

GRADO EN INGENIERÍA EN TECNOLOGÍAS

INDUSTRIALES

TRABAJO FIN DE GRADO

INVERTED PENDULUM TEST RIG FOR CLOSED LOOP

CONTROL DEMONSTRATIONS

Autor: Carmen Mora-Figueroa Cruz-Guzmán

Director: Enrique S. Gutiérrez-Wing

Madrid

Junio de 2019

Scanned by CamScanner

Scanned by CamScanner

GRADO EN INGENIERÍA EN TECNOLOGÍAS

INDUSTRIALES

TRABAJO FIN DE GRADO

INVERTED PENDULUM TEST RIG FOR CLOSED LOOP

CONTROL DEMONSTRATIONS

Autor: Carmen Mora-Figueroa Cruz-Guzmán

Director: Enrique S. Gutiérrez-Wing

Madrid

Junio de 2019

Inverted pendulum test rig for closed-loop control demon-
strations

Autora: Mora-Figueroa Cruz-Guzmán, Carmen

Director: Gutiérrez-Wing, Enrique S.

RESUMEN DEL PROYECTO

Conseguir el equilibrio de un péndulo invertido es un problema de control completo
y ejemplificador, que es muy útil a la hora de explicar conceptos como la controlabi-
lidad y observabilidad de un sistema o la imposición de polos. El sistema f́ısico que
vamos a estudiar en este proyecto, de forma simplificada, está formado por una base
y un péndulo que, a través de un control aplicado al sistema, trata de conseguir que
el péndulo se mantenga en equilibrio siguiendo el eje vertical y (con el centro de masa
del péndulo por encima del centro de gravedad del sistema). Además, con el control se
pretenderá que el péndulo vuelva siempre a su coordenada original, ya que el espacio
que tiene la base para recorrer es limitado. El problema se puede reducir a un plano,
mov́ıendose la base a lo largo del eje x y el péndulo siguiendo un movimiento circular
de radio la longitud del péndulo L.

En este proyecto se va a estudiar la aplicación de un sistema de control para
conseguir el equilibrio de un péndulo invertido. Este control se aplicará a un siste-
ma mecánico real, formado en principio por una base, un motor, un péndulo y una
placa de control Arduino. Este proyecto servirá como fundamento para la asignatura
Senior Design I, impartida en la universidad Boston University (Boston, EEUU). Se
analizarán diversos métodos de control con sus respectivos beneficios y limitaciones,
incluyendo un control P (Proporcional), un control PD (Proporcional Derivativo),
un control PI (Proporcional Integral), un control PID (Proporcional, Integral y De-
rivativo), un control por imposición de polos y un control LQR (Linear Quadratic
Regulator). El sistema f́ısico será tenido en cuenta en este proyecto, pero el montaje
será llevado a cabo como parte del trabajo de fin de grado del compañero de escuela
Miguel Rodŕıguez.

Con este trabajo de fin de grado se busca conseguir un proyecto simple, ejempli-
ficador y replicable. Se quiere conseguir un prototipo que cubra diversos conceptos
teóricos (en particular el diseño de un control PID, un método de ajuste del control y
los parámetros para el diseño de este), que ejemplifique distintos métodos de control
y su eficacia, y que ayude al alumno a lidiar con los problemas que surjan al tratar
con un sistema real imperfecto que siga un modelo teórico.

9

Con el proyecto se pretenden conseguir por tanto los siguientes objetivos:

• Aplicar una forma de control a un sistema inestable.

• Facilitar la comparación del uso de diferentes estrategias de control en un sis-
tema mecánico.

• Comprobar la fiabilidad de un modelo teórico en comparación con el sistema
f́ısico que representa.

• Evaluar resultados de forma metódica y cient́ıfica, y redactar un informe oficial
que sea legible, riguroso y que aporte información nueva de interés.

• Conseguir un proyecto que pueda ser replicable en una asignatura oficial de la
universidad Boston University por otros alumnos (se quiere reducir el tiempo
que se requiere para diseñar y construir este sistema).

Con el fin de conseguir los objetivos expuestos anteriormente, se ha seguido un
exhaustivo modelo de trabajo:

En primer lugar, se ha hecho un estudio teórico a fondo del sistema f́ısico: se ha
definido el modelo de estado del sistema evaluando las ecuaciones en forma diferencial
y después se han linealizado en torno a un punto de equilibrio para poder aplicar los
distintos controles.

En segundo lugar, se han estudiado los distintos controles que podŕıan ayudarnos
a conseguir nuestro objetivo de estabilizar el péndulo: control P, control PD, control
PI, control PID, posicionamiento de polos y regulador LQR. Tras el estudio nos
hemos decantado por el más adecuado siguiendo los criterios de eficacia y mejor
relación potencia necesaria para su correcto funcionamiento frente a amortiguamiento,
y también teniendo en cuenta cuál seŕıa el más ejemplificador para el estudiante.
Después de haber elegido el control más adecuado, se ha implementado el controlador
en Arduino UNO. Relativo al Arduino se han tratado los temas de los interrupts
para el correcto traspaso de instrucciones del programa al sistema f́ısico, el cálculo
del ángulo que forma el péndulo con la vertical a través de las medidas disponibles y,
por último, la programación e implementación del control.

En tercer lugar, se ha analizado el funcionamiento del sistema f́ısico. Se han elegido
los elementos adecuados para conseguir un sistema f́ısico sencillo pero funcional y al
que se le pueda aplicar el control elegido anteriormente. Se ha construido el sistema de

10

cero, eligiendo los distintos componentes que lo formen, como por ejemplo el tipo de
motor (motor DC o motor paso a paso) o el tipo de transistores (BJT o MOSFETs),
y diseñando y montando el circuito que lo controla. Este diseño ha tenido en cuenta
el dimensionamiento del sistema teniendo en cuenta temas f́ısicos y relacionados con
la programación del control, incluyendo el torque del motor, la velocidad de respuesta
del sistema, la inercia de la base y el péndulo y la fricción existente por el contacto
entre las bandas y el motor. Todos estos elementos se han tenido en cuenta de forma
emṕırica. Este paso ha incluido pruebas preliminares para comprobar la eficacia del
control, aplicándolo a un motor DC, con el que buscamos conseguir una determinada
velocidad constante en el mı́nimo tiempo posible teniendo en cuenta detalles como el
sobrepaso y el amortiguamiento de la respuesta del sistema.

La base teórica del proyecto se ha basado en información encontrada en búsquedas
por internet y en la biblioteca, f́ısica y virtual, de la universidad de Boston University,
además de apuntes correspondientes a diversas asignaturas cursadas a lo largo de la
carrera. Se pueden encontrar las obras consultadas en el apartado de Referencias.
Para desarrollar el modelo teórico en el que se ha basado el proyecto se ha utilizado
la herramienta Matlab. El control del sistema f́ısico se ha desarrollado en Arduino.
Para la elaboración de la memoria se ha usado el sistema de composición de textos
LATEX, espećıficamente a través de la plataforma online Overleaf.

El proyecto f́ısico se ha desarrollado con recursos e instalaciones de Boston Uni-
veristy, incluyendo los laboratorios en EMA (Engineering Manufacturing Annex), y
siguiendo la tutela e instrucciones del director de proyecto Enrique Gutiérrez-Wing.

Tras haber realizado el proyecto, podemos decir que entre los controles basados en
la representación de estados, el regulador LQR es el método de control más cómodo
y sencillo de usar, y tiene más ventajas que el posicionamiento de polos. De todas
formas, nos decantamos por utilizar el control PID por temas educativos. Este control
requeŕıa un esfuerzo un poco mayor en cuanto a programación y los pasos que se teńıan
que seguir para implementarlo teńıan una estructura lógica y fácilmente entendible.

Durante la realización del proyecto, nos encontramos con varios contratiempos.
Aunque las pruebas preliminares fueron sencillas, la implementación en el sistema
real fue más complicada. El mayor problema al que tuvimos que hacer frente fue en
relación a los acelerómetros que colocamos en el péndulo. Estos teńıan más ruido del
esperado, por lo que fue imposible usar la información que provéıan para calcular
el ángulo. Aunque podŕıamos haber resuelto los problemas de precisión añadiendo
un giroscopio (podŕıamos haber usado directamente un IMU, Inertial Measurement
Unit), nos decantamos por una solución más sencilla y cambiamos de dispositivos de

11

lectura pasando a usar un encoder.

12

Inverted pendulum test rig for closed-loop control demon-
strations

Author: Mora-Figueroa Cruz-Guzmán, Carmen

Director: Gutiérrez-Wing, Enrique S.

SUMMARY OF THE PROJECT

Achieving the equilibrium of an inverted pendulum is a control problem complete
and exemplifying, which is very helpful when trying to explain concepts such as the
controllability and the observability of a system or the imposition of poles. The
physical system we are going to study in this project, in a simplified way, will be
formed by a base and a pendulum that, through a control applied to the system, will
try to have the pendulum stay in equilibrium following the vertical axis, being the
center of mass of the pendulum above the center of gravity of the system. We want to
therefore turn an unstable system into a stable one. The problem can be reduced to a
plane, with the base moving across the x axis and the pendulum following a circular
movement with radius L (length of the pendulum).

In this project, we will study the application of a control system to an inverted
pendulum. This control will be later applied to a real mechanical system, formed
in a first instance by a base, a motor, a pendulum and an Arduino control board.
This project will serve as a basis for the subject Senior Design I, imparted in the uni-
versity Boston University (Boston, USA). Different types of control will be studied
with their corresponding advantages and limitations, such as a Proportionate Control
(control P), a Proportionate Derivative Control (control PD), a Proportionate Inte-
grate control (PI control), a Proportionate, Integrate and Derivative Control (control
PID) and a Linear Quadratic Regulator (LQR regulator). The physical system will
be considered in this project, but the actual building of the system will be carried
out as part of a different final degree project.

