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RESUMEN DEL PROYECTO 

 

Introducción 

El sector energético ha sido una de las principales preocupaciones en los últimos años 

debido a sus implicaciones en el cambio climático. Los gobiernos están haciendo un 

esfuerzo cada vez mayor para lograr un desarrollo sostenible dentro de este sector, por un 

lado, a través de la expansión de las energías renovables y, por otro, a través de un uso 

más eficiente de la energía. El sector inmobiliario representa el 40% del consumo final 

de energía en la Unión Europea y se espera que esta demanda aumente [1]. En Alemania, 

los edificios no residenciales representan el 37% del consumo energético del parque 

inmobiliario [2]. Adicionalmente, los edificios de nueva construcción representan una 

pequeña fracción de todo el parque inmobiliario. Por lo tanto, los edificios no 

residenciales existentes son un objetivo relevante para lograr el desarrollo sostenible. 

Para alcanzar este ambicioso propósito, la principal solución pasa por la integración de 

las energías renovables en los sistemas energéticos, sustituyendo la actual generación 

centralizada no renovable por una generación distribuida más eficiente y fiable, basada 

principalmente en energías renovables [3]. Esta generación distribuida depende 

directamente de la adaptación de las energías renovables al consumo energético de los 

edificios distribuidos. La planificación energética de los edificios consiste en seleccionar 

la combinación óptima de dispositivos tales como paneles fotovoltaicos, bombas de calor 

o tecnologías de cogeneración que sean capaces de satisfacer las necesidades energéticas 

del edificio, minimizando al mismo tiempo las emisiones de gases de efecto invernadero 

y maximizando la eficiencia energética [4].  

La modernización y rehabilitación de edificios existentes para la mencionada 

planificación sólo es posible si se conoce el comportamiento de consumo energético de 

un edificio, es decir, el perfil de demanda eléctrica. Sin embargo, estos perfiles raramente 

son conocidos para la mayoría de los edificios. En consecuencia, se necesitan modelos 

precisos para poder estimar los perfiles eléctricos característicos de los edificios 

existentes, sin necesidad de medir su consumo de energía [1]. Esta tarea, en la cual se 

centra este trabajo, se denomina «modelado» para distinguirla de «pronóstico», que 

implica la predicción del consumo futuro de energía. En este último, se emplea un 

algoritmo de aprendizaje que utiliza información del pasado para predecir resultados 

futuros, y típicamente consiste en un enfoque longitudinal, puesto que genera 

predicciones sobre los mismos edificios utilizados para entrenar el modelo [5]. 
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Se han propuesto numerosos modelos en el área del modelado de perfiles de demanda 

eléctrica, que se pueden dividir principalmente en dos enfoques diferentes. Por un lado, 

los enfoques bottom-up se basan en el análisis del comportamiento individual de los 

aparatos eléctricos mediante la determinación de la distribución de probabilidad de su 

consumo de energía. Estas distribuciones se combinan con variables específicas del 

edificio para crear múltiples subsistemas. En última instancia, los diferentes subsistemas 

se agregan en un sistema complejo que puede modelar el perfil eléctrico agregado del 

edificio. Por otro lado, los enfoques top-down parten del consumo agregado de los 

edificios y son capaces de extraer la relación entre el consumo de energía y las variables 

de entrada, obteniendo información sobre ellas. La idea que subyace a los modelos 

top-down es la descomposición del perfil inicial en sus subsistemas, de donde se pueden 

derivar las relaciones. En estos casos, se emplea normalmente un algoritmo predictivo 

para llevar a cabo la tarea. 

En cuanto al modelado de perfiles eléctricos, se han desarrollado modelos top-down 

relativamente sencillos, centrados principalmente en edificios residenciales. Por ejemplo, 

Ge et al. [6] propusieron en su trabajo un modelo de regresión basado en la caracterización 

de los perfiles eléctricos mediante una superposición de cinco distribuciones normales. A 

continuación, se realiza un análisis paramétrico para extraer las dependencias entre los 

parámetros de las distribuciones y el número de dormitorios y ocupantes. McLoughlin et 

al. [7] propusieron un enfoque alternativo basado en técnicas de agrupamiento tales como 

k-means y k-medoids. En este trabajo, los perfiles eléctricos de hogares individuales se 

agrupan en clases de perfiles. Posteriormente, estas clases de perfiles se vinculan a las 

características del hogar mediante un modelo de regresión logística que, en una última 

etapa, se utiliza para clasificar los nuevos hogares en las clases de perfiles obtenidas, en 

función de sus características. 

Por el contrario, se han desarrollado métodos más complejos para el pronóstico del 

consumo de energía. A pesar de que el pronóstico del consumo de energía no es el objeto 

de este trabajo, los métodos y enfoques utilizados para esta tarea generalmente se pueden 

aplicar al modelado de perfiles de demanda eléctrica. En cuanto a estos métodos, se han 

propuesto diversos algoritmos, siendo la regresión lineal, máquinas de soporte vectorial, 

redes neuronales, bosques aleatorios y árboles de decisión con potenciación del gradiente, 

los más utilizados. Además, estudios recientes han propuesto el uso de métodos de 

aprendizaje conjunto, como stacking, para mejorar la precisión del modelo predictivo. 

Dado que el desarrollo de modelos precisos para el modelado de perfiles de demanda 

eléctrica en edificios no residenciales sigue siendo una cuestión clave para la generación 

distribuida, será el tema central de este trabajo. El objetivo de este trabajo es desarrollar 

un modelo predictivo basado en algoritmos de aprendizaje automático que, mediante el 

uso de información transversal como los datos de aparatos eléctricos y los datos de 

habitaciones, pueda utilizarse para modelar con precisión los perfiles eléctricos de los 

edificios no residenciales, sin necesidad de medir su consumo de energía. Un propósito 

complementario es utilizar el modelo obtenido para analizar las dependencias entre los 

perfiles eléctricos y los parámetros seleccionados. 
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Metodología 

En este trabajo, se proponen dos modelos top-down diferentes para llevar a cabo la tarea 

prevista, con el fin de obtener los mejores resultados posibles. Ambos han sido 

implementados en Python 3.7.3, utilizando principalmente las librerías Scikit-learn [8], 

Pandas [9] y NumPy [10]. Para ambos modelos, los datos recopilados deben ser 

preprocesados para obtener un conjunto de datos adecuado. El procedimiento se ilustra 

en la siguiente figura: 

 

 

 

Los datos han sido recogidos de 70 edificios del Centro de Investigación de Jülich. 

Contienen información sobre su consumo de energía, que se ha utilizado como salida para 

los modelos, e información sobre las habitaciones y los aparatos eléctricos del edificio, 

como calderas, ventilación, refrigeración, calefacción y aparatos de suministro de agua 

fría, que han servido como entrada para el modelo. 

El primer paso, data cleansing, implica la detección y eliminación de valores atípicos del 

consumo de energía de los edificios en cuestión. A continuación, se seleccionan las 

variables relevantes que se utilizarán en los modelos implementados.  

Los datos dados no han sido recogidos expresamente para este proyecto, lo cual ha 

resultado en una importante falta de información. En cuanto a las variables numéricas, 

faltaba el 58% de la información. Por lo tanto, se han realizado diferentes métodos de 

imputación múltiple para cada variable numérica, con el fin de compensar parcialmente 

la falta de datos. En la siguiente figura se muestra un ejemplo de imputación múltiple para 

la potencia de los aparatos de refrigeración: 
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Los datos vienen estructurados por aparato y habitación, respectivamente. Sin embargo, 

como el resultado de los modelos consiste en los perfiles eléctricos de los edificios, es 

necesario agregar los datos de entrada para cada edificio. En este paso, ha sido necesario 

agregar las diferentes variables de distintas maneras, prestando especial atención a las 

variables categóricas, con el fin de evitar una pérdida significativa de información. 

Posteriormente, el conjunto de entrada resultante del paso anterior es normalizado, puesto 

que es un requisito para la mayoría de los algoritmos predictivos. 

El último paso del preprocesamiento consiste en la selección de los perfiles de demanda 

eléctrica utilizados como salida para el modelo. Para obtener perfiles eléctricos 

característicos de los edificios, los perfiles de salida se obtienen promediando el consumo 

energético de los días laborables de dos semanas consecutivas, como se representa en la 

siguiente figura. Con el fin de considerar las variaciones estacionales en los perfiles 

eléctricos, se ha repetido el procedimiento para perfiles de abril, junio y diciembre. 

 

 

 

En cuanto a los modelos propuestos, se han seguido dos enfoques diferentes. El primer 

modelo se basa únicamente en la regresión, que se realiza para cada hora del día, mientras 

que el segundo modelo se basa en una combinación de agrupación y clasificación de 

perfiles eléctricos normalizados y una regresión para el consumo máximo de potencia. En 

ambos casos, se ha aplicado el método de stacking para mejorar el rendimiento. En el 

stacking, se utilizan varios algoritmos para predecir la salida deseada y, en lugar de 

seleccionar el algoritmo con el mejor rendimiento, se entrena un algoritmo adicional 

(ensemble) con las salidas de los algoritmos anteriores para hacer la predicción final. 
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Para el modelo de regresión, los datos preprocesados se dividen en los conjuntos de 

entrenamiento y de pruebas. A continuación, los datos de entrenamiento se introducen en 

los algoritmos base, que pueden verse en la siguiente figura. Los mejores 

hiperparámetros, que controlan el proceso de aprendizaje, se seleccionan 

automáticamente para cada algoritmo. Estos algoritmos se entrenan con los datos dados 

y se obtienen las predicciones de validación cruzada para el conjunto de entrenamiento. 

Las predicciones mencionadas se utilizan como entrada al algoritmo adicional, que es un 

bosque aleatorio. Los hiperparámetros de este algoritmo se seleccionan y el algoritmo se 

entrena de la misma manera que antes. Finalmente, el modelo implementado se utiliza 

para estimar los perfiles de los edificios de prueba, y los resultados se comparan con los 

perfiles reales para evaluar el rendimiento del modelo. 

 

 

La implementación del segundo modelo se basa en la agrupación y clasificación de los 

perfiles eléctricos y es ligeramente más complicado que el anterior. Dado que el tamaño 

del conjunto de datos disponible es reducido y que el rango de potencia de los edificios 
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existentes es relativamente grande, estos perfiles eléctricos deben normalizarse. A 

continuación, se realiza un análisis de regresión para predecir la potencia máxima del 

edificio. 

Una vez más, los datos preprocesados se dividen en los conjuntos de entrenamiento y de 

pruebas. Posteriormente, los perfiles de entrenamiento se normalizan y se utiliza un 

algoritmo k-means para agruparlos en cinco grupos. Los grupos de perfiles resultantes 

servirán como clases de salida para entrenar los algoritmos de clasificación. Para la tarea 

siguiente se utilizan diferentes clasificadores, mostrados en la siguiente figura. La 

selección de los hiperparámetros y el entrenamiento de estos algoritmos, así como del 

bosque aleatorio adicional, se realizan de la misma manera que en el modelo anterior. 

En este punto, se extrae la potencia máxima de los perfiles de entrenamiento originales y 

se realiza un análisis de regresión de la potencia máxima para predecir la potencia máxima 

de los edificios de pruebas. Este paso es esencialmente igual al enfoque anterior. La etapa 

final consiste en multiplicar los perfiles normalizados por la potencia máxima prevista 

para obtener los perfiles eléctricos modelados para el conjunto de pruebas, que pueden 

ser comparados con los perfiles reales y con los obtenidos en la sección anterior para 

evaluar el rendimiento de este modelo alternativo. 
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Finalmente, para evaluar el rendimiento de los modelos, se utiliza como métrica el error 

porcentual absoluto medio (MAPE), puesto que es la métrica más utilizado para el 

modelado de perfiles de demanda eléctrica. Sin embargo, el MAPE tiene ciertas 

limitaciones que pueden dar lugar a resultados erróneos. Por lo tanto, en el presente 

trabajo se utiliza, adicionalmente, una métrica alternativa derivada de la anterior, 

conocida como error porcentual absoluto medio simétrico (sMAPE). 

 

Resultados 

El modelo de regresión permite la predicción de perfiles eléctricos para cada uno de los 

algoritmos. Por lo tanto, sus rendimientos pueden compararse tal y como se ilustra en la 

siguiente tabla, donde se puede apreciar que el método de stacking (ensemble) deriva en 

una mejora de la precisión: 

 

   MAPE medio [%] SD MAPE [%]  sMAPE medio [%] SD sMAPE [%] 

Regresión lineal 90.64 61.36 74.38 29.84 

Máquina de soporte vectorial 56.47 40.76 46.72 20.60 

Bosque aleatorio 44.24 33.51 36.04 20.55 

Árbol de decisión con p. de g. 115.03 122.53 57.13 32.90 

Red neuronal 63.73 51.14 58.98 43.25 

Ensemble 39.36 28.98 32.79 17.90 

 

A continuación, se muestra un ejemplo de la predicción de un perfil eléctrico. 

 

 

 

Para el segundo enfoque, dos de los cinco grupos de perfiles eléctricos normalizados 

obtenidos en el agrupamiento se ilustran en la siguiente figura. Debido al reducido tamaño 

del conjunto de datos, se generan errores relativamente grandes en este paso. 
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Seguidamente, los perfiles normalizados se clasifican en los cinco grupos. La siguiente 

tabla muestra la exactitud de esta clasificación que, una vez más, se ve afectada por el 

reducido tamaño del conjunto de datos. 

 

  
Árbol de decisión con Bosque Máquina de 

Ensemble 
potenciación de grad. aleatorio soporte vectorial 

Exactitud [%] 35.57 42.86 14.29 50.00 

 

El análisis de regresión para la potencia máxima resulta una etapa crítica del modelo 

debido al error asociado, como puede apreciarse en la siguiente tabla. 

 

  MAPE [%] sMAPE [%] 

Regresión lineal 80.59 69.37 
Máquina de soporte vectorial 58.20 48.62 
Bosque aleatorio 34.96 33.09 
Árbol de decisión con potenciación de gradiente 41.34 34.93 
Ensemble 30.63 29.36 

 

Finalmente, se combinan los perfiles normalizados y las potencias máximas previstas para 

obtener la predicción final del segundo modelo. En la siguiente tabla se comparan los 

resultados de ambos enfoques, donde se aprecia que el primer enfoque es más preciso y 

genera mejores resultados para la tarea y el conjunto de datos dados. 

 

  MAPE medio [%] SD MAPE [%]  sMAPE medio [%] SD sMAPE [%] 

Regresión 39.36 28.98 32.79 17.90 
Agrupamiento y 

clasificación 
45.17 33.27 38.45 19.53 
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En la figura representada a continuación se muestra un ejemplo de los perfiles eléctricos 

generados con ambos modelos: 

 

 

  

Finalmente, el primer modelo se utiliza para extraer las dependencias entre los perfiles 

eléctricos y las variables de entrada seleccionadas. En las siguientes figuras, se ilustran la 

descomposición temporal de la importancia relativa para el modelo de cada aparato 

eléctrico, así como de los principales tipos de habitaciones. En ellas se puede apreciar, 

por un lado, la relevancia de los aparatos de ventilación y, por otro, las variaciones de la 

importancia relativa de las diferentes variables durante las horas laborables. 
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Conclusiones 

Los resultados muestran que los modelos implementados pueden predecir con precisión 

los perfiles de demanda eléctrica, demostrando ser herramientas útiles para el propósito 

de modelar perfiles eléctricos de edificios no residenciales. Sin embargo, los resultados 

se ven afectados por la falta de calidad de los datos de entrada y, por lo tanto, se debe 

realizar una evaluación adecuada con datos de mayor calidad. Además, a pesar de que los 

modelos presentados fueron desarrollados para ser entrenados con un conjunto de datos 

de edificios no residenciales con el fin de predecir los perfiles de otros edificios, estos 

modelos pueden ser utilizados para modelar cualquier tipo de edificio, puesto que el 

número de variables de entrada es flexible. 

En todos los casos estudiados a partir de los edificios dados, el modelo de regresión 

obtuvo el mejor rendimiento. Esto se debe a que ambos enfoques realizan un análisis de 

regresión que deriva en errores similares, pero el segundo enfoque incluye adicionalmente 

una agrupación y una clasificación, lo que resulta en una disminución del rendimiento. 

En cuanto a los algoritmos utilizados, los bosques aleatorios demostraron tener un mejor 

rendimiento que cualquier otro para este conjunto de datos. Además, la utilización del 

método de stacking, también implementado con un bosque aleatorio, resulta en un 

incremento del rendimiento con respecto a los otros algoritmos, lo cual es consistente con 

los resultados encontrados en otros estudios [11]. 

