% @
S,
N me.

COMlLLAS

ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAl)
GRADO EN INGENIERIA INDUSTRIAL

Especialidad de Organizacion Industrial

ANALYSIS AND OPTIMIZATION OF
VEHICLE ROUTES AND DRIVER
ASSIGNMENT FOR TRANSPORTATION
NETWORK COMPANIES

Autor: Alvaro Serrahima de Bedoya
Director: Ali Haghani

Madrid
Junio 2019

AUTORIZACION PARA LA DIGITALIZACION, DEPOSITO Y DIVULGACION EN RED DE
PROYECTOS FIN DE GRADO, FIN DE MASTER, TESINAS O MEMORIAS DE
BACHILLERATO

1°. Declaracion de la autoria y acreditacion de la misma.
El autor D. Alvaro Serrahima de Bedoya DECLARA ser el titular de los derechos de propiedad
intelectual de la obra: Analysis and optimization of vehicle routes and driver assignment for

Transportation Network Companies, que ésta es una obra original, y que ostenta la condicion de
autor en el sentido que otorga la Ley de Propiedad Intelectual.

2° Objeto y fines de la cesion.

Con el fin de dar la maxima difusion a la obra citada a través del Repositorio institucional de la
Universidad, el autor CEDE a la Universidad Pontificia Comillas, de forma gratuita y no exclusiva,
por el maximo plazo legal y con ambito universal, los derechos de digitalizacion, de archivo, de
reproduccion, de distribucion y de comunicacion publica, incluido el derecho de puesta a disposicion
electronica, tal y como se describen en la Ley de Propiedad Intelectual. El derecho de transformacion
se cede a los unicos efectos de lo dispuesto en la letra a) del apartado siguiente.

3. Condiciones de la cesion y acceso
Sin perjuicio de la titularidad de la obra, que sigue correspondiendo a su autor, la cesion de
derechos contemplada en esta licencia habilita para:

a) Transformarla con el fin de adaptarla a cualquier tecnologia que permita incorporarla a
internet y hacerla accesible; incorporar metadatos para realizar el registro de la obra e
incorporar “marcas de agua” o cualquier otro sistema de seguridad o de proteccion.

b) Reproducirla en un soporte digital para su incorporacion a una base de datos electronica,
incluyendo el derecho de reproducir y almacenar la obra en servidores, a los efectos de
garantizar su seguridad, conservacion y preservar el formato.

c) Comunicarla, por defecto, a través de un archivo institucional abierto, accesible de modo
libre y gratuito a través de internet.

d) Cualquier otra forma de acceso (restringido, embargado, cerrado) debera solicitarse
expresamente y obedecer a causas justificadas.

e) Asignar por defecto a estos trabajos una licencia Creative Commons.

f) Asignar por defecto a estos trabajos un HANDLE (URL persistente).

4°. Derechos del autor.
El autor, en tanto que titular de una obra tiene derecho a:
a) Que la Universidad identifique claramente su nombre como autor de la misma
b) Comunicar y dar publicidad a la obra en la version que ceda y en otras posteriores a través
de cualquier medio.
c) Solicitar la retirada de la obra del repositorio por causa justificada.
d) Recibir notificacion fehaciente de cualquier reclamacion que puedan formular terceras
personas en relacion con la obra y, en particular, de reclamaciones relativas a los derechos
de propiedad intelectual sobre ella.

5°. Deberes del autor.
El autor se compromete a:
a) Garantizar que el compromiso que adquiere mediante el presente escrito no infringe ningun
derecho de terceros, ya sean de propiedad industrial, intelectual o cualquier otro.
b) Garantizar que el contenido de las obras no atenta contra los derechos al honor, a la
intimidad y a la imagen de terceros.
¢) Asumir toda reclamacion o responsabilidad, incluyendo las indemnizaciones por dafios, que
pudieran ejercitarse contra la Universidad por terceros que vieran infringidos sus derechos e
intereses a causa de la cesion.

d) Asumir laresponsabilidad en el caso de que las instituciones fueran condenadas por infraccion
de derechos derivada de las obras objeto de la cesion.

6°. Fines y funcionamiento del Repositorio Institucional.

La obra se pondra a disposicion de los usuarios para que hagan de ella un uso justo y respetuoso
con los derechos del autor, segun lo permitido por la legislacion aplicable. y con fines de estudio,
investigacion, o cualquier otro fin licito. Con dicha finalidad. la Universidad asume los siguientes
deberes y se reserva las siguientes facultades:

» La Universidad informarda a los usuarios del archivo sobre los usos permitidos. y no
garantiza ni asume responsabilidad alguna por otras formas en que los usuarios hagan un
uso posterior de las obras no conforme con la legislacion vigente. El uso posterior. mas alla
de la copia privada. requerird que se cite la fuente y se reconozca la autoria. que no se
obtenga beneficio comercial. y que no se realicen obras derivadas.

» La Universidad no revisara el contenido de las obras. que en todo caso permanecerd bajo
la responsabilidad exclusive del autor y no estard obligada a ejercitar acciones legales en
nombre del autor en el supuesto de infracciones a derechos de propiedad intelectual derivados
del depdsito y archivo de las obras. El autor renuncia a cualquier reclamacion frente a la
Universidad por las formas no ajustadas a la legislacion vigente en que los usuarios hagan uso
de las obras.

» La Universidad adoptara las medidas necesarias para la preservacion de la obra en un futuro.

» La Universidad se reserva la facultad de retirar la obra. previa notificacion al autor. en
supuestos suficientemente justificados. o en caso de reclamaciones de terceros.

Madrid. a 27 de junio de 2019

ACEPTA

Motivos para solicitar el acceso restringido. cerrado o embargado del trabajo en el Repositorio
Institucional:

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el titulo
ANALYSIS AND OPTIMIZATION OF VEHICLE ROUTES AND DRIVER
ASSIGNMENT FOR TRANSPORTATION NETWORK COMPANIES

en la ETS de Ingenieria - ICAI de la Universidad Pontificia Comillas enel
curso académico 2018-2019 es de mi autoria, original e inédito y

no ha sido presentado con anterioridad a otros efectos. E| Proyecto no es

plagio de otro, ni total ni parcialmente v la informacién que ha sido tomada

de otros documentos esta debidamente referenciada.

Fdo.: Alvaro Serrahima de Bedoya Fecha: 27/ Junio/ 2019

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

% @
S,
N me.