The aim of this final degree project is to obtain a simple, exemplifying and repli-
cable model. We want to obtain a prototype that covers several theoretical concepts
and that shows different methods of control and their efficiency (in particular the
design of a PID control, a method for its adjustment and the obtainment of the pa-
rameters for the design), and helping the student following this project learn how to
deal with the problems that arise from working with an imperfect system that follows
a perfect theoretical model.

13

With this project we are therefore trying to achieve the following objectives:

• Apply a form of control to an unstable system

• Facilitate the comparison of the use of different types of control in a mechanical
system

• Test the reliability of a theoretical model compared to the physical system it is
trying to represent

• Evaluate the results in a methodical and scientific way, and write a report that
is legible, rigorous and that contributes with new information that can be of
interest to the reader

• Procure a project that can be replicable in an official subject of the university
Boston University by other students (the aim is to reduce the time needed to
design and build the system presented in this report)

To reach these goals, we have followed an exhaustive work model:

Firstly, a thorough study of the system has been carried out. The equations that
govern the behaviour of the system have been obtained and the state space model
of the system defined. The equations were differential, and we linearized them to be
able to apply the different controls.

Secondly, we studied the different controls that could help us reach our goal of bal-
ancing the pendulum: P control, PD control, PI control, PID control, LQR regulator
and pole placement. After a study of the different controls we settled for the most
adequate control, following a criterion of efficiency and best ratio power used versus
damping. We also considered the educational value of each one. After deciding what
the best control was, we implemented it in Arduino. Regarding Arduino, we had to
take into account the interrupts for the correct translation of orders from the board
to the physical system, the calculation of the appropriate state variable through the
measurements available and the actual control programming.

Lastly, we studied the functioning of the physical system. We chose the most
adequate elements to obtain a simple but functional physical system, one to which
we could apply the control chosen previously. We had to design the system from the
very beginning, having to decide the type of motor (DC motor or a steps motor) or
the types of transistors (BJT or MOSFET) we were going to use, and designing and

14

building the necessary circuits. This design has taken into account the torque of the
motor, response speed, inertia of the base and pendulum and the contact between
the bands and the motor. All these elements we took into account empirically. This
step included preliminary tests to check the efficiency of the control through simple
tests with a DC motor which we wanted to have reaching a certain constant velocity
in the least time possible, looking at details like the damping of the system.

The theoretical background of the project has been based on information found on
the internet and on books in the library, physical and virtual, of Boston University,
as well as notes taken in classes taken all though the engineering degree. To check
the works consulted for the elaboration of this project, go to the section References.
To develop the model we used the tool Matlab. The control system was developed for
Arduino. For the elaboration of the report we used the text composition tool LATEX,
more specifically through the online platform Overleaf.

The physical project will be developed through resources and facilities belonging to
Boston University including the laboratories that can be found in EMA (Engineering
Manufacturing Annex), and following the instructions of director Enrique Gutiérrez-
Wing.

After doing the project, we can conclude that out of the controls based on the
state-space modeling of the system, the easiest and most convenient to use is the
LQR regulator. Its benefit compared to pole placement are also higher, as explained
in the report. Nonetheless, we chose to work with the PID control for educational
reasons. This control required to put more effort in its programming, and the steps
that had to be followed had a very coherent and easy to understand structure.

During the carrying out of the project we had to face several challenges. Although
the preliminary run tests were fairly easy, the implementation of the control on the
actual system was more complicated. The biggest problem we had to solve was
regarding the accelerometers. The noise we had to deal with was higher than expected,
and it made calculating the angle with the information provided by them impossible.
We could have solved the problem adding a gyroscope, or directly using an IMU
device, but we chose to look for an easier solution and used an encoder instead.

15

Contents

1 Introduction 19

2 Theoretical Study of the System 19
2.1 State Space Model . 19
2.2 Poles and Stability of the System . 26
2.3 Controllability and Observability of the System 27

3 Control Systems 29
3.1 Proportionate Control (P) . 31
3.2 Proportionate Integral Control (PI) 31
3.3 Proportionate Derivative Control (PD) 32
3.4 Proportionate Integral Derivative Control (PID) 32
3.5 Pole placement . 32
3.6 LQR Regulator . 34

4 Arduino 36
4.1 Interrupts . 36
4.2 Run tests . 37

5 Physical Implementation 41
5.1 Accelerometers ADXL 335 . 42
5.2 Encoder . 45

6 Conclusions 46

7 Annex 1 49

8 Matlab Codes 51
8.1 Code for the differential equations defining the system 51
8.2 Code for original functions and linearized functions 53
8.3 Study of the observability and controllability of a system 57
8.4 Control through pole placement and a LQR regulator 58

9 Arduino Codes 61
9.1 Code for setting a constant velocity in brushed DC motor 61
9.2 Code for implementing a constant velocity in brushed DC motor through

a PID control . 63
9.3 Code for calibrating the accelerometers 65
9.4 Code for reading from the accelerometers and calculating θ 67

17

1 Introduction

In this project, we will analyze how to achieve the equilibrium of an inverted pendulum
using a closed loop control system. This is a very clarifying example, that will allow
us to study, analyze and compare different types of control such as Proportionate,
Integral and Derivative control (PID control), Linear Quadratic Regulator (LQR
regulator) or pole placement. It is also useful when trying to explain more abstract
concepts such as the controllability or observability of a system.

Our system can be reduced to a two dimensional problem. We will study the
behaviour of the base and pendulum in the XY plane, with rectilinear movement in
the x axis for the base and circular movement of the pendulum over the XY plane.
Our output will depend on three main variables we have control over: the type of
control system we apply, the parameter K (Kp, Ki and Kd when applying a PID
control), and the sample time. This last variable is not very flexible though, since we
need to take into consideration the reaction time of the microprocessor we use and
will therefore be limited by it. A small sample time will make the digital response
more similar to the analog one we are looking to implement. If it is too small though,
the computational load might be too big for the microprocessor, and calculations
of small numbers could be problematic (for example, the integrate action could be
cancelled) [Aut19a].

The stabilization of an inverted pendulum has already been faced in other studies,
but the approach followed has been mostly theoretical. We want this project to
also focus on the physical system, with all its imperfections and problems and its
corresponding solutions. The physical set up of the system will be carried out by
Miguel Rodŕıguez, as part of his Senior Final Project.

2 Theoretical Study of the System

We will define the equations that govern the movement of the system formed by
the base (or cart) and pendulum through Newton’s Second Law (F = ma). After
linearizing those equations, we will put them in matrix form and build the state space
model of the system (Ẋ = AX +BU ; Y = CX +DU). With our system defined, we
will be able to study its poles and stability and its observability and controllability.

2.1 State Space Model

We will define the following variables: M for the mass of the base, m for the mass
of the pendulum, and L for the length of the pendulum. We will establish the angle
θ as positive following what is expressed in Figure 1: counterclockwise, with θ = 0°

19

Figure 1: System formed by a cart and inverted pendulum

for pendulum coordinates x(t)=x, y(t)=+L. F is the force applied to the cart, T the
tension that appears across the length of the pendulum, N the normal force that
appears between floor and base and g the force of gravity.

To apply Newton’s Second Law, we will construct the free body diagrams (FBD)
of the pendulum and cart (shown in figures 2 and 3) and apply it separately to the
system divided by axis x and y. By doing force equilibrium and taking the acceleration
of the body as the second derivative of its displacement, we can obtain the following
equations for the base and the pendulum respectively:

Figure 2: FBD of the base Figure 3: FBD of the pendulum

{
~i ≡ F − T sin(θ) = Mẍ
~j ≡ N + T cos(θ)−Mg = 0

{
~i ≡ T sin(θ) = m d2

dt2
(x− L sin θ)

~j ≡ T cos(θ) +mg = −m d2

dt2
(L cos θ)

Calculating the second derivative of the displacement of the pendulum in x and y
we obtain:

d2

dt2
(x− L sin θ) = ẍ− Lθ̈ cos θ + Lθ2 sin θ

20

d2

dt2
(L cos θ) = −Lθ̈ sin θ − Lθ2 cos θ

Replacing these derivatives in the original equations, we have the following equa-
tions: {

T sin(θ) = m(ẍ− Lθ̈ cos(θ) + Lθ̇2 sin(θ))

T cos(θ) +mg = m(Lθ̈ sin(θ) + Lθ̇2 cos(θ))

The next step is to get rid of T. To do so we will multiply by cos(θ) and by sin(θ)
the pendulum equations for~i and ~j respectively and then add them. We are left with
the next equation:

−mg sin(θ) = mẍ cos(θ)− Lθ̈m

To have a second equation in our system of equations we will replace T sin θ in the
base î equation by that found in the pendulum î equation. We obtain the following
system of two equations with two variables (x and θ):{

−mg sin(θ) = mẍ cos(θ)− Lθ̈m
F +mLθ̈ cos(θ)−mLθ̇2 sin(θ) = (m+M)ẍ

To solve for ẍ and θ̈, we can put the equations in matrix form and do as follows:(
m cos(θ) −Lm
m+M −mL cos(θ)

)(
ẍ

θ̈

)
=

(
−mg sin(θ)

F −mLθ̇2 sin(θ)

)

Now we can do a simple inversion (M1M2 = M3 ⇒ M2 = M−1
1 M3). We are left

with the following equations for ẍ and θ̈:

ẍ =
F −mLθ̇2 sin(θ) +mg sin(θ) cos(θ)

m+M −m cos2(θ)

θ̈ =
mLθ̇2 sin(θ) cos(θ)− F cos(θ)− (m+M)g sin(θ)

mL cos2(θ)− L(m+M)

To apply our controls, we will need to describe the system in matrix form and
define the state space model. To be able to obtain the matrices describing the move-
ment of the system, we have to linearize the equations. We can do so considering

