COMILLAS

UNIVERSIDAD PONTIFICIA

ICAI

GRADO EN INGENIERIA EN TECNOLOGIAS
INDUSTRIALES

TRABAJO FIN DE GRADO

DATA ACQUISITION FOR GO KARTS THROUGH
SENSOR FUSION

Autor: Enrique Alejo Alvarez

Director: Alanson Sample

Madrid
Julio de 2019

AUTHORIZATION FOR DIGIPALIZATION, STORAGE AND DISSEMINATION IN THE
NETWORK OF END-OF-DEGREE PROJECTS, MASTER PROJECTS, DISSERTATIONS OR
BACHILLERATO REPORIES

: /
L Declaration of authorship and accreditation thereof.

Fhe author Me Ms _F/"'"/Jt'_ﬂ»_/;lt ¢ /i/','f'f.‘;

HEREBY DECLARES that he she vwns the intellectual property nghts regarding the prece of work:

Dada Acgondion for Qe¥erde Jprasgn NMeasem Fuson
that this i an ocyinal prece of work, and that he she holds the status of author, o the sense granted by the
Intellectual Property Law

2. Subject matter and purpose of this assignment.

With the aim of dissenunatng the aforementioned prece of work as widely as possible using the
Univeraty's Institutional Repository the author hereby GRANTS Comullas Pontifical University, on a
tosalty-free and non-exclusive basis, for the maumum legal term and with universal scope, the
digmization, archiving. reproduction, distnbution and public communication rights, including the right to
make it clectroncally avadable, as desenbed in the Intellectual Property Law. Transformation rights are
assipned solely for the purposes descuibed i a) of the following section.

3. Transfer and access terms

Without prejudice to the owaership ot the work, which remains with its author, the transfer of
tiphits Covered by this heense enables:

a) Transform at in erder to adapt it to any technology suitable for sharing it online, as well as
including metadata to register the piece of work and include "watermarks” or any other security
of pretection system.

b) Reproduce itin any digital medium in order to be included on an electronic database, including
the nght to reproduce and store the work on servers for the purposes of guaranteeing its security,
mantaiming it and preserving its format.

¢) Comumunicate it, by defuult, by means of an institutional open archive, which has open and cost-
frice online access

Jd) Any other way of access (restricted, embargoed, closed) shall be explicitly requested and
requires that goud cause be demonstrated.

¢) Assign these preces of work a Creative Commons license by default.

) Assign these pieces of work a HANDLE (persistent URL). by default.

4. Copyright.

The author, us the omner of a piece of work, has the right to:

) Have his ker name clearly identified by the University as the author

b) Communicate and publish the work in the version assigned and in other subsequent versions
using any medium.

¢) Request that the work be withdrawn from the repository for just cause.

d) Receive reliable communication of any claims third parties may make in relation to the work
and, in particular, any claims relating to its intellectual property rights.

S. Duties of the author.

The author agrees to:

a) Guarantee that the commitment undertaken by means of this official document does not infringe
any third party rights, regardless of whether they relate to industrial or intellectual property or
any other type.

b)

<)

d)

Guarantee that the content of the work does not infringe any third party honor, privacy or image
rights.

Take responsibility for all claims and liability, including compensation for any damages, which
may be brought against the University by third parties who believe that their rights and interests
have been infringed by the assignment.

Take responsibility in the event that the institutions are found guilty of a rights infringement
regarding the work subject to assignment.

6. Institutional Repository purposes and functioning.

The work shall be made available to the users so that they may use it in a fair and respectful way with
regards to the copyright, according to the allowances given in the relevant legislation, and for study or
rescarch purposes, or any other legal use. With this aim in mind, the University undertakes the following
dutics and reserves the following powers:

a)

b)

<)
d)

The University shall inform the archive uscrs of the permitted uscs; however, it shall not
guarantce or take any responsibility for any other subscquent ways the work may be used by
users, which are non-compliant with the legislation in force. Any subsequent use, beyond private
copying, shall require the source to be cited and authorship to be recognized, as well as the
guarantee not to use it to gain commercial profit or carry out any derivative works.

The University shall not review the content of the works, which shall at all times fall under the
exclusive responsibility of the author and it shall not be obligated to take part in lawsuits on
behalf of the author in the event of any infringement of intellectual property rights deriving from
storing and archiving the works. The author hereby waives any claim against the University due
to any way the users may usc the works that is not in keeping with the legislation in force.

The University shall adopt the necessary measures to safeguard the work in the future.

The University reserves the right to withdraw the work, after notifying the author, in sufficiently
justified cases, or in the event of third party claims.

Reasons for requesting the restricted, closed or embargoed access to the work in the Institution's

Repository

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el titulo

. 720i%- A - R
curso académico £+7..0...50.01 es de mi autoria, original e inédito y

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es
plagio de otro, ni total ni parcialmente y la informacién que ha sido tomada

de otros documentos esta debidamente referenciada.

- /

Fdo.: Enrique Alejo Alvarez Fecha: ?—‘j/ Tl d

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: Alanson Sample Fecha: i/ 5/ 2eiy

(7 o 7 —

COMILLAS

UNIVERSIDAD PONTIFICIA

ICAI

GRADO EN INGENIERIA EN TECNOLOGIAS
INDUSTRIALES

TRABAJO FIN DE GRADO

DATA ACQUISITION FOR GO KARTS THROUGH
SENSOR FUSION

Autor: Enrique Alejo Alvarez

Director: Alanson Sample

Madrid
Julio de 2019

ADQUISICION DE DATOS PARA KARTS MEDIANTE FUSION DE
SENSORES

Autor: Alejo Alvarez, Enrique.

Director: Sample, Allanson.

Entidad Colaboradora: ICAI-Universidad Pontificia Comillas.
RESUMEN DEL PROYECTO

1 Introducccion

1.1 Problema a resolver

Todos los amantes de los deportes de motor se ven unidos por una pa-
si6n por las carreras y la velocidad. Disfrutan viendo el deporte, pero también
practicandolo. Sin embargo, practicarlo nunca ha sido tarea facil. El precio,
espacio y preparacion necesaria para correr en un circuito son los mayores
obstaculos. Por ello, los aficionados buscan otras alternativas. Entre ellas, los

karts.

Los mayores aficionados consideran los karts como su propia categoria
del deporte. Les gusta competir y mejorar. Como en cualquier otra carrera, estas

se ganan perfeccionando cada curva de la vuelta.

Actualmente, cuando un corredor de karts tiene cierta experiencia, me-
jorar se convierte en una tarea dificil. Practicar siempre ayuda; sin embargo,
para mejorar mas, un conductor necesita retroalimentacion. Necesita informa-

cion indicando que hace bien y que va mal. Un circuito de karts tipicamente solo

1

proporciona el tiempo de la mejor vuelta de la ronda de 10 minutos. Algunas
pistas excepcionales dan informacion de tiempos sobre todas las vueltas. Aun
asi, es muy dificil extraer informacion ttil de estos pocos datos. La mayoria de

las mejoras provienen de la intuicion del piloto.

Entonces, ;por qué no dan mds informacion las pistas de karts? Prin-
cipalmente, debido a costes. Este es un mercado nicho, dirigido solo para los

pilotos serios. Por ello, no muchas opciones han sido desarrolladas.

1.2 Estado de la técnica

La opcion mas reconocida es RaceCloud [Rac19a]. Esta solucion usa
un procesador de alto rendimiento capaz de procesar toda la informacion en
tiempo real y fusionar los datos del acelerometro,giroscopio y el GPS que lleva
incorporados. Simultidneamente, es capaz de mostrar los datos en una pantalla
montada en el kart, y enviarlos a través de una antena 3G para mostrar los datos
en una aplicacion de 10S. El resultado es impresionante. Se consigue una preci-
si6n alta y unas velocidades de transmision de datos sorprendente. El problema
es la complejidad y el precio de la solucion. El montaje requiere la integracion
de una grande unidad de procesamiento de datos con dos antenas, una para GPS
y otra para 3G. A parte, hay que afiadir la pantalla para mostrar los datos. Esto
no seria un problema tan grande si pudieses instalar el hardware en un kart pro-
pio. Sin embargo, para los que no tienen kart propio, tener que preparar todos
los componentes cada vez que se va a correr es una tarea tediosa. También es
poco probable que las propias empresas de alquiler de karts incorporen esta so-
lucion. El producto no se vende directamente, sino que se alquila por un precio

de alrededor $10 por hora de carrera. Esto implicaria un aumento del precio del

2

alquiler de un kart de alrededor el 15 %. Por lo tanto, RaceCloud solo parece una

solucidn viable en el caso de profesionales de los karts, no para aficionados.

Otra solucion que existe en el lado opuesto del espectro es RaceTime
[Rac19b]. Esto consiste de una aplicacién de Android con un coste de tan solo
$4. Usa el GPS interno del teléfono para mostrar posicion y velocidad. También
usa el acelerometro para mostrar las fuerzas G que sufre el kart. Sin embargo, no
existe ninguna integracion entre los dos sensores. Esto implica que la precision
depende totalmente del GPS interno. Lo cual significa baja precision y baja
actualizacion de datos. En el caso de karts, donde las pistas suelen ser muy

pequeiias, esta baja precision no es suficiente.

El producto que ya existe mas parecido al objetivo que intenta cubrir
este proyecto es el Mychron5 [Mycl19]. En vez de usar verdadera telemetria,
el Mychron5 guarda datos. Nunca manda los datos fuera del kart, sino que los
muestra en una pantalla montada en el kart y los guarda en una memoria interna.
Estos datos después se pueden descargar y analizar en un ordenador. Sin embar-
go, Mychron5 basicamente consta de un buen GPS. El problema de estos GPSs
es que los costes que llegan a superar los $300, lo cual lleva a que el precio final
del producto sea de $450. De nuevo, esto seria una opcion excelente para los

karts, pero el precio hace que sea inaccesible para aficionados.

1.3 Objetivos del Proyecto

La actual situacion del mercado es lo que motiva este proyecto. El ob-
jetivo principal serd crear un dispositivo que da informacion sobre el tiempo de

la vuelta, posicion, velocidad y aceleracion (las variables mas importantes en

3

las carreras) a un precio asequible. Esto permitird que los aficionados a los karts

sigan mejorando.

Esto se intentara conseguir apoyandose en software. Hardware implica
piezas fisicas. Cuanto mas precisas sean, mas caras seran. En cambio, repro-
ducir software es algo muy ficil. Ademas, lo mas importante es que permitird

fusionar datos de distintos sensores.

La fusién de datos implica recoger datos de distintos sensores y combi-
narlos para obtener la mejor estimacion posible. Al combinar distintos sensores,
se pueden hacer predicciones con menor error que cualquiera de los sensores de

forma individual.

Por ello, la idea del proyecto es la siguiente: durante la carrera, un sis-
tema embebido recogerd datos de una unidad de medicion inercial (IMU) y un
GPS. Estos datos se guardaran en una tarjeta SD. Cuando acabe la sesion, la
tarjeta SD se insertard en un ordenador. Ahi, todo el procesamiento de datos
tendra lugar. Esto implica calibrar los sensores, aplicar un filtro Madgwick para
estimar la orientacion y un filtro Kalman para estimar la posicion, velocidad y

aceleracion.

Se fijaran tres objetivos, correspondiendo a las tres fases del proyecto.
El primer objetivo sera la recogida de datos. Es la unica parte que se basa pura-
mente en hardware. Esto implica leer y guardar los datos en intervalos de tiempo

constantes, y optimizar el cddigo para poder leer los sensores mds rapidamente.

En siguiente lugar, la calibracion de los sensores tendra lugar. Esto im-
plica leer los datos de la tarjeta SD en el ordenador y prepararlos tal que el

giroscopio no tenga sesgo [BK16], el magnetometro corrija las distorsiones de

hierro blando y duro [Ozy15], y se encuentre un sistema de referencia fijo en el

espacio, compuesto de ejes norte, oeste y arriba (NWU, de las siglas en ingles).

Por ultimo, el proceso de fusionar los datos del IMU y el GPS tendra

lugar para dar la mejor estimacion de estado posible.

2 Metodologia

El primer objetivo esta relacionado con el sistema embebido. La pri-
mera pregunta es que sensores utilizar. El método de estimacion de estados
mediante fusion datos que se suele emplear es usar un filtro de Kalman, que

tipicamente integra los datos de un IMU y un GPS [FGM11].

Estos dos sensores se complementan de forma ideal. El GPS ofrece
una velocidad de actualizacion baja y una precision baja. Al contrario, el ace-
lerometro llega a mandar datos mas de 1000 veces por segundo y tiene muy
buena precision. El problema que tiene es conocido como el drift. Para obtener
la posicion a partir de la aceleracion hay que integrar dos veces. Esto implica
que cualquier pequefio error crece cuadriaticamente, y pierde la referencia origi-
nal. Por ello, un GPS es el complemento ideal, ya que da datos sobre posicion

absoluta, lo cual ayuda a compensar el ”drift’[MPU19].

A la hora de elegir un médulo de GPS, la consideracion principal era
precio, ya que esta parte puede ser extremadamente cara. El modulo NEO6M
GPS esta disponible por un precio de alrededor $15 y es comtinmente usado.
Viene con software que permite configurarlo con facilidad, y esta respaldado

por una gran comunidad de drones[Ubl11].

5

Como el IMU tiene que compensar por la imprecision del GPS, un ace-
lerémetro rdpido y preciso era necesario. También era importante que incor-
porase un magnetometro, ya que este después seria crucial para la estimacion
de la orientacién del dispositivo. E1 MPU9250 ($15) satisface estos requisitos
[MPU19].

Para poder recoger los datos, un microcontrolador (MCU) es necesa-
rio. A la hora de elegir un MCU, se busco una alta velocidad, precio bajo, y
la inclusion de los periféricos de protocolos de comunicacion mds comunes
(UART,SPII2C).El1 STM32F103C8 es un MCU de 32 bits barato ($2) con un
reloj de hasta 72MHz[STM15] . Es el procesador que se usa en la comun placa

de desarrollo conocida como “Blue Pill”.

A la hora de guardar los datos, se consideraron las opciones de man-
darlos de forma inaldmbrica o guardaros en una memoria interna al sistema
embebido. Mandar los datos de forma inaldmbrica llama mucho la atencion, ya
que permite ver datos en tiempo real e imita a la telemetria de la Formula 1,
que es de donde proviene esta idea. Sin embargo, el objetivo de este proyecto
es bajar el precio y la complejidad. Por ello, se considerd que una solucion mas
l6gica era guardar la informacion en una tarjeta SD. Esto simplifica el proyecto
por dos razones. En primer lugar, no se necesitara un nodo receptor, lo cual sim-
plifica el hardware. En segundo lugar, esto permite analizar los datos sin tener
restricciones de tiempos, lo que permite una solucidn de software mas flexible.
Los inconvenientes son pocos, ya que es poco probable que el mercado objetivo
(aficionados a los karts) tengan a un técnico fuera del kart para preparar el nodo
recibidor y analizar los datos en tiempo real. Tener datos en tiempo real es solo

util en ambientes mas competitivos, donde ingenieros de carrera pueden usar

e |

GPS
(NEQE-M}

SPI UART
IMU

(MPLIS250)

SD-Card

Figura 1: Conexiones de hardware con sus protocolos de comunicacion.

todo su potencial.

Consecuentemente, una tarjeta SD genérica puede usarse para guardar
los datos. Como el microcontrolador seleccionado no tenia periféricos de co-
municacién SD, la tarjeta se uso en modo SPI. Para poder guardar archivos, el
modulo FatFS fue empleado [Chal9]. La figura 1 muestra una vision general de

las conexiones hardware y sus protocolos de comunicacion.

Un programa escrito en C en el microprocesador se encargara de reco-

ger todos los datos en intervalos de tiempo constantes.