COMlLLAS

ESCUELA TECNICA SUPERIOR DE INGENIERIA (ICAl)
GRADO EN INGENIERIA INDUSTRIAL

Especialidad de Organizacion Industrial

ANALYSIS AND OPTIMIZATION OF
VEHICLE ROUTES AND DRIVER
ASSIGNMENT FOR TRANSPORTATION
NETWORK COMPANIES

Autor: Alvaro Serrahima de Bedoya
Director: Ali Haghani

Madrid
Junio 2019

ANALYSIS AND OPTIMIZATION OF VEHICLE ROUTES AND DRIVER
ASSIGNMENT FOR TRANSPORTATION NETWORK COMPANIES

Autor: Serrahima de Bedoya, Alvaro
Directores: Haghani, Ali
Entidad Colaboradora: ICAI - Universidad Pontificia Comillas

Los avances en tecnologia han permitido que surja una nueva forma de movilidad, las empresas
de vehiculos de transporte con conductor (VTCs). Desde su llegada, muchos ambitos del
transporte han sufrido cambios. El servicio VTC permite a los usuarios obtener un transporte
rapido, flexible y barato, y para los conductores es una fuente de ingresos sencilla. Esto ha hecho
que otros servicios como el transporte publico o los taxis se han visto afectados. Este tltimo, en
mayor medida. Alli donde llegan los VTC el sector del taxi sufre. Esto se debe principalmente a
que las VTC ofrecen un servicio muy similar, pero mas eficiente y mejor valorado. Esto lo
consiguen mediante programas de optimizacion de rutas y asignacion de conductores como el
que se pretende disefiar en este proyecto. Ademas de ello, estas empresas aumentan su eficiencia
gracias al uso de redes neuronales que analizan los datos obtenidos por los conductores para
detectar patrones en la distribucion de la demanda, permitiendo predecir donde y cudndo se
produciran altas demandas de viajes. Por otro lado, sistemas como los viajes compartidos, una
opcion mediante la cual los pasajeros se prestan a compartir servicio con otros usuarios, permiten
a los programas de optimizacion una mayor variedad de rutas posibles, haciendo que los viajes
sean mas eficientes.

Sin embargo, no todo lo que ofrece este nuevo servicio son ventajas. En muchos casos el uso de
VTCs trae consigo una disminucion del uso de transporte publico y un aumento del uso del
coche, provocando un aumento de las emisiones y la congestion en ciudades. En otros casos, en
cambio, el uso de VTC complementa el uso de transporte publico y en ocasiones lleva a mas
personas a dejar de depender de sus vehiculos privados. Si este servicio continiia mejorando,
podria llevar a una reduccion de la posesion de coches. Una forma en que este servicio podria
alcanzar el nivel de fiabilidad suficiente para que la gente esté dispuesta a renunciar a tener
coches privados es a través de los coches autébnomos. Los coches autonomos, unidos con
empresas VTC, podrian reducir substancialmente el nimero de coches en la carretera ya que,
actualmente, los coches pasan alrededor del 95 por ciento del tiempo aparcados. El nimero de
coches necesarios para proporcionar servicio a todo el mundo seria mucho menor gracias a los
VTCs auténomos. También se reduciria el nimero de accidentes, las emisiones, y la congestion
en las carreteras. Algunas VTC como Lyft o Uber ya han empezado a trabajar en este servicio.
Pero para conseguir un servicio fiable, es necesario entrenar las redes neuronales que componen
los coches autonomos a través de datos en carretera. Cuanto mayor y mas variado sea el nimero
de datos mas eficiente sera el servicio. Esto, ademas, contribuiria a la hora de entrenar las redes
neuronales de prediccion de la demanda, aumentando su precision.

Utilizando el programa de optimizacion FICO Xpress, se ha elaborado un programa de disefio de
rutas y asignacion de pasajeros. Tras revisar estudios anteriores realizados sobre problemas
parecidos, se disefia una formulacién que obtiene resultados de manera eficiente, proponiendo
formas de mejorar el codigo para que el tiempo de computacion necesario sea pequefio. También
se plantean distintos enfoques a la minimizacion de las rutas. Estos enfoques varian en cual es la
variable que se desea minimizar. Hay dos enfoques principales: el primero, minimizar el coste

para la empresa disefiando las rutas mas cortas posibles; el segundo, minimizar el malestar de los
usuarios disefiando rutas que proporcionan un servicio mas rapido para los usuarios. Utilizando
el programa y una serie de datos generados aleatoriamente se estudian las diferencias que estos
dos enfoques crean en el disefio de las rutas, comparando la distancia, el tiempo de espera, y la
eficiencia del servicio. Ademads, variando los parametros basicos del programa, se estudiara de
qué forma distintas variaciones en la demanda y el servicio prestado modifican las rutas
disefiadas. Por ejemplo, que cambios se producen si uno de los coches disponibles rechaza
proporcionar el servicio. O cuanto mejora la eficiencia de las rutas al anadir la opcioén de que los
usuarios compartan servicio. Por ltimo, se propone un tercer enfoque de minimizaciéon que
mezcla los dos enfoques anteriores, de forma que el disefio de rutas se ajusta a los deseos de los
usuarios mientras que las rutas no son excesivamente largas. La comparacion de los resultados
obtenidos con este enfoque respecto a los enfoques anteriores muestra que, en ocasiones, es
posible disenar rutas que reduzcan significativamente la distancia de las rutas mientras que
siguen un servicio practicamente igual a los pasajeros.

ANALYSIS AND OPTIMIZATION OF VEHICLE ROUTES AND DRIVER
ASSIGNMENT FOR TRANSPORTATION NETWORK COMPANIES

Author: Serrahima, Alvaro
Directors: Haghani, Ali
Collaborating Entity: ICAI - Universidad Pontificia Comillas

New advances in technology have allowed for a new mobility service to emerge, the
Transportation Network Companies (TNCs). Since their introduction, the transportation has
experienced some changes. TNCs services provide users with fast, flexible and cheap trips, and
it’s also for many users a simple source of income. This has affected other services like public
transportation or taxis. Studies have shown that the introduction of TNCs in a market brings a
reduction of taxi demand. The main cause for that is that TNCs provide a similar service, but in a
more efficient way. Users generally rate TNCs service higher than taxi. One of the reasons for
that is the use of optimization programs for the design of routes and assignation of drivers to
passengers, like the one which will be designed in this project. In addition to that, service
efficiency is increased through the use of neural networks, which analyze data obtained by
drivers in order to detect patterns in the distribution of the demand, allowing companies to
predict where and when there will be high demands for rides. On top of that, the introduction of
shared trips, where users accept to share their service with other individuals in exchange for a
lower fare, allows this programs to have a higher variety of possible routes, making trips even
more efficient.

However, not everything the TNCs offer are advantages. In many cases, the use of TNCs brings
a reduction in the use of public transportation and an increase in car usage, causing carbon
emissions and congestion in cities to rise. In other cases, instead, TNCs complement the use of
public transportation by providing first and last-mile trips, and causing more people to reduce
their private car dependence. If TNCs service continues to improve, it could lead to a reduction
in private car ownership. One of the ways this service could reach the reliability enough to
convince people to give up their car ownership is through the use of autonomous cars.
Autonomous cars, used by TNCs, shape what is called autonomous mobility-on-demand. A
service where users can request an autonomous car. With a big enough fleet of these cars, service
could be reliable and fast enough to substantially reduce the number of cars owned. Right now,
cars spend about 95 percent of the time idle. With autonomous mobility-on-demand, the number
of cars needed to provide service for all the people would be much lower. In addition, there
would be a reduction in the number of accidents, carbon emissions and congestion in cities.
Some TNCs like Uber or Lyft have already started working on this service. But to reach a
reliable service, it’s necessary to train the neural networks used by autonomous cars through on-
road data. The bigger and more varied the data is, the more efficient the cars will be. All the data
collected by these cars could also be used to further train demand prediction neural networks to
increase their accuracy.