21

the variation of θ very small around the equilibrium points (θ = 0°, θ = 180°). A
definition for equilibrium point is to say that, if the system started at said point, it
would not leave it [Dja18]. If we linearize these equations taking the first element of
the Taylor series for the sines and cosines (sin(θ) = θ, cos(θ) = 1), and establishing
that squared values are small enough to be considered infinitesimals (θ̇2 = 0), we
obtain:

ẍ =
F +mgθ

M

θ̈ =
F + gθ(m+M)

LM

After taking these steps, the system can be defined as follows:{
Ẋ = AX +BU
Y = CX +DU


ẋ

θ̇
ẍ

θ̈

 =


0 0 1 0
0 0 0 1
0 mg

M
0 0

0 g(M+m)
LM

0 0



x
θ
ẋ

θ̇

+


0
0
1
M
1
LM

F

Y =

(
1 0 0 0
0 1 0 0

)
x
θ
ẋ

θ̇

+

(
0 0 0 0
0 0 0 0

)
F =

(
1 0 0 0
0 1 0 0

)
x
θ
ẋ

θ̇


In Matlab, we can solve the differential equations through the functions dsolve

and diff (subsection 8.1 ”Code for the differential equations defining the system”).
This code can be used as an example of how to write differential equations in Matlab.
In our case they are not especially useful though, since the system is unstable and
thus Matlab will not be able to find an explicit solution. The solution for this system
in any case would be a trivial one, being the point of operation the equilibrium point.
In subsection 8.2 ”Code for original functions and linearized functions”, we use the
function ode45 which is based on the Runge-Kutta formulas of 4th and 5th orders to
resolve ordinary differential equations [Sir+04]. We also apply a simple PD control to
the system, using the angle for the proportionate action and the angular velocity of
the pendulum for the derivative action. We can see that although the control can be
applied to the linearized system (figures 4, 5 6), applying it to the non linear system
does not stabilize the system (figures 7, 8, 9).

22

Figure 4: Force F, linear system

Figure 5: Position x and velocity v, linear system

23

Figure 6: Angle θ and angular velocity w, linear system

Figure 7: Force F, original system

24

Figure 8: Position x and velocity v, original system

Figure 9: Angle θ and angular velocity w, original system

25

2.2 Poles and Stability of the System

The stability of a given system depends on the eigenvalues of its matrix A (Ẋ(t) =
AX(t) + BU(t)), which will define the poles of the system. These eigenvalues define
the envelope function that describes the fading of a function, which will set the
damping and natural frequency of the system, which means that for a system to be
stable, it has to have negative eigenvalues so that it fades with time and reaches a
constant value.

To obtain the eigenvalues of the open loop system, we need to solve the charac-
teristic polynomial:

∣∣ A− λI ∣∣ =

∣∣∣∣∣∣∣∣
−λ 0 1 0
0 −λ 0 1
0 mg

M
−λ 0

0 g(m+M)
LM

0 −λ

∣∣∣∣∣∣∣∣ = 0

∣∣ A− λI ∣∣ = −λ

∣∣∣∣∣∣
−λ 0 1
mg
M

−λ 0
g(m+M)
LM

0 −λ

∣∣∣∣∣∣ = −λ((−λ)3 − −λg(M +m)

LM
) = 0

∣∣ A− λI ∣∣ = −λ2(−λ2 +
g(M +m)

LM
) = 0

We obtain then the following eigenvalues:

λ1 = 0(2)

λ2 = ±
√
g(M +m)

LM

As we can observe, this system has the eigenvalue 0 with multiplicity 2, and one
positive eigenvalue. The system is clearly unstable and it is with the application of
our control that we will be able to stabilize the system. We will apply a negative feed
loop control. If we take for example u = −Kx as our control, we will have different
eigenvalues than before:

ẋ = Ax+Bu = Ax−BKx = (A−BK)x

Now the poles of the system are defined by the eigenvalues of A−BK, which we
can make negative. Different controls will give us different Ks, as we will be able to
see further on in this report.

26

2.3 Controllability and Observability of the System

When we say that a system is controllable, it means that is can be transferred from
an initial state x(t = t0) = x0 to any other state x(t = t1) = x1 in a finite time
t1 − t0 ≥ 0 [Fri86]. We can determine the controllability of the system through the
controllability gramian W (t0, t1):

W (t0, t1) =

∫ t1

t0

φ(t0, t)B(t)Bᵀ(t)φᵀ(t0, t)dt

Where φ(t0, t) is the state transition matrix of the system. A system is control-
lable if the controllability gramian is non singular or invertible for any t > 0. More
information on this matrix and the controllability gramian in Annex I.

Another way of determining whether a system is controllable is through the matrix
C (not to confuse with the matrix C from the state space model). For a system to
be controllable, the matrix C has to be full ranked.

C =
(
B AB A2B ... An−1B

)

B =


0
0
1
M
1
LM



AB =


0 0 1 0
0 0 0 1
0 a32 0 0
0 a42 0 0




0
0
1
M
1
LM

 =


1
M
1
LM

0
0



A2B =


0 a32 0 0
0 a42 0 0
0 0 0 a32
0 0 0 a42




0
0
1
M
1
LM

 =


0
0
a32
LM
a42
LM



A3B =


0 0 0 a32
0 0 0 a42
0 a32a42 0 0
0 a242 0 0




0
0
1
M
1
LM

 =


a32
LM
a42
LM

0
0



27

C =


0 1

M
0 a32

LM

0 1
LM

0 a42
LM

1
M

0 a32
LM

0
1
LM

0 a42
LM

0


Since the matrix C is rank 4, the system is controllable. We can also check the con-

trollability of a system directly in Matlab through the command contr=rank(ctrb(sys_ss)),
which gives you the rank of the C matrix [Aut].

Note: a32 = mg
M

, a42 = g(M+m)
LM

When referring to a system as observable, we mean that a state xt can be inferred
by having a finite record of the output y(τ) (t0 ≤ τ ≤ t1) [Fri86]. The observability
of a system can be determined through the observability gramian M(t0, t1):

M(t0, t1) =

∫ t1

t0

φᵀ(t0, t)C
ᵀ(t)C(t)φ(t0, t)dt

The system is observable if the observability gramian is non singular. More infor-
mation on said gramian in Annex I.

Another easy way of checking whether a system is observable is establishing if the
matrix O is fully ranked.

O =


C
CA
CA2

...
CAn−1


C =

(
1 0 0 0
0 1 0 0

)

CA =

(
1 0 0 0
0 1 0 0

)
0 0 1 0
0 0 0 1
0 a32 0 0
0 a42 0 0

 =

(
0 0 1 0
0 0 0 1

)

CA2 =

(
1 0 0 0
0 1 0 0

)
0 a32 0 0
0 a42 0 0
0 0 0 a32
0 0 0 a42

 =

(
0 a32 0 0
0 a42 0 0

)

28

CA3 =

(
1 0 0 0
0 1 0 0

)
0 0 0 a32
0 0 0 a42
0 a32a42 0 0
0 a242 0 0

 =

(
0 0 0 a32
0 0 0 a42

)

O =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 a32 0 0
0 a42 0 0
0 0 0 a32
0 0 0 a42


The range of the matrix O is 4, and therefore the system is observable. We

can also check the observability of a system directly in Matlab through the command
obser=rank(obsv(sys_ss)), which gives you the rank of the matrix O directly [Aut].

Note: a32 = mg
M

, a42 = g(M+m)
LM

In section 8.3 ”Study of the observability and controllability of a system” we can
see the application of the before mentioned Matlab functions to check the observability
and controllability of our system.

3 Control Systems

Physical systems are normally flawed, with issues stemming from retards in signal
flows to the existence of perturbations. We define as perturbation conditions that
make the theoretical model differ from the real system. Although perturbations can
be considered when designing a control, it is not in the scope of this project. For
example, a perturbation in our system will be friction, a variable we did not take into
account while defining our theoretical model. A control system allows the designer
to reduce those errors that occur because of physical imperfections.

There are two main types of systems, open loop and closed loop systems. Open
loop systems receive an input and exit an output which depends on the model of the
system or plant. The output of the system depends only on the plant and it does not
take into account physical imperfections. Thus, there will always be present an error,
a difference between the desired output and the real output. In the case of closed

29

loop systems, information about the output is fed back constantly to the beginning
of the control system and compared to the input to make the necessary changes that
will make the error as small as possible [Mac+18].

We will use the following nomenclature to define the variables in the controller:

• u(t): input, control signal (voltage)

• r(t): reference, desired value of the output (voltage equivalent to θ = 0°)

• x(t): state variable (angle θ, position x)

• y(t): output of the system

• ym(t): the measured output (voltage coming from the encoder)

• e(t): error, the difference between the desired output and the real one (e(t) =
r(t)− ym(t))

There are different types of control systems, and these are implemented through
the programs that govern the actions of the physical system. In the case explored
in this report, an inverted pendulum, the control will be applied to the voltage that
controls the motor that administers the force on the base and which will allow us to
balance the system. We will be constantly measuring the position of the base and the
angle formed between the arm of the pendulum and the vertical axis. The input of
the system will be the voltage applied to the motor and the output will be a voltage
provided by the device used to measure the position of the pendulum, through which
we will calculate the angle between the vertical axis and the pendulum.

To visualize the controls it is useful to use block diagrams. Instead of using the
space model to create the diagram, which makes it messier and more complicated
to understand than necessary, we can derive the transfer function that models the
plant from the space model matrices and apply the control directly to it. We can
obtain this transfer function through the Matlab function sys=tf(ss(A, B, C, D).
For M=0.5 kg, m=0.1 kg and L=0.2 m, we obtain the following transfer function:

P (s) =

(
2s2+1.95∗10−14−98.1

s4−8.88∗10−16s3−58.86s2
10s2

s4−8.88∗10−16s3−58.86s2

)
This matrix has two terms, one for each output (x, θ). Depending on what state

we are controlling, we will use one term or the other in our block diagram.
To have a first contact with the system’s controls we will use Matlab. We will

simulate each control and evaluate their efficiency. We will then use our findings to
program the best control on Arduino. We will decide which is the best control taking
into consideration the rapidness and damping of the output.

