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 I 

Abstract 

This paper aims to forecast the value of electricity derivatives in the MIBEL system. For that 

purpose, three different models based on the simulation of future price scenarios are 

developed.  

The project begins with an extensive analysis of prices in spot and forward markets, with the 

oďjeĐtiǀe of ĐhaƌaĐteƌiziŶg ŵaƌket’s ďehaǀioƌ. The obtained results are introduced in the 

simulation models, building their basis. The models aim to forecast all the possible future price 

scenarios and their probability. A Brownian motion and a mean reversion model have been used 

to simulate the spot market. A Monte Carlo algorithm forecasted the forward curve evolution. 

Finally, the models are applied to two practical cases. The first one consists on valuating a collar 

for a consumer. The second one, focuses in the valuation of a combined-cycle gas turbine asset. 

The calculated results are compared with the ones obtained with the Black-Scholes formula. 

As a conclusion, the Monte Carlo model obtains the best trade-off between simplicity and 

accuracy. 
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CHAPTER 1: INTRODUCTION 

This chapter will focus on contextualizing the present paper and its objective. The aim is that the 

reader identifies and understands the main issues this research wants to address and the 

motivation behind it. 

Therefore, a brief introduction will be given under the section Motivation, which will provide a 

wide picture of the role of the electricity derivatives in electricity markets. Afterwards, the main 

objectives of the Thesis will be provided, followed by the precise definition of the scope of the 

research. 

1. Motivation 

Companies participating in the electricity markets are exposed to many sources of risks, as fuel 

prices, inflows, the regulatory framework, etc. One of the main sources of uncertainty is the 

price of the electricity which, due to its physical features, is very volatile. To hedge the risk from 

random prices, agents can trade in the forward markets. In these markets, we can find both 

physical and financial contracts. The latter, which are known as electricity derivatives, do not 

imply the physical delivery of the underlying commodity.[1] Financial derivatives can be used by 

utilities as a risk management instrument, which allows an efficient allocation of the market 

risks.  

Generally speaking, in a market there are two different procedures to trade electricity 

derivatives: 

- Through bilateral or over-the-counter (OTC) contracts. In these cases, the contract is 

traded directly between the counterparties, with no intermediates. Thus, there is no 

organized market. However, these contracts usually comply with the framework 

established by the ISDA (International Swaps and Derivatives Association). 

- Through an organized exchange market. There are standardized contracts that are 

cleared and settle through a settlement agent or clearing house. This reduces the 

paƌtiĐipaŶts’ ƌisk aŶd iŶĐƌeases liƋuiditǇ ǁith ƌespeĐt to the pƌeǀious tǇpe.  

In the context of the Iberian Electricity Market (MIBEL), which englobes the Spanish and the 

Portuguese markets under a regional organization, the organized exchange market is operated 

by OMIP (Operador del Mercado Ibérico de Energía).[2] OMIP manages the trading on the 

derivatives market while the entity OMIClear acts as Clearing House and Central Counterparty. 

Additionally, in order to increase liquidity, OMIP provides a trading platform to act as meeting 

point for agents who want to fix an OTC.[3] 

As it has been explained, electricity derivatives may be used to hedge a ĐoŵpaŶǇ’s ƌisk, ďut it is 
not their only application. These products can also be used by traders to speculate in the market 

and by companies to diversify their investment portfolio. 
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Hence, financial derivatives play an important role in the electricity industry. A correct utilization 

of these instruments provides considerable benefits to an entity. However, for this correct 

utilization, it is necessary to have an accurate estimation of their value.  

2. Objectives 

The object of this project is to determine the value of electricity derivatives in the MIBEL system. 

The valuation consists on the estimation of the premium that an agent will be willing to pay to 

a counterparty for the optionality provided by a product of specific characteristics (underlying 

product and its volatility, time delivery, etc.). These characteristics are defined by the end 

ĐoŶsuŵeƌ’s Ŷeeds aŶd his ƌisk aǀeƌsioŶ pƌofile, siŶĐe the eleĐtƌiĐitǇ deƌiǀatiǀe is Đƌeated to 
transfer part of the risks inherent in their activity to other agents or to completely mitigate them. 

Therefore, the objective of the valuation is to forecast the value that such derivative will provide 

with a certain confidence level or percentile, in order to determine the value to be paid or 

demanded for it.  

This main objective will be broken down into four main points to be achieved during this 

research: 

1) Understand the needs of the electricity derivatives products by the characterization in the 

spot and forward markets. The characterization will be focus on: 

a. Statistical analysis 

b. Volatility of prices 

c. Shaping of curves of prices 

d. Liquidity 

2) Comprehension of the financial products and its applications: 

a. Forwards 

b. Options 

c. Swaps  

3) Development of models to compute the value of electricity derivatives by 

a. Brownian motion models 

b. Mean reversion models 

c. Monte Carlo simulations 

d. Black-Scholes method 

4) Application of the developed models to: 

a. Case 1. Retail business: calculation of a cap and a floor 

b. Case 2. Generation business: extrinsic value of a generation asset 
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3. Scope 

Corresponding with the four main objectives, this project has four clearly differentiated sections 

with diverse methodology:  

→ Section 1 corresponds with the objective of developing an extensive characterization of the 

electricity prices of the spot and forward markets. This section will be mainly developed in 

the software RStudio. The results extracted from this section will condition the quantitative 

simulation models of the prices made in the following steps. The main features to be defined 

are the probability distribution of pƌiĐes, theiƌ ǀolatilitǇ aŶd the Đuƌǀe’s shapiŶg. Otheƌ 
market parameters, as the liquidity, may be analyzed, if considered of interest. 

→ The next section, Section 2, corresponds to the objective of acquiring a full comprehension 

of the types of financial products traded in the electricity markets. It is sought that the 

reader is able to identify the needs of the main financial products and have a clear 

knowledge of their functionality. 

→ Section 3 focuses on the development of quantitative simulation models of electricity prices. 

The existing models will be analyzed both for the spot price (Brownian-Geometric 

movement, Mean reversion, etc.) and for the forward curve (Monte Carlo). After analyzing 

the advantages and disadvantages of each model, an algorithm of each type that allows 

simulations of spot and forward prices will be programmed in the software RStudio. 

→ In the last section, Section 4, the developed algorithms of the simulation models will be 

adapted with the conclusions obtained in Section 1, to the observed prices in the MIBEL 

markets. The main objective is to assess two practical cases, one for the retail business, 

consisting in valuing a cap for a client, and another for the generation business. In this one, 

the extrinsic value of the asset will be determined in the sale of its production in the market. 

The Black-Scholes formula will be used as a benchmark. 

These 4 sections will be englobed under the Chapter 3 of the paper. This chapter provides an 

overall picture of the project purpose and development. Chapter 2 offers the reader a brief 

summary of the current state of the art of valuating electricity derivatives. In Chapter 4 the 

results obtained from the simulation models will be analyzed and, finally, Chapter 5 will gather 

the main conclusions drafted during the project and provide some aspects to enforce in future 

projects. 
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CHAPTER 2: State of the art  

[4], [5] 

The valuation of financial products has been an issue faced by many agents in all markets since 

their creation. The necessity of obtaining the most accurate value of the products, in order to 

hedge ŵaƌket’s ƌisks, has ďeeŶ the iŶĐeŶtiǀe ĐausiŶg the deǀelopment of several models and 

theories addressing this issue. Among them, the research carried out by Fischer Black and Myron 

Scholes must be highlighted.  

These authors focused their most famous work in the valuation of the premium of an option. 

They created what is known as the Black-Scholes formula, published in 1973. This formula, which 

will be explained further in this paper, is still used nowadays by most market agents to estimate 

the value of a derivative. 

The Black-Scholes formula relies on some well-defined hypothesis. For instance, the underlying 

must have a lognormal distribution function and there are neither transactions costs nor taxes. 

As the reader can imagine, electricity markets do not fulfill many of these hypotheses. To 

overcome these limitations, subsequent models have added several variations to the Black-

Scholes formula in order to adapt it to the conditions found in real markets. Despite the 

modifications, many agents still use the original formula, due to its simplicity and rapidness.  

Another approach when valuating electricity derivatives is the simulation of the future scenarios 

of the market. Under this approach we must differentiate two types of models. On the one hand, 

we find fundamental simulations. These seek to forecast the prices by fundamental drivers, as 

the demand or fuel prices. On the other hand, there are quantitative models which are based 

on the statistical analysis of the historical data. Compared to the fundamentals, the quantitative 

models require less and more accessible information.  

Finally, a differentiation must be made between the simulations aiming to predict the underlying 

ĐoŵŵoditǇ’s ǀalue, ǁhiĐh ǁill ďe the spot ŵaƌket pƌiĐe, iŶ ouƌ Đase, aŶd the siŵulatioŶs foĐused 
on the forecast of the price of the forward ŵaƌket’s pƌoduĐts. Since these two have very 

different characteristics, their simulation models will be very different.  
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CHAPTER 3: Presentation of the problem 

The objective of the present paper is to elaborate a model to valuate electricity derivatives, 

which means estimating the premium the market is willing to pay for the optionality provided 

by the product. Thus, to valuate electricity derivatives, the market behavior must be studied 

and, to the maximum possible extent, characterized. This will be sought during the first section 

of the chapter: 1. Analysis of electricity prices. 

The next section, 2. Monthly electricity price simulations, explains the theory behind some 

approaches that intend to replicate the studied prices. Similarly, section 3. Electricity derivatives 

will provide the reader a theoretical perspective of the electricity derivatives products and their 

applications. 

Finally, section 4. Valuation of electricity derivatives, will show the outcomes from the price 

simulation models developed. These models are supported on the conclusions obtained in 

sections 1 and 2. Additionally, they are applied to two practical cases, that are explained at the 

end of the chapter.  

This chapter will be developed with the support of the software RStudio, which is an integrated 

development environment (IDE) for the programming language R. It is an open-source focus on 

statistical computing and graphics.[6] 

1. Analysis of electricity prices 

During the following chapter, a study of the electricity prices of both the day-ahead (DA) market 

and the forward market will be developed. Firstly, there will be a statistical analysis of the prices 

with the aim of finding the best probability distribution that fits them. Then, other features, as 

the volatility, shaping or liquidity, will be studied.  

The final goal of the statistical analysis is to set the bases for the prediction of prices models that 

will be developed afterwards.  

1.1. Statistical analysis of the spot market price 

The study will start by analyzing the daily prices of the DA market. The first step will be to fit the 

price series into a statistical probability distribution. Particularly, it will be focused on a normal 

and lognormal distribution. Then, the volatility and shaping of the series will be studied. Finally, 

the shaping results will be checked by a backtest model. To conclude, the probability distribution 

and shaping of the monthly prices will also be characterized for the monthly prices of the DA 

market. 
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Before starting the analysis, the sample must be prepared. Although there are DA prices since 

the establishment of the market in 1998, it is considered that not all the results obtained during 

certain periods of time represent the current behavior of the market nowadays. Thus, we must 

reduce the time window to include in our study only the results that reflect the current behavior 

of the DA electricity prices.  

On the one hand, the different months of the year have very distinct features which affect the 

prices. For instance, months with extreme temperatures have higher demands and, therefore, 

higher prices. Thus, to maintain the reliability of our study, we will always work with a time 

frame composed of complete years. 

On the other hand, when deciding the time scope to be introduced in the study, we must 

consider that the DA market price is very dependent on certain factors as the regulation 

established or the presence of renewable source generation capacity in the system. Thus, the 

first thought is to select the data generated in the market in the closest preceding years. For 

instance, it seems reasonable to focus on the prices between 2015 and 2017. These years have 

a very similar regulation and almost the same participation of renewables in the energy mix. 

Thus, it is reasonable to believe that these prices reflect the current behavior of the market. 

However, the prices are also affected by other factors which cannot be assumed similar, even 

during the closest previous years. Some of these factors, as the hydro inflows or wind resource, 

are completely random and may be very persistent over time. For instance, prices in 2014 

decreased due to a high hydro and wind participation.[7] Other factors, as fuel prices, are mainly 

governed by international issues, whose effect may remain during a great period of time.  

Therefore, if we develop the study as aforementioned, using the prices generated in the period 

2015-2017, we will be risking that market behavior in any of these three years was influenced 

by any of the previously discussed environments. Consequently, we risk that the results of the 

study are not impartial but rather leaned forward to a specific situation. 

To avoid this, we must enlarge the sample considered. Therefore, we pick the time window from 

2000 to 2017. The data from these 18 years provide enough information from the market 

Fig. 1. Day ahead prices since 1998 to 2017 
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behavior to ensure that the results are neither influenced by sporadic conditions, nor specific 

regulations or renewables share. The first two years of development of the market are not 

considered in the study, as they are understood as a learning period, so their results do not 

reflect a normal behavior.[8] [9] 

Once the time window is defined we will have to define the granularity of prices studied. The 

outcome of the spot market is a program consisting of volume of energy and price per hour. 

However, it is frequent to study the daily price, meaning the average of the 24 prices of a day. 

Likewise, the monthly prices will be studied, since having a deep characterization of their 

behavior will provide high benefits in the development of following sections. 

1.1.1. Spot daily prices 

During this chapter, the daily prices obtained in the spot market between 2000 and 2017 will be 

studied. Before starting the analysis, it is convenient to clean the sample. We seek to identify 

the peak values that lie at an abnormal distance from the rest of the sample. These peaks are 

denominated outliers and may alter the results. Therefore, we must identify and substitute 

them with acceptable values.  