Using the FICO Xpress optimization software, we elaborated a program for the design of TNCs
routes and assignation of passenger to users. After reviewing previous studies carried on
problems similar to the TNCs case, we developed a formulation that solves the problem in an
efficient way by proposing methods to reduce the time needed by the program to reach an

optimal solution. Also, the previous studies were used to present different approaches to the
minimization of routes. There are two main approaches: the first one, to minimize the total costs
for the company by designing the shortest possible routes; the second, to minimize user
discomfort though the design of fast routes for the users. Using the program and some different
data sets randomly generated, we studied the differences that these two different approaches
produce in the design of routes, comparing the distance, the waiting times and the efficiency of
the service. In addition, through the variation of the basic parameters of the program, we studied
how different variations in the demand and service provide modify the route designs. For
example, what changes if one of the drivers decides to reject the trip request. Or also, how route
efficiency improves when the sharing option is included in the service. Lastly, we propose a third
minimization approach that mixes the two previous approaches. This means that route designs
aim for reduced waiting times but also for short trips. The comparison of the results with respect
to the previous two approaches shows that, in some occasions, it’s possible to design routes that
significantly reduce the length of the trip while barely affecting user experience.

Content

INEEOAUCTION ...ttt ettt ettt et e st e e beesaaeeabeesabeesseeesbeenseesnseenseassseenseas 15
PART 1 — ANALYSIS OF TNCS IMPACToiiiiiieieieteeeeteee ettt 17
1.1 IMPACt ON USET EXPETIETICEvveevvieneieeitieiieeiieriieeteestteeteesteeebeesseesnseenseeenseesaesnseenseennns 17
1.2 TMPACE ON ATIVETS ..eeeuiiieiiieiieeiieeiee ettt ettt et e sttt esite e bt e ssbe et aesaseesseessseensaesnseens 19
1.3 Impact on other MODIlItY SEIVICES.....cc.eeriieciieriieiierie ettt e 19
1.4 Impact on environment and CONZESTIONccueevvieriieriieiieeieeite e eiee e eiee e eeeesiaeens 20
PART 2 — PROGRAM DESIGNooiiiitiiiiiieiieieeieese sttt 23
2.1 INEEOAUCTION. ...ecutieiieeiteeie ettt ettt ettt ettt e et esatessbe e seeenbeeseessseenseesnseenseasnseenseennseans 23
2.2 Main features Of the Program...........ccocciieiieiiieiiieiiece ettt ettt e e eaaeens 23
2.3 LATETALUIE TEVIEW ...veeeuiieiieeeriesiieeieesiteeteeseteeteesseeenseesseessseenseeanseenseessseenseesnseeseesssesnseennsenns 25
2.3.1 The Traveling Salesman Problem (TSP)ccccooviiriiiiiiiieieeeeeeee e 25
2.3.2 Dial-a-Ride Problem(DARP).........cooiiiiiie e 26

2.4 FOTMUIATIONeoutiiiiieeiieeie ettt ettt ettt e et et eebe e teeenbeeseessseensaeenseenseesnseeseennsaans 27
24,1 VATIADIES ...ttt ettt ettt e et e sbeebaeenaaen 27
2.4.2 CONSLLAINS ...vieutieiiieiieeieesiteeteeteesteeteesteesseessteesseassseeseesaseesseessseenseessseenseessseeseesnseans 28
2.4.3 MinimizZation fUNCLIONocvieiiiiiiieiieeieerite et eite et eieesae et eseaeeeeesnbeebeeesaeensaesnneens 35

2.5 XPRESS €O ...ttt sttt ettt sttt ettt ne et et et e tenseene e 39
2.0 ODSETVALIONS ...evviieiieiiieiiieeiiesiieeieesiteeteestteebeestteesbeesseessseenseeanseeseessseeseesnseeseesssesnseessseans 49
2.6.1 Comparing minimization apProachesccecueeruierieenieniieenienieesieesieesiee e esseesineens 49
2.6.2 Modifying number of cars available............ccoocuieiiiiiiiiieiiicee e 53
2.6.3 Comparing effect of Shared tripPsS.......ccveeiierieriiierierieeee e 54
CONCLUSION ...ttt sttt ettt st e sttt et e s bt e bt sat e s bt et e eatenbeenteeaeenbeenees 55

F N 030153 1T £ GO USRS 56
FUIL COTR....c.eneiee ettt ettt et sttt et sbe e b et e e 56
Results obtained from the program teStS..........cueevuieriieiiierieeiierie ettt re e 61

BIDHOZIAPNY ...ttt et st 63

Introduction

The concept of shared mobility is not completely new. In the past, when owning a vehicle was
not as common as today, carpooling and hitchhiking were common sources of transportation.
However, their use had always been limited by the lack of communication methods, which made
it complicated for people to reliably find rides. With that, the widespread of self-owned vehicles
brought the decline of shared mobility. However, in the last few years, the advances in
technology have created new opportunities for this kind of service, making it much easier for
users to request safe, reliable and on-demand rides, and also for ride providers to efficiently
provide the service. With these advances, a new kind of service emerged and it has been growing
since then: Transportation Network Companies.

Transportation Network Companies(TNCs) are on-demand ride services that connect drivers
with passengers through online-enabled applications or platforms. Drivers provide the service
using their personal vehicle and they don’t need to be licensed vehicle-for-hire drivers.

TNCs are also referred to as ridesourcing, ride-hailing, or ride-sharing, although this last name is
not precise. In comparison to ride-hailing, ride-sharing drivers usually share the same destination
with the passenger and the incentive is not always the money. Drivers that operate with TNC
services work in exchange of money, which is paid by the users through the app. Drivers often
receive 80% of the price while the company keeps the rest. These services usually include a
rating system where users can review the service obtained.

The two biggest TNCs are Uber and Lyft, and in the last years they have considerably grown. In
June 2015, the number of daily trips provided by Uber was more than 1 million worldwide
(Geier, 2015). The last data provided from Uber states that, as of December 2018, the number of
daily trips was 14 million (Uber Technologies Inc. , 2019). While Uber operates worldwide, Lyft
only provides service in the USA and in some cities in Canada. In the USA, its market share is
figured at 29-35%. There are many different TNCs all over the world with many different
characteristics. However, Uber and Lyft are the two most representative examples of the current
TNCs network and, in this project, they’ll be used to represent the way these companies operate.

This project is divided into two main sections. The first one consists on a research and analysis
of the current TNCs service, reviewing the impacts and the ways companies like Uber and Lyft
are improving the service. The second part consists on the elaboration of a computer program
that optimizes the assignation of drivers to customers and the design of routes. This program will
be used to study the results of using different optimization approaches with different sets of data.
The aim of both sections is to comprehend the operation, impact and opportunities of TNCs and
consider the ways this service could be improved in the future.

PART 1 - ANALYSIS OF TNCs IMPACT

The presence of TNCs has grown in the last years and their impacts in the modern society are
bigger every day. Some people criticize that TNCs increase the number of cars in the cities and
that this service is substituting public transportation and inducing people to use cars more,
increasing pollution and congestion. Moreover, critics argue that TNCs risk the security of the
users and harm the current transportation economy. Others, however, see it as reliable, flexible,
convenient and fast alternative that provides service for a previously unmet demand. Some even
consider it to be a revolutionary service that will bring many benefits to the way transportation is
conceived. All the impacts caused by ride-hailing services will be reviewed in this section.

1.1 Impact on user experience

The benefits that TNCs service provide are multiple. It allows users to request a ride from
almost any place, with low waiting times, relatively low prices and a good user experience.
Compared with public transport, ride-hailing is much more flexible and it works at any time
of the day. It is easy to use, since it only requires internet connection, and easy to pay, since
the payment can be done online through the app. It can even be requested by a different
person than the one riding the car. This is useful, for example, for parents that want to request
trips for their children and pay for them, or also for business that can hire trips for their
employees.