30

3.1 Proportionate Control (P)

Figure 10: Control P State Space Model

This is the most simple control we can apply to a system. The input varies
depending on the output: if the output measured deviates a lot from the desired
output, the change in response will be bigger than if the deviation is small. As shown
in figure 10, the change of input follows the next equation:

u(t) = Kpe(t)

As we can observe in this equation, if the pendulum is falling to the left with a
positive angle, the control will apply a negative force to the left, since r(t) = 0 and
ym(t) > 0, resulting in a negative control signal (u(t) < 0).

3.2 Proportionate Integral Control (PI)

Figure 11: Control PI State Space Model

For this type of control we will apply an integral component to the control, to help
the proportionate control eliminate the signal following and the perturbation errors.
We can see in figure 11 how the change of input follows the next equation for the PI
control:

u(t) = Kpe(t) +Ki

∫ t

0

e(t) dt

31

3.3 Proportionate Derivative Control (PD)

Figure 12: Control PD State Space Model

To make the control faster, improve the damping coefficient or make the output
more precise, we add the derivative component to the proportionate control. It can
be defined as the following:

u(t) = Kpe(t) +Kd
de(t)

dt

3.4 Proportionate Integral Derivative Control (PID)

Figure 13: Control PID State Space Model

We can add all three controls for the best results:

u(t) = Kpe(t) +Ki

∫ t

0

e(t) dt+Kd
de(t)

dt

The values for Kp, Ki and Kd are chosen arbitrarily through trial and error, as
we will see further on in subsection 4.2 ”Run tests”.

3.5 Pole placement

As explained before, the stability of a given system depends on the eigenvalues of
its matrix A, which will define the poles of the system. These eigenvalues define the

32

envelope function that describes the fading of a function, which will set the damping
and natural frequency of the system. If a system is controllable, we can force a system
to have any pole values that we want with the function for pole placement in Matlab.
We will set real, negative values, so that the function fades with time and doesn’t
grow to infinite (14). The more negative the poles, the more stable the system, but
also the higher the overshoot, the bigger the control signal that is needed and the
higher the chance of saturation (figure 15).

For pole placement we will use the function K=place(A, B, p), where A and B
are the state matrices that define the system and p is a vector with the location of
the poles that want to be imposed. The solution to this function is the K that can
be used in the close loop system, and can be defined as a type of proportional control
[Gar+16]. This type of control would have a feedback u = −Kx such that the values
in the vector p are as close as possible as the eigenvalues of the closed loop A−BK
(section 2.2).

Figure 14: Pole placement

Pole placement, although being very convenient at times, can also pose some
problems. For example, the case might be when you do not know where the poles
have to be placed. It can also happen that you saturate the signals if you place the
poles too far away from the origin, or you might find that your power source is not
able to create a signal big enough to place the poles where you specified [Fri86]. It is
then useful to look at other types of control like the LQR regulator.

33

Figure 15: Pole placement with more negative values

3.6 LQR Regulator

A Linear Quadratic Regulator (LQR regulator) is based on the minimization of the
cost function J for a given linear control law u(t) = −Kx(t) [Alo10]. This cost
function is defined as:

J =

∫ ∞
0

(x(t)ᵀQx(t) + u(t)ᵀRu(t) + 2x(t)ᵀNu(t)) dt

We will use the Matlab expression [K,S,e] = lqr(A,B,Q,R,N) to minimize said
function, where A and B define the system, Q is a weighing matrix and has to be
a symmetric positive semi-definite matrix, R is another weighing matrix and has to
be symmetric and positive definite and N is almost always 0. Positive semi-definite
matrix means that the product zᵀAz (scalar) has to be zero or positive, while for
positive definite, that same product has to be strictly positive. z is every non zero
column vector of size n (A being of size nxn). The term x(t)ᵀQ(t)x(t) represents
the penalty for the state x deviating from the origin and Q estates how much each
component of the state vector matters in the control relative to each other, and the
term u(t)ᵀR(t)u(t) is intended to limit the magnitude of the control signal u(t) [Fri86].

For choosing Q we will follow a simple reasoning. Since we are interested in our
input related to how it affects our output (y = Cx), we will establish the following
criterion:

y = Cx

34

y2 = xᵀCCᵀx

Q = CCᵀ

We can follow a similar approach for choosing R. We have to consider that although
sometimes the designer wants the signal to saturate because it is the fastest way to
get a response, this is not our case, since a saturated signal can make the system
deviate from the predicted model and become unstable. We will then choose a large
R.

The solution that minimizes J is u = −Kx, where K = R−1(BᵀP +Nᵀ) and P is
the solution to the Riccati equation

AᵀP + PA− (PB +N)R−1(BᵀP +Nᵀ) +Q = 0

[Aut19b]. The solution given by the Matlab expression is K as defined previously, S
is equal to the previously defined P (solution to the associated Riccati equation) and
e are the eigenvalues associated to A-BK.

We can solve a problem with a LQR regulator on Matlab, as seen in section
8.4 ”Control trough pole placement and a LQR regulator”. We can also see the
difference in efficiency depending on the values given to Q: the bigger the matrix, the
more quickly the system responds:

Figure 16: Q=CC’

35

Figure 17: Higher values in Q

4 Arduino

Arduino is a company that distributes open sourced hardware and software. We chose
to use its components because of how easy it is to learn about it and interact with
it, and because of the great amount of information available online provided by its
wide community of users. In this project we have used the board Arduino UNO to
apply the control systems to our inverted pendulum. In this section we will discuss
the use of interrupts, the preliminary tests runs we did to test our controls and the
final control.

4.1 Interrupts

Interesting characteristics that this project allows us to explore are the interrupts. In
Arduino, interrupts are used to pause whatever action the microprocessor is carrying
out at that moment and execute a different action. After this later action has been
fulfilled, the microprocessor goes back to whatever action it was taking on before
the interrupt. We will use interrupts in this project for reading the input from the
encoder, so we do not miss any pulse readings. If we did not use interrupts for reading
the pulses coming from the encoder, the program could be carrying out a different
function at the moment of an incoming pulse and miss its reading.

We will not use directly the function interrupt(). Instead, we will use the
functions millis() and micros(), which use interrupts to work. Their aim is to count
the milliseconds or microseconds (respectively) that have passed since the function
they find themselves in started working. We will also use delayMicroseconds(us),

36

which pauses the program for the amount of us specified.

4.2 Run tests

Figure 18: Physical system composed by Arduino UNO board, brushed DC motor,
encoder and corresponding circuit

Before applying the control to the final system, we first did some preliminary runs
with a simple brushed DC motor. We used an encoder to measure pulses and used
that pulse count to calculate the velocity of the motor. As seen in section 9.1 ”Code
for setting a constant velocity in brushed DC motor”, a constant velocity can be
reached easily without a control, augmenting the velocity if the current one is below
the target, and reducing it if it goes above. This is not very efficient though, and the
velocity is constantly fluctuating. In section 9.2 ”Code for implementing a constant
velocity in brushed DC motor through a PID control” we can find the applied control
to the system (figure 18). Our aim was to reach a steady velocity of 2200 rpm in the
minimum time possible.

For connecting the Arduino board and the physical system, we had to use a simple
circuit that would allow current and signal flows. We followed the one proposed
by Professor Enrique Gutiérrez in class ME360. As shown in figure 19, we used a
P30N06LE MOSFET, a 1k resistor and a 10k resistor.

Regarding the control, the most critical part was deciding in the values for the
different Ks. As mentioned before, the values for Kp, Ki and Kd are chosen arbitrarily.
While varying the different K values we observed how much each component of the

37

Figure 19: Circuit connecting Arduino and motor

control (proportionate, integral and derivative) affected the output. To decide which
were the best values, we took all our trials and entered the values for the different
Ks, the maximum velocity reached (wmax) and the time it took for the system to first
reach the target velocity (trise) in Excel. We then ordered the information following
several criteria, including which were the fastest controls (lowest trise) and the ones
with less dumping (highest wmax). We then chose the most representative trials to
plot in Matlab and later analyze them. We chose to plot the trials with the following
K values, as shown in table 1:

Control Kp Ki Kd

PID 0.003 0.03 0.015
PID 0.015 0.03 0.015
PI 0.003 0.03 0
PD 0.003 0 0.015
P 0.015 0 0

Table 1: Most representative trials, with Kp, Kd and Ki values

Arduino allows you to plot the data it reads from the Arduino board through its
tool Serial Plotter. The precision of these graphs is not very high though, so to treat
the data we decided to copy and paste the values produced by the tool Monitor Serie,
and then process them on Matlab. We used a simple code to treat them, taking off
the initial zero values (kick off values):

1 thresh=0;
2

3 indb=f i nd (datos b (: , 2)<=thresh) ;

38

4 indb=max(indb) ;
5 datos b=datos b ((indb : end) , :) ;
6 t0b=datos b (1 , 1) ;
7 datos b (: , 1)=datos b (: , 1)−t0b ;
8

9 indc=f i nd (dato s c (: , 2)<=thresh) ;
10 indc=max(indc) ;
11 dato s c=dato s c ((indc : end) , :) ;
12 t0c=dato s c (1 , 1) ;
13 dato s c (: , 1)=dato s c (: , 1)−t0c ;
14

15 f i g u r e (1) , p l o t (datos b (: , 1) , datos b (: , 2) , da to s c (: , 1) , da to s c (: , 2))

Listing 1: Treating Arduino data

After processing the data, we were able to easily compare the different controls
by looking at the graphs we obtained on Matlab.

Figure 20: Graph obtained through Matlab with Arduino data (PD, PI, PID)

Analyzing graph 20, we can conclude that, for a given Kp, the controls can be
ordered following the lowest trise criteria as PD, PID and PI. We can conclude that
the derivative action makes the control faster.