For this purpose, we use in the software RStudio the function tsclean, which belongs to package 

fpp2. This function recognizes the outliers and replaces them with a value calculated with linear 

interpolation. 

In the following chart, the samples before and after treating it are compared. Additionally, the 

mean value of the cleaned sample throughout the period is also represented. 

Therefore, the sample of day-ahead prices introduced in the study is composed by 6574 data, of 

which 13 have been considered outliers and substituted by linear interpolation. 

Once the sample is prepared we can proceed with the statistical analysis. The procedure and 

results are developed in the following sections. 

Fig. 2. Day-ahead prices from 2000 to 2017 before and after removing outliers 
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Statistical distribution model: goodness of fit test 

After cleaning the sample, a goodness of fit test will be made. These tests are based on 

hypothesis testing, which is a method of verifying whether a null hypothesis applies to a sample. 

Thus, in a goodness of fit test, the null hypothesis consists on whether the sample can be 

characterized as a defined statistical distribution, which in our case will be a normal or lognormal 

distribution.  

The analytical goodness of fit tests compute a measurement of the discrepancy between the 

theoretical and the observed distributions. However, there is not a unique way to calculate the 

͞distaŶĐe͟ ďetǁeeŶ tǁo diffeƌeŶt saŵples. Theƌefoƌe, depending on the approach chosen, we 

find several different goodness of fit tests. For the development of this paper we will use the 

Cramér-Von Mises criterion which calculates the discrepancy as: 

�ଶ = ∫ ሻݔሺܨ] − ∞ሻݔሺ′ܨ݀[ሻݔሺ′ܨ
−∞  

BeiŶg F’;ǆͿ the theoƌetiĐal distƌiďutioŶ aŶd Fn(x) the observed distribution.[10] 

The results of the test will report a p-value. We set the statistical significance ;αͿ at 0.05. The 

significance represents the minimum p-value we will accept. Thus, if the p-value is lower than 

our significance, we will reject the null hypothesis and vice versa.  

Other analytical methods, as the Chi-squared test or the Kolmogorov-Smirnov test, have been 

computed although it is found that, due to the characteristics of our sample, the most trustful 

results are the ones obtained by the Cramér-Von Mises test. Additionally, for the analysis we 

also made use of a graphic goodness of fit method, the normal probability plot, which graphically 

reveals how well the distribution fits our sample. 

As it has been mentioned, the goodness of fit test will reveal whether the electricity prices 

behave with a certain probability distribution. In particular, we will focus in fitting the prices into 

a normal and a lognormal distribution.  

Knowing that µ is the mean of a random continuous variable and σ is its standard deviation, the 

normal distribution N(µ, σ) is a symmetric bell-shaped distribution. The density function 

corresponds to the following formula: 

݂ሺݔሻ = ͳ�√ʹ� ݁−ሺ௫−�ሻమଶ�మ  

A random variable has a lognormal distribution if the logarithms of the data have a normal 

distribution. The transformation is represented in the following charts: 
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Thus, to decide which distribution fits better the day-ahead prices we will study two different 

samples: the prices and its logarithms. First, the mean value and deviation of these samples is 

calculated and then the theoretical normal distribution that corresponds to those characteristics 

(N(µ, σ)). Plotting the theoretical distribution against the observed we obtain the following 

images:  

 

Afterwards, the Cramér-Von Mises test was ran for the two samples to see which distribution 

behaves more as normal. The function used was cvm.test, included in the goftest package of 

RStudio. The results are showed in the following table: 

 Normal Lognormal 

Mean (µ) 42,340 3,690 

Standard deviation ȋσȌ 14,487 0,333 

Cramér-Von Mises 

ω2 
0,3933 12,334 

Cramér-Von Mises 

p-value 
0,07523 4,946·10-11 

Table 1. Cramér-Von Mises results for daily spot prices. 

As we can observe, the results obtained in the goodness of fit test for the normal distribution 

aƌe aďoǀe the set sigŶifiĐaŶĐe leǀel ;α=Ϭ.ϬϱͿ. This ƌeǀeals that ǁe Đannot reject the null 

hypothesis: it is acceptable to assume the sample as a variable with normal distribution.  

Fig. 3. Distibution of a random variable with lognormal distribution and distribution of its logarithms. Source: 
Valuation Internal Course Iberdrola 
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Fig. 4. Theoretical and observed density functions of the normal and lognormal distributions 
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However, the p value obtained when trying to fit the logarithms of the prices into a normal 

distribution is quite low. Therefore, the test show that the prices cannot be modeled as a 

lognormal variable, since the p value obtained is much lower our significance level.  

Finally, we run a graphical goodness of fit test. The normal probability plot compares the 

quantiles of a theoretical normal and the observed ones. The results are showed below: 

 

The representation of the normal probability plot of the real prices show that the sample is light 

tailed, meaning that there is a higher concentration of data around the mean and less in the 

extreme values.  

On the other hand, the normal probability plot of the 

logarithms of prices shows that the distribution is left 

skewed. This means that it is asymmetric, as its left tail is 

longer than expected. On the image of the right we find an 

example of a left skewed distribution. [11] 

As a conclusion, it is worth explaining that fact that the 

study refutes the hypothesis of prices as a lognormal is 

remarkable. The logarithmic transformation stabilizes the 

variance of a sample. The lognormality of prices is a highly extended assumption over the fields 

of electricity market analysis. In fact many of the valuation models, as the Black-Scholes formula, 

are based under the assumption that prices behave as a lognormal variable.[12] 

Volatility 

To make a complete study of the prices from the day-ahead market, it is necessary to define 

their volatility. This characteristic measures the rate at which a variable evolves, decreasing or 

increasing from the expected value.[13] It is, therefore, interesting to predict the volatility of the 

prices, in order to anticipate to a high deviation from the forecasted value, if this was the case.  

To compute the volatility, we calculate the performance of each day i by: 
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Fig. 5. Normal probability plot for the prices and their logarithms 

Fig. 6. Left-Skewed distribution function. 

Source: [11] 
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ܿ݊ܽ݉ݎ݂ݎ݁ܲ ݁ = log (  (−ଵ݁ܿ�ݎܲ݁ܿ�ݎܲ

Then, the monthly volatility is calculated from the standard deviation of the obtained price 

performances during the pertinent month. Following the next formula, where i are the days of 

the month j: ݐ݊ܯℎ݈ݕݐ�݈�ݐ݈ܸܽݕ = √͵Ͳ ݀ܽݏݕ × �ሺܲ݁ܿ݊ܽ݉ݎ݂ݎ ݁ሻ[ͳʹ] 

On the following table and figure, the results obtained since 2000 are shown. 

Monthly 
volatility 

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Mean 

2000 114% 116% 96% 116% 92% 73% 131% 92% 132% 190% 152% 142% 113% 
2001 161% 154% 71% 81% 84% 109% 125% 77% 113% 123% 136% 85% 110% 
2002 120% 72% 140% 78% 106% 101% 101% 125% 133% 149% 213% 162% 125% 
2003 220% 164% 161% 77% 99% 103% 137% 111% 167% 122% 87% 117% 130% 
2004 95% 85% 111% 78% 97% 132% 99% 89% 124% 128% 88% 108% 103% 
2005 92% 118% 137% 100% 95% 132% 98% 85% 73% 69% 84% 73% 96% 
2006 86% 72% 59% 59% 112% 127% 72% 49% 66% 68% 83% 62% 76% 
2007 55% 78% 53% 54% 56% 71% 53% 41% 42% 38% 49% 62% 54% 
2008 42% 45% 41% 21% 23% 27% 18% 17% 26% 29% 31% 34% 30% 
2009 40% 51% 45% 35% 25% 24% 29% 22% 19% 27% 68% 181% 47% 
2010 163% 163% 247% 237% 89% 71% 21% 28% 39% 144% 129% 131% 122% 
2011 109% 39% 92% 62% 73% 29% 43% 24% 35% 68% 184% 70% 69% 
2012 42% 48% 102% 234% 109% 56% 63% 63% 98% 151% 222% 189% 115% 
2013 139% 289% Inf% Inf% 89% 138% 86% 49% 94% 84% 169% 244% - 
2014 421% 543% 392% 257% 79% 138% 72% 48% 47% 90% 170% 122% 400% 
2015 109% 190% 128% 126% 112% 51% 47% 99% 78% 65% 110% 101% 101% 
2016 182% 285% 163% 214% 310% 79% 40% 42% 42% 65% 74% 54% 129% 
2017 51% 95% 120% 143% 55% 37% 27% 36% 41% 44% 58% 100% 67% 
Mean 119% 145% - - 95% 83% 70% 61% 76% 92% 117% 113% 116% 

Table 2. Monthly volatility of prices in the day-ahead market before treatment 

In 2013 there are two days with 0 prices, making the volatility infinite. As extremely high values 

are not representative of the trend of the market, these values are substituted by linear 

interpolation. Moreover, the outliers of the volatility data are replaced. The following image 

contrasts the initial values and the treated values. 

 Fig. 7. Monthly volatility of prices in the day-ahead market 
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 Thus, the new mean values for each month are:  

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Mean 

115% 121% 127% 117% 88% 83% 70% 61% 76% 92% 117% 112% 98% 

Table 3. Average monthly volatility after treatment. 

Daily volatility is set around 18%, which is translated into a monthly volatility of 98%. This is a 

very high value, as it is common in electricity prices in countries with a liquid market. It is also 

noticeable that in general terms volatility has grown over time since 2010. The main cause is the 

increase of installed capacity of renewable energy systems. These units, while bidding at low 

prices, provide a very intermittent generation. These conditions provoke very fluctuating prices. 

In this sense, 2013 was a very volatile year as it accounted with a lot of hydro and wind energy, 

reaching at certain moments the 0 prices. [9] 

The final volatility averages are, for this reason, not fully representative of the price trend. The 

dispersion of the values seen for the same month in different years is too high to consider that 

future volatility will be the calculated average. This effect is represented below, by the 

difference between the minimum and maximum values. 

 

However, it is possible to extract some conclusions from this study. For instance, certain months 

of the year are less volatile than others. Thus, summer months, as july or august, are significantly 

less volatile than winter and spring months, as march or april. The seasonality of the volatility 

will be a main characteristic to consider when valuating electricity derivatives. 

Shaping 

For the characterization of the prices, it is also very useful to define the deviation from the mean. 

To measure it, a software tool has been designed. This tool calculates the expected difference 

between the monthly average price and the price of a specific hour.  

Therefore, the main objective of this model is to provide these hourly differences so that, 

together with our best forecast of monthly prices, we can estimate the prices of each hour of a 

whole year. 

Fig. 8. Average monthly volatility. 
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The model groups the days into clusters, distinguishing three different days per month: working 

days, Saturdays and Sundays. This is based under the assumption that all the days of a certain 

cluster behave similarly. Thus, it is assumed that the prices of all the Sundays of June are the 

identical. Thanks to this assumption, each month only accounts for three different sets of 24 

prices, one per hour of the day, as all the days are classified into a cluster. Therefore, the model 

calculates 36 different sets repeated during the whole year: ܸ݈ܽݏ݁ݑ = ͳʹ ݉ݐ݊ℎݏ × ݏݎ݁ݐݏݑ݈ܿ ͵ × ʹͶ ℎݏݎݑ = 8Ͷ ݏ݁ݑ݈ܽݒ 

This assumption greatly reduces the amount of data we work with, as we go from 8760 hourly 

prices in a year to 864 deviations from the monthly averages. 

The model forecasts the future deviations with historical data: it computes the mean deviations 

during a chosen period of time. It has been observed that the most reliable results are reported 

when introducing the data of the three previous years. However, in the next section the validity 

of the ŵodels’ outputs’ ǁill ďe studied. 

Backtest of shaping models 

The model described in the previous section gives us, together with the forecasted monthly 

estimations, the expected prices of all the hours of a certain year. However, we do not know the 

accuracy of the results. Through the backtest process we measure the goodness of the shaping 

ŵodel’s ƌesults by applying it to past years and ĐoŵpaƌiŶg the ƌeal pƌiĐes ǁith the ŵodel’s 
calculation. 

Obviously, the results change depending on the historical data chosen. This means that the 

results will be strongly affected by the election of the period of time for which the average price 

difference is calculated. Through the backtest model we will also define the optimum period of 

time used as an input. 

After several trials, a three years-time scope has been elected. Therefore, the model calculates 

for each hour of 2017 the average difference seen between the spot hourly price and the 

monthly price from 2014 to 2016. Then, the oďtaiŶed diffeƌeŶĐes aƌe added to eaĐh ŵoŶth’s 

observed average price during 2017. Thus, we have calculated the prices for each hour of 2017.   

To find out the accuracy of the model, we compare the results obtained and the actual market 

results during 2017. An example of the relation between these two is shown in the following 

chart, which represents the real and estimated prices of January 2017: 
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In Fig. 10 the correlation between the two sets of prices is represented. As it can be seen, the 

coefficient of determination is 0.9164, very close to 1. The mean squared error (MSE) is 11,14, 

which is translated to a 5,34% of the average of the real prices. The tool is therefore considered 

very precise. 