When comparing it to traditional taxi companies, the general opinion mostly indicates that
the service provided by TNCs is better. Research and data from Uber shows that the
company provides faster, cheaper and better rated service than taxi companies.

Time

A study made in San Francisco found that two thirds of the TNC users waited less than five
minutes, while, in the case of the taxis, only 35 percent waited less than ten minutes during
the week. This number is reduced to 16 percent on the weekends. (Shaheen, Chan, & Rayle,
2017). This gap in time waited is caused by the higher efficiency of the service provided by
TNCs. These companies spend a lot of resources on providing a fast and reliable service for
both users and drivers. Some of the ways they achieve that is through the use of complex
programs that design optimal routes. Also, they put a lot of effort on analyzing the huge
quantities of data they obtain from the records of their drivers. This data is used to train
neural networks whose aim is to look for patterns in customer’s behavior. Having a deep
understanding of user’s movement through the cities allows them to develop precise
predictions about where and when demands will be located.

Price

Data provided from the company Certify, in USA, showed that the average price for Lyft was
$22.51 and for Uber $30.03, while for the taxis it was $34.48 (Certify, 2015). The way Uber
and Lyft set the prices for their trips is very similar. There is a base charge and a cost per
mile and per minute costs. In addition, both companies include higher prices if the number of
requests is higher than normal at that moment of the day. Users also have the chance to

request shared trips for a lower price. In these rides, the user agrees to share the service with
other users, which sometimes means longer trips to pick up or drop off other users. In
addition to that, users can receive an even lower price if they agree to walk a small distance
to the point indicated by the app.

While in traditional taxis the price is not known until the end of the ride, TNCs generally
provide the price when the trip is requested, and that price is the final price unless something
unexpected happens. Users usually value being able to know the price before the trip is
made. It also allows them to compare the prices and length of the trips provided by different
TNCs before requesting them, increasing competitiveness between companies.

Wider service

The coverage of the service provided by TNCs is also wider, allowing for people from
underserviced areas to make use of it. It also provides service to senior and disabled people.
For example, Uber has a partnership with wheelchair accessible transportation providers to
ensure that part of his fleet can provide this service. Also, thanks to UberAssist, some Uber
drivers receive training in how to provide assistance to these people. (Ngo, 2015)

Social impact

The flexibility provided by TNCs allows individuals to use them in many different situations.
A study made in San Francisco with 380 users found that 67% of the trips were social and
16% were work related. 40% of the trips began at home. In case of social trips, Uber has a
positive impact in the reduction of driving under the influence of alcohol and other
substances. A study showed that 20% of Uber users avoided drinking and driving thanks to
the service (Rayle, Shaheen, Chan, Dai, & Cervero, 2014). Two other studies found that,
since the introduction of Uber, the number of driving accidents caused by alcohol and drugs
has been reduced. Lyft has also taken action into reducing drunk driving incidents. In 2017
Lyft and WRAP partnered to offer free rides and discounts during major drinking holidays
(Lyft, 2019). However, although these apps reduce the number of accidents caused by
substances, TNCs often cause an increase in distracted drivers (Greenwood & Wattal, 2015).
The app is the only way drivers have to accept user requests, view the routes and
communicate with them. This causes a need for the drivers to constantly use electronic
devices while driving, which is the main source of distractions. To reduce this problem, Uber
and Lyft design their apps giving a high priority to simplicity and utility. All the information
is presented to the driver in a simple and intuitive way and with minimal interaction,
reducing the distraction of the drivers.

Safety

Regarding safety, some users mistrust the reliability of the drivers. TNC drivers are not
employees of the company. TNCs don’t hire their drivers, but instead, they provide them
with a service. However, that doesn’t mean that companies don’t take an active place on
ensuring the user safety. Uber, for example, goes through a screening check of their driver’s
skills and criminal history before authorizing trips through the app. It also counts with a
support team, coverage on the trips, and an app that includes an emergency button and the

option to share the trip details with other people. In addition to that, to enforce user
confidence, they count with a rating system that prioritizes trips with drivers that have high
ratings. Lyft also counts with similar measures too. On top of that, some Governments have
also started to take measures to enforce the safety of the service. In California, for example,
TNCs drivers must get a specific license, go through training programs, and receive a
criminal check (Shaheen, Chan, & Rayle, 2017).

1.2 Impact on drivers

Many drivers have found in TNCs a reliable source of income. As explained before, drivers
are considered independent contractors. They obtain the possibility to use the TNC resources
and, in exchange, the company keeps a percentage of the fare. In the case of Uber, drivers
keep the 80%, but they are responsible for fuel, maintenance and part of the insurance (Ngo,
2015). In most companies, drivers must receive a training before they can start providing the
service. Apart from that, the service is very flexible for drivers. They can use their own car
and have the schedule the prefer. There are no conditions to when drivers can start and stop
providing the service and drivers can reject the trip requests. Most drivers prefer to work
part-time. An example of that is the situation in NYC, where the number of TNCs drivers is
higher than the number of taxis, but taxis still make ten times more trips, suggesting that
TNCs drivers work less hours. For many drivers, it is a relatively easy way to earn money
because the requirements are not high. However, there are some TNCs, like Cabify, who
have higher standards for their drivers. Cabify requires drivers to wear a suit, to provide users
with water, and to be very polite and keep the car clean.

The number of drivers continues to increase every day. In 2013 and 2014, the number of
drivers from Uber doubled every 6 months, and increased by tens of thousands annually
(National Academies of Sciences, Engineering, and Medicine, 2016)

1.3 Impact on other mobility services

The arrival of TNCs to the transportation landscape has affected the use of other mobility
services.

Public transport

Regarding public transportation, there is some concern about weather ride-hailing is used as a
substitution for public transportation. If that is the case, that would mean an increase in
traffic, pollution and congestion in cities. On the other side, ride-hailing services might be
providing a service to people that otherwise would have used their personal vehicle. It could
also be complementing public transportation. There is multiple research on this subject.

One survey made in San Francisco to 380 TNCs users asked them, after they completed a
ride, what they would have done if TNCs hadn’t been available. Eight percent of people
answered that they wouldn’t have made the trip. Thirty percent of the people would have
used the public transit and 46 percent would have used a car. Also, 4% of the people had
used the TNC to travel from or to a public transit station, suggesting that, in those cases, ride-
hailing complemented public transportation by providing first or last-mile trips (Shaheen,
Chan, & Rayle, 2017). That is the case of passengers to use the service to access places

where public transport doesn’t reach or during after-hours, when there is no available public
transportation. In response to this problem, some jurisdictions have arranged partnerships
with TNCs to provide a solution for these trips. For example, the City of Rockford is
redirecting federal funds to fill after-hour gaps or assist places with poor bus service with the
use of TNCs services (Ngo, 2015). In Monrovia, Lyft partnered with the city to increase the
transit opportunities and to provide data that helps city officials to identify hotspots and
design a better public infrastructure. (Lyft, 2019)

Taxi

As presented before, TNCs present a better service that traditional taxis in almost every
aspect. This, added to the fact that the target market for both services is very similar, explains
why taxis decline while TNCs customers increase.