39

As seen in figure 21 we can observe that raising Kp makes the control faster (PID
control with Kp = 0.015 is faster than PID control with Kp = 0.003), but it also
lowers the damping (wmax is higher for the first control than the second one).

Figure 21: Graph obtained through Matlab with Arduino data (P)

When designing our control, we have to decide what to prioritize, whether rapid-
ness of reaction of the control or lower damping (figure 22).

Figure 22: Graph obtained through Matlab with Arduino data (all controls)

40

5 Physical Implementation

Figure 23: Physical system

For the physical system, we used the system put together by Miguel Rodŕıguez as
his Senior Project. The Arduino board used was the same as the one used in the trial
runs, an Arduino UNO board, and we changed the brushed DC motor to a stepper
motor. For calculating the angle of the pendulum we first tried using accelerometers,
model ADXL 335. After some problems including inaccurate calculations of the angle
θ we had to change devices and use a digital encoder instead.

It is important to note that in a general case where we do not have an initial
position for the base and where using a DC motor (for example in the case of a
segway), the position of the cart x cannot be given a value for each set moment and
should therefore not be included in the state space model. When we look at the point
of operation Ẋ = 0, we set the velocity of the cart to 0. Since the position of the cart
is calculated as the integration of the velocity, we obtain an indefinite cart position
for that point of operation (integral of 0 is an undefined constant), and when we do
have a velocity, the position keeps changing, never having a definite value. In our
case though, we are going to use a stepper motor (figure 24, center bottom), which
will allow us to calculate the position and velocity of the cart at every moment.

41

Figure 24: Stepper motor

5.1 Accelerometers ADXL 335

To calculate the angle θ and have the state of our system defined, we first tried
using the accelerometers ADXL 335 to obtain the accelerations of the pendulum in
x and y and with them calculate the angle. Because of a problem of accuracy in the
readings of the accelerations, we had to change tactics later on, but we will explain
the procedure followed in any case.

The accelerators were connected to analogical input pins A0 and A1 of the Arduino
board. They were placed on the upper side of the pendulum, as shown in figure 25:

Figure 25: Accelerometers on System

To calculate the angle θ we had to use the lectures provided by the two ac-
celerometers, which provided voltages proportional to accelerations in x and y of the
pendulum, ax and ay, following the directions showed in figure 26:

42

Figure 26: Accelerations given by accelerometers

From diagram 26 we can obtain the equations that govern the movement of the
pendulum:

a1~i− g~j = ax ~ex + ay ~ey

a21 + g2 = a2x + a2y

With the unitary vectors ~ex and ~ey defined as follows:

~ex = cos θ~i+ sin θ~j

~ey = − sin θ~i+ cos θ~j

From these equations we wanted to obtain the angle θ. We could do so simplifying
the equations to obtain the solution for cos θ and sin θ, and doing the quotient to
obtain tan θ and later on calculating arctan θ to obtain θ:

ax = g sin θ + a1 cos θ

ay = g cos θ − a1 sin θ

Which translated into matrix form is:(
ax
ay

)
=

(
g a1
−a1 g

)(
sin θ
cos θ

)
After solving for

(
sin θ
cos θ

)
, we obtained the following expression for tan θ:

43

tan θ =
sin θ

cos θ
=
gax − a1ay
gay + a1ax

To have θ fully defined, apart from the readings for ax and ay, we were only
missing a1, which could be easily deduced from an earlier equation:

a1 =
√
a2x + a2y − g2

To obtain ax and ay, we had to convert the readings provided by the accelerom-
eters,for which we did the following. When placing the accelerometers on the pen-
dulum, we had to be careful with the direction of the coordinates. As we can see in
figure 27, the accelerometers have a device on the inside that measure pressure. If
the spring in x suffers a force of tension while on the first and second quadrants (ax is
perpendicular to the length of the pendulum, as seen in figure 25), the accelerometer
in x will read positive. If on the other hand it gets compressed while on the third and
fourth quadrants, the reading will be negative. It is the same way the accelerometer
in y works. Another way to visualize ax and ay is by projecting them on a vector of
value g, in the positive y direction.

Figure 27: Inner workings of the accelerometers

To procure accurate readings, we had to calibrate the accelerometers. Standard
values measured by the accelerometers are numbers between 0 and 1023. This is not
always the case. After obtaining the range of values measured by the accelerometers,
we had to transform these values to an interval between −g and g (-9.81 and 9.81).

To do this we used a simple program to obtain the minimum and maximum
values read by the accelerometers and transform it to the 2g interval. We show this
code in the subsection 9.3, ”Code for calibrating the accelerometers and scaling the
readings”. We followed a simple rule of three, where axmin is to −g and axmax is to
g as the acceleration we looked for is to the value read by the accelerometers. We
followed the same process for the y accelerometer.

We then used the accelerations to calculate the angle θ, as presented in subsection
9.4, ”Code for reading from the accelerometers and calculating θ”.

44

This method, although apparently very simple, gave us more problems than ex-
pected. Because of the noise, the accuracy of the accelerations read by the accelerom-
eters was not high enough to give proper readings of ax and ay, so when calculating
a1 to insert in the formula for acquiring tan(θ), it resulted in negative numbers inside
a square root, which gave us imaginary numbers and made the angle impossible to
calculate.

We could have used an Inertial Measurement Unit (IMU) to avoid the problems
encountered when calculating a1, since this device can measure the velocity, orienta-
tion and acceleration of a system simultaneously (combining a 3 axis gyroscope and
a 3 axis accelerometer). After using a complementary filter (no need to use the more
complicated, statistically based Kalman filter in our case), we would have been able
to calculate our angle accurately.

A complementary filter works as a low pass filter for the measurements coming
from the accelerometer (taking out the excessive noise) and as a high pass filter for
the measurements coming from the gyroscope (taking out the drift, error accumu-
lated from the calculation of the angle in the device). The filter, in its most basic
application, looks like this:

θ = a(θprev + θgyro) + bθaccel

Where a and b are two constants that work as weighs, with the condition that the
sum of both constants has to be 1. Initially you can give them the values 0.98 and
0.02 respectively, and calibrate them accordingly [Lla16].

We did not have any IMUs available though, so we had to look for another, more
simple solution: an encoder.

5.2 Encoder

An encoder is a device that can translate movement into an electric signal that can
be used in the system’s control. The encoder has different uses, such as determining
the direction of rotation, the velocity, or the position or angle of the device’s axis it
is set on.

With an accurate reading of the angle, we can apply the control chosen, which
would have two phases: first, we would have have the pendulum swing at the oscilating
angular speed, raise the pendulum above a certain limit angle (θlimit in figure 30),
and then switch controls to have the pendulum stay inverted vertically.

Although lack of time prevented us from trying out the final control, we believe
it would be efficient and not complicated to implement, given the results of the run
tests. One of the key aspects would be to have the pendulum reach the critical angle
above the horizontal line and not just oscilate at the set angular velocity. A push, a

45

sudden stop of the motor and change of direction, would be critical to obtain such
result. After reaching the critical angle we would switch controls and instead of having
as the main goal to reach a certain angular velocity, we would control the angle and
have it reach θ = 0°.

Figure 28: Phase 1 Figure 29: Phase 2

Figure 30: Phase 3 Figure 31: Phase 4

6 Conclusions

From this project we can reach a series of conclusions, which we will briefly summarize
in this section.

An unstable system, such as an inverted pendulum, can be stabilized through the
application of a control. We can know whether a system is unstable through the
previous analysis of the eigenvalues of its defining matrix A (Ẋ = AX + BU). The
eigenvalues are the roots of its characteristic polynomial (|A − λs| = 0). If the real
part of any of its eigenvalues is positive, the response of the system will not fade in
time and will never reach a specific value.

46

To know whether we can apply a control to a system we must first check whether it
is controllable. A system will be controllable if its matrix C (C =

(
B AB A2B ... An−1B

)
)

is full ranked. In the case of an inverted pendulum, the system is indeed controllable.
After linearizing the equations that define the behaviour of the system, there are

different controls we can apply to it. Some have to be applied to the system in state
space form, such as pole placement or LQR regulator, but this is not always the case,
such as with the PID controller. Although the most convenient control is the LQR
regulator, for educative purposes we have chosen to implement the PID control to
our inverted pendulum.

Before implementing a control, it is very useful to do running tests to see how
different Ks affect the response of the system. Although Ks vary from system to
system therefore making the Ks obtained in the running tests fairly useless, it is
important to understand how each parameter affects the system’s response.

When it comes to finally applying a control to a physical system, it has to be
noted that many problems will arise along the way. In our case, these problems
mostly stemmed from the use of measuring devices. Although accelerometers can
seem a good way to get measures that can be later used to calculate the angle we
want to apply the control to, it is not the case because of the amount of noise perceived
by them. The problem could be solved through the use of a gyroscope, but as it is
most always the case in engineering, the best solution is the most simple one. In our
case, the use of an encoder.

47

7 Annex 1

In this Annex we will discuss the transition matrix, the Peano Beaker series and the
variation of constants formula.

We can find the solution to a difference equation x(k+ 1) = A(k)x(k) +B(k)u(k)
following a recursive method:

x(k) = A(k − 1)x(k − 1) +B(k − 1)u(k − 1) =

= A(k − 1)A(k − 2)x(k − 2) + A(k − 1)B(k − 2)u(k − 2) +B(k − 1)u(k − 1) =

= A(k − 1)A(k − 2)[A(k − 3)x(k − 3) +B(k − 3)u(k − 3)]+

+ A(k − 1)B(k − 2)u(k − 2) +B(k − 1)u(k − 1) =

= A(k − 1)A(k − 2)A(k − 3)x(k − 3) + A(k − 1)A(k − 2)B(k − 3)u(k − 3)+

+ A(k − 1)B(k − 2)u(k − 2) +B(k − 1)u(k − 1) =

= ...