Una vez se hayan guardado los datos en la tarjeta SD, comenzaremos
el siguiente objetivo: preparar los datos para fusionarlos. Este proceso se hara
plenamente en software. Como el tiempo de ejecucion ya no es una gran preocu-
pacion, se usard el lenguaje de alto nivel Python. Este codigo leera los archivos

de la tarjeta SD y calibrard los sensores.

7

La primera y mds simple calibracion ocurre con el giroscopio. Estos
tienden a tener un sesgo constante. La media de una serie de datos estacionarios

se puede calcular para estimar el sesgo y deshacerse de el.

En caso del magnetometro, se deben compensar las distorsiones de hie-
rro duro y blando. Antes de calibrar el magnetometro, este tendrd datos con
forma eliptica que no estaran centrados alrededor del origen. Sin embargo, el
resultado esperado del campo magnético de la tierra deberia ser una esfera per-
fecta centrada en el origen. Por ello, estos datos serdn ajustados a una esfera por

el método de minimos cuadrados[Ozy15].

El ultimo caso de calibracion ocurre para los ejes no inerciales. El sis-
tema de coordenadas que se empleara es norte, oeste y arriba (NWU). Este
sistema de regla de la mano derecha es ideal ya que cuadra perfectamente con
los ejes del sistema de coordenadas de GPS. Esta calibracion se hard utilizando
solo la informacion del IMU. El vector de la gravedad se usara para hallar dos
de los tres angulos de Euler. El magnetometro servird para encontrar el ulti-
mo angulo[BK16]. Esto dard una matriz de rotacion que permite encontrar la

referencia NWU.

Por ultimo, en esta fase también se llevaran acabo todas las conversio-
nes de unidad. El giroscopio a °/segundo y longitud y latitud a metros. La se-
gunda conversion se hard empleando un modelo que aproxima una tierra plana,

el cual es valido para pequenas distancias como las de un circuito de karts.

La ultima seccion es donde se filtraran y fusionaran los distintos senso-

res. Se emplearan dos filtros.

En primer lugar, se debe determinar la orientacion del dispositivo. Co-

mo el sistema embebido va subido al kart, tiene ejes no inerciales. Es necesario
saber como ha girado el kart para poder relacionar las medidas de aceleracion
a los ejes NWU. El uso de un filtro Madgwick [Mad10] permitira estimar es-
ta nueva orientacion. Esto se consigue mediante el uso del giroscopio, el ace-
lerometro y el magnetometro. El giroscopio sirve para dar la evolucion en el
tiempo de la orientacion. El acelerometro y el magnetometro son vectores de

direccion constante que se usan como referencia.

Una vez hallada la aceleracion en direccion norte y oeste, datos del GPS
y el acelerometro podran fusionarse mediante un filtro Kalman [FGM11] y dar

una estimacion de posicion, velocidad y aceleracion.

3 Resultados

3.1 Primer objetivo:

El primer objetivo era guardar los datos correctamente en la tarjeta SD.
Inicialmente la transmision de datos se hizo mediante UART, permitiendo man-
dar un paquete con aceleraciones y rotacion angular cada a 200Hz. El mag-
netomometro y el GPS se vieron limitados por las propias caracteristicas del

sensor (10Hz y SHz respectivamente).

Un paquete se mandaba cada 5 milisegundos con longitud variante de-
pendiendo en que datos estaban disponibles en cada momento. Esto permitio
sincronizar los datos del IMU con el GPS y el magnetometro, ya que se manda-

ban en el mismo paquete al mismo tiempo.

Cuando se pasé a escribir los datos a la tarjeta SD, como el sistema

9

400

200

G277 o
RS ‘::.,'_4_
-200
400
-400 200
~200

Figura 2: Magnetometro: sin calibrar(morado) y calibrado(naranja)

se basaba en fatFS para escribir grandes bloques de datos, y este utilizaba el
protocolo SPI en modo de bloqueo, la velocidad de mandar paquetes se tuvo

que reducir a S0Hz.

3.2 Segundo Objetivo: Calibrar los datos

Las medidas del giroscopio se pasaron a °/segundo a partir de los valo-
res de bits. Tomando valores en condiciones estaticas, el sesgo y la desviacion

estandar se pudieron calcular.

Para el magnetometro, los datos se pudieron calibrar y pasar a encajar
en una esfera centrada en el origen y de radio constante. La figura 2 muestra el
resultado de calibrar los datos del magnetometro cuando este se apunta en todas

las posibles direcciones en 3D.

El acelerometro se calibro usando la matriz de rotacion para que, inde-
pendientemente de la orientacion inicial del sistema embebido, la aceleracion

en x e y correspondan con norte y oeste, y por lo tanto sean iguales a 0 en con-

10

Acceleration

10 sty

ay

acceleration (m~2/s)

2 LU 1 Lol L [L | Il

e Ty y Lt} ? - LR L Lishais -

0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figura 3: Acelerémetro sin calibrar

diciones estdticas. La figura 3 muestra los resultados de leer el acelerometro
en estado estacionario. La figura 4 muestra los resultados una vez la matriz de

rotacion se ha aplicado. El resultado muestra ser el deseado.

3.3 Tercer objetivo: Fusion de datos

El primer problema era determinar la orientacion del dispositivo. La
mejor forma de evaluar esto es con una representacion visual de los dngulos de
Euler. Usando Pygame, se simuld un cubo en tres dimensiones para que imitase
el movimiento del sistema embebido a través de los dngulos de Euler estimados.
La figura 5 muestra una imagen fija del cubo. El resultado fue muy satisfactorio,
ya que la respuesta era inmediata (sin lag) y no se perdia el estado inicial cuando

se volvia a él (sin drift).

Otro experimento que se usO para comprobar la estimacion de orienta-
cion fue dejar el dispositivo quieto durante un periodo de tiempo y ver como

evolucionaba la estimacion de los angulos de Euler. La figura 6 muestra el re-

11

acceleration (m~2/s)

Acceleration

8
6
— aX
ay
— az
44
2

0 Astetdb bbb,

T JW N 1SR XSS 0 USPYINY SRS WY TTWU D[NPT TN N N MO ROV I 9% N Y Y |
A4 LA D L R o e i et 1 :

LI Lk Lt B B It e A LAt it U Dl IR |

0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figura 4: Acelerémetro referido a ejes NWU

Figura 5: Cubo simulado en Pygame

12

Orientation

0.0 1

—0.2 1

—0.31
o
c

—0.4

—0.5 4

_064 — roll
pitch
— yaw

_0_7_
0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figura 6: Estimacion de los dngulos de Euler sin calibracion de los sensores

sultado sin calibrar los sensores, en el cual se ve como hay un claro drift, y se
pierde la referencia a los ejes NWU. La figura 7 muestra el resultado tras la
calibracion, en la que las pocas variaciones de dngulo que hay (menos de 0,03

radianes) siempre se corrigen rapidamente.

Una vez determinada la orientacion, se paso a usar el filtro Kalman pa-
ra determinar la posicion del kart. Sin embargo, el resultado no llego a ser el
deseado. La precision del GPS es muy similar a la precision de los dos sensores
fusionados. El acelerometro no parece anadir informacion ttil a los datos. Los
posibles factores que causen esta falta de precision se discuten mas detallada-
mente en este proyecto. Sin embargo, la causa mds probable es la acumulacion

de errores a través de cada fase del proyecto acaba en un gran error final.

4 Conclusion

No habiendo obtenido resultados satisfactorios en precision hace pensar

que dispositivos como el Mychron5 pueden justificar precios tan altos. Como el

13

Orientation

0.02

0.01

0.00

d

e
—0.01 A

—0.02 A

— roll
—— pitch
— yaw

—0.03 A

0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figura 7: Estimacion de los dngulos de Euler con calibracion de los sensores

error de cada parte del proyecto se acumula al resultado final (errores propios de
los sensores, calibracidn, orientacion, tiempo de actualizacion...), y se estd in-
tentando conseguir una precision de alrededor de un metro, es dificil conseguir
este objetivo si no se prestd especial atencion a la exactitud de los resultados du-
rante el desarrollo del proyecto. Por ello, este seria el mayor objetivo si hubiese

que enfrentarse a este problema de nuevo.

14

DATA ACQUISITION FOR GO KARTS THROUGH SENSOR FUSION

1 Introduction

1.1 Problem to solve

All motor sports fans are linked by a passion for engines and for racing.
They enjoy watching the sport, but practicing it has always been difficult. The
cost, space and preparation needed to run on a race track are the major obstacles.
Most fans seek other ways to practice the sport. Go Karts are among the top

alternatives accessible to anyone.

True fans of motor sports consider this a sport of its own. They like
to compete, and they like to improve. So, like in any other race, it is won by

perfecting every aspect of your lap.

Currently, after you have certain experience with GoKarts, improving is
a very difficult task. Practice always helps; but, to improve, one needs feedback.
You need information telling you where you go right and where you go wrong.
Typical GoKart tracks only provide information on the best lap achieved during
the 10 minute round. Some exceptional tracks will give you times for every lap
you had. Even then, it is very difficult to associate what you did to achieve your

best lap. Most of your improvement comes from your intuition.

So why are GoKart tracks not providing more information? Primarily,
cost. This is a niche market, directed for only the serious GoKarters, which is

already a small market in itself. So not many options have been developed.

15

1.2 Current Solutions

The most recognized option is RaceCloud [Rac19a]. This solution uses
a high end CPU that is able to process all the data in real time and fuse GPS,
accelerometer and gyroscope readings.It simultaneously renders data to the on-
board screen and sends it through an incorporated 3G antenna to display the
data live on an i10S application. The solution is very impressive, with high
precision and high data through put. Great user interface and compatible with
virtually every existing GoKart track. The problem is the complexity and price
of the solution. The set-up requires the integration of a large processing unit
set up with a large GPS antenna and a 3G antenna. Lastly, the screen with all
configurations has to be added. This would be convenient if you had your own
GoKart in which you could install the hardware and forget about it. However,
if you are going to visit the track occasionally, bringing all the components and
setting them up correctly is a tedious task. Rental GoKarts are not likely to
use this solution either. The product is not for sale, instead they rent it, with a
price of 10$ per racing hour. This would mean increasing the price of racing by
around 15%. This solution only seems viable for professional GoKarting, not

dedicated hobbyists.

On the opposite end of the spectrum, we find RaceTime [Rac19b]. This
is an Android application available for a mere $4. It uses the phones internal
GPS to display speed and location. It also uses the accelerometer to display
a G-Force meter. However, no fusion between the two sensors exists. This
means that position accuracy is totally dependent on the telephone’s internal
GPS. This implies low accuracy and low position update rate. In the case of

Go-Karts, where the track tends to be very compact and narrow, this is not an

16

acceptable solution.

The most similar product to the one that this work will try to achieve is
the Mychron5 [Myc19]. Instead of true telemetry, the Mychron5 is a datalogger.
It never sends the data out of the GoKart. Instead, it displays timing data to the
driver and saves it to an internal memory which is able to be downloaded and
later analyzed on a computer. However, MychronS5 is basically only a GPS with
a fairly high update rate (10Hz) and precision(4+1 m). However, a GPS of this
specifications costs over $300, making the total price of the Mychron5 reach
$450. Again, this option would be great for GoKarting, but the price makes the

accessory inaccessible for hobbyists.

1.3 Project Objectives

The current market is what motivates this project. The main goal will
be to provide a solution which gives information on lap time, position, speed
and acceleration (the 4 most important parameters in racing) at a low cost. This

will allow casual GoKarters to continue to improve.

The way to achieve this is to rely heavily on software. Hardware means
physical pieces. The more precise they are, the more expensive. On the other
hand, software is easily reproduced. Additionally, the most important feature is

that 1t will allow us to achieve data fusion.

Data fusion means being able to take in data from different sensors
and combining it to achieve the best possible estimate. By combining different

sensors, we are able to make predictions with less error than any single sensor.

Hence the general idea of the project is as follows: during racing, an

17

embedded system will log data from an IMU and a GPS onto an SD-Card.
Once the race sessions is over, the SD card will be inserted into a PC. There, all
of the data processing will be carried out. This includes calibrating the sensors
and applying a Madgwick filter for attitude estimation and a Kalman filter for

position, velocity and acceleration estimation.

Three clear objectives can be set for this project. The first objective,
corresponding to the first phase of the project will be the retrieval of sensor
data. It is the only part relying on hardware. This means reading and logging

data at constant rates and optimizing code to be able to read data faster.

Next, the calibration of sensors will take place. This means reading
the SD card from the PC and preparing the data so that the gyroscope has no
constant bias[BK16], the magnetometer corrects for the soft and hard iron dis-
tortions [Ozy15] and, most importantly, a fixed frame of reference independent
from our embedded device is found. This frame of reference will be made of

the axes north,west and up (NWU)).

Lastly, the process of fusing the IMU data with the GPS data will take

place to give the best possible estimate for position, velocity and acceleration.

2 Methodology

The first objective covers the embedded device. The first question is
what sensors to read. The most common approach with the Kalman filter is
integrating an inertial measurement unit (IMU) and a global positioning system

(GPS)[FGM11].

18

Both of these devices are ideal compliments of each other. The GPS
offers a slow refresh rate and low accuracy. On the contrary, an accelerometer
can reach very high update rates with high precision. The problem with the
accelerometer is drift. To calculate position from acceleration, a double integral
must be taken. This means that all small noise errors and biases are integrated
over time, making them grow quadratically. Hence, the position estimated by
an accelerometer “drifts” over time. Here the GPS is the ideal compliment, as

it provides an absolute position, helping to reset the driftfMPU19].

The main factor for choosing a GPS was price, since this part can get
extremely expensive. The NEO6M GPS module is available for $15 and is
widely used . It has supporting software that allows a detailed configuration

and 1s widely used in the drone community[Ubl11].

Since the IMU has to make up for the low GPS accuracy, a highly ac-
curate and reliable module was needed. Another requirement is the presence of
a magnetometer, as this will later be crucial for attitude estimation. The MPU-

9250 ($15) satisfies the requirements[MPU19].

To actually retrieve the data, a microcontroller (MCU) is needed. When
choosing the MCU, the main consideration was speed, price and peripherals for
standard communication protocols (SPI and UART). The STM32F103CS8 is a
cheap 32 bit microprocessor (around $2) that can be clocked up to 72 MHz
[STM15]. It is the microprocessor used in the widely used breakout board

known as the ”Bluepill”, meaning there is a large community around it.

When logging data, both the options of sending it wirelessly or logging

it on to the device were considered. Wireless transmission is appealing as it

19

provides real time data and mimics Formula 1 telemetry, which is what sparked
this idea. However, considering that the goal of this project is to achieve low
cost and low complexity, the more logical process is to save the data on an
SD card on the GoKart. This simplifies the project for two reasons. Firstly,
we will not need a receiver node. This simplifies the hardware requirements.
Secondly, this removes the timing constraints for data fusion and analysis, since
the process will no longer need to be real time, allowing a more flexible software
solution. The drawbacks are nearly negligible, since it is unlikely that the target
market (GoKart hobbyists) will have someone outside the GoKart to setup the
receiver node and analyze the real time data. Having real time data is only
useful in more competitive racing environments, where race engineers can truly

take advantage of it.

Consequently, a generic SD card can be used for storing data. Since the
chosen microcontroller does not have a peripheral for SD communications, SPI
mode was used to write to the card. The FatFS file manager was used to create
files and log data onto the SD card[Chal9]. A general overview of the hardware

connections can be seen in figure 8.

A combination of timers and interrupts will ensure data logging at fixed

frequencies.

Once this objective is reached, we will begin the next objective of this
project. Preparing data for data fusion. This process is all done using software.
Since time is no longer a major constraint, the high-level language Python will
be used. This code will be in charge of processing the data from the SD card

and calibrating the sensors.