Las dependencias obtenidas muestran que los aparatos de ventilación son más 

importantes para el modelo que cualquier otro aparato o habitación, representando 

aproximadamente la mitad de la importancia de todas las variables. La descomposición 

temporal de las dependencias a lo largo del día muestra que, en general, pueden dividirse 

en tres intervalos de tiempo diferentes que corresponden a las horas laborables y no 

laborables. Durante las horas laborables, la dependencia entre los perfiles eléctricos por 

un lado, y los aparatos de calefacción y habitaciones como oficinas, zonas de tránsito y 

aseos por otro, aumenta significativamente, lo que significa que tienen una gran influencia 

en las variaciones del consumo de energía durante el día. Esta situación se debe 
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probablemente a la relación de estos últimos tipos de habitaciones con la ocupación de 

los edificios, lo cual tiene un efecto directo en el consumo de energía. 

A pesar de que los modelos implementados han resultado ser adecuados para realizar la 

tarea prevista, la metodología propuesta podría mejorarse en diferentes aspectos. Por una 

parte, deberían explorarse otras técnicas de selección de variables con el fin de reducir la 

dimensión del conjunto de datos y simplificar el proceso de predicción.  

Por otro lado, la inclusión de nuevas variables en el conjunto de entrada, lo cual no 

requeriría ninguna modificación de los modelos implementados, podría derivar en 

múltiples mejoras. Por ejemplo, la inclusión de variables de ocupación de los edificios 

resultaría en una mejora significativa del rendimiento de los modelos, puesto que los tipos 

de habitaciones relacionadas con las personas han mostrado tener una gran influencia en 

los perfiles eléctricos. La inclusión de variables estacionales o de temperatura media 

podría permitir el modelado conjunto de perfiles eléctricos de diferentes estaciones, en 

lugar de entrenar los modelos por separado. Con el objetivo de aumentar el número de 

edificios que pueden ser modelados conjuntamente, la inclusión de variables geográficas 

implicaría la capacidad de predecir perfiles para edificios en áreas más amplias, incluso 

a nivel nacional, aumentando drásticamente el potencial de los modelos implementados.  

Finalmente, la mejora de la calidad de los datos es, en cualquier caso, de gran importancia 

para realizar una evaluación adecuada de los modelos y obtener resultados 

significativamente mejores. 

 

Referencias 

[1] A. Mickaitytė, E. Zavadskas, A. Kaklauskas and L. Tupėnaitė, "The concept moel of 

suistainable buildings refurbishment", International Journal of Strategic Property 

Management, vol. 12, no. 1, pp. 53-68, 2008. 

[2] Deutsche Energie-Agentur, "Der dena-Gebäudereport: Statistiken und Analysen zur 

Energieeffizienz im Gebäudebestand", 2016. 

[3] European Union Energy Initiative Partnership Dialogue Facility (EUEI PDF), 

"Energy and Climate Change Adaptation in Developing Countries", 2017. 

[4] A. Facci, V. Krastev, G. Falcucci and S. Ubertini, "Smart integration of photovoltaic 

production, heat pump and thermal energy storage in residential applications", Solar 

Energy, 2018. 

[5] J. Massana, C. Pous, L. Burgas, J. Melendez and J. Colomer, "Short-term load 

forecasting in a non-residential building contrasting models and attributes", Energy and 

Buildings, vol. 92, pp. 322-330, 2015.  

[6] Y. Ge, C. Zhou and D. Hepburn, "Domestic electricity load modelling by multiple 

Gaussian functions", Energy and Buildings, vol. 126, pp. 455-462, 2016. 

[7] F. McLoughlin, A. Duffy and M. Conlon, "A clustering approach to domestic 

electricity load profile characterisation using smart metering data", Applied Energy, vol. 

141, pp. 190-199, 2015. 



XII 

 

[8] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 

2011. 

[9] W. McKinney, “Data structures for statistical computing in python,” in Proceedings 

of the 9th Python in Science Conference, S. van der Walt and J. Millman, Eds., 2010, pp. 

51–56. 

[10] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A structure 

for efficient numerical computation,” Computing in Science & Engineering, vol. 13, no. 

2, pp. 22–30, 2011.  

[11] F. Divina, A. Gilson, F. Goméz-Vela, M. García Torres and J. Torres, "Stacking 

Ensemble Learning for Short-Term Electricity Consumption Forecasting", Energies, vol. 

11, no. 4, p. 949, 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XIII 

 

GENERATION OF ELECTRICITY LOAD PROFILES FOR NON-

RESIDENTIAL BUILDINGS USING STATISTICAL METHODS OF 

MACHINE LEARNING 

Author: Elechiguerra Batlle, Daniel. 

Director: Richarz, Jan. 

Collaborating entity: RWTH Aachen University. 

PROJECT SUMMARY 

 

Introduction 

The energy sector has been a major concern in recent years due to its implications on 

climate change. Governments are making an increasing effort to achieve sustainable 

development within this sector, on the one hand, through the expansion of renewable 

energies and, on the other hand, a more efficient use of energy. The building sector 

accounts for 40% of the final energy consumption in the European Union, and this 

demand is expected to increase [1]. In Germany, non-residential buildings account for 

37% of the energy consumption of the building stock [2]. Moreover, new constructed 

buildings represent a small fraction of the entire building stock. Therefore, existing non-

residential buildings are a relevant target to achieve the sustainable development. 

In order to achieve this ambitious goal, the main solution relies on the integration of 

renewable energies into energy systems by substituting the current centralized non-

renewable generation by a distributed more efficient and reliable generation, mainly 

based on renewable energies [3]. Such a distributed generation directly depends on the 

adaptation of renewables energies to the energy consumption of distributed buildings. 

This building energy planning involves selecting the optimal combination of devices such 

as photovoltaic panels, heat pumps or combined heat and power devices that are able to 

supply the energy needs of the building while minimizing greenhouse gases emissions 

and maximizing the energy efficiency of its operation [4].  

The modernization and refurbishment of existing buildings for the mentioned planning is 

only possible when the energy consumption behavior of a building, the load profile, is 

known. However, these buildings do not usually have a measured load profile, so it can 

only be estimated. In consequence, precise models are needed in order to be able to 

estimate the characteristic load profiles of existing buildings, without the need of 

measuring its power consumption [1]. This task, which is the focus of this work, is 

referred as modeling  in order to distinguish it from forecasting, which involves the 

prediction of future energy consumption. In the latter, a learning algorithm uses 

information from the past is used in order to predict future outcomes and it typically 

consists on a longitudinal approach, since it generates predictions on the same buildings 

used to train the model [5]. 
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Several models have been proposed in the area of load profiles modeling, that can mainly 

be divided into two different approaches. On the one hand, bottom-up approaches are 

based on the analysis of the individual end-use appliances behavior by determining the 

probability distribution of their energy consumption. These distributions are combined 

with building-specific variables to create multiple subsystems. Ultimately, the different 

subsystems are aggregated into a complex system that can model the aggregated load 

profile of the building. On the other hand, top-down approaches start from the aggregated 

consumption of buildings and are able to extract the relationship between the energy 

consumption and the input variables, gaining information about them. The idea behind 

top-down models is to break down the initial profile into its compositional sub-systems 

from where dependencies can be derived. For these cases, a predictive algorithm is 

normally implemented to conduct the task. 

Regarding the modeling of load profiles, relatively simple top-down models have been 

developed and mainly focused on residential buildings. For instance, Ge et al. [6] 

proposed in their work a regression model based on the characterization of load profiles 

by a superposition of five Gaussian distributions. Then, a parameter analysis is performed 

to extract the dependencies between the parameters of the distributions and the number 

of bedrooms and occupants. McLoughlin et al. [7] proposed an alternative approach based 

on clustering techniques such as k-means and k-medoids. In this work, load profiles from 

individual households are clustered into profile classes. Then, these classes are linked to 

household characteristics by means of a logistic regression model which, in a final stage, 

is used to classify new households into the obtained profile classes according to their 

characteristics. 

In contrast, more complex methods have been developed for the forecasting of energy 

consumption. Despite forecasting is not the object of this work, methods and approaches 

used for forecasting generally apply to the modeling of load profiles. Within these 

methods, several algorithms have been proposed, being linear regression, support-vector 

machines, artificial neural networks, random forests and gradient-boosting decision trees 

the most widely used. In addition, recent studies have proposed the use of ensemble 

learning methods such as stacking in order to improve the accuracy of the predictive 

model. 

Since the development of accurate models for the modeling of load profiles of non-

residential buildings is still a key issue for distributed generation, it will be the focus of 

the present work. This work aims to develop a predictive model based on machine 

learning algorithms that, by using cross-sectional information such as appliances and 

room data, can accurately be used to model the load profiles of non-residential buildings 

without the necessity of measuring its energy consumption. A complementary purpose is 

to use the obtained model to analyze the dependencies between the load profiles and the 

given parameters. 

 

Methodology 

Two different top-down approaches have been developed to accomplish the intended task, 

in order to obtain the best possible results. Both have been implemented in Python 3.7.3, 
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by mainly using the Scikit-learn [8], Pandas [9] and NumPy [10] libraries. For both 

approaches, the collected data needs to be preprocessed to obtain a suitable data set for 

the models, and the procedure is illustrated in the following figure: 

 

 

This data has been collected from 70 buildings of the Jülich Research Centre, containing 

information about their energy consumption, which has been used as output for the 

models, and information about the rooms and technical equipment of the building such 

as boilers, ventilation, cooling, heating and cold-water supply appliances, which have 

served as input for the model. 

The first step, data cleansing, involves the detection and removal of outliers from the 

energy consumption of the given buildings. Then, relevant features are selected to be used 

in the implemented models.  

The given data was not collected expressly for this project and thus, an important lack of 

information had to be faced. Regarding numeric features, 58% of the information was 

missing. Therefore, different multiple imputation approaches have been performed 

depending for each of the numeric features so as to partially compensate the lack of data. 

An example of this multiple imputation for the power of cooling appliances process is 

shown in the figure below: 
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The data came sampled by appliance and room, respectively. However, since the output 

consists on the load profiles of the buildings, the input data needed to be aggregated into 

buildings. In this step, it was necessary to aggregate different features in different ways, 

paying especial attention to categorical variables in order to avoid a significant loss of 

information. Then, the resulting input set from the previous step is normalized, as it is a 

requirement for most of the predictive algorithms. 

The last step of preprocessing consists on the selection of the load profiles used as output 

for the model. To obtain characteristic load profiles of the buildings, the output profiles 

are obtained by averaging the load profiles of workdays from two consecutive weeks, as 

it is depicted in the upcoming figure. To account for seasonal changes in the load profiles, 

the procedure has been repeated for load profiles from April, June and December. 

 

 

 

Regarding the proposed models, two different approaches have been followed. The first 

model is entirely based on regression, which is performed for every hour, while the 

second model relies on a combination of clustering and classification of normalized load 

profiles and a regression for the maximum power consumption. In both cases, the stacking 

method has been applied in order to improve the performance. In stacking, several 

algorithms are used to predict the desired output and, instead of selecting the algorithm 

with the best performance, a stacked algorithm is trained with the outputs from the 

previous algorithms to make the final prediction. 

For the regression model, preprocessed data is divided into the training and test sets. Then, 

training data is fed into the base learner algorithms, which can be seen in the following 

figure. The best hyperparameters, which control the learning process, are automatically 

selected for each algorithm. These algorithms are trained with the given data and the 

cross-validation predictions for the training set are obtained. The mentioned predictions 

are used as input to the stacked algorithm, which is a random forest. The hyperparameters 

of this algorithm are selected and the algorithm is trained in the same way as before. 

Finally, the implemented model is used to estimate the load profiles of the test set and the 

results are compared to the real profiles in order to evaluate the performance of the model. 
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The implementation of the second approach is based on the clustering and classification 

of load profiles, and it is slightly more complicated than the previous one. Since the size 

of the available data set is small and the power range of existing buildings is relatively 

large, these load profiles have to be normalized and then, a regression analysis is 

performed to predict the maximum power of the building. 

Again, preprocessed data is divided into the training test sets. Afterwards, training profiles 

are normalized, and a k-means algorithm is used to cluster them into five clusters. The 

resulting clusters of the load profile will serve as output labels to train the classification 

algorithms. Different classifiers are used for the subsequent task, which are shown in the 

following figure. The selection of hyperparameters and training of these algorithms and 

the stacked random forest are accomplished in the same way as explained for the previous 

approach. 

At this point, the maximum power of the original training profiles is extracted, and a 

regression analysis of the maximum power is performed to predict the maximum power 
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of the test buildings. This step is essentially equal to the previous approach. The final 

stage is to multiply the predicted normalized profiles by the predicted maximum power 

to obtain the modeled load profiles for the test set, which can be compared to the real 

profiles and the obtained in the previous section to evaluate the performance of this 

alternative approach. 

 

 

 

Finally, to evaluate the performance of the models, the mean absolute percentage error 

(MAPE) is used as accuracy metric, since it is the most popular metric for the modeling 

of load profiles. However, the MAPE has certain limitations that can lead to erroneous 

results. Therefore, an alternative metric, derived from the previous one is used in the 

present work, known as symmetric mean absolute percentage error (sMAPE). 
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Results 

The regression approach allows the prediction of load profiles for each of the algorithms. 

Therefore, their performance can be compared as it is illustrated in the following table, 

where it can be appreciated that the ensemble method derives in an improvement of the 

accuracy:  

  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Linear regression 90.64 61.36 74.38 29.84 

Support-vector machine 56.47 40.76 46.72 20.60 

Random forest 44.24 33.51 36.04 20.55 

Gradient boosting decision tree 115.03 122.53 57.13 32.90 

Artificial neural network 63.73 51.14 58.98 43.25 

Ensemble 39.36 28.98 32.79 17.90 

 

The representation of an exemplary load profile is shown hereunder. 

 

 

For the second approach, two of the five obtained clusters of normalized load profiles are 

illustrated in the following figure. Due to the small size of the data set, relatively large 

errors are generated in this step. 

 

Then, normalized profiles are classified into the five clusters. The following table shows 

the accuracy of this classification which, again, suffers from the small size of the data set. 
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Gradient boosting Random Support-vector 

Ensemble 
decision tree forest machine 

Accuracy [%] 35.57 42.86 14.29 50.00 

 

The regression analysis for the maximum power shows to be the critical stage of the 

model, as it can be appreciated in the following table. 

 

  MAPE [%] 
sMAPE 

[%] 

Linear regression 80.59 69.37 
Support-vector machine 58.20 48.62 
Random forest 34.96 33.09 
Gradient boosting decision tree 41.34 34.93 
Ensemble 30.63 29.36 

 

Finally, predicted normalized profiles and the predicted maximum powers are combined 

to obtain the final prediction of the second approach. In the upcoming table, performances 

from both approaches are compared, showing that the first approach is more accurate and 

performs better for the given task and data set. 

 

  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Regression 39.36 28.98 32.79 17.90 
Clustering and 

classification 
45.17 33.27 38.45 19.53 

 

An example of the load profiles predicted with both approaches is depicted in the 

represented figure underneath: 
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Finally, the first model is used to extract the dependencies of load profiles and the selected 

input features. The time decomposition of the relative importance of each appliance, as 

well as of the main room types is illustrated in the following figures, showing the 

relevance of ventilation appliances and the variations of the relative importance during 

working hours. 

 

 

 

 

 

Conclusions 

Results demonstrate that the implemented models can accurately predict load profiles, 

proving to be useful tools for the intended purpose of modeling load profiles. However, 

performances suffer from the lack of quality of the input data and thus, a proper evaluation 

should be made with higher quality data. In addition, despite the presented models were 

developed to be trained with a set of data from non-residential buildings in order to predict 
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the load profiles of other buildings, they can be used to model any type of buildings, since 

the number of input parameters is flexible. 

For all studied cases from the given buildings, the regression model obtained the best 

performance. This is due to the fact that both approaches perform a regression analysis 

which derives in similar errors, but the second approach includes the classification and 

clustering steps, resulting in a decrease of the performance. Regarding the algorithms, 

random forests proved to perform better than any other for this specific data set. 

Moreover, the use of an ensemble method, also implemented with a random forest, results 

in an increase of the performance with respect to the other algorithms, which is consistent 

with other results found in the literature [11]. 