We can simplify this method in the following equation:

x(k) = φ(k, 0)x(0) +
k∑
l=1

φ(k, l)B(l − 1)u(l − 1)

Where we define as the transition state function:

φ(k, l) = A(k − 1)A(k − 2)...A(l)

With k > l, φ(k, k) = I

We can find this useful for a special continuous time case, where ẋ(t) = a(t)x(t),
x(0) = x0 and a(t) is a scalar:

φ(t, 0) = 1 +

∫ t

σ1=0

a(σ1)dσ1 +

∫ t

σ1=0

∫ σ1

σ2=0

a(σ1)a(σ2)dσ2dσ1 + ...

This is known as the Peano Beaker series.

If we define the following γ(t):

γ(t) =

∫ t

σ1=0

a(σ1)dσ1

49

We can make further useful observations:

φ(t, 0) = 1 + γ(t) +
1

2!
γ2(t) +

1

3!
γ3(t) + ... = eγ(t)

And thus we find that the solution to the differential equation ẋ(t) = a(t)x(t) is:

x(t) = e
∫ t
σ1=0 a(σ1)dσ1x0

If we want to solve a general case, we can do so:

ẋ = A(t)x(t) + f(t)

Changing the coordinates of A so that it is 0, and integrating both sides, we will
have as a solution:

x(t) = φ(t, t0)x0 +

∫ t

σ=t0

φ(t, σ)f(σ)dσ

Which is also known as the variation of constants formula. This formula will be
the basis for obtaining the controllability and observability gramians, which will help
us establish whether a system is controllable and observable respectively.

50

8 Matlab Codes

8.1 Code for the differential equations defining the system

Coathor: Enrique Gutiérrez

With this code we pretend to solve the differential equations that govern the be-
havior of our inverted pendulum with the functions dsolve and diff. It is important
to note though that the system is unstable, so we will not obtain an explicit solution.
It is through the application of a control that we will stabilize the system and be able
to reach a solution.

1 %% Var iab l e s
2

3 F=0.1; % Force app l i ed to the base [N]
4 mc=0.5; % Mass o f the base [kg]
5 mp=0.1; % Mass o f the pendulum [kg]
6 l =0.2 ; % Length o f the pendulum [m]
7 g=9.81; % Gravity
8

9 % I n i t i a l c ond i t i on s f o r the ODEs
10 p o s c a r r o i n i =0;
11 Dpos ca r r o i n i =0;
12 ang i n i =0;
13 Dang ini =0;
14

15 %% Equations r e l a t e d to f r e e body diagrams (FBD)
16

17 % FBD base
18 % F−Tsin (ang)=mc∗ der2pos ca r ro
19 % N + T∗ cos (ang) − mc∗g=0
20

21 % FBD pendulum
22 % T∗ s i n (ang)=mp∗ a pend x
23 % −T∗ cos (ang) − mp∗g= mp∗ a pend y
24

25 %% Equations that d e f i n e the movement
26

27 % −mp∗g∗ s i n (ang)=mp∗ der2pos ca r ro ∗ cos (ang) − l ∗der2ang∗mp
28 % F + mp∗ l ∗der2ang∗ cos (ang) − mp∗ l ∗(der1ang) ˆ2∗ s i n (ang)=(mp+mc) ∗

der2pos ca r ro
29

30 syms pos ca r ro (t) ang (t)
31 Dpos carro=d i f f (po s ca r ro)
32 Dang=d i f f (ang)
33

51

34 ode1 = d i f f (pos car ro , t , 2) == (F+mp∗ l ∗Dangˆ2∗ s i n (ang)−mp∗g∗ cos (ang) ∗
s i n (ang)) /(mp+mc−mp∗(cos (ang)) ˆ2) ;

35 ode2 = d i f f (ang , t , 2) == (g∗ s i n (ang) ∗(mp+mc)−mp∗ l ∗Dangˆ2∗ s i n (ang) ∗ cos (
ang)−F∗ cos (ang)) /(l ∗(mp+mc)−mp∗ l ∗(cos (ang)) ˆ2) ;

36 odes = [ode1 ; ode2]
37

38 cond1 = pos ca r ro (0)== po s c a r r o i n i ;
39 cond2 = Dpos carro (0)== Dpos ca r r o i n i ;
40 cond3 = ang (p i)== ang i n i ;
41 cond4 = Dang (0)== Dang ini ;
42 conds = [cond1 cond2 cond3 cond4] ;
43

44 S(t)=dso lve (odes , conds) ;

Listing 2: System Ecuations

52

8.2 Code for original functions and linearized functions

Coathor: Enrique Gutiérrez

Simple PD control applied to the system to stabilize it, both to the system after
linearizing it and to the original non linear system. Figures displaying the results of
this program can be found in subsection 2.1 ”State Space Model”.

1 c l c
2 c l e a r a l l
3 g l oba l Fvec
4 Fvec = [] ;
5

6 %% I n i t i a l c ond i t i on s f o r the ODEs
7 x i n i =0;
8 v i n i =0;
9 ang i n i =10;

10 ang i n i=ang i n i ∗ pi /180 ;
11 w in i =0;
12

13 %% Ecuaciones
14 tspan = [0 2 0] ;
15

16 cond1 = x i n i ;
17 cond2 = ang i n i ;
18 cond3 = v i n i ;
19 cond4 = w in i ;
20 conds = [cond1 cond2 cond3 cond4] ;
21

22 %% odefun l in , with l i n e a r i z e d equat ions
23

24 [t1 , y1]=ode45 (@odefunlin , tspan , conds) ;
25 x1=y1 (: , 1) ;
26 ang1=y1 (: , 2) ;
27 v1=y1 (: , 3) ;
28 w1=y1 (: , 4) ;
29

30 f i g u r e (1)
31 subplot (211) , p l o t (t1 , ang1 ∗180/ p i) , y l ab e l (’ Angle o f the pendulum [deg] ’)

, t i t l e (’ L inea r i z ed func t i on s ’)
32 subplot (212) , p l o t (t1 ,w1) , y l ab e l (’ Ve loc i ty o f the pendulum [rad/ s] ’)
33 x l ab e l (’Time [s] ’)
34

35 f i g u r e (2)
36 subplot (211) , p l o t (t1 , x1) , y l ab e l (’ Po s i t i on o f the base [m] ’) , t i t l e (’

L inea r i z ed func t i on s ’)

53

37 subplot (212) , p l o t (t1 , v1) , y l ab e l (’ Ve loc i ty o f the base [m/ s] ’)
38 x l ab e l (’Time [s] ’)
39

40 f i g u r e (3)
41 t h t a r g e t =0;
42 w target =0;
43 v t a r g e t =0;
44 kp=2;
45 kd=0.3;
46 F1=−kp∗(th ta rge t−ang1)−kd∗(w target−w1)−kd∗(v ta rge t−v1) ;
47 p lo t (t1 , F1) , t i t l e (’ L inea r i z ed f unc t i on s ’) , y l ab e l (’ Force app l i ed to the

base [N] ’) , x l ab e l (’Time [s] ’) ;
48

49 %% odefun , with o r i g i n a l equat ions
50

51 [t , y]=ode45 (@odefun , tspan , conds) ;
52 x=y (: , 1) ;
53 ang=y (: , 2) ;
54 v=y (: , 3) ;
55 w=y (: , 4) ;
56

57 f i g u r e (4)
58 subplot (211) , p l o t (t , ang∗180/ p i) , y l ab e l (’ Angle o f the pendulum [deg] ’) ,

t i t l e (’ Or i g i na l f un c t i on s ’)
59 subplot (212) , p l o t (t ,w) , y l ab e l (’ Ve loc i ty o f the pendulum [rad/ s] ’)
60 x l ab e l (’Time [s] ’)
61

62 f i g u r e (5)
63 subplot (211) , p l o t (t , x) , y l ab e l (’ Po s i t i on o f the base [m] ’) , t i t l e (’

Or i g i na l f un c t i on s ’)
64 subplot (212) , p l o t (t , v) , y l ab e l (’ Ve loc i ty o f the base [m/ s] ’)
65 x l ab e l (’Time [s] ’)
66

67 f i g u r e (6)
68 t h t a r g e t =0;
69 w target =0;
70 kp=20;
71 kd=0.2;
72 F=−kp∗(th ta rge t−y (: , 2))−kd∗(w target−y (: , 4))−kd∗(v ta rge t−y (3)) ;
73 p lo t (t , F) , t i t l e (’ Or i g ina l f un c t i on s ’) , y l ab e l (’ Force app l i ed to the

base [N] ’) , x l ab e l (’Time [s] ’) ;

Listing 3: Original VS Linearized functions

54

Helper function @odefunlin used in the code found in subsection 7.2 ”Code for
original functions and linearized functions”.