 

With this section, the analysis of the daily prices is concluded. Their probability distribution has 

been characterized, followed by a study of its volatility and shaping. On the next section, a 

similar analysis will be developed to the monthly values. 
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1.1.2. Monthly prices  

During this chapter the monthly spot prices will be studied, in order to conclude the day-ahead 

market analysis. Monthly prices are calculated as the average of each month’s market output. 

The time window will be maintained from the previous section due to the factors above 

explained.  

 

In this case, there is no need to clean the sample as there are no outliers found when analyzing 

it through RStudio. Thus, initially the study will try to fit the behavior of a set of 18 x 12 = 216 

prices into a probability distribution. Then, the shaping will be characterized. 

Statistical distribution  

As in the above section, the probability distribution that best fits the sample will be found 

through a goodness of fit test. Specifically, the analytical Cramér-Von Mises test will be ran 

through the cvm.test function of Rstudio. Then, to obtain a graphic result, the normal probability 

plot will be done. 

As in the previous chapter, it will be analyzed whether the sample behaves with a normal or 

lognormal distribution. Therefore, two different inputs are created: the prices and its 

logarithms. These two samples will be analyzed separately to, afterwards, compare the results 

and find out which distribution defines the prices better. 

Obtaining and representing the theoretical normal probability functions ;N;μ, σͿͿ from each 

saŵple ŵeaŶ μ aŶd staŶdaƌd deǀiatioŶ σ, we obtain: 
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Fig. 11. Monthly spot prices 
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The results from the Cramér-Von Mises goodness of fit test are: 

 Normal Lognormal 

Mean (µ) 42,352 3,703 

Standard deviation ȋσȌ 12,700 0,293 

Cramér-Von Mises 
ω2 

0,0633 0,2763 

Cramér-Von Mises 

p-value 
0,794 0,108 

Table 4. Cramér-Von Mises results for monthly spot prices. 

As it can be observed, both results are higher than the established sigŶifiĐaŶĐe leǀel of α=Ϭ.Ϭϱ. 
This indicates that it is acceptable to admit the null hypotheses, which are that each sample 

behaves as a normal. To obtain a graphic test, the normal probability plots are shown in Fig. 13. 

 

The conclusions obtained from these graphic tests are equivalent to the ones obtained for the 

daily prices: the normal variable is light tailed and the lognormal is left-skewed. 

The overall results of the study show that the sample behaves as a normal variable. The p-

value obtained for this distribution is quite high (0,794), which imply that a small error is made 
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when accepting the hypothesis. However, the p-value for the lognormal distribution is also 

high (0,108). Thus, it is found that the sample may also be assumed as lognormal variable, 

although with a higher error than when presuming it as a normal. 

As it was mentioned on the previous section, the electricity prices are commonly assumed as 

lognormal variable to stabilize the variance. Therefore, many highly consolidated models base 

their calculations on the lognormality of the sample. This is the case of the Black-Sholes 

models. [5] The possibility of assuming the variable as a lognormal will highly facilitate the 

future steps of this project. 

Shaping 

The objective of this section is to characterize the shape of the price curve along the months of 

a year. This characterization will be developed similarly than when studying the shape of the 

spot’s dailǇ Đuƌǀe. Theƌefoƌe, ǁhen referring to shape, it is meant the expected deviations of 

eaĐh ŵoŶth’s pƌiĐe fƌoŵ the Ǉeaƌ aǀeƌage pƌiĐe. Therefore, an accurate characterization of the 

shape will permit to calculate the 12 monthly prices just from an estimation of the yearly price. 

OŶ the folloǁiŶg iŵage the ƌatio of the ŵoŶth’s pƌiĐes aŶd the Ǉeaƌ aǀeƌage pƌiĐe is ƌepƌeseŶted 
for the time window chosen. 

 

Unlike the study of the shaping of the daily prices, in this case the data analyzed is much smaller: 

12 prices per year versus 8760. Thus, there is no need to develop a software tool nor to group 

the months into clusters.  

However, the steps followed to compute the shape are very similar. Firstly, the historical data is 

used to calculate the average deviations of each month. These averages will be assumed as the 

deviations of the year we want to forecast. It is worth remarking that when calculating the 

shaping for daily prices, the deviation was calculated as the absolute difference with the mean 

value (subtract). In this case, the deviation is the proportional difference (division). 
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The time window of historical data used to calculate the deviations has great influence in the 

results. In the previous study it was found that the consideration of the data from the three 

previous year provided accurate results. However, in this case, a wider data frame is considered: 

all historical values since 2000.  

This change is mainly due to the size of our sample: higher number of inputs is needed than just 

the ones from the three previous years to consider reliable the results. As a proof Fig. 16 plots 

the correlation between the real 2017’s deviations and the calculated deǀiatioŶs’ aǀeƌages fƌoŵ 
the three previous years and since 2000 are compared. 

 

The figure confirms the idea that a bigger time frame estimates better the shaping of the 

monthly prices curve for future years.  

As this section ends, the study of the spot market concludes. On the following section, we will 

proceed in a similar way with prices obtained in the forward market. 
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1.2. Statistical analysis of the forward market price 

For the study of the forward prices, the steps followed will be very similar to the ones taken 

when considering the spot prices. The study will begin by finding the probability distribution that 

best fits our series. Then, the volatility of the series will be characterized. However, the final step 

will not consider the shaping of the prices. While this parameter provides big help with spot 

market prices, as it allows estimating the hourly prices from a monthly price forecast (and 

similarly with the monthly prices and a yearly forecast), it will not be so revealing when 

considering forward prices.  

Instead, the liquidity of the market will be considered. As it will be explained in the pertinent 

section, liquidity is a major factor affecting the prices of any market but, in the case of the 

forward market, it is not granted.  

In the forward market there are several different products being traded simultaneously. The 

products differ from each other depending on the features of the contracts, as the delivery date 

or the duration. Some of the most common are the M+1 or Q+1, which make reference to the 

month and the quarter after, respectively. Additionally, depending on the type of load covered 

we find different products, as base load or peak loads contracts. Thus, we have a wide range of 

different products.  

During the development of the study we will focus on the evolution of the product Y+1 baseload. 

This product refers to the base energy of the following year. The study was developed for this 

product for several reasons. Firstly, it is one of the most common products of the forward 

market, so it is liquid enough. Secondly, it has a period long enough to allow us studying its trend. 

As it refers to the next year, there is a whole year of evolution of the price of this product. Other 

products, as the W+1 only have a week of evolution, which does not provide us enough data. 

Finally, it can be considered as a representative of the eǀolutioŶ of the otheƌ pƌoduĐts’ pƌiĐes. 

As in the previous study, before starting the analysis we must delimit and treat the sample. In 

this way, the range of data is much shorter as the forward market was established in July 2006. 

As it was explained above, it is important to pick complete years, to avoid the influence on the 

overall results of the seasonality. Thus, the data from the 11 years between 2007 and 2017 is 

considered. Unlike the spot market, the forward market does not update during weekends, so 

only the data from working days will be considered. On Fig. 17 these prices are represented. 
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In the figure we observe that prices frequently suffer a big jump when going from one year to 

the next one. This is caused by the fact that they are actually valuing two different products. For 

instance, on December 31st of 2015 the product priced was the energy during 2016 and it was 

valuated around 47 €/MWh. However, on January 1st of 2016, the produĐt ǁas ϮϬϭϳ’s eŶeƌgǇ, 
and it was valuated around 42 €/MWh. To haŶdle these disĐoŶtiŶuities, the prices are 

Ŷoƌŵalized ďǇ diǀidiŶg theŵ ďǇ eaĐh Ǉeaƌ’s aǀeƌage.  

 

Thus, the sample studied is the formed by the normalized prices. It is composed of 2734 different 

values. 

Statistical distribution model: goodness of fit test 

In this chapter, as in previous sections, the normality and lognormality of these prices will be 

discussed. The procedure will be equivalent to the one developed for the day-ahead market 

prices.  

Firstly, two different samples are created: the prices and its logarithms. Then, their theoretical 

noƌŵal distƌiďutioŶs ;N;µ,σͿͿ aƌe ƌepƌeseŶted aŶd ĐoŶtƌasted to the saŵple’s histogƌaŵ: 

Fig. 17. Y+1 prices from 2007 to 2017 

Fig. 18. Y+1 normalized prices 
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The Cramér-Von Mises goodness of fit test is ran through RStudio to compute the similarity of 

the two samples to a normal distribution. The results obtained are: 

 

 Normal Lognormal 

Mean (µ) 1,00 - 0,001 

Standard deviation ȋσȌ 0,0499 0,0499 

Cramér-Von Mises 

ω2 
2,657 2,713 

Cramér-Von Mises 
p-value 

4,328·10-7 3,236·10-7 

Table 5. Cramér-Von Mises results for Y+1 2007-2017. 

Lastly, the normal probability plot is done for the samples, to obtain an illustrative result of the 

goodness of fit test. The Fig. 20 shows the two plots. 

 

Both in the results of the two goodness of fit tests as in the comparison of the theoretical and 

observed distributions, it can be appreciated that the two different samples (prices and their 

logarithms) fit likewise into a normal. The main reason is that the two samples are quite similar. 

As shown in Table 5, the price sample has a mean value µ=1 (as it was normalized in the previous 
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section) and the logarithmic sample has µ=0. However, their standards deviations are basically 

the same (σ≈Ϭ,ϬϱͿ. The saŵple of logaƌithŵs is siŵilaƌ to the pƌiĐe saŵple ďut tƌaŶslated.  

As an evidence of this, in the following chart the normalized prices are represented and 

compared to the sample of logarithms. To facilitate the comparison, the chart also includes the 

representation of the logarithms translated one unit upwards.  

 

On the other hand, the p-values computed in the Cramér-Von Mises test are quite low, indicating 

that neither of the samples completely adjusts to a normal distribution. Finally, it is concluded 

that, although accepting an error, it is equivalent whether we assume the prices as a normal or 

a lognormal variable.  

Finally, it is worth mentioning that, although the normalized values for the selected time frame 

do not behave nor as normal nor a lognormal, when taking the real sample, results are different. 

As the time frame is closer to the current data, the prices fit better under the discussed 

distributions. For instance, the results for the 2015-2017 period are: 

 Normal Lognormal 

Mean (µ) 45.08 3.806 

Standard deviation ȋσȌ 2.876 0.064 

Cramér-Von Mises 
ω2 

0.388 0.266 

Cramér-Von Mises 

p-value 
0.0778 0.1696 

Table 6. Cramér-Von Mises results for Y+1 [€/MWh] for ϮϬϭϱ-2017. 

These results present a p-value higher than the significance level for both distributions. 

However, the tests show that, during this period, the prices statistical distribution corresponds 

rather to a lognormal than to a normal.  

Fig. 21. Y+1 normalized prices and logarithms 
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Volatility 

The volatility of the forward prices was calculated following the formulas explained when this 

characteristic was studied for the day-ahead market, in section 1.1.1 Spot daily prices. The 

results obtained are shown in the following table and figure: 

Monthly 
volatility 

Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Mean 

2007 4,7% 7,2% 2,2% 2,6% 3,5% 3,4% 2,3% 2,4% 1,7% 5,5% 2,8% 4,7% 3,3% 

2008 28,4% 2,7% 0,8% 1,9% 5,5% 5,5% 7,0% 5,3% 7,6% 10,8% 5,5% 6,6% 5,2% 

2009 45,0% 9,4% 12,9% 7,9% 5,6% 5,5% 3,5% 1,7% 5,9% 4,8% 3,8% 3,5% 6,1% 

2010 13,2% 3,4% 7,0% 8,7% 7,4% 4,9% 3,6% 1,7% 1,6% 0,7% 4,9% 6,7% 4,1% 

2011 16,8% 3,7% 4,0% 2,3% 3,0% 3,7% 2,2% 2,8% 2,3% 2,8% 2,8% 1,5% 3,2% 

2012 2,9% 2,5% 1,8% 1,5% 2,1% 3,3% 3,6% 1,9% 4,3% 1,9% 1,6% 4,0% 2,4% 

2013 11,1% 3,9% 1,7% 4,4% 2,6% 2,2% 5,2% 1,9% 3,2% 5,4% 1,6% 8,7% 3,6% 

2014 7,6% 1,9% 1,7% 1,7% 3,2% 1,9% 1,8% 0,8% 1,9% 1,7% 2,6% 2,7% 2,1% 

2015 5,6% 3,3% 1,8% 1,3% 1,3% 2,0% 1,0% 1,1% 1,0% 1,1% 1,6% 2,4% 1,7% 

2016 7,4% 3,7% 2,2% 4,2% 3,0% 4,8% 3,6% 2,0% 3,9% 6,0% 3,3% 3,5% 3,7% 

2017 15,5% 2,5% 3,2% 3,7% 1,9% 1,3% 1,1% 1,3% 2,6% 3,4% 3,0% 3,6% 2,7% 

Mean 10,7% 3,6% 2,6% 3,0% 3,2% 3,2% 2,7% 1,9% 2,7% 3,1% 2,8% 3,9% 3,3% 

Table 7. Forward prices’ monthly volatility. 

 

As shown, the volatility of January is remarkably higher than for the rest of the months. This is 

caused by the already explained effect on prices of the product change from one year from 

another. Thus, these peaks should not be considered when studying the volatility of the forward 

pƌiĐes, as theǇ aƌe Ŷot ƌepƌeseŶtatiǀe of the eǀolutioŶ of a pƌoduĐt’s pƌiĐe oǀeƌ tiŵe. 