A study conducted in Vancouver showed that the growth of Uber in that market consisted
primarily on the substitution of taxi trips. There, taxi companies were generally cited to offer
a bad service. Since the entry of TNCs, there has been a reduction of 10 to 40 percent in taxi
market share. The study also found that the average occupancy of taxis was of 1.1, in
comparison to 1.8 of TNCs, which suggests that TNCs are more efficient (Ngo, 2015). There
is also another study that supports the idea that TNCs are more efficient than taxis. This
study compared the utilization rate of both services and observed that TNCs service was
more efficient. The study attributes it to more efficient matching technology, to their larger
scale, inefficiency of taxi regulation and the flexibility of Uber’s model (Cramer & Krueger,
2016).

More studies relate the decline in taxi usage with the introduction of TNCs. For example, the
number of taxi rides in NYC decreased 8% per hour in 2014 and 2015 after the introduction
of Uber in 2011 (Brodeur & Nield, 2016). Another study made in San Francisco indicated
that 39 percent of the users would have taken a taxi if the TNC service hadn’t been available
(Shaheen, Chan, & Rayle, 2017). In total, it’s estimated a reduction in taxi market share of
10-25% after two to three years of the introduction of a TNC company. That could explain
why, since 2014, there have been all over the world multiple protests from taxi drivers
against TNCs (Taylor, 2014)

Healthcare

Every year 3.6 million Americans miss their medical appointments due to lack of
transportation. This costs about $150 billions per year. Twenty five percent of lower income
patients miss or change an appointment due to lack of transportation. To solve this problem,
Lyft launched Lyft Concierge to help healthcare clients get to their appointments (Lyft,
2019). Similarly, Uber has introduced Uber Health.

1.4 Impact on environment and congestion

One of the biggest concerns about TNCs services is about weather their use leads to an
increase in emissions, which can be caused by an increased number of cars and by the
deadheading. Deadheading refers to the movement of a vehicle with no passengers on it. One
study indicates that rides-hailing drivers deadhead a lot, increasing the miles travelled and

therefore the carbon emissions (Anderson, 2014). The reason of that is that TNCs deadhead
to look for customers before and after trips. Out-of-service driving is estimated to account for
about fifty percent of total distance travelled in New York, and twenty percent in San
Francisco. In addition, between 43 and 60 percent of trips are in substitution to other methods
that wouldn’t include cars, increasing the number of cars. The results of the study made in
San Francisco concluded that the waiting time increased in roads with the presence of TNCs
as a result of increased congestion, and the disruptive effect of picking and dropping off
customers (Erhardt, y otros, 2019). Low prices offered by ride-hailing services might induce
people who currently use more sustainable services to request these services.

On the other side, there are many studies that support that the increase of TNCs usage will
eventually cause a reduction in driving and in the number of cars owned per person. Forty
percent of the people from the San Francisco study declared having reduced their driving
because of the service. (Shaheen, Chan, & Rayle, 2017). If TNCs continue to develop to the
point where it is easy for individuals to travel without owning a car, car ownership could
decrease. However, that doesn’t necessarily mean a decrease in distance traveled, but it
would probably encourage users to reduce their car usage or increase the occupancy. Some
consider that, in the future, it won’t be that common for families to own two cars as TNCs
provide for better and cheaper alternatives. The truth is that cars spend around 95 percent of
the time parked (Barter, 2013). If ride-hailing is used efficiently, this number could be
reduced to only 60% (KPMG, 2014). Owning less vehicles would result in a decrease of
vehicle emissions, congestion and a decrease of the space needed for parking. However, not
all the people is willing to give up owning a car without a completely reliable transportation
source, which is very hard to reach using traditional TNCs services. Some people think that
the solution to this problem are autonomous cars:

Autonomous cars

Not that many years ago, it was unconceivable to think about self-driven cars. Even for short
trips, the number of lines of code that a program would need to be able to solve all the
different possible permutations would be too high. However, thanks to deep learning, it
became possible. Instead of having to program each of those permutation, the machine builds
the data based on its experience.

With the introduction of autonomous cars, it also emerged a new opportunity for
transportation services, the Autonomous mobility-on-demand. With it, users can request self-
driven car trips. This could eventually reduce the cost of TNCs services. With a big enough
fleet of autonomous cars, TNCs services could be available for anyone in a very short time. It
would be possible to order a car where and whenever the user desires. Without the need of
the passenger to focus on the road, cars interiors could experience a complete remodeling,
turning them into work, entertainment or resting spaces.

This possibility is not as far as people might think. The two most popular TNCs, Lyft and
Uber, are already working on this kind of service. In December of 2017 Lyft had the first
successful test of an autonomous car in a private road, and by November of the next year it
launched its first pilot employee car. They have already provided self-driving rides to over
50,000 people in the US. And according to a study, self-driving cars could take off the road
203 million cars by 2030 (Lyft, 2019). However, Lyft states that they will never stop from
also providing human-driven service in the future. Uber is also working on this service.

Eventually, if Autonomous mobility-on-demand becomes reliable enough, it could replace
car ownership. A survey made to 32 people showed that more than half of them would
consider giving up their second car if a self-driving car could be available in less than 15
minutes. Autonomous cars would not only reduce the number of cars needed to supply the
demand for mobility, they would also decrease congestion. Just implementing a special lane
for self-driven cars in a congested highway could increase its capacity by 500 percent,
making commutes shorter (KPGM, 2013). The use of these cars could also lead to a 90
percent reduction in accidents, and carbon emissions could be reduced by a gigaton every
year (Bertoncello & Wee, 2015). However, in order to train reliable autonomous car, there is
a need to acquire traveling data. The larger and varied the data is, the more effective the car
will be. This data could be used not only to train the cars but also to identify user behaviors
and patterns in order to create more accurate predictive models, increasing the effectiveness
of TNCs even more.

PART 2 - PROGRAM DESIGN

2.1 Introduction

This part of the project consists on the elaboration of a computer program capable of optimizing
the assignation of drivers and the design of routes for customers of TNCs. Given a number of
customers who formulate requests for transportation from an initial origin (pick-up point) to a
specific destination (drop-off point) and a number of available cars to provide the service, the
aim of the program will be to design an optimal set of routes capable of accommodating all user
requests under a set of constrains.

The design of the optimal routes is characterized by the presence of two conflicting objectives:
the minimization of the operating costs and the minimization of user arriving time. Operating
costs depend on the distance driven while arriving time depends on the time difference between
the car request and the drop-off. The differences between both approaches will be studied as well
as the combination of both. Finally, the impact on environment and traffic will also be
considered.

2.2 Main features of the program

The program is designed to do the function of what a TNC matching system does. These
companies receive the information of the position of the users that request their service as well as
the destination they want to go. TNCs use this data to match drivers with requests and to
calculate the best routes that take the users to their destinations. They also indicate the price of
each trip and the estimated time of it. The aim of the program will be to emulate this service.

In practice, the number of customer requests varies a lot depending on the time of the day, the
city and many other factors that make it very hard to predict. TNCs must be able to satisfy all the
demand independently of the number of requests. On the other side, the number of cars available
to provide the service and their position is also unpredictable. It depends on the number of
available drivers at that moment and on the route they decide to make while waiting for a pick-
up request. In most companies like Uber, Lyft or Cabify, drivers drive around waiting for a
driver request nearby. For these reasons, the program created must be able to operate with any
set of data regardless of the number of users, drivers or their positions.

The software used to optimize the program is FICO Xpress Solver, a commercial optimization
solver which uses Mosel programming language. The approach used for the problem will be a
static model. That is, the program will receive the data of the drivers and customers at a certain
point of time and it will optimize the routes and assignation of drivers only for that specific
moment. All the information is known beforehand. This approach is a simplification of a real
assignation system. In practice, TNCs systems receive real-time information and are able to
adjust routes in order to meet demand.