1 f unc t i on dydt = ode fun l i n (t , y)
2 g l oba l Fvec
3

4 M=0.5; % Mass o f the base [kg]
5 m=0.1; % Mass o f the pendulum [kg]
6 l =0.2 ; % Length o f the pendulum [m]
7 g=9.81; % Gravity
8

9 % y (1) = po s i t i o n o f the base
10 % y (2) = ang le o f the pendulum
11 % y (3) = v e l o c i t y o f the base
12 % y (4) = angular v e l o c i t y o f the pendulum
13

14 t h t a r g e t =0;
15 w target =0;
16 x t a r g e t =0;
17 v t a r g e t =0;
18 kp=20;
19 kd=0.2;
20 F=−kp∗(th ta rge t−y (2))−kd∗(w target−y (4))−kd∗(v ta rge t−y (3)) ;
21 Fvec=[Fvec ;F] ;
22

23 dydt = ze ro s (4 , 1) ; % I n i t i a l i z e the vec to r
24 dydt (1) = y (3) ;
25 dydt (2) = y (4) ;
26 dydt (3) = (F−m∗g∗1∗y (2)) /(M) ;
27 dydt (4) = (−F+g∗y (2) ∗(m+M)) /(l ∗M) ;
28 end

Listing 4: Helper function for linearized functions

55

Helper function @odefun used in the code found in subsection 7.2 ”Code for orig-
inal functions and linearized functions”

1 f unc t i on dydt = odefun (t , y)
2 g l oba l Fvec
3

4 M=0.5; % Mass o f the base [kg]
5 m=0.1; % Mass o f the pendulum [kg]
6 l =0.2 ; % Length o f the pendulum [m]
7 g=9.81; % Gravity
8

9 % y (1) = po s i t i o n o f the base
10 % y (2) = ang le o f the pendulum
11 % y (3) = v e l o c i t y o f the base
12 % y (4) = angular v e l o c i t y o f the pendulum
13

14 t h t a r g e t =0;
15 w target =0;
16 x t a r g e t =0;
17 v t a r g e t =0;
18 kp=2;
19 kd=0.3;
20 F=−kp∗(th ta rge t−y (2))−kd∗(w target−y (4))−kd∗(v ta rge t−y (3)) ;
21 Fvec=[Fvec ;F] ;
22

23 dydt = ze ro s (4 , 1) ;
24 dydt (1) = y (3) ;
25 dydt (2) = y (4) ;
26 dydt (3) = (F−m∗ l ∗y (4) ˆ2∗ s i n (y (2))+m∗g∗ cos (y (2)) ∗ s i n (y (2))) /(m+M−m∗(

cos (y (2))) ˆ2) ;
27 dydt (4) = (m∗ l ∗y (4) ˆ2∗ s i n (y (2)) ∗ cos (y (2))−F∗ cos (y (2))−g∗ s i n (y (2)) ∗(m

+M)) /(m∗ l ∗(cos (y (2)))ˆ2− l ∗(m+M)) ;
28

29 end

Listing 5: Helper function for original functions

56

8.3 Study of the observability and controllability of a system

Simple application of Matlab built-in functions to declare whether a system is con-
trollable and observable.

1 c l e a r a l l
2 c l c
3

4 M=0.5; % Mass o f the base [kg]
5 m=0.1; % Mass o f the pendulum [kg]
6 L=0.2; % Length o f the pendulum [m]
7 g=9.81; % Gravity
8

9 % X=[x ; ang ; v ; w] ;
10 % dX=[v ; w; ac base ; ac ang] ;
11

12 % dX=AX+Bu
13 % y=CX+Du
14

15 A=[0 0 1 0 ; 0 0 0 1 ; 0 m∗g/M 0 0 ; 0 g ∗(m+M) /(L∗M) 0 0] ;
16 B=[0 0 1/M 1/(L∗M)] . ’ ;
17 C=[1 0 0 0 ;0 1 0 0] ;
18 D=[0: 0] ;
19

20 s y s s s=s s (A, B, C, D)
21 t f s y s=t f (s y s s s)
22

23 %% Con t r o l l a b i l i t y
24 Co=[B A∗B Aˆ2∗B Aˆ3∗B]
25 contr=rank (ct rb (s y s s s))
26

27 %% Obse rvab i l i t y
28 O=[C; C∗A; C∗Aˆ2 ; C∗Aˆ3]
29 obser=rank (obsv (s y s s s))

Listing 6: Observability and controllability of a system

57

8.4 Control through pole placement and a LQR regulator

Application of pole placement technique and LQR regulator to the inverted pendulum
system.

1 c l e a r a l l
2 c l c
3

4 M=0.5; % Mass o f the base [kg]
5 m=0.1; % Mass o f the pendulum [kg]
6 L=0.2; % Length o f the pendulum [m]
7 g=9.81; % Gravity
8

9 % X=[x ; ang ; v ; w] ;
10 % dX=[v ; w; ac base ; ac ang] ;
11

12 % dX=AX+Bu
13 % y=CX+Du
14

15 A=[0 0 1 0 ; 0 0 0 1 ; 0 m∗g/M 0 0 ; 0 g ∗(m+M) /(L∗M) 0 0] ;
16 B=[0 0 1/M 1/(L∗M)] . ’ ;
17 C=[1 0 0 0 ;0 1 0 0] ;
18 D=[0: 0] ;
19

20 %% LQR REGULATOR
21

22 %Q=C’∗C;
23 Q=[5000 0 0 0 ; 0 300 0 0 ; 0 0 0 0 ; 0 0 0 0] ;
24 N=0;
25 R=1;
26

27 % LQR Regulator
28 [K, S , e]= l q r (A,B,Q,R,N) ;
29 Ac=A−B∗K;
30 t =0 : 0 . 1 : 5 ;
31 r =0.2∗ ones (s i z e (t)) ;
32 [y , x]= l s im (Ac , B, C, D, r , t) ;
33 f i g u r e (1)
34 p lo t (t , y)
35 t i t l e (’LQR Regulator ’)
36 x l ab e l (’Time [s] ’)
37 l egend (’ Po s i t i on o f the base ’ , ’ Angle o f the pendulum ’)
38

39 %% POLE PLACEMENT
40

41 % p=po los deseados
42 %p=[−5, −2.1 , −3.2 , −4 .3] ;

58

43 p=[−40, −16.8 , −25.6 , −34 .4] ;
44

45 K=place (A, B, p)
46 Ac=A−B∗K;
47 t =0 : 0 . 1 : 5 ;
48 r =0.2∗ ones (s i z e (t)) ;
49 [y , x]= l s im (Ac , B, C, D, r , t) ;
50 f i g u r e (2)
51 p lo t (t , y)
52 t i t l e (’ Pole Placement ’)
53 x l ab e l (’Time [s] ’)
54 l egend (’ Po s i t i on o f the base ’ , ’ Angle o f the pendulum ’)

Listing 7: Pole Placement, LQR regulator

59

9 Arduino Codes

9.1 Code for setting a constant velocity in brushed DC motor

Coathor: Enrique

In this program we use a basic strategy of augmenting power if the velocity of the
motor is below the target velocity and reducing power if it is above the target.

1

2 double w=0 ;
3

4 void setup () {
5 pinMode (2 ,INPUT) ; // Pin to the encoder
6 pinMode (7 ,OUTPUT) ; // Pin to the motor
7 Serial . beg in (9600) ;
8 }
9

10 i n t c t=0 , pp=80 ;
11 i n t t a r g e t=2200 , one s ided marg in=100 ;
12

13 void loop () {
14 power (7 , pp , 1000000) ;
15 i f (w>t a r g e t+one s ided marg in)
16 pp=pp−1 ;
17 i f (w<target−one s ided marg in)
18 pp=pp+1 ;
19 }
20

21 i n t f a c t o r=3 ;
22

23 // void funct ion , no devuelve nada
24 void power (i n t pin , i n t p1 , unsigned long t) {
25

26 char pr in tout [80] ;
27 // a = encoder l e c t u r e
28 // a0 = value o f r e f e r e n c e
29 // ct = count
30 i n t a=0 , a0=0 , c t=0 ;
31 i n t p ;
32

33 i f (p1>0)
34 p=in t (p1/4+10) ;
35 e l s e
36 p=0 ;
37 unsigned long t0=micros () ;

61

38 whi le ((micros ()−t0)<t) {
39 d i g i t a lWr i t e (pin , 1) ;
40 delayMicroseconds (p∗ f a c t o r) ;
41 d i g i t a lWr i t e (pin , 0) ;
42 delayMicroseconds ((100−p) ∗ f a c t o r) ;
43 a=d ig i ta lRead (2) ; // read pin 2 , e i t h e r HIGH or LOW
44 i f (a>a0) // a changes depending on the l e c t u r e from pin 2
45 ct++; // counts r i s i n g f l a nk s
46 a0=a ; // save new value
47 }
48

49 unsigned long t1=micros () ;
50 w=double (ct) /12.0∗60000000.0/double (t1−t0) ; //12 s l o t s in the

encoder , 60k mi l i s e conds in 1 minute ; w=r / t
51 Serial . p r i n t l n (ct) ;
52 s p r i n t f (pr intout , ” Power : %d Speed : %d Target : [%d , %d] ” ,p

∗2 , i n t (w) , target−one s ided marg in , t a r g e t+one s ided marg in) ;
53 Serial . p r i n t l n (p r in tout) ;
54 }

Listing 8: Code for setting a constant velocity in a brushed DC motor

62

9.2 Code for implementing a constant velocity in brushed
DC motor through a PID control

Coathor: Enrique Gutiérrez

Application of a PID control to the system. The proportionate action acts with
the error only. The integral action works with the sum of the errors calculated during
the running of the program. The derivative action works with the difference of errors
between loop and loop.