20

-
SPI UART
(MU GPS
(MPLIS250) (NEOB-M)

SD-Card

Figure 8: Overview of hardware connections and the respective communications protocol.

The first and simplest calibration will be done for the gyroscope. These

tend to carry a DC bias which can be easily subtracted.

In the case of the magnetometer, both hard and soft iron distortions
must be compensated for. The uncalibrated output of the magnetometer will be
an ellipsoid that is not centered at the origin. However, a sphere representing the
magnetic field of the earth is expected. For this reason, the data will be adjusted

to fit a sphere through the minimum squares method[Ozy15].

The last calibration is done to find non-inertial axes. North, west and up
are ideal in our case because they compose a right handed reference system and
match perfectly with the axes already given by the GPS coordinate system. This
1s done purely using static IMU data. The gravity vector is used to determine

roll and pitch. The magnetometer determines yaw[BK16].

In this phase, unit conversion also takes place. Gyroscope readings are

21

converted into degrees/° and GPS coordinates to meters. The latter conversion
is done by approximating the earth as flat, which is a valid approximation for

distances handled in GoKart tracks.

The methodology for the last phase corresponds to the application of

the data filters. Two filters will be applied.

First, we need to determine the attitude of the device. Since the em-
bedded device is attached to a GoKart, it has a non inertial reference frame that
rotates. It is necessary to determine how the object has rotated on the Kart to be
able to relate the read accelerometer data to the NWU coordinate system. The
use of a Madgwick filter [Mad10], will allow us to relate this non-inertial refer-
ence frame of the embedded system with the fixed reference frame found in the
previous objective. It achieves this by fusing the gyroscope, magnetometer and
accelerometer data. The gyroscope gives evolution over time. The accelerome-

ter and magnetometer act as constant direction vectors to be used as references.

Once the absolute accelerations in the north and west direction are ob-
tained, data from the IMU and GPS can be fused through a Kalman filter [Far12]

and provide an estimate of position, speed and acceleration.

The process of creating this project will match the order of the objec-
tives, as these are the logical building blocks. The idea is to have a working

objective and then move on to the next one.

22

3 Results

3.1 First objective:

The first objective was to be able to save correctly timed data. The
process was first carried out writing through UART, which allowed a update
rate of 200Hz for the accelerometer and gyroscope. The update rates of the
magnetometer (10Hz) and GPS(5Hz) were the maximum possible rates of the

respective devices.

A package was sent every 5 milliseconds (200Hz) with varying length
depending on if the sensors that had been read in the given period. This allowed
GPS, magnetometer and accelerometer data to be sent synchronously, with the

same time stamp.

When using the microSD, since the system relied on fatFS to write
to the chip, a blocking mode SPI data transmission greatly slowled down the
refresh rate of the accelerometer and gyroscope to 50 Hz. The other two refresh

rates remained constant.

3.2 Second objective: Calibrating data

The gyroscope was converted to °/second from bit values, and by taking

stationary values the offset and the standard deviation were calculated.

For the magnetometer, fitting on to a centered sphere was achieved, with
figure 9 showing visual results of a constant magnetic field changing direction

while the IMU pointed in different ways.

23

400

200

G277 o
RS ‘::.,'_4_
-200
400
-400 200
~200

Figure 9: Magnetometer data: not calibrated(purple) and calibrated(orange)

The accelerometer was calibrated with a rotation matrix so that, re-
gardless of the initial position of the embedded device, acceleration in x and
y direction are O in static conditions and match with North and West, and ac-
celeration in the z direction matches with Up and represents gravity. Figure 10
shows stationary readings of the IMU, and figure 11 shows the values after the

rotation matrix has been applied. The results prove to be as expected.

3.3 Third objective:Data fusion

The first problem was determining attitude. The best way to evaluate
the result of Euler angles is a visual interpretation. Using Pygame(see image
12, a cube was made to mimic the rotation of the embedded device). The result

responded immediately and accurately, and had no orientation drift.

Another experiment that was made was leaving the embbeded device
still during a period of time, and seeing how the estimated euler angles change.

Figure 13 show the result before calibration in which the yaw angle clearly

24

Acceleration

8_
Q
<6
£ — ax
c
.8 — ay
2
© 44 — az
<9
[0}
[9)
1)
©
24 20 | | L L | [| oL | |
e e S

0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figure 10: Uncalibrated accelerometer

Acceleration

ay

acceleration (m”2/s)

O-WMWWW
0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figure 11: Rotated accelerometer to match NWU axes

25

Figure 12: Pygame representation of the embedded device

0.0
-0.1 R

—-0.2 1

Orientation

—0.34
el
e

~0.4

—0.5

—064 — roll
pitch
— yaw

—-0.7 A
0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figure 13: Estimated Euler angles without sensor calibration

drifts. Figure 14 shows the results after calibration, showing that the estimated

rotation always returs to the initial possition.

With attitude determined, the Kalman filter attempted to determine the
position of the GoKart. However, the result was not satisfactory. The precision
of the GPS alone is on par with the precision of the fused estimate and signifi-
cantly better than only the acceloremter (since it is greatly affected by drift). It
is possible that through more accurate calibration and the addition of low pass

filters to get rid of the accelerometer jitter, this could be made to work.

26

Orientation

0.02

0.01

0.00

d

e
—0.01 A

—0.02 A

— roll
—— pitch
— yaw

—0.03 A

0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figure 14: Estimated Euler angles with sensor calibration

4 Conclusion

Not having met the main goal due to accuracy reasons leads to consider
that devices such as the Mychron5 can justify their high price. Since every sin-
gle error accumulates to the final result (errors in IMU and GPS measurments,
in timer interrupts, attitude estimation...) and we are attempting to achieve an
accuracy of around one meter (typical significant distance in GoKart tracks), it
1s difficult to do so if special attention was not paid to accuracy. Hence, this

would be a major objective if this problem were to be tackled again.

27

28

Contents

1 Introduction 5
1.1 Objective e 5

1.2 Motivation 5

1.3 Current Solutions 5

2 Project 7
2.1 Hardware 8
2.1.1 Microcontroller L 8

2.1.2 Inertial Measurement Unit(IMU) 12

2.1.3 Global Positioning System(GPS) 13

214 SDCard. e 14

2.2 Sensor Data Preparation 19
221 ReceiveData 19

222 GYIOSCOPE .« v v v v o e e e e e e 20

2.2.3 Longitude and Latitude 21

224 Magnetometer e e e e e e 22

2.2.5 Non-Inertialaxes L o 26

23 DataFusion 30

2.3.1 Attitude estimation e e e

2.3.2 Position estimation u e e e e e e e

3 Review of Results and Conclusions

3.1 EconomicStudy

References

Appendix

SLA Serial ...
5B MPU9250
5.C diskIO o
5.D Timer Interrupt: Output data logging
5S.E ReaddatafilesfromSDcard oo
S.F ParseGPSdata
5.G Attitude L

5.H Cuberotationin Pygame

43

44

47

51

List of Figures

1.1

2.1

22

2.3

24

2.5

2.6

2.7

2.8

29

2.10

2.11

2.12

2.13

2.14

2.15

2.16

Race Cloud Hardware [Rac19a] 6
Hardware connections with communications protocol 8
myprintf onto serial connection.c Lo 9
Flowchart showing main.c 10
Flowchart showing how the interrupts logdata 11
Basic structure of an application using FatFS [Chal9] 15
Flow chart explaining how to initialize an SD card in SPI mode [Tec] 16
Byte structure of Magnetometer calibration data packet 17
Byte structure of output data packet Lo L. 18
Example of output data (NMEA sentence is highlighted) 18
Gyroscope measurements (average valueisnotQ) 20
Calibrated gyroscope (average values allO) 21
Read magnetometer ellipsoid plotted in 3 dimensions. 22
Two dimensional effects of hard iron distortion [VecO8]. 23
Two dimensional effects of soft and hard iron distortion [Vec08]. 24
Orange: fitted magnetometer data Purple:Read magnetometer data. 26

IMU axis (x in read, y in green and z in blue) represented with north axis(cyan)

and up axis(purple) 27

2.17

2.18

2.19

2.20

221

222

2.23

2.24

2.25

3.1

32

Magnetic declination and inclination[Ber17] 29
AccelerationinIMU axis oL 30
Accelerationin NWU axis L oo 31
Magnetic fieldin IMU axis L Lo 31
Magnetic fieldin NWU axis 32
Estimated Euler angles while stationary 35
PyGame visualization of the embedded device 36
Bayes Theorem[Nycl7] 37
Kalman Filter Diagram [19] 41
GPS and Kalman filter position estimate while still 44
GPS and Kalman filter position estimate while moving 45

Chapter 1

Introduction

1.1 Objective

This project will attempt to create an embedded device capable of logging data from
several sensor placed on a GoKart. This data will then be extracted and analyzed on a standard
computer to give feedback to the driver on the course he took during his time racing. The goal is

to provide the most important variables in racing: position, speed and acceleration

1.2 Motivation

Rental GoKarts offer very little feedback to drivers. Hence, lap times quickly plateau.
If a driver wants more feedback, most options are aimed at professional GoKart racers or for
automotive racing, which are not precise enough for GoKarts. There seems to be a gap in the

market that does not meet the needs of hobbyist. This project will try to cover said demand.

1.3 Current Solutions

As mentioned in section 1.2, there are two main solutions to extract race data.

RaceCloud covers professional GoKart racers[Rac19a]. This is a very specialized
market. Here, GoKarts act like a feeder league to all other track racing categories. Those

who take it seriously plan to go big. Here, teams already have their own GoKart, a method of

5

Figure 1.1: Race Cloud Hardware [Rac19a]

transporting it, and a mechanic to take care of tuning and reparations. Cost for more performance
is usually not the biggest concern. This is why a solution as expensive, precise and complex
as RaceCloud makes sense. The way they achieve data logging is through 3G, which already
adds complexity and the need for a receiver. They achieve precision through the integration of
numerous sensors, but specifically thanks to a highly precise GPS system. The whole set up is

bulky (see image 1.1) and expensive(rented at $10 per racing hour).

RaceTime is the opposite side of the spectrum[Rac19b]. The only hardware it uses is
an android phone. Basically, it displays data logged from the phone’s GPS on a graphical user
interface(GUI). There is no sensor fusion and it relies on the cheap GPS inside phones. This
means low update rate and low precision. The accuracy it provides is not enough for small tight

corners found in a GoKart track.

Chapter 2

Project

Considering the two sides of the spectrum that try to give GoKart racers more informa-
tion about their laps, there seems to be a clear gap in the middle. This project will attempt to fill
said gap of providing precise location tracking but at a reasonable price and with a low number

of components.

The way it will do so is by using one single embedded device that will be placed on
the a GoKart. This device will log data onto an SD-Card from both an inertial measurement unit
(IMU) and a cheap GPS. The SD card will then be inserted into a computer, and software will

process the data and give an estimate of position, velocity and acceleration at each given time.

There are two key elements in this project. First, data is never transmitted from the
GoKart. This reduces complexity (no need for a receiver or screen) and price. The second and
most important factor is that it relies on software. Models will attempt to give good estimates of

kinematic values. This means that expensive and highly accurate modules will not be needed.

The process of solving this problem is divided into three main blocks:

e Hardware: this is the development of the embedded system. It will mention how the

microcontroller retrieves data from the IMU and GPS and logs it into the SD card.

e Sensor Data Preparation: This is the first step once the SD card reaches the computer. It

will explain how the data was retrieved and prepared for the next step.

e Data Fusion: With the prepared data, fusion algorithms will be used to estimate attitude

and position of the embedded system.

e |

GPS
(NEQE-M}

UART
IMU
(MPLIS250)

SD-Card

Figure 2.1: Hardware connections with communications protocol

2.1 Hardware

This section will explain everything related to the embedded device. Figure 2.1 shows
all hardware connections and their respective communication protocols. Everything will be

explained in greater detail below.

2.1.1 Microcontroller

The component in charge of coordinating our sensors is the microcontroller. However,
in our case, no complex operations are taking place, it merely routes traffic from the sensors to
the SD card. What is critical, however, is timing. Faster update rates and data logging will be

crucial to higher accuracy.

A good solution for this problem is the STM32F103C8[STM15]. For around $2, this
microcontroller can be clocked up to 72MHz with an external resonator (compared to Arduino’s
8MHz). It’s 128kB of flash are far more than enough to buffer the sensor data before it is stored
in the SD card.

All programming of the device will be done in C, compiled through GCC. Debugging
will be done using an ST-Link V2.

Gyro x:-127 Gyro y:81 Gyro z:21

mag x:279 mag y:163 mag z.-307

Accel x:-876 Accel y:-16 Accel z:-8160
Gyro x:-137 Gyro y:91 Gyro z:31

mag x:270 mag y:168 mag z:-314

Accel x:-932 Accel y:-12 Accel z:-8288
Gyro x:-128 Gyro y:98 Gyro z:32

mag x:273 mag y:165 mag z:-305

Accel x:-912 Accel y:-56 Accel z:-8232
Gyro x:-134 Gyro y:86 Gyro z:35

mag x:268 mag y:168 mag z:-306

Accel x:-848 Accel y:28 Accel z:-8340

Gyro x:-128 Gyro y:84 Gyro z:18

mag x:282 mag y:164 mag z:-309

Accel x:-904 Accel y:-88 Accel z:-8320
Gyro x:-118 Gyro y:81 Gyro z:27

mag x:272 mag y:166 mag z:-3602

Accel x:-860 Accel y:-64 Accel z:-8236
Gyro x:-127 Gyro y:100 Gyro z:22

mag x:272 mag y:168 mag z:-312

Accel x:-888 Accel y:-56 Accel z:-8288
Gyro x:-114 Gyro y:102 Gyro z:25

mag x:277 mag y:163 mag z:-305

Figure 2.2: myprintf onto serial connection.c

2.1.1.1 Initialization

By using STM’s hardware abstraction layer (HAL) library, the microcontroller’s

peripherals are controlled.

In this project we need to initialize two SPI peripherals. One for the IMU and one for
writing to the SD card. Although a single SPI peripheral can be used to control both devices,
since they need to operate at different speeds and to optimize timing, two different channels were

used.

To read data from the GPS module, a UART peripheral was used. However, since the
GPS transfers large chunks of data and very slowly, a direct memory access peripheral (DMA)
was associated to the UART receiver. Although not necessary for the final product, a useful tool
for development was to use a UART peripheral associated to a standard print f() function. By
using a UART bridge, real time data and messages could be viewed for debugging. In appendix
5.A code for the myprint f() function used can be seen. It is able to take in strings, integers and

floats and display them in ASCII code on a terminal as seen in figure 2.2.

Two timers were also used. One is commonly referred to as the system tick. It is
initialized when the microcontroller powers on and ticks at a constant 1000Hz, serving as a

time reference for the whole system. The other initialized timer was used to interrupt the

9

Initialize Peripherals

Init MPU and SD card
Check for free
space in SD card,

yes

Check if magnetometer
has be calibrated

yes
¥
j Init Interrupts ;
3
@

Figure 2.3: Flowchart showing main.c

Tyno
Y Calibrate
magnetometer

microcontroler at a constant interval and request to have the IMU data read.

2.1.1.2 Main

The main program in the microcontroller follows the flowchart seen in figure 2.3.

We can see that it initializes the peripherals, followed by the sensors (IMU and SD-
Card). It checks if data for magnetometer calibration has already been collected, an does so in

case it has not. After that it initializes all the interrupts and lets them take care of the rest of data

logging.

Note that although not explicitly shown in the flowchart, each bubble carries its

associated error checking.

2.1.1.3 Interrupts

This is the most crucial part of the microcontroller. Precise timing is very important.