In any case, the calculated mean volatility during these 11 years is over 3,3 %. This value is quite 

low, especially if we compare it to the spot market one, which was around 116 %. This is 

understandable as, although the spot market price influences the forward prices, it is not 

affected by all the daily fluctuations of the spot. The spot rather affects the general trend. 

Moreover, in this section the volatility of a certain product (Y+1) is studied, not the whole 

volatility of the forward market. In following sections, a wider view of the volatility of this market 

will be given. 
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Liquidity 

Liquidity is a key factor in order to have a well-functioning market. It implies that the volumes 

traded in a certain market are sufficient to ensure that a sole ageŶt’s aĐtioŶ ǁill Ŷot affeĐt the 
prices. This means that all agents are price-takers. Liquidity, therefore, is a necessary 

characteristic to have a competitive market. However, in forward electricity markets, a 

reasonable liquidity level is commonly not achieved. Consequently, prices are extremely 

affected by certain market actions. 

The liquidity of a certain electricity market depends on many different factors, as transparency 

or costs of participation. Market structure is also one of the main variables: the higher the 

number of agents participating in the spot market, the higher the needs to trade in the forward 

market. Likewise, the cross-border contestability highly affects the liquidity, as it opens the 

doors to participants from other systems. 

There is not a unique way to measure liquidity. IŶ the Đase of foƌǁaƌd ŵaƌket’s liƋuiditǇ, several 

indexes can be used as the volume of transactions or churn factors. The latter is one of the most 

common indexes and is defined as the ratio of energy traded in the forward markets to total 

physical consumption. There is not a well-defined churn rate threshold from which the market 

can be consider liquid, however, it is usually set at a range between 3 and 10 times the demand. 

[14] 

The Fig. 23 represents the energy traded in the OTC market (registered in BME Clearing, in OMI 

Clear and not registered at all) and in the organized markets of OMIP and EEX, which are several 

different platforms for forward trading.[15]  

 

It can be seen that majority of long term transactions have been historically effectuated through 

non-registered OTC contracts. However, their details are not public, so they have low 

accessibility. Thus, we will consider for this study the contracts closed through OMIP, since, as 

the public forward market, it publishes openly the results obtained. 

Thus, the energy traded in the continuous market of the MIBEL futures market managed by 

OMIP during 2017 was 7,7 TWh, which was significantly lower than the volume traded during 

Fig. 23. Trading evolution [TWh] in different platforms. Source: CNMC 
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2016, which reached 19,5 TWh. These figures are translated into a 3,1% and a 9,9% of the total 

peninsular demand of 2017 (252 TWh) and 2016 (196,5 TWh), respectively. 

In general, the volume transacted in OMIP has had a decreasing trend since 2013, which can be 

explained by several drivers. On the one hand, renewable installed capacity has acquired more 

weight on the energy mix. These generators are not incentivized to trade in the forward 

market.[16] On the other hand, the economic crisis reduced overall demand.  

The following images represent the volume negotiated in the OTC, OMIP and EEX markets 

depending on the time lag (in days) between the signature of the contract and the beginning of 

its exercise. Although it shows the information about a two particular months, December of 

2017 and January 2018, the charts can be used to understand the general trend.  

 

Thus, the market is focused in contracts with very short maturity, of one month or less. This is 

usually covered by the weekly and monthly products, as W+1 and M+1. Products for the next 

year, as the Y+1, are usually less liquid but still concentrate a big percentage of the market 

activity. However, for longer lags until the maturity there is almost no liquidity.  

The following table also resumes the products with higher liquidity in the MIBEL futures market 

between 2010 and 2015. 

Fig. 24. Volume negotiated in the OTC, OMIP and EEX markets during December 2017 and January 2018 depending 
on the number of days since the negotiations and the maturity date. Source: CNMC 
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Finally, the Spanish forward market can be compared with other European markets through the 

following chart: 

 

As explained, the churn factors are the ratio of energy traded in the forward markets to total 

physical consumption. Based on the thresholds established (3-10) it can be concluded that in 

the Spanish forward market, as in most European countries, the liquidity is quite limited. As an 

exception we find the German, British, French and Nordic markets.[17] 

 

Table 8. Summary information on MIBEL forward exchange platforms. Source: ͞European Electricity Forward 

Markets and Hedging Products– State of Play and Elements for Monitoring͟, ECA ϮϬϭϱ 

Fig. 25. Churn factors in major European forward markets during 2014 to 2016. Source: ACER 
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1.3. Time series study 

During this section the prices will be considered and studied as time series, with the purpose 

detecting and defining any chronological patterns they might have. If there are any, its 

characterization will facilitate the future forecasts, increasing the accuracy of the results.  

For the development of the section the literature ͞Forecasting: Principles and Practice͟, R. J. 

Hyndman y G. Athanasopoulos[18] will be used to support the steps, which will be developed in 

the software RStudio. 

The series of prices studied will be the ones considered in the previous sections: day-ahead 

prices, both daily and monthly, and forward prices for the product Y+1. The analysis will be done 

following the same steps for the three series. The sought final result is an autoregressive 

integrated moving average (ARIMA) model to fit the series. The ARIMA models are one of the 

most common approaches for time series forecasting. They combine autoregressive (AR) and 

moving average (MA) models. Additionally, they introduce an integration (I), which is usually 

used to stabilize the mean of a non-stationary variable. 

An AR model forecasts the variable using a linear combination of consecutive past values. The 

order of the model indicates the number of previous data used to predict a certain value. The 

MA models, instead of using past values, uses a linear combination of past errors from a 

regression forecast. As in the AR, the MA order references the number of previous data 

considered in the linear combination. Finally, the integration substitutes the values of the series 

by their differences with previous values. The order means the number of times the data has 

been differentiated. 

The ARIMA models are commonly expressed as ARIMA(p,d,q), where the numbers p, d and q 

indicate the orders of the AR, integration and MA, respectively. In case the time series was 

seasonal, the ARIMA model would be defined as ARIMA(p,d,q)(P,D,Q)m, where the second part 

references the seasonal component of the model. Thus, P, D and Q are the orders of the AR, 

integration and MA for the seasonal part. m is the frequency of the time series, which is defined 

as the number of observations in each seasonal repetition. 

The ARIMAs of the series will be determined using the function arima() of the package forecast. 

The goodness of fit of the models will be expressed by means of several indexes related with the 

residuals. These aƌe the diffeƌeŶĐes ďetǁeeŶ the ƌeal aŶd the ŵodel’s ǀalues. Firstly, the MAE 

(mean absolute error) is defined as the average of residuals. The RMSE (root mean squared 

error) computes the square root of the average of all the obtained squared errors. Thus, if a 

model minimizes the MAE, it forecasts the median while, if it focuses on the RMSE, it forecasts 

better the mean. Finally, the MAPE (mean absolute percentage error) will be considered. It is 

very similar to the MAE although, instead of making the average of the absolute residuals, it 

considers the residuals in percentage. The MAPE main disadvantage is that it will be infinite if 

there are any null real values. 
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When checking the goodness of fit of a model, it must be checked that the residuals are white 

noise. If they are not, the model is not considering relevant information, leaving it on the 

residuals. To analyze this, a portmanteau test will be used. In particular, the Ljung-Box test will 

be ran through the function checkresiduals(), from the package forecast. It will provide a p-value 

that, as in the previous section, should be higher than a significance level ;α=Ϭ.ϬϱͿ in order to 

accept that the residuals behave as white noise. 

1.3.1. Daily Spot Prices 

The daily spot prices from 2000 to 2017 are represented below. The sample was cleaned from 

outliers. The frequency of the series is defined at 7, as they are daily values that will have a 

weekly pattern. Its autocorrelation function (ACF) and partial autocorrelation function (PACF) 

are also represented. These two graphs are very helpful when considering the ARIMA. 

The model fitting this series is an ARIMA(3,1,2)(0,1,2)7. Thus, the series is fitted firstly 

differencing generally and seasonally, and then through a combination of an AR model of order 

3 and a second order AM. It also includes a seasonal AM of second order. 

Results of ARIMA 

MAE 3.590 

MAPE Inf 

RMSE 5.221 

Ljung-Box test p-value 0.383 

Table 9. Goodness of fit of ARIMA model to daily spot prices 

Fig. 26. Spot daily prices and their autocorrelation and partial autocorrelation functions. 
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In the Table 9 it can be seen that the errors are quite low. The MAPE index has an infinite value 

but it should not be consider, as it is caused by some null prices. The p-value of the residual test 

is higher than our significance level, so the hypothesis of the residuals as white noise can be 

aĐĐepted. OŶ the folloǁiŶg iŵage, the ƌeal ǀalues aŶd the ŵodel’s output ĐaŶ ďe Đoŵpaƌed. 

 

1.3.2. Monthly Spot Prices 

The monthly spot prices from 2000 to 2017 are represented below, together with its ACF and 

PACF. The sample presented no outliers, so there was no need for cleaning it. Now, as we are 

dealing with monthly values, the frequency of the time series is 12. 

 

Fig. 28. Monthly prices and their autocorrelation and partial autocorrelation functions. 

The most optimal model fitting the series of monthly prices is an ARIMA(0,1,2)(0,0,2)12. A general 

first order differentiation was used to stabilize the mean and make the series stationary. Then it 

Fig. 27. Real and fitted time series for daily spot prices. 
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is found that prices can be model through a combination of a MA of order 2, general and 

seasonal. 

Results of ARIMA 

MAE 5.063 

MAPE 13.023 

RMSE 6.913 

Ljung-Box test p-value 0.264 

Table 10. Goodness of fit of ARIMA model to monthly spot prices 

In the Table 10. Goodness of fit of ARIMA model to monthly spot pricesTable 9 it can be seen 

that the errors are quite low. The p-value of the residual test is 0.264, which is higher than our 

significance level, so the residuals behave as white noise. The following chart represents the 

ŵodel’s output aŶd the oďseƌǀed ǀalues. They are represented slightly lagged to facilitate the 

comparison. 

 

Fig. 29. Real and fitted time series for monthly spot prices 

1.3.3. Forward 

Finally, an ARIMA model will be designed to fit forward prices. To this purpose, the prices 

considered will be the ones chosen during the statistical study of the previous section: the Y+1 

baseload prices. The time frame, however, will be modified, taking prices from 2015 to 2017, as 

in Table 6. The frequency of the series is 5, since they are daily prices that only quote on working 

days. The following image contains the prices, ACF and PACF representation. 
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Fig. 30. Y+1 prices and their autocorrelation and partial autocorrelation functions. 

The resulting ARIMA model fitting the series is an ARIMA(0,1,1). Thus, the series, previously 

differentiated, is described by a MA of first order. Compared to the other models, this ARIMA 

lacks of seasonal component. This means that the data does not shows any pattern for any given 

frequency, contrary to, for instance, the daily series that has a weekly pattern (frequency 7). 

Results of ARIMA 

MAE 0.161 

MAPE 0.366 

RMSE 0.236 

Ljung-Box test p-value 0.265 

Table 11. Goodness of fit of ARIMA model to Y+1 forward prices 

The goodness of the ARIMA model is shown in the previous table. The errors MAE, MAPE and 

RMSE are low. Additionally, the p-value for the residuals is above the threshold set by the level 

of significance, confirming it is acceptable to consider the residuals as white noise. 

 

Fig. 31. Real and fitted time series for Y+1 forward prices 
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As a conclusion, it can be observed that the prices have a strong moving average component. It 

was remarkable that, due to the features of the product Y+1, it lacked seasonal component. 

The findings developed in this section may be use in future projects to simulate the market prices 

and, afterwards, calculate the value of an electricity derivative. However, due to the scope 

limitations of this project, they will not be further developed.  
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2. Monthly electricity price simulations 

In the previous chapter the spot and forward prices were analyzed, defining their characteristics. 

The conclusions obtained will be the bases to develop forecasts of future price values. During 

this section, the methods to do so will be explained. The final purpose is to have an accurate 

prediction of the future prices to introduce them in the electricity derivative valuation models. 

To simulate the prices evolution, quantitative models will be used. As mentioned in CHAPTER 2: 

State of the art, these models are based on a statistical analysis of the historical data. Compared 

to the fundamental models, which compute the prices from explaining variables, as demand, 

temperature or fuel costs, quantitative models require less information, as they only consider 

the past values of the prices. Thus, these models are preferable when there is no access to 

perfect information. 

Quantitative models divide the prices in two parts: a deterministic part, which will be known, 

and a stochastic one. Consequently, the results of these models will be an expected distribution 

of the prices.  

As mentioned, the spot and forward prices will be simulated. Due to their varied characteristics, 

different models will be developed for each one of them. 

Both types of models will use historical and future monthly prices. The reason to choose the 

monthly aggregation is that in section 1.1.1 Spot daily prices, a shaping model was developed. 

This tool computed hourly prices from the monthly averages (and historical hourly data). Thus, 

lower aggregation prices can be calculated by means of an accurate estimation of monthly 

averages. 

2.1. Spot price models 

To forecast the future prices from the spot market, two different models will be studied. Each 

one will be described, detailing their advantages and weaknesses.  

It must be recalled that the result of the goodness of fit test for monthly values demonstrated 

that prices behave with a normal distribution, but they could also be fitted into a lognormal. 

Thus, applying to prices some transformations typical of lognormal variables is suitable. 