To simulate the conditions of a real situation, the program will have a series of parameters which
will be set before running the program. These parameters are the number of customers requesting

cars and the number of cars available at a certain point of time. These numbers don’t have to
meet any conditions. As it could happen in practice, the number of requests can be higher than
the number of cars available, making it necessary for a car to provide service for more than one
user. On the contrary, the number of requests can be lower than the number of cars available,
which means that some cars won’t provide any service.

Regarding the position of cars, instead of having a fixed departure point for the cars, as it would
be the case of the bus depot for a bus transportation network, each car has a different departure
point which depends of their position when the request was made. The same happens with
customer pick-up and drop-off points. There aren’t any specified places for that. The pick-up
point is the initial position of customer when it requests the car and the destination can be any
point. To address these conditions, the program receives the data regarding the position of every
car and customer and their respective destinations and operates with that.

For more realism, the program also includes the option for passengers to request a shared trip.
Shared trips are a feature included by some TNCs like Uber or Lyft by which users accept to
share their ride with other users, usually in exchange of a reduced price. With this feature drivers
have the chance to pick up multiple customers in the same trip. Here is an example to illustrate it.
In the figure 1 below, users B and D have requested a non-shared trip, so they are taken directly
from their request point to their respective destinations C and E. In figure 2, both passengers
requested a shared trip allowing the driver to pick up both of them before dropping them off,
resulting in a shorter trip. For the second route to be possible, it’s necessary that both passengers
requested the shared trip.

Figure 1 Route without trip sharing Figure 2 Route with trip sharing

Something to highlight about the pictures above is that the driver doesn’t need to drop off the
customers in the same order they were picked up. Comparing figures 1 and 2 we can observe that
this resulted in a longer trip for user B while user D still had the same route. At one point of the
shared trip, between points D and E, both users shared the car. For the development of this
program it will assumed that all the cars providing the service are similar and have a maximum
capacity of five people inside the car. This means that the driver can only take up to four
customers at the same time. It’s also important to mention that the fact that a user requests a
shared trip doesn’t necessary imply that it will share a trip with someone. The program assigns

the optimal route based on the minimization standards and it only makes the customers share the
car it that results in a more optimal solution.

Finally, regarding time and schedules, it is a static model, so it will only be considered the
positions at a certain point of time. It will also be assumed that all users have requested a trip at
that specific moment of time. No scheduled trips are included in this approach. Users cannot
decide at what time they want the car to arrive or when they want to be delivered. This means
that users can be picked up at any moment and they want to arrive at their destination as soon as
possible.

2.3 Literature review

In this section, we will review some relevant past researches about optimization formulation that
have some similarities with the assignation problem for TNCs. Two problems will be reviewed:
the Dial-a-Ride and the Traveling Salesman problems, providing some insight about different
approaches and how that is related to our problem.

2.3.1 The Traveling Salesman Problem (TSP)

The Traveling Salesman Problem(TSP) consists on designing a route for a salesman that wants to
visit n cities and then go back to the origin. The aim is to minimize the traveling distance so that
every city is visited exactly once, starting and finishing at the same point. The Figure 3 below
illustrates an example with eight different locations: the salesman origin point and seven
destination cities.

Figure 3 Solution of a TSP

The TSP is one of the most studied optimization problems. It’s a much simpler problem than the
TNC assignation system but the basic concepts are very similar and there is a very large research
on this problem. The paper published by Orman, A.J. and Williams, H. Paul (2004) surveys
eight different formulations of the TSP as an Integer Program (IP). The survey proposes different
ways to minimize the complexity of the problem as well as ways to ensure the continuity of flow
of the solution and the staging of time. The continuity of the flow means that the movement of

people or objects though the route is continuous and logical, without any subtours. The staging
of time refers to events occurring in the order desired. These two conditions are also relevant for
the TNC problem to ensure that car routes are viable and that pick-up and drop-off points are
visited in a logical order.

2.3.2 Dial-a-Ride Problem(DARP)

The Dial-a-Ride Problem (DARP) has many similarities with the TNC problem. In the DARP,
users request transportation from specified pickup points to specified destinations. The aim is to
plan a minimum-cost set of routes and schedules that provide transportation for all requests
under a number of constrains. The most common example of it is the door-to-door transportation
for elderly and disabled people case. In the DARP, users often requests two trips per day, an
inbound and an outbound, specifying the desired time windows for pickup and/or delivery. The
main difference between the DARP problem and the TNCs assignation problem is the time span
between the request and the pick-up desired time. In the DARP, users request trips in advance,
providing the information of when they want to be picked up or arrive. Differences between the
desired and actual times create inconvenience for the users. For the TNCs requests, however,
users rarely schedule their trips. Instead, users usually request immediate trips and plan to get to
their drop-off point as soon as possible. This means that the inconvenience is created by the
length of the time they take to arrive at their destination. This distinction is what causes the main
differences between the formulations of both cases.

There are two main cases for the DARP: the static case and the dynamic case. In the static case,
all requests are known beforehand and no changes can be made once the routes have been
designed. In the dynamic case, on the contrary, information is received in real time and there is
no information about future requests. When a new request is received at time ¢, all requests
planned before ¢ have already occurred and therefore they can’t be modified. The program then
has to adapt the routes of all request planned after ¢ to include the new one. In this section, we
will not review the literature about this second case because the TNCs formulation proposed is
static and therefore has more similarities with the first case.

There are multiple previous researches on the DARP static case that include many variations.
The earliest research was carried by Psaraftis (1980) who developed a program referring the
single-vehicle case. In Psaraftis DARP there is only one vehicle which provides all the service
and there aren’t time windows. The objective function is the minimization of a weighted sum
between route total completion time and customer dissatisfaction. The author later updated this
algorithm in (1983) adding time constrains. The high complexity of this algorithm (O(n?3"))
causes that it can only be solved with relatively small instances. The largest solved contained
nine users (Cordeau & Laporte, 2007). The main differences between Psaraftis approach and the
one presented in this project is that Psaraftis algorithm only had one vehicle and it included time
constrains. Our algorithm includes multiple cars and there aren’t time window constrains.
However, one of the approaches of the minimization function that will be studied is a weighted
sum of the total distance and customer satisfaction, which is similar to Psaraftis approach.

Other approaches to the DARP problem were carried by Sexton (1979) and Sexton and Bodin
(1985b). Their solutions included clustering users in groups before solving the routes. In their
algorithms, they minimize user inconvenience as a weighted sum of two terms. The first one

being the difference between actual travel time and the direct travel time, and the second one the
positive difference between desired and actual times of arrival. With their formulation, they were
able to solve sets of data varying between seven and twenty. Another study on the DARP was
formulated by Desrosiers et al. (1986) as an integer program including time windows and vehicle
capacity, managing to get solutions for up to forty users. (Cordeau & Laporte, 2007).

A study by Borndorfer et al. (1997) uses a different approach, dividing the process in two phases.
First, it creates groups of users connected by subtours and then it connects these groups together.
Other examples like Rekiek et al. (2006) also cluster the users before creating the routes. Both
authors try to minimize the operating costs by also minimizing the number of cars. On the
formulation proposed in our project, the number of vehicles can’t be minimized as it depends on
the number of available drivers at that moment.