There are three interrupts with different priorities. The interrupt with highest pri-

ority (excluding hard faults and other exceptions) is the system tick. Since this timer is in

10

UART Peripheral
DMA peripheral

IDLE Interrupt handier:
set GPS flag and read
fnagne‘.cmeler

IDLE
interrupt

GPS Buffer

imer interrupt handler:
fead IMU and send available
data

SPI peripheral to 8D
card

Figure 2.4: Flowchart showing how the interrupts log data

20ms
Interrupt

Timer Peripheral

charge of keeping precise timing for the microcontroller, it is crucial that it is never preempted.
This means that we will have a one millisecond counter whose precision only depends on the

microcontroller’s external oscillator.

The second most important interrupt is the second timer interrupt. It has middle priority.
It is in charge of providing an interrupt every 20 milliseconds. During this interrupt routine,
accelerometer and gyroscope data are read and logged to the SD card. Then the program checks

if there is GPS data available. If there is, it is also sent.

The last interrupt has the lowest priority. It must be lower than the second timer so that
data can be logged at constant time intervals, which is crucial for accuracy. This last interrupt is
in charge of making the data from the GPS available. As mentioned earlier, data from the GPS is
stored to memory by DMA. The initial solution that was attempted was to signal that the GPS
data is ready when the DMA buffer is full (known as a full transfer interrupt [STM17]). The
problem with this solution is that the GPS sends packets of varying lengths. Hence, sometimes

you would get a full package and part of the next.

A work around to this problem was found by using the UART’s interrupts instead. An
idle line interrupt goes off when no bits are transmitted for more than one cycle[STM17]. This
means that when a GPS package is received, an interrupt will go off. This interrupt then sets a
flag stating that a GPS packet is ready to be sent. It also reads the magnetometer, since they both
have similar refresh rates. If this flag is seen by the timer interrupt, GPS data from the DMA

buffer and magnetometer data is logged on to the SD card.

Figure 2.4 shows the dynamic of the interrupts.

11

2.1.2 Inertial Measurement Unit(IMU)

The IMU is a very important piece in this project, since it must be accurate and fast
enough to compensate for the sluggishness and inaccuracy of a cheap GPS module. What was
needed was a precise, low noise IMU that incorporated a magnetometer for attitude estimation.
The MPU9250 fit this role perfectly[Inv16]. It provides digital tri-axial values for acceleration,
angular velocity and magnetic field. Additionally, the device can be set to apply low pass filters

and different scales.

To interface the IMU with the microcontroller, two communication protocols are
available. 12C and SPI. SPI mode was chosen because it is much faster. I2C is a protocol that
supports multiple masters. This means that a considerable amount of overhead is needed(I12C
address and acknowledge bytes). It also means that masters cannot drive lines through push pull
GPIO pins, as this could lead to problems in the case that two masters were to drive the data line
simultaneously. Instead, I2C uses an open collector system. This means that data lines can be
pulled down instantaneously. However, a pull up resistor is in charge of driving a data line high.

Due to parasitic capacitance, there will be a slow rise time associated to the RC circuit.

On the other hand, SPI is an extremely simple protocol that allows one master. There
is no overhead and the master can drive lines quickly through push-pull. Clock limits are usually
determined by physical distances between master and slave. In the case of the MPU9250,

configuration registers can be written at IMHz and data registers can be read at 20MHz.

Since the STM32F103C8 microcontroller is not as widely used as Arduino, no C
library for interfacing the MPU9250 with it using STM32’s HAL was found. Instead, this project
developed a working library that can be seen in appendix 5.B. Its main functionality will be

explained below.

2.1.2.1 Backbone

The MPU9250 has a total of 126 read/write registers. Data can be read from some
of these registers. The values written to others serve to configure the device. Hence, the most
important functions are reading and writing to these registers. Almost every function in 5.B is
based on these low level functions that are able to read from a certain register address or write a

single byte to a given register address. Hence writeReg() and readReg() take care of doing this.

12

2.1.2.2 Initialization

Two initialization functions exist. One for the MPU9250 as a whole, and one specifi-

cally for the magnetometer inside it.

These functions enable data registers and set the low pass filters, scale and power

consumption mode.

To check that the IMU and magnetometer were initialized correctly, two whoami()
functions exist. These are in charge of reading read only registers in the devices that have a fixed
value. In the case of the IMU, register 117 should always return 0x71. For the magnetometer,

the result should always be 0x48[Inv15].

2.1.2.3 Reading data

Both the accelerometer and gyroscope can be read directly in their respective data
registers. Each axis is made up of two bytes which are read and returned as a single signed
half-word(2 bytes).

The magnetometer cannot be accessed directly. This is because it is its own separate
device integrated in the MPU9250 package. Internally the MPU9250 connects to this magne-
tometer through an 12C interface. Hence, to read the magnetometer, this [2C interface must be
controlled by manipulating MPU9250 registers. The result is three compact functions reading

each axis of the magnetometer.

2.1.2.4 Euler function

Fusing the three sensors (accelerometer, gyroscope and magnetometer) can give a good
estimate of attitude using Madgwick’s filter [Mad10a]. However, this function was finally not
used since all data processing was taken care on the PC. Consequently, the process of attitude

determination will be later explained in detail in section 2.3.1.

2.1.3 Global Positioning System(GPS)

GPS modules can be extremely accurate. However, accuracy makes the price grow

exponentially. Since the hope of this product is to create an affordable system, the low cost

13

NEO-6M GPS module was used[Ubl11]. This GPS module has a large hobbyist community

supporting it, can be easily configured using U-Center software.

The GPS module starts up and automatically begins to send National Marine Elec-
tronics Association (NMEA) data. This is a protocol for sending GPS data with a specified
structure[Dep12]. Information on satellites, signal strength and other parameters can be obtained.
However, in this project the only useful information in longitude, latitude, speed and the GPS
time stamp. This is all available in the SGPRMC (minimum recommended data) NMEA message.
For this reason, the GPS module was set up to send one GPRMC packet at SHz.

An internal data filter was also applied to the GPS data. Since the module will be
mounted on a GoKart, this filter assumed small vertical acceleration and complete traction (fair

assumption for hobbyist GoKarters as it is important not to slide).

Receiving this data is done through DMA. This is important because the GPS sends
large amounts of data at a very slow rate (9600 baudrate). Hence, if we needed to read the
data with a blocking function, too much time would be spent doing so. By using DMA, other

processes can take place until the data is fully read.

2.1.4 SD Card

The previous sections have explained what data the sensors send and how interrupts

take care of collecting it. This next section explains how the data is logged on to the SD card.

2.1.4.1 FatFS Module

To be able to create and write files to the SD card, a file manager module was needed.
The File Table Allocation (FAT) system is widely used in the case of SD cards. FatFS provides a

generic filesystem module for small embedded systems [Chal9].

How it works is shown in figure 2.5. The application calls the Fatfs module to open,
read or write to a specified file. This module then uses a user provided device control (commonly
referred to as diskIO) to actually initialize and be able to communicate with the storage device.

In this project, a diskIO system for an SD card using SPI communications protocol was created.

14

Application

FatFs Module

Low level device controls
(SD, ATA, FTL, RTC and etc)

F = =
= B

Figure 2.5: Basic structure of an application using FatFS [Chal9]
2.14.2 DisklO

Six functions make up the diskIO interface. However, this project only needed to

implement three

e disk_initialize: In charge of initializing the SD card in SPI mode. A flow chart explaining

the process can be seen in figure 2.6.

e disk_read: In charge of reading a sector of the card. The minimum sector size in an SD

card (smallest readable/writable block) is 512 bytes [Tec]. This will be important later on.

e disk_write: In charge of writing n bytes to an SD card. However, since the minimum
manageable block for SD cards is 512 bytes, if n is smaller than the sector size, it must be

read completely, overwrite the desired positions, and write the whole sector once again.

Appendix 5.C shows the created diskIO library.

2.1.4.3 Writing Data

Having set up FatFS with its corresponding disklO, the process of writing data can
begin. As mentioned before, it is not possible to write only one byte to the SD card. Only a 512
byte sector can be read or written to. Writing a single byte this way would mean an extremely
slow process, which would slow down update rates greatly. A solution to this problem is creating

a SD output buffer. When a byte needs to be written, it is appended to a buffer of 512 bytes. If

15

Figure 2.6: Flow chart explaining how to initialize an SD card in SPI mode [Tec]

16

ISrart_byte Imag_x_low_byte Imag_x_high_byteImag_y_low_byte Imag_y_high_byteImag_z_low_byte Imag_z_high_bytel

Figure 2.7: Byte structure of Magnetometer calibration data packet

the buffers gets filled, then the sector is written to the SD card and the buffer is cleared. The

following code shows the process:

void sd_buffer_append(uint8_t data){

sd_buffer [sd_buffer_index]=data;

sd_buffer_index++;

if (sd_buffer_index>=512){
write_sector (sd_buffer);

sd_buffer_index=0;

The next step is actually logging the data. Two files are created in the process.

2.1.44 Magnetometer Calibrate

As mentioned earlier, data to calibrate the magnetometer needs to be collected. A
mag_calib() function is used to create a mag_calib.txt file (if it is not already created). During
this process of calibrating, the user must spin the embedded device so that it points in all possible

directions.

While the device is being spun, the magnetometer is read in all three axis. A start byte
is written to the SD buffer to signal a new data point. Then, the three read half words(in the
x,y and z direction) are written to the SD buffer in little endian form. This process is repeated
until 500 data points are collected. Figure 2.7 shows how the data packet is structured. This

information will later be parsed on a PC and used to calibrate the magnetometer.

2.1.4.5 Data Collection

If everything up to this point has been done correctly, the actual data logging begins.

This is done in the timer interrupt handler.

A file called "out.txt" is opened in writing mode. First a start byte is sent to signal

a new data sequence. This is followed by a time stamp. The time stamp is taken from the

17

Stan_byte[(]]lStart_byte[l] |timestamp Iaccel x_low_byte |acce| x_high_| bvtelaccel _low_byte |accel_v_h|gh bytelaccel z_low_byte |acce|_z_high_byte|... |

|gyro_x_|ow_byte|gyro_x_high_byte |gyrc_y_|ow_byte |gyro_y_high_byte |gyro_z_|ow_byte |gyro_z_high_byte |end/continueGPS byte | |

|mag_x_lcw_bytelmag_x_high_byteImag_y_low_byte |mag_y_high_byte|mag_z_|ow_byte Imag_z_high_byte |GPS_DATA(severaI bytes) |

Figure 2.8: Byte structure of output data packet

YY2Ett "4 1" - "qAEa$GPRMC, 190959.00,A,4037.87689,N,00335.73814,W,0.157,,110719,, , A%67
“EYYE .t \~"~PYY(" V0 B#t IV (Yy<Ivs#[" <YYP&"%, - $TPYYdxT L xQ w¢ dYYxh, (* 0, ¢yYYaNG p!
SYWUCYYTh D < ID°YY¥$" "¢.." "&uYY.."0"E 0 ‘o q»uE$GPRMC 191000.00,A,4037.87688,N,
00335.73816,W,0.065,,110719, , , Ax60
—YY>» Lals F>YYON'—E Looyy

g YYt'é\"U & YY-@" IIN"4-YYA, oo LO"A""AYYUQ"— d#i* “#UYYi"U & VY iYY}1 1"T£" . "n}
xxgH X6 péYYe,"a 1 fi, 1&"eYYR® i, ": nyyde* LI a-0YY-SU"E 0" -YY11"X",!'"€71YY ““h<"°"§%0

YYN" 3 oL eIYYl-

MU FITIYYEx(G#q ™ I> "EYYY $7§> "0XYYYm4 “x, (h™=mYYAN ¥ 17§~ "RYY[]* TV StYYoi U X6 k@oYYQ¥”
x"I7#
QYY—, — 0 A—"-YYA1U i» I AYY"X"§ @7 6; YY
EHL»ﬁ()
YYIL $#$ "~ 1YY5 " »I1&” X5YYI$, I.p I'="HIYYIF x"<$j 7 ~YYqe-d#1i @ A" rYYDi »"»!

gt _OYYs NO™ "6YYAN §.1 ° . r "EYY-0Pa !5 E -YY+L 1, (M ~T+YYI¥y @6 k1YY \"&

06 TYYTT 19/ 10YY&E @ @ C_T&&YY:[["\"P!+" :YYN88, I%XYYb\, i@

“"x"IbYYVP H ~a“levYY&@ ¢ @"B™!, TEYYOY,x o7C” q=ME$GPRMC,191001.00,A,4037.87677,N,

00335.73821,W,0.262,,110719,,,A%x60
@YYk, @b’ asYYA\P 2"N, "AYY/ L d; "@>"/YYO $»1¥70"$0YY . “a”
RYYd<“»Y"; YY%& @ T 1 ("L¥"%YY>L"»4 @"I>YYR< o, “0/RYYfXU, o"[

T FYYZRD” A'|'| EO*zYYE "w Al @ @EYYdw A T§S ' ¢YYa» ' . & °.1°aYY “Ey"2°3"+" YYfid“ < $

@@I.“b(‘)“l]YY‘“fjt VAETYYS| ¢ViLYY.2 <VU “3/YYBOT !
A$CYYVfT [#e U= WYYUA™t, m"- ~7uYY, @ 9% oEwl ..E"K“2:71YYBa“hhi™ $BYY2T t §!

Figure 2.9: Example of output data (NMEA sentence is highlighted)

previously mentioned system tick timer. Next accelerometer and gyroscope data is written in

little endian.

Now the device checks if the flag signaling that GPS data is ready. If it is not available,
it appends an end byte of 0x00 to the SD buffer. If data is available, a continuation byte of 0x71

is appended. These values will later be useful to decode the data packets.

If the continuation byte is written, magnetometer data is sent in little endian form
followed by the SGPRMC NMEA sentence. This is the only information that actually written

using character, not the byte values.

Figure 2.8 shows how the data packet is structured. Figure 2.9 shows an example
output file. Note that the only decodable information visually is the SGPRMC string. The rest is
bytes that will later need to be decoded and parsed.

Appendix 5.D shows the code for this process. It is part of the second timer’s interrupt

routine.

18

2.2 Sensor Data Preparation

From here onward, all code development will be done in Python. Python was chose
because it is a versatile, high level language that is great for data analysis. Graphing was done

using Matplotlib and arrays were managed using Numpy.

Two data files have now been logged onto the SD file. "mag_calib.txt" and "out.txt".
As figure 2.9 shows, this data needs to be decoded and prepared for data fusion. The next section

describes said process.

2.2.1 Receive Data

One function was created for reading each of the two files. The function opens the file
created by the embedded device for reading. It then proceeds to read bytes until it finds a starting
byte sequence. Then it begins to unpack data using Pyhton’s "struct" module and appends it to a

numpy array. In the case of the "mag_calib.txt", the array has the following columns:

Magnetometer-x | Magnetometer-y | Magnetometer-z

For "out.txt", two numpy arrays are returned. One adds data every start byte sequence.

The other only adds data when the GPS data flag had been set. The structures are as follows:

Datal:

Time | X-accel | Y-a | Z-a | X-gyro | Y-g | Z-g | GPS_flag

Data2:

Time | gpstime | lon | lat | vel | x-Magnetometer | Y-m | Z-m

Reading continues until the end of the file is reached, discarding data points that did

not arrive completely. Code for this decoding can be seen in appendix 5.E

Note that in the numpy array Data2, values of GPS Timestamp, longitude, latitude and
velocity are included. These had been previously parsed from the SGPRMC NMEA sentence

using the function seen in appendix 5.F.

All of the data is now available in ordered arrays. It now needs to be fine tuned.

19

Gyro

0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figure 2.10: Gyroscope measurements (average value is not 0)
2.2.2 Gyroscope

The gyroscope is the easiest element to tune. The values read from the gyroscope can

be modeled as:

8measured = gtrue +b+n 2.1

Where b is a constant bias and z is random white noise[BK16]. To correct this bias,
we find the average value of the gyroscope readings whilst stationary and subtract them from

gyroscope readings to remove the constant bias.