2.1.1. Brownian motion model 

The Brownian motion is a stochastic process. In particular, it is a Markov process, that is a 

stochastic process in which the only relevant variable to predict the future state is the current 

state of the process at the time. Therefore, the expected value of a random variable xt at time t, 

depends only on the previous value xt-1. This means that the historic values of the process are 

irrelevant. 

Going further, a Wiener process is a special type of Markov stochastic process. A variable xt 

follows a Wiener process if: ݔ௧ − ௧−ଵݔ = Δݔ = �௧√Δݐ 
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Where ξt is a random variable, with independent values for each Δt and that has a normal 

probability distribution N(0,1). Thus, if x is a variable under a Wiener process, the Δx for steps 

Δt, are distributed as a normal N(0, Δt). 

Having these concepts in mind, the geometric Brownian motion may be described as a stochastic 

process defined in terms of a Wiener process, as follows: ݔ௧ − ௧−ଵݔ௧−ଵݔ = Δݔ௧ݔ௧−ଵ = �Δݐ + �Δݖ 

where Δݖ = �௧√Δݐ is a Wiener process. μ is the expected increment of x per time step. The term 

σΔz introduces distortion from the tendency defined by μΔt. Thus, the distortion will be σ times 

the Wiener process Δz. σ represents the variance or volatility.  

If the price value at a certain time t is designated as St, it will be defined as: Δܵ௧ܵ௧−ଵ ≃ ln ܵ௧ܵ௧−ଵ ≃ �Δݐ + �Δݖ 

Recalling that the price behaves as a lognormal, when it is simulated by this model, it is found 

that the price expected value grows indefinitely with time as: ܧሺܵሺݐሻሻ = ܵ݁�௧ 

The variance also increases indefinitely over time, growing therefore, the uncertainty with σ and 

time:  ܸܽݎ[݈݊ሺܵሺݐሻሻ] = �ଶݐ 

Thus, although the geometric Brownian motion model is a very simple approach to forecast 

future values, it presents several limitations. For instance, if the simulations are computed over 

a long period of time, the prices estimated will be within a wide range, increasing the 

uncertainty. However, real prices in electricity markets do not grow indefinitely with time. In 

fact, in the long and mid-term, the average of prices tends to mean value, and the uncertainty 

does not tend to infinity. 

Therefore, the Brownian model provides good results for forecasting in the short-term products 

with low uncertainty. However, for longer terms, this model must be modified as explained in 

the next section. 

2.1.2. Mean reversion model 

To address the drawbacks of the Brownian motion model, the mean reversion model introduces 

a value to which the prices tend in the long term, SLT = eµ. The process is defined as: Δܵ௧ܵ௧−ଵ = �ሺ� − lnሺܵ௧−ଵሻሻΔݐ + �Δݖ 
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Where α is the speed to which the prices reverse to the long-term value. As the price S behaves 

as a lognormal, we find that the expected value and variance are: 

[ሻሻݐln ሺܵሺ]ܧ = � − �ଶͶ� ሺͳ − ݁−ଶ�௧ሻ + ሺlnሺܵሻ − �ሻ݁−�௧ 

[ሻሻݐln ሺܵሺ]ݎܸܽ = �ଶʹ� ሺͳ − ݁−ଶ�௧ሻ 

The mean reversion model provides better results for volatile products and longer periods of 

study, as it establishes a price value in the long term, delimiting the uncertainty and avoiding its 

infinite growth over time. 

Many other corrections may be introduced to these formulas to correct their failures and 

provide better results. For instance, the long-term price value and volatility are considered 

constants. They may be substituted by time dependent values, to consider the seasonal patterns 

or long-term trends. However, for the sake of simplicity the study will focus on these two models 

as representatives of the spot forecast methods. 

2.2. Forward curve models  

When considering spot markets, the output is one price: the price of electricity in that time 

(hour, daǇ …Ϳ. However, forward markets consider several products. One of the main distinctive 

features of these products is the delivery time. The forward price curve provides the price of 

these products as a function of their delivery time. It goes from close delivery times (as W+1) to 

higher ones (as Y+2).  

[19] 

The values of the forward curve may be considered as the ŵaƌket’s ďest foƌeĐast of the value of 

a product in the considered delivery time. However, other aspects must be considered, as 

liquidity, which may cause that the forward market is not reflective of the future scenario. 

For each working day, the market gives a different value to future electricity. This is reflected by 

a different value of the forward products depending on their delivery dates. This variation in the 

quotations produces a new different forward curve per day. The forward curve models must 

compute the evolution over time of the whole curve.  

Fig. 32. A coŵŵoditǇ’s forǁard curǀe for seǀeral future ŵoŶths. 
Source: 
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2.2.1. Monte Carlo model 

The objective of the Monte Carlo method is to compute the forecast by creating several 

sĐeŶaƌios aĐĐoƌdiŶg ǁith the pƌoduĐts’ ǀolatilitǇ. Peƌ sĐeŶaƌio i, the forward price F at time t of 

a product with delivery time in month T is: 

,ݐሺܨ ܶሻ = ,ሺͲܨ ܶሻ · ݁�ሺ�−௧ሻ−ଵଶ·�ሺ�−௧ሻమ
 

The Monte Carlo method starts computing the volatility σ;T-t). It is seen that the volatility of the 

products is higher as the lag until the delivery time T is smaller.  

Computing the volatility of the different products as seen in section 1.1.1 Spot daily prices: 

Volatility and plotting them as a function of the time until delivery (T-t), we find that they may 

be adjusted with an exponential trend line. In the following chart, the annualized volatility of 

electricity products with times until delivery (T-t) from 1 to 12 months and their trend line is 

shown: 

 

Fig. 33. Calculated volatility of forward products 

Therefore, the volatility is considered as: �ሺܶ − ሻݐ = � · ݁−�·ሺ�−௧ሻ  
The MoŶte Caƌlo’s appƌoaĐh is ďased oŶ the ĐƌeatioŶ of seǀeƌal sĐeŶaƌios to ƌefleĐt all the 
possible future situations and their probability. To create these scenarios, the computed curve 

σ;T-t) will be the multiplied by i random values to create several scenarios: ݇ሺܶ − ሻݐ = � · �ሺܶ −  ሻݐ

Where ξ is a random variable with normal probability distribution N(0,1).  

The Monte Carlo forward models provides a simple method to compute the expected forward 

curve and its distribution.  
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3. Electricity derivatives 

[4], [20] 

Before continuing with the project, the main types of electricity derivatives will be explained. 

The comprehension of the characteristics of these products is essential in order to develop an 

accurate valuation.  

Firstly, a derivative is a financial product between two or more counterparts whose value 

depends on the future value of an underlying asset. This underlying asset includes any kind of 

good, as a commodity, stocks or a currency. During this project, the underlying considered is the 

electricity price.  

There are four main types of derivative products: futures, forward, options and swaps. Their 

definition, main characteristics will be detailed below. 

3.1. Futures and forwards 

Future and forward contracts are agreements between a buyer and a seller to exchange an asset 

for a certain price in a certain time in the future.  

The difference among them is that, while forwards are private bilateral contracts, futures are 

transactions closed in a market. Thus, futures have public prices. Although forward contracts are 

bilateral, it is frequent to close them through a public clearing house, to reduce credit risk.  

To increase liquidity and reduce transaction costs, futures are usually standardized contracts 

(quantity, delivery times, duration…Ϳ. Forwards, however, are more flexible, as they are directly 

design by the counterparts with the aim supplying their needs. In contrast, they imply higher 

transaction costs and credits risk. 

Although both types of contracts can be physical or financial, it is frequent that forwards imply 

the physical delivery, while futures are mainly financial. 

3.2. Options 

An option is a contract that provides the right to buy or sell a certain quantity of an asset for a 

given price during a certain period of time. Unlike, futures and forward contracts, options trade 

the right to sell or buy, but not the obligation. This right is acquired by a certain amount of 

money, called the premium. The price at which the asset is bought or sold is the strike price. 

There are several types of options attending different design parameters. For instance, 

attending on whether the option gives the right to buy or to sell the asset. Thus, call options give 

the right to buy the asset, while put options give the right to buy it.  

Regarding the delivery dates, European options must be distinguished from American options. 

The former gives the right to exercise the option only on the expiration date. In contrast, the 

American options can be exercised throughout a period, anytime until the expiration date. 
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A common hedging strategy is the denominated collar. A collar consists in the contracting of 

both a call and a put option, with the objective of hedging against adverse prices while 

eliminating the premium. To do so, eaĐh optioŶ’s pƌeŵiuŵs are compensated. Thus, the agent 

is subject to two different strike prices, which are then translated into a cap and a floor price. 

In the same way to the collar, the combination of several options allows agents to design 

products that adapt to their needs. 

3.3. Swaps 

A swap transaction is the simultaneous purchase and sale of an obligation or a similar underlying 

asset, of equivalent capital, in which the exchange of financial agreements provides the 

counterparties more favorable conditions than without the contract. 

In electricity markets, swaps frequently consist in the purchase or sale of the electricity at a fixed 

price. Thus, in essence, swaps are a combination of electricity forwards with multiple settlement 

dates and constant price. 

Swaps are commonly used by agents in electricity markets to obtain price certainty in short to 

mid-term. 
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4. Valuation of electricity derivatives 

4.1. Valuation models 

During this section, it will be described how models have been created from the formulas 

presented in 2 Monthly electricity price simulations.  

Both the models for spot prices (Brownian and Mean reversion) as for the forward (Monte Carlo) 

provide as a result several scenarios of expected monthly prices. Thanks to the shaping model 

developed in 1.1.1 Spot daily prices, it is possible to covert the monthly prices resulting from the 

forecasting models to hourly prices with high accuracy. 

Additionally, the Black-Scholes model will be explained. This model’s output will be used as a 

benchmark, to compare the results obtained in the developed models for the practical cases. 

4.1.1. Brownian motion model 

As it was explained, the Brownian model was determined by: 

ln ܵ௧ܵ௧−ଵ ≃ �Δݐ + �Δݖ 

In this formula, μ is the expected growth per Δt and σΔz, the distortion. Indeed, σ may be defined 

as the volatility of the product. Several methods are found to compute this volatility.  

One approach is to calculate the forecast of future monthly prices, with the monthly volatility 

calculated from daily prices, as developed in section 1.1.1 Spot daily prices. The introduced 

monthly volatility will be the one calculated in Table 3. Average monthly volatility after 

treatment., ǁhiĐh is the aǀeƌage of eaĐh ŵoŶths’ ǀolatilitǇ siŶĐe ϮϬϬϬ.  

As it was found when analyzing daily prices, some months as January are more volatile than 

others, as July. Therefore, the main advantage of this first approach is that it is able to reflect in 

the output this feature, by introducing in the model an average volatility per month. However, 

the results obtained are the ones shown in the next image, setting S0=ϱϬ €/MWh, µ=0 and with 

a scope of 24 months. 

 
Fig. 34. Result Brownian model with average monthly volatility σ, S0=ϱϬ €/MWh, µ=Ϭ aŶd 

t=24 months. 
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The prices’ volatility is too high and does not reflect the real market behavior. This is caused by 

the computation of volatilities from daily prices. These prices suffer higher volatilities than what 

is actually transferred to monthly prices. Therefore, this approach must be rejected. 

If forecasting monthly prices, the introduced volatility must be calculated only from monthly 

values. With this purpose, the formulas presented in section 1.1.1 Spot daily prices will be used 

as: ܲ݁ݎ ݂ = log ቀ ெ௧ℎ௬ ���ெ௧ℎ௬ ���−భቁ                       ெ௧ℎ௬��௧௧௬ = ଵ√ଵଶ ெ௧ℎ௦ × ݎ݁ܲ)� ݂−ଵଷ,−ଵ ) 

This time, the calculated volatility does not contain a monthly characterization, as it was 

computed from the standard deviation of the last twelve monthly prices. Thus, we do not lose 

any information by doing the average value of all the volatilities, calculated from 2000 to 2017. 

The result is σ = Ϭ.ϭϳϯϵ. FiǆiŶg the saŵe iŶputs as ďefoƌe ;S0=ϱϬ €/MWh, µ=0 and with a scope 

of 24 months), the result is: 

 

As it can be seen, the results provided reflect better the real market behavior. However, if the 

time frame studied is too high, the results will be within a wide range, introducing too much 

uncertainty. This can be seen in the next chart, where the time studied has been 20 years (24 

months). On the right chart, the drift has been established at µ=1%, meaning that the trend is 

for prices to grow 1% of S0, 0.5 €/MWh, peƌ ŵoŶth. The iŵage iŶteŶds to shoǁ the ŵodel’s 
sensitivity to µ.  

Fig. 35. Result Brownian model with σ=0.1739, S0=ϱϬ €/MWh, µ=0 and t=24 months. 
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4.1.2. Mean reversion model 

As already explained, the mean reversion model intended to solve some of the limitations of the 

Brownian model. It is defined by:  

ln ܵ௧ܵ௧−ଵ ≃ Δܵ௧ܵ௧−ଵ = �ሺ� − lnሺܵ௧−ଵሻሻΔݐ + �Δݖ 

The model introduces a long-term value (SLT=eµ) to which prices tend at a speed of α. The lower 

the value of α, the Đloseƌ the ŵodel is to a puƌe BƌoǁŶiaŶ ŵotioŶ ŵodel. The seŶsitiǀitǇ of the 
ŵodel to α ŵaǇ be seen in the following figures. 