The obtained dependencies exhibit that ventilation devices are more important for the 

model than any other room or appliance, accounting for about half of the total importance 

of the features. The time decomposition of the dependencies throughout the day show that 

they can generally be divided into three different time intervals corresponding to the 

working and non-working hours. During the working hours, the dependency between load 

profiles and heating devices and rooms such as offices, traffic areas and WCs increases 

significantly, meaning that they have a high influence on the variations of the energy 

consumption during the day. This situation is probably due to the relation of the latter 

room types to the occupancy of buildings, which has a direct effect on energy 

consumption. 

Even though the implemented models proved to be suitable to accomplish the intended 

task, the proposed methodology could be improved in different aspects. On the one hand, 

further feature selection techniques should be explored with the aim of reducing the 

dimensionality of the data set and simplifying the prediction process.  

On the other hand, the inclusion of new variables in the input set, which does not need 

any modification of the implemented model, could derive in multiple improvements of 

the model. For instance, the inclusion of occupancy features would result in a significant 

improvement of the performance of the models, since people-related room types had a 

high influence on the load profiles. Including seasonal or mean temperature variables 

could allow the joint modeling of  load profiles from different seasons instead of training 

models separately. With the aim of increasing the number of buildings that can be 

modeled together, the inclusion of geographic variables would result in the ability of 

predicting profiles for buildings in wider areas, even at a country level, drastically 

increasing the potential of the implemented models.  

To conclude, the improvement of the quality of the data is, in any case, of major 

importance to perform a proper evaluation of the model and obtain significantly better 

results. 
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1 Introduction 

The energy sector has been a major concern in recent years due to its implications on 

climate change, and governments are making an increasing effort to achieve sustainable 

development within this sector. For instance, the German government aims to reduce the 

non-renewable primary energy demand in 2050 by 80% with respect to 2008 through the 

expansion of renewable energies and a more efficient use of energy [1]. 

The building sector accounts for 40% of the final energy consumption in the European 

Union, and this demand is expected to increase [2]. In Germany, non-residential buildings 

account for 37% of the energy consumption of the building stock [3]. Moreover, new 

constructed buildings represent a small fraction of the entire building stock. Therefore, 

existing non-residential buildings are a relevant target to achieve a nearly climate neutral 

building stock by 2050 [1]. 

In order to achieve this ambitious goal, the main solution relies on the integration of 

renewable energies into energy systems by substituting the current centralized non-

renewable generation by a distributed more efficient and reliable generation, mainly 

based on renewable energies [4]. The limitation is that, despite most of these renewable 

energies, such as wind and solar energy, are fluctuating and cannot be controlled, the 

energy supply must be guaranteed [5]. 

As a result, efficiency and reliability of the distributed generation directly depends on the 

adaptation of renewables energies to the energy consumption of distributed buildings. 

This building energy planning involves selecting the optimal combination of devices such 

as photovoltaic panels, heat pumps or combined heat and power devices that are able to 

supply the energy needs of the building while minimizing greenhouse gases emissions 

and maximizing the energy efficiency of its operation [6].  

The modernization and refurbishment of existing buildings for the mentioned planning is 

only possible when the energy consumption behavior of a building, the load profile, is 

known. However, these buildings do not usually have a measured load profile and it can 

only be estimated. In consequence, precise models are needed in order to be able of 

estimating the load profiles of existing buildings, without the need of measuring its power 

consumption [2]. For this reason, several approaches have been proposed in the area of 

load profiles estimation, which can be classified in different ways such as modeling and 

forecasting tasks or bottom-up and top-down approaches.  

Since load profile estimation is still a key issue for distributed generation, it will be the 

focus of the present work. This work aims to develop a predictive model based on 

machine learning algorithms that, by using cross-sectional information such as appliances 

and room data, can accurately be used to model the load profiles of non-residential 

buildings without the necessity of measuring its energy consumption. A complementary 

purpose is to use the obtained model to analyze the dependencies between the load 

profiles and the given parameters. 

First, relevant studies regarding the modeling of load profiles, as well as the forecasting 

of energy consumption will be presented to explore the different approaches and 

methodologies that have been developed for these tasks. In the following chapter, a 
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general introduction to machine learning will offer an overview of several algorithms and 

concepts that are necessary for the development of this work. Then, two approaches are 

proposed to model load profiles, both of them implemented by a combination of 

predictive algorithms, intending to obtain the best possible performances. The first model 

consists on a regression analysis for each hour of the day that results in the generation of 

the entire load profile. The second one is based on the clustering and classification of 

normalized profiles which, combined with a regression analysis of the maximum load, is 

able to generate the desired load profiles. The proposed models will then be applied to 

buildings from the Jülich Research Centre in Germany and the obtained results will be 

presented and discussed. The conclusions of the methodology and results as well as 

possible improvements and a critical view on the implemented models will close this 

work. 
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2 State of the art 

 

2.1 Load profiles prediction: modeling and forecasting 

The concept of predicting load profiles can be used to refer to different tasks related to 

the estimation of power consumption, each of them being addressed with different 

approaches. Since the term prediction can be understood as the estimation of outcomes 

for unseen data, generally based on the experience of given observations [7], the breadth 

of this definition can lead to a confusion when facing the different tasks. In consequence, 

a clear distinction between the two most relevant classes of tasks needs to be made. 

On the one hand, when a prediction is applied to time series, where a learning algorithm 

uses the information of the past to predict future outcomes, the corresponding term is 

forecasting. The temporal dimension is an essential aspect of forecasting. In the context 

of load profiles prediction, forecasting techniques generally consist on using historical 

time-dependent measurements (commonly smart meter data) of a building and predicting 

the future power consumption of the same building within a specified period of time [8]. 

Forecasting typically addresses the profile prediction from a longitudinal approach, since 

it generates predictions on the same buildings used to train the model, as it is shown in 

Figure 2.1. 

 

 

Figure 2.1: Load profile forecasting. training data (in sample) and testing data (out of 

sample) where predictions are to be made [9]. 

 

On the other hand, considering the temporal dimension is not always possible or desired, 

as it is the case of this study. Hence, for the cross-sectional approach of learning from 

available non-residential building load profiles in order to predict load profiles of other 

existing buildings by using general information (not time-dependent), the term 

forecasting does not seem suitable to describe the task. Instead, this kind of task is mostly 

referred as modeling [10] and is the central topic of this project. 
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Throughout this work, the terms prediction and modeling of load profiles will be used 

equally, while forecasting will be reserved to the estimation of future power consumption 

of the same building. 

 

2.2 Modeling of load profiles  

In the last years, the increasing interest in the modeling of load profiles has derived in the 

development of numerous models to deal with this task. Depending on the followed 

approach, the modeling of load profiles (and also forecasting), can be divided into bottom-

up and top-down [11]. 

Bottom-up models rely on the analysis of the individual end-use appliances behavior by 

determining the probability distribution of their energy consumption, requiring a high 

level of expertise. These different distributions are combined with building-specific 

variables such as the number of appliances, number of occupants or the size of the 

building and other variables such as weather data to create multiple subsystems. Then, 

the different subsystems are aggregated into a complex system that can model the 

aggregated load profile of the building. Bottom-up models do not need historical load 

profiles in order to be implemented, but these are necessary to validate the results. 

Figure 2.2 illustrates the modeled consumption behavior of household appliances and the 

final bottom-up aggregated model. 

 

 

 

Figure 2.2: Illustration of four modeled appliances (up) and the aggregated model for a 

household using a bottom-up approach (down) [12]. 
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The distinction between residential and non-residential buildings is especially significant 

for this kind of approach because, as the modeling of all appliances, occupancy and usage 

is required, very different aspects need to be considered for each case. Bottom-up models 

have been proposed for the modeling of both residential [13][14] and non-residential 

buildings [15]. However, since bottom-up models are implemented with probability 

distributions, this approach is not relevant for the proposed model and thus, will no longer 

be considered. 

Top-down models start from the aggregated consumption of buildings and are able to 

extract the relationship between the energy consumption and the input variables, gaining 

information about them. The idea behind top-down models is to break down the initial 

profile into its compositional sub-systems from where dependencies can be derived. For 

these cases, a predictive algorithm is normally implemented to conduct the task, and 

unlike bottom-up approaches, top-down models do need historical data to implement the 

model. In the following, some top-down approaches will be presented. 

The model proposed by Ge et al. [10] characterizes load profiles of residential buildings 

by a superposition of five Gaussian distributions, which is illustrated in Figure 2.3. Hence, 

load profiles are defined by 15 parameters, three for each Gaussian distribution: height, 

position and width. This results in a simplification of load profiles which, instead of 

dealing with 24 hours, only have to deal with 15 parameters. Within this model, a 

decomposition of households is made depending on the number of bedrooms and the 

number of occupants as variables. Then, a parameter analysis is performed to extract the 

dependencies between the parameters and both the number of bedrooms and occupants, 

which allows the modeling of individual household profiles in a simple way. The study 

concludes with the aggregation of individual profiles to obtain the regional load 

consumption of England and Wales.  

 

 

Figure 2.3: Decomposition of a load profile into five Gaussian distributions proposed 

by Ge et al. [10]. 
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McLoughlin et al. [16] examined the influence of dwelling and occupant characteristics 

on domestic energy consumption in several Irish dwellings. However, the purpose of their 

work is not to model complete profiles but only aggregated parameters of households’ 

consumption such as the total electricity consumption, maximum demand, load factor and 

time of use. With a multiple linear regression, household characteristics, information 

about appliances and other socio-economic variables are used to estimate the four 

parameters for other buildings. Although the followed approach is relatively simple, it 

provides a significant insight on the direct influence of the considered variables and 

consumption parameters. 

In a later work, McLoughlin et al. [17] presented an alternative top-down modeling 

approach for the load profiles of Irish households based on clustering techniques such as 

k-means and k-medoids. They observe that traditional methods often result in an 

expensive loss of information when averaging or aggregating load profiles. In contrast, 

they state that data mining techniques permit a segmentation of the load profiles before 

entering the statistical model, allowing a dimension reduction with a minimal information 

loss. In the proposed model, load profiles of individual households are clustered for each 

day of the week into profile classes. Then, each profile class is linked to household 

characteristics by means of a multi-nominal logistic regression model that, in a final stage, 

is used to classify new households into the obtained profile classes according to their 

characteristics. Figure 2.4 shows these three steps. Although the aforesaid approach turns 

to be robust, it needs large amounts of data. 

 

Figure 2.4: Top-down approach for load profile modeling proposed by McLoughlin et 

al. [17].  
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In addition to these studies, forecasting of load profiles has been the focus of numerous 

papers related to energy consumption. Despite forecasting is not the object of this work, 

methods and approaches used for forecasting commonly apply to the modeling of load 

profiles. Therefore, reviewing some of these works will provide a useful background for 

the implementation of the predictive model. 

Massana et al. [8] discuss the use of different predictive models to forecast the electric 

consumption in a non-residential (university) building. The aim of the study is to analyze 

the dependencies between the electric consumption and temperature, calendar and 

building occupancy data. Three predictive algorithms are compared within this work: 

- multiple linear regression  

- multilayer perceptron (a variant of neural networks) 

- support-vector regression 

For this specific task, support vector regression exhibited the best performance. The 

resulting model cannot be used to forecast other buildings electric consumption, yet the 

proposed approach is of relevance since an identical approach can be followed for the 

modeling of load profiles. A diagram of the applied process is illustrated in Figure 2.5.  

First, in the data preprocessing stage, relevant attributes are selected, missing values and 

outliers are filtered, and the resulting data is finally normalized. Then, the data set is 

divided into training and test sets. The training set is used to train the three models and 

the one with the best performance is selected. Finally, the model is evaluated with the test 

set. 

 

Figure 2.5: Diagram of the process followed by Massana et al. [8]. 
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Seasonal variations in load profiles of residential buildings are studied by Wang et al. [9]. 

In their work, the year trend of average load profiles is approximated by a linear 

regression analysis. Then, load profiles of a complete year are decomposed into different 

seasons, as well as into workdays, Saturdays and Sundays. An average load for each 

segmentation is calculated and, at a final step, a quadratic regression algorithm is used to 

model intra-seasonal trends of average profiles. The developed model can subsequently 

be used to forecast the long-term energy consumption of buildings belonging to the 

studied population. 

Additional studies stress the use of some of the aforementioned predictive algorithms in 

the forecasting of energy consumption such as linear regression [18] and neural networks 

[19], as well as alternative algorithms, for instance, random forests [20] and gradient 

boosting decision trees [21]. 

Furthermore, new methods have gained importance in the area of energy forecasting due 

to the significant performance improvements that can be achieved. Divina et al. [22] 

proposed in their work the use of an ensemble learning approach called stacking. In a 

similar way to the model implemented by Massana et al. [8], they use three predictive 

algorithms to forecast the energy consumption:  

- evolutionary algorithm for decision trees  

- random forest  

- artificial neural network  

The novelty of this work is the substitution of the selection stage, where the best algorithm 

is chosen to perform the predictions, by an additional predictive algorithm, a gradient 

boosting decision tree in this case (Figure 2.6). The latter algorithm will use the 

estimations made by the algorithms of the first layer and will perform the definitive 

prediction. Such a simple addition proves to result in a significant improvement of the 

accuracy compared to the three separated algorithms.  

 

 

Figure 2.6: Stacking method implemented by Divina et al. [22]. 
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Finally, Table 2.1 summarizes the works regarding the modeling and forecasting of load 

profiles that have been discussed in this section. It can be appreciated that, in general, 

modeling approaches have applied simpler methods than forecasting. However, to 

achieve the intended purpose of implementing accurate models that are able to predict 

load profiles of existing buildings, more complex methods should be used. Therefore, this 

work aims to offer an appropriate method to model load profiles. In the following chapter, 

the necessary concepts to accomplish this task will be introduced. 

 

Work Approach Prediction Method 

Capasso et al. bottom-up modeling probability distributions 

Richardson et al. bottom-up modeling probability distributions 

Sandels et al. bottom-up modeling probability distributions 

Ge et al. top-down modeling parameter analysis 

McLoughlin et al. (1) top-down modeling multiple linear regression 

McLoughlin et al. (2) top-down modeling 
clustering: k-means, k-medoids 

classification: multi-nominal log. regression 

Massana et al. top-down forecasting 
model selection: multiple linear regression, 

multilayer perceptron, support-vector regression  

Wang et al. top-down forecasting weekday decomposition and quadratic regression 

Pedersen et al. top-down forecasting linear regression 

Bennett et al. top-down forecasting neural network 

Lahouar et al. top-down forecasting random forest 

Touzani et al. top-down forecasting gradient boosting decision tree 

Divina et al. top-down forecasting 
decision tree, random forest, neural network, 

gradient boosting decision tree (stacking) 

 

Table 2.1: Summary of presented modeling and forecasting works. 

 

 

 



 

10 

 

  



 

11 

 

3 Theoretical foundations 

Both the prediction of load profiles and their modeling are commonly based on machine 

learning techniques. Therefore, it is convenient to introduce in a general way what 

machine learning is and which are the most important branches, as well as to briefly 

describe the different algorithms most frequently used in the literature.  

Machine learning is commonly defined, as: “A computer program is said to learn from 

experience E with respect to some class of tasks T and performance measure P if its 

performance at tasks in T, as measured by P, improves with experience E.” [23] 

The typical objective of a machine learning model is to learn a training set in order to be 

able to make accurate predictions on new data. 

Machine learning algorithms can generally be divided depending on the type of data they 

input and output, and the task they intend to solve. Some of the most common types 

are [24]:  

- Supervised learning: The data set contains both input and output and the algorithm 

must learn to predict the outputs from the inputs. 

- Unsupervised learning: Only the input data is available and seeks to identify 

relations between samples. 

- Semi-supervised learning: Only part of the output is known or labelled. 

- Reinforcement learning: The algorithm learns how to act in an environment given 

an observation to maximize the reward. 

The modeling of load profiles is a supervised learning task. Since for the training set, the 

output is known, and the purpose is to predict the load profile on new samples. In 

consequence, supervised learning will be developed in the following. Furthermore, 

different accuracy metrics will be presented in section 3.1.7 and discussed with the aim 

of selecting the most adequate metrics to evaluate the performance in relation to the 

objective of this project. 

In addition, unsupervised learning will be briefly introduced at the end of this chapter, as 

it will turn to be a useful tool to address the task from a different perspective.  

 

3.1 Supervised learning 

It has been introduced that, for a supervised learning task, the algorithm infers a function 

that maps an input to an output, which can be used to map new samples in a reasonable 

way.  

Within supervised learning, two kinds of task can be distinguished depending on whether 

the output is quantitative (section 3.1.3) or qualitative (section 3.1.4).  