We can assume that the user was standing completely still during the first thirty seconds
of data logging. At a logging rate of 50 Hz, we can be certain that the first 1000 data points in
our Datal numpy array were taken in a stationary position. Hence, we can estimate the constant

bias as:

B _ 2112?0 8measured i 2.2)

n

Where b is the estimated bias.

In figure 2.10 we can see the recorded data before removing the constant bias. Figure

2.11 shows the data after the bias has been removed.

Here we also calculate the standard deviation of the gyroscope while stationary for the

20

Gyro

0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figure 2.11: Calibrated gyroscope (average values all 0)

three axis, as it will later be useful in the future. The estimation of 62 is done by:

N 2
2 Z:i:l gmeasured,i

Cjj = N_1 (2.3)
Similarly the co-variance between different axes is calculated as
2 Z{'V:szl 8measured i * 8measured, j

With Gl_z ; being the co-variance between axis i and j

2.2.3 Longitude and Latitude

The data given to us by the GPS is longitude and latitude. However, we need meters
in Cartesian coordinates (x and y), as these can be compared with accelerations in meters per

seconds.

Since the earth is spherical, there is no exact way to project onto 2 dimensions.
However, good results can be achieved if two assumptions are made. First, we assume that the
earth is perfectly round. Next, that the change in longitude and latitude is very small. In the case

of a GoKart track, this is a good assumption.

Subsequently, we use an equirecangular projection. It states[Alp19]:
Ax =R x (A — A1) xcos(¢o) (2.5)
AyZR*((pz—(Pl) (26)

21

400

200

—200

.

400 200 0 -200-400

Figure 2.12: Read magnetometer ellipsoid plotted in 3 dimensions.

Where R is the radius of the earth, A, and A are final and initial longitudes, ¢, and ¢ 1
are final and initial latitudes. Lastly ¢g and serves as a form correction factor since meridians are

closer together at higher latitudes.

Since we only care about the change in displacement, adding or subtraction a constant
value to all of the data will have no effect. Hence, we subtract the average position so that our

collected data is centered around [0,0].

2.2.4 Magnetometer

When collecting magnetometer data, we spun the embedded device in every possible
direction. If the magnetometer was only measuring the earth’s magnetic field, plotting the output
in three dimensions would give us a perfect sphere with magnitude of the earth’s magnetic field.

However, when we plot the result we obtain something like figure 2.12.

This is an ellipsoid that is not centered around [0,0]. Two factors cause this deforma-
tion[Ozy15].

e Hard Iron: This distortion is caused by permanently magnetized components inherent to

the embedded device. For example, if the device’s PCB carries a magnet, this will cause a

22

Magnetic Measurements with Hard Iron Distortions
1000 T T T T T T T T

S NSNS N ——
600

400

%]
=
=

My (milll Gauss)
[=]

200 f------ beeeees beeeeee beeesd U PR SR R o N

FI) SRS RO SPROS SOPPIG S SR NE, S SOOMS oo

E R - NSNS NS S

YRS SRS SN S N DO N ——

-1000 i i i i
-1000 -800 -500 -400 -200 0 200 400 600 800 1000
W {milli Gauss)

Figure 2.13: Two dimensional effects of hard iron distortion [VecOS].

constant magnetic flux. However, since the embedded device rotates with the magnet(that
is to say, they are both attached to the same reference frame), this magnetic flux will be

invariant. We can then model hard iron distortion as a constant offset:

Mypeasured = Mearth + harddistortion 2.7)

e Soft Iron: Is caused by materials such as iron and nickel and distort the existing magnetic
field. Their effects depends on their surrounding magnetic field, so rotating the embedded
device will change the effects of these soft iron deformations. The model for soft iron is
as a 3*3 matrix, where the diagonal components will correct scale errors (to convert the
ellipse into a sphere) and the rest of the components will compensate for skew angle(field

rotations caused by the distortion).

To correct for hard iron distortion, a process similar to what was described in section
2.2.2 is carried out [Ozy15]. The average values are calculated and subtracted as constant biases.

Mathematically:

b= b, 2.8)

23

Magnetic Measurements with Hard and Soft Iron Distertions
000 T T T

800

600

400

200

My (milli Gauss)
L]

-200

-400

-600

L e,

-1000
-1000 -800 600 400 -200 0 200 400 600 800 1000
M (milli Gauss)

Figure 2.14: Two dimensional effects of soft and hard iron distortion [Vec08].

Soft Iron is more complicated. What should be a sphere gets deformed into a rotated
ellipsoid. Mathematically, this can be described with six parameters. A scale factor for each

axis(sy, Sy, s;) that can be modeled in matrix form as:

s, 0 O
S=10 s, O (2.9)
0 0 s

And three successive rotations around the x,y and z axis. The first rotation of angle ¢

being:

1 0 0
R(9) =10 cos(¢) —sin(¢) (2.10)
0 sin(¢p) cos(0)

Then around new axis y with angle 6.

R(B)=| 0 1 0 (2.11)

Finally around the rotated z axis (axis that has rotated in conjunction with the ellipsoid)

with angle y:

cos(y) —sin(y) 0
R.(y) = |sin(y) cos(y) O (2.12)
0 0 1

The combined effect is able to stretch a sphere into any ellipsoid (with matrix S) and
then rotate it to any -D orientation (as described by Euler angle rotations [Cur]). It can be

represented with a single matrix as:

M=RxS (2.13)
where R = R, xRy * R,
Hence any point
X
=y (2.14)
<

on a unit sphere can be moved to an origin centered ellipsoid through:

Xellipse = M xx (2-15)

Consequently, the inverse transformation from our measured data is:

Xfitted — M x (xmeasured - b) (2.16)
By adding the constraint that x}m 210 +x}m a1l —l—xfcm 4121 = 1 we make sure that
the values fit a sphere of unit radius [MIC14].

As a measurement of error, we calculate the minimum distance between x .4 and a

point on the unit sphere.

25

400

200

-200
400
-400 200
~200

400 200 o ~200-400

Figure 2.15: Orange: fitted magnetometer data Purple:Read magnetometer data.

A function from [Sem18], is able to take this error and optimize matrix M and vector b
to minimize the sum of errors squared for all the points fitted onto the ellipsoid. This is knows as
a least squares regression. The function returns the optimal values for matrix M and vector b.
The result of applying this transformation to data collected from the embedded device can be
seen in figure 2.15 . Note that the fitted data is scaled so that its shape can be visually compared
to the non-fitted data. Also note that it is okay to fit the data to a unit sphere because magnitude

is not important in this project. The only use found in the magnetometer data is in its direction.

When calibrating the magnetometer it is also important to do so in its final package
and installed on the GoKart. This is because the metals in the magnetometer’s surrounding
environment will affect soft and hard distortions. Hence, where it is installed affects the

calibration process.

2.2.5 Non-Inertial axes

The last important calibration is finding non-inertial axes. This is necessary because
GPS data gives us values in the north and west directions. However, the initial orientation of the
IMU is unknown. Readings of acceleration in x direction do not necessarily correspond with the
north direction. Y direction does not necessarily correspond with west. Figure 2.16 shows how

the x,y and z axis of the IMU are not aligned with north, west and up directions.

Since the origin of the reference system is not of importance, solving this problem only

requires a rotation matrix R (like the one described in section 2.2.4) to align the axis. To find the

26

Figure 2.16: IMU axis (x in read, y in green and z in blue) represented with north axis(cyan) and

up axis(purple)

Euler angles of this transformation, we begin by calling rotation matrix:

Riyy = Ro(w) % R:(6) *Rx(9) = (2.17)
CoCy S¢pSeCy —CpSy CpSeCy T S¢Sy
CoSy S¢SeSy +CoCy CySeSy — S¢Cy (2.18)
—S9 SpCo CopCo

where RMVY is the rotation matrix to go from IMU axis to a NWU reference frame, cq

is cos(a) and sg is sin(B).

Using properties of rotation matrix, we know that the inverse transformation (from

NWU angles to IMU angles) can be expressed as[Cur]:

R, = R ! (2.19)

We know that an IMU measures the negative gravity vector whilst stationary. This

vector in NWU axis can be represented as:

gnwu = |0 (2.20)

27

The IMU reads

ax
amy — ay (2.21)

a;

Hence, applying the proper rotation matrix to be able to compare values:

RIS, * enwu = amu (2.22)

Substituting the matrices for their values and solving:

Sp *Co* g = ay (2.23)
Cop*Coxg =a; (2.24)
—8g * g = Ay (2.25)
Solving for 0 and ¢:
ay
¢ = arctan(—) (2.26)
az

(2.27)

0 = arctan(

—)
w/ag%—a%

It is important to use a two argument arctan function to get a result in the proper

quadrant.
To determine the last Euler angle, v, we will use the readings from the magnetometer.

Ideally, in NWU angles, the magnetometer would point north. However, there are two
problems. Magnetic north and geographic north do not match. The difference between them is
measured by an angle called declination. The next factor is that the magnetic field is not always
parallel to the earth. Consequently, it has a component in the Up direction. This is measured by

an angle known as inclination. Figure 2.17 shows both angles.
Hence, the magnetic field of the earth b can be expressed in NWU axis as:

nyCS
b=cyss (2.28)

Sy

28

True North A D 4 Magnetic North
—

1
¥

|
! [
|

Horizontal

Inclination

Declination

Figure 2.17: Magnetic declination and inclination[Ber17]

where 6 is the magnetic declination and y the magnetic inclination.

In Madrid, Spain, the magnetic declination is -0.5° and the inclination is 55° in the
downwards direction[Dec18]. Since § is such a small value, we can approximate cg ~ 1 and

ss ~ 0. Giving a magnetic field of:

Cy
b=1]0 (2.29)
The IMU magnetometer measures
nmy
mipqy = |my (2.30)
m;

Applying the magnetometer data calibration described in section 2.2.4 and normalizing earths

magnetic field b to a unit vector, the following comparison can be made:

IMU .
RNWU * bNWUmormalized =M x (mIMU - blClS) = MIMU calib (231)

with M and bias being values calculated in 2.2.4. Solving for y gives [BK16]:

Cop XMy calib — S¢ * Mz calib
Co * My cqlip T S¢ * S9 * My cqlib T Co * S * Mz cqlib

(2.32)

v = arctan(

My calib

With ¢ and 6 being the previously calculated Euler angles and myy cqiip = My calib |-

My calib

29

Acceleration

10 sty

— ax
ay

acceleration (m~2/s)

2 LU Lol L) R | Il

e Ty y Lt} ? - LR L Lishais -

0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figure 2.18: Acceleration in IMU axis

Note that g7y and ajpyp are taken as the average values of the first 1000 points of the
"out.txt" file, which are assumed to be taken while stationary. mpy cqiip 1S taken from the data

points in "mag_calib.txt" which is assumed to point in every 3D direction while calibrating.

All three Euler angles have been calculated and matrix R]IVMWUU can be determined. If we

collect data whilst the embedded device is stationary but has an inclination, we will see gravity
projected in the three axis, as seen in figure 2.18. When we apply the transformation, gravity is

only seen in the up direction (z axis), as shown by figure 2.19

A similar effect occurs with magnetometer data. In IMU axis, it is distributed amongst
the three axis. However, in NWU axis, the W component (y direction) will be zero. This can be

seen in figures 2.20 and 2.21.

2.3 Data Fusion

The data has been retrieved and prepared. Now, two different sensor fusion algorithms

will be used to estimate attitude and position, velocity and acceleration.

2.3.1 Attitude estimation

While the device is stationary, we have been able to refer the IMU axes to north, west

and up directions. However, this is not enough. When racing with a GoKart, the device will

30

Bits

Acceleration

8_
w
8
E 97 — ax
.5 — ay
® — az
g 44
()
g
©
2_
O-WWMHW
0 20000 40000 60000 80000 100000 120000 140000
time (sec)
Figure 2.19: Acceleration in NWU axis
Ma
60 9
— mX
oy
40 + — mz
20 4
0_
20
40
—60 T T T T T T T
20 40 60 80 100 120 140
time (sec)

Figure 2.20: Magnetic field in IMU axis

31

Mag

40

204

Bits

—20

—40 mx
my
— mz

—60 -

20 40 60 80 100 120 140
time (sec)

Figure 2.21: Magnetic field in NWU axis

continue to rotate. We need to estimate how much it has rotated from that initial position to
refer the axes back to NWU. This is known as attitude estimation. Many commercial solutions
exist, most of them applying Kalman filters. However, designing these Kalman filters has proven
difficult when there are varying sampling rates. Tuning the numerous parameters present in a
Kalman filter and designing a precise model has also proven to be challenging. Madgwick’s
proposed filter has been proven to be accurate, compensates for drift, can merge IMU data with a
magnetometer, and only has two tuning parameter which are determined by observable physical

system characteristics [Mad10b; Far12].

This filter relies on quaternions to represent the rotation. Similar to complex numbers,

quaternions introduce abstract symbols 7, and k. They follow the general relation:

P==k2=ixjxk=—1 (2.33)

In the same way that imaginary numbers have proven to be a useful tool, quaternions
are ideal for representing 3D rotations. It is used as an alternative to Euler angles because it
avoids glitches caused by problems such as gimbal lock(the loss of one degree of freedom due

to the alignment of two or more axis of rotation) and interpolation errors[SE18].

Just like unitary complex numbers are useful for representing a 2D rotation, where:

Py = P % (cos(0) + sin(0) i) (2.34)

With P; and P, being the starting and rotated points represented as a vector with complex numbers

(i.e. [x,y*i]) and O representing the rotation angle.

32

Quaternions have a similar effect but in 3 dimensions, where:
P,=qg*xP *q (2.35)

with q being the rotation quaternion q’ its conjugate and P, being represented as a 3D quaternion

[0,x*1,y*j,2*k]. If we represent a quaternion q as:

q=cos(0/2)+sin(0/2)x (£xi+Pxj+2k) (2.36)

>=>

This would create a rotation of angle 8 around axis v = ||, in the case that v is a unit
Z

vector.

In the case of the Madgwick filter, we choose an initial quaternion of = | |. This

==

0
means that, initially, we assume that there is no rotation. This is a valid assumption because,

section 2.2.5 already takes care of aligning the IMU axes with NWU.

The Madgwick filter then begins updating this quaternion to represent the new orienta-
tion of the embedded device. Hence, to be able to reference IMU readings with respect to the
fixed NWU frame again, all that needs to be done is revert the rotation. Keeping with the use of

Euler angle matrices through out this paper, we know that[Mad11]:

2(q293 — qoq1)
= arct 2.37
Omaa = arctan(2q(2) 1 +2q%) (2.37)
2
Opad = —arctan((9193 +q092) (2.38)
V11— (29193 +29092)?
2(q192 — qoq3)
= arctan 2.39
Vinad (2q(2) 1 —1—261%) ()
q0
With ¢ = 7 . We can then construct the rotation matrix:
q2
q3
R%{g}‘v/vUOrient = R(W);madR(O)y,madR((P)x,mad (240)

33

With R(0); maq representing the rotation matrix of Euler angle a predicted by the
Madgwick filter around axis i. R%‘vf’%) rient represents the rotation matrix from NWU reference

frame to the estimated current orientation of the embedded device. Then:

NWU _ pNewOrient —1
RNewOrient - RNWU (241)

With R%Z‘V’V%n. . TEPresenting the rotation matrix to pass current IMU data back to the

NWU reference. Consequently, to get data in NWU reference:

NWU
anwu = Ryeworien * Gimu (2.42)

This data now has the same reference as GPS coordinates.

Note that this process could have been done using quaternions, since a rotation of
q* Px*q' is exactly equivalent to a rotation around of Euler angles ¢,0 and v if these angles were

calculated using equations 2.37

The process the Madgwick filter uses to estimate current quaternion orientation is as

follows:

By taking in the gyroscope readings, the rate of change of the quaterion at time ¢
estimated with w (¢;,,) can be calculated as:
. 1, _
qt.w = 5%—1 QW1 (2.43)
Where g, is the estimated quaterion at the previous instance, ® is a quaternion
multiplication and w;_1 = [0, wy;_1,wy,_1,w;,—1] represents the gyroscope readings at time
t — 1. This w vector acts as the axis of rotation. To get the quaterion at time ¢ estimated by w

(q1,w), numerical integration is carried out:
Grw = Gr—1 + G WAt (2.44)
Where At is the update rate of the gyroscope.

Another estimation is carried out using vector observation. The detailed derivation can
be seen in [Mad10b]. In short, it uses both the magnetometer and the accelerometer as constant

magnitude vectors with fixed directions in NWU axes.

The result is an estimated quaternion from accelerometer and magnetometer data
(when available): g; (4,,). As seen in section 2.2.4, the accelerometer alone can estimate ¢ and 6
Euler angles. Without a magnetometer, y is estimated with the gyroscope, which is subject to

drift. The magnetometer can compensate for this drift, even though it has slower update rates.

34

Orientation

0.02 1

0.019

0.00

2 Y
= -0.014

—0.021

— roll
——— pitch
— yaw

—0.031

0 20000 40000 60000 80000 100000 120000 140000
time (sec)

Figure 2.22: Estimated Euler angles while stationary

Finally, the two estimates are fused through a weighted average:

qr = (1 - y)%,w + YQI(a,m) (2.45)

¥ can be calculated as a function of 8 and «, the two filter parameters. These two parameters do
not have an explicit units. Instead B is related to gyroscope error (bias and variance) and o is
related to horizontal accelerations which change the apparent direction of gravity. Higher B will
mean faster gyro error compensation but higher sensitivity to horizontal acceleration . Higher o
has the opposite effect. Several values were tested until what seemed like an optimal solution

was reached.

Appendix 5.G includes the code for estimating attitude and referring the collected data
back to NWU axes. The madgwick function call is taken from [Mad10b]. All other functions are
self-defined and available at [Ale19].

To check the accuracy of this code, figure 2.22 plots the estimated Euler angles when
the embedded device was left completely still. The results show that there is no drift (even yaw

is corrected back to 0) and the max variation of precision is only of around .03 radians.

However, this was done during static conditions. Creating an accurate test bench for
a dynamic estimation is not an easy task, since creating precise angular rotations requires a
complicated setup. Instead a real time visual representation of the embedded device was created
using Pygame. This allowed to compare the physical orientation of the IMU device with the

visual representation on the PC.

The embedded device outputs IMU and magnetometer data in real time through UART.
A UART bridge was used to connect to the PC. In Python, a serial connections was established

and the IMU data was read. Finally the Madgwick filter was applied. Using Pygame, a three

35

Figure 2.23: PyGame visualization of the embedded device

dimensional cube was drawn using code from [Mac11]. This cube was then rotated and displayed
according to the estimated Euler angles. The results were very satisfactory. There was no
noticeable lag, and when returned to its initial position after harsh movement, there was no

noticeable drift. Code for this can be found in appendix 5.H.

2.3.2 Position estimation

Having estimated the attitude of the GoKart, which allows us to find accelerations
relative to the NWU reference frame, we are able to fuse position data from the GPS with
acceleration data from the IMU. The most common approach to sensor fusion of this type has
been the use of a Kalman filter [FGM11].

The Kalman filter serves to estimate a non-observable state of a linear dynamic system
subject to white noise. A common example problem where a Kalman filter could be useful is in
measuring the temperature inside a combustion chamber. Inserting a temperature sensor inside
the chamber is not a viable option (hence, it is a non-observable state). By measuring water
temperature of the cooling system and applying heat transfer knowledge(giving us the dynamic

system model), a Kalman filter is able to give the best estimate of temperature at a given time ¢.

In our case, our hidden variables are position, velocity and acceleration. GPS and
accelerometer data, along with knowledge of kinematics (representing the linear dynamic

system), will help us find the best estimate for these hidden variables.

36

0 Praor

Figure 2.24: Bayes Theorem[Nyc17]

Note that what is being referred to as hidden variables in this case are not truly hidden.
GPS measures position and the IMU acceleration. However, these measurements are subject to
error. The Kalman filter takes into account the error due to each sensor, and comes up with the
most likely outcome. This works similarly to Bayes theorem, where an a priori distribution and a
likelihood distribution are merged to give a posterior prediction with less error (less variance).

This can be seen in image 2.24.

The Kalman filter can be divided into three parts: a priori prediction, Kalman gain

calculation, and update process.

The a priori prediction consists of predicting the next step based on the previous state.
Without taking into account GPS and IMU data. It uses the dynamic model to do so. In our

case, the dynamic model is represented by basic discretized kinematic equations with constant

acceleration:
1
xf’ =X_1+Vvi_1 x At + Eat,l * A2 (2.46)
vf =V ta_1 xAt (2.47)
af g al—l (2.48)

Where x” v/, a’ are the a priori position, velocity and acceleration estimates at time ¢
and Az is the update rate. There is one big problem with this model. It assumes that acceleration
does not change, which is not true, specially for GoKarting. Later on we will describe how an

error term Q; and the accelerometer data help to mitigate this problem.

Expressing equations 2.46 in matrix form and in two dimensions[FGM11].:

X =AxXx" (2.49)

37

Where X/ is known as the state matrix. This contains the estimation of the hidden
variables. In our case, we are trying to calculate position, velocity and acceleration. Hence, in

two dimensions:

Px
Dy
X7 =" (2.50)
Vy
Ax
dy
A 1s known as the state transition matrix, in our case:
1 0 Ar 0 A2 0
01 0 A 0 JA?
A:0 01 0 At 0 2.51)
00 0 1 0 At
00 0 O 0
00 0 0 O

During the a priori prediction, we also predict the a priori process co-variance matrix

P?. This matrix is a measure of the error in our prediction. Its value is updated through [FGM11]:

P=AxP_1xAT + 0 (2.52)

Finally, Q; serves to take into account model imperfections. Since our assumption that
acceleration does not change is wrong, we add an error term here. It makes sure that P, does
not converge to 0, as this would render the model useless since data from the IMU and GPS

would be discarded. We will consider this a time invariant matrix that will be used as a tuning

38

parameter. Since it comes from the noise present in X/, which can be modeled as [Shi09]:

AT?
OAa, 5~

2
OAay %
O, AT
w, = | A (2.53)
GAayAT

OAa »

GAay

Where 6Aq; is the variance of acceleration in axis i. Assuming Op,, = Opq, = Cfe. = Q,

and a co-variance between same axis variables of 1 and of 0 between different axis variables:

Lo o oo
T4 T3 72
07 07 0 %
T 2
0=0—as|Z 0 10 (2.54)
o L o 1> 0T
0 0 1 0
o Z o 0 1

With o acting as a tuning parameter.

The next step is calculating the Kalman filter Gain K;. This gain matrix serves to give
more weight to the estimated X; that has less error: either the one coming from the dynamic

model or the one coming from the input data. It is calculated as[FGM11]:

K, =P’HT (HPPHT +R)™! (2.55)

Matrix H is used so that input measurements (GPS and IMU data) can be compared

with the X;. It serves to convert units by meeting the requirement:

Y, =HX} +n (2.56)

39

Where Y; is the measurements vector. Here:

XGPS

Y, = yGprs (2.57)

ax IMU

ay IMU

and n is random noise. Here, the numerator of the Kalman gain represents the error
(transformed to input units through H) of the dynamic system estimate. The denominator
represents the sum of the dynamic system error and the measurement error. Hence, A higher K

represents smaller measurement error.

In our case, two H matrices are defined, one when GPS data is available, and one when
it is not. When GPS data is available:

Px =Xgps+n (2.58)
Py =Ycps+n (2.59)
ax =axmu +n (2.60)
ay =daymu +n (2.61)
In matrix form:
1 000 0O
01 00 0O
H= (2.62)
00 0O0OT1DO0
00 O0O0O0OT1
Without GPS data:
ay = ax MU TN (2.63)
ay =aymu +n (2.64)

In matrix form:

000O0OT1@PO
00 0O0O0°1

(2.65)

Matrix R represents the co-variance matrix of the input data (measures input data error).

In our case, when we have GPS data:

40

Prediccién: ' Correccion:
|

/ﬁ: K, Py Hy (H, Py, H(+ R, y

i .
Rt =@ X = - HiXus !‘_I
P =0, Py q)k +Q, |

1
I
|
\ K =Ry +Kkyl. !
|

P (1 KH)B,,,

Figure 2.25: Kalman Filter Diagram [19]

var(xcps) covar(xGps;YGps) 0 0
covar(xGps,YGps) var(yGps) 0 0
0 0 var(ax7 IMU) covar (ax,IMUa ay,IMU)
0 0 covar(ax mu ,ay,imu) var(aymu)
(2.66)
and without GPS data:
var(a covar(a a
R (x,IMU) (x,IMU 5 y,IMU) (2.67)
covar(ax,mu , dy,IMU) var(aymu)

These values were previously calculated while calibrating the data.

The last step is the update process. Here, we find the updated values for A[FGM11]:

P =(—KH)P’ (2.68)

where I is the identity matrix, and X;

X, =X+ K, —HX}) (2.69)

Intuitively, a large Kalman gain gives more importance to the input data than to the

dynamic model.

Finally, this process is repeated for each new data point. Figure 2.25 shows a diagram

of the algorithm. The implementation of the Kalman filter in Python was taken from [Teo18].

The last important note to take into account is that X; and P need to be initialized. In

our case, since we assume that the first 1500 data points (30 seconds) are taken in a stationary

41

position, the initial values are not very important, since they will quickly converge to reasonable

values.

42

Chapter 3

Review of Results and Conclusions

Images of the results of the development process have been shown through this paper.

This section will describe the result of applying the Kalman filter.

Two test cases were used to check the effects of the Kalman filter. In one case, the
embedded system was left completely still. In another case, it was driven around the road while
on a GoKart. Due to the difficulty of more precise test experiments, the results were compared

visually. In the future, more precise tests will be carried out.

The first case is standing still. Figure 3.1 shows the result in position given directly by
both reading the GPS and estimated by the Kalman filter. After testing various filter parameters,
it seems like the accelerometer took over and drifted or the GPS dominated the measurements
and brought its imprecision. In the figures mentioned above, the GPS dominates the result. In
fact, the accelerometer only seems to add noise to the desired result. A precision of less than 12

meters is achieved, which is in no way nearly enough to accurately track a GoKart.

When testing the filter in dynamic conditions, we can observe the results in figure 3.2.
The result is similar to the static test. The accelerometer does not add any new information. In

fact, it only adds noise.

This short visual analysis of position estimate is enough to prove that the sensor fusion
was not successful. The analysis will continue to focus on what can be done in the future to

increase accuracy.

First of all, the source of the noise is very likely coming from the engine vibrations.
Using a low pass filter on the accelerometer and gyro readings to get rid of this noise, or even

filtering the Kalman filter output could help get rid of these oscillations and get better results.

43

Secondly, all though an update rate of S0Hz for accelerometer and magnetometer
reading is not bad, this can be improved. The major pit fall for update rate has been using FatFs
module, which writes to the SD card in blocking mode, and greatly slows down the project.
Finding an alternative or restructuring the module so that we can write to the SD card faster could
be of great help. Another alternative is using a microprocessor with an SD communications
peripheral. In this project, the SD card was used in SPI mode, which only uses one data line. An

SD peripheral uses four data lines, making it up to four times faster.

Most importantly, attention to precision. Not enough care was taken to make sure our
readings were precise, considering the whole point of this project was to increase accuracy. For
example, to log our data, An external 8MHz oscillator was used. It was assumed to be perfectly
accurate. The test to make sure that the Euler angles were being estimated correctly in dynamic
conditions was purely visual and done in real time. This is not acceptable considering that a
small angular difference can result in a large error for large vectors. Lastly, the tests for the
Kalman filter were also not good enough. Again, they were visual and had no reference to the
true expected values. This is also due to the complexity of carrying out accurate dynamic tests.
However, a solution to this could have been to simulate data from the GPS and IMU with some
random white noise. This data could have been used to correctly tune the values of our Kalman

filter.

3.1 Economic Study

The total price of this project is summed up in the following table:

Position
_
Kalman estimate

GPS estimate

North (m)
o

East(m)
Figure 3.1: GPS and Kalman filter position estimate while still

44

500 1.

400 A

North (m)

Figure 3.2: GPS and Kalman filter position estimate while moving

Position

Kalman estimate
GPS estimate

-200 -100

0 100

East(m)

Item Cost ($)
MPU9250 10
NEO6 GPS 12
Microncontroller 2

SD-Card and breakout
Proto-board and Cables 2
Total 31

This does not consider the time developing the project. This is merely the cost of the
hardware components. This is much cheaper than the professional options described in section

1.3. However, the accuracy is not as desired. It is possible that the expensive GPS modules on

these professional devices are justified.

45

46

Chapter 4

References

47

Bibliography

[19]

[Alel9]

[Alp19]

[Berl7]

[BK16]

[Chal9]

[Cur]

[Dec18]

[Dep12]

[Far12]

[FGM11]

[Inv15]

Filtro de Kalman. url=https://es.wikipedia.org/wiki/Filtrozexalman. 2019. (Last
accessed: 07.01.2019).

Enrique Alejo. All python code for my GoKart data logging project. url=https://github.com/easox/TF
2019. (Last accessed: 07.18.2019).

Wolfram Alpha. Cylindrical Equidistant Projection. url=http://mathworld.wolfram.com/Cylindrical
2019. (Last accessed: 06.02.2019).

Manuel Berger. How do magnetic inclination and declination differ? url=https://www.quora.com/Hc

do-magnetic-inclination-and-declination-differ. 2017. (Last accessed: 05.17.2019).

Robert Bieda and Jaskot Krzysztof. Determinig of an object orientation in 3D space
using direction cosine matrix and non-stationary Kalman filter. 26th ed. Archives

of Control Sciences, 2016.

Elm Chan. FatFs - Generic FAT Filesystem Module. url=http://elm-chan.org/fsw/ff/00index_e.html.
2019. (Last accessed: 06.15.2019).

Howard D. Curtis. Orbital Mechanics for Engineering Students. 3rd ed. Butterworth-

Heinemann.

Magnetic Declination. What is magnetic declination in Madrid, Spain? url=http://www.magnetic-
declination.com/Spain/Madrid/765754.html. 2018. (Last accessed: 06.18.2019).

Dale Depriest. NMEA data. url=https://www.gpsinformation.org/dale/nmea.htm#intro.
2012. (Last accessed: 05.02.2019).

Ramsey Faragher. Understanding the Basis of the Kalman Filter Via a Simple and
Intuitive Derivation. 1st ed. IEEE Signal Processing Magazine, 2012.

A. Fakharian, Thomas Gustafsson, and M. Mehrfam. Adaptive Kalman Filtering
Based Navigation: An IMU/GPS Integration Approach. 1st ed. International Confer-

ence on Networking, Sensing and Control, 2011.

Invesense. MPU-9250 Register Map and Descriptions. 1.6. 2015.

48

[Inv16] Invesense. MPU-9250 Product Specification. 1.1. 2016.

[Macll] Leonel Machava. Rotating 3D Cube using Python and Pygame. url=http://codentronix.com/2011/05
3d-cube-using-python-and-pygame/. 2011. (Last accessed: 07.11.2019).

[Mad10a] Sebastian Madgwick. An efficient orientation filter for inertial and inertial/magnetic

sensor arrays. 1st ed. 2010.

[Mad10b] Sebastian Madgwick. An efficient orientation filter for inertial and inertial/magnetic

sensor arrays. 1st ed. 2010.
[Madl1] Sebastian Madgwick. Quaternions. 1st ed. 2011.

[MIC14] Alexandra Malyugina, Konstantin Igudesman, and Dmitry Chickrin. Least-Squares
Fitting of a Three-Dimensional Ellipsoid to Noisy Data. 8th ed. Kazan Federal
University, 2014.

[Nycl7] Douglas Nychka. The Likelihood, the prior and Bayes Theorem. url=https://www.image.ucar.edu/pul
2017. (Last accessed: 06.20.2019).

[Ozyl5] Talat Ozyagcilar. Calibrating an eCompass in the Presence of Hard- and Soft-Iron

Interference. 4th ed. Freescale Semiconductor, 2015.

[Penl5] Wade Penson. sd-spi-communications-library. url=https://github.com/wpenson/sd-
spi-communications-library. 2015. (Last accessed: 06.13.2019).

[Rac19a] RaceCloud. Innovative 3-Component Live Telemetry Solution For Go Karting. 2019.
(Last accessed: 06.02.2019).

[Rac19b] RaceTime. GPS Stopwatch and Telemetry for Android. 2019. (Last accessed:
06.27.2019).

[SE18] Grant Sanderson and Ben Eater. Visualizing quaternions. url=https://eater.net/quaternions.
2018. (Last accessed: 07.02.2019).

[Sem18] Mark Semple. Python adaptation of Yury Petrov’s MATLAB ellipsoid_fit function.
url=https://github.com/marksemple/pyEllipsoid_Fit. 2018.

[Shi09] N Shimkin. Estimation and Identification in Dynamical Systems. 1st ed. 2009.

[STM15] STMicroelectronics. Medium-density performance line ARM®)-based 32-bit MCU
with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 com. interfaces. 17th ed.
STMicroelectronics, 2015.

[STM17] STMicroelectronics. Description of STM32F1 HAL and Low-layer drivers. 2nd ed.
STMicroelectronics, 2017.

[Tec] Kingston Technology. microSDHC memory card Flash Storage Media. 1st ed.

Kingston.

49

[Teol8] James Teow. Understanding Kalman Filters with Python. url=https://medium.com/@jaems33/under
kalman-filters-with-python-2310e87b8f48. 2018. (Last accessed: 06.03.2019).

[Ubl11] Ublox. NEO-6 u-blox 6 GPS Modules. 1st ed. Ublox, 2011.

[Vec08] Vectornav. Magnetometer. url=https://www.vectornav.com/support/library/magnetometer.
2008. (Last accessed: 06.19.2019).

50

Chapter 5

Appendix

5.A Serial

| #include "serial.h"

5

y void my_putchar (uintl6_t c)

5 {

6 uint8_t buffer [2];

7 buffer [0]=c;

8 buffer [1]1=(c>>8) ;

9 HAL_UART_Transmit (&huart2, buffer, 2, 1);

0}

1 void putstring(char *str)
12 {

13 while (*str)

14 {

5 my_putchar (*str) ;
16 str++;

17 }

18}

20 void vprint(const char *fmt, va_list argp)
n {
2 char string[200];

23 if (0 < vsprintf (string, fmt, argp)) // build string
24 {

25 putstring (string) ;

26 }

51

27 }
28
» void my_printf (const char *xfmt, ...) // custom printf () function outputs

throuhg pin A2 (uart2)

o {

31 va_list argp;

3 va_start (argp, fmt);
3 vprint (fmt, argp);
34 va_end (argp) ;

55+

5.B MPU9250

> #include "mpu9250.h"

3 #include "serial.h"
s //TODO: Calibrate accel, read temp, FIFO and motion tracker on board.

7 #define MPU_I2C_ADDRESS 0b11010000
g #define MAG_I2C_ADDRESS 0x18

0 extern uint32_t uwTick;
2 void writeReg(uint8_t address,uint8_t data){

4 uint8_t recieved[2];

5 uint8_t sent [2];

16 sent [1]=address;

17 sent [0]=data;

18 sel (2);

19 HAL_SPI_TransmitReceive (&hspi2,sent,recieved ,1,100) ;
20 deselect (2) ;

2+ uint8_t readReg(uint8_t address){
25 uint8_t data;

7 uint8_t recieved [2]1={0,0};
s uint8_t sent [2];

29 sent [1]=(1<<7) | address;

30 sent [0]=0x00;

31 sel (2);

52

66

7

68

69

70

HAL_SPI_TransmitReceive (&hspi2,sent,recieved,1,10);
deselect (2);

data= recieved[0];

return data;

uint8_t read_mag(uint8_t address){
writeReg (MPUREG_I2C_SLVO_REG , address) ;
writeReg (MPUREG_I2C_SLVO_CTRL ,0x81);
volatile int 1i=0;

for(i=0;1<4000;i++){

}
uint8_t value=readReg (MPUREG_EXT_SENS_DATA_00);

return value;

> void write_mag (uint8_t address,uint8_t data){

writeReg (MPUREG_I2C_SLVO_ADDR ,0x0C) ;
HAL _Delay (1) ;

writeReg (MPUREG_I2C_SLVO_REG , address) ;
HAL_Delay (1) ;

writeReg (MPUREG_I2C_SLVO_DO,data) ;

HAL _Delay (1) ;

writeReg (MPUREG_I2C_SLVO_CTRL ,0x81);
HAL_Delay (1) ;

writeReg (MPUREG_I2C_SLVO_ADDR ,0x8C) ;
HAL _Delay (1) ;

void mag_init_spi(void){
//allow imu to communicate with salves through i2c
writeReg (MPUREG_USER_CTRL ,0b00110000) ;
writeReg (MPUREG_I2C_MST_CTRL ,0b01010000) ;
writeReg (MPUREG_INT_PIN_CFG ,0x22);

//set magnetometer as slave 0 to read
writeReg (MPUREG_I2C_SLVO_ADDR ,0x0C) ;
HAL _Delay (10);

//write to CNTL2 to reset device

53

89

90

91

92

93

94

95

96

97

98

99

100

106

write_mag (AK8963_CNTL2 ,0x01) ;
HAL_Delay (10) ;
write_mag (AK8963_CNTL1 ,0x16) ;
HAL _Delay (10) ;

}

> void mag_init_i2c(void){

//allow imu to communicate with salves through i2c
writeReg (MPUREG_USER_CTRL ,0b00100000) ;
writeReg (MPUREG_I2C_MST_CTRL ,0b01010000) ;
writeReg (MPUREG_INT_PIN_CFG ,0x22);

//set magnetometer as slave O to read
writeReg (MPUREG_I2C_SLVO_ADDR ,0x0C) ;

HAL _Delay (10);

//write to CNTL2 to reset device
write_mag (AK8963_CNTL2 ,0x01) ;
HAL_Delay (10) ;

write_mag (AK8963_CNTL1 ,0x12);
HAL_Delay (10) ;

void mpu9250_init (void){
writeReg(MPUREG_PWR_MGMT_1,0x80); // Reset Device
writeReg(MPUREG_PWR_MGMT_1,0x01); // Clock Source

writeReg (MPUREG_PWR_MGMT_2,0x00) ; // Enable Acc & Gyro
writeReg (MPUREG_CONFIG,0x00); // Use DLPF set Gyroscope bandwidth

184Hz, temperature bandwidth 188Hz
writeReg(MPUREG_GYRO_CONFIG ,0x18); // +-2000dps
writeReg(MPUREG_ACCEL_CONFIG ,0x08) ; // +-4G

writeReg(MPUREG_ACCEL_CONFIG_2,0x09); // Set Acc Data Rates,

Acc LPF , Bandwidth 184Hz

writeReg(MPUREG_INT_PIN_CFG,0x22); //
set_acc_scale (BITS_FS_4G) ;
set_gyro_scale(BITS_FS_500DPS);

HAL _Delay (100) ;

return;

5 void sel(int i){

if (i==2){
HAL_GPIO_WritePin (GPIOB,GPIO_PIN_12 ,GPIO_PIN_RESET);

}
void deselect (int i){

54

120 if (i==2){

121 HAL_GPIO_WritePin (GPIOB,GPIO_PIN_12,GPIO_PIN_SET) ;
122 }

123 }

124

125

126

127 /%

128 ACCELEROMETER SCALE

129 usage: call this function at startup, after initialization, to set the
right range for the

130 accelerometers. Suitable ranges are:

131 BITS_FS_2G

132 BITS_FS_4G

133 BITS_FS_8G

134 BITS_FS_16G

135 returns the range multiplier

*/

137 float set_acc_scale(uintl6_t scale){

140 writeReg (MPUREG_ACCEL_CONFIG, scale);

141

142 switch(scale){

143 case BITS_FS_2G: return MPU9250A_2g;

144 case BITS_FS_4G: return MPU9250A_4g;
145 case BITS_FS_8G: return MPU9250A_8g;
146 case BITS_FS_16G: return MPU9250A_16g;
147 default: return -1;

148 }

149

150 }

151

152

153

154 /%

155 GYROSCOPE SCALE

156 usage: call this function at startup, after initialization, to set the

right range for the

)
3

gyroscopes. Suitable ranges are:

55

1ss BITS_FS_250DPS

159 BITS_FS_500DPS

160 BITS_FS_1000DPS

160 BITS_FS_2000DPS

12 returns the range multiplier

163 = = m m o e .
*/

4+ float set_gyro_scale(uintl6_t scale){

165

166 uintl6_t write_val=scale;

167 writeReg (MPUREG_GYRO_CONFIG ,write_val);

168

160 switch(scale){

170 case BITS_FS_250DPS: return MPU9250G_250dps;

171 case BITS_FS_500DPS: return MPU9250G_500dps;

72 case BITS_FS_1000DPS: return MPU9250G_1000dps;

173 case BITS_FS_2000DPS: return MPU9250G_2000dps;

174 default: return -1;

178
179
50 void set_accel_filter(uint8_t state, uint8_t filter){
181

12 if (state==DLPF_OFF){

183 writeReg (MPUREG_ACCEL_CONFIG_2, 0b1000);
84}

155 if (state==DLPF_ON && filter<8){

186 writeReg (MPUREG_ACCEL_CONFIG_2, filter);
187}

188

189 }

v void set_gyrotemp_filter (uint8_t state, uint8_t filter){
192 uintl6_t gyro_scale= readReg (MPUREG_GYRO_CONFIG) ;
193 if (state==DLPF_OFF){

194

195 writeReg (MPUREG_GYRO_CONFIG, (gyro_scale & 0b11111100) [01);
96}

97 if (state==DLPF_ON && filter<8){

198 writeReg (MPUREG_GYRO_CONFIG, (gyro_scale & 0b11111100) [10);
199 uintl16_t config= readReg (MPUREG_CONFIG) ;

200 writeReg (MPUREG_CONFIG, (config & 0b11111000) |filter) ;

01}

56

219

220

221

222

223

224

225

226

227

228

229

230

240

241

242

243

if (state==DLPF_ONON && filter<8){
writeReg (MPUREG_GYRO_CONFIG, (gyro_scale & 0b11111100));
uintl16_t config= readReg (MPUREG_CONFIG) ;
writeReg (MPUREG_CONFIG, (config & 0b11111000)|filter);

/ *

WHO AM I?

usage: call this function to know if SPI is working correctly.

*/
int whoami (void){
int response=0;
response=readReg (MPUREG_WHOAMI) ;

if (response == 0x71){

return 1;

return O;

//check if magnetometer works

int whoami_mag(void){

int response=0;
response=read_mag (AK8963_WIA);

if (response == 0x48){

return 1;

return O;

intl16_t read_X_accel (void){
uintl16_t aux=readReg (MPUREG_ACCEL_XOUT_H) ;
uintl16_t value=readReg (MPUREG_ACCEL_XOUT_L) ;

57

244 intl16_t xaccel=(aux<<8) | (value) ;

245 return xaccel;

246

a7 }

248

249

250

51 intl16_t read_Y_accel (void){

252 uint16_t aux=readReg (MPUREG_ACCEL_YOUT_H) ;
253 uintl16_t value=readReg (MPUREG_ACCEL_YOQUT_L) ;
254 int16_t yaccel=(aux<<8) | (value);

255 return yaccel;

256

258

259 intl16_t read_Z_accel (void)({

260 uint16_t aux=readReg (MPUREG_ACCEL_ZOUT_H) ;
261 uintl16_t value=readReg (MPUREG_ACCEL_ZOUT_L) ;
% intl1l6_t zaccel=(aux<<8) |(value) ;

263 return zaccel;

264

25 F

266

27 intl16_t read_X_gyro(void){

268 uint16_t aux=readReg (MPUREG_GYRO_XOUT_H) ;
269 uint16_t value=readReg (MPUREG_GYRO_XOUT_L) ;
270 int1l6_t xgyro=(aux<<8) |(value);

271 return xgyro;

275 intl16_t read_Y_gyro(void){

276 uint16_t aux=readReg (MPUREG_GYRO_YOUT_H) ;
277 uintl6_t value=readReg (MPUREG_GYRO_YOUT_L) ;
278 intl6_t ygyro=(aux<<8) | (value) ;

279 return ygyro;

283 intl16_t read_Z_gyro(void){

284 uint16_t aux=readReg (MPUREG_GYRO_ZOUT_H) ;
265 uintl6_t value=readReg (MPUREG_GYRO_ZOUT_L) ;
286 intl6_t zgyro=(aux<<8) | (value) ;

287 return zgyro;

58

29 }

290

1 intl16_t read_X_mag(void){

292

293 uint16_t low=read_mag (AK8963_HXL) ;
294 read_mag (AK8963_ST2) ;

295 uintl16_t high=read_mag (AK8963_HXH) ;
296 read_mag (AK8963_ST2) ;

297 int16_t value=(high<<8) | (low) ;

298 return value;

00 int16_t read_Y_mag(void){

303 uintl16_t low=read_mag (AK8963_HYL) ;
304 read_mag (AK8963_ST2) ;

5 uintl16_t high=read_mag (AK8963_HYH) ;
306 read_mag (AK8963_ST2) ;

307 int16_t value=(high<<8) | (low);

308 return value;

300}

50 int16_t read_Z_mag(void){

312 uintl16_t low=read_mag (AK8963_HZL) ;
313 read_mag (AK8963_ST2) ;

514 uint16_t high=read_mag (AK8963_HZH) ;
315 read_mag (AK8963_ST2) ;

316 int16_t value=(high<<8) | (low) ;

317 return value;

220 void accel_x_offset(uintl6_t offset){
323 uint8_t high= offset>>8;

324 uint8_t low= offset;

25 writeReg (MPUREG_XA_OFFSET_H ,high);
326 writeReg (MPUREG_XA_OFFSET_L,low) ;
527 }

28 void accel_y_offset(uintl6_t offset){
329 uint8_t high= offset>>8;

330 uint8_t low= offset;

331 writeReg (MPUREG_YA_OFFSET_H ,high) ;
332 writeReg (MPUREG_YA_OFFSET_L ,low) ;

59

334 }

335 void accel_z_offset(uintl6_t offset){

a1}

uint8_t high= offset>>8;

uint8_t low= offset;

writeReg (MPUREG_ZA_OFFSET_H ,high) ;
writeReg (MPUREG_ZA_OFFSET_L ,low);

2 void gyro_x_offset(uintl6_t offset){

348}

uint8_t high= offset>>8;

uint8_t low= offset;

writeReg (MPUREG_XG_OFFSET_H ,high) ;
writeReg (MPUREG_XG_OFFSET_L ,low) ;

349 void gyro_y_offset(uintl6_t offset){

55 3

uint8_t high= offset>>8;

uint8_t low= offset;

writeReg (MPUREG_YG_OFFSET_H ,high) ;
writeReg (MPUREG_YG_OFFSET_L ,low) ;

356 void gyro_z_offset(uintl6_t offset)q{

359
360

361}

362

363

uint8_t high= offset>>8;

uint8_t low= offset;

writeReg (MPUREG_ZG_OFFSET_H ,high) ;
writeReg (MPUREG_ZG_OFFSET_L ,low) ;

364 void calib_gyro (void) {

365

366

int gx,gy,g2;
uintl6_t status;

status=readReg (MPUREG_GYRO_CONFIG) ;
set_gyro_scale(BITS_FS_1000DPS);
gx= read_X_gyro();

gy= read_Y_gyro();

gz= read_Z_gyro () ;

gyro_x_offset (-gx);

gyro_y_offset (-gy);

gyro_z_offset (-gz);

writeReg (MPUREG_GYRO_CONFIG,status) ;

60

3 void delay (int i){
383 while (i-->0){

384 asm("nop") ;

386 }

388

50 int mpu_init (void){
390 int attempt=0;

391 while (1) {

392 mpu9250_init () ;
393 mag_init_spi();
394

395

396

397 set_acc_scale (BITS_FS_4G);

398 set_gyro_scale (BITS_FS_500DPS) ;
399 set_accel_filter (DLPF_OFF,0) ;
400 set_gyrotemp_filter (DLPF_OFF ,0) ;
401

402 if (whoami_mag () && whoami ()){

403 break;

404 }

405

406 HAL_SPI_Delnit (&hspi2);

407 HAL _Delay (1) ;

408 HAL_SPI_Init (&hspi2);

409 attempt ++;

410 if (attempt==100) {

411 return 1;

412 }

aiz -}

414 return O;

a5 F

416
417

48 void euler (void){

419

420 float ax= read_X_accel ()*MPU9250A _4g;//*a_factor;
1 float ay= read_Y_accel () *MPU9250A_4g;//*a_factor;
4 float az= read_Z_accel () *MPU9250A_4g;//*a_factor;

61

424 float gx= read_X_gyro () *MPU9250G_500dps;//*g_factor;
425 float gy= read_Y_gyro ()*MPU9250G_500dps;//*g_factor;
426 float gz= read_Z_gyro () *MPU9250G_500dps;//*g_factor;

427

428 float mx=read_X_mag();//*Magnetometer_Sensitivity_Scale_Factor;
429 float my=read_Y_mag();//*Magnetometer_Sensitivity_Scale_Factor;
430 float mz=read_Z_mag();//*Magnetometer_Sensitivity_Scale_Factor;

432 my_printf ("/d:%d,%d,%d\r\n" ,uwTick ,mx,my,mz) ;

434

435

436 update (gx,gy,gz,ax,ay,az,mx ,my ,mz) ;
137 computeAngles () ;

438 }

5.C disklIO

This is a wrapper on the SD Device Manager created by [Pen15] so that it can be
integrated with the FatFs module.

*/
/* Low level disk I/0 module skeleton for FatFs (C)ChaN, 2014
*/

o

4 /* Includes

s #include "diskio.h"
6 #include "header .h"

7 #include "sd_spi.h"

0o DSTATUS status;

13 DSTATUS disk_initialize (

14 BYTE pdrv /* Physical drive nmuber to identify the drive x*/
15)

16 {

17 if (sd_spi_init (GPIO_PIN_4)==SD_ERR_OK){

18 status=0;

62

43

44

45

46

47

48

49

50

}elsed{

}

status=STA_

NOINIT;

return status;

/ * %

*

*

*/

@brief Reads Sector (s)

@param pdrv: Physical drive number (0..)

@param *buff: Data buffer to store read data

@param sector: Sector address (LBA)

@param count: Number of sectors to read (1..128)

O@retval DRESULT: Operation result

DRESULT disk_read (
BYTE pdrv,
BYTE *buff,
DWORD sector,

UI

NT count

DRESULT res;

/* Physical drive nmuber to identify the drive x*/
/* Data buffer to store read data */
/* Sector address in LBA x*/

/* Number of sectors to read x*/

if (sd_spi_read(sector, buff ,512*count ,0)==SD_ERR_0K){

res=RES_0K;

Yelsed{
res=RES_ERROR;

}

return res;

/ * %

*
*
*/

#if

@brief Writes Sector(s)

@param pdrv: Physical drive number (O0..)

@param *buff: Data to be written

@param sector: Sector address (LBA)

@param count: Number of sectors to write (1..128)

Oretval DRESULT: Operation result

_USE_WRITE

== 1

DRESULT disk_write (
BYTE pdrv,
const BYTE xbuff, /* Data to be written x*/
DWORD sector,

UI

NT count

/* Physical drive nmuber to identify the drive x*/

/* Sector address in LBA */

/* Number of sectors to write */

63

65)

66 {

67 sd_spi_write_continuous_start(sector, count);

68 uint32_t i;

69 for(i=0;i<count;i++) {

70 sd_spi_write_continuous (buff+i*512, 512, 0);

71 sd_spi_write_continuous_next(); // Advance to the next block in
the sequence.

73 }

74 sd_spi_write_continuous_stop(); // Stop the writing process. This
implicitly flushes the buffer to the card.

75 return RES_0OK;

76 }

7

73 #endif /* _USE_WRITE == 1 %/

5.D Timer Interrupt: Output data logging

1 void TIM2_IRQHandler (void)
> {

4 //Handle interrupt
5 HAL_TIM_IRQHandler (&htim?2) ;

7 //send start sequence

8 sd_buffer_append (0x59) ;
9 sd_buffer_append (0x59) ;

3 //get current time
15 sd_buffer_append (uwTick) ;
16 sd_buffer_append (uwTick>>8) ;

17 sd_buffer_append (uwTick >>16) ;
18 sd_buffer_append (uwTick>>24) ;

3 //Get accel and gyro and send it

64

59

60

61

64

65

66

68

69

sd_buffer_append(readReg (MPUREG_ACCEL_XOUT_L)) ;
sd_buffer_append(readReg (MPUREG_ACCEL_XOUT_H)) ;
sd_buffer_append (readReg (MPUREG_ACCEL_YOUT_L)) ;
sd_buffer_append (readReg (MPUREG_ACCEL_YOUT_H)) ;
sd_buffer_append(readReg (MPUREG_ACCEL_ZOUT_L)) ;
sd_buffer_append(readReg (MPUREG_ACCEL_ZOUT_H)) ;

sd_buffer_append (readReg (MPUREG_GYRO_XOUT_L)) ;
sd_buffer_append(readReg (MPUREG_GYRO_XOUT_H)) ;
sd_buffer_append(readReg (MPUREG_GYRO_YOUT_L)) ;
sd_buffer_append(readReg (MPUREG_GYRO_YOUT_H)) ;
sd_buffer_append (readReg (MPUREG_GYRO_ZOUT_L)) ;
sd_buffer_append(readReg (MPUREG_GYRO_ZOUT_H)) ;

if (send_GPS==0) { //send an end bit=0

}else{ //send an end bit to signal to send more data
send_GPS=0;
sd_buffer_append (0x71) ;

//Get and send mag data
sd_buffer_append(read_mag (AK8963_HXL)) ;
read_mag (AK8963_ST2) ;
sd_buffer_append (read_mag (AK8963_HXH)) ;
read_mag (AK8963_ST2) ;
sd_buffer_append(read_mag (AK8963_HYL)) ;
read_mag (AK8963_ST2) ;
sd_buffer_append (read_mag (AK8963_HYH)) ;
read_mag (AK8963_ST2) ;
sd_buffer_append(read_mag (AK8963_HZL)) ;
read_mag (AK8963_ST2) ;
sd_buffer_append (read_mag (AK8963_HZH)) ;
read_mag (AK8963_ST2) ;

//send GPS data
sd_buffer_send () ;
sd_gps_send () ;

}

//Get end time of whole proccess

sd_buffer_append (uwTick) ;

65

sd_buffer_append (uwTick >>8) ;
sd_buffer_append (uwTick>>16) ;
sd_buffer_append (uwTick>>24) ;

5.E Read data files from SD card

def read_mag_file(file="magcalib.txt"):
data = np.empty((0,3), float) #x,y,z mag values
in_file=open(file,"rb")
line=in_file.read(2)
if line==b’YY’:
while True:
line=in_file.read (6)
if check_eof(line ,6):
in_file.close()

break

my ,mx ,mz_neg=np.asarray (struct.unpack(’<hhh’,line))
mag=[mx ,my,-mz_neg]
data=np.append(data, [mag],axis=0)

return data

#reads out file into 2 arrays, one with IMU, one with GPS

def read_data_file(file="out.txt"):
datal = np.empty((0,8), float) # timestamp, accelx,y,z,gyrox,y,z
data2 = np.empty((0,8),float) #timestamp,gpstime,lon,lat,vel,
track_angle ,mag_var ,magx,y,z
in_file = open(file, "rb") # opening for [r]eading as [b]linary
while True:

if check_start(in_file):

break

line=in_file.read (17)
if check_eof (line ,17):
in_file.close ()

break

timestamp,ax,ay,az,gx,gy,gz,end_byte=struct.unpack(’<Ihhhhth’,
line)

temp_data=np.array ([[timestamp ,ax*G4ACCEL ,ay*G4ACCEL ,az*G4ACCEL, gx
*DPS500 , gy *DPS500 , gz*DPS500 , end_bytell)

66

48

49

50

datal=np.append(datal ,temp_data,0)
if end_byte==0x71:
line=in_file.read (6)
if check_eof(line,6):
break

my ,mx ,mz_neg=np.asarray (struct.unpack(’<hhh’,

mag=[mx ,my,-mz_neg]
gps_line=in_file.read (GPS_BUFFER_SIZE)
if check_eof (gps_line ,GPS_BUFFER_SIZE):
in_file.close ()
break
gps_data=gps_line.decode(’utf-8’,’ignore’)

line))

gpstime ,lon,lat,vel=gps_unpack(gps_data.split(’\r’) [0])

temp_data=np.array([[timestamp,gpstime,lon,lat,vel ,mag[0],mag

[1] ,mag[2]111])

data2=np.append (data2,temp_data ,0)

line=in_file.read (4)
if check_eof(line ,4):
in_file.close ()

break

end_time=struct.unpack(’<I’,line)

return datal,data2

#checks that there are still bytes to be read, if not,
def check_eof (string,read_b):
if len(string)<read_b:
print ("EOF file reached correctly")

return 1

else:

return O

67

ends the search

78 #checks start sequence YY

79 def check_start(in_file):

80 while True:

81 a=in_file.read (1)

82 if check_eof(a,1):

83 in_file.close ()

84 return 1

85

86 if a==b’Y’:

87 a=in_file.read (1)
88 if check_eof(a,1):
89 in_file.close ()
90 return 1

91 if a==b’Y’:

92 return O

5.F Parse GPS data

i def gps_unpack(line):
2 if line:

3 msg=pynmea2.parse (line)

4 if msg.is_valid:

5 lat=msg.latitude

6 lon=msg.longitude

7 speed=float (msg.data[6]) *1.852
8 time=float (msg.data[0])

10 return time,lon,lat,speed

2 else:

13 print ("GPRMC data not valid")
15 return 200,300,400,500
7 else:

18 print ("Nothing to read")
19 return 200,300,400,500

5.G Attitude

| #Initializes Madgwick object
> mad_filter=madgwickahrs.MadgwickAHRS (1/50,beta=.13,alpha=.04)

9

68

4+ #reads data from ’out.txt’

5 datal ,data2=read_data_file(file=’out.txt?’)

7 #calibrate gyro
s datal=calib_gyro(datal)

10 #calibrates magnetometer

11 data2=calibration_mag(data2)

13 #converts lon and lat to meters

14+ data2=coord_2_meters (data2)

16 #centers GPS data around (0,0)

17 data2=center_meters (data2)

19 #calculates rotation matrix to return to

0 R=data_2_NWU (datal ,data?2)

» #refers all accelerometer data to NWU axes

23 for a in range(0,len(datal)):

24 datal[a,1:4]=np.matmul (R,np.transpose(datalla,1:4]))
25 datal[a,4:7]=np.matmul (R,np.transpose(datalla,4:7]))

27 #refers all magnetometer data to NWU axes (not necessary, but useful for
checking)
3 for a in range (0,len(data2)):

29 data2[a,5:8]=np.matmul (R,np.transpose(data2[a,5:8]))

31 #init np array with orientation values

» orientation=np.empty((0,3),float)

3 #init array with NWU refered acceleration (even during dynamic
conditions)
35 a_NWU_aux=np.empty ((0,3) ,float)

36 data2_index=0

38 #for all the data points collected
3 for a in range (0, len(datal)):

40

42 if datal[a,7]==0: #if we do not have magnetometer data
43 #calculate euler angles with Madgwick filter
44 theta=updateEuler (datal[a,1:4],datal[a,4:7],datalla,7],[0,0,0],

mad_filter)

69

48

19

50

o

#Euler angles to inverse rotation matrix
R_tot=allign_axis.eulerAnglesToRotationMatrix ([theta[2], thetal[l],
theta [0]])

#apply rotation to acceleration to refer to NWU axes

a_NWU=R_tot@(datal[a,1:4])

else: #if we have magnetometer data
#same as before
theta=updateEuler (datal[a,1:4],datal[a,4:7],datal[a,7],data2[
data2_index ,5:8] ,mad_filter)
R_tot=allign_axis.eulerAnglesToRotationMatrix ([theta[2], thetal[1l],
theta [0]])
a_NWU=R_tot@(datal[a,1:4])

data2_index+=1

#appends to the np array

a_NWU_aux=np.append (a_NWU_aux ,np.array([a_NWU]) ,0)

5.H Cube rotation in Pygame

def updateEuler (): #recives data packet and calculates new euler angles

data=reciever.read_packet ()
gx=data[3] -offset [0]
gy=data[4] -offset [1]
gz=data [5] -offset [2]

if len(data)==6:

mad_filter.update_imu([gx*math.pi/180,gy*math.pi/180,gz*math.pi
/1801, [data[0] ,data[1],data[2]])

else:
mx ,my ,mz=correct_magnetometer (np.array([[data[6]],[data[7]], [data
[(8111))
mad_filter.update ([gx*math.pi/180,gy*math.pi/180,gz*math.pi/180],[
data[0] ,data[1],data[2]], [mx,my,mz])
print (gx*math.pi/180, gy*math.pi/180,gz*math.pi/180)
print (data[0] ,data[1],data[2])

print (mx ,my,mz)

roll ,pitch,yaw=quat_to_degree (mad_filter.quaternion)
print (time.time ())
print ()

return roll,pitch,yaw

70

66

def quat_to_degree(q):

return Quaternion_naive.getEulerAngles (q)

def correct_magnetometer (m) :

global cx,cy,cz

return m[0]-cx, m[1]-cy,m[2] -cz

def calibration_gyro():

if

calib_reciver=uart_recieve.uart_reciever ()
gx=0
gy=0
gz=0
for i in range(0,100):
data=calib_reciver.read_packet ()
gx+=data [3]
gy+t=data [4]
gz+=data [5]

return np.array([[gx/100],[gy/100],[gz/10011)

> def calibration_mag():

data = sd_recieve.read_mag_file("magcalib.txt")
cx=0
cy=0
cz=0
for item in data:
cx+=item[0]
cy+=item([1]
cz+=item[2]
cx=cx/len(data)
cy=cy/len(data)

cz=cz/len(data)

return cx,cy,cz

__name__ == "_ _main__":

global cx,cy,cz

global offset
#calibrate gyro and mag
offset=calibration_gyro ()

cx,cy,cz=calibration_mag()

71

67

68 #initialize madg filter

69 mad_filter=madgwickahrs.MadgwickAHRS (1/50,beta=.1)
70

71 #intialize serial connection

7 reciever=uart_recieve.uart_reciever ()

73

74 #simulate cube (borrowed code)

75 cube=Simulation ()

76 cube.run(0,0,0)

72