 

4.1.3. Monte Carlo model 

The Monte Carlo model intends to forecast, not only a certain price, but the future forward 

curves. The formula describing this process is the one that follows: 

,ݐሺܨ ܶሻ = ,ሺͲܨ ܶሻ · ݁�ሺ�−௧ሻ−ଵଶ·�ሺ�−௧ሻమ
 

where σ is the volatility and ki the variable differencing among scenarios. These two variables 

are computed by: 

Fig. 36. Result Brownian model with σ=0.1739, 
S0=ϱϬ €/MWh, µ=0 and t=240 months (20 years) 

Fig. 37. Result Brownian model with σ=0.1739, 
S0=ϱϬ €/MWh, µ=1% and t=24 months 

Fig. 38. Result mean reversion model with σ=0.1739, 
S0=ϱϬ €/MWh, eµ=ϲϬ €/MWh, α=1 and t=100 months 

Fig. 39. Result mean reversion model with σ=0.1739, 
S0=ϱϬ €/MWh, eµ=ϲϬ €/MWh, α=6 and t=100 months 
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�ሺܶ − ሻݐ = � · ݁−�·ሺ�−௧ሻ   and  ݇ሺܶ − ሻݐ = � · �ሺܶ −  ሻݐ

Being σ and α parameters deduced from historical values of the volatility. 

Introducing in the model the forward curve of 12 months ahead and the volatility deducted from 

the products that reflect these prices, the results obtained are: 

 

The results show that the fact that products with closer delivery times are more volatile cause 

that we have a wider range of prices, meaning higher uncertainty, for values of the forward 

curve closer to t=0 than for those with further deliveries. 

4.1.4. Black-Scholes 

[5] 

In 1973, Fischer Black and Myron Scholes published the Black-Scholes formula to valuate 

European options. Their work caused great influence in the way in which market participants 

price and hedge options. 

The Black-Scholes formula is designed for an environment that meets the following 

assumptions: 

• The price of the underlying commodity behaves as lognormal, with constant µ and σ and 

follows a geometric Brownian motion.  

• The underlying commodity is perfectly divisible 

• There are neither transaction costs nor taxes.  

• The option does not generate any dividends during the considered period 

• There are no arbitrage operations without risk 

• There is possibility to continuously change the positions 

• The risk-free rate of interest for investors is the same for borrowing and lending. 

• In the short-term, this risk-free rate of interest, r, is constant 

Depending on whether the option is a call or a put option, the formula consists in: 

�ܸ = ܵ · ܰሺ݀ଵሻ − �−݁ܭ · ܰሺ݀ଶሻ    or    �ܸ = �−݁ܭ · ܰሺ−݀ଶሻ − ܵ · ܰሺ−݀ଵሻ 

Fig. 40. Results Monte Carlo simulation for 12 months and historical standard deviations  
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where d1 and d2 are defined as: 

݀ଵ = lnቀೄሺబ,ሻ� ቁ+(+�మమ )·��√�     and    ݀ଶ = ݀ଵ − �√ܶ 

The components of the formula are: 

– The N(x) formula is the cumulative distribution function for a normal variable.  

– X is the strike price of the option, which will depend on the practical case  

– S the underlying price, which will be estimated with the value of the forward curve that 

month. 

– σ is the aŶŶualized ǀolatilitǇ. It will be estimated similarly than in the Monte Carlo 

method: by exponential interpolation. 

– T the lag until the delivery 

– r, the risk-free rate of interest, is 0. 

These formulas are deduced from the design of a risk-free portfolio, by balancing the position in 

the spot market with the one adopted with the option.  

4.2. Application of the models 

Once the different models have been analyzed, it is interesting to apply them to practical cases 

and study their accuracy. During this section we will describe the different scenarios to address 

with the models.  

Al these practical cases are described from the point of view of a utility that receives a request 

from a client to provide a service. To do so, the utility will need to forecast the future scenarios 

and their risk. The client will be a consumer in the first case and, in the second one, a generator. 

4.2.1. Case 1: retail 

It is frequent that utilities receive the request by consumers to hedge their risk. One of the main 

ways to do so is protecting the agent against high prices, by fixing a cap by an option. In this 

case, it will be supposed that an agent wants to establish the cap at a strike price of 75 €/MWh. 
For selling this contract, the utility claims a pƌeŵiuŵ, usuallǇ iŶ teƌŵs of €/MWh. 

The main objective of the utility is to measure the risk it is receiving from this contract. Thus, the 

higher the risk, the higher the premium. However, it must ensure that it is correctly calculated 

because, in case it is over dimensioned, the utility may lose the contract. On the other hand, in 

case it is under dimensioned, the utility will lose money with it. 

Other way to design this hedge is to design a collar, which sets both a cap and a floor. In this 

case, there will be no premium, as the extra costs assumed by the utility by paying all price above 

the cap, will be recovered by the profit of demanding to the consumer the floor price every time 

the market is below it. 

The exercise will consist in determining the parameters of the two designs for a cap of 75 

€/MWh. This is both the premium and the floor. To do so, the client provides its hourly 
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consumption curve for the whole duration of the contract, which will be 1 year from July 2018 

to June 2019. 

 

Fig. 41. Hourly consumption of the client for the considered period of time (July 2018 to June 2019) 

To calculate the value of the premium or the floor, several scenarios of prices will be developed, 

with the aim of deducting the distribution of future prices. These scenarios will be created with 

the simulation models that have been developed and the shaping tool, to compute hourly prices.  

OŶĐe the houƌlǇ pƌiĐes aƌe Đoŵputed, the utilitǇ’s loss iŶ € peƌ houƌ ǁheŶ iŶstalliŶg the Đap ǁill 
be calculated. By dividing the total loss by the total consumption, the prime would be obtained: 

݉ݑ�݉݁ݎܲ [ [ℎܹܯ€ = − [ℎܹܯ]ℎ݊�ݐ݉ݑݏ݊ܥ ݈ܽݐܶ[€]ݏݏܮ
= − ∑ ܽܥ) − (ℎ,݁ܿ�ݎܲ [ [ℎܹܯ€ × ℎ[ℎܹܯ]ℎ݊�ݐ݉ݑݏ݊ܥ [ℎܹܯ]ℎ݊�ݐ݉ݑݏ݊ܥ ݈ܽݐܶ  

This process will provide us a distribution of premium values, one per scenario i. The premium 

will be set at a value that ensures the recovery of the mean loss. However, it will be interesting 

to study the loss distribution. This will be done by analyzing the percentiles and the standard 

distribution. 

To calculate the floor of the collar, a similar process will be followed: 

݈݁ܿ݊ܽܽܤ [ [ℎܹܯ€ = ݊�ܽܩ − [ℎܹܯ]ℎ݊�ݐ݉ݑݏ݊ܥ ݈ܽݐܶ[€]ݏݏܮ 
= ∑ ℎ,݁ܿ�ݎܲ)] − ܽܥ) ݎ (ݎ݈ܨ − [(ℎ,݁ܿ�ݎܲ [ [ℎܹܯ€ × ℎ[ℎܹܯ]ℎ݊�ݐ݉ݑݏ݊ܥ [ℎܹܯ]ℎ݊�ݐ݉ݑݏ݊ܥ ݈ܽݐܶ  

A different balance will be obtained per scenario i. In this case, the floor will be set at a value 

that ensures the balance of 0 in the percentile 15%. This means that, in 85% of the cases, the 

utilitǇ ǁill oďtaiŶ a gaiŶ ďǇ hedgiŶg the ĐlieŶt’s ƌisk. To fiŶd the flooƌ’s ǀalue that eŶsuƌes this 

recovery, an iterative procedure will be followed. 

The peƌĐeŶtiles aŶd staŶdaƌd distƌiďutioŶ ǁill also ďe aŶalǇzed to studǇ the utilitǇ’s ƌisk.  
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4.2.2. Case2: generation 

The Ŷeǆt pƌaĐtiĐal Đase ĐoŶsists iŶ the ƌeƋuest of a geŶeƌatoƌ’s ageŶt to ǀaluate a CCGT unit.  

Traditionally, generations assets have been mainly valuated over their intrinsic value. This is 

defined as the value of the unit acquired from dispatching in the market, considering the 

expected price. To calculate it, forward prices are commonly used as the expected price. 

However, to correctly address this problem, the extrinsic value must be also considered. [21] 

The extrinsic value considers all the possible future scenarios and their probability. Although the 

most probable scenario is the one considered for the intrinsic value, the dispersion from it and 

the uŶit’s ƌespoŶse ŵust ďe estiŵated.  

To this purpose, the CCGT will be valuated as an option contract which can be exercise during 

the valuation period. The strike price is the variable cost of generating. Thus, every time the 

market price is above the strike price (variable cost), the CCGT will be committed and will 

generate electricity. The obtained profit is the difference among these prices multiplied by the 

quantity produced. 

The main focus of this exercise is to calculate the extrinsic value of a CCGT of 400 MW during 

the second semester of 2018. To do so, the variable costs are computed as: ܸܽݐݏܿ ݈ܾ݁ܽ�ݎ [€/ܹܯℎ] = ݐݏܿ ݈݁ݑ݂ + ܴܶܣ + ܯ&ܱ + ݔܽܶ +  ଶܱܥ

The fuel costs, CO2 costs and the taǆ, ǁhiĐh is defiŶed iŶ teƌŵs of €/GJ, are variables that depend 

of the performance of the CCGT. Thus, if the asset works baseload, it will have higher efficiency, 

as it reduces the number of startups and shut downs. However, these types of plants are 

currently working to complement the intermittency of renewables, following an operation 

named cycling, which reduces their efficiency.  

Thus, the variable costs of the plant are calculated under two different efficiency scenarios: 

η=39% and η=49%. 

Costs 
€/MWh 

Fuel 
(49%) 

Fuel 
(39%) 

ATR O&M 
Tax 

(49%) 
Tax 

(39%) 
CO2 

(49%) 
CO2 

(39%) 

Total 
costs 
(49%) 

Total 
costs 
(39%) 

01/07/2018 44,1 55,4 2,48 2,1 4,8 6,0 5,5 6,6 58,9 72,6 

01/08/2018 43,9 55,1 2,48 2,1 4,8 6,0 5,5 6,6 58,7 72,3 

01/09/2018 43,9 55,2 2,48 2,1 4,8 6,0 5,5 6,6 58,8 72,4 

01/10/2018 44,4 55,8 2,48 2,1 4,8 6,0 5,5 6,6 59,3 73,0 

01/11/2018 45,0 56,5 2,48 2,1 4,8 6,0 5,5 6,6 59,8 73,7 

01/12/2018 45,0 56,5 2,48 2,1 4,8 6,0 5,5 6,6 59,8 73,7 

Table 12. CCGT variable costs 

To calculate the extrinsic value of the CCGT several scenarios of prices will be developed, with 

the aim of considering the most probable scenario and the possible deviations. These scenarios 

will be created with the simulation models that have been developed. These will create monthly 

prices that will be then converted into hourly prices through the designed shaping tool.  
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Once the hourly prices are computed, it will be assumed that the plant works at full power every 

time the price is above its costs. This, however is an approximation adopted foƌ siŵpliĐitǇ’s sake. 
In a real valuation, several technical parameters, as the start-up and shut-down limitations, 

would be considered.  

The value obtained with the simulation models will be compared with the output of the Black-

Scholes formula. This will be used as calculating the value of a call option whose strike price is 

the asset’s ǀaƌiaďle Đost. Thus, the foƌŵula geŶeƌates the pƌeŵiuŵ a utility requires to 

compensate the losses of hedging a consumer from higher prices than the strike. This loss is 

eƋuiǀaleŶt to the CCGT’s gaiŶed ŵaƌgiŶ iŶ the houƌs it is Đoŵŵitted. 

In the next chapter, the results provided by each model will be analyzed and commented. 
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CHAPTER 4: Results 

1. Valuation for different cases 

1.1.  Case 1: retail 

In this section, the premium and the floor requested by a consumer will be calculated. For each 

model, the prices scenarios and the percentiles of the results will be provided. 

1.1.1. Brownian model 

The starting point of the Brownian model that computes the prices between July 2018 and June 

2019 will be the monthly value of May 2018, as the price of June is not available. The uncertainty 

of the extra month between the valuation and the delivery of the contract, must be also 

introduced in the model. 

Thus, S0 will be ϱϱ €/MWh.[22] The volatility σ will be the one commented in the previous 

chapter, σ=Ϭ,ϭϳϯϵ. The drift µ will be set at 0% as, when studying the forward curve, it can be 

seen that prices are expected to increase the first part of the year and then suffer a big decrease 

in the following months. The results obtained are: 

 

Computing the hourly prices, the results obtained are the following: 

Percentiles of gain ;€/MWhͿ for cap=ϳϱ €/MWh 

0% 10% 15% 20% 30% 40% 60% 80% 100% Mean Standard deviation 

-11,45 -0,40 -0,17 -0,09 -0,01 0 0 0 0 - 0,29 0,616 
Table 13. Results from Brownian motion model for cap= ϳϱ €/MWh 

Thus, the ƌeƋuested pƌeŵiuŵ should ďe Ϭ,Ϯϵ €/MWh. As it could be deducted from the huge 

uncertainty obtained with this model, the calculated premiums suffer high variations depending 

on the percentile. This is reflected both in the high standard deviation and in the high value of 

the maximum loss. This means that depending on how much the utility wants to hedge it risks, 

the premium would be fix at very different values. 