The previous use of the word reasonable comes from the fact that any supervised learning 

algorithm must face two main sources of error, the bias and the variance, giving name to 

the common issue known as the bias-variance tradeoff [25]. 
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3.1.1 Bias-variance tradeoff and complexity 

Every algorithm needs to be trained with a set of data, which should be representative for 

the studied population, called training set. Training an algorithm means finding the 

learning parameters that minimize a given loss function (error) for the mentioned training 

set. Then, a different set of data, the test set, is used to evaluate the expected error for 

unseen data. The expected generalization error, or prediction error, of an algorithm can 

be expressed as the sum of three terms, the bias, the variance and the irreducible error. 

The irreducible error is related to the noise of the target, and it is beyond the control of 

the algorithm, since under no circumstances will it be suppressed. Consequently, it sets a 

lower bound on the prediction error. In contrast, bias and variance do depend on the model 

and can be adjusted [25]. 

On the one hand, bias error is defined as a systematic error made by an algorithm due to 

erroneous assumptions. An algorithm has high bias when it misses significant patterns or 

relations between inputs and outputs. A biased estimator assumes the training error as 

irreducible when it is not [25]. 

On the other hand, variance is an error that comes from the sensitivity to noise in the 

training set. If an algorithm learns to model the noise in the training data as if it was a real 

relation between input and output, it is said to have high variance [25]. 

Generally, predictive models with a lower bias tend to have a higher variance and vice 

versa. The tradeoff of trying to minimize both errors is represented in Figure 3.1, while 

Figure 3.2 illustrates the issue with three examples of trained models. The complexity of 

a model involves the ability to model complex relations of the data. A low-complexity 

model is only able to fit simple relations such as linear ones while a high-complexity 

model is able to fit complex nonlinear relations. In Figure 3.1, a lower complexity of the 

model results in an unavoidable high error in both the training and test sets (high bias). In 

this case, the model fails on fitting the output data, which can be appreciated in the left 

example of Figure 3.2. Consequently, this situation is called underfitting.  Opposed to 

this, Figure 3.1 shows that a higher complexity derives in a minimization of the training 

error, but an increase of the prediction error (high variance). In this case, the model fits 

the noise of the output in the training set, preventing itself from generalizing unseen data, 

which is illustrated in the right example of Figure 3.2. This situation is defined as 

overfitting [25].  

None of these situations are desired, since both increase the prediction error. The ideal 

situation would be to choose a balanced model, corresponding to the example in the 

middle of Figure 3.2. This makes the selection of the model complexity a decisive step. 

A close observation of Figure 3.1 exhibits that the complexity selection cannot be done 

by minimizing the training error, since this common mistake would lead to overfitting. In 

contrast, the prediction error is related to the test error. So, by minimizing this second 

one, the expected prediction error would also be minimized. This is because the test 

samples are unseen observations for the model. However, using the test error to select the 

complexity of the model must always be avoided, because it is a way of overfitting the 

test set, and the obtained error would be lower than the expected for completely new 

data [26].  
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Figure 3.1: Illustration of the bias-variance tradeoff [25]. 

 

 

Figure 3.2: Comparison of the effect of model complexity in regression analysis [27]. 

 

For these reasons, complexity should never be analyzed neither with the training set nor 

the test set, but another one created expressly for this task, the validation set. The 

validation set is used to estimate the prediction error after training a model. Ultimately, 

the prediction error is evaluated with the test set. 

 

3.1.2 Cross-validation 

It has been mentioned that a validation set should be used to estimate the prediction error. 

However, in many situations where the size of the data set is relatively limited, as it is the 

case for this project (chapter 4), extracting two representative subsets for validating and 

testing the model can result excessively expensive in terms of the loss of training samples. 
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The solution is to wisely use the training set as the validation set using a technique called 

cross-validation. There are different types of cross-validation, but only k-fold cross-

validation, the most common type, will be discussed [28]. 

 

 

Figure 3.3: Example of a 5-fold cross-validation. 

 

In k-fold cross validation, the training set is shuffled and divided into k folds, as shown 

in Figure 3.3. Then, the model is trained using all the folds except one, which is left out 

to use it as validation set, where the prediction error is calculated. This process is repeated 

k times, each of them leaving out a different fold. Finally, the validation errors of the k 

folds are averaged to obtain the cross-validation error.  

The greater number of folds, the more accurate and reliable the validation error is, due to 

the reduction of the variance. However, selecting a high number of folds can result 

computationally expensive since more models need to be trained, so the election of the 

number of folds needs to be cautiously done. 

   

3.1.3 Regression analysis 

When the output of the predictive algorithm is quantitative (numerical), the term used to 

define the task is regression analysis, or just regression. For this task, the algorithm must 

be able to model the relations between input and output by inferring a function that maps 

inputs (independent variables) to outputs (dependent variables) as accurately as possible. 

Modeled relations can range from linear and quadratic to other nonlinear relations. 

Figure 3.2 depicts three examples of regression models. With the modeled relations, 

regression analysis permits to estimate not only the expected value of the dependent 

variable given some values of the dependent variables but also how does this variable 

change when one of the independent variables is varied [25]. 

Prediction of load profiles, either considering their forecasting or their modeling is, in 

most cases, a regression task and hence, it will be a key topic for this work.  
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3.1.4 Classification 

Tasks where the output to be estimated is qualitative, also known as categorical, and the 

actual category membership is known, are referred as classification. It is relevant stress 

the fact that true classes are previously known, and therefore serve the model to look for 

patterns and relations between instances belonging to the same group, that will permit the 

model to classify correctly unseen samples [25]. 

While the general outputs of a classifier algorithm are the predicted classes of a set of 

new samples, in some occasions, the model outputs the predicted probabilities of new 

samples of belonging to each of the classes, and the selected classes will normally be the 

ones with the highest probability [25]. 

 

Figure 3.4: Example of classification task [25]. 

 

3.1.5 Algorithms of supervised learning 

Since the appearance of machine learning, a wide variety of algorithms have been 

developed. One can expect any model to fit properly any kind of relation between input 

and output, when a suitable selection of the hyperparameters that control the learning 

process (see section 3.1.6), and thus of the complexity of the model, is made. 

Unfortunately, this is not the case, since algorithms have an inherent complexity and 

tackle the mapping of data in very different ways. There is not a better algorithm that 

performs better for every data set and every task  [29]. For instance, Figure 3.5 illustrates 

that a simple linear model can accomplish certain tasks more accurately (top left) than a 

more complex decision tree (top right), while the latter may perform better in other 

situations (bottom right) than a linear model (bottom left). Consequently, the common 

procedure is to evaluate the performance of different models, and then select the one that 

generalizes better a concrete task. 
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Figure 3.5: Comparison of the suitability of algorithms depending on the task [25]. 

 

Chapter 2 introduced that in the literature, the most common algorithms used to predict 

load profiles are linear regression, artificial neural networks, support-vector machines and 

random forests. In the following, these algorithms will be discussed, as well as another 

proposed algorithm, gradient boosting decision trees and an ensemble learning method 

known as stacking. 

 

3.1.5.1 Linear Regression 

According to Hastie [25], linear regression (LR) models assume a linear relation between 

input X and output f(X), that can be expressed as follows: 

𝑓(𝑋) = 𝛽0 +  ∑ 𝑋𝑗𝛽𝑗                                                  (3.1)

𝑝

𝑗=1

 

They were one of the first algorithms to be developed due to their simplicity, yet they are 

still widely used for many applications. The main advantages are that LR are simple and 

provide an interpretable relation between input and output. In addition, using a LR model 

to perform a given task, provides a reference for the performance that can be used to 

evaluate other algorithms since, for certain applications, a linear model can perform better 

than other complex models. Figure 3.6 illustrates two examples of linear regression. 
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Figure 3.6: Illustration of a linear regression model with one input (left) and two inputs 

(right) [25]. 

 

To correctly model the relation, the algorithm must estimate the parameters βj, j ϵ (0,p). 

This is usually done by using the least squares method, consisting on the minimization of 

the residual sum of squares (RSS):  

𝑅𝑆𝑆(𝛽) =  ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

 

𝑁

𝑖=1

 

𝑅𝑆𝑆(𝛽) =  ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2

                       (3.2) 

𝑁

𝑖=1

  

where β = (β0, β1, . . ., βp)
T.   

 

The RSS defined in Formula 3.2 can also be expressed as: 

𝑅𝑆𝑆(𝛽) = (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽).                                      (3.3) 

Since the objective is to minimize the RSS, Formula 3.3 can be differentiated and equaled 

to zero, resulting in Formula 3.4, from where the estimation of the parameters can be 

obtained (Formula 3.5). 

𝑋𝑇(𝑦 − 𝑋𝛽) =  0                                                    (3.4) 

�̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦                                                    (3.5) 

 

This solution shows that a LR model can be directly implemented, and no 

hyperparameters need to be selected (section 3.1.6). 
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3.1.5.2 Support-Vector Machines 

Support-vector machines (SVMs) were originally developed for classification tasks [30]. 

SVMs are based on the idea that, for any classification problem, only data points close to 

the boundary which separates the classes (boundary points) should be considered, since 

samples far from it will be correctly classified. The separation of classes is performed by 

the division of the input space with a hyperplane. However, an infinite number of 

hyperplanes can separate two non-overlapping classes. Consequently, SVMs seek to find 

the hyperplane that  maximizes the distance between the boundary points of each class 

and the hyperplane. This distance is known as margin, and the resulting hyperplane is 

called the maximum-margin hyperplane. This is illustrated in Figure 3.7 (right), where 

the separating hyperplane, which is a line in this case, the boundary points and the margin 

can be appreciated.  

 

 

Figure 3.7: Nonlinear (left) and linear (right) of support vector machines [30]. 

 

The procedure to obtain the hyperplane is as follows [30]: 

      

maximize
𝛽0,𝛽1,…,𝛽𝑝

𝑀                                                                                                 (3.6) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽𝑗
2 = 1,                                                                              (3.7)

𝑝

𝑗=1

 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1 +  𝛽2𝑥𝑖2 + ⋯ +  𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀 ∀𝑖 = 1, … , 𝑛.              (3.8)  

where 𝛽0 +  𝛽1𝑥𝑖1 +  𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 = 0 is the separating hyperplane and M, the 

margin.  

The interpretation of Formula 3.8 is that the distance from all points to the hyperplane 

must be greater than the margin. Unfortunately, in most cases, classes are not completely 

separable, since they overlap in the input space, so an extension of the introduced 
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algorithm is necessary. While the previous algorithms are referred as hard-margin SVMs, 

the extended algorithms are called soft-margin SVMs, since they allow boundary points 

to be on the wrong side of the hyperplane, by introducing a slack-variable ϵ. 

maximize
𝛽0,𝛽1,…,𝛽𝑝

𝑀                                                                                                 (3.9) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝛽𝑗
2 = 1,                                                                           (3.10)

𝑝

𝑗=1

 

𝑦𝑖(𝛽0 +  𝛽1𝑥𝑖1 +  𝛽2𝑥𝑖2 + ⋯ +  𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀(1 − 𝜖𝑖),                    (3.11)  

𝜖𝑖 ≥ 0, ∑ 𝜖𝑖 ≥ 𝐶                                                                                     (3.12)

𝑛

𝑖=1

 

 

The capacity (C) is a tuning hyperparameter that bounds the sum of the ϵi’s and therefore 

determines how severely can the margin or hyperplane be violated by boundary points.  

For both soft-margin and hard-margin SVMs, the separation is constraint to be linear. 

However, many classification tasks cannot be performed by a linear separation in the 

original space. To overcome this problem, various kernel functions k(x,y) can be selected 

to transform the original space into a higher-dimensional space, where the different 

classes are linearly separable. This kernel transformation is illustrated in Figure 3.7, from 

left to right. 

Even though SVMs were originally designed as classifiers, modified SVMs can be 

applied to regression tasks, essentially modifying the objective function, and will also be 

used within this project. SVMs are especially suitable algorithms when there are a large 

number of features or few data points [31]. 

 

3.1.5.3 Artificial Neural Networks 

Artificial neural networks (ANNs) are computing systems composed by a succession of 

layers of nodes (neurons), where the first layer is the input and the last layer is the output. 

The remaining layers are called hidden layers. Neurons from different layers are 

connected by edges, each of them having a corresponding weight. Figure 3.8 illustrates a 

representative example of a neural network with one hidden layer. A brief explanation of 

the operation of ANNs will be given in this section. 
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Figure 3.8: Representation of a one hidden layer neural network [25]. 

 

The output of an ANN, as well as the values of each layer, are obtained by performing 

operations to the values of the previous layer, starting from the input. First, the input 

values are multiplied by the edge weights and fed into the corresponding nodes of the 

next layer. The resulting inputs for each node are summed and a different constant called 

bias is added to each node. Then, the outputs of each layer are obtained by applying an 

activation function to each of the node values. This process is expressed in Formula 3.13 

in a vectorized form, where al are the outputs of the lth layer, bl the biases, wl the weights 

of the edges connecting the lth layer and the previous one, and σ(·) is the activation 

function. The process is repeated for every layer until the output of the ANN is obtained. 

The described procedure is named forward propagation, as input values propagate 

through the network to produce the output [25]. 

𝑎𝑙 =  𝜎(𝑤𝑙𝑎𝑙−1 + 𝑏𝑙)                                                       (3.13) 

 

The most common method to calculate the appropriate edge weights is called 

backpropagation. In backpropagation, an initial set of weights is randomly assigned. 

Then, forward propagation is performed to make a prediction and the error of this 

prediction is calculated by using a given loss function. Then, starting from the prediction 

error, a backward propagation is done, analogous to the forward propagation, to calculate 

the error values for each node. The slope of the loss function with respect to each weight 

is calculated, multiplied by a learning rate and subtracted to the previous weights. This 

process will be applied iteratively to reduce the prediction error until the maximum 

number of iterations is reached, or no improvement is achieved [25]. 

The number of hidden layers in ANNs can range from zero (perceptron) to hundreds, or 

even thousands (multilayer perceptron). The latter has proven to be an extremely powerful 

tool for the modeling of nonlinear functions [25], and their use in the field of energy 

prediction is widely spread. However, ANNs generally need the use of large data sets in 

order to avoid overfitting and obtain good performances, which can be a drawback for 

certain applications. 
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3.1.5.4 Random Forests 

A random forest (RF) is a tree-based algorithm that integrates multiple decision trees. 

Hence, a brief introduction of decision trees (DTs) is instructive to understand how RFs 

work. 

DTs consist of a series of decision rules that successively split the input space into a 

determined number of regions. For each division of the space, a target value is assigned 

to all the samples belonging to that partition of the space. This value is obtained by taking 

the mean of the training samples belonging to the partition for regression tasks, or the 

mode of the samples for classification tasks. The successive splits are chosen in a way 

that minimize a given loss function e.g. RSS for DT regressors. The prediction of the 

output of new samples will be performed by applying the consecutive decision rules to 

each sample until a leaf node is reached, and the leaf value will be assigned to the 

sample [30]. 

Figure 3.9 shows de decision process of a DT, as well as the spatial representation of a 

fitted model. The similarity of this algorithm with a tree is what gives it its name. 

Analogously, the separation of the tree in each internal node are known as branches; and 

the terminal nodes, where no longer splitting is done, are called leaves. The number of 

levels of the tree, this is, the maximum number of splits that have to be made to reach a 

leaf is named depth [30]. 

DT have the advantage of being very easy to interpret and can easily handle categorical 

features. However, DTs do not generally perform better than other algorithms and tend to 

overfit the training set, they have high variance. Hyperparameters such as the maximum 

number of leaves and the maximum depth should be selected before training the 

algorithm, in order to limit its complexity and avoid overfitting  [30]. 

 

Figure 3.9: Illustration of the decision rules (left) and the partitioned space (right) of a 

decision tree [30]. 

 

Random forests, on their behalf, are ensemble learning algorithms. This means that they 

are built by the combination of multiple algorithms, which in this case are DTs. Ensemble 

learning algorithms can be implemented by using bagging (or bootstrap aggregating) and 

boosting. RTs apply the bagging technique to the DTs [25]. 
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It has been mentioned that DTs with high depths tend to overfit. Training different models 

on different training sets, and then averaging the outputs would result in a decrease of the 

variance, however, only a training set is available. Instead, in bootstrap aggregating, 

different models are trained, but only using part of the training set, randomly selected 

with replacement. With this method, each model is trained independently with a different 

training set and will output different predictions. In addition to bagging, each DT is 

trained with only a random subset of the original features, which results in a decorrelation 

of the training estimators. The number of features to be used is usually equal to the square 

root of the total number of features. Ultimately, the output of the RF is obtained by 

averaging the outputs of all these DT estimators [25]. 

The combination of all the high-variance DTs into a RF will dramatically increment the 

performance of the model and overfitting is compensated. With RFs, accurate results can 

be expected even for small data sets. In addition to the DT hyperparameters, RFs include 

others such as the number of estimators and the number of features by tree [25]. 

The main disadvantage of RFs is loss of interpretability compared to DTs. Nonetheless, 

RFs provide useful tools that rank the importance of the features, which is especially 

practical to analyze the dependencies between the target and the features [25]. 

 

3.1.5.5 Gradient Boosting Decision Tree 

Gradient Boosting Decision Trees (GBDTs) are also ensemble learning algorithms. 

GBDTs, unlike RFs, use boosting instead of bagging, which consists on the combination 

of several weak DTs  into a single strong model iteratively [25]. 

In contrast to bagging, where the independent estimators are trained on different training 

sets, boosting involves growing trees sequentially, using the information from the 

previous trees, and using for each fit a modified version of the original data. The iterative 

algorithm, according to Hastie et al. [25], is the following: 

 

1. 𝑆𝑒𝑡 𝑓(𝑥) = 0 𝑎𝑛𝑑 𝑟𝑖 = 𝑦𝑖𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡 

2. 𝐹𝑜𝑟 𝑏 = 1,2, … , 𝐵, 𝑟𝑒𝑝𝑒𝑎𝑡:  

(𝑎) 𝐹𝑖𝑡 𝑎 𝑡𝑟𝑒𝑒 𝑓𝑏  𝑤𝑖𝑡ℎ 𝑑 𝑠𝑝𝑙𝑖𝑡𝑠 (𝑑 + 1 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑛𝑜𝑑𝑒𝑠)𝑡𝑜 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 (𝑋, 𝑟). 

(𝑏) 𝑈𝑝𝑑𝑎𝑡𝑒 𝑓 𝑏𝑦 𝑎𝑑𝑑𝑖𝑛𝑔 𝑖𝑛 𝑎 𝑠ℎ𝑟𝑢𝑛𝑘𝑒𝑛 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑡𝑟𝑒𝑒:  

  𝑓(𝑥) ← 𝑓(𝑥) +  𝜆𝑓𝑏(𝑥)                                                  (3.13) 

(𝑏) 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠, 

 𝑟𝑖 ← 𝑟𝑖 −  𝜆𝑓𝑏(𝑥𝑖).                                                        (3.14) 

3. 𝑂𝑢𝑡𝑝𝑢𝑡 𝑡ℎ𝑒 𝑏𝑜𝑜𝑠𝑡𝑒𝑑 𝑚𝑜𝑑𝑒𝑙,  

𝑓(𝑥) =  ∑  𝜆𝑓𝑏(𝑥).                                                     (3.15)

𝐵

𝑏=1
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Here, rather than training overfitted deep trees, the boosting approach learns slowly. 

Initially, a DT is trained using the original output, and the resulting tree is multiplied by 

a learning rate (hyperparameter λ) that defines the speed of the learning process. Then, a 

new DT is trained using the residuals from the previous updated tree as output. The 

resulting tree is again multiplied by the learning rate, added to the previous tree and 

residuals are updated. This process is followed until the maximum number of boosting 

rounds is reached [25]. 

By using the residuals of the previous tree as output, trees tend to be rather small and will 

sequentially improve the performance where the previous model did not perform well. 

With this method, very robust algorithms can be implemented [25]. 

 

3.1.5.6 Ensemble learning: Stacking 

The concept of ensemble learning algorithms has been introduced for RF and GBDT. 

Stacking is also an ensemble method based on the combination of different predictive 

models (base learners) that, in a similar way to the previous cases, are trained using the 

training set. However, instead of averaging or combining their outputs, a last stacked 

model (meta learner) is trained on the predictions of the previous models to make a final 

prediction. The general scheme is depicted in Figure 3.10. 

 

 

Figure 3.10: Representation of stacking. 

 

It is a matter of importance that the input predictions to the meta learner are done on 

completely unseen data. Therefore, the predictions of the base learners are obtained by 

cross-validation using the exact same folds, and the meta learner is trained with the 

aforementioned predictions. This serves as a good approximation to real situations. 

 

Whereas RFs and GBDTs use only a combination of DTs, in stacking a variety of very 

different algorithms is desired. This is because, as it was previously mentioned, every 

algorithm performs differently for the same task, and generally one will be more accurate. 

If stacking is not applied, the model with the best performance should be selected. 
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However, it might happen that other models perform better in certain situations. With a 

stacked meta learner, benefits from all the base learners can be combined to obtain even 

better results. In consequence, stacking is said to perform better than any of the base 

learners since, in the worst case, the performance will be equal to the one of the best 

learner [32]. 

 

3.1.6 Hyperparameter tuning 

Together with the selection of the predictive models to be used for a given task, the 

selection of the corresponding hyperparameters of each model should also be performed. 

The difference between the parameters and the hyperparameters of a model is that, while 

parameters are estimated by the model itself during the training process according to an 

objective function (such as βj in linear regression), hyperparameters control the learning 

process and need to be specified [33]. Some of them have already been mentioned such 

as capacity for SVMs, number of estimators for RFs and learning rate for GBDTs. This 

section will explore how should they be selected. 

It is possible to implement any predictive model without defining the hyperparameters, 

since algorithms have a default value for them. Nevertheless, it is unlikely that this 

preselection of hyperparameters is the optimal combination because for any task and 

dataset, optimal hyperparameters will be different. Likewise, selecting the 

hyperparameters of other models found in the literature will rarely offer the best 

performance and therefore, a strategy to select the optimal hyperparameters must be 

followed. This is known as hyperparameter tuning [33]. 

The general procedure to tune the hyperparameters consists on the use of cross-validation 

or a held-out validation set, mentioned in sections 3.1.1 and 3.1.2. In first place, the model 

is trained with a combination of hyperparameters and then, the trained model is used to 

predict the outputs of the validation set (or training set if cross-validation is used), where 

the performance is evaluated. The process is subsequently repeated for different 

combinations of hyperparameters and finally, the combination resulting in the best 

validation performance will then be selected. 

Although successively trying the different combinations can be done manually, it turns 

out to be an ineffective and inefficient task, as the number of possible combinations can 

grow to unmanageable quantities. In contrast, automated methods offer more efficient 

techniques that will lead to better results. In the most common method, called grid search, 

all the preselected possible values of the hyperparameters to be tuned must be defined. 

Then, all the combinations are generated (hyperparameter grid), and an exhaustive 

searching is made by trying each of these combinations. The preselection of possible 

values must be done carefully since grid search suffers the curse of dimensionality, but it 

can be easily parallelized [33]. 
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3.1.7 Accuracy measurement 

In order to evaluate the performance of the proposed models, it is necessary to establish 

an accuracy metric that fits the objectives of this project. In the literature, a large number 

of metrics have historically been used, which can be divided into two categories, scale-

dependent and scale-independent accuracy metrics. In this section, some of the most used 

ones will be introduced. 

Scale-dependent accuracy metrics 

This type of metrics, sometimes referred as absolute or unscaled metrics, provide a 

measure of the difference between the unscaled real and predicted values. They are 

generally used for evaluating predictive models where the absolute value of the error is 

to be minimized.  These metrics can also be useful for comparing methods on the same 

set of data, but they should never be used to compare the prediction accuracy of different 

models where the scale of the used data is significantly different. The main scale-

dependent metrics are the mean squared error (MSE), root-mean-square error (RMSE) 

and the mean absolute error (MSE). 

The MSE has been the most used metric historically [34], and it is calculated according 

to 

𝑀𝑆𝐸 =
1

𝑛
∑(𝐹𝑖 − 𝐴𝑖)2,

𝑛

𝑖=1

                                                  (3.16) 

by averaging the sum of squared errors, where Ai is the actual target value, Fi is the 

predicted value, and n is the number of samples considered. The MSE corresponds to the 

second moment (relative to the origin) of the error and, for an unbiased estimator (the 

mean of the predictions is equal to the mean of the measures), it is analogous to the 

variance. Because the scale of the MSE is the square of the scale of the original data, it is 

relatively difficult to interpret. Therefore, the RMSE is frequently preferred, since it uses 

the original scale. 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸                                                           (3.17) 

 

Due to the fact that the MSE and RMSE are calculated by squaring the errors, they tend 

to penalize large errors more than small errors. This turns to be a problem in the case of 

outlying estimates, which would have very high impact on the metric, leading to a 

difficult interpretation of the accuracy in normal cases. To overcome this problem, the 

MAE can be calculated using the absolute difference of the error, making it a more robust 

measure against outliers, since it penalizes all errors equally. For this reason, MAE may 

be more appropriate than MSE and RMSE in case that the errors are not normally 

distributed or when larger penalizations are not required for large errors [35]. 

Consequently, MAE has been increasingly used in the last years for the modeling and 

forecasting of load profiles.    

𝑀𝐴𝐸 =
1

𝑛
∑|𝐹𝑖 − 𝐴𝑖|                                                       (3.18)

𝑛

𝑖=1
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Scale-independent accuracy metrics 

Measuring the difference between the target and predicted values could result 

inappropriate when different studies are to be compared, because the unscaled 

performance is calculated for specific data sets. The solution is to use scale-independent 

accuracy metrics, also known as relative or scaled metrics. The coefficient of 

determination (R2) and the mean absolute percentage error (MAPE) are two scale-

independent metrics widely used in the literature [34]. 

The coefficient of determination, given by 

𝑅2 = 1 −
∑ (𝐴𝑖 − 𝐹𝑖)2𝑛

𝑖=1

∑ (𝐴𝑖 − �̅�)2𝑛
𝑖=1

,                                         (3.19) 

offers a quantification of the linear relation between the target and predicted values. For 

general applications, R2 normally ranges from 0 to 1. It equals to one if the predicted 

values match the targets, and zero in the case that the predicted values correspond to the 

mean of the target values. In this sense, it can be understood as the proportion of variance 

of the target variable that can be explained by the model. However, R2 can become smaller 

than zero, if an average straight line estimates better the target. This implies that, while 

the R2 metric is bounded above by one, there is not a lower bound. Very high negative 

values can be reached when the target has a very low variance, with very similar values, 

but the predictions have a significantly larger variance. This situation becomes a problem 

when it comes to load profile modeling, since buildings with a constant consumption will 

derive in very large errors, biasing the model, which will fail to model the load profiles. 

In consequence, R2 is not suitable for the purpose of this work and will therefore not be 

considered as a metric. 

A more robust metric is the mean absolute percentage error (MAPE). It has become, by 

far, the most popular accuracy metric for both forecasting and modeling purposes [8]. 

According to the following formula,  

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖
| · 100%

𝑛

𝑖=1

,                                       (3.20) 

errors can be interpreted as a deviation of the actual target, and of the same order, relative 

to the target, are treated equally, as can be seen in Table 3.1. The reason for its extended 

use is that it provides a very easily interpretable metric while, at the same time, allows a 

direct comparison of different methods. Nevertheless, the MAPE also has some 

disadvantages [36]. On the one hand, negative errors (Ai < Fi) are weighted more heavily 

than positive (Ai > Fi), which can bias the model and lead to a misinterpretation of the 

results. This can also be seen in Table 3.1. Furthermore, negative errors are bounded by 

100%, whereas positive errors are not bounded. On the other hand, very small values of 

the target can derive in unacceptably high errors or, in the case that the target is zero, 

undefined error values. 
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These disadvantages have led to multiple extensions of the MAPE, such as the symmetric 

mean absolute percentage error (sMAPE), mean absolute scaled error (MASE) or the 

mean arctangent absolute percentage error (MAAPE). 

The sMAPE  [37] aims to deal with the aforementioned disadvantages by averaging in 

the denominator the target and predicted values, as shows 

𝑠𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑

|𝐴𝑖 − 𝐹𝑖|

(|𝐴𝑖| + |𝐹𝑖|) 2⁄
· 100%

𝑛

𝑖=1

,                                       (3.21) 

The main advantages of this extended metrics are that it is no longer asymmetrical, 

weighting equally positive and negative errors, and it us bounded between 0% (forecast 

equals target) and 200 % (target or prediction are zero), making it a more robust metric 

than MAPE. A comparison of MSE, MAE, MAPE and  sMAPE, can be seen in Table 3.1. 

In Figure 3.11, the bounds and symmetry of both scale-independent metrics can be 

observed.  

 

 

Table 3.1: Comparison of MSE, MAE, MAPE and sMAPE for different scenarios. 

 

 

Figure 3.11: Graphical comparison between MAPE and sMAPE.  

 

The use of MAPE as the main accuracy metric is a common practice in load profile 

prediction. Since, for the purpose of this work, a good comparability of different sized 

load profiles is needed, and a good interpretability is desired, the MAPE will be used in 

the following as accuracy metric. However, the sMAPE will also be included, due to its 

advantages relative to the common MAPE. 

 A F MSE MAE MAPE sMAPE 

1 - Positive error 15 10 25 5 33.3% 40% 

2 - Negative error 10 15 25 5 50% 40% 

3 - Positive error 150 100 2500 50 33.3% 40% 

4 - Negative error 100 150 2500 50 50% 40% 
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3.2 Unsupervised Learning 

The purpose of unsupervised learning is to find relations and patterns which were 

previously unknown in a non-labeled data set. Depending on the type of patterns that are 

to be found, two main types of unsupervised learning can be defined, clustering or cluster 

analysis and principal component analysis. In clustering, relations between training 

samples are explored, creating groups of samples which are considered to be similar. 

Principal component analysis (PCA), another unsupervised learning algorithm, consists 

on an orthogonal transformation that convert correlated features into uncorrelated 

features. The new features resulting from a combination of the original ones, are now 

aligned with the directions of greater variance, allowing a dimensionality reduction by 

removing low-variance features [30]. 

Even though the dimensionality reduction of PCA can result a useful tool, it is not within 

the scope of this project and thus, only clustering will be discussed. 

 

3.2.1 Clustering 

Clusters are groups of samples which, in some sense, are more similar to each other than 

they are to samples belonging to other clusters. An example of clustering is presented in 

Figure 3.12, where data has been divided into two clusters. It is an analogous procedure 

to classification but where the true classes are unknown. 

 

Figure 3.12: Example of a clustering task. 

 

One of the most popular clustering algorithms is k-Means, a centroid-based algorithm 

that divides the space into k Voronoi cells that will define the clusters, and consists in an 

iterative process [25]: 
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An initial set of K centroids are generated: 𝑚1, … , 𝑚𝐾 

Repeat until no centroid variation is experienced: 

1. Cluster C(i) is assigned for each sample based on 

𝐶(𝑖) =  argmin
1≤𝑘≤𝐾

‖𝑥𝑖 − 𝑚𝑘‖2                                               (3.22) 

 

2. Centroids are updated 

𝑚𝑘 =  
1

|𝑆𝑘|
∑ 𝑥𝑖,

𝑥𝑖∈𝑆𝑘

                                                      (3.23) 

 where Sk is the set of all the samples assigned to cluster k. 

 

 

One aspect to point out from this algorithm is that the number of clusters has to be 

specified in advance as input to the model. An appropriate value of k must be chosen 

since a too small number of clusters will not be able to model all the groups present in the 

data and a too large value will create more clusters than needed, separating samples into 

different clusters when they should belong to the same group [3.8]. Therefore, the number 

of clusters should be iteratively increased until no significant reduction of the clustering 

error is achieved. Figure 3.13 shows an example where three clusters should be selected. 

 

Figure 3.13: Clustering error depending on the number of clusters [39]. 

 

According to Formula 3.22, for the task of clustering load profiles, k-Means algorithm 

will cluster samples by minimizing the squared error between each profile and the 

centroid’s profile. It is also a useful method to detect outlier load profiles that are not 

similar to the others. 
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4 Methodology 

Once the fundamental concepts for the development of the work have been introduced, 

this chapter explains the preparation and implementation of the predictive model used for 

the modeling of load profiles, as well as the results obtained from it.  

The proposed structure suits the necessary steps for the realization of this project, divided 

into the following sections. First, the data used in this work will be presented. Then, the 

preprocessing of the data will be developed and, subsequently, two approaches used to 

address the modeling of the building load profiles will be developed.  

The purpose of the subsequently presented models is to achieve an accurate prediction of 

load profiles and therefore, both models rely on an elaborated implementation of various 

machine learning algorithms. Nevertheless, they have been entirely automated with the 

aim of providing an easy tool for future users. In addition, the provided models can also 

be used for other data sets, fulfilling the desired objective of building a transferable tool. 

Ultimately, both models have been implemented in Python 3.7.3 by using the Scikit-learn  

library [27], mainly complemented via the Pandas [40] and NumPy [41] libraries. 