2.4 Formulation

The formulation for the TNCs assignation system is defined by two parameters n and m, being n
the number of users requesting the service and m the number of cars available to provide it.

In our formulation, we will take the set of total vertices as 7= {1, 2, ..., 2n+m} that includes the
total number of points given in the initial data. The size 2n+m results from n pickup points, n
drop-off points and m car initial positions. The set T is partitioned into {P, D, C} which refers to:
P={1, ..., n} the set of pickup vertices, D = {n+1, ..., 2n} the set of drop-off vertices and C =
{2n+1, ..., 2n+m} the set of car initial positions. For every user with a pickup point {7}, the
corresponding drop-off point is the vertex {i + n}

We also define the sets M = {/, ..., m} to refer to the number of vehicles available and N = {1,
..., n} for the number of user requests.

2.4.1 Variables

We define the following decision variables:

x5 = 1ifarc (i, j) is traversed by vehicle k

= Qif arc (i, j) is not traversed by vehicle k
p{‘j is the number of passengers that car & carries when traversing the arc (i, j)
fl']C if the ‘flow’ of the car £ in the arc (i, j)

Other variables included in the formulation:
d; is the distance between points 7 and j

S; = 1 if the user i requested a shared trip

= 0 if the user 7 requested a non-shared trip

2.4.2 Constrains

We will now define the constrains to which the minimization is subject to and that define de
conditions of the problem. The constrains are divided into three groups: Basic, flow and
simplification constrains.

A. Basic constrains

These constrains express the basic rules of the problem:

(1

zzx{j.=1 ViEPUD

iET kEM

This constrain stays that one car must arrive at every pickup and drop-off point. This ensures that
every point is visited once.

2)

zx}‘:zx{j. VieEPUD,VkEM

JET JET
Every car that goes to a pickup or drop-off point must leave from that point.

3)

> a1 viec

JET keM

From each car’s initial position only one car can depart.
y

4

jeT

This constrain forces each car £ to start from its respective initial position. Car positions are
placed in set C = {2n+1, ..., 2n+m} so for every car k corresponds the initial position 2n+k.

)

jer

It forces each car to return to its initial position. This constrain is only used to simplify the
formulation. In practice, TNC cars don’t need to go back to their initial position, instead they
usually just drive around waiting for the next trip request. For that reason, the distance driven by
the car from the last drop-off point back to the initial position is never included in the
minimization function so it doesn’t affect the final solution. The reason why the formulation
forces cars to go back to the initial position is that it is easier to formulate a closed route for each
car than open routes that start and end at different points.

(6)
zxgcj _ Z"fwn) Vj €P,Vk €M

€T €T

If a car picks up a customer it must also go to that customer’s drop-off point. Remember that for
a customer j the corresponding drop-off point is j+n.

(7)
ng‘km),j =0 VjeET,VkeEM

The number of passengers when the car departs from its initial position must be 0.

ZP,'%— ZP{f,- =lefj Vj € P,Vk € M

i€T i€T i€T

®)

When cars go to a pickup point, they leave with one more passenger than when they arrived.

zpffj— zpfi =lefj VjeD,Vk €M

iET iET i€T

©)

When cars go to a drop-off point, they leave with one less passenger than when they arrived
(10)

zpfj <4xxf; VijETVKEM

This constrain has two functions. First, the number of passengers in trips that are not travelled
must be 0. Secondly, the number of passengers in the car must be less than 5 at any point.

&y

zp;fj:o VjEP ,Vke€M,s;=0
i€T
For customers that don’t want to share, which are the ones with s; = 0, the number of passengers

when the car picks them up must be 0.

(12)
ko :zngj VjEP ,VkEM,s; =0
i€T
Customers that have requested non-shared trips must be taken directly from their pick-up point to
their drop-off location.

B. Flow constrains

The “flow” is a concept commonly used in transportation problems that refers to the movement
of vehicles between destinations. It’s important in these problems to ensure the continuity of
flow. This means that the vehicles follow continuous routes. Without flow constrains, subtours
are created and the routes become discontinuous. To illustrate it we can use a TSP example:

Figure 4 Subtour example with TSP

Figure 4 above shows the solution that would be obtained in this TSP example if flow constrains
weren’t included. It can be observed how the basic constrains are satisfied: every city is visited
once, there is one arc entering each city and one leaving it, and the route is minimal. However,
the route followed by the salesman is not feasible. In this example, the flow is not continuous
and two sub tours have been formed. To solve this problem, algorithms usually include this flow

conservation constrain:
Dhy=) fi=1 VieN-{1}i%]

€T LET

This constrain forces that, for every node except the node 1, the flow of the arc that enters a node
must be one unit smaller than the flow of the arc that leaves from that node. This causes that
tours can only close at the node 1, because it’s the only node that doesn’t need to follow that
rule. The image below shows a visual example of this.

f(1,2)=0 ‘;4/4

Figure 5 Subtour elimination in TSP

We can observe in the figure above that in every node the value of fincreases by 1, so the flow
continues to increase. But to close the route, it must reduce its value. For that reason, the only
way to close the route is in the initial point, where it can decrease back to 0. If the program tried
to create a subtour like in the figure 4 through the arc (3,4), then the flow difference between arc
(3,4) and (2,3) would be -2, which wouldn’t be allowed by the constrain as it is not the initial
node. In conclusion, this avoids that any subtours are created.

In the algorithm designed for the TNC assignment program we have included the same flow
variable explained, but with some variations. The constrain we included is:

ijlfi_z}ci{cj'ZZ(x}fi*dj,i) ViePUD,VkeEM

i€T iET iET

(13)

The basics behind the constrain are the same: the flow has to increase in every consecutive arc of
the tour except in the car initial points, forcing car routes to be closed paths starting and ending
at those points. However, by changing the right side of the constrain, the flow variable obtains a
second function. In this variation, the flow variable also measures the accumulated distance
driven by a car from the initial point to a given point in its route. flk] is the total distance driven
by car k£ when it arrives at node j coming from i. Instead of making that the flow must increase
by one on every node, the constrain now states that the flow difference from two consecutive
arcs is the distance of the second arc. Here is a visual example:

f(3,4)
f(5,6) =90

f(2,3) = 40
f(6,7) = 110

f(1,2) = 20

Figure 6 Flow variable measuring accumulated distance in TSP

In the figure above, we can see how the flow variable measures the accumulated distance. At the
start of the route the value is the distance between nodes 1 and 2, which is 20. Then, for the arc
(2,3), the value is the sum of the initial 20 plus the extra 20 that separate nodes 2 and 3. And it
keeps adding with every node. We can appreciate that the only point where the distance doesn’t
increase is in the node 1.

This new change allows us to keep track of the distance driven by a car at the moment it gets to
pickup and drop-off points, letting us know how long it took the driver to get there. Without this
change, it would be necessary to include a new decision variable to measure the accumulated
distance, which would need to have the same size as the flow variable. That, in addition to
variables f(i, j, k) , p(i, j, k) and x(i, j, k), would add up to four decision variables, which would
increase the complexity and make it much harder to find a solution. The reason it was possible to
include the accumulated distance into the flow variable is because it’s a value that increases with
every new arc and it never decreases. Other variables like, for example, the number of
passengers, can’t be included in the flow variable because it can either increase or decrease,
which would allow for subtours to be created.