Fig. 42. Result Brownian model with σ=Ϭ.ϭϳϯϵ, SϬ=ϱϬ €/MWh and t=14 months and 
cap of ϳϱ €/MWh 
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To compute the floor of the collar, an iterative procedure is followed, obtaining that, for a floor 

of 47 €/MWh: 

Percentiles of gain ;€/MWhͿ for cap=ϳϱ€/MWh aŶd floor=47€/MWh 

0% 10% 15% 20% 30% 40% 50% 60% 80% 100% Mean Standard deviation 

-11.46 -0,18 0 0,17 0,42 0,68 1,03 1,43 2,66 13,23  0,60 1,456 

Table 14. BroǁŶiaŶ ŵodel’s results for cap and floor case 

Therefore, ǁith a flooƌ of ϰϳ€/MWh, the utilitǇ’s ŵeaŶ gaiŶ is Ϭ,ϲϬ €/MWh. The staŶdaƌd 
distribution is even higher than in the previous case, about 2,5 times the mean gain. Plotting the 

results: 

 

  

1.1.2. Mean reversion model 

The mean reversion introduces a long-term value. To compute it, the initial value S0 has been 

chosen, for the reasons explained above. Thus ܵ = ܵ� = ͷͷ€/ܹܯℎ. The speed to which the 

prices tend to the long-term value will be set at α=0,5.  

This valuation must also consider the time lag between the introduced current price and the 

delivery of the product. This lag, which corresponds with the month of June 2018, introduces 

uncertainty that must be considered. The monthly prices calculated are: 

Fig. 43. Mean reversion model with σ=0.1739, S0=55 €/MWh aŶd t=ϭ3 months with 
cap of ϳϱ€/MWh and floor of 47 €/MWh. 
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Then, the hourly prices per scenario will be computed with the shaping tool. Computing the 

utilitǇ’s loss of settiŶg a Đap of ϳϱ €/MWh, ǁe oďtaiŶ: 

Percentiles of gain ;€/MWhͿ for cap=ϳϱ €/MWh 

0% 10% 15% 20% 30% 40% 60% 80% 100% Mean Standard deviation 

-7,60 -0,13 -0,12 -0,06 0,01 0 0 0 0 - 0,13 0,333 
Table 15. Results from mean reversion model for cap= ϳϱ €/MWh 

Therefore, the premium is estimated at 0,13 €/MWh. In the worst computed case, the loss 

ǁould ďe of aďout ϳ,ϲϬ €/MWh, which is significantly lower than in the previous case. Thus, the 

utilitǇ’s ƌisk is loǁeƌ. Otheƌ ǁaǇ to see this is thƌough the standard deviation, which is 0,333. This 

is around half the previous case. 

To offer the client a floor price, instead of this premium, the obtained results are: 

Percentiles of gain ;€/MWhͿ for cap=ϳϱ€/MWh aŶd floor=ϰϳ€/MWh 

0% 10% 15% 20% 30% 40% 50% 60% 80% 100% Mean Standard deviation 

-7,60 -0,1 -0,01 0,08 0,24 0,40 0,59 0,84 1,66 8,51  0,92 1,062 

Table 16. BroǁŶiaŶ ŵodel’s results for cap and floor case 

The ŵeaŶ ƌeǀeƌsioŶ ŵodel pƌoǀides a flooƌ of ϰϳ €/MWh to ĐoŵpeŶsate the potential loss of 

the utility, caused by the cap price. With this desigŶ of the Đollaƌ, the utilitǇ’s ŵeaŶ gaiŶ ǁould 
ďe Ϭ,ϵϮ €/MWh but with a quite high standard distribution. This indicates, again, that the utility 

is assuming a big risk by signing this contract.  

In the following image, the cap and the floor are represented together with the prices. 

Fig. 44. Results from mean reversion model with σ=0.1739, S0=ϱϱ €/MWh, eµ=55 
€/MWh, α=0,5 and t=13 months aŶd cap of ϳϱ €/MWh 
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1.1.3. Monte Carlo model 

The Monte Carlo model creates several scenarios from a random modification in the volatility. 

The volatility is a time dependent variable calculated as shown in the Fig. 33. Summarizing, the 

volatility of the curve was expressed as a function of the time until delivery by: �ሺܶ − ሻݐ = � · ݁−�·ሺ�−௧ሻ = Ͳ,͵͵ͷͷ · ݁−,6ଵ·ሺ�−௧ሻ 

The considered prices to calculate this volatility are the ones provided by the market between 

September of 2017 and the June 8th of 2018. On the other hand, the introduced forward curve 

is conformed by the market prices of June 8th of 2018: 

2018 2019 

July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June 

63.53 60.55 64.92 63.40 63.40 63.40 59.19 59.19 59.19 47.07 47.07 47.07 

Table 17. Forward curve prices ;€/MWhͿ 

The results are the represented below together with the cap: 

 

Once these monthly values are calculated per simulation, the hourly prices will be estimated 

with the shaping tool. Then the premium will be calculated, obtaining: 

Fig. 45. Results from mean reversion model with σ=Ϭ.ϭϳϯϵ, SϬ=ϱϱ €/MWh, eµ=ϱϱ 
€/MWh, α=0,5 and t=13 months and cap and floor of 75 and 47€/MWh, respectively 

Fig. 46. Results of Monte Carlo simulation for forward prices and cap of ϳϱ €/MWh 
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Percentiles of gain ;€/MWhͿ for cap=ϳϱ €/MWh 

0% 10% 15% 20% 30% 40% 50% 60% 80% 100% Mean 
Standard 
deviation 

-3,92 -0,59 -0,40 -0,24 -0,11 -0,05 -0,02 0 0 0 - 0,20 0,546 
Table 18. Monte Carlo results for cap with premium case 

Therefore, the premium would be established at 0,2Ϭ €/MWh. The standard deviation and 

maximum calculated cost are remarkably lower than in the last cases. 

To compute the design of the collar, an iterative procedure is followed, obtaining that, for a floor 

of ϰϴ €/MWh: 

Percentiles of gain ;€/MWhͿ for cap=ϳϱ€/MWh aŶd floor=ϰϴ€/MWh 

0% 10% 15% 20% 30% 40% 50% 60% 80% 100% Mean 
Standard 
deviation 

-3,82 -0,25 0 0,21 0,42 0,56 0,68 0,82 1,14 2,82  0,60 0,891 
Table 19. Monte Carlo results for cap and flor case 

WheŶ settiŶg a flooƌ of ϰϴ €/MWh, the aǀeƌage gaiŶ peƌ sĐeŶaƌio is Ϭ,ϲϬ €/MWh ǁith a staŶdaƌd 
deǀiatioŶ of Ϭ,ϴϵϭ€/MWh, ǁhiĐh is Ƌuite loǁ. This iŶdiĐates that, uŶdeƌ the sĐeŶaƌio siŵulated 
by the model, the utility is not facing a big risk. 

In the following figure the different price scenarios and the cap and floor are represented. 

 

1.2. Case 2: generation 

For this case, the chosen scenarios are the ones created to calculate the premium and the floor 

of the previous case. These computed prices for time frame from July 2018 to June 2019. In this 

case, we will focus in the second semester of 2018 (July to December). 

The results obtained from each model are represented in this paper by means the percentiles 

and average ǀalues of thƌee diffeƌeŶt ǀaƌiaďles. Fiƌst, the ŵaƌgiŶ iŶ €/MWh peƌ houƌ is aŶalǇzed. 
When the price is lower than the variable cost, the margin is 0. Otherwise, it is the difference 

among those. Then, the hours the CCGT is committed per scenario are calculated. Since the 

study is done for a semester, the total number of hours it could have been committed would be 

Fig. 47. Forward prices with cap and calculated floor. 
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4380 hours. Finally, the overall profit per scenario in k€ is aŶalǇzed. This is ĐalĐulated ďǇ 
multiplying the hourly margin by 400 MW. 

To conclude the section, the case is computed with the Black-Scholes formula. The output 

obtained will be used as a benchmark for the hourly margin calculated in the other models.  

1.2.1. Brownian model 

The results obtained in the Brownian model are the following:  

Brownian MargiŶ [€/MWh] Hours committed Profit [k€] 
η=ϰϵ% 

0% 0,00 0 0      

10% 0,01 45  11    

20% 0,09 203  158    

30% 0,24 667  432    

40% 0,57  1.225     1.009    

50% 1,00  1.510     1.758    

60% 1,58  2.080     2.797    

70% 2,30  2.299     4.060    

80% 3,36  2.536     5.938    

90% 5,17  2.900     9.132    

100% 15,30  4.367     27.026    

Mean 2,69  1.621     4.757    

Standard deviation    7.930    

η=ϯϵ% 

0% 0,00 0 0 

10% 0,00 0 0 

20% 0,00 0 0 

30% 0,00 0 0 

40% 0,00 0 0 

50% 0,00 0 0 

60% 0,00 0 0 

70% 0,00 0 0 

80% 0,00 21 2 

90% 0,10 199 182 

100% 4,12 2.630 7.269 

Mean 0,38 259 678 

Standard deviation   2.187 
Table 20. Results of the CCGT valuation from the Brownian simulation 

1.2.2. Mean reversion model 

For the mean reversion model, we obtain: 

Mean Reversion MargiŶ [€/MWh] Hours committed Profit [k€] 
η=ϰϵ% 

0% 0,00  0     0      

10% 0,04  150     66    

20% 0,19  474     336    
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30% 0,34  735     606    

40% 0,68  1.085     1.194    

50% 1,00  1.422     1.771    

60% 1,68  1.795     2.964    

70% 1,99  2.044     3.510    

80% 2,94  2.345     5.188    

90% 4,43  2.679     7.830    

100% 9,17  3.637     16.204    

Mean 1,76  1.462     3.115    

Standard deviation    3.587    

η=ϯϵ% 

0% 0,00 0 0 

10% 0,00 0 0 

20% 0,00 0 0 

30% 0,00 0 0 

40% 0,00 0 0 

50% 0,00 0 0 

60% 0,00 0 0 

70% 0,00 0 0 

80% 0,01 63 18 

90% 0,16 315 291 

100% 1,33 1.416 2.352 

Mean 0,06 87 109 

Standard deviation   359 
Table 21. Results of the CCGT valuation from the mean reversion simulation 

  

1.2.3. Monte Carlo model 

Finally, the Monte Carlo simulation results are: 

Mean Reversion MargiŶ [€/MWh] Hours committed Profit [k€] 
η=ϰϵ% 

0% 0,27  523     472    

10% 1,97  2.120     3.477    

20% 2,79  2.341     4.924    

30% 3,60  2.606     6.360    

40% 4,46  2.773     7.882    

50% 5,47  3.010     9.661    

60% 6,43  3.246     11.353    

70% 7,71  3.486     13.621    

80% 9,12  3.685     16.110    

90% 11,09  3.915     19.586    

100% 20,26  4.357     35.779    

Mean 6,10  2.998     10.771    

Standard deviation    6.399    

η=ϯϵ% 



54 
Universidad Pontificia de Comillas 

Master Thesis 
Inés Pérez Rivera 

 
 

 

 

0% 0,00 0 0 

10% 0,00 0 0      

20% 0,00 0 0      

30% 0,00 43  1    

40% 0,03 152  51    

50% 0,08 172  135    

60% 0,14 318  250    

70% 0,34 780  609    

80% 0,73 1.351  1.294    

90% 1,57 1.982  2.781    

100% 7,69 3.515  13.589    

Mean 0,50 619  877    

Standard deviation    1.773    
Table 22. Results of the CCGT valuation from the Monte Carlo simulation 

1.2.4. Black-Scholes model 

As it was explained in 4.2.2 Case2: generation, the extrinsic value of a CCGT can be computed 

by means of the Black-Scholes formula, considering the asset as a call option. Thus, the 

calculated premium or value of the call should be coincident with the gained hourly margin. 

As the studied period is the second semester of 2018, the values introduced in the formula for 

the price and volatility are those of the forward curve of those months. The formula provides a 

premium per month. The result is calculated as the average for the whole semester.  

Black-Scholes MargiŶ [€/MWh] 
η=ϰϵ% 7,07 

η=39% 1,16 
Table 23. Results of the CCGT valuation from the Black-Scholes formula 

On the section below, the obtained results are analyzed. 
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2. Analysis of the results 

 

To facilitate the analysis, the following table summarizes the results obtained in the Case 1 from 

each simulation model: 

 Cap + Premium Cap + Floor 

 
Mean 

(Premium) 
Standard 
deviation 

Max. 
loss 

Floor Mean 
Standard 
deviation 

Max. 
gain 

Max. 
loss 

Brownian -0,29 0,616 -11,45 47 0,6 1,456 13,23 -11.46 

Mean 
Reversion 

-0,13 0,333 -7,6 47 0,92 1,062 8,51 -7,6 

Monte 
Carlo 

-0,20 0,546 -3,92 48 0,6 0,891 2,82 -3,82 

Table 24. Results obtained in Case 1. [€/MWh] 

As it can be seen, the results provided by the Brownian motion model have, as expected, higher 

volatility. For instance, in the calculation of the premium for a cap hedge case, the volatility was 

0,616, which is high compared to the ones provided by the other two models, which were 0,333 

for the mean reversion and 0,546 for the Monte Carlo model. This is caused by what was 

described on the previous sections: the Brownian simulation introduces a constant volatility, 

which increases the range of values without limits. 