 

4.1 Data from the Jülich Research Centre 

The data used for this work corresponds to data measured from the Jülich Research Centre 

(JRC), one of the largest interdisciplinary research centers in Europe. The JRC was 

founded on 1956 and, currently, counts on over 200 buildings, covering an area of 

2.2 km2. 

The original information comes from different data sets, one of them containing the 

historical measurements of the power consumption of the buildings, which will be used 

as target. For most of the buildings, hourly energy consumption from the years 2015 to 

2018 is available. Before filtering, the load data set contained historical profiles of 131 

buildings. However, since a large number of these profiles do not have any input data, 

only 70 of all the buildings can be used to train and test the model. In any case, the size 

of the training set is relatively small, so the collection of suitable information for this task 

would result in significant improvements on the performance of the model. 

Five input sets are used, containing information about the following technical equipment 

of the buildings: 

- boilers 

- heating appliances (all systems generating or distributing heat and warm water 

except boilers) 

- cold-water supply appliances 

- cooling appliances 

- ventilation appliances 

Furthermore, one data set containing information about the rooms and their usage is also 

used as input. The information summarized in these data sets was collected for previous 
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studies and therefore, the collected information does not necessarily suit the necessities 

of this study. In consequence, the data needs to be prepared for the models. 

The appliance data sets contain categorical attributes such as the code, description, 

building, room, manufacturer, type, as well as numeric attributes as the age, power and 

other appliance-specific attributes, which in general, have significant amounts of missing 

information. The rooms data set, on its behalf, includes the building, room type (usage) 

and area. Table 4.1 exposes the variables of all the six data sets that were available for 

this project. 

 

4.2 Data Preprocessing 

Data comes in a format that is rarely suitable for the predictive models. Therefore, to be 

able to use the data for the proposed application, it first needs to be preprocessed. Data 

preprocessing is, in most cases, one of the most time-consuming steps, and needs to be 

accomplished with extreme care, since the result of this step is the training set. Moreover, 

a proper preprocessing can lead to significant improvements in the accuracy of the model 

while, at the same time, allows a generalization of the method, making it a useful tool to 

obtain similar results from other data sets [42]. 

According to Kotsiantis et al. [42], data preprocessing can be divided into instance 

selection, data cleansing or data cleaning, missing values handling, normalization, 

feature selection and feature construction. Because of the complexity of the data set, a 

large number of features, and the large amount of missing information, these processes 

could only be partially automatized, and required a deep study of the data. The mentioned 

processes will be discussed subsequently, as they were a critical part of this work, apart 

from instance selection, which was not necessary due to the small number of samples. 

Additionally, the aggregation of the data into a building-wise format, and the selection of 

the load profiles will also be discussed. The resulting process is depicted in Figure 4.1. 

 

Figure 4.1: Data preprocessing flow diagram. 
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4.2.1 Data cleansing 

Data cleansing is defined as the process of detecting and correcting or removing incorrect 

or inaccurate samples from the data set. The main task concerning data cleansing is 

detection. An outlier is an observation which is significantly deviated from the other 

observations. This type of observations may lead to a decrease of the performance of the 

predictive model and hence, they should be avoided [42]. Figure 4.2 shows the presence 

of an outlier in the load profile of a building. 

     

Figure 4.2: Load profile of a building which has an outlier. 

 

Outliers are identified according to the Tukey’s fences [43], based on the interquartile 

range, where values outside the range  

[𝑄1−𝑘(𝑄3 − 𝑄1), 𝑄3 + 𝑘(𝑄3 − 𝑄1)]                                  (4.1) 

are considered as outliers, for some nonnegative k. Q1 corresponds to the first quartile, 

value below which 25% of the data is located and Q3 corresponds to the third quartile, 

value below which 75% of the data is located. The difference of both values is the 

mentioned interquartile range, containing 50% of the sample data. The definition of the 

range depends on the election of the value of k. The typical value for identifying data as 

an outlier is k = 1.5, while a greater value of k = 3 is typically used for identifying data 

as far out, or extreme outlier. 

It is within the selection of the time periods to be used in the modeling of the load profile 

of a building that outlier detection is performed. If, according to Formula 4.1, an outlier 

is detected within the selected period, it is consequently removed from the data set. 

Special attention needs to be given to observations with a value of 0kW. Since the goal 

of the study is to model load profiles of real buildings, values of 0kW are considered 

unrealistic for the normal operation of the buildings within the scope of the study and 

would derive in undesired noise. In many cases, these values will be detected as outliers 
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and hence, they will automatically be filtered. However, for buildings with large load 

variations, and especially for small buildings, these values may not be filtered as outliers, 

and were filtered in a subsequent step. 

Finally, buildings with an insufficient number of non-zero observations to model the load 

profile are deleted from the data set. Figure 4.3 illustrates an invalid profile of a building 

that needs to be removed from the data set. 

 

Figure 4.3: Illustration of an invalid load profile. 

 

4.2.2 Feature selection 

A predictive model does not necessarily need to use all the features included in the data 

set and therefore a feature selection is performed in order to reduce the dimension of the 

input data but avoiding a significant loss of information.  

Table 4.1, containing the input attributes, is colored depending on whether they were 

selected or not to be used in the model.  

In general, the influences on the load profile of the code, description, building, room, 

manufacturer, type, and type of pump attributes are inexistent or irrelevant and hence, can 

be left out of the input set. However, some of them will be useful to handle missing values, 

so they will be deleted after the following step (see section 4.2.3). 

The remaining variables, which are considered of being susceptible of influencing the 

load profile, will be included in the model after applying the necessary preprocessing 

transformations.  
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Table 4.1: Variables of the six original data sets, colored depending on their use for the 

model. 

 

4.2.3 Missing Values Handling 

The data from the JRC was not collected expressly for this project and thus, an important 

lack of information had to be faced, resulting in a demanding step of the preprocessing.  

In the following, missing values will be referred as information that is missing for any 

reported appliance or room. This is, the existence of the appliance or room has been 

reported, but some information about it is not provided. These cases are discussed in 

detailed within this section. However, a close inspection of the resulting input set after 

preprocessing shows multiple buildings without any information about appliances, or 

only a very small proportion of them. The reason could be that the mentioned buildings 

have a small size, as it was the case for some of them. Nonetheless, some other buildings 

showed unexpectedly large energy consumptions, suggesting that several appliances have 

not been reported and could lead to a significant decrease in the performance of the model. 

However, quantifying this lack of information is not possible and so is not to deal with it. 

Therefore, they will not be explored in this section.  

When dealing with missing data, the simplest practice is to ignore missing values and 

remove samples containing them. Nevertheless, this should only be done in the case of 
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knowing that the missing values do not follow a pattern, because otherwise their deletion 

would inappropriately alter the input set. This situation is often named as missing at 

random, a necessary condition for deletion of data [44]. 

However, deletion may not be affordable for small data sets, or ones lacking a high 

amount of information (which are situations that apply to this project) but, as most of 

predictive models are not able to handle missing values, something needs to be done. The 

main method to overcome this situation is called imputation, which means that missing 

values are replaced by a specified value, that can be understood as their expected value. 

The simplest imputation technique is the single imputation, consisting on the assignment 

of a single value (generally the mean, median or mode of a feature) to all the missing 

values of the same feature [45]. Even though this can work for some applications, it has 

the disadvantage of decreasing the variance of the input data, and treating equally all 

samples, even if they are completely different. For this reason, more complex methods, 

defined under the term of multiple imputation, are preferred as they try to extract 

information from other features in order to replace different missing values depending on 

the sample [45]. This technique has been explored within this work. 

For the given data set, only numeric attributes belonging to the appliances data sets 

presented missing values and will consequently be the only ones discussed in this section. 

These numeric features presented a total of 58% of missing values, which is a significant 

amount of missing information. 

 

Age missing values 

The imputation of the age attribute of each appliance type followed a simple method, that 

can be observed in the flow diagram of Figure 4.4. If the value of an age attribute is 

missing, the mode of the appliance ages of that building is imputed or, if there is not any 

repeated age, the median is imputed. The reason for selecting this process is that for the 

same building, the age of an appliance is more likely to be the same as the other appliances 

of the building, because of the influence of the year of construction and building 

modifications. For the worst case, when the age of all the appliances of the same type of 

a building are missing, the best that can be done is to impute the overall median. It must 

be noted that here, and in the following, the median is used instead of the mean. This has 

been done because it provides a more robust imputation since it is not affected by outliers. 

In this case, outliers would be, for instance, very new appliances. 

 

Figure 4.4: Imputation process for missing values in age attributes. 
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Further boiler, heating and cold-water supply missing values 

For other attributes, such as the number of pumps or the power, the presence of missing 

values lays out a problem. The difficulty regarding this lack of data comes from the fact 

that, for the appliances that are reported in the original sets, the given information does 

not differentiate between missing and zero values. This does not arise as a problem for 

cooling and ventilation devices, which can be assumed to have a non-zero rated power 

and thus, we assume that the value is missing. However, a problem does arise for the 

boiler, heating and cold-water supply devices, where zero values are completely 

plausible. For instance, reported appliances do not necessarily have pumps, so a missing 

value could mean that the appliance does not have any pump. Since it is not possible to 

know if the value is missing, for these cases, they are assumed to be zero. 

 

Further cooling and ventilation missing values 

As it has been mentioned, the absence of a value for the power of cooling appliances and 

the power and volume flow of ventilation appliances can be assumed as a missing value. 

The following process will be explained with the power, but also applies for the volume 

flow. 

For these cases, a first imputation was carried out, by looking at the manufacturer and the 

type of the appliance. If a power value was missing but not its manufacturer and type, 

then the corresponding value of the other appliances of the same type was imputed. Then, 

for the remaining missing values, an imputation by regression was proposed. However, 

as can be seen in the example of Figure 4.5, a clear relation between the power of the 

appliance and the room area was not found, neither by splitting or aggregating all the 

room types or all the device types. The latter means that simply imputing a constant would 

work equally well, so a multiple imputation method as used for the age will be used here. 

 

 

Figure 4.5: Scatter plot relating power and room area of cooling appliances in general 

laboratory rooms.  
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Figure 4.5 also shows a high variance in the power of the appliances. Assigning an 

estimated value can lead to an important error for a device. However, as the appliances 

will then be aggregated by building, the assigned values will offer a good estimation of 

the size of the building, in terms of appliances, and will lead to an improvement on the 

performance of the model. 

Following the previous approach, the median power of the different subgroups 

(combinations of device types and room types) is imputed. If this is not possible, the 

median power of the immediately higher-level group is imputed, and this process is 

successively repeated until a suitable value has been assigned. To illustrate these 

processes, Figure 4.6 exposes the imputation of the power for the cooling appliances and 

Figure 4.7, the imputation of the power as well as volume flow of the ventilation 

appliances. 

 

 

Figure 4.6: Imputation process for the power in cooling appliances. 

 

 

Figure 4.7: Imputation process for the power and volume flow in ventilation 

appliances. 

 

Finally, for the cooling, heating and heat recovery power, missing values are filled with 

zero, since it is more likely that the device does not have cooling or heating rather than 

the value is missing.  

 

4.2.4 Data aggregation and feature engineering 

Although data from the original data sets come sampled by appliance and room, 

respectively, the input of the model must be sampled by building, since the given output 
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are the building load profiles. This implies that the data must be aggregated, and in some 

cases, features will need to be transformed, known as feature engineering. 

Aggregating numeric features can be, generally, as simple as adding the values for the 

same building. However, when it comes to categorical features, aggregation involves a 

trade-off between the loss of information and the rapidly increase of the number of 

features. Consequently, as well as for the handling of missing values, the data aggregation  

needs to be treated in different ways depending on the features. 

 

Numeric features aggregation 

Starting with the simplest case, the numeric variables size, pump power (boiler, heating 

and cold-water supply appliances appliances), number of radiators, power (cooling 

appliances), cooling power, heating power and heat recovery power, shown in Table 4.1, 

can be aggregated by adding all the feature values for the same building. For the case of 

the boiler’s size and pump powers, the values must be first multiplied by the respective 

number and number of pumps to obtain the total value. The number of attributes can then 

be removed. 

 

Age aggregation 

Age attributes should evidently not be added, but the increase of the number of age 

features is additionally not desired, so the aggregation will be performed by assigning the 

mode of the appliances age of each building or, otherwise, the median. 

 

Categorical features aggregation 

Aggregating categorical features by selecting the mode would result in a significant loss 

of information and hamper the purpose of determining the dependencies of the profiles 

and the different types of rooms and appliances. In consequence, a more complex method 

must be implemented for these cases to guarantee that the desired information is fed into 

the model. 

To illustrate the method, a simplified example of the ventilation power will be presented 

in Table 4.2 and Table 4.3, and the same procedure is followed for the volume flow. For 

ventilation appliances, there are two categorical variables of interest: Device type, divided 

into Room, Central and Wall categories; and Ventilation type, divided into Ingoing, 

Outgoing and Circulating. Both variables are combined into 9 groups, which are then 

transformed to new features, and the power of each building’s appliance is summed into 

the corresponding transformed feature. The transformation method can be understood as 

an extension of dummy encoding [46], since it involves the creation of new columns in 

the same way. The difference is that, rather than using dummy variables (0,1), the 

appliance power is used instead of 1, and then an aggregation is made. 
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Table 4.2: Simplified example of the ventilation appliances of a building before 

aggregation. 

 

 

Table 4.3: Resulting structure of ventilation features after aggregation. 

 

Heat power attribute of heating appliances also need to be transformed, but as there are 

only two type of heat generation (electrical and non-electrical power source), only two 

features are created by using the same process as ventilation devices. 

The last features to be aggregated are the room type and area. The total area of the 

different room types is expected to provide important information to the model. Though 

it is desired to preserve the maximum information, the classification according to DIN 

277 [47] derives in 165 different types of room, an unmanageable number of classes for 

the developed models. Moreover, such a granular division of the room types is not needed 

to analyze the dependencies of the profile and the room types, since different rooms, 

which have similar uses, will have a similar power consumption behavior, so grouping 

them would simplify the aggregation process. As a result of grouping the room types, 37 

classes have been selected which, after a transformation equivalent to the one applied to 

the ventilation power, 37 features summing the areas of the corresponding classes are 

created. Table 4.4 shows all the variables resulting from the aggregation process, which 

will serve as input to the model, and where the selected room classes can be appreciated. 
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Table 4.4: Input variables for the predictive model 

 

 

4.2.5 Normalization 

The use of such a varied type of features results in a correspondingly varied scaling of the 

features. Features need to be normalized because otherwise, the difference in the scales 

can mislead the predictive algorithms, which expect input data to be normalized, and lead 

to a decrease of the performance [48]. However, due to the sparsity and nonnegativity of 

the input set, only scaling has been applied dividing by the maximum value, as centering 

is not recommended for this situation, resulting in variables ranging from 0 to 1. 

In addition, the input data set must be modified when used for classification. In 

classification, proportions of power and area are more significant than absolute values, 

since they are what characterizes the building. In consequence, the power, volume flow 

and room areas need to be normalized separately for each building, by dividing by the 

total power, volume flow and area, respectively, in order to improve the classification 

accuracy. 
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4.2.6 Profile selection 

The aim of the project is to model the load profile buildings and therefore, the last step of 

preprocessing is to select the target profiles. Even though each building has a similar 

profile for each working day, variations from one day to another can be observed due to 

randomness and other time-dependent factors. Since the input data is not time-dependent, 

these variations cannot be modeled. It is necessary to average the load profiles of different 

working days in order to obtain a representative profile of the building, which can be 

modeled. Moreover, it must be noted that the power consumption has a high dependency 

on the temperature, and very important seasonal variations [9]. Consequently, as the 

purpose is to perform cross-sectional predictions,  the most appropriate procedure is to 

use the same time periods for all the buildings, which will result in a better performance 

of the model. 

Figure 4.8 shows the power consumption of an exemplary building for two weeks. The 

assigned load profile is depicted in Figure 4.9, obtained by averaging the power 

consumption of the working days of those weeks. 

As load profiles may vary considerably during the year, it might be useful for a better 

building planification to model the load profile of different seasons. To that end, 

representative load profiles have been selected in three different times of the year (April, 

July and December), to model the power consumption in different seasons.   

 

 

Figure 4.8: Energy consumption of a building for two weeks. 

 

 



 

43 

 

 

Figure 4.9: Averaged load profile of the previous building to be used in the model. 

 

4.3 Modeling approach 

Several top-down approaches of load profile modeling have been introduced in chapter 2, 

which can be divided into two main groups, depending on the type of algorithms used: 

On the one hand, regression analysis and, on the other hand, clustering and classification. 

Regarding regression approaches, only basic models have been implemented. For 

instance, Ge et al. [10] simplify the task by predicting 15 parameters instead of 24, and 

only use two variables as input, and McLoughlin et al. [16] limit their study to the 

prediction of the peak load and the total energy consumption. The reason for using such 

reduced procedures is mainly because modeling a load profile only with regression 

algorithms involves training a model for each hour, which is not a very elegant approach, 

since a similar task is done for every hour.   

However, a regression approach is still suitable for the purpose of modeling load profiles 

and, moreover, for the purpose of analyzing their dependencies on rooms and appliances. 

In addition, only one model needs to be implemented since the prediction of each hour 

works equally. Therefore, a regression model is proposed in this work with a more 

complex approach than the aforesaid studies, as more algorithms and parameters will be 

considered. 

Unlike for regression techniques, more ambitious models have been implemented for 

clustering and classification approaches. For instance, McLoughlin et al. [17] do not only 

cluster load profiles for each building, but also differentiate between each day of the week 

to assign them to the most appropriate profile class. The main disadvantage is the need of 

large data sets since clustering involves segmentation of the studied population and, in 

order to achieve good classification performance, enough samples of each cluster are 

needed. Still, such approaches will generally involve a reduction of the computational 

time compared to regression approaches by avoiding the repetitive process of predicting 

the energy consumption for each hour. 
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Considering the advantages of clustering and classification approaches and the fact that 

the method and algorithms used for the regression model can be applied here with only 

few modifications, a second model consisting of clustering and classification combined 

with regression is proposed to complement the results obtained with the previous 

approach.  

 

4.3.1 Regression analysis 

The regression analysis proposed in this section follows a similar method as the 

forecasting approach implemented by Divina et al. [22] since the main idea is also the use 

of stacking, which was introduced in section 3.1.5.6. As the latter technique has proven 

to be an effective way of improving the performance of a model [32], this ensemble 

learning method will be implemented with the aim of obtaining the best achievable 

results. In order to facilitate the understanding of the applied method, a flow diagram of 

the complete process is illustrated in Figure 4.10. 

 

 

Figure 4.10: Flow diagram of the regression analysis approach. 
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First, preprocessed data is divided into the training set (80%) and the test set (20%), used 

to evaluate the model, as introduced in section 3.1.1. Then, training data is fed into the 

base learner algorithms. 

The five selected base learners were the supervised learning algorithms introduced in 

section 3.1.5. The reason for using such a variety of algorithms is to maximize the variety 

of predicted load profiles since, on the one hand, it increases the probability of finding 

the most appropriate algorithm for the task and, on the other hand, the ensemble learner 

will benefit from this additional information, resulting in more accurate predictions. All 

the algorithms were implemented with the Scikit-learn library [27] except from the 

GBDT, implemented with LightGBM [49], which offers a very powerful tool for 

supervised learning tasks. 

In the second step, the hyperparameters shown in Table 4.5 are tuned for each model. It 

should be noticed that, since linear regression does not have hyperparameters, this step is 

skipped. Before this stage, a selection of possible values of the hyperparameters is done. 

Then, using grid search, all possible combinations are used to train the algorithms for 

each hour and the one with the lowest mean cross-validation score, this is, the one with 

the lowest MAPE for the load profiles, is selected. 

 

 

Table 4.5: Hyperparameters tuned for each supervised learning algorithm. 

 

Once hyperparameter tuning is finished, the best combinations of hyper parameters are 

used to train the respective models and the cross-validation predictions are obtained. 

These predictions are used as input to the stacked algorithm. For this application, the 

stacked algorithm was chosen to be a RF as it offered the best results. In general, tree-

based algorithms show good performances when used for ensemble learning tasks [22]. 

The hyperparameters of the meta learner are tuned in the same way as before, as a 

different combination of them is expected to perform better for such a different task, and 

again, the best combination is used to train the algorithm with the cross-validation 

predictions of the base learners. 

Finally, the implemented model is used to predict the load profiles of the test set and the 

results are compared to evaluate the performance of the model. 

 



 

46 

 

4.3.2 Clustering and classification 

To implement the clustering and classification approach, a model such as the proposed 

by McLoughlin et al. [17] should be sufficient to accomplish the intended task. However, 

two difficulties arise regarding the clustering of load profiles. The number of samples is 

very small, but the power range of the existing buildings is relatively large. The results 

are the necessity of  normalizing the load profiles and a tradeoff between selecting more 

clusters to minimize the inherent error of clustering and selecting a limited number of 

them to achieve a better classification accuracy.  

In consequence, profiles can be normalized dividing by the maximum power. This has 

the additional advantage that buildings with similar energy consumption behavior will 

have very similar normalized profiles, paying special attention on the normalization of 

power and area features mentioned in section 4.2.5. The drawback of normalizing profiles 

is that the output of the subsequent classification will no longer be the modeled absolute 

profiles but normalized ones. Therefore, an additional regression sub model has to be 

implemented in order to predict the maximum load which, multiplied by the assigned 

normalized profile, will result in the predicted load profile of a building.  

Here, the concept of stacking is also used to improve the performance of the complete 

model and hence, the procedure of each of the sub-models is analogous to the presented 

for the regression analysis. The process diagram is illustrated in Figure 4.11 and it is 

explained in the following. For simplicity, ANNs have not been used for this approach. 

 

 

Figure 4.11: Flow diagram of the clustering and classification approach. 
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Again, preprocessed data is divided into the training set (80%) and the test set (20%), 

used to evaluate the model. Then, training profiles are normalized and a k-means 

algorithm, introduced in section 3.2.1. is used to cluster them into five clusters. More 

clusters would be preferred in order to minimize the error related to the cluster 

assignment. However, the number of clusters is limited by the data set size since with 

more samples, the number of load profiles per cluster would be excessively small. As 

mentioned, more clusters would be desired, but the size of the data set is a limiting factor. 

The resulting clusters of the load profile will serve as output labels to train the 

classification algorithms.  

The selected algorithms for the classification base learners were SVM, RF and LightGBM 

since ANNs were discarded and linear regression was not suitable for the classification 

task. The implementation of such algorithms did not require complicated modifications 

in relation to the regression algorithms, demonstrating to be very flexible algorithms. In 

this stage, an analogous hyperparameter tuning to the one in the regression model is 

performed for the base learners but, instead of minimizing the MAPE, hyperparameters 

are selected to minimize the cross-validation precision. Precision is a common 

classification performance metric calculated as the proportion of correctly labelled 

samples and the total number of samples [30]. Anew, the best hyperparameters are 

selected and cross-validation predictions of the profile labels are made. 

The meta learner, also selected to be a RF, is trained with the resulting predictions and 

the normalized test profiles are generated. 

At this point, the maximum power of the original training profiles is extracted, and a 

regression analysis of the maximum power needs to be made. However, implementing a 

new model is not necessary since the previous regression model can be used by only 

reducing the number of hours parameter to one, as only one value is being predicted. With 

this model, the maximum power of the test profiles is predicted. 

The final stage is to multiply the predicted normalized profiles by the predicted maximum 

power to obtain the modeled load profiles for the test set, which can be compared to the 

real profiles and the obtained in the previous section to evaluate the performance of this 

alternative approach. 
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5 Analysis of results 

The proposed models were subsequently applied to the buildings from JRC. Both were 

trained with data from 56 buildings (80% of the buildings). The fitted models were finally 

used to model the load profiles of the other 14 buildings (remaining 20%) from the test 

set and compared with the real profiles to evaluate the performance of the models. Target 

profiles were selected from year 2016, averaging workday load profiles from the months 

April, July and December separately, with the aim of modeling seasonal variations of 

load profiles. The following chapter will present and analyze the obtained results. In 

general, the modeling of April profiles will be considered the base case and will be 

discussed with more detail. 

First, results from both models will be analyzed separately in sections 5.1 and 5.2, in order 

to show model-specific details that have an influence in the final predictions. The 

performance of both models will be compared in section 5.3. Then, dependencies between 

the profiles and the different rooms and appliances will be explored in section 5.4. Finally, 

the modeling of the energy consumption of a building for an entire week will be presented 

in section 5.5. 

 

5.1 Regression analysis results 

Section 4.3.1 discussed the implementation of the regression model. It was shown that in 

a first step, different base learners are used to predict the entire load profile, and in a 

second step, a stacked predictive algorithm is used. Consequently, evaluating the 

performances of the base learners, as well as the performance of the stacked algorithm 

(ensemble) will give a good insight of how the model is working. First, an exemplary 

profile is depicted in Figure 5.1, where the predicted profiles of the different algorithms 

can be observed and compared to the real profile of the building. The accuracy of the 

algorithms for this building should not be assumed as general for all the test buildings, so 

no accuracy measure is shown for such a single case. However, it can be observed that 

the ensemble prediction is the most accurate, slightly better than the one of the RF, 

something that will shortly become apparent. 

 

Figure 5.1:  Comparison of the predicted profiles of all the predictive algorithms and 

the real profile of a test building. 
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To evaluate and compare the prediction performance of the models, all the test buildings 

need to be considered at the same time, since they represent the unknown buildings of the 

studied population. In addition, the comparison needs to be made using an accuracy 

metric, as introduced in section 3.1.7. The mean MAPE and mean sMAPE will be used 

to compare the different performances, complemented with their corresponding standard 

deviation (SD). Table 5.1 shows these results. 

 

  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Linear regression 90.64 61.36 74.38 29.84 

Support-vector machine 56.47 40.76 46.72 20.60 

Random forest 44.24 33.51 36.04 20.55 

Gradient boosting decision tree 115.03 122.53 57.13 32.90 

Artificial neural network 63.73 51.14 58.98 43.25 

Ensemble 39.36 28.98 32.79 17.90 

 

Table 5.1:  Comparison of algorithm performances using MAPE and sMAPE for test 

profiles in April. 

 

Focusing on the base learners, we can see that no matter which metric is used, the random 

forest is the one that performs the best for this modeling task. This situation is underlined 

by the fact that RFs also obtain the best results when modeling July and December loads, 

shown Appendix A. In contrast, linear regression does not seem to be suitable for the task, 

as the problem is unlikely to be linear. Despite the potential of ANNs, they also show bad 

performances for the three studied cases. However, the problem is likely to be the fact 

that the training size is very small, making ANNs unsuitable for almost any task.  

Ultimately, SVMs and GBDTs obtain in general acceptable results. However, their 

performance is far from the one of the RF. 

The following aspect to discuss is the performance of the ensemble learning model. It can 

be appreciated in Figure 5.1, as well as in Table A.1 and Table A.2, that the performance 

of the stacked algorithm is, in all the studied cases, better than the best performance of 

the base learners, the RF. For the base case, the improvement of the mean sMAPE goes 

from 36.04% to 32.79% and of the mean MAPE from 44.24% to 39.36% which means a 

relative improvement of 9% and 11% respectively. These results are coherent with the 

results obtained by Divina et al. [22], demonstrating that these kind of ensemble 

algorithms can lead to significant improvements of a model performance. Besides, as it 

was observed in Figure 5.1, the ensemble prediction is similar to the one of the RF, which 

could be understood in the way that the stacked algorithm mainly uses the predictions 

from the RF, since it leads to the best performance, but the prediction of the remaining 

algorithms provide useful information to improve the ensemble prediction. 

In addition to a comparison of the accuracy of the five base learners, the convenience of 

using sMAPE instead of MAPE can also be appreciated. In general, the standard deviation 

of both metrics is generally big, which could be due to a bad quality of the input data set, 

as will be explored in a later section. Nevertheless, both the mean and the SD MAPE 
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increase with respect to the corresponding mean and SD sMAPE. An examination of the 

individual predictions and scores of the test buildings show that for two of the buildings, 

the predicted profiles are greater than the real profiles. This is severely penalized by the 

MAPE metric, and could lead to misinterpretation of the results, as it is the case of the 

GBDT in Figure 5.1. Predictions of the GBDT are generally closer to the real profile than 

LR for example, but the positive errors in two buildings result in an extreme increase of 

the MAPE. For this application, sMAPE proves to be a robust metric that can be used to 

adequately compare the model performance, without losing the interpretability of the 

MAPE. 

 

5.2 Classification and clustering results 

The second model proposed is slightly more complex than the previous regression model 

since it has more steps. In the following, each step will be analyzed, and the errors 

associated to each step will be exposed. In the first step, load profiles are clustered as 

depicted in Figure 5.2. Although the clusters with more variance such as the top right one 

could benefit from the increase of the number of clusters, it would have a negative effect 

on the classification task. Therefore, five clusters were selected for the data set. 

 

Figure 5.2:  Representation of the load profiles from the five clusters and their 

corresponding cluster profile. 
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An interesting metric relating the clustering process is the error of assigning a cluster 

profile to the given buildings. For the base case, the mean MAPE of the normalized 

training profiles with respect to the normalized cluster profile is 7.20% and the mean 

sMAPE is 7.29%, obtaining very similar errors for the test profiles (7.17% and 7.68%). 

This means that, even if the classifier had an ideal performance, and the regressor was 

able to predict the actual maximum load, these would be the errors of the estimations. If 

a larger data set was available, the errors could easily be reduced by assigning more 

suitable cluster profiles.  

In the second stage, buildings are classified into the previous clusters. It can be 

appreciated in Table 5.2 that the accuracy of the classifiers is relatively low. In addition, 

though the validation accuracy increases for the three studied cases with the ensemble 

predictions, only in the base case does the test accuracy actually improves. With such a 

misclassification, the error of the normalized profiles rises to 23.49% in the case of the 

mean MAPE and 20.40% in the case of the mean sMAPE. 

 

  
Gradient boosting Random Support-vector 

Ensemble 
decision tree forest machine 

Accuracy [%] 35.57 42.86 14.29 50.00 

 

Table 5.2:  Accuracies of the classification of normalized profiles for the modeling of 

load profiles in April. 

 

The third stage corresponds to the prediction of the maximum load, which follows an 

analogous process to the previous model and the results are presented in Table 5.3. In the 

same way, similar insights can be obtained from the results, such as that the LR still shows 

bad performances while the best base learner is the RF, and the stacked algorithm derives 

in an important decrease of both errors. 

 

  MAPE [%] 
sMAPE 

[%] 

Linear regression 80.59 69.37 
Support-vector machine 58.20 48.62 
Random forest 34.96 33.09 
Gradient boosting decision tree 41.34 34.93 
Ensemble 30.63 29.36 

 

Table 5.3:  Performances of the maximum load regressions for the modeling of load 

profiles in April. 

 

In the final stage, the predicted normalized profiles and the predicted maximum load are 

combined to obtain the predicted load profiles. The resulting prediction errors are 

presented in Table 5.4.  
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  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Clustering and  

classification 
45.17 33.27 38.45 19.53 

 

Table 5.4:  Performances of clustering and classification model for the modeling of load 

profiles in April. 

 

An additional interesting reference value of the both errors are the corresponding errors 

in the case that the classification was perfect, and all the buildings were assigned to their 

real cluster. For the mentioned case, the mean MAPE would decrease to 39.96% and the 

mean sMAPE to 37.20%, which is not a significant improvement. This comparison 

illustrates that the critical stage of the second proposed model is the regression analysis. 

To finish with this section, Figure 5.3 illustrates two predicted load profiles as well as the 

real profiles of the corresponding buildings. 

 

 

Figure 5.3:  Comparison of the predicted profiles of the second model and the real 

profiles of the test buildings. 
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5.3 Comparison of models 

Considering the results obtained for both proposed models, it is possible to compare the 

performances in order to determine the best model. Table 5.5  presents the performance 

metrics for both models. It can be appreciated in the base case, as well as in the other two 

cases (Table A.9 and Table A.10), that the regression model performs better than the 

clustering and classification model, improving the performance in these cases of about 10 

to 25% compared to the latter model, which is a significant improvement.  

 

  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Regression 39.36 28.98 32.79 17.90 
Clustering and 

classification 
45.17 33.27 38.45 19.53 

 

Table 5.5:  Comparison of performances of the two proposed models for the modeling 

of load profiles in April. 

 

It should be noted that the presented results are very dependent on the data set, and an 

increase of the data set size would lead to better performances. For instance, as it was 

mentioned in section 4.3.2, the clustering and classification model suffers more heavily 

the reduced number of samples of the training set, increasing the error associated to 

clustering and classification. Therefore, an increase of the number of buildings used to 

train the models could derive in important improvements of both but, especially, this 

second one. However, even if the number of samples increases drastically, the drawback 

of this second model is that errors of each step are accumulated, while the regression 

model can only have one source of error. The problem of this situation is that the error 

associated to regression, which leads to the total error of the first model, is also present 

in the second model, with only small improvements, meaning that the error of the second 

model is almost determined to be greater than the error of the first one. The unique way 

of obtaining a competitive model implemented with clustering and classification would 

be an implementation that avoids the regression step, as it was proposed by McLoughlin 

et al. [17], although an excessive number of buildings would be needed to train the model, 

which is not likely to be possible or worthwhile. 

For these reasons, it can be concluded that the proposed model in the first instance is the 

most suitable to model the load profiles of non-residential buildings since it generates 

more accurate load profiles than the second one, showing that ensemble learning methods 

are a robust tool to improve the accuracy of a model. 

Even though the presented results can be considered fairly good, more accurate 

predictions, in terms of mean MAPE and mean sMAPE, would be needed in order to 

obtain a useful tool for the presented real-world applications. However, a close 

examination of the individual predicted load profiles can offer a very interesting insight 

of the sources of error of the models. For instance, very good predictions are obtained for 

some buildings, as depicted in Figure 5.4, where the MAPE and sMAPE do not exceed 

15%. These are very good predictions, which suggest that the predictive models proposed 
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in this work can achieve very accurate results and could indeed be reliably used for the 

intended purpose. 

 

Figure 5.4:  Load profiles predicted by both models compared to the real profile from 

the test set (I). 

 

In contrast, for several buildings, the predicted profiles are far from the real profiles, 

which are the ones leading to the relatively large mentioned errors. However, for most of 

these buildings, none of the models is able to obtain a good prediction and, moreover, the 

predicted profiles are systematically below the real profiles in all these cases. Figure 5.5 

illustrates an example of this situation. A further examination of the original data sets 

shows that, for such situations, almost no appliances were reported, resulting in an 

extremely large proportion of zero values  regarding appliance features in the resulting 

input set. Although the situation of having a very limited number of appliances is perfectly 

possible, it becomes unlikely for buildings as the one presented in Figure 5.5, where the 

building has a high power consumption, indicating that the source of error in these 

situations could be the bad quality of the given data. For these circumstances, the models 

have no chance to quantify the relation between the energy consumption and the 

appliances. In addition, the missing values which were extensively discussed in 

section 4.2.3 could also have a negative effect on the predicted load profiles, since 

imputed values have an intrinsic error. 

The obtained results illustrate the relevance of the quality of data when performing a 

predictive task. Incomplete or erroneous input data will lead, not only to a worse 

performance for the samples affected by the lack of information as it has been explained, 

but also for any other building with complete information, since the model will have been 

trained with the erroneous samples that will hinder the modeling of all the buildings. It is 

probably the fact of having such an incomplete input data set what results in high 

nonlinearities that make linear algorithms unsuitable for the proposed task, in favor of 

other algorithms such as random forests that are able to handle this problem. 
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Figure 5.5:   Load profiles predicted by both models compared to the real profile from 

the test set (II). 

 

5.4 Analysis of dependencies between load profiles and features 

Besides the generation of load profiles, this project aims to obtain the main dependencies 

between the load profiles of the studied non-residential buildings and their selected 

attributes regarding the appliances and rooms. To achieve this purpose, certain algorithms 

such as linear regression or tree-based algorithms can be used to assess the importance of 

the input features and therefore will be presented in this section. In order to provide the 

most detailed information regarding the mentioned dependencies, the regression model 

will be used for this task since a time decomposition of the dependencies can be made.  

Tree-based algorithms offer useful tools to evaluate the importance of features to fit the 

model. These algorithms provide the fraction of the total divisions that each feature was 

used to split the input space during training. Therefore, the provided information should 

be understood as how important each feature for the model was to fit the data. In this 

sense, even if the importance of a feature is normally related to a major contribution to 

the output, it does not necessarily imply it. For instance, the positive or negative effects 

of the features in the output cannot be evaluated. Figure 5.6 and Figure 5.7 illustrate the 

relative importance of the given appliances (aggregating individual features) and of the 

most important room types respectively. The calculation of each feature importance is 

made by averaging the relative importance obtained with the RF and the GBDT.  

Regarding appliances, ventilation devices are clearly the most relevant for the model, 

accounting for almost half of the total importance. The fact of being the appliance which 

included more information as different features also contributes to this situation. It is not 

surprising to see that the importance of features has two differentiated time intervals, 

corresponding to the working (8h-18h) and non-working hours. Figure A.1 summarizes 

the information of each appliance for three time intervals of the day, related to working 

and non-working hours. It should be noted, for instance, that the decrease of the relative 

importance of the ventilation does not mean that it becomes less relevant in the sense that 
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it derives in a lower increase of the output power. In fact, since the total output power 

increases more intensively, ventilation devices derive in a greater output power than for 

the previous hours. The only reason for the mentioned decrease is the increase of the 

importance of other features such rooms and heating which did not had a high influence 

in other hours. The obtained results are equivalent to the ones obtained for the modeling 

of load profiles in July (Figure A.2) and December (Figure A.3), standing out the 

significant increase of the importance of the ventilation for the first case, and the heating 

for the second. 

 

 

Figure 5.6:  Relative importance of the 5 appliance types for the modeling of load 

profiles in April. 

 

Regarding room types, Figure 5.7 shows that technical equipment rooms, where most of 

the building equipment is located, are the most relevant for the model. However,  their 

relevance is far from the ventilation appliances. An important insight can be obtained 

from features such as heating devices or traffic area, office and WC rooms. In contrast to 

ventilation devices or technical equipment rooms, their importance drastically increases 

during the working hours. This can be understood in the way that, while the latter 

contribute more as a shift of the average power, the first ones have a greater effect on the 

shape of the profile. The mentioned variation of the shape usually corresponds to the 

working hours. Therefore, the relevance of office, WC or traffic area rooms is likely to 

come from their direct relation to the number of people working in the building, which 

has a considerable effect on the increase of power consumption during these hours.  As 

with appliances, Figure A.4 summarizes the information of each of these rooms for the 

mentioned three time intervals, while Figure A.5 and Figure A.6 show the relative 

importance of the room types for July and December, respectively. 
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Figure 5.7:  Relative importance of the 5 most relevant room types for the modeling of 

load profiles in April. 

 

Given the importance of ventilation appliances, a further study of the relative importance 

of the selected features should be done in order to analyze the importance of each type of 

ventilation appliances, which is illustrated in Figure 5.8. It can be appreciated that central 

and room devices are the most influent on the energy consumption, while wall devices 

are almost neglectable. In contrast, the division between ingoing, outgoing and circulating 

devices does not derive in a significant difference of the importance. In addition, heating 

and cooling power features outstand as significant features. Ultimately, the same insights 

can be obtained from load profiles in July (Figure A.7) and December (Figure A.8), 

perceiving in the latter a relevant increase of the heating power importance. 
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Figure 5.8:  Mean relative importance of ventilation features for the modeling of load 

profiles in April. 

 

The main disadvantage of using the presented tool for the dependency analysis is the 

impossibility of assessing the positive or negative effects of the attributes to the power 

consumption. To infer this kind of relation, linear algorithms can offer a good solution. 

The implementation of linear regression algorithms was explained in section 3.1.5.1, 

where the parameters corresponding to the slope of the function with respect to each 

variable are estimated. In consequence, these parameters mean how much does the output 

vary when the respective feature is varied. Although this would be a suitable way of 

extracting the desired dependencies, the aforementioned fact that the problem is not linear 

means that the extracted relations are not as reliable as the ones already shown in this 

section. In addition, due to the presence of negative values, they cannot be aggregated, 

leading to an undesired complexity of the results. Therefore, the main insight to be taken 

from the linear regression coefficients is the direction of the relation between power 

consumption and features. To illustrate this, only an exemplary result is shown in 

Figure 5.9, corresponding to a non-working hour of the base case. For simplicity, features 

without influence in the model (their coefficient is 0) are excluded. It can be observed 

that, while most of the features have a positive effect on the output power, others such as 

appliances ages and the heating non-electrical power source feature show a negative 

effect on the output. 
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Figure 5.9:  Linear regression parameter values of a non-working hour for the 

modeling of load profiles in April. 
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5.5 Modeling of the weekly energy consumption  

This last section of the chapter will present the modeling of the load profile of a complete 

week for the studied buildings. The implemented models can be used to model the load 

profiles of different seasons using the same input data. In the same way, they can be 

trained with load profiles from different days, for instance, working and non-working 

days. Therefore, these types of load profiles can be modeled separately and then be 

combined to generate the load profile of a week. An exemplary profile is depicted in 

Figure 5.10. For simplicity, it has been assumed that the load profile does not vary 

significantly from one day to another of the same type, which is the common case. 

 

 

Figure 5.10:  Example of the modeling of the weekly load profile of a building with 

both approaches. 
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6 Conclusions and outlook 

 

6.1 Conclusions  

In this work, two predictive models for the top-down modeling of load profiles for non-

residential buildings are developed. The first model consists on a regression analysis for 

the energy consumption of every hour while the second model is based on the clustering 

and classification of normalized load profiles combined with the regression of the 

maximum load. Both models are composed of several machine learning algorithms, for 

instance, random forests, support-vector machines, gradient boosting decision trees, 

artificial neural networks and linear regression, and then they use a stacking method, to 

improve the prediction performance. Stacking is an ensemble learning method that 

consists on using a predictive algorithm which uses the predictions from the previous 

models as input to predict the final output. 

Despite the presented models were developed to be trained with a set of data from non-

residential buildings in order to predict the load profiles of other buildings, they can be 

used to model any type of buildings, since the number of input parameters is flexible.  

Results demonstrate that the implemented models can accurately predict load profiles, 

proving to be useful tools for the intended purpose of modeling load profiles. However, 

performances suffer from the lack of quality of the input data and thus, a proper evaluation 

should be made with higher quality data. For all studied cases from the given buildings, 

the regression model obtained the best performance. This is due to the fact that both 

approaches perform a regression analysis which derives in similar errors, but the second 

approach includes the classification and clustering steps, resulting in a decrease of the 

performance. Regarding the algorithms, random forests proved to perform better than any 

other for this specific data set. Moreover, the use of an ensemble method, also 

implemented with a random forest, results in an increase of the performance with respect 

to the other algorithms. 

In addition, the algorithms composing the regression model are used to determine the 

dependencies between the load profiles and the appliances and rooms of the buildings. 

Ventilation devices show to be more important for the model than any other room or 

appliance, accounting for about half of the total importance of the features. The time 

decomposition of the dependencies show that they can generally be divided into three 

different time intervals corresponding to the working and non-working hours. During the 

working hours, the dependency between load profiles and heating devices and rooms such 

as offices, traffic areas and WCs increases significantly, meaning that they have a high 

influence on the variations of the energy consumption during the day. This situation is 

probably due to the relation of the latter room types to the occupancy of buildings, which 

has a direct effect on energy consumption. 
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6.2 Outlook 

Even though the implemented models, and especially the regression model,  proved to be 

suitable to accomplish the intended task, the proposed methodology could be improved 

in different aspects. 

In any case, the improvement of the data quality is of major importance in order to do a 

proper evaluation of the models and obtain significantly better results. It would be 

preferable to have a smaller number of measured features if this enables to have a more 

complete and correct input data set.  

The inferred dependencies between the load profiles and certain room types suggest that 

people-related room types can have a high influence on the variations of the energy 

consumption during the day. This implies that the inclusion of general information about 

the building and particularly occupancy information could provide extremely useful 

information for the model and derive in drastic increases of accuracy, without needing to 

make any modification of the model. 

Regarding the data preprocessing, further feature selection techniques should be explored. 

The current methodology was implemented in order to extract all the dependencies 

between load profiles and features and hence, feature selection was not performed. 

However, the current data set has a high dimensionality, and results have demonstrated 

that many features are not relevant for the predictive models. Therefore, feature selection 

techniques such as greedy search would allow an important reduction of the 

dimensionality of the data, simplifying the prediction process, and could even lead to an 

improvement of the performance. 

The implementation of the model could also be modified to achieve a wider modeling 

capability. The inclusion of seasonal or mean temperature variables could allow the 

modeling of load profiles for specific times of the year without the need of modeling them 

separately. This is a similar approach to the one proposed by Wang et al. [9]. The 

implemented approach would be essentially the same as proposed in this work, but the 

load profiles of different seasons could be trained at the same time and therefore, they 

would be treated as different samples. 

A last ampliation of the model, even more ambitious than the previous one, would involve 

the increase of the number of buildings that can be modeled. With the actual 

implementation, only load profiles of buildings from the same population, which in this 

case are the buildings from JRC, can be modeled. However, the collection of building 

data coming from a wider geographic area would radically increase the potential of the 

proposed models, being able to predict profiles of non-residential buildings even at a 

country level. To achieve such purpose, the inclusion of geographic variables would be 

necessary. 
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Appendix A 

  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Linear regression 118.98 107.96 78.04 30.84 

Support-vector machine 82.22 74.11 57.65 24.97 

Random forest 50.00 43.96 37.49 22.62 

Gradient boosting decision tree 61.91 46.32 44.34 21.02 

Artificial neural network 139.37 149.74 69.42 29.17 

Ensemble 46.88 38.96 36.05 19.64 

 

Table A.1: Performances of the regression model for the modeling of load profiles in 

July. 

 

  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Linear regression 50.78 39.45 44.05 26.64 

Support-vector machine 47.77 33.10 51.00 29.44 

Random forest 34.33 26.05 35.69 24.90 

Gradient boosting decision tree 65.89 41.02 56.43 32.08 

Artificial neural network 91.35 137.37 60.75 41.24 

Ensemble 32.41 24.94 32.75 22.97 

 

Table A.2: Performances of the regression model for the modeling of load profiles in 

December. 

 

  
Gradient boosting Random Support-vector 

Ensemble 
decision tree forest machine 

Accuracy [%] 30.77 23.08 30.77 30.77 

 

Table A.3: Accuracies of the classification of normalized profiles for the modeling of 

load profiles in July. 

 

  
Gradient boosting Random Support-vector 

Ensemble 
decision tree forest machine 

Accuracy [%] 28.57 42.86 28.57 42.86 

 

Table A.4: Accuracies of the classification of normalized profiles for the modeling of 

load profiles in December. 
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MAPE [%] sMAPE [%] 

Linear regression 43.66 43.43 
Support-vector machine 38.76 46.76 
Random forest 27.91 30.34 
Gradient boosting decision tree 41.15 43.65 
Ensemble 25.96 28.67 

 

Table A.5: Performances of the maximum load regressions for the modeling of load 

profiles in July. 

 

  MAPE [%] sMAPE [%] 

Linear regression 71.06 65.96 
Support-vector machine 45.01 45.09 
Random forest 27.93 29.64 
Gradient boosting decision tree 34.90 33.53 
Ensemble 23.69 25.73 

 

Table A.6: Performances of the maximum load regressions for the modeling of load 

profiles in December. 

 

  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Clustering and  

classification 
42.33 41.08 42.36 25.98 

 

Table A.7: Performances of clustering and classification model for the modeling of load 

profiles in July. 

 

  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Clustering and 

classification 
60.48 45.15 50.57 19.16 

 

Table A.8: Performances of clustering and classification model for the modeling of load 

profiles in December. 

 

  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Regression 32.41 24.94 32.75 22.97 

Clustering and  

classification 
42.33 41.08 42.36 25.98 

 

Table A.9: Comparison of performances of the two proposed models for the modeling of 

load profiles in July. 
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  mean MAPE [%] SD MAPE [%] mean sMAPE [%] SD sMAPE [%] 

Regression 46.88 38.96 36.05 19.64 

Clustering and  

classification 
60.48 45.15 50.57 19.16 

 

Table A.10: Comparison of performances of the two proposed models for the modeling 

of load profiles in December.  

 

 

Figure A.1:  Relative importance of appliances during the three intervals of a day for 

the modeling of load profiles in April. 

 

 

Figure A.2:  Relative importance of the 5 appliance types for the modeling of load 

profiles in July. 
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Figure A.3:  Relative importance of the 5 appliance types for the modeling of load 

profiles in December. 

 

 

 

 

Figure A.4:  Relative importance of most relevant room types during the three intervals 

of a day for the modeling of load profiles in April. 
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Figure A.5:  Relative importance of the 5 most relevant room types for the modeling of 

load profiles in July. 

 

 

 

 

Figure A.6:  Relative importance of the 5 most relevant room types for the modeling of 

load profiles in December. 
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Figure A.7:  Mean relative importance of ventilation features for the modeling of load 

profiles in July. 

 

 

Figure A.8:  Mean relative importance of ventilation features for the modeling of load 

profiles in December. 