1 #de f i n e PINMOTOR 7

2 #de f i n e PIN ENCODER 2

3

4 void setup () {
5 pinMode (PIN ENCODER,INPUT) ;
6 pinMode (PIN MOTOR,OUTPUT) ;
7 Serial . beg in (9600) ;
8 }
9

10 f l o a t w=0 ;
11 i n t c t=0 ;
12 f l o a t pp=40.0 ;
13 f l o a t w target=2200 ;
14 f l o a t cambio pp=0 , e r r=0 , errSum=0 ;
15

16 f l o a t Input , l a s t I npu t ;
17 f l o a t dErr=0 , l a s tE r r=0 ;
18 unsigned long now=0 , lastTime=0 ;
19 i n t sampleTime=1000 ;
20 i n t i=0 ;
21

22 f l o a t Kp=0.015 , Ki=0.03 , Kd=0.015 ;
23

24 void loop () {
25

26 power (PIN MOTOR, pp , 25000) ;
27 now=m i l l i s () ;
28 f l o a t timeChange=f l o a t (now−lastTime) /1000.0 ;
29

30 e r r=w target−w;
31 errSum+=er r ;
32

33 // f l o a t dInput=(Input−l a s t I npu t) /timeChange ;
34 f l o a t dErr=(err−l a s tE r r) /timeChange ;
35

36 i f (i > 1) {
37 cambio pp= e r r ∗Kp − Ki∗errSum∗ timeChange + Kd∗dErr ;

63

38 // cambio pp=e r r ∗Kp − Ki∗errSum∗ timeChange − Kd∗dInput ;
39 pp+=cambio pp ;
40 }
41

42 i+=1 ;
43 // l a s t I npu t=Input ;
44 l a s tE r r=e r r ;
45 lastTime=now ;
46 }
47

48 i n t f a c t o r=3.0 ;
49

50 void power (i n t pin , f l o a t p1 , unsigned long t) {
51

52 char pr in tout [80] ;
53 i n t a=0 , a0=0 , c t=0 ;
54 f l o a t p ;
55

56 i f (p1>0)
57 p=f l o a t (p1/4.0+10.0) ;
58 e l s e
59 p=0 ;
60 unsigned long t0=micros () ;
61 whi le ((micros ()−t0)<t) {
62 d i g i t a lWr i t e (pin , 1) ;
63 delayMicroseconds (p∗ f l o a t (f a c t o r)) ;
64 d i g i t a lWr i t e (pin , 0) ;
65 delayMicroseconds ((100.0−p) ∗ f l o a t (f a c t o r)) ;
66 a=d ig i ta lRead (PIN ENCODER) ;
67 i f (a>a0)
68 ct++;
69 a0=a ;
70 }
71

72 unsigned long t1=micros () ;
73 f l o a t timeChange=t1−t0 ;
74

75 w=f l o a t (ct) /12.0∗60000000.0/timeChange ;
76

77 Serial . p r i n t l n (S t r ing (t1)+’ ’+St r ing (w)) ;
78 // S e r i a l . p r i n t l n (S t r ing (t1)+’ ’+ St r ing (p∗2)+’ ’+ St r ing (w)+’ ’+

St r ing (w target)+’ ’+ St r ing (1 . 1∗ w target)+’ ’+ St r ing (0 . 9∗
w target)) ;//− one s ided marg in)+’ ’+ St r ing (w target+
one s ided marg in)) ;

79 }

Listing 9: Code for setting a constant velocity in a brushed DC motor through a PID
control

64

9.3 Code for calibrating the accelerometers

This program reads the range of the accelerometers, the maximum and minimum
values the accelerometers can read. Those values should be equivalent to g and -g
depending on whether they are looking down or up respectively.

1 #de f i n e PIN ACCELEROMETER X A0
2 #de f i n e PIN ACCELEROMETER Y A1
3

4 void setup () {
5 // ana logReference (EXTERNAL) ;
6 Serial . beg in (9600) ;
7 }
8

9 f l o a t xRawMin = 300 ;
10 f l o a t xRawMax = 300 ;
11 f l o a t yRawMin = 300 ;
12 f l o a t yRawMax = 300 ;
13

14 // Take mul t ip l e samples to reduce no i s e
15 const i n t sampleSize = 10 ;
16

17 void loop () {
18

19 i n t xRaw = ReadAxis (PIN ACCELEROMETER X) ;
20 i n t yRaw = ReadAxis (PIN ACCELEROMETER Y) ;
21 Cal ib ra r (xRaw, yRaw) ;
22

23 Serial . p r i n t (”Raw Ranges : X: ”) ;
24 Serial . p r i n t (xRawMin) ;
25 Serial . p r i n t (”−”) ;
26 Serial . p r i n t (xRawMax) ;
27

28 Serial . p r i n t (” , Y: ”) ;
29 Serial . p r i n t (yRawMin) ;
30 Serial . p r i n t (”−”) ;
31 Serial . p r i n t (yRawMax) ;
32 }
33

34 i n t ReadAxis (i n t ax i sP in)
35 {
36

37 long read ing = 0 ;
38 analogRead (ax i sP in) ;
39 delay (1) ;
40 f o r (i n t i = 0 ; i < sampleSize ; i++)
41 {

65

42 read ing += analogRead (ax i sP in) ;
43 }
44 re turn read ing / sampleSize ;
45 }
46

47 void Ca l ib ra r (i n t xRaw, i n t yRaw) {
48

49 i f (xRaw<xRawMin) {
50 xRawMin=xRaw ;
51 }
52 i f (xRaw>xRawMax) {
53 xRawMax=xRaw ;
54 }
55 i f (yRaw<yRawMin) {
56 yRawMin=yRaw ;
57 }
58 i f (yRaw>yRawMax) {
59 yRawMax=yRaw ;
60 }
61

62 }

Listing 10: Code for calibrating the accelerometers

66

9.4 Code for reading from the accelerometers and calculating
θ

Code for transforming the readings from the accelerometers into accelerations, and
use these values to calculate the angle θ.

1

2 #de f i n e xmax 410

3 #de f i n e xmin 271

4 #de f i n e ymax 409

5 #de f i n e ymin 269

6 #de f i n e g 9.81

7 #de f i n e p i 3.1415

8

9 f l o a t x0 , y0 ;
10 void setup () {
11 // put your setup code here , to run once :
12 Serial . beg in (9600) ;
13 x0=(xmax+xmin) /2 ;
14 y0=(ymax+ymin) /2 ;
15 }
16

17 St r ing cad , cad2 ;
18 f l o a t ax , ay ;
19 f l o a t ang ;
20

21 void loop () {
22 // put your main code here , to run repea t ed ly :
23 ax=f l o a t (ReadAxis (0)−x0) / f l o a t (xmax−xmin) ∗2∗g ;
24 ay=f l o a t (ReadAxis (1)−y0) / f l o a t (ymax−ymin) ∗2∗g ;
25 cad=St r ing (ax)+’ ’+St r ing (ay) ;
26 // S e r i a l . p r i n t l n (cad) ;
27 delay (10) ;
28 ang=angulo () ;
29 // S e r i a l . p r i n t l n (angulo () ∗180/ p i) ;
30

31 }
32

33 f l o a t mod a ;
34 f l o a t a1 ;
35 f l o a t cos ang ;
36 f l o a t s in ang ;
37 f l o a t tan ang ;
38 i n t sampleSize = 10 ;
39

40 i n t ReadAxis (i n t ax i sP in)

67

41 {
42

43 long read ing = 0 ;
44 analogRead (ax i sP in) ;
45 delay (1) ;
46 f o r (i n t i = 0 ; i < sampleSize ; i++)
47 {
48 read ing += analogRead (ax i sP in) ;
49 }
50 re turn f l o a t (read ing / sampleSize) ;
51 }
52

53 f l o a t angulo () {
54 f l o a t ang ;
55 mod a=sq (ax)+sq (ay) ;
56 a1=(mod a−sq (9.75)) ;
57

58 cad2= ”mod a : ”+St r ing (sq r t (mod a))+” ax : ”+St r ing (ax)+” ay : ”+
St r ing (ay)+” g : ”+St r ing (g)+” ahor : ”+St r ing (a1) ;

59 Serial . p r i n t l n (cad2) ;
60

61 f l o a t cos ang=(ax∗a1+ay∗g) /mod a ;
62 f l o a t s in ang=(−ay∗a1+ax∗g) /mod a ;
63 f l o a t tan ang=s in ang / cos ang ;
64 ang=atan (tan ang) ;
65

66 // char pr in tout [8 0] ;
67

68 re turn ang ;
69 }

Listing 11: Code for reading from the accelerometers and calculating θ

68

References

[Alo10] José Luis Beltrán Alonso. Simulación de un péndulo invertido. 2010.

[Aut19a] Several Authors. “Control Digital notes (Cap. 1: Introducción al control
digital)”. In: (2019). ICAI.

[Aut19b] Several Authors. “Tutorial 8 - Week 13: Cart-Pole Inverted Pendulum”.
In: (2019).

[Aut] Several Authors. Inverted Pendulum: State-Space Methods for Controller
Design. Control Tutorials for Matlab and Simulink. url: http://ctms.
engin.umich.edu/CTMS/index.php?example=InvertedPendulum&

section=ControlStateSpace (visited on 06/01/2019).

[Dja18] Theodore Djaferis. “Dynamic System Theory notes”. In: (2018). Boston
University.

[Fri86] Bernard Friedland. Control System Design: An Introduction to State-
Space Methods. Dover, 1986.

[Gar+16] José Garćıa et al. Las leyes de Newton en el modelado y control del péndulo
invertido sobre un carro. 2016.

[Lla16] Luis Llamas. Medir la inclinación con IMU, Arduino y filtro complemen-
tario. 2016. url: https://www.luisllamas.es/medir-la-inclinacion-
imu-arduino-filtro-complementario/ (visited on 06/01/2019).

[Mac+18] Juan Luis Zamora Macho et al. “Conceptos Básicos y Acciones de Control
PID”. In: (2018).

[Sir+04] Hebertt Sira-Ramı́rez et al. Control de Sistemas No Lineales. 2004. url:
https://www.researchgate.net/profile/Hebertt_Sira-Ramirez/

publication/327929276_Control_de_Sistemas_No_Lineales_Linealizacion_

aproximada_extendida_exacta/links/5c009b67a6fdcc1b8d4a9371/

Control-de-Sistemas-No-Lineales-Linealizacion-aproximada-

extendida-exacta.pdf (visited on 06/10/2019).

69

Listings

1 Treating Arduino data . 38
2 System Ecuations . 51
3 Original VS Linearized functions . 53
4 Helper function for linearized functions 55
5 Helper function for original functions 56
6 Observability and controllability of a system 57
7 Pole Placement, LQR regulator . 58
8 Code for setting a constant velocity in a brushed DC motor 61
9 Code for setting a constant velocity in a brushed DC motor through a

PID control . 63
10 Code for calibrating the accelerometers 65
11 Code for reading from the accelerometers and calculating θ 67

71