On the other hand, the mean reversion model is the one providing the smallest standard 

deviation (0,333), which means the smallest uncertainty. This is controlled by the speed α at 

which the prices tend to in the long-term value. In the previous case, α was estimated attending 

to the results. If it had been lower, the model would have been more similar to a Brownian 

model, which means more uncertainty. 

Thus, the standard deviation is a measure of the risk assumed by the utility when selling the cap. 

A high deviation means that the possible future price scenarios are within a wide range. 

Therefore, the uncertainty is quite high. In addition to the standard deviation, another 

parameter that shows the utilitǇ’s ƌisk is the maximum loss computed. This is not necessarily 

correlated with the standard deviation: the simulation could provide the majority of scenarios 

within a narrow range of prices and, then, a few scenarios with very high prices. This 

phenomenon explains why, although the standard deviation of the mean reversion model is 

lower thaŶ the MoŶte Caƌlo’s, it ŵaǆiŵuŵ loss is alŵost double.  

Therefore, if the standard deviation and/or the maximum loss is high, the criteria to set the 

premium may change from the one followed here: instead of a premium that ensures the 

recovery of the mean loss, it may be chosen throughout the percentiles, in order to ensure the 

recovery in a certain percentage of the scenarios. For instance, the premium set at the value of 

the percentile 15%, ensures the recovery in 85% of the scenarios. This same logic may be 

followed when establishing a floor. 
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On the other hand, the results obtained when designing a collar hedge provide higher standard 

deviation. This indicates that the utility is assuming more risk when signing this configuration in 

comparison to the cap + premium.  

It is remarkable that the calculated pƌeŵiuŵ foƌ the ŵeaŶ ƌeǀeƌsioŶ ŵodel ;Ϭ,ϭϯ €/MWhͿ is 
lower than the one estimated by the Brownian and Monte Carlo (0,29 €/MWh aŶd Ϭ,Ϯ0 €/MWhͿ. 
The fact that it is lower than the Brownian model is not surprising, due to the already mentioned 

high ǀolatilitǇ. Hoǁeǀeƌ, it is also higheƌ that the MoŶte Caƌlo’s ƌesults. This is mainly caused by 

the introduction of the forward curve in the latter, which guides the result to reflect high prices 

in certain time frames.  

It is remarkable that the calculated premium for the Monte Carlo model (0,2Ϭ €/MWhͿ is higheƌ 
than the one estimated by the mean reversion model ;Ϭ,ϭϳ €/MWh aŶd Ϭ,ϭϮ €/MWhͿ. This is 
mainly caused by the introduction of the forward curve in the Monte Carlo model, which guides 

the result to reflect high prices in certain time frames.  

The spot models do not have that information, so they do not provide such high values. They 

haǀe the staƌtiŶg poiŶt at the ĐuƌƌeŶt pƌiĐe ;ϱϱ €/MWhͿ, ǁhiĐh is significantly lower than what 

the forward market expects for the following months curve ;aƌouŶd ϲϱ €/MWhͿ. Thus, the 
estimated loss when establishing a cap is lower than in the Monte Carlo model. 

This same effect can be appreciated in the results of the floor calculation: while the spot models 

calculate a flooƌ of ϰϳ €/MWh, the MoŶte Caƌlo ƌesults iŶ ϰϴ €/MWh. The seĐoŶd simulation 

computes higher prices, estimating a higher floor to balance the effect of the cap established. 

These conclusions are in accordance with the results obtained in the valuation of the CCGT, 

which are gathered in the following table: 

 Brownian Mean Reversion Monte Carlo 
Black-

Scholes 

η (%) 39% 49% 39% 49% 39% 49% 39% 49% 

Margin 
;€/MWhͿ 0,38 2,69 0,06 1,76 0,5 6,1 1,16 7,07 

Hours (h) 259 1.621 87 1.462 619 2.998 

Profit (k€Ϳ 678 4.757 109 3.115 877 10.771 

Standard 
deviation (k€Ϳ 2.187 7.930 359 3.587 1.773 6.399 

Table 25. Summary of the results for the valuation of a CCGT 

The standard deviation of the Brownian simulations, in comparison to the computed profit is 

remarkably high, as expected.  

Attending, for instance, the scenario with higher efficiency ;η=ϰϵ%Ϳ, the CCGT’s pƌofit ŵeaŶ 
value is 4.757 k€ foƌ the BƌoǁŶiaŶ ŵodel, 3.115 k€ foƌ the ŵeaŶ ƌeǀeƌsioŶ siŵulatioŶ aŶd 10.771 

k€ iŶ the MoŶte Caƌlo ŵodel. As explained, the scenarios created by the latter provide higher 

price values, so the CCGTs are committed more hours and, therefore, have higher profit.  
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On the other hand, the margin calculated by the Black-Scholes formula (ϳ,Ϭϳ €/MWhͿ is similar 

to the MoŶte Caƌlo’s ;ϲ,ϭ €/MWhͿ, yet higher. However, this indicates that the simulations 

performed by the forward model are reliable, while those of the spot models do not adapt to 

the real market behavior. 
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CHAPTER 5: Conclusions 

To finalize the present project, a brief summary of the developed conclusions will be provided 

during this chapter. Then, under the section Future works, some of the lines of the project to be 

further developed will be explained. These include the areas of improvement and the ones that 

were beyond the scope of this project and could not be developed due to time limitation.  

1. Conclusions 

During this project, three different models to valuate electricity derivatives have been designed. 

The objective is the compaƌisoŶ of eaĐh ŵodel’s aĐĐuƌaĐǇ aŶd liŵitatioŶs.  

To this purpose, the study started with an extensive analysis of the prices in the spot and forward 

markets. One of the main findings of the project is that, in contrast with the general assumption, 

prices do not always behave as a lognormal variable. In fact, spot prices fit better as a normal 

variable. This is remarkable, as many valuation models are developed from the hypothesis of 

lognormality.  

However, monthly prices do distribute as a lognormal, so the previously mentioned models 

could be used for this aggregation of prices without assuming a big error. Likewise, during 

certain time frames, forward prices also have a lognormal distribution. Particularly, when 

considering the most recent years. This suggest that the forward market is leading towards 

adopting such behavior. 

An observation must be made regarding forward markets: prices are highly affected by the 

liquidity and, under certain situations, these may reflect a constraint situation, rather than the 

optimum market behavior. Although, in Spain we do not find the lowest figures, they are still 

quite behind to other European markets. 

Another remarkable finding was that the shaping of the curve of hourly prices from the monthly 

average is easily characterized. This implies that, if a model with accurate monthly forecasts is 

designed, a precise estimation of hourly prices will be available. 

The analysis of prices concluded with a brief time series analysis. This study showed that, 

contrary to the spot series considered, forward prices do not have a seasonal pattern and 

consist, mainly, in a moving average. On the other hand, monthly spot prices also consisted in a 

moving average, but general and seasonal. Finally, spot daily prices evidenced a more complex 

ARIMA. This could be caused either by the higher volatility of these series or by the big data 

frame introduced in the model. These deductions could be used in future simulation models.  

After this first section, the theory behind monthly price simulations and electricity derivatives 

products was explained, providing the reader a comprehensive sight of the topic. The reviewed 

models were the ones that were afterwards developed and tested for two practical cases. The 

results provided were depicted in the previous section. 
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The two models developed for the spot price simulations provided a simple and fast approach. 

However, they are limited. For instance, the Brownian model does not allow to introduce any 

available information from future values, as the one that can be deducted from the forward 

curve. This makes the model suitable for very short terms, where the future scenario will not 

present great differences from the current one.  

In contrast, the mean reversion simulation requires the long-term value and the speed α. This 

allows the user to introduce the tendency prices will have in the future. In the previous example, 

the prices’ long-term value was set as the average of the forward curve. However, part of the 

information of the curve is lost when computing its average. Additionally, the speed α must be 

estimated, being a parameter that highly affects the output of the simulation. Thus, with a good 

estiŵatioŶ of the paƌaŵeteƌ α, this ŵodel will provide reliable results for longer scopes than the 

Brownian. It is, nevertheless, limited to short terms. 

Finally, and in contrast to the previous spot simulations, the Monte Carlo model respects all the 

information from the forward curve. It considers the difference among its monthly prices. 

Moreover, the Monte Carlo method computes the volatility of the products that conform the 

forward curve, maintaining the difference between values depending on the lag until the 

delivery date. Its accuracy was proved by comparing its results with the ones provided by the 

Black-Scholes formula. 

After applying the three models to two practical cases several conclusions could be extracted. 

On the one hand, it was proved that the models behaved as initially expected. The Brownian 

introduced high uncertainty and the mean reversion was highly conditioned by the introduced 

long-term value and speed α. Both of theŵ were limited due to the lack of information about 

the future. The Monte Carlo model, however, provided reliable results. 

Another main finding was the fact that the value of a derivative cannot be set at the mean value 

provided by the model, without attending the risk assumed by the utility. This is measured by 

means of the standard deviation and extreme gain or loss. In these cases, the distribution of the 

scenarios must be studied and, depending on the external conditions, as the ageŶt’s ƌisk 
aversion profile, a premium ensuring the recovery in a certain percentage of the scenarios will 

be chosen. Thus, independently of the simulation used, there is need of a final analysis by an 

expert. The results, therefore, will be very much dependent of the aŶalǇst’s criteria. This final 

analysis is, however, limited when using the Black-Scholes formula, as it only provides the value 

of the derivative, omitting the assumed risk.  

It can be also concluded that, when fixing a cap hedge, it not indifferent whether it is 

complemented with a premium or a floor. Thus, when designing a collar, the risk is assuming 

more risk, as there are two sources of uncertainty: the loss caused by the cap and the recovery 

by the floor. However, when adopting the first configuration the only source of uncertainty is 

the loss caused by the cap, while the premium is translated into a fixed payment. 
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Finally, the Black-Scholes formula, which is the main valuation method used by many agents, 

presents several drawbacks. On the one hand, it is based on some hypothesis (as the 

lognormality of the prices) which are frequently not met. A simulation of how the market is 

actually going to evolve provides ŵoƌe ƌoďust ƌesults. AdditioŶallǇ, the foƌŵula’s output is only 

the deƌiǀatiǀe’s ǀalue, oŵittiŶg other information that might be useful by the analyst, as the risk 

assumed by the utility. 

To conclude, when valuating an electricity derivative, a combination of the Black-Scholes 

formula and a simulation model provides the most reliable results, as long as the user is able to 

interpret the results. The siŵulatioŶ ŵodel eleĐted is ĐoŶditioŶed ďǇ the pƌoduĐt’s 
characteristics. Specially, by the lag until delivery and its duration. The spot models are simple 

and provide reliable results for very short terms. The Monte Carlo model, while maintaining its 

simplicity, is considered the one with most accurate results for longer time periods, as it 

considers all the available information about the future scenario the user has. 
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2. Future works 

Due to the limitations of time, this project has fixed its scope to the areas of work that I believe 

are the most interesting and provide a wide view of the faced issue. However, I have faced a 

trade-off between the development of full detailed studies and the time invested. This section 

aims to provide the reader some sight about the lines of work where this project can be 

further developed. 

The first section that might be enhanced is the statistical analysis of the prices. The analysis of 

the present project limited its scope to comparing between the goodness of fit of prices to a 

normal and a lognormal distribution. However, price may suit better other distributions not 

considered in this project.  

Additionally, it was clear that the different regulations have affected the behavior of market 

prices. To avoid a high distortion due to temporal effects, I have chosen a wide time frame, but 

a future project could be focus on the study of prices under the current regulation. 

On the other hand, the translation of the conclusions obtained in the statistical study to the 

simulation models could be enhanced as well. The results showed that, although many times 

the hypothesis of prices behaving as a lognormal could not be discarded, prices always behave 

better as a normal. Simulation and valuation models use the lognormality of prices as a basis. 

On a future work, these could be adapted to a normal variable.  

Although a brief time series analysis was here described, its results were vaguely used but to 

extract some conclusions. This section could be improved with more developed models. The 

information extracted from them could be applied to simulation models or even generate the 

simulations themselves. 

Concerning the models developed, they present several areas of improvement. The spot models 

(Brownian and mean reversion) can be further developed to reflect better the real behavior of 

prices in the markets. This is done by introducing modifications as the one that creates the mean 

reversion model from the Brownian one. 

Moreover, the mean reversion uses two variables that indicate the trend of values in the long 

term. This is the long-term price and the speed α at which prices tend to the former. In the 

practical cases these two were estimated but, for a more realistic representation of the market, 

these should be calculated attending observed parameters. 

To check the accuracy of the models, a backtest must be ran. For this, a simulation of the price 

scenario must be computed, providing the expected prices and distribution. Afterwards, this 

should be compared with the real ŵaƌket’s ďehaǀioƌ. 

FiŶallǇ, the pƌaĐtiĐal Đase of the ǀaluiŶg a CCGT ǁas siŵplified. OŶ a ƌeal ďasis, the asset’s 
extrinsic value would be estimated by a stirp of options reflecting the prices, instead of just one 
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single option. Moreover, the model does not include any technical limitations, which should also 

be considered for a better valuation.  
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