Complementing constrain (13) there are other flow constrains needed:

(14)

k _ K
Zf(2n+k),j = Z(x(2n+k),j *dionti),) VkeEM
jeT jeT

When cars depart, their initial traveled distance is 0 so, when they arrive to their first customer,
the distance driven must be equal to the distance between those two points.

(15)

zfifc.gngj*w Vi,jET,Yk €M

This constrain does two functions. First, it sets flk]= 0 for every path (i, j) that is not traversed by
car k. And secondly, it sets a maximum value W for the flow variable. This maximum value must
be set so it’s as small as possible without affecting the final solution. The smaller it is the easier
it is to find a solution. As explained before, the flow variable represents the total distance driven
by a car from its initial position. Then, to select W, it must be the smallest possible value of fthat
we are sure it’s never going to be surpassed. Higher values of W would still work, but the
smaller it is without interfering with the solution the faster the program is going to find the
routes. Now we will explain how it was selected.

First, in order to never interfere with the solution, it must be considered the scenario that would
result in the longest route possible. Taking into account that cars can only visit each location
once, with n users and m cars, and assuming that every car is used, the maximum number of arcs
possible is 2n+m. Knowing that, we would need to know the longest possible route that travels
to every point once. However, that’s a minimization problem on its own. It would be like doing
the Travelling Salesman Problem but looking for the longest route, instead of the shortest one.
To avoid that, we can approximate it by assuming that every arc could be as long as the longest
of them. The value of W would then be:

W=_2n+m) max (dij)

jePuD

However, there is a better way of getting a value for W, and it is to calculate the sum of
maximum incoming arcs for every point. In other words, to assume that the arc incoming to each
point comes from the furthest point from it. This results in a smaller W than in the previous
approach. The formulation for that would be:

W = z max (dij)

€T JEPUD

*Note that j € P U D because trips between car locations are not possible

(16)
zx;fi =0 ViePUDVkeM

The main drawback of having mixed the accumulated distance and the flow distance in one is
that the conservation of flow constrain only works for nodes whose distance is greater than 0.
However, the arcs that connect nodes to themselves have a distance of 0, allowing for loops to be
created with them. For that reason, this constrain forbids travels from one point to itself. This
constrain is only applied to pickup and drop-off nodes because, in the case that the optimal route
doesn’t include all the cars, cars that are not needed are represented with just one trip from their
starting point to that same point. This matches the constrain that every car must depart from their
initial point and must arrive to their initial point.

But there is still one problem, arcs that connect nodes to themselves are not the only case in

which the distance can be 0. If two different nodes result to be in the exact same place, then
subtours could be created between them. This is the main drawback of using this formulation.
That being said, we will not contemplate that possibility in our formulation. If nodes result to be
in the same exact spot, they can be modified so that they are separated by a negligible distance,
and that would be enough to avoid subtours.

(17)
Zfi'f - zfif‘u—m 2 dgjn), z xj Vj€D,vkeM
LET LET LET

This constrain ensures that the user drop-off only occurs after the pick-up. We do it by stating
that the total distance driven by a car when it arrives at a customer drop-off point must be higher
than when it picks up that customer. For that to happen, it would be enough to place a 0 on the
right side of the equation. However, we know that the difference will be at least the distance
connecting both points so, by including that, we reduce the time needed to find a solution.

C. Simplification constrains

These constrains are not indispensable for the formulation to work. Their function is to help the
program find a solution faster by taking away any routes that we know for sure are not going to
happen and assigning values to variables which we already now. These constrains should never
change the final result obtained in the minimization.

(18)
lelfj:o Vi,j € C,Vk € M,i #]

Restrains cars from driving to another car initial position. There is no reason why a car would
take that route.

(19)
Zx{fim:l ViEP,s; =0

keM

We know that the arc connecting users that don’t want to share and their destinations is always
going to be traversed by one of the cars. It’s similar to constrain (12), but not the same.

(20)
xk.=0 ViEPVjET,YKkEM j# (i+n), s;z=0

Complementing the previous constrain (19), every arc that connects non-sharing customers with
any points apart from its destination are never going to be traversed.

1)

x;=0 ViePVjeCVkeM
There is no reason why a car would travel from a customer to a car’s initial position because,
before going back to the starting point, it must always drop-off that customer first.

(22)
x¥.=0 VieC,VjeDVkeEM

There is no reason why a car would travel straight from the initial point to a drop-off point. It
must go to a pickup point first.

2.4.3 Minimization function

For the minimization function we will review three different approaches that depend on what are
our preferences at calculating the optimal routes.

A. Minimization of costs

For this approach, we will assume that all costs are operational and proportional to the distance
driven by the cars (lounger routes consume more energy and therefore have a higher cost).
Therefore, the aim of this minimization will be to develop the shortest route possible. This
usually includes not using the entire fleet of cars available. If one car is capable of providing
service to all users using the shortest route, then there is no need to use more cars. This approach
doesn’t consider the holding cost of having a car or the opportunity cost of having unused cars.
Neither it takes into account the discomfort of the users created by long waiting times. This
minimization approach is the one used in the Traveling Salesman problem. In that problem, the
only concern is to create the shortest route possible. It’s also commonly used in the DARP in
algorithms by Dumas et al. (1989a), Desrosiers et al. (1991), loachim et al. (1995) or Cordeau
and Laporte (2003a) and many others (Cordeau & Laporte, 2007). However, although their
algorithm’s minimization function also consisted in minimizing route length, their results were
also constrained by the time windows that characterize the DARP, while in our algorithm there’s
nothing that restricts the amount of time a person can wait. This might lead in some occasions to
very short routes but where some users take a long time to reach their destination. The results of
this approach and the others proposed are reviewed later in this paper.

The minimization function would then be:
P e . k
Minimize z z z X idi
i€T jEPUD kEM

*Note that arcs entering car destinations are not included in the minimization. That is because in
practice TNCs don’t have to go back to their initial point.

B. Minimization of user discomfort

In this approach, the company’s intention is to maximize user satisfaction by minimizing
discomfort. For this algorithm, we will assume that user discomfort is proportional to the time
waited since they request the trip to the time they arrive at their drop-off point. The later they
arrive the more discomfort. We will review three different variations of this minimization that
differ in the way the users value their time. The three ways are related with the time waited by
the user.

In order to simplify the code, we will presume that all cars drive at the same constant velocity
between vertices and that the time spent picking up and delivering customers is negligible. This
simplification allows us to conceive time as distance divided by velocity. The minimization of
time is therefore reduced to a minimization of distance. There is no need to include the velocity
term in the formulation as it is constant and it doesn’t affect the minimization.

B1. Minimizing total time

In this algorithm, we don’t disguise between the discomfort caused by waiting for the car,
spending time on the car or sharing car with other people. We will assume that users are equally
affected by a long wait for the car to arrive as for the route from the pick-up point to the drop-off
to be long. They just want to arrive as soon as possible. The objective of the minimization is,
therefore, to reduce the total time needed to take each customer to their destination.

The minimization function is:

Minimize z z z £

iET jED keM

In this minimization function the objective function is the total sum of arrival times at the final
destinations. We use the flow variable because it contains the distance driven by a driver when
the car gets to a point j coming from i. By using the simplification explained before, we can
approximate this to the time it took the driver to get to that point. By adding up the values of f for
every drop-off point(D) we get the total time users needed to get to their destinations.

B2. Minimizing weighted sum of times

Another possible variation is to add a weighted minimization that differentiates