se trata de 

una maniobra de cambio de carril de un camión hasta el carril donde conduce el vehículo 

autónomo. Los objetivos en este segundo experimento son diferentes. Uno de los 

objetivos es verificar si los valores seleccionados en el primer experimento para los 

parámetros del algoritmo genético también funcionan correctamente en un escenario 

distinto. El primer experimento es el conjunto de entrenamiento y el segundo experimento 

es el conjunto de prueba. El otro objetivo es la comparación entre diferentes algoritmos. 

El mismo escenario base se optimiza con cuatro algoritmos diferentes para comparar su 

rendimiento. Los cuatro algoritmos son dos algoritmos evolutivos (algoritmo genético y 

estrategias de evolución) y dos algoritmos de cobertura (muestreo de Monte Carlo y 

muestreo latino hipercúbico). 

 

Ilustración 3: Maniobra de cambio de carril 

 

Después de ejecutar estas simulaciones, los resultados muestran que los dos métodos de 

cobertura obtienen mejores resultados que los dos algoritmos evolutivos. Es decir, pueden 

encontrar escenarios específicos en los que la diferencia entre los dos sistemas a comparar 

es mayor. Esto se puede ver en la Ilustración 4, donde las mejores soluciones encontradas 

con muestreo latino hipercúbico (LH) y Monte Carlo (MC) tienen un valor de aptitud más 

alto. Hasta ahora, los dos métodos de cobertura son una opción más adecuada ya que son 

más fáciles de implementar y pueden encontrar mejores resultados.  

 

Ilustración 4: Resultados de aptitud para los 4 algoritmos 
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Pero el experimento no termina aquí dado que se llevan a cabo más rondas de 

simulaciones. En las siguientes optimizaciones, el número de evaluaciones en el software 

de simulación aumenta de 500 a 2500. Este cambio se realiza para ver si el número 

anterior de simulaciones era demasiado bajo para los algoritmos evolutivos. Los dos 

algoritmos que se ejecutan con la mayor cantidad de simulaciones son el algoritmo 

genético y el muestreo latino hipercúbico. Los resultados obtenidos muestran que el 

algoritmo evolutivo mejora significativamente con este aumento en el número total de 

simulaciones en la búsqueda. Ese no es el caso del muestreo latino hipercúbico cuyos 

resultados son muy similares a los del caso anterior. Las últimas rondas de simulación se 

llevan a cabo con el uso de un método mixto que combina los métodos de cobertura y los 

algoritmos evolutivos. Los resultados indican que el método mixto produce una pequeña 

mejora en la solución en comparación con los otros métodos utilizados. 

 

4. Conclusión 

Este experimento muestra que, para el escenario analizado, los métodos de cobertura son 

una opción más adecuada que los algoritmos evolutivos porque son más fáciles de 

implementar y pueden encontrar mejores soluciones. Eso significa que encuentran 

escenarios específicos donde la diferencia entre los dos sistemas es mayor. La otra opción 

adecuada es el método mixto, que es más complejo pero fue de capaz de una pequeña 

mejora en los resultados. 

Los experimentos realizados son útiles para verificar el funcionamiento correcto de este 

método en algunos escenarios y también sirven para comparar diferentes algoritmos para 

la selección del escenario. A partir de este punto, se pueden realizar mejoras futuras 

aumentando la cantidad de parámetros de entrada que configuran el escenario para tener 

situaciones más personalizadas. Otro desarrollo adicional sería utilizar el método en otras 

herramientas de simulación para verificar si el método también funciona correctamente. 

Este método tiene algunas aplicaciones posibles en el desarrollo de vehículos 

automatizados. Una de estas posibles aplicaciones es comparar dos modelos virtuales. Por 

ejemplo, cuando se lanza una nueva versión y el objetivo es comparar su rendimiento en 

una carretera virtual en comparación con la versión anterior. Otra posible aplicación sería 

utilizar este método para comparar un sistema real con un modelo virtual del sistema. Eso 
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indicaría cómo de bien se ajusta el modelo al sistema real. Esto es importante porque si un 

modelo es muy realista, las simulaciones realizadas con ese modelo son más verídicas. 
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Scenario Generation for the Comparison of Automated Vehicle 

Variants 

1. Introduction 

In the next years the automotive sector will have several important changes. One of these 

is the use of autonomous vehicles. These vehicles will produce notorious improvements 

on how we travel as they will allow for more comfortable and safer journeys. 

Nevertheless, the automotive industry needs to overcome some challenges until this 

technology is ready for a widespread use. One of the main challenges is the validation of 

autonomous vehicles. By validation it is meant the development of methods and tests that 

ensure that the vehicles are safe enough to drive in the roads. Before that, the vehicles 

cannot be sold to the public. 

The processes for validation are divided into two main groups: physical tests and 

simulations. Physical tests consist on driving a prototype of a real car in the road for a 

long distance and gather data to check that the vehicle’s behavior is correct. The main 

problems with physical tests are the high costs, the high time consumption and the 

difficulty to perform very specific maneuvers [1]. An alternative and complement to the 

physical tests is the use of simulations. In the simulations a virtual environment is 

designed and a model of the autonomous vehicle is created for different tests in this 

virtual environment. The use of simulations with virtual scenarios has been used for 

validation methodology of specific driver assistance systems or automated vehicles [2]. A 

derivation of this idea is to use a simulation in a virtual environment to compare two 

systems. In the thesis the objective is to develop a method that generates specific virtual 

scenarios to compare two systems and find out in which specific situations the behavior 

difference between the two systems is maximized.  

The scenario generation process consists on making variations to a base scenario with a 

certain road and traffic situation. So before starting the process some road geometry 

specifications are defined. The vehicles that are driving in this road as well as their 

maneuvers also need to be defined. Then some of the parameters to define the scenario 

are stated as variable parameters. These variable parameters will have different values 

from one test case to another, allowing for different scenario situations where the vehicle 

to test drives. 
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For the method development the first step is to analyze the existing literature. In the last 

years many researchers have used scenario generation techniques to analyze advanced 

driver assistance systems (ADAS) and autonomous vehicles [3]-[4]. In the tests the 

purpose was to find the most critical situations. The papers used different approaches to 

generate the specific test cases. These methodologies can be divided into two groups: 

coverage approach and falsification approach. The coverage approach is based on a 

random selection of the values for the variable parameters [5]. On the other hand, the 

falsification approach is an iterative process [6]. The values chosen for the first points are 

randomly chosen but after that the results from the simulations of the current points are 

used to select the next set of values to simulate.  

 

2. Methodology 

The problem structure is shown in Figure 1. In this method, the algorithm selects values 

for the variable parameters of the scenario. With these values, a specific scenario to test is 

defined. The simulator runs simulations in this specific scenario for both systems. After 

the simulation, the results are sent back to the algorithm, which evaluates that specific 

solution through the fitness function. 

 

Figure 1: Method structure 

 

First of all, the algorithm for values selection and the fitness function are chosen. The two 

approaches for the selection of scenarios were introduced in the state of the art. Between 

these two approaches to select the values that define each specific scenario, the 

falsification approach is more complex to implement. Nevertheless as it is an iterative 

process it focuses the search around the most promising areas. The decision is to use the 

falsification approach as the base method for the thesis. Then, several algorithms used in 

falsification approaches are evaluated. The main options are the evolutionary algorithms 
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and the reinforcement learning algorithm. The application of reinforcement learning is 

suitable for cases where a variable has many values along the simulation. However for the 

scenario generation process, many variables are used and many of them have a fixed 

value during the simulation. So the evolutionary algorithm is chosen as the algorithm in 

charge of selecting the variable parameter values. 

The evolutionary algorithm needs a fitness function to know how good a certain solution 

is. The fitness function takes the results of a certain test case simulation and calculates a 

scalar value which indicates the quality of that specific solution. In the thesis case, firstly 

the simulation is run for a specific scenario (with certain values for the variable 

parameters). The results from this simulation are sent to the fitness function that needs to 

calculate one value to specify how different the two systems behaved for that certain 

solution (or set of variable parameter values). A big fitness value indicates that the two 

systems behaved very differently, which is the objective searched. On the other hand a 

fitness value close to zero means that the two systems did almost the same. The specific 

formula applied to calculate the fitness is the mean absolute percentage error (MAPE) 

formula. The formula is selected because the difference is measured as a percentage 

between the results differences at each point. This value is dimensionless so several 

different magnitudes can be summed into the same fitness value, for example position and 

speed. 

Before starting to run the method it is necessary to make some configurations. The 

evolutionary algorithms have four main parameters: population size, number of 

generations, crossover rate and mutation rate. Depending on their values the optimization 

process can be more or less efficient. But the exact values vary from a problem to another.  

There is some literature on how the changes in these parameters values influence the 

results. The process to choose the values starts with selecting some recommended typical 

values. Then, different values are tested with the purpose of finding the values that lead to 

a better performance. These tests that change the values of the evolutionary algorithm 

parameters take place in the first experiment. 

The scenario definition and simulation is done through the use of simulation software. 

The algorithm in charge of selecting the values to define specific scenarios and the code 

to control the simulation software is implemented with python programming language. 
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3. Results 

After selecting the algorithm, the fitness function, understanding the evolutionary 

algorithm parameters and implementing everything, the method is ready to be run. Two 

experiments are carried out. The first experiment is the proof of concept and serves to 

select the values for the evolutionary algorithm parameters. In the second experiment, 

several algorithms are compared to find out which one can find a better result. The second 

experiment also serves to check that the method works in different scenarios. 

In the first experiment an overtaking maneuver scenario is defined. The optimization 

process is run several times. On each simulation round, 500 points are evaluated. That 

means that 500 specific scenarios are simulated. However, the evolutionary algorithm 

parameter values change from one simulation round to another. The specific evolutionary 

algorithm used is the genetic algorithm. These different cases are run to find out which set 

of values for the genetic algorithm parameters work better.  

 

Figure 2: Overtaking maneuver (Scenario 1) 

 

In the second experiment, a new base scenario is defined. In this case it is a cut-in 

maneuver from a truck in to the lane where the ego-vehicle is driving. The objectives in 

this second experiment are different. One of the objectives is to check if the values 

selected for the genetic algorithm parameters also perform well in a new scenario. The 

first experiment is the training set and the second experiment is the test set. The other 

objective is the comparison between different algorithms. The same base scenario is 

optimized with four different algorithms to compare their performance. The four 

algorithms are two evolutionary algorithms (genetic algorithm and evolution strategies) 

and two coverage approaches (Monte Carlo sampling and Latin Hypercube sampling). 
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Figure 3: Cut-in maneuver (Scenario 2) 

 

After running these simulations, the results show that the two coverage methods obtained 

better results than the two evolutionary algorithms. That is, they can find specific 

scenarios in which the difference between the two systems to compare was greater. That 

can be seen in Figure 4, where the best solutions found with Latin Hypercube Sampling 

(LH) and Monte Carlo (MC) have a higher fitness value. So far the two coverage 

approaches are a more suitable option as they are simpler to implement and they could 

find better results.  

 

Figure 4: Fitness results for the 4 algorithms 

 

But the experiment does not end here as more simulation rounds are run. In the following 

optimizations, the number of point evaluations in the simulation software is increased 

from 500 to 2500. This change is done to see if the previous number of simulations was 

too low for the evolutionary algorithms. The two algorithms to run with the increased 

number of simulations are the genetic algorithm and the Latin Hypercube sampling. The 

results obtained show that the evolutionary algorithm improves significantly with this 

increase in the total number of simulations in the search. That is not the case for the latin 

hypercube sampling which performs very similar to the case before. The last simulation 

rounds are carried out with the use of a mixed method that combines the coverage 

approaches and the evolutionary algorithms. Based on the results the mixed method 

produces a small improvement in the solution compared to the other methods used. 



14 
 

4. Conclusion 

This experiment shows that for the scenario tested the coverage approaches are a more 

suitable option than the evolutionary algorithms because they are easier to implement and 

they can find better solutions. That means that they find specific scenarios where the 

difference between the two systems is greater. The other suitable option is the mixed 

method, which is more complex but could improve the results. 

The experiments carried out are useful to check the correct operation of this method in 

some scenarios and also served to compare different algorithms for the scenario selection. 

From this point, future improvements can be done by increasing the number of input 

parameters that configure the road in order to have more customized scenarios. Another 

further development would be to use the method in other simulations to check whether the 

method work also correctly. 

This method has some possible applications in the development of automated vehicles. 

One of these possible applications is to compare two virtual models. For example, when a 

new version is released and the objective is to compare its performance on a virtual road 

compared to the previous version. Other possible application would be to use this method 

to compare a real system with a virtual model of the system. That would indicate how 

accurate the model and the real system are. So if a model is very realistic, the simulations 

made with that model are more useful for validation. 
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1 Introduction 

The autonomous car is a new technology in development that is expected to have a great impact 

in the future. It will change the way in which we see now transportation. Before the driverless 

cars are allowed to be sold to the public and allowed to circulate freely in the roads, it should be 

demonstrated that they are safe enough. The road and traffic situations possibilities are very 

large and the autonomous cars should be ready to overcome any of them without accidents. 

1.1 Problem statement 

The tests required to demonstrate the safety can be divided into real tests and simulations. The 

real tests consist of cars driving in real roads. But in order to guarantee the safety, the number of 

kilometers driven needs to be very high. Another problem is that the majority of scenarios are 

very simple for the car, but it is in some specific difficult scenarios where the attention needs to 

be focused in order to solve possible problems. So the physical tests are expensive, time-

consuming and have more difficulty to test specific cases. 

Another tool to test driverless cars safety complementary to the real test is the use of simula-

tions. Thanks to these tools, a huge amount of tests can be made in short time and smaller cost. 

The focus of simulations is usually on finding the adequate scenarios to verify the car safety. 

With simulators thousands of scenarios can be created for the tests. Therefore, it needs to be 

some method to identify critical scenarios where the car does not drive safely and could have an 

accident.  

Several studies have focused lately in this area with the objective of generating scenarios that 

lead to a critical situation. This specific area has been the subject of study in recent papers. 

However, other possible applications can be derived based on these methods. A promising ap-

plication is the creation of a method that compares two systems. The objective would be to find 

specific scenarios in which the behavior of the two systems differ the most. A similar concept 

has been developed for aircraft applications. In the case of autonomous cars, this method could 

be applied to compare a real part with its virtual model and check how accurate the model is. If 
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tests are not valid. It could be possible that the system performs successfully in certain scenario 

during a simulation but it does some mistakes in the same scenario in real life. 

1.2 Thesis motivation 

The thesis objective is the development of a generic method to compare two systems in a simu-

lation environment. This method can be a useful help for the validation processes in 

autonomous vehicles. For the application of this method to a specific scenario, first the parame-

ters that define the scenario are divided into fixed parameters and variable parameters. The 

fixed parameters are constant for all tests whereas the variable parameters can change from one 

test to another. In this situation two different vehicles or systems are tested. The method is re-

sponsible of trying different combinations of the variable parameters with the purpose of 

finding specific scenarios in which the difference between the two systems behavior is maxim-

ized. 

The method is planned to be generic so that it can work in many different scenarios. The only 

difference is that before running the method, it is necessary to choose which ones are the varia-

ble parameters and define the constraints for the values of these variable parameters.  

1.3 Structure 

After the problem statement and the project objective definition, the next step is to explain how 

this new method was developed. The thesis structure is exposed next: 

 The first part is the state of the art chapter. First of all, an introduction to autonomous 

vehicles and validation is found. Then the concept of scenario generation is introduced 

and some important research about this topic is analyzed. Besides, some optimization 

algorithms that can be applied to solve the problem are explained. 

 The following chapter is the project methodology. In this chapter the different algorithm 

possibilities are evaluated. After that the method is developed. This includes the deci-

sions about fitness function, algorithm quality measurement and choosing the 

parameters for the algorithm. The last part of the methodology chapter shows how the 

method was implemented with software tools. Simulation software was required for the 
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scenarios definition and simulation. The code for the optimization algorithm and to con-

trol the simulation was developed with Python. 

 After that comes the results chapter. This chapter deals with the specific scenarios to 

simulate as well as their results. Two different scenarios are tested here. The first part 

simulates a scenario with the focus on calibrating the algorithm. A scenario is defined 

including its input and output parameters. The results are analyzed to understand which 

parameter values lead to better results. After that a second scenario is simulated. On the 

second one, several different algorithms are tested to find out which one is more suitable. 

 Finally there is a conclusion chapter that includes a summary of the project, paying spe-

cial attention to the most important points. 
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2 State of the Art 

2.1 Autonomous vehicles and validation 

Car transport is one of the main means 

over 250 million of passenger cars [1]. That is approximately one car for every two citizens. 

The reason for this large number is that these vehicles allow the owners a lot of autonomy for 

travelling. During the last decades there has been a huge development in the automotive sector. 

The improvements have been mainly motivated by economic, environmental, comfort and safe-

ty factors. The economic motivations are reducing the fuel consumption and keeping a 

competitive price on the vehicles. The environmental improvements include the reduction in the 

engines emissions. The automobiles comfort has been improved by the addition of driving as-

sistance systems. Finally the safety development is concerned with avoiding accidents and 

reducing the damage in the case of an accident. Despite these important improvements, another 

important development will produce a big change in the automobile sector in the next years. 

This new development is the autonomous car. 

The autonomous vehicles will allow for a higher safety in the road and a more comfortable 

travel for the car owner. Regarding the comfort, the driver will not have to pay attention to the 

road anymore and will be able to do other activities while travelling in a car. The second ad-

vantage is the improved safety. Nowadays one of the main problems with cars is the number of 

accidents and victims produced by them. Only in Germany 3180 people died in traffic accidents 

in 2017 [2]. That is a traffic-related death of about 4 people per 100.000 inhabitants per year. In 

2000 about 7500 people died in vehicle accidents in Germany, more than double of the current 

numbers. Even after this notorious decrease, a big effort is stablished into improving the car 

safety.  The estimation is that in 94% of car crashes, the critical reason that produced the acci-

dent can be assigned to the actions of the driver [3]. With the introduction and expansion of 

autonomous vehicles it is expected that the number of casualties produced by road accident will 

be close to zero in 2050 [4]. 
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The economic impact is also expected to be huge. It is estimated that the automatic driving in-

dustry will increase its annual output value around 7 trillion dollars [5]. 

Nevertheless, the autonomous vehicles commercialization is more complex than other assis-

tance systems. The autonomous car responsibility is much greater so the validation processes 

are far more complicated. In order to allow the sale of driverless cars, it should be demonstrated 

that they are safe enough. The validation is done through different vehicle tests. The tests re-

quired to demonstrate the safety can be divided into real tests and simulations. The real tests 

consist of vehicles driving on real roads. An example of road test is carried out by Broggi et al. 

[6]. But to demonstrate the safety, the cars need to drive many kilometers. According to Winner 

et al. [7] more than 100 million of kilometers need to be driven to demonstrate that autonomous 

vehicles are as safe as manually driven vehicles. In other papers the number is even greater. 

Kalra and Paddock [8] claim that 440 million of kilometers are necessary to demonstrate that 

autonomous vehicles can perform better than humans. Therefore it is very expensive and time-

consuming to drive these big amounts of kilometers. Another problem associated to physical 

tests is the difficulty to analyze very specific scenarios.  

The other tool to test driverless cars safety is the use of simulations. Autonomous cars simula-

tors are of great importance for the development of this new technology. They can perform a 

huge amount of simulations that in the case of using a real car would be very time consuming 

and high costly. In order to perform simulations it is necessary to generate scenarios. That refers 

to the process of defining all the parameters for the scenario in which the software or hardware 

are tested. Scenario generation is usually focused on finding critical scenarios. When using car 

simulators, the number of possible scenarios that can be analyzed is huge. The majority of them 

are very simple for the autonomous car to drive without any problem. Therefore, it is important 

to have some method that can search for specific scenarios which lead to critical situations. 

Another option is to use scenario generation to perform a differential analysis. That is a compar-

ison between two systems. A differential analysis could be useful for example to compare two 

different autonomous car models. Another possible application is to compare a new update of 

some model with its previous version. Or it could compare a hardware part with its virtual mod-

el to check how accurate the model is. This is a promising research area as there is no specific 

work in differential analysis application for autonomous vehicles. In order to carry out differen-

tial analysis it is required to develop a method based on scenario generation. 
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2.2 Scenario generation methods 

The term scenario generation is used for the setting of a road with a specific traffic situation on 

a simulator. The scenario generation includes the parameter setting for the road size and shape. 

It also includes the definition of other traffic vehicles that are driving on that road as well as 

their position and speed. Other objects such as pedestrians or bicycles can also be found. Some 

research on scenario generation for autonomous cars can be easily found. Many scientists have 

applied different methods in order to find critical scenarios on autonomous cars or driving assis-

tance systems simulations. 

On the scenario generation papers, the objective is often to find the most critical situations. In 

order to find these situations an algorithm makes variations in some of the parameters that con-

figure the scenario.  The different scenario generation methods used by many researchers can be 

divided into two groups depending on the criterion applied to determine how to variate the pa-

rameters. These two groups are coverage and falsification. Some of these studies on scenario 

generation are analyzed next. These studies show different applications of scenario generation 

for autonomous cars. The specific scenarios to test are different from one study to another. In 

addition, different algorithms are used for the validation process. The scenario generation pro-

cess can run through simulators or can be based in mathematical models. 

 

2.2.1 Coverage methods 

By coverage method it is understood a process in which a set of points is randomly selected 

around the whole parameter space. The algorithm carries out one simulation with the parameter 

values corresponding to each point. But the points are chosen before starting the individual sim-

ulations so no feedback is given to know which area contains points that are having better 

results (in terms of objective function). The point selection is done in a way which tries to cover 

as homogeneously as possible the parameter space. Some scientists have studied scenario gen-

eration with the application of coverage methods. Some of these studies are commented next. 

Scenario generation can be applied with the objective of computing the occupancy of an auto-

mated car on the road with the use of reachable sets [9]. In this study a model was created with 

the vehicle dynamics characteristics to calculate what area the car occupies after a certain ma-

neuver. That is important to know if some traffic situations will lead to a collision or the vehicle 

would be able to avoid it. To do that, a set of possible initial states was stablished, under a set of 
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possible inputs and parameters. With these parameters, the ego-vehicle and other traffic partici-

pant possible states were calculated. The safety verification is based on mathematical models of 

how the vehicle behaves. Therefore, the result will only be good if the models are precise. The 

test maneuvers that were checked include evasive maneuver, moose test and cornering. The 

algorithm used by the authors is rapidly exploring random trees (RRTs). The objective followed 

with this algorithm was to cover the area around a reference trajectory. The verification proce-

dure will calculate whether a planned trajectory in a scenario is safe. For that it calculates the 

occupancy of the ego-vehicle and checks that it does not intersect with the occupancy of other 

vehicles or obstacles. 

 

Another application of scenario generation can be done through a model based validation ap-

proach to validate an Advanced Driver Assistance System (ADAS) [10]. In this study, the first 

part consists in the system tuning. First the KPIs for the experiment are stablished, which are 

safety, fuel performance and driver comfort. Then, the researchers look for the parameters 

which have more influence have into these KPIs. In order to do that, a sensitivity analysis is 

carried out on 10 tuning parameters. The scenario for this sensitivity analysis consists of an ego-

vehicle following a preceding vehicle. The sensitivity analysis used a robust neural network and 

found the 5 parameters that have a notorious influence on the system behavior. After tuning the 

system, the researchers proceed to the model validation. Here a parameter space coverage is 

determined using Design of Experiments (DOE). The scenario selection process for the valida-

tion consists of a vehicle cutting in from the right. New KPIs are selected, which include 

minimum clearance distance and minimum headway time. They define a criterion for critical 

situation and run the experiment. 

 

Figure 2.1: Vehicle occupancy calculation [9] 
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Huang et al. [11] analyze some features that are included in level 2 autonomous cars through 

test scenarios. Level 2 functions include assistance systems such as adaptive cruise control 

(ACC), active lane changing control and active lane keeping control. The test scenarios used for 

validation include different combination of vehicles surrounding the ego-vehicle. For each ve-

hicles position combination, test scenarios are defined by setting different motions and 

maneuvers on the ego-vehicle and the other vehicles. The scenario to test was formed by a three 

lanes road. For the cases definition, the area around the ego-vehicle was divided into eight 

quadrants. The cases were defined depending on how many vehicles were around the ego-

vehicle and in which of these quadrants they were located. So they paid special attention to the 

relative position of the other traffic vehicles respect to the autonomous car. 

 

Figure 2.2: Possible positions for traffic vehicles [11] 

 

The ego-vehicle could perform five different driving maneuvers: going straight, left and right 

lane change and moving laterally left and right. These different movements for the ego-vehicle 

and other participant vehicles are combined to generate test scenarios. 

Another study is concerned about the huge sample space of inputs for the verification and vali-

dation of Advanced Driver Assistance Systems (ADAS) [12]. To solve this problem the 

proposal includes the use of randomization techniques to generate scenarios. There are two lev-

els of randomization process: test scenario randomization and test case randomization. A test 

scenario can have many test cases, each of those includes some variation but they are included 

in the same test scenario if the environmental conditions are kept the same way. The randomiza-

tion method is applied in a driving simulation environment. The specific system to be tested in 

the scenarios was an automatic emergency braking system (AEB). The AEB system was im-

plemented in a real hardware unit whereas the rest was done in a driving simulator environment. 
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Most of the cases were focused on creating different tests cases but maintaining the same road 

for all cases. Another application of scenario generation can be the creation of roads. Kim et al. 

[13] develop an automatic road network generator. The paper is focused on building a road en-

vironment for simulations. The generator will receive the information about the number of 

curves, distance between curves and the curvatures. With this information it will create virtual 

roads in 3D. The framework should be able to generate several road structures based on the 

curve coverage criteria. The coverage criterion refers to the curves information mentioned be-

fore. But instead of having fixed values about the road characteristics, what is given is a range 

of values for each parameter. The scenario generated parameters should fulfill all these criteria. 

These scenarios can be used to test assistance systems such as adaptive cruise control and lane 

keeping assistance. 

Xia et al. [14] propose another method for testing driver assistance systems that automatically 

generates test scenarios. The researchers are concerned about developing a bench test that is 

more efficient than previous testing methods and can cover more scenarios. They also devel-

oped an index to represent how complex a certain test case is. First the influence factors of the 

driver assistance system are listed. The factors can be continuous or discrete. Only the discrete 

factors are used for the test to reduce the number of test cases. But some of the continuous fac-

tors are discretized. For the test, the real camera is used but the environment is virtually 

generated. The test cases are generated by combining different values of the factors previously 

selected with an N-wise combinatorial testing method. In the test, the assistance system needs to 

recognize the environment (signs, lane marks) in a road. 

In another paper about advanced drive assistance systems and automated driving functions 

(ADAS and ADF) the objective is to reduce the testing complexity [15]. One proposal is the use 

of a test case catalogue to cover the main critical situations. The scenarios tested take place in 

highways. In the basic test cases, the ego-vehicle can only perform one kind of maneuver. First 

the critical maneuver corresponds to longitudinal movement. The test cases include front-end 

and rear-end collision between ego-vehicle and other vehicle driving in the road. On the second 

set of tests the focus is on the lateral movement. The test cases check the possible front-end and 

rear-end collision when the ego-vehicle changes the lane. After the definition of the basic test 

cases, complex test cases can be created by combining several basic cases. 
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The last coverage approach is based on ontologies. That is the use of expert knowledge to iden-

tify the scenarios which are more difficult for the car to handle. The scenario creation process is 

more creative than systematic. Knowledge-based systems can be used for scenario generation in 

the development and validation of automated driving functions [16]. In this case the expert 

knowledge is applied to computer models. For example the design of a traffic situation and the 

interaction between all the traffic participants is based on this knowledge. The traffic knowledge 

can be separated into several layers and the interaction between layers should also be modelled.  

The studies commented before were focused on creating scenarios for autonomous car testing. 

But the particularity of them is that they used a coverage method during the analysis step. That 

means that they were stablishing different points to cover the search space during the simulation. 

 

2.2.2 Falsification method 

Other test scenario studies use another approach that can be named as falsification. There is a 

main difference between the falsification approaches and coverage approaches. The coverage 

approaches tried to stablish a lot of points with the parameters values to cover the search space 

homogeneously. The falsification approach uses a different method. It stablishes first a few 

points on the search space. After evaluating the results on those points with an objective func-

tion, it uses that information to choose the next points to analyze. So it has some feedback in 

order to have a better guidance on how to select the following points. For example, if the objec-

tive is to maximize the objective function value, then the points which gave a higher value after 

Figure 2.3: Test cases for vehicle testing [15] 
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a simulation round will be selected. Based on these points, new points are selected and a new 

simulation is done. This process is repeated iteratively. 

The first falsification method tries to generate automatically traffic situations for which it is 

hard to obtain a safe motion plan [17]. That refers to situations with a small solution space that 

is enough to avoid a collision. Some situations recorded from real traffic are taken and the ap-

proach is applied to increase the criticality. In order to do that the initial states of all traffic 

participants  are optimized until the desired size of drivable area is ob-

tained. The value of the desired drivable area is decided manually depending on what level of 

criticality is searched in the test. For that the drivable area of the ego-vehicle is computed. If the 

scenario includes other traffic participants then their drivable area is also computed and this area 

is removed from the allowed space for the ego-vehicle. One scenario example is a road with 

obstacles on both sides. As they increase the size of an obstacle the drivable area gets reduced 

until it reaches a specific value previously fixed. The drivable area was modeled mathematically 

and the problem was formulated as a Quadratic Programming Problem. Three scenarios are 

tested with this method: one is about obstacle evasion. The second one is an urban road situa-

tion with two lanes. All the vehicles drive there in the same direction. The last scenario is a rural 

road. It also has two lanes but one for each direction. 

Figure 2.4: Drivable area calculation [17] 
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In another study the objective is to reduce the testing effort for driverless vehicles [18]. In this 

paper a stochastic optimization method is used in order to minimize a cost function and find 

faulty behavior regions.  The method is an iterative approach that will lead the tests cases to 

critical regions in the parameter space. Instead of running the optimization algorithm directly on 

the system, a surrogate model of the system was designed. This surrogate model is less compu-

tationally expensive. The algorithm can be used in black box problems. At the beginning, the 

algorithm receives a search space and makes an initial sampling. After each iteration the algo-

rithm will zoom in and reduce the size of the new sampling set. For the optimization task the 

algorithms used were the Differential Evolution genetic optimization algorithm and Particle 

Swarm optimization. The testing scenario was an emergency brake maneuver for a passenger 

car. In this scenario the car was driving on the highway and encounters an obstacle. The brake 

system needs to brake to avoid the car collision against the obstacle. 

Another interesting research develops a method to identify critical scenarios based on simula-

tions [19]. This method is formed by a simulation-based toolchain. The purpose is the 

identification of scenarios that are critical for the current level of development of the autono-

mous vehicle. The simulation framework is formed by the vehicle dynamics simulation, a traffic 

simulation as environment and a cooperation simulation. A scenario is defined by a set of pa-

rameters which are constrained between some maximum and minimum values. But inside this 

parameter space the number of possible scenarios that can be created is huge. The selection of 

the parameters values can be made through opinions, catalogues and recorded data. But the sce-

narios defined by these metrics can neglect critical scenarios. In this method, the toolchain 

creates specific scenarios by selecting different values for the parameters of the logical scenario 

automatically. The objective is to identify critical scenarios over the entire parameter range. 

One of the scenarios analyzed is a highway with three lanes and three vehicles driving. The ego-

vehicle is driving on the right lane and the other two vehicles are on the middle lane. In this 

scenario the ego-vehicle performs a lane change so it is positioned in the gap between the other 

two vehicles. 
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Another testing option for autonomous vehicles is trough adaptive stress testing [20]. The ap-

proach is based on changing elements in the environment to produce a collision of the vehicle. 

With that the decision making of the autonomous vehicles is tested. The novelty of the study is 

that the problem is formulated as a Markov decision process. The problem is solved with the 

application of a deep reinforcement learning algorithm to find probable failure cases. The deep 

reinforcement learning algorithm is also compared with Monte Carlo Tree Search (MCTS) to 

check which option performs better.  The scenario where the simulation takes place is a road 

with two lanes and a pedestrian crosswalk. In the road there is a single autonomous car ap-

proaching this pedestrian crosswalk. One or more pedestrians cross the road depending on the 

case. The different test cases are defined by giving different values to the pedestrians position 

and speed. The algorithm is the one in charge of selecting the values for the position and speed. 

The first case had only one pedestrian but more were added to later tests. The results found were 

that the reinforcement learner was able to find collisions with a smaller number of calls than the 

Monte Carlo method. 

Lindlar [21] proposes the application of evolutionary testing to automate tests. By evolutionary 

testing it is understood a method to solve testing problems with evolutionary algorithms. The 

evolutionary algorithm is in charge of selecting suitable test cases. The main application of the 

proposed method is for embedded software testing. These tests include complicated data se-

quences. The scenario chosen for the testing process is formed by two vehicles driving in the 

same lane. The vehicle on the back is the vehicle where a system is tested whereas the vehicle 

 

Figure 2.5: Highway scenario for testing [19] 
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on the front is a traffic vehicle. The front vehicle speed has many variations during the test and 

the vehicle behind needs to avoid getting too close to the other vehicle. 

Another case of automatic test generation for autonomous cars is based on the use of S-TaLiRo 

toolbox [22]. This approach generates automatically test cases to test motion controllers in au-

tonomous vehicles. The tests are performed in simulation environments. Initial states and inputs 

are updated by stochastic optimization methods with the objective of achieving small robustness 

values. The robustness metric tells how far a system is from failing to meet the safety require-

ments. In this method the toolbox uses a global optimization method to minimize robustness. At 

the beginning a sample space is created. The initial states and input functions values are sam-

pled. The output trajectory is obtained and supplied to the function that evaluates the robustness. 

The evaluation function returns one value that is a measure of how close the simulation is to 

reach an unsafe state. The scenario is a straight road with two lanes. The inputs are the target 

speed for the vehicle to test and the speed and lateral position for the other vehicle. In this sce-

nario two vehicles under test are driving on the right lane. A third vehicle drives on the left lane 

and suddenly starts a lane change maneuver to the right lane. 

A similar study to the previous ones is the automatic test case generation with gradient descent 

optimization [23]. The concern is about high-fidelity models because the test cases generation 

requires long time. To improve that they use low-fidelity models to drive the test generation 

process. The gradient descent method is based on computing the gradients of the system dy-

namics to search for a minimizer. The function that refers to the system performance is the one 

that they try to minimize. As the system dynamics function can be nonlinear, an alternative is to 

use a low-fidelity model derived from the complex model to guide the search. The system tested 

was a Full Range Adaptive Cruise Control (FRACC). The scenario can be defined as stop and 

go. The vehicle to test follows another vehicle that is increasing and decreasing its speed during 

the whole simulation. 

Scenario generation is used for many applications as explained in the previous papers. The typi-

cal systems and scenarios to test are quite varied. Besides, the selection method for the test 

cases changes from one study to another. In order to have a better comprehension, the papers 

are summarized in Table 2.1: Scenario generation papers summaryTable 2.1. 
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Table 2.1: Scenario generation papers summary 

Optimization method Scenarios tested Reference 

Rapidly exploring random trees Evasive maneuver, moose test & corner-

ing 

[9] 

DOE Cut in [10] 

Manually selected test cases 3 lanes road with vehicles around ego-

vehicle 

[11] 

Randomization techniques Emergency braking system [12] 

Coverage criteria Road generation [13] 

N-wise combinatorial testing Environment recognition in a road [14] 

Test case catalogue Front-end rear-end collision [15] 

Ontologies Lane change [16] 

Quadratic programming problem & 

Binary search 

Obstacle evasion & highway with two 

lanes 

[17] 

Differential evolution, GA & PSO Emergency braking maneuver [18] 

Parameter change through toolchain Lane change [19] 

MCTS and reinforcement learning Pedestrian crosswalk in a road [20] 

Evolutionary algorithms ACC [21] 

Optimization method from S-

TaLiRo 

Cut in [22] 

Gradient descent method ACC [23] 
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2.3 Differential analysis 

In all the papers mentioned before, the simulations were focused on autonomous vehicles sce-

narios. In those simulations the objective was to find critical scenarios for the autonomous cars. 

Nevertheless, the objective searched in differential analysis is different. Scenario generation for 

differential analysis refers to the comparison of two systems in variable scenario to find the sit-

uations where the differences in behavior are maximized. There is no research on scenario 

generation for differential analysis applied to autonomous cars. However there exists a study 

about differential analysis in the aircraft sector. 

Lee et al. [24] developed a differential analysis to compare aircraft anti-collision systems. A 

new version had been developed for an anti-collision system and the purpose was to compare 

this new version with the previous version. What they wanted to check is whether the new ver-

sion was able to suffer any possible accident that did not happen on the previous version. For 

that they drove two simulated systems with the objective of maximizing the differences between 

their outcomes. The process to compare the two systems formulated the test as a sequential de-

cision process and optimized it with the use of reinforcement learning algorithms. 

To define the problem, two instances of the simulator were created. One of the instances con-

tained the new system while the second instance contained the base system. The rest of the 

instances were the same for both cases, including the environmental conditions. 

 

 

Figure 2.6: Differential analysis with Reinforcement Learning structure 
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The comparison between the two systems is made through two output variables. One of them is 

a variable that indicates whether a crash happened and the other one is the missed distance in 

case that a crash did not happen. These variables are included in the reward function of the rein-

forcement learner and will be used to guide the search into the scenarios with a greater 

difference between the systems behavior. 

 

2.4 Optimization algorithms 

As it was stated, the thesis objective is to find the specific parameters on a scenario that maxim-

ize the difference between two systems driving in the same scenario. A scenario is defined with 

some fixed parameters and some variable parameters. In order to obtain these specific values 

that maximize the difference some method or algorithm needs to be designed. This algorithm 

will be in charge of selecting different value combinations or parameters that define the scenario. 

The two targets will be to find the parameters that maximize the difference between the two 

systems and to have a method that does not consume a lot computationally. 

In the problem stated there are no formulas that calculate the output based on the inputs. What 

needs to be analyzed is a black box problem where the simulation software receives some input 

values and after being executed it gives some output values. There is no function that gives the 

output values as a combination of input values. So approaches based on function derivations are 

not valid. Some interesting algorithms than can be applied to solve the problem were used on 

the scenario generation papers previously mentioned. Two of them are explained next. These 

methods are evolutionary algorithms and reinforcement learning algorithms. 

 

2.4.1 Evolutionary algorithms 

One interesting approach to solve the problem is by the use of evolutionary algorithms. Evolu-

tionary algorithms include a group of several algorithms which are based on natural selection 

and biological evolution processes. Some of the evolutionary algorithms are listed next: 

 Genetic algorithm 

 Genetic programming 

 Evolutionary programming 



2 State of the Art 

19 

 Gene expression programming 

 Evolution strategy 

 Differential evolution 

 Neuroevolution 

 Learning classifier system 

 

In these algorithms each set of values to be evaluated is called individual and a group of indi-

viduals is called population. The evolutionary algorithms work iteratively. In each iteration 

there is a set of possible solutions (or individuals). This set of individuals at a specific iteration 

is called generation. Then the individuals in the generation are evaluated. Based on each indi-

There are five steps in an evolutionary algorithm, which are explained next: 

 Initial population: The initial population is defined by the creation of random individuals.  

 Evaluation: For each individual or set of solutions the objective value is computed. That 

means that the information in each individual is processed through some method or 

software. The information obtained from this process is what is called objective value. 

 b-

jective values previously obtained. This function is called fitness function and it is 

crucial for the algorithm performance. 

 Selection. Some individuals are chosen for reproduction based on their fitness value. 

 Reproduction. This process involves the creation of new individuals for the new genera-

tion by means of crossover and mutation processes. 

 

 

Figure 2.7: Evolutionary algorithms structure [25] 
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2.4.2 Genetic algorithm 

Genetic algorithms are a subclass of evolutionary algorithms. They are used in optimization 

problems and like the other evolutionary algorithms they are based on the theory of natural se-

lection and evolutionary biology. These algorithms are useful for searching through large and 

complex data sets. They are able to find reasonable solutions to complicated problems as they 

can solver unconstrained and constrained optimization issues. Genetic algorithms are usually 

applied to binary set of solutions where the individuals are sets of binary numbers. 

The steps for all evolutionary algorithms were explained before (crossover, selection and muta-

tion). However depending on the specific algorithm, the order of these steps applications is 

different. Besides, each algorithm has peculiarities concerning the selection, crossover and mu-

tation processes. At the beginning of the algorithm an initial population is randomly created. 

After that the algorithm runs iteratively. 

The selection, crossover and mutation operators for genetic algorithms are presented next [26]: 

 Selection. This step is what makes it possible to focus on the solutions that are perform-

ing better and discard the solutions with bad results. To use the selection step, the fitness 

value for each individual at the current generation should be previously calculated. 

Based on this fitness value the selection operator chooses individuals with a probability 

proportional to their fitness.  

 (2.1) 

 

This method is also known as the roulette wheel. That is because the graphical represen-

tation of this process looks like the roulette wheel game. The wheel is divided in as 

many sectors as the population size. One sector corresponds to each individual. The sec-

tor sizes are different and are bigger the higher the fitness value for that individual is. 



2 State of the Art 

21 

 

 Crossover. In this step, new individuals (offspring) are created for the new generation as 

a combination of two individuals of the current generation (parents). The crossover can 

be one-point crossover, N-point crossover and uniform crossover. The one-point crosso-

ver is done by cutting the two strings that are the parents at a random position. Then the 

two tails are swapped. The N-point is like the one-point but instead of cutting the strings 

at one position, it cuts the strings at N different positions and swaps some parts of the 

string. Uniform crossover consists on going one by one through every position and at 

every position randomly choose to copy the number from one parent or the other. 

 Mutation. This operator is in charge of changing randomly some bits in the individuals. 

This random change is done to improve the generation variety and explore more search 

space. The problem with a high mutation is that some good solutions can be lost from 

one generation to the next one. 

Some of the problem that can be found in genetic algorithms is that the algorithm can find good 

solutions in one of the iterations but this solution can be altered through crossover and mutation 

and this solution would get lost. In order to avoid losing some of the best solutions found at a 

certain point in the optimization the concept of elitism is introduced [27]. Elitism takes some of 

the best values in a population and sends them to the new generation without alteration. With 

that the best solutions found at that moment are preserved. 

 

 

Figure 2.8: Roulette wheel selection process 



2 State of the Art 

22 

2.4.3 Continuous genetic algorithm 

The binary genetic algorithm is able to solve many different problems. The binary GA is the 

one in which each individual is formed by a string of binary values. Nevertheless in some prob-

lem the variable are real values. Transforming each real value into a binary number requires a 

lot of bits, depending on the number size and the decimals precision. Another option is to repre-

sent this real number with floating numbers [28]. This alternative needs less storage than the 

binary genetic algorithm as one single floating-point number contains the number information 

instead of several bits of integers. The continuous genetic algorithm can also be called real-

valued genetic algorithm. The structure used for the continuous genetic algorithm is the same 

than for the common genetic algorithm. The main difference is that variables are represented by 

floating-point numbers. The rest of the algorithm works the same way.  

The process is summarized next. As extracted from [29], at the beginning an initial population 

is randomly created. In continuous genetic algorithm each individual is an array of several real 

numbers. Each real number refers to a certain parameter. For the random initialization it is nec-

essary to define the boundaries for these real numbers. That is made according to the problem 

definition. For example the first number on each individual could have a real value between 10 

and 40. If the problem does not have a limitation for some parameter then it is recommended to 

define artificially a boundary around a promising area to search.  

After random initialization for the first population, the rest of the steps are the same as for 

common genetic algorithm. The selection process will choose some individuals based on their 

fitness value. The crossover operator will create new individuals and the mutation will perform 

some random alterations to these new individuals. The mutation operator has also some value 

limitations, the same way as the initial population. In binary genetic algorithm the mutation 

operator will select some elements and change the value from 0 to 1 or from 1 to 0. In continu-

ous genetic algorithm when the operator selects an element to alter, the new number can be 

constrained or not. Constraining the new number is the common option. That is made that way 

in order to search a new point around the current point, which is more probable to give good 

solutions. The constraints for the mutation operator can be done stablishing a range around the 

current number in which the new random number needs to be. The constraint can also be set by 

choosing the new number with a normal function with a mean equal to the current value and 

some standard deviation. 

As a summary, some of the characteristics and reasons to use genetic algorithms are the next: 

 Genetic algorithm is an iterative optimization process 
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 It is based on three operators: crossover, selection and mutation 

 Genetic algorithm work with probabilistic selection rules instead of deterministic selec-

tion rules. 

 Its search does not proceed from a single point but from a population of points. So it can 

avoid getting stuck in a local optimum solution. 

 

2.4.4 Evolution strategies 

Evolution strategies is another algorithm in the group of evolutionary algorithms. It is also 

based on natural selection processes. This algorithm is a global optimization method and is 

widely used for real value solution spaces. It is commonly used for black box optimization pro-

cesses. Those are the ones where no functional expression is given so the derivatives cannot be 

calculated. 

The algorithm also uses the three mechanisms that are common for all evolutionary algorithms: 

recombination, mutation and selection. Nevertheless the use is different than for the genetic 

algorithms. 

A summary of how evolution strategies work is explained next as extracted from [30]- [31]: 

First the recombination (or crossover) operator is applied. It selects some parents and combines 

them to create new solutions. The number of new solutions is defined by the parameter . Then 

the new solutions are subjected to some changes through the mutation step and the fitness is 

calculated. After that some individuals are selected for the new generation. The number of se-

This process is repeated through several iterations 

until the end condition is met. Termination condition is typically defined by reaching a fitness 

value or by limiting the number of iteration.  

The three operators, recombination, mutation and selection, work very similar than for the case 

of the genetic algorithm. The main differences are in the selection process. For the genetic algo-

rithm the selection process is done at the moment of selecting the parents for the crossover 

operation. What the selection did was to choose parents with a probability proportional to their 

fitness. In evolution strategies the parents are selected randomly for the crossover. Then the 

mutation process is applied the same way as for the genetic algorithm. After that is when the 

selection operator appears. It is in charge of selecting the best individuals and these ones are 

going to be the next generation. The selection process takes the candidate individuals for the 



2 State of the Art 

24 

next generation ordered from best fitness value to worst. From this group of individuals it se-

 Next the three operators are explained in detail. 

Biologically recombination consists on mixing the genetic material of two parents. In evolution 

strategies recombination is used to combine the information on two or more individuals in order 

to create a new solution. Recombination operators for two parents are more common but it is 

also possible to use more than two. The number of parents which will be used on each recombi-

t 

recombination and intermediate recombination. Dominant recombination combines the genes of 

all parents. As the individuals are arrays of real numbers, the recombination operator goes one 

by one through all the positions in the array. For each position it chooses one real number from 

that same position but from one of the parents. With this process it is expected that the real 

numbers on each position in the array that lead to better fitness values (good genes) are spread 

over the rest of the population. The other recombination operator is intermediate recombination. 

Here the new individual is created by making the average of each component for all parents. 

Mutation is the second operator on evolution strategies. It randomly changes some number in 

the individuals in order to have more variety and explore more areas. In individuals which are 

formed by binary numbers, as in genetic algorithms, mutation consists on changing some of 

these numbers from 0 to 1 or the opposite. However when working with real value numbers, 

mutation is different. When changing some number the possibilities are too many, so what is 

usually made is to delimit the new random value. One option to delimit this value is to choose it 

by summing to the current value another number obtained from a normal distribution with 0 

 

The selection operator is in charge of choosing the fittest individuals. Selection can be em-

ployed in two different ways: When selecting parents for the crossover (mating selection) or by 

selecting the best individuals out of a set of solutions (survival selection). Evolution strategies 

n-

eration. The survival selection can be comma selection and plus selection. The plus selection 

selects the best individuals out of a group formed by the parents and the offspring in that itera-

tion. On the other hand the comma selection selects the fittest individuals only out of the 

offspring individuals. 
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2.4.5 Reinforcement learning 

Reinforcement learning is one of the three machine learning categories. Machine learning algo-

rithms are usually divided into three groups: supervised learning, unsupervised learning and 

reinforcement learning.  

Supervised learning is a method that learns to classify data from a set of training examples. 

Once it has adjusted some parameters it can predict the results from new data. Some examples 

of supervised learning algorithms are linear regression and logistic regression. 

The second group in machine learning is unsupervised learning. Here the algorithms receive 

some information and the objective is to classify these data points into groups or clusters. Some 

of the common unsupervised learning algorithms are k-means and anomaly detection. 

The third category is reinforcement learning and it is the one interesting for the thesis. Rein-

forcement learning is defined as a problem where the agent learns behavior through trial and 

error interactions with a dynamic environment. Reinforcement Learning: A Survey. An exam-

ple of reinforcement learning algorithm is Q-learning. 

Some terms need to be defined to correctly understand how reinforcement learning works: 

 Reward function: This function is in charge to value how good or bad a certain selected 

action in a specific state is. 

 Action (A). Possible moves than an agent can make when it is at a certain state 

 State (S). Specific situation or configuration where the agent is at a specific moment. 

 Agent. It is the subject that takes actions. 

 Environment. The world where the agent moves and interacts. The environment re-

ceives the state and the action of the agent and it returns a reward. 

 Policy. The policy is responsible to select an action at each state. 

 Value. It is the expected long-term return of current state under current policy. 
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To sum up in reinforcement learning an agent goes through different steps. On each step the 

agent receives an input and the current state (s) of the environment. After that the agent chooses 

an action (a) that will generate an output. This action changes the environment state and the 

e 

the actions that will lead in the long run to maximize the sum of rewards [33]. 

Reinforcement learning has many differences compared to supervised learning problems. In 

reinforcement learning there is no data provided with some inputs  and its outputs. Instead after 

choosing an action it receives a reward but does not know which action would lead to a maxi-

mum reward in the long run. For that the agent needs to collect data about actions, states, 

transitions and rewards. 

Reinforcement learning is often modeled as a Markov Decision Process (MDP). MDP is a 

mathematical framework used to model decision making in situations where outcomes are part-

ly random and partly under the control of a decision maker [34].  

One main difference between reinforcement learning and supervised learning is that the first 

one needs to explore the environment, whereas supervised learning algorithms are purely ex-

ploitative. Reinforcement learning algorithms work with the balance of exploration and 

exploitation. Exploration is based on trying different things and comparing them to the ones 

before to check if they are better or not. Exploitation is using the things that have worked better 

in the previous steps.  

The possible applications of reinforcement learning algorithm nowadays include a wide variety 

of options. One of the applications is for resource management in computers [35]. In this case 

the algorithm needs to allocate limited resources to several tasks. Another current application is 

to control traffic lights in the cities [36]. The reinforcement learner was used to solve the traffic 

 

Figure 2.9: Reinforcement Learning structure 
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congestion problem that many big cities suffer. Through this technique the coordination be-

tween several traffic lights can be done more efficiently. Reinforcement learning can also be 

applied to robotics [37] or to the chemistry industry, where this algorithm was used to optimize 

chemical reactions [38]. 

 

2.5 Summary about the State of the Art 

The topics covered in the chapter are divided into three groups: an introduction to autonomous 

vehicles validation, a discussion about scenario generation papers and an overview about some 

optimization algorithms. 

On the first part, the current methods to ensure that an autonomous vehicle is safe were dis-

cussed. As a car can produce severe accidents and the autonomous software will have a lot of 

responsibility, current effort is put into creating validation methods that can check whether an 

autonomous vehicle is safe or not. After the vehicles are validated they should be allowed to be 

sold to the public and drive next to other thousands of vehicles. The tests to check driving assis-

tance systems and autonomous vehicles are divided into physical tests and simulations. The 

physical tests are carried out by driving a real car in the roads. As the possible cases that a car 

may find in the road are huge, the requirements for validation include a very big number of kil-

ometers driven with the autonomous vehicle. In addition, physical test are quite expensive to 

elaborate. 

Another option for testing that can complement the physical tests is simulation testing. In these 

cases the systems are tested through virtual environments. If it is only one part to test, the test 

can be formed by the real part and a simulated environment. In other occasions the vehicle dy-

namics is virtually modeled and the whole test is carried out in a computer. Some vehicle 

simulators are able to reproduce a real car behavior very closely. 

After the introduction to validation, some of the latest research on scenario generation was ana-

lyzed. These studies were divided into two groups depending on the way of selecting the test 

cases. Coverage and falsification approaches are the two ways of making decisions for scenario 

generation. Coverage methods are based on searching a lot of random points in the scenario 

variables search space. In falsification approaches the objective is to use the information from 

the previously analyzed scenarios cases to choose the next test cases. 
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The scenario generation studies have important differences between them. That is because the 

objectives, simulation tools, optimization techniques and scenarios to test differ from one paper 

to another. Some of these differences are summarized. 

The general purpose in scenario generation is to develop a method that can choose different test 

cases in certain scenarios to check some system functionality. But the specific objective set for 

the scenario testing was not always the same. Some of the scenarios are focused on testing an 

autonomous vehicle by finding critical situations. Other studies are focused on calculating the 

drivable area of the ego-vehicle in different traffic situations. In addition, some studies tested a 

specific driving assistance system whereas in other cases the whole autonomous vehicles were 

tested. 

Concerning the vehicle modelling, in some papers a mathematical model of the vehicle dynam-

ics was developed. On the other hand other studies used already developed vehicle simulation 

software. Besides, the scenario options analyzed have a lot of variety. A common option is a 

vehicle performing a braking maneuver to avoid a collision against an obstacle or another vehi-

cle. Highways are a common scenario were ACC system can be tested as well as lane change 

maneuvers. Another scenario that was used is a crosswalk on a road. In most cases the road 

geometry was kept constant for all the test cases but there is also a case for automatic generation 

of roads. 

The algorithm that selects the variable values is also different. Some of the options include rein-

forcement learning and evolutionary algorithms. In other papers specific toolboxes are used that 

use their own optimization method. The random selection of values is also a valid option. 

Another interesting study was focused on differential analysis. In this case the scenario to test 

was not formed by an autonomous vehicle but by an aircraft. The test wanted to compare a cur-

rent version of an anti-collision system with a base system. With this comparison, the purpose 

was to find some cases in which the new version suffered an accident but not the previous ver-

sion. 

From these papers, important knowledge could be gathered to solve the problem stated in the 

thesis. The optimization methods will be discussed to find which one is more suitable. Besides, 

the method developed needs to be generic. So it can work in many scenarios. After the method 

implementation at least one scenario needs to be chosen to check that the method is working. 

Some of the scenarios present in the papers will probably be chosen for the test.  
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The last part of the chapter summarizes some of the optimization methods that can be used to 

solve the problem of selecting and optimizing the variables values for a scenario. The algo-

rithms explained were evolutionary algorithm and reinforcement learning algorithms. The 

algorithms evaluation and selection process are explained in the methodology chapter. 
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3 Methodology 

Some papers were presented which contained methods for scenario generation. That previous 

work should be a base to decide how to solve the problem stated in the thesis. Given a driving 

find the specific variable parameters values which maximize the difference between two sys-

tems (two cars) when they drive at that scenario. The scenario definition, car specifications and 

driving simulation was done with the help of simulation software. After the problem statement 

some decisions needed to be taken about how to develop this problem. These decisions included 

scenario definition, method used for optimization and the configuration that needed to be done 

for this method to work correctly. 

The scenario definition means choosing interesting scenarios where the simulation takes place 

and selecting the fixed and the variable parameters. Then a method needed to be chosen for the 

maximization problem. The method was in charge of selecting the variable parameters values to 

define the road scenario that was sent to the simulation software to carry out the simulation. 

This method needed to select the parameters with the purpose of finding the optimal results. 

Once the algorithm was selected, the next step was to configure this algorithm and to define the 

remaining parameters for the problem. 

 

Figure 3.1: Problem structure 
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Figure 3.1 shows the general problem structure. This chapter is first focused on scenario genera-

tion and algorithm selection. After that all decisions concerning the algorithm definition are 

explained. Finally the implementation is carried out. In the implementation step, the simulation 

software is explained and all the code needed for the algorithm and simulation control is written. 

With the implementation finished the method is ready to work. 

3.1 Process for Scenario definition 

In simulations, scenarios represent the roads and traffic situations that a vehicle can find when it 

is driving. Several features need to be defined to create a scenario. The first part is formed by 

the physical road. The parameters to define the road give information about the road shape and 

size. These parameters are the road geometry, the lane width and the number of lanes. Other 

parameters can include the pavement friction and the height of each stretch of the road. Road 

definition also includes driving restrictions such as speed limits, traffic lights as well as driving 

directions on each lane. The second part on scenario definition is related to the participants on 

the road. These participants are the vehicle to simulate as well as other cars and trucks that are 

also driving. Participants can also be bicycles and pedestrians for the case of urban scenarios. 

Finally a scenario is not complete until the maneuvers are defined. The maneuvers indicate what 

is going to be the behavior of the ego-vehicle during the simulation. The maneuver commands 

will tell the car the changes concerning acceleration, braking and steering. The maneuver defini-

tions are also applied to other traffic vehicles, not only the ego-vehicle. 

One example of a simulation scenario is shown in Figure 3.2. This scenario is formed by a 

highway with three lanes. The ego-vehicle is the yellow vehicle in the central lane and a truck 

drives in the right lane. To complete the scenario definition it would be necessary to define the 

maneuvers for both vehicles. 
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After defining how a simulation scenario is defined, the focus is on deciding what kinds of sce-

narios are interesting to analyze for the master thesis case. The main idea is to have a scenario 

with some fixed parameters and some variable parameters. Given this scenario the objective is 

to change the variable parameters in order to maximize some criterion. In most scenario genera-

tion papers the objective was to find the most critical situations. However, for this case the 

developed algorithm changes the variable parameters to maximize the difference between two 

cars (two systems) driving on the same scenario. 

After this, it is necessary to decide which scenarios are useful for the simulations and which 

parameters are going to be fixed and which are going to be variable. Interesting scenarios for 

simulation need to have sudden changes on other traffic participants or difficult situations for 

the ego-vehicle. If the scenario is too simple, the simulation is not going to provide new infor-

mation. For example if the car is driving alone on a straight highway, it does not need to make 

any maneuver. More complex scenarios are created instead so the ego-vehicle needs to make 

adjustments in its speed and direction. Some scenarios that are used for vehicle testing were 

analyzed in the state of the art chapter. This summary is shown in Table 2.1. Some of the typi-

cal test scenarios are roads with two lanes. Sometimes the driving direction of the two lanes is 

the same and other times it is the opposite. About the maneuver it is common that they involve 

changing lanes. One of this lane change maneuvers is an overtake maneuver. Another option is 

a lane change of the ego-vehicle into a lane where another vehicle is already driving.  A cut in 

scenario can also be tested where a vehicle changes lane and positions itself in front of the ego-

vehicle. Other common scenarios include braking maneuvers produced because the vehicle 

 

Figure 3.2: Driving scenario example 
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finds other vehicles, pedestrians or obstacles in the middle of the road. Active cruise control 

systems are commonly tested with scenario generation methodology. In these cases a vehicle 

drives on the road with variable speed and the ego-vehicle adapts its speed to the speed of a 

preceding vehicle. 

The scenarios are divided in three levels depending on the abstraction: functional, logical and 

concrete scenarios [39]. Functional scenarios include a general description of the elements that 

compose it. By logical scenarios it is understood the scenarios in which the range for its pa-

rameters is defined. Finally a concrete scenario includes the exact values that all of its 

parameters take. When testing autonomous vehicles, the common procedure is to set a logical 

scenario for the study. This scenario has some fixed parameters and some variables than can 

have values between a specific range. Then, for each test case, a set of values is chosen for the 

variables. Therefore, each test case is formed by a concrete scenario. 

After choosing the scenario, some of the parameters are set as fixed parameters and others as 

variable parameters. These variable parameters are the ones that the algorithm is allowed to 

change. The scenario geometry is in most cases fixed for the scenario generation papers. An 

alternative is explained by Kim et al. [13], where a method generates automatically a road net-

work. However, other parameters which are involved with the vehicles movement and 

maneuver may have more impact into having different vehicle behavior. So the road geometry 

parameters are set as fixed parameters. The variable parameters are usually the initial traffic 

situation and the maneuvers. The initial traffic situation means the position and speed of every 

vehicle at the beginning of the simulation. The parameters related to maneuvers control the 

changes in speed and position of the vehicles during the simulation as well as the timing of 

these maneuvers. For example, a scenario could be defined as a straight road that is 500 meter 

long and has three lanes. These are considered as part of the geometry so they do not change 

from one simulation to another. The scenario could have another vehicle apart from the ego-

vehicle. The variable parameters could be the two vehicles initial position and speed. Besides if 

the ego-vehicle performs a maneuver in the simulation, a variable parameter could be the exact 

moment when this maneuver happens or other parameters that control the maneuver characteris-

tics. 
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3.2 Algorithm selection 

The thesis objective is the maximization of the difference between two systems driving at the 

same road scenario. The road is defined in a simulation software with some fixed parameters 

and some variable parameters. The purpose is to find which of these variable parameters make a 

bigger difference between the behavior of one system and the other. As the simulation software 

works like a black box, the procedure is to send different combinations of these variable param-

eters to the simulation software to find a good solution. The algorithm selection is concerned 

with finding a suitable method to select these variable parameters to send to the simulator. The 

perfect method maximizes the probability of finding good solutions in a scenario. 

Scenario generation methods can be divided in two different groups according to the way of 

approaching the problem. These two groups are coverage and falsification. These two groups 

include different methods that can be used to choose the parameters that are sent to the simula-

tion software. After defining a scenario to analyze with some fixed parameters and variable 

parameters, the algorithms select the variable parameters for each simulation. These two ap-

proaches were analyzed on the state of the art chapter and their main characteristics are 

summarized next: 

The coverage approach is focused on choosing many points homogeneously distributed around 

the search space. For the scenario case, the variable parameters are constrained between some 

values. The search space will have as many dimensions as number of parameters and there will 

be a maximum number of points to analyze. Then a coverage method will divide this search 

space in as many areas as maximum number of points and these areas are homogeneously dis-

tributed. After this division of the search space into different areas the method will choose one 

point from each area. All the selected points will be sent to the simulation software. 

The other approach is falsification. In the coverage approach all points are selected before start-

ing the simulations. On the contrary the falsification approach chooses the points based on the 

information obtained from previously simulated points. The process is divided in several itera-

tions. On each generation this method uses the information from the previous simulation results 

to select the new iteration points. The advantage of this method is that it focuses more in the 

most promising areas and barely selects points from areas with bad results. The inconvenient of 

this method is the possibility of getting stuck in some local optima. 

Both methods can have some advantages and some problems. Falsification approaches have the 

advantage of focusing the search around the best values found at the previous evaluations. With 
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that they avoid losing time searching in areas not interesting and allow for a better search on 

promising areas. On the other hand falsification approaches get easily stuck on local optima and 

need more complex algorithms compared to coverage approaches. Based on this evaluation, the 

decision is to develop some falsification method with certain complexity but that could lead to 

better results. After optimizing a scenario with a falsification method, some coverage method 

was also used to compare the results performance. The coverage methods are much easier so it 

did not take so long to configure and could alert from problems when falsification methods get 

stuck in local maximums. 

Table 3.1: Three methods evaluation for scenario generation case 

 Coverage Falsification 

Complexity Low High 

Problems Dispersity at the 

search 

Can get stuck in 

a local maximum 

 

3.2.1 Falsification algorithm 

The first objective is developing some falsification approach to make the differential analysis 

between two systems. The algorithm selects parameters to send to the simulation software but it 

sees the simulation software as a black box. Some promising approaches that use the falsifica-

tion approach and could be used for black box optimization problems are evolutionary 

algorithms and reinforcement learning algorithms. These algorithm were also applied in some 

papers related to scenario generation commented on the state of the art section. So it is clear that 

they could be useful for this kind of applications. 

The suitability of each kind of algorithm depends on what kind of scenarios are going to be ana-

lyzed. Reinforcement learning is suitable for scenarios where some of the subjects, for example 

another vehicle, need to make several decisions during the simulation time. In this case the rein-

forcement learner controls the steering and the acceleration and braking of the other vehicle. 

The reinforcement learner tries different combination of accelerating and steering maneuver and 

it searches for the situations with better rewards (or fitness values). On the other hand when the 

scenario has parameters that are going to have fix values during each simulation, it does not 

make sense to use the reinforcement learning approach. Instead an evolutionary algorithm can 
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be in charge of selecting the parameters. For example if the initial and constant speed of a vehi-

cle is a parameter, then it can be described with one value for the whole length of that specific 

simulation. In terms of complexity the reinforcement learning is more complex and requires 

more computational effort to run than evolutionary algorithms.  

Therefore, if the parameters to optimize in the scenario are a sequential process a reinforcement 

learning algorithm looks like a promising approach. For example if the variable parameter is the 

steering wheel position along one simulation and the learner can make several changes of the 

steering wheel position. The different positions of the steering wheel are the sequential process. 

An evolutionary algorithm can also be used for sequential decisions processes if the number of 

decisions is not very high or if the reinforcement learning looks too complex to develop. 

On the other hand, if the parameters do not change as a sequential process a better approach is 

the use of evolutionary algorithms. That is when the parameters have a value that is going to be 

constant in the simulation. For example one parameter is the constant speed of one of the traffic 

vehicles. This speed does not change during one simulation so it is not a sequential decision 

process. 

The final decision is to use evolutionary algorithms because a lot of scenarios have many varia-

ble parameters which keep a constant value during each simulation. These parameters are 

mainly values for different positions and velocities for the vehicles in the scenario. Evolutionary 

algorithm is a category that includes several algorithms that have a common structure. The spe-

cific evolutionary algorithms that are adopted are the genetic algorithm and evolution strategies. 

 

3.2.2 Coverage algorithm 

This kind of algorithms selects points distributed around all the search space. So for the differ-

entiation process a coverage algorithm would choose first all the points to simulate in the 

software and after the selection of all the points the simulation starts. So the algorithm does not 

receive feedback on how the points are performing. These approaches are not iterative. From 

the point of view of the exploration-exploitation trade-off they are full exploration. 

The simplest algorithm is to select random values for the input parameters. This method is 

called Monte Carlo method. Given a problem with three input parameters constrained between 

some maximum and minimum values and with 500 points to simulate on the simulation soft-

ware, the algorithm would select 500 points. Each of these points would have the 3 input 
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parameters chosen randomly between the correspondent maximum and minimum values for 

each parameter.  

Monte Carlo method is a suitable option for the optimization problem. Nevertheless, other cov-

erage approaches try to cover the parameter space more homogeneously. That is the case of 

Latin Hypercube Sampling (LHS) algorithm [40]. This algorithm divides the search space in 

rows and columns and it takes points so that two points do not coincide in the same row and 

column. For example in a 2D search space with 100 points, Latin Hypercube algorithm would 

divide the space into 100 rows and 100 columns. If the first point is on row number three and 

column number four, then the rest of the points can be neither in row three nor in column four.  

Another possible algorithm is orthogonal sampling. It works the same way as the Latin Hyper-

cube with the addition of a new element. Apart from rows and columns, it also divides the 

search space into cells. So when looking for 100 points, this algorithm would divide the search 

space into 100 rows, 100 columns and 100 cells. And only one point can be selected in each 

row, each column and each cell. 

 

3.3 Fitness function 

One important element in evolutionary algorithms is the fitness function. The fitness function is 

in charge of giving one value that explains how good or bad a certain solution is. It needs the 

results obtained at the simulation of a certain set of solutions (or individual) and transforms this 

output information into a scalar value. The evolutionary algorithm calculates the fitness value of 

each individual and in each generation. The selection step needs these values in order to com-

pute the next generation. Given a generation where each of its individuals has already been 

simulated, the selection operator chooses the individuals with a higher fitness value and uses 

them for the following generations. Besides, the fitness value at the end of the simulation indi-

cates the best solutions found in that simulation. This value is necessary to analyze the 

algorithm quality. After trying different parameters to calibrate an evolutionary algorithm the 

decision on the algorithm performance is based on the best solutions found. That is the solutions 

with higher fitness value. In addition the fitness value can also be used to compare the perfor-

mance of different algorithms. Therefore the fitness function is of critical importance for the 

-defined fitness function improves the solution search and 

makes it possible to find the desired result with fewer generations. 
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The fitness function is different for each problem and depends on the specific requirements. In 

the case of this thesis the objective that is searched concerns the difference maximization be-

tween two systems driving at the same scenario. For each individual the simulation software 

receives some inputs about the scenario characteristics. After the simulation, the software pro-

vides the algorithm two sets of outputs. One set of outputs for each system. The output values 

contain information from the car gathered during the simulation. This information can include 

physic parameters like position, speed and acceleration but also information about sensors. In 

order to make the explanation in this subchapter easier two output parameters are chosen: longi-

tudinal position and speed.  

The method used for the fitness function needs to transform the output variables information of 

two systems into a single scalar value that expresses how different these two systems behave. 

Some of the possible methods to obtain this value are common methods used for statistics. They 

include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE) and Mean Absolute Percentage Error (MAPE). These methods mentioned are common-

ly used to compare estimations and real results. They receive a set of points and for each point a 

real value and a predicted value is included. Then the mathematical formulas of these methods 

are applied to obtain one value that expresses how big the error of the whole set of points is. For 

the case of the thesis instead of comparing estimations with predictions, the comparison will be 

between the results on system one and system two. That is between the different positions and 

velocities obtained after simulating the two systems.  

On the following these methods are analyzed to see if they are suitable for the fitness function 

and which one can perform in a better way. 

Mean Squared Error (MSE) measures the average of the square of errors. At each point it takes 

the difference between the two systems (A and B) and elevates it to the power of two. As the 

difference is squared this method gives special importance to the values that are very different. 

If the difference is duplicated then the MSE value is multiplied by four. 

 (3.1) 

 

Root Mean Squared Error is very similar to MSE. The only difference is that after calculating 

the value, it makes the square root of this value. So if we want to make a ranking with several 

individuals and a fitness value assigned to each individual, the order is going to be the same 
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when using MSE and RMSE. The difference would be that the fitness value for RMSE is in the 

order of magnitude of the position and speed differences. 

 (3.2) 

A third possible method is the Mean Absolute Error (MAE). This metric measures the error as a 

difference in absolute value for all points and makes the average. Whereas MSE and RMSE 

penalized more the big errors in specific points (because it adds the square value of the error), 

MAE penalizes all differences the same way. So MAE should be used when all the errors need 

to be penalized the same way and RMSE in the case where it is preferred to give more im-

portance to big errors compared to small errors.  

 (3.3) 

 

Another option to measure differences is with the use of Mean Average Percentage Error 

(MAPE). This method is similar to MAE. It calculates the absolute value of the difference at 

each point, but after that it divides this difference between the first value. By doing that, the 

result obtained is the error as a percentage of the point value. 

 (3.4) 

 

To better understand the difference of MAPE a small example is introduced. Supposed that two 

points in the simulation give the following results and the objective is to compare the speed 

differences between two vehicles:  

Point 1: Speed of vehicle 1: 10km/h. Speed difference between vehicle 1 and 2: 5km/h 

Point 2: Speed of vehicle 1: 50km/h. Speed difference between vehicle 1 and 2: 5km/h 

At point 1: MAPE = 0.5 

At point 2: MAPE = 0.1 
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So having 2 points with the same difference (5km/h), RMSE and MAE would give the same 

error to point 1 and to point 2 because they only take into account the speed difference. On the 

other hand MAPE gives different results because it takes into account the percentage of that 

difference compared to the speed value. 

Another advantage of MAPE is that its value is a percentage error so several magnitudes can be 

calculated together and expressed as a scalar value. For example calculating differences be-

tween position, speed and acceleration and having a unique fitness value that expresses how 

much the difference is. With RMSE and MAE that would be more complicated because posi-

tion and speed have different measure units so summing into one final fitness value them is 

somehow arbitrary.  

 difference wants to be calculated and ex-

pressed into a single fitness value. If the speed difference is 10km/h and the position difference 

is 60m (using MAE), then the fitness value could be calculated by summing this two quantities. 

Fitness value = 60 + e-

tween meters and kilometers per hour. And why not summing speed difference in kilometers 

per hour and position difference in kilometers instead of meters. 

MAPE solves this problem. There is no problem of summing different units as all the differ-

ences are stated as percentage values. Besides, the final value is the mean of percentages errors 

so some information can be obtained just by looking at the number. If for example the fitness 

obtained is 5 using MAPE, then we can know that the average between the differences at the 

points observed is 5%. So the position and speed differences between the two systems will be 

5% as average for the every point. 

If another method such as RMSE or MAE was used, a final fitness value would be difficult to 

f-

ferent magnitudes (position and speed). 

Based on the previous analysis the most suitable method to use for the fitness function is the 

Mean Average Percentage Error (MAPE). The evolutionary algorithm code has one function 

where it calculated the fitness value of a specific solution. The algorithm receives the results 

obtained in the simulator with a specific solution and applies the MAPE formula to the speed 

and positions values measured in the simulation for the two systems. With this formula it ob-

tains one scalar value. This scalar value is the fitness value for that specific solution. The fitness 

value is needed for the selection step on the evolutionary algorithms. The fitness value gives 
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also information about how good the final solution is. Therefore, it is used to compare several 

algorithms performance. It can also serve as a comparison between different variations of the 

same algorithm.  

Table 3.2: Possibilities for Error estimation to use on fitness function 

 MSE RMSE MAE MAPE 

Error  

measurement 

Quadratic to 
the difference 

Quadratic to 
the difference 

Proportional to 
the difference 

As a percentage 
of the differ-

ence 

Units of  

measurement 

With units 
(km/h or m) 

With units 
(km/h or m) 

With units 
(km/h or m) 

No units as it is 
a percentage 

 

 

3.4 Evolutionary algorithms configuration 

Once the evolutionary algorithm has been selected and its code developed, it still remains an 

important step. This was the parameter selection for the algorithms. Parameter selection consists 

on the customization of an algorithm with the objective of obtaining a better performance. 

These algorithm parameters can be divided into two groups: structural parameters and numeri-

cal parameters [41]. Structural parameters are the main factors that affect the algorithm 

performance. The code needs to be changed in order to alter these parameters. These parameters 

include the coding scheme, operator types and stopping criterion. On the other hand numerical 

parameters are formed by the population size at each generation, the number of generations, the 

mutation rate and the crossover rate. Once the code is finished these numerical parameters are 

easily changed. Some other parameters can also be adjusted depending on the specific algorithm 

used. An evolutionary algorithm with the right parameters can give results orders of magnitude 

better than the same algorithm with bad parameters definition [42]. Some quality measurement 

method needs to be defined in order to evaluate how good or bad certain solution is. The solu-

tion quality depends on the parameters selected for the algorithm. The other part that needs to 

be defined and which is related to the algorithm quality is the end condition. 
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3.4.1 Algorithm quality 

The next step is to define how to measure an evolutionary algorithm quality. The two common 

ways to measure an evolutionary algorithm performance are solution quality and algorithm 

speed [42]. For solution quality method a specific computational limit is stablished. This limit 

can be for the project case setting a maximum number of simulations in the simulation software 

(for example one thousand simulations). After this limit has been reached the best solutions of 

each algorithm are compared. This is done by using the fitness value obtained. With this infor-

mation the best algorithms will be the ones that obtain a better fitness value. The second method 

stopping the algorithm only when a specified fitness value has been reached. Then the best al-

gorithms are the ones that require less time to reach this value. The problem with that is that it is 

difficult to estimate how long it will take for the algorithm to reach that certain value. So the 

algorithm can be running for days without reaching that value. 

 

3.4.2 End condition 

are three possible options for the end condition. The first one is by limiting the computational 

effort. That is by stablishing a maximum number of simulations. The advantage is that the total 

computation time is limited but the problem is that the algorithm can stop before reaching a 

solution good enough. This maximum number of simulations for the evolutionary algorithms is 

the result of the population size multiplied by the number of generations. This end condition 

allows to compare several algorithms by comparing the final fitness value. That is by measuring 

the performance as solution quality. 

The second end condition is to set a certain objective value that we want to obtain. Then the 

algorithm will run until this value is reached. This method is more suitable for the cases where it 

is known before the value that is needed. The problem with that is that it is difficult to estimate 

how long it will take for the algorithm to reach that certain value. So the algorithm can be run-

ning for days without reaching that value. The algorithm performance would be measured by 

analyzing the computation time needed to reach that value. 

A third option for final condition definition is to compare the results in a generation with the 

results on the generation before and finishing when this difference is smaller than certain 

threshold. 
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Table 3.3: End condition and Algorithm Quality 

 End condition Algorithm Quality measurement 

Option 1 Limited number of simulations 

(computational limit) 

Compare final fitness value 

Option 2 Reach certain fitness value Compare number of simulations needed 

to reach this value (System speed) 

Option 3 Improvement between generations 

is smaller than a threshold 

Check both final fitness value and num-

ber of simulations needed 

 

From these three options to define the end condition, the one with the limited number of compu-

tations looks better as it is easy to predict the total simulation time and it allows for an easy 

comparison between different algorithms efficiency. The problem with the second option is that 

the fitness value that is going to be obtained is not known, not even its order of magnitude. So if 

the fitness value set as end condition is too high, the algorithm will never reach this point. And 

the disadvantage of option 3 is that it can make the algorithm stop too early or too late. If the 

population size is too large, the algorithm needs a lot of generations to converge so the compu-

tational load can be huge. On the other hand, an evolutionary algorithm can have a constant 

fitness for a few generations and after those continue to improve the solution. But with the 3rd 

end condition the algorithm would stop in these few generations with stagnation, even if they 

are between the first generations. So the simulation would be very short. 

As explained before, by stablishing a number of computations limitation, the parameters of 

population size and number of generations depend on the value of each other. That is because 

the maximum number of computations is calculated as the population size multiplied by the 

number of generations. But it is still necessary to decide whether to have a bigger population 

size or a greater number of generations. 

 

 



3 Methodology 

45 

3.4.3 Influence of the evolutionary algorithm parameters 

Different genetic algorithm problems can need very different parameters values for a successful 

performance. The parameters that configure a genetic algorithm are population size, number of 

generations, mutation rate and crossover rate. It is not clear which specific parameter values 

should be used for a random genetic algorithm problem [43]. The procedure to choose the best 

parameters is complicated. One way to do it is by conventions [42]. But this method is very 

inaccurate. It can serve as estimation on how to start but will not lead to the best results. A bet-

ter option is trying to understand the interaction between these parameters before choosing the 

values. 

This interaction is influenced by what is called the exploration-exploitation trade-off. To under-

stand this exploration-exploitation trade-off first both terms are defined. Basically exploration is 

concerned with trying a lot of different values and covering a big search area. On the other hand 

exploitation is defined as deepen the search around some specific values or region in the search 

space. 

In general when changing some of the evolutionary algorithm parameters we can improve one 

of these two terms (exploration or exploitation) but decrease the other one. Having a huge ex-

ploration would mean an algorithm with a single generation but a lot of points to search on that 

generation. The problem with that is that the algorithm cannot focus on the most promising are-

as to search for better values. Each new point to evaluate is randomly selected. On the other 

hand an algorithm which maximizes exploitation but has minimum exploration would have 

only one value per generation and will always look other points around that one. This will prob-

ably lead to a point stuck in a local optimum being unable to reach the global optimum. 

How does each parameter affect to the exploration and exploitation? First of all the population 

size and the number of generations are analyzed. These two parameters need to be explained at 

the same time because they are dependent of each other. That is because the evolutionary algo-

rithm end condition was set as the algorithm reaching a maximum number of simulations 

previously defined. The population size and the number of generations will be set so that the 

product between these two parameters is equal to this maximum number of simulations. So an 

increase in one of these two parameters means a decrease in the other parameter. Population 

size is linked to exploration. As a reminder in evolutionary algorithms the population size is the 

number of individuals (or solutions) which are computed at each generation. So the larger this 

number is, the more search space is covered in one generation. On the other hand the number of 

generations is closely related to exploitation. In an algorithm with a large number of generations, 
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it deepens the search around some specific areas. That happens because the evolutionary algo-

rithm looks for new solutions near the points that had previously given good fitness values. As a 

summary a high population size will lead to a big search space whereas a high number of gener-

ations will conduce to focus the search on specific areas. The equilibrium between these two 

variables is not so easy to find and it depends on the problem. In a problem with a lot of local 

optima, a greater population size (exploration) may help to find a better solution. However in a 

problem with few local optima an approach with more generations (exploitation) will have bet-

ter expectations. 

The other factors that influence this exploration-exploitation trade-off are the mutation rate and 

the crossover rate. The mutation rate states the probability that some element inside an individ-

ual is randomly changed to a new one. These random changes are responsible to improve the 

variability so that the algorithm can search new points around the current solution. Therefore, 

the bigger the mutation rate is, the greater exploration the algorithm has. The problem with a 

high mutation rate is that it can eliminate current good solutions reached after several genera-

tions. Then, a big mutation rate means low exploitation. 

The last parameter is crossover rate. This parameter indicates the probability that an offspring 

(or new individual) is created as a combination between two parents (two individuals from the 

previous generation). The other possibility for a new offspring is that the new individual is a 

copy of only one parent. An algorithm with 0% crossover rate would be pure exploitation. It 

would take the solutions from the first generation and never combine them. The algorithm 

would only make mutations from each individual solution. On the other hand a 100% crossover 

rate means that every new offspring is a combination of two parent individuals. So a low cross-

over rate produces high exploitation. But a high crossover rate does not mean high exploration 

as the new individuals contain information from the previous solutions. Therefore, high crosso-

ver rate produces equilibrium between exploration and exploitation. Crossover rate has usually 

high values but never reaches 100%. That is done to bring some of the best solutions from one 

generation to the next one without modification. It is called elitism. So with a crossover rate 

around 70-80% most of the new individuals would be combinations of two parents. And the rest 

of the new individuals would be a copy of some of the parents which had a high fitness value. 

3.4.4 State of the Art for the selection of parameter values 

Once this interaction is understood, some research is analyzed where different values are tried 

to find the best parameters combination. Deb and Agrawal [43] try different GA parameters on 
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typical functions to analyze which parameters lead to better results. They set a maximum num-

ber of function evaluations and change the three parameters stated before: population size, 

crossover rate and mutation rate. The researchers test the parameters effect on different func-

tions. Some of these functions were unimodal, four-peaked and multimodal functions. In 

unimodal function the maximum number of function evaluations is set to 500 and the best per-

formance is found for a population size close to 10. That value is quite small compared to the 

number of generations as the maximum number of generations was 500/10 = 50.  For the analy-

sis on the four-peaked function the computational load is increased from 500 to 9000. The 

results show that the optimal population size has a value between 100 and 200. For this case the 

population size and the number of generations have values in the same order of magnitude. The 

last case is the one about multimodal functions. Because of the complexity of this function the 

computational load is increased from nine thousand to forty five thousand. For this function the 

population size needed to reach good results was much greater than for the case of other func-

tions. The best performance is obtained for a population size of about one thousand.  

 

In this case the population size is much bigger as the number of generations, which has a value 

about 50. In addition, it is observed that in multimodal functions the crossover operator is im-

portant for a good result. To sum up, the functions which have more peaks or local optima need 

a higher number of function evaluations to find the optimal solution. Besides, the population 

size compared to the number of generations increases when the function has more peaks. 

Other research is focused about the optimal population size [44]. On this paper there is not a 

limit of computations as it was stablished for this case. Instead the algorithm runs until it con-

 

Figure 3.3: Genetic algorithm performance for different parameters [43] 
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verges. The results obtained inform about how the solution improves with the population size 

until it reaches a point where the population is too big and the convergence is quite difficult. 

When analyzing the impact of these parameters, Boyabatli and Sabuncuoglu [41] conclude that 

the effect of crossover rate is insignificant for their studied case. Besides they also analyze the 

impact of mutation rate and state that a mutation probability of 0.4 is the most convenient value 

for their case of study. 

The parameters selected for an evolutionary algorithm can be constant during the optimization 

process but can also vary. This parameter change is called parameter control [42]. For some 

advanced problems the use of variable parameters can be a promising option. Laoufi et al. [45] 

change the crossover and mutation rate depending on the fitness value that the current points 

have. High values of mutation and crossover rate mean higher exploration and less exploitation. 

What the adaptive algorithm does is to increase the value of these parameters when the popula-

tion is close to getting stuck in a local optimum and reduce their values when the population is 

too scattered.  But the development of a control strategy for these parameters is quite complex. 

Some papers mention typical values for the evolutionary algorithms. Some research suggests a 

crossover rate between 0.5 and 0.7, a population size of 100 and a mutation rate between 0.01  

0.1 [42]. Other possible values are a crossover rate between 0.65 and 1 and a mutation rate = 1/n 

[41]. 

For the case of study the process starts with typical parameter values. Several simulations runs 

are carried out changing some of the algorithm parameters from one run to the next one in order 

to improve the algorithm performance. Besides, the results are analyzed. The new parameters 

set to test are decided based on these results and the knowledge about parameters interaction. 

 

3.5 Implementation on Python and Simulation Soft-
ware 

After choosing the algorithm, its parameters and the scenarios to simulate, the next step is to 

implement it all. The scenarios definition and simulations are carried out with vehicle simula-

tion software. This is software to test vehicles. This software allows the creation of customized 

scenarios as well as a precise definition of the vehicles to simulate. 
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For the algorithm design Python programming language is used. The script also includes the 

code for the control of the simulation software and for the information exchange. The sequence 

is the following: First of all the code containing the optimization algorithm chooses some pa-

rameters to simulate. Then the simulation software scenario is updated with this information. 

After that, the simulation start order is given. After the simulation is finished, the results are 

read. These results are sent to the algorithm. The algorithm calculates some fitness value with 

the information from the results. Based on the fitness value, the algorithm chooses the points for 

the next generation. 

The general structure of the whole Python code is shown in Figure 3.4: 

 

 Main block. This block contains the main function that is in charge of calling the im-

portant functions in the rest of the code. These functions can be divided into two groups: 

the ones related to the optimization algorithm and the ones to control the simulation 

software.  

 In the main function, the instances for the simulation software control file are ini-

tialized here with the scenario file names and the path. The instance for the 

evolutionary algorithm is also initialized here and including the parameters (popu-

lation size, crossover rate and mutation rate. 

Figure 3.4: Code structure 
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 After defining the instances, the population is initialized and the code enters a loop. 

Inside the loop the evolutionary algorithm functions will be called iteration after 

iteration. 

 The main file also calls the function that saves the final results and plots the fig-

ures. 

 The evolutionary algorithm block is another file that contains all the evolutionary algo-

rithm functions. The function to generate the first population is defined here. The 

evolutionary algorithm operators (selection, crossover and mutation) functions are also 

defined in this file. This block also contains the fitness calculation and the sorting func-

tion. Finally some functions in this block are in charge of saving the results and drawing 

some graphs for a better interpretation of the results. This code is different when using 

the coverage approaches as they do not need the crossover, mutation and selection steps. 

 The blocks on the left in Figure 3.4 have all the code related to open and control the 

simulation Software. The block denominated Simulation Software control is in charge 

of giving the order to run the simulation. In order to do that, this file controls the func-

tions in the three small blocks: update parameters, execute Simulation Software and read 

results. 

 After receiving a group of individuals to simulate in the simulation soft-

ware it will first call the update function. Before starting the optimization 

process a scenario needs to be beforehand defined. But some changes are 

produced to this scenario along the simulation. The update parameters file 

will update these changes just before every simulation. 

 The second sub-block is in charge of executing the simulation software. 

When the scenario has been updated, the Simulation Software control file 

calls the function in the Execute Simulation Software block. This function 

sends the starting order and receives a warning when the simulation has 

concluded. 

 The third sub-block reads the results from the simulation just made. It has 

access to a file that is created after every simulation. With this information 

it interprets and gets the output variables that are necessary for the algo-

rithm. 
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The other part in implementation is concerned with the simulation software. This is advanced 

software for vehicles simulation. To carry out a simulation it is necessary to first define some 

parameters. These parameters include the road, the vehicle to simulate, the other vehicles (traf-

fic on the road) and the maneuver for all the vehicles. 

The road definition lets the user freely decide the shape of the roads, the number of intersections 

and lanes number on each road. The length and width of each road can also be customized. It 

also allows setting speed limits that can be different on each stretch and including traffic lights 

to control the traffic flow. In the case of one or more road intersections, the routes that the ego-

vehicle and other vehicles are going to follow are also stablished here. Some decoration ele-

ments can also be added. For the simulation in the thesis the scenarios are quite simple and are 

formed by a straight road with two lanes. 

 

Figure 3.5: Road definition in the simulation software 

 

The vehicle needs to be chosen after defining the road. The software allows for a precise cus-

tomization on the vehicle in many areas such as dimensions, engine, suspension, tires and 

aerodynamics. It is also possible to configure the sensors that the vehicle includes. The software 

offers a list of vehicles already configured. As the focus was on changing the scenario situation, 

most of the vehicles parameters were left unchanged and only some small adjustments were 

made. Apart from the ego-vehicle to simulate, one can also include other traffic vehicles in the 

scenario to have a more realistic situation. 

Finally the maneuvers need to be created. The maneuvers give information about how the car 

needs to behave during the simulation. The maneuver indicates the position, speed or accelera-

tion that the car needs to have at different points in time during the simulation. The other 

vehicles that are considered traffic can also have maneuvers defined. 

After deciding the scenarios needed for the experiments, they are implemented into this simula-

tion software. The road geometry, all the vehicles participating and their respective maneuvers 
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are created into a base file that is updated with the variable parameter values before each simu-

lation. 

To sum up this chapter, firstly the process of scenario generation is explained. After that comes 

the evaluation about the suitable algorithms for the problem. Some of the options are analyzed 

and finally the evolutionary algorithm is selected. Other simpler algorithms like Monte Carlo 

method are explained as they can be used to compare the performance of the evolutionary algo-

rithm. Then, the concept of fitness function is introduced and a specific formula to calculate it is 

decided. The fitness function calculates how good a certain solution is. Later, the focus is on the 

configuration of the evolutionary algorithm. It includes selecting the end condition and under-

standing how to choose the parameters for the population size, number of generations, crossover 

rate and mutation rate. Finally the implementation is explained. The vehicle simulation software 

is presented and the code structure is developed with Python programming language. The code 

part includes the optimization algorithm and the instructions to control the simulation software. 
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4 Results 

In the previous chapter the methodology for the optimization problem is described. The algo-

rithms to use are selected as well as some decisions concerning the implementation into the 

code. After the algorithm implementation, the method is ready to be used to generate scenarios 

in simulations. The remaining steps before the simulations can be run are divided into two 

groups: scenario definition and algorithm parameter selection. 

Scenario definition includes deciding the specific scenario to simulate and choosing which are 

going to be the input and the output parameters. A scenario is created by defining the road and 

traffic conditions in the simulation software. The input parameters are the variable parameters 

from the scenario. As a reminder the objective of the method is to find a specific scenario where 

the difference between two systems is maximized. The scenario is given by some fixed parame-

ters and some variable parameters. The variable parameters are the ones that are going to 

change from one simulation to another in order to find the specific values of these variable pa-

rameters that maximize the systems differences. These variable parameters can also be called 

input parameters as they are the parameters that the simulation software is going to receive as 

inputs from the main code. The output parameters are the results that after each simulation are 

sent back from the simulation software to the main code. The fitness value is calculated with the 

information from the output parameters through the application of the corresponding fitness 

function. 

By algorithm parameter selection it is meant the selection of some values for the evolutionary 

algorithm parameters. These parameters are the population size, the number of generations, the 

mutation rate and the crossover rate. There is not a perfect value for these parameters as every 

problem is different. 

On the first part of the results chapter some simulations are carried out. This serves as a proof of 

concept to check that the algorithm and simulation software are working fine. The other objec-

tive of the first round of simulations is to calibrate the evolutionary algorithm. That means that 

some simulations will be run with different algorithm parameters to find out which values are 

more appropriate for this kind of problem. 
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The second round of simulations is formed by the testing of different algorithms. Several simu-

lations are carried out on the same scenario. However, the algorithm in charge of selecting the 

parameters is different in each round of simulations. With the simulations results, the different 

algorithm are evaluated to check which one has a greater performance. 

The fact of having two different scenarios to test also serves as a way for checking that the ge-

netic algorithm with some specific parameter values can solve several different scenarios. The 

first scenario can be seen as a training set for the algorithm parameters. Then the second scenar-

io is the test set and it can be found out whether the parameter value selection was done 

correctly. 

 

4.1 Evolutionary algorithm calibration 

First of all some tests are carried out to check that the implementation was done correctly and to 

calibrate the parameters that control the evolutionary algorithm. The idea is to find some values 

for the genetic algorithm parameters that make the search process more efficient. These values 

for the genetic algorithm parameters are not only useful for this specific scenario. As explained 

in the previous chapter, different problem require different genetic algorithm performance and 

there are not standard values that always perform well. However, for the case of study, even if 

the scenarios are different, there are still a lot of common elements in the problem structure. 

Therefore, the values obtained for these specific scenarios can also be used for other scenarios. 

 

4.1.1 Scenario definition 

In order to start the simulations a scenario needs to be defined. The scenario has to be a situa-

tion that a car can find when driving on a road. A scenario with a single car driving on a straight 

road at constant speed is very simple and does not require any change in the car speed or steer-

ing. Therefore, it is recommended that the scenario includes some maneuvers. There is no 

specific scenario that is required to test as the method should work for any scenario. Several 

different scenarios are used in other scenario generation papers. All these scenarios are shown 

in Table 2.1. From the mentioned scenarios, the interesting ones are the ones which contain 

both steering and speed changes along the simulations. If the maneuvers are more complex, the 

possible behavior differences between the two vehicles should also be larger. Based on this, the 

scenario selected for the first simulation is an overtaking maneuver. This scenario happens in a 
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highway with two lanes. At the beginning the ego-vehicle is driving on the right lane after a 

truck. The ego- -vehicle gets close 

to the truck it starts the overtaking maneuver. It changes to the left lane and after overtaking the 

truck it drives back to the right lane. 

This scenario contains many fixed parameters during the simulations but some other parameters 

are selected to be variable. The value of the variable parameters is different from one simulation 

to another. These variable parameters are the ones that changed in order to maximize the differ-

ence between the two systems. For this case three variable parameters are selected. These three 

parameters and its constraints are the following: 

 Parameter 1: Ego-vehicle speed. Between 20  50 km/h 

 Parameter 2: Truck speed. Between 0  10 km/h 

 Parameter 3: Distance between the ego-vehicle and the truck at the beginning of the 

simulation. Between 60  140 m 

These three parameters can also be called input parameters. They are the parameters that the 

algorithm chooses and sends to the simulation software. So they are the inputs that the simula-

tion software receives before each simulation. It is possible to select more input parameters for a 

better scenario customization. However, each extra input parameter adds an extra dimension to 

the search space. So the problem would require a higher computational effort to find good solu-

tions. Therefore, these three parameters are selected as they are the main parameters that control 

the vehicle maneuvers. The three input parameters cannot have any value as they are con-

strained between a maximum and a minimum. The constraints are necessary to ensure that the 

ego-vehicle speed is always greater than the truck speed. If that was not the case, then the over-

take maneuver would never happen. The constraint for the distance is defined to avoid the 

distance being too large or too small. If it is too large, the vehicle needs a lot of time to reach the 

Figure 4.1: Scenario to simulate: Overtaking maneuver 
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truck. If it is too small, the ego-vehicle starts the simulation too close to the truck and may have 

problems to start the overtaking maneuver. 

The output parameters also need to be selected. To understand how the output parameters are 

chosen it is important to understand how the maximization method works. The process for the 

optimization is the following: First the algorithm chooses one set of solutions. That means se-

lecting one value for each of the three input parameters (ego-vehicle speed, second vehicle 

speed and distance between the ego-vehicle and the other vehicle at the beginning of the simula-

tion). The information about the three inputs of that specific solution is sent to the simulation 

software. The scenario is updated and two simulations are done in the same scenario, one simu-

lation for each of the two systems. The two systems are two different car models for the ego-

vehicle. The simulation results from the two simulations are saved. The simulation results pa-

rameters that are selected as output parameters are sent back to the algorithm. With the output 

parameters values for that solution, the algorithm calculates a fitness value. 

Therefore, the output parameter selection depends on the specific fitness function selected. For 

the first simulations, the fitness function calculates the difference between the final position and 

final speed of the two systems. These two variables are selected because they are the ones 

which should have a greater difference at the end of the simulations. So the final position of the 

first car at the end of the simulation is compared with the final position of the second car at the 

end of its simulation. The same happens for the final speed. This is a simple version of the fit-

ness function. After the first set of simulations the fitness function is updated in order to obtain 

a more accurate fitness value. The formula for the fitness function used on the first set of maxi-

mization processes is shown next: 

 (4.1) 

 

Therefore, the output parameters are: 

 Sf1: Position of the ego-vehicle at the end of the first simulation (system number one) in 

meters. 

 Vf1: Velocity of the ego-vehicle at the end of the first simulation (system number one) in 

kilometers per hour. 

 Sf2: Position of the ego-vehicle at the end of the second simulation (system number two) 

in meters. 
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 Vf2: Velocity of the ego-vehicle at the end of the second simulation (system number two) 

in kilometers per hour. 

 

With that the scenario and its input and output parameters are defined. The next step is selecting 

which ones are going to be the two systems that are going to be compared. The two systems are 

the two vehicles to be simulated and compared. There needs to be some differences between the 

two vehicles to be able to compare them. Some examples of possible differences could be 

achieved by the use of different vehicles, by changing some of the mechanical or physical pa-

rameters of the vehicles, by changing sensors or by using different vehicle software.  For the 

first case of study these two systems are two different car models available at the simulation 

software. As they are different models, they have different engines, mass, suspension, etc. So 

they behave differently when driving in the simulation. 

 

4.1.2 Genetic algorithm parameters 

The scenario is defined with its input and output parameters. Besides, the two systems are speci-

fied. After that comes the algorithm parameter selection. The algorithm in charge of selecting 

the values for the input parameters was a genetic algorithm. The general structure of the genetic 

algorithm was explained in the previous chapter. But some genetic algorithm parameters have 

to be decided before starting the simulations. In genetic algorithms there are no standard values 

for these parameters that are valid for all problems. Some values may work better in some cases 

and worse in other. These genetic algorithm parameters are: 

 Population size 

 Number of generations 

 Mutation rate 

 Crossover rate 

In this first part the objective is to try different combinations of these parameters to find out 

which values work better. The idea is making several simulation rounds. In all of these simula-

tion rounds the scenario, input and output parameters as well as the two cars are exactly the 

same. The only difference is the genetic algorithm parameters. 

It is a difficult task to select the right genetic algorithm parameters. Some studies were ex-

plained in the previous chapter for a better understanding of how each parameter influences the 
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result. These studies serve to select some of the initial values for these parameters and also to be 

able to analyze the results. The process to calibrate is the following: First a computational load 

is defined. This is the number of solutions that are simulated in each test run. A solution (a set 

of input parameters values) is what defines a specific test case in a scenario. The end condition 

for the algorithm is set as reaching a certain number of simulations. That is the computational 

load. The limit set is 500 simulations for all the simulation rounds. The limit could be much 

larger. But as the simulations require some time, having thousands of simulations would mean 

to have each round of simulations running for days. Because of the limited computational re-

sources, this limit was set to a value of 500.  The crossover rate is also given a fixed value of 

80% inside the range suggested by Boyabatli and Sabuncuoglu [41]. The crossover rate is kept 

the number of generations are dependent of each other as its product should be the computa-

tional load. 

 (4.2) 

Some combinations of these two values are tried. The population size values were between 10 

and 25 and the number of generations between 20 and 50. 

The last parameter to define is the mutation rate. The value for this parameter was more compli-

cated to be defined correctly. Some suggestions were to use a value about 1/n = 1/3 = 0.33 

(where n is the number of input parameters). In the experiment, many different values were 

tried starting from 10% up until 50%. The following table shows the different parameters com-

binations that are tried in the simulations: 

Table 4.1: Genetic algorithm parameters for test cases 

 1 2 3 4 5 6 7 

Crossover rate (%) 80 80 80 80 80 80 80 

Mutation rate (%) 10 20 20 30 30 40 50 

Population size 10 10 20 10 20 20 25 

Number of generations 50 50 25 50 25 25 20 

Computational load 500 500 500 500 500 500 500 
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4.1.3 Simulations results 

After the genetic algorithm parameter selection, the simulations are run. 

Several topics need to be explained regarding which genetic algorithm parameters give better 

results, which scenario solutions are the ones that maximize the difference between the two cars 

and how the iteration process works. 

 

Table 4.2: Best solution found at eac  

Case 1 2 3 4 5 6 7 

Car speed (input 1) 33,6 23,3 32,2 20,9 31,2 30,4 29,4 

Truck speed (input 2) 4,2 3,4 0,7 5,1 4,4 9,9 3,9 

Initial distance (input 3) 42,3 45,4 67,3 94,4 42 43,3 45,8 

Fitness 34,6 30,1 30,7 16,7 40,6 35,1 30 

 

First in most cases the best solution has a fitness value between 40 and 50. Nevertheless the 

solution point at which the best values for each case were found is quite different. That means 

that this optimization problem has a lot of local optima. That is a sign that this kind of problem 

is what is called a multimodal problem [46]. Some of the input parameters tend to have similar 

values independently from the case. For example the input parameter number three (initial dis-

tance) has a value between 40 and 45 for all cases but two. And in one of these exceptions, in 

case number four, the best solutions obtained have a very bad fitness value. That is because in 

case four the search gets stuck in a bad local optimum. Parameter number two (truck speed) 

seems quite disperse so it may not have a great impact on the fitness value. Input parameter two 

is constrained between 0 and 10 and the solutions have values all over this range. In input pa-

rameter number one (car speed) some common values can be found as in all cases this value is 

between 20 and 35 (and it is constrained between 25 and 50). 

After a general overview of the results it is the time to analyze the optimization process of each 

case in more detail. 
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Some problems found when the number of generations is much bigger than the population size 

are that they got stuck easily in local optima with bad values. That is what happened in cases 1, 

2 and 4. In these cases the population size is 10 and the number of generations is 50. In Figure 

4.2 it is shown the fitness evolution for case number two. The figure shows at each generation 

(or iteration) one fitness value. This is the fitness value obtained by the best point in that genera-

tion. It is possible to see that after the tenth generation the solution does not improve. The 

algorithm is looking all the time around one local optimum and is not able to escape and search 

new solutions. That search is very inefficient as most of the simulations are being carried out 

approximately using the same solutions. 

 

Figure 4.2 is showing the results for case 2 but the same happened on case 4. Some box plots 

are drawn for a better results analysis. In the next box plots for case number 4 (Figure 4.3, Fig-

ure 4.4 and Figure 4.5) the values in the iterative process during the simulations are displayed. 

There are three box plots, each of them shows information about one of the input parameters. 

The box plots show what values of that specific input parameter were used in each generation. 

On the first generation the values are very disperse as the initialization is done randomly. But 

after a few generations the values chosen for each input parameter are very concentrated into 

some small range. Converging into some values does not need to be bad. The problem with this 

case is that the converging process is very quick. In just 4 generations the range gets very small 

so the algorithm covers a very small part of the search space. 

 

Figure 4.2: Fitness results for Test case 2 
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Figure 4.3: Input 1 values distribution for Test case 2 

 

Figure 4.4: Input 2 values distribution for Test case 2 

 

Figure 4.5: Input 3 values distribution for Test case 2 
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In contraposition to those previous cases, case number 5 is analyzed next. This is the case that 

gave the best fitness result. The genetic algorithm parameters used are a bigger population size 

(20) and a smaller number of generations (25). The mutation rate has a greater value (30%) in 

order to have more exploration. The optimization process looks better as the algorithm does not 

converge so quickly as before. That is a good sign because it means that the algorithm covered 

better the search space. That can be seen in Figure 4.7, Figure 4.8 and Figure 4.9. Furthermore 

the algorithm keeps improving the solution after many generations in opposition to the other 

case where the best fitness value got stuck after few generations. 

 

 

Figure 4.6: Fitness results for test case 5 
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Figure 4.7: Input 1 values distribution for test case 5 

 

Figure 4.8: Input 2 values distribution for test case 5 

 

Figure 4.9: Input 3 values distribution for test case 5 
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The last case to analyze is case number 7. Here the population size is even greater (25) than 

before and the mutation rate is also increased (50%). Regarding the solution convergence it can 

be seen that the input parameters values have quite a big range during all the simulations. That 

can have some advantages by searching in more different areas but this dispersion is also caused 

by the big mutation rate. Having a mutation rate so high was problematic because the solutions 

change too much from one generation to the next one. With that some good solutions can get 

lost. 

 

Several conclusions can be obtained from the previous results. First of all the trade-off between 

population size and number of generations can be analyzed. If the number of generations is 

quite big and the population size is too small, the optimization process does not perform very 

well. A bigger population size will improve the search by having a greater coverage. It can im-

prove the exploration while decreasing the exploitation. Of course the computational load can 

also be increased to increase either the population size or the number of generations. A good set 

of values for this case with 500 maximum simulations is to have a population size between 20 

and 25 and the number of generations between 20 and 25. Secondly a mutation rate around 30% 

looks like a good option. As each solution is formed by three input parameters, a value of 1/n = 

1/3 = 0.33 should work well. So a mutation rate between 30% and 40 % is chosen. And the 

crossover rate is set to 80%. After finding these values for the genetic algorithm parameters, the 

idea is to use them also in other scenarios. If the maximum number of simulations is kept at 500 

and the number of input parameters is kept at 3, then the same parameter values should work 

 

Figure 4.10: Input 1 values distribution for test case 7 
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fine to test other scenarios. Changing the number of input parameters would mean a change in 

the mutation rate according to the rule of 1/n. Besides, if the total number of simulations is in-

creased, the population size and the number of generations would also increase. 

 

 

4.2 Comparison between algorithms 

The first round of simulations is useful to see which evolutionary algorithm parameters work 

better for the difference maximization problem that is covered in the thesis. The population size 

and number of generations trade-off can be better understood by analyzing the algorithm evolu-

tion along the iterations. Also the crossover and mutation rate are set to appropriate values. 

Many changes are presented in this second round of simulations. Firstly the new objective is the 

comparison between different optimization algorithms. In the previous subchapter the optimiza-

tion process was always done with the use of a genetic algorithm. In each set of simulations the 

difference was the genetic algorithm parameters. However, in the new simulations, several algo-

rithms are used to optimize the scenario. And the algorithms performance is compared to find 

which option is more suitable. The scenario to analyze is also different. The method developed 

to maximize the differences between two vehicles needs to be applicable not only in one case 

but in many different scenarios. Having a new scenario is necessary to check that the method 

can also work correctly in other cases. 

 

4.2.1 Scenario definition 

As stated before, the second experiment will be carried out in a different scenario. This second 

round of simulations serve as a test set to check if the algorithm from the first experiment also 

performs correctly in this second case. The scenario to simulate for this case is a cut-in maneu-

ver. This is another of the typical maneuvers that are used for autonomous systems validation as 

shown in Table 2.1. The scenario happens also in a highway with two lanes. At the beginning of 

this scenario, the ego-vehicle is driving on the left lane and a truck drives on the right lane. The 

-vehicle. After 

some time driving, the truck changes to the left lane until it is situated just in front of the other 

vehicle. The ego-vehicle, which is equipped with an active cruise control, reduces its speed if 

the truck is too close. 
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The same way as in the previous scenario, it is necessary to define some input and output pa-

rameters. The fitness function and the two systems to compare also need to be selected. The 

input parameters correspond to the parameters from the scenario that change from one simula-

tion to the next. The input parameters selected for the cut-in scenario were the same than for the 

first case. The scenario is expected to simulate a situation in a highway so the vehicles speed is 

higher than in the previous case. The input parameters and their constraints are: 

 Input parameter 1: Ego-vehicle speed. Between 80  130 km/h 

 Input parameter 2: Truck speed. Between 80  130 km/h 

 Input parameter 3: Distance between the ego-vehicle and the truck at the beginning of 

the simulation. Between 40  200 m 

 

The fitness function is defined differently than before. The new version is more complex but the 

fitness value calculated is far more precise. This is achieved in two ways: first of all, several 

values of the ego- the simulation are measured. Instead of 

several points. At each of these time points, the output variables are measured. This allows hav-

ing a more detailed knowledge about these variables evolution along the simulation. In addition, 

the formula used to transform the position and speed values into one scalar value is different. 

 was 

explained in detail in the methodology chapter. As a summary at each point in time, this method 

takes the position or speed between the two vehicles (two systems) and calculates its difference 

as a percentage. 

Figure 4.11: Second scenario to simulate - Cut in maneuver 
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 (4.3) 

 

The output parameters are the ego-vehicle position and speed at different points in time. Now 

that the fitness functions takes into account the output variable values at several points during 

the simulation, having the vehicle position as the only output variable could be possible and 

would give an accurate fitness value. But in other scenario tests, the fitness function may re-

quire several output variables. As it should be possible to use this method in different scenario 

tests, the use of at least two output variables is more interesting. With that it can be demonstrat-

ed that the method can work with several output variables. And the MAPE formula result is 

dimensionless so it is possible to utilize variables that have different units. So the two output 

variables are the vehicle position and speed. Moreover, having more output variables leads to a 

fitness value that reflects better the differences between the systems. 

Therefore, the output parameters are: 

 S1: Array with the ego- a-

tion (system number one) in meters. 

 V1: Array with the ego- a-

tion (system number one) in kilometers per hour. 

 S2: Array with the ego- m-

ulation (system number two) in meters. 

 V2: Array with the ego- u-

lation (system number two) in kilometers per hour. 

 

The remaining decision is about the two systems. In the first case the two systems were two 

different vehicle models. That is also the case on the second case but with some differences. 

The ACC sensor is updated so it was not the same for the two vehicles. In one of the vehicles 

the range of the ACC sensor is left to its standard value of 150 meters whereas on the other ve-

hicle it is reduced to 100 meters. The motivation for this change in the sensor is to have some 

difference between the two systems not only in the dynamics behavior but also in the assistance 

systems. 
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4.2.2 Four algorithms for performance comparison 

For the maximization process of the scenario, several algorithms are used. The results are com-

pared to check which algorithm can have a great performance in these cases and why. There are 

four different algorithms selected: 

 Genetic algorithm (GA) 

 Evolution Strategies (ES) 

 Monte Carlo method (MC) 

 Latin Hypercube sampling (LHS) 

The first one is the genetic algorithm. It was previously explained and properly calibrated by 

having some simulations. The second algorithm is another evolutionary algorithm called evolu-

tion strategies. This algorithm is quite similar to the genetic algorithm so its implementation 

was easily done. The motivation for the use of this algorithm is that it is commonly used for real 

number optimization processes, as it is the case in the thesis. The other two algorithms to use 

were Monte Carlo method and Latin Hypercube sampling. These two methods are coverage 

methods. That means that they do not divide the optimization problem into several iterations 

and use the results from the previous iterations to help the selection of possible solutions. They 

select points randomly or almost randomly around the search space and send them to the car 

simulator. 

The comparison is made by checking which method can find solutions with a greater quality. In 

order the do that, the computational load is the same for all the methods and the fitness value of 

the best individuals found by each method is compared. The fitness value is at first used for the 

comparison of different individuals during the evolutionary algorithm optimization. Neverthe-

less, the fitness value of the final result is also a good way to measure the algorithm quality to 

find a good solution. So the fitness value is stablished as the metric to compare several algo-

rithms. To have the same computational load, a limit in the number of simulations is set at the 

same value for the four algorithms. The number of simulations was set to 500. Each of these 

500 simulations includes one simulation for system 1 and one simulation for system 2 with the 

same input parameters. After finishing the 500 simulations, the best solutions found with each 

method are selected and its fitness value compared. 

The two coverage methods, Monte Carlo method and Latin Hypercube sampling, do not have 

any algorithm parameter to set. On the other hand, the two evolutionary algorithms need some 

values for its parameters. The values for these parameters are chosen based on the results of the 
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previous scenario simulations where different values for these parameters were tested. Although 

the previous experiments to find the evolutionary parameter values were only made for the ge-

netic algorithm, the same parameters are used for the evolution strategies. As the genetic algo-

algorithm and the evolution strategies structure is very similar, the assumption is that the same 

parameter values are valid for both algorithms. The parameters are and the values selected are: 

 Population size: 20-25 

 Number of generations: 20-25 

 Mutation rate: 30% 

 Crossover rate: 80% 

  (only for evolution strategies): 20 

 - 60 

With that the four algorithms are ready and the simulations can be carried out. 

 

4.2.3 Simulation results for the four algorithms 

The results analysis is divided in several steps. First it is focused on analyzing which algorithm 

found the best solutions. So the highest fitness values reached by each algorithm are compared. 

After that the analysis is focused on the input parameters that lead to those good solutions and 

find out the relation between the different solutions. Finally the good scenarios will be analyzed 

in order to understand why those specific input parameters values lead to a great difference be-

tween the two vehicles (high fitness value). 

Figure 4.12 includes the fitness results for several simulations. 

What the figure shows are eight different column graphs, one for each simulation run. On each 

simulation run, the three (or four) best points are selected.  Each column graph contains the fit-

ness value obtained for these best points.  
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Figure 4.12: Fitness values for the best solutions in each simulation run 

 

Moreover, there are eight column graphs and only four algorithms because each algorithm is 

run twice. This is done because the simulations are not deterministic. For the Monte Carlo 

method and the Latin Hypercube sampling, the points chosen to analyze are randomly selected. 

In evolutionary algorithms, the first generation is also randomly selected. And the crossover and 

mutation operators work with some randomness. Therefore, when several simulations are done 

through an evolutionary algorithm, the points used along the simulation process are different, 

even if the algorithm parameters are kept constant. This randomness could lead to results that 

are exceptionally good or bad because of good or bad luck at the search. By running each algo-

rithm several times it is expected to reduce possible outliers in the results. The second 

simulation with each algorithm was necessary to check how big this variation corresponding to 

good luck or bad luck in the search is. 

Based on these fitness results the coverage approaches, which are Latin hypercube sampling 

and Monte Carlo method, obtain better solutions than the evolutionary algorithms. They find 

higher fitness points even though in the two coverage approaches the algorithm implementation 

is simpler. The evolutionary algorithms are not able to find any solution with a fitness value 

greater than 7. Their best points have a fitness value around 5 and 6. On the other hand the cov-

erage approaches find several solutions with a fitness value greater than 7. Other remarks can be 

made by looking more into detail at the Latin hypercube sampling and Monte Carlo method. In 
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Figure 4.12 the three or four best points are shown. But if the rest of the points are checked the 

conclusion is that only about the 10 best values out of the 500 in the whole simulation give me-

dium or good quality values (with a fitness value equal or greater than 4). In the coverage ap-

approaches the differences between the best solutions and the worst is quite big. The results in 

the evolutionary algorithms are different. These algorithms provided several solutions with a 

fitness value very close to each other. The reason for this is due to the optimization process that 

constitutes evolutionary algorithms. As they are iterative processes, though there is a trend to 

convergence as more generations are created. Therefore, the final generation contains individu-

als which have a lot of similarities between each other. That is why the fitness value is also 

quite similar for many of the individuals that belong to the last generation in evolutionary algo-

rithms. To sum up the two coverage methods can find better solutions. But out of the 500 points 

chosen to simulate, most of them are bad options and only a few of them obtain a great fitness 

value. On the other hand, evolutionary algorithms cannot find such good solutions. But it is 

observed some similarities between the individuals in the last generation due to the algorithm 

convergence. 

The second part of the results interpretation is focused on the input parameter values obtained. 

The values of the ego-vehicle speed (first input parameter) at the best points found in the simu-

lations are shown in Figure 4.13. The figure is similar to the one before but instead of showing 

the fitness value of the best points, the values for the first input parameter are displayed. 

 

Figure 4.13: Input 1 values for the best solutions in each simulation run 
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What can be observed generally is that the values are quite dispersed. There are no points in the 

range 80  100 but in the range 100-130 the dispersion is big. The same behavior is observed 

for the truck speed (second input parameter). There is a lot of variety on the values where the 

best fitness was obtained. The case is different for the truck initial position (third input parame-

ter). In this specific parameter it is observed a convergence into a range of values between 40  

60 meters for most of the good solutions. 

 

Figure 4.14: Input 2 values for the best solutions in each simulation run 

 

Figure 4.15: Input 3 values for the best solutions in each simulation run 
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Two conclusions can be obtained from the input parameters values information. First of all, the 

value of the third input (truck initial position) is quite important in order to obtain a good solu-

tion. In most of the cases this parameters value is constrained between 40 and 60 meters. There 

are a few exceptions where this parameters value is over 140 meters but in those cases the fit-

ness value obtained was not so good compared to the best points in all of the simulations. So a 

low value in the third parameter is critical to find a good solution. On the first and second input 

parameter, a convergence around some values is not observed. In the first input parameter, the 

values observed are usually high but scattered distributed. In the second input parameter the 

values are even more disperse. So it can be inferred that the third input is the more critical value 

to find a good solution and the second input is the one which has smaller effect into the results. 

This dispersion in the second parameter and convergence around some value for the third pa-

rameter can be observed in the evolutionary algorithms optimization process in Figure 4.16 and 

Figure 4.17. 

 

Figure 4.16: Input 2 values distribution for Genetic Algorithm 

 

Figure 4.17: Input 3 values distribution for Genetic Algorithm 
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The box plot shows the values for the second input and third input that were used during one of 

the genetic algorithm optimization process. Each box corresponds to all the values used in one 

generation. This algorithm selects the new input parameters values based on which values lead 

to higher fitness in the generation before. The box plots show this high convergence for the 

third input parameter and the dispersion for the second input parameter. That is because a low 

value for the third input parameter was a clear sign for the genetic algorithm that the results 

were better. 

The second conclusion deals with the dispersion. The fact of having so much dispersion in the 

input parameters is an indicator that the problem has a lot of local optima around the search 

space. The problem function is not defined but works as a multimodal function. This kind of 

function has a lot of maximum or minimum points around the parameters space. The next figure 

shows an example of multimodal function for a two dimensional problem. 

 

That makes the maximization process more complicated. The evolutionary algorithms try to 

exploit the search into an area but they get stuck very easily in some local optima. So after sev-

eral generations they are not able to increase considerably the solution. This can be graphically 

seen in Figure 4.19 and Figure 4.20. The horizontal axis shows the number of the generation (or 

iteration) and the vertical axis is the fitness value obtained at that specific generation. The dif-

ferent lines show the four best solutions at each generation. The blue line is the best solution at 

each generation, the orange line is the second best solution, the green line the third and the red 

line the fourth. 

 

Figure 4.18: Multimodal function [47] 
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It is common to observe that the best fitness value do not improve significantly from one gener-

ation to the next one. The best point found in the first generation had a fitness value around 5 or 

could be improved by increasing the exploration and decreasing exploitation. That could be 

done by changing the evolutionary algorithm parameters. Increasing the population size would 

mean a higher exploration. That would imply that the number of generations is lowered in order 

to keep the total number of simulations constant. A lower number of generations means a 

smaller exploitation. 

 

Figure 4.19: Fitness value evolution through several generations for the Evolution Strategies 

 

Figure 4.20: Fitness value evolution through several generations for genetic algorithm 
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Finally the interpretation of the input parameters values in the scenario comes. The motivation 

is to understand why some specific input parameters values lead to a great difference between 

the two cars behavior in the same scenario. The result on the best point found is shown next: 

Table 4.3: Results for the best point found 

Parameter Value Minimum  Maximum  

Ego- vehicle speed (input 1) 127,7 80 km/h 130 km/h 

Truck speed (input 2) 104,5 80 km/h 130 km/h 

Initial distance (input 3) 61,8 40 m 200 m 

 

In this specific scenario the ego-vehicle starts the simulation driving at a about 127,7 km/h 

whereas the truck drives at 104,5 km/h and is situated 60 meters ahead of the car. After a few 

seconds the truck starts a maneuver to change from the right lane to the left lane. So what is 

obtained is a higher speed of the ego-vehicle respect to the truck. Besides, the vehicle speed 

value is quite high. As a reminder the speed value was limited between 80 and 130 km/h. So the 

speed value is very close to the maximum possible. Moreover, the initial distance between the 

car and the truck is close to the minimum possible (the range was from 40 to 200 m). A graph is 

provided where the ego-vehicle speed values are plotted. The simulations take place in the same 

test case but one line is for the system 1 and the other line for the system 2. 

 

Figure 4.21: Ego-vehicle speed profile during the simulations of both systems 
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With the input parameters values explained and the information from the graph it should be 

possible to have an idea about why this specific scenario leads to a big difference between the 

two cars behavior (the two systems to test). The fact of the truck being close to the car  produces 

a big braking maneuver when the truck changes lane and is situated in front of the ego-vehicle. 

In general big accelerations and big decelerations are prone to increase the differences if two 

different cars are compared. The aggressive maneuvers lead to the vehicle being put to the limit 

of its performance. If a vehicle has a faster dynamic response than the other one, then the differ-

ences at these maneuvers will be wide. Besides, the ACC range was set to different values. That 

means that after the truck cuts in, one of the car tries to get more separated from the truck that 

the other car. So one of the cars needs to reduce more the speed or keep it at a lower value for 

longer. 

 

4.2.4 Algorithm comparison summary 

The second round of simulations consisted of a cut-in scenario where a truck was changing 

from one lane to the other just in front of the ego-vehicle. The objective for this second scenario 

is to compare the performance of different algorithms. The total number of simulations allowed 

is set to a constant value of 500 for every algorithm and the best results obtained are compared. 

The four algorithms are divided into two groups: the evolutionary algorithm and the coverage 

methods. The best results are obtained in most cases for the coverage methods: Latin hypercube 

sampling and Monte Carlo method. It is also observed that the problem had a lot of local optima. 

That could be the reason why the coverage approaches performed better. As there are many 

local optima, it is easy for the evolutionary algorithms to get stuck in some of those local optima. 

So they cannot take full advantage of the iterative process. On the other hand the Latin Hyper-

cube and Monte Carlo method have a great exploration so they can perform better. 

 

4.2.5 Solution improvements 

One of the problems that the evolutionary algorithms find is that the problem had a lot of local 

optima. The evolutionary algorithms try to improve the solution by searching in the area of pre-

vious good solutions thanks to the mutation operator. But if the problem has many local optima, 

it is difficult to find the global optimum. The solution for that would be to increase the coverage. 

Previously the simulations limit was set to 500. This value could be increased in order to have 
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algorithms with higher population size and same number of generations. The higher population 

size means that the algorithm can cover a larger number of points in each generation.  

The first objective for the solution improvement is to check if finding a good value on the first 

generation was very helpful for the algorithm. The experiment carried out consists on using the 

same genetic algorithm for the cut-in scenario optimization. But in this case the initial popula-

tion contains one of the good solutions found in the previous optimizations with the Latin 

hypercube sampling. Only that individual is manually included and the rest of the initial popula-

tion are randomly initialized like the cases before. Figure 4.22 shows the fitness corresponding 

and the other colors shows the second best, third best and fourth best solutions fitness. 

 

 

What the figure shows is that the algorithm is still able to improve the solution. So finding a 

good value in the first population is critical for the evolutionary algorithms in order to find a 

good final result. Increasing the population size improves the possibilities of finding a good 

individual in the first generation. Therefore, increasing the population size is a suitable option to 

find better points. It is not the same for the number of generations. Some of the evolutionary 

algorithms optimization runs previously studied had already converged before the 20th genera-

tion. So improving only the number of generations does not look promising. 

Figure 4.22: Fitness evolution for GA with a manually introduced point in the initial population 
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Therefore, the conclusion obtained is that keeping the same number of generations and increas-

ing the population size could lead to better results. For that it would be necessary to increase the 

total number of simulations. This value was previously set to 500 and for the following simula-

tions is increased to 2500. The algorithms to test with the new number of simulations are the 

genetic algorithm and the Latin hypercube sampling. Two simulations are run with each algo-

rithm and the results are compared with the previous cases where only 500 simulations were 

allowed. 

 

Figure 4.23 shows the new fitness value results and its comparison with the previous cases. 

Each bar graph is a simulation run. The four bar graphs at the top show the fitness results on the 

previous simulations and the four bar graphs at the bottom show the new simulations results. 

Each bar graph includes the fitness value corresponding to the three best solutions in that simu-

lation. In the case of the genetic algorithm, the additional simulations are helpful to find 

solutions with higher fitness value. In the two new simulation runs they achieve a better result 

than the previous cases. The best individuals found result in a fitness value around 7 and in one 

individual it reached 9,7. In the previous cases, the best individuals had a fitness value between 

4 and 6. That can be a sign that the population size in the previous cases was too small. In this 

new simulation the population size is increased from around 25 to 125 and the number of gen-

 

Figure 4.23: Fitness results comparison between algorithms with 500 and 2500 simulations 
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erations is kept at the same value.  This higher population size increases the exploration and 

lead to a better search. 

On the other hand the Latin Hypercube sampling does not seem to improve with the number of 

simulations. In fact, for these cases the best solutions found are worse than before. But that 

should be because of bad luck in that specific search. As the points selection is done randomly, 

the more points that are evaluated, the higher are the probabilities of finding a good solution. 

But for the Latin Hypercube case, the improvement on the total number of simulations from 500 

to 2500 does not seem to be a help for the solution improvement. 

When comparing the algorithms for the new case with 2500 simulations, it is not so clear which 

algorithm performs better. One of the Latin Hypercube did found a better point but that was not 

the case for the other simulation. 

One last experiment is performed. In this new simulation round the objective is to improve the 

search algorithm based on all the information from the previous experiments. As the problem 

has a lot of local optima, a high coverage is critical to find a good solution. But the iterative 

process from the evolutionary algorithms can also be applied to improve the solutions. The new 

concept was a mix of the two kinds of algorithms: coverage and evolutionary algorithms. The 

new algorithm creates a big initial population and from this initial population the best individu-

als are selected and an iterative process is run. The iterative process will improve the solution 

through the mutation and selection operators from the evolutionary algorithms. So it is a combi-

nation between Monte Carlo method and evolutionary algorithms. 

 

Figure 4.24: Fitness values evolution for mixed algorithm 
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This mixed algorithm is run with an initial population of 500 and another 500 simulations with 

the evolutionary algorithm. The results obtained outperform other results obtained with only 

evolutionary algorithms. In fact the best solution obtained from all simulation runs is obtained 

with this method. The fitness value was almost 20. 

 

4.3 Simulations results summary and future chal-
lenges 

The results chapter contains several simulations with different algorithms and scenarios. The 

most important results and analysis are summarized next. 

On the first part of the chapter, some simulations are run with a genetic algorithm. These simu-

lations serve as a first proof of concept and to calibrate the genetic algorithm parameters. The 

simulations take place in a scenario about an overtaking maneuver. It is a highway where the 

ego-vehicle performs an overtake maneuver to a truck. The ego-vehicle speed, truck speed and 

initial truck position are the input parameters. This scenario is run looking for the specific cases 

where the difference between the two cars tested is bigger. The algorithm applied is the genetic 

algorithm for all test cases but with different algorithm parameters in each case. The parameters 

modified are the four important parameters for genetic algorithm tuning: population size, num-

ber of generations, crossover rate and mutation rate. These simulations results are analyzed 

through some graphs and by observing the iterative process. 

The second part of the chapter includes several simulations where different methods are used 

for the input parameter value selection and optimization process. Moreover, the scenario for the 

tests is new. In this case the scenario is a cut-in maneuver in a highway. A truck drives on the 

right lane and at certain moment it changes to the left lane where the ego-vehicle drives. The 

three input parameters are the same than for the previous scenario: Ego-vehicle speed, truck 

speed and truck initial position. Instead of generating the test cases with the genetic algorithm, 

four different methods are applied. The results are compared to find out which method performs 

better. The four methods are divided into two groups: evolutionary algorithms and random 

methods. The two evolutionary algorithms are genetic algorithm and evolution strategies. The 

other two coverage methods are Monte Carlo method and Latin hypercube sampling. All the 

methods run the same number of simulations and with the same input parameters. 
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The results show that the two coverage methods can find better solutions. From the best solu-

tions analysis it is inferred that the optimization problem has many local optima. That is the 

reason why the evolutionary algorithms do not perform well. Some improvements options are 

later proposed. They are mainly focusing in increasing the evolutionary algorithms coverage. 

For that, the maximum number of simulations is increased so that the population size can be 

increased maintaining the number of generations constant. These changes allow an improve-

ment in the results obtained by the genetic algorithm. 

The final simulation run is based on a mixed method which combines random sampling with 

evolutionary algorithms. This method has a big initial population where the points are randomly 

chosen and from this initial population it uses the mutation and selection operators to find new 

solutions. This mixed method achieved a performance improvement compared to the other evo-

lutionary algorithms. 

To sum up, the simulations results show that the coverage approaches based on random point 

selection have a good performance in the scenario test. The scenario having a lot of local optima 

makes it difficult for the evolutionary algorithm to search the best solutions as they would re-

quire a very big population size. The only method that could reach or improve the solution was 

a mixed method with based on a big initial population randomly selected and then use an itera-

tive process based on the evolutionary algorithms. 

Regarding further development in this project, it would be interesting to analyze new scenarios 

to see if the same patterns that were found in the thesis occur also for other cases. The scenario 

possibilities for vehicle testing are huge. The method could be applied to some of these scenari-

os to find behaviors difference between two systems. 

Another interesting update would be to increase the number of input parameters from the cur-

rent 3 used in these tests. That can allow for a much more customized scenario. The problem 

with a high number of input parameters is that the number of possible combinations is higher. 

Therefore, the computational load to find the best points would increase significantly. The new 

input parameters can be about the scenario environment. But an interesting application would 

be that some of the new input parameters were related to the vehicles maneuvers. Instead of 

having vehicles with constant speed, that can allow to have a variable speed profile for the dif-

ferent vehicles in the scenario. 

Finally, the two systems to compare during the simulations were two different cars modeled 

inside the simulator. A possible alternative in this is the use of a real system and compare it with 
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the virtual version of that system. An example of this is the comparison between a camera and 

its virtual version. The real camera records a scenario virtually generated and the virtual camera 

receives the same scenario. Then the recognition systems can be compared, such as sign recog-

nition or other vehicles recognition. The combination between a real system and a virtual 

system also opens the door to other experiments such as comparing data collected with a real 

vehicle driving with data from virtual tests. 
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5 Conclusion 

The development of autonomous vehicles will produce many novelties and improvements in the 

future way of travelling. But it is also an important challenge to the automotive industry as a lot 

of changes will happen in the following years. One of these challenges is involved with the val-

idation of autonomous cars. That is, demonstrating that their driving abilities are good enough 

to be allowed to drive autonomously together with other traditional vehicles. 

The validation processes are based on physical tests with real cars and on simulations. The use 

of simulations is widely extended because they allow for a cheaper and faster way to test specif-

ic driving situations. It is in this area of using simulations for the validation of autonomous cars 

where the master thesis idea of comparing systems with simulations appears. The thesis is fo-

cused on developing a method that is able to generate specific scenarios to compare two 

systems and find out in which specific situations the behavior difference between the two sys-

tems is amplified. So a logical scenario describing a driving situation is given with some of its 

parameters set to fixed values and other parameters set to variable values. The method tries dif-

ferent combinations of the variable parameter values searching for a specific solution which 

maximizes the difference between the two systems. 

In order to develop this method, the first part includes the analysis of several scenario genera-

tion papers. These papers test advanced driving assistance systems and autonomous vehicles to 

find critical situations. Based on this previous research, the different approaches to select test 

cases are evaluated. One of the main questions is whether to use a random selection approach 

(coverage) or an iterative process (falsification). The falsification approach is chosen as the base 

method because it focuses the search in the most promising areas, even if it is more complex to 

develop. Between the possible falsification approaches another evaluation is carried out to com-

pare the evolutionary algorithm and the reinforcement learning algorithm. In this case, the 

evolutionary algorithm is selected as the algorithm in charge of selecting the parameter values 

in the comparison process. The reason for this is the parameters that are later chosen as variable 

parameters in the scenario. Reinforcement learning is useful for parameters that have different 

values during the simulation and where the algorithm makes decisions. On the other hand, for 
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variable parameters with constant values during a simulation, the evolutionary algorithm can 

perform better. 

After the algorithm decision, several steps come to configure the fitness function and algorithm 

parameters. The fitness function is defined through the mean absolute percentage error (MAPE) 

formula. This formula serves to compare two sets of values and it gives a scalar value that indi-

cates how different the two systems compared are. This specific formula was chosen because 

the difference is measured as a percentage between the value differences at each point and the 

current value. This value is dimensionless so several different magnitudes can be summed into 

the same fitness value. 

The next part of the method development is the algorithm parameters configuration. The four 

main parameters are population size, number of generations, crossover rate and mutation rate. 

The problem is that each problem requires different genetic algorithm parameter values in order 

to run with a high performance. The solution for this is divided in two parts: The first part in-

cludes the research to understand the interaction between the parameters to what is called the 

exploration-exploitation trade-off. The research part also serves to find some standard values 

that can be used as first values. The second part is related to test different parameter values to 

find out which values perform better. These tests are run in the first experiment with the simula-

tion software. 

In this first experiment a logical scenario is defined, which is an overtaking maneuver. But in-

stead of running simulations with a fixed set of values for the genetic algorithm parameters, 

several test cases are defined. In each test case a specific combination of genetic algorithm pa-

rameter values is set. These cases are run to check which value combination works better.  

After the first experiment, a second experiment with a different scenario is carried out. The ob-

jectives in this case are different. One objective is to check whether the genetic algorithm with 

the previously selected parameter values can also work correctly in other scenarios. So the first 

experiment would work as a training set and this second experiment as a test set. In the second 

experiment another objective is the comparison between different algorithms in the same sce-

nario. Simulations controlled by four algorithms are run to find out which algorithm finds a 

better solution. The four algorithms are two evolutionary algorithms (genetic algorithm and 

evolution strategies) and two coverage methods (Monte Carlo sampling and Latin Hypercube 

sampling). This second scenario is a cut-in maneuver from a truck in front of the ego-vehicle. 

The first results show that the coverage methods can find better solutions than the evolutionary 

algorithms. So in this first simulation rounds the coverage approaches are a better option as they 
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are easier to implement and able to find good solutions. More simulations are run in this second 

scenario. In the next ones the limit of the number of simulations is increased from 500 to 2500 

to check if the evolutionary algorithm can improve their performance with a wider search. The 

algorithms run are the genetic algorithm and the Latin Hypercube sampling. In this case the 

genetic algorithm can find better solutions than the same algorithm before whereas the Latin 

Hypercube sampling does not have any significant change. The final experiment is performed 

with a mixed method with the combination of coverage and evolutionary algorithms. This 

mixed method is able to improve a little the solution compared to the previous methods. 

To sum up, for the scenario tested the use of coverage approaches is a better option than the 

evolutionary algorithms as they are easier to implement and the solutions that they find are 

similar or better than the ones found by the other algorithms. The other possibility is a mixed 

method which starts as a coverage approach and continues as an evolutionary algorithm. This 

mixed method is more complex to develop and configure but their results are something better 

than the ones obtained with other methods. 

After the method development, comes the question about the future improvements and the pos-

sible applications that it may have. Regarding the improvements it would be interesting to 

increase the number of input parameters. This would allow having a customized and very de-

tailed scenario.  

This method can also have several applications in the world of automated vehicles and valida-

tion. One option is the comparison of two virtual models. For example, it could be applied to a 

vehicle that is modelled with two different techniques giving two different models. Then with 

the comparison test, the specific scenarios where the two virtual models behave more different-

ly can be found. And it can be checked why the difference is so big in that specific case. The 

two virtual models to compare can also be a new model update and its previous version. 

Another application area is related to the comparison between a virtual model and the real sys-

tem that the model wants to represent. In order to do this comparison, some concrete scenarios 

should be specified. Then a physical test with the real vehicle or system can be carried out in 

these specific scenarios and the model can be simulated in the scenario virtually defined. With 

the results it would be possible to check in which specific cases the differences are greater. 

Then, these specific cases can be analyzed in detail to understand the reason of this difference. 

Therefore, the model can be improved and become more realistic. 
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Appendix A Result plots for over-
take scenario 

Some of the results obtained in the first scenario simulation are shown next: 

 

Figure A 1: Fitness for test case 2 

 

Figure A 2: Fitness for test case 3 

 

Figure A 3: Input 1 distribution for test case 4 
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Figure A 4: Input 2 distribution for test case 4 

 

Figure A 5: Input 3 distribution for test case 4 

 

Figure A 6: Fitness for test case 5 

 

Figure A 7: Input 1 distribution for test case 5 
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Figure A 8: Input 2 distribution for test case 5 

 

Figure A 9: Input 3 distribution for test case 5 

 

Figure A 10: Fitness for case 6 

 

Figure A 11: Input 1 distribution for case 6 
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Figure A 12: Input 2 distribution for case 6 

 

Figure A 13: Input 3 distribution for case 6 

 

Figure A 14: Fitness evolution for case 7 

 

Figure A 15: Input 1 distribution for case 7 
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Figure A 16: Input 2 distribution for case 7 

 

Figure A 17: Input 3 distribution for case 7 
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Appendix B Result plots for cut in 
scenario 

This subchapter contains graphs obtained during the simulations of the second scenario. 

 

Figure B. 1: Fitness evolution with ES 

 

Figure B. 2: Fitness evolution with ES (2) 

 

Figure B. 3: Fitness evolution with GA 
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Figure B. 4: Fitness evolution with GA (2) 

 

Figure B. 5: Fitness evolution with LHS 

 

Figure B. 6: Fitness evolution with MC 

 

Figure B. 7: Fitness evolution with MC (2) 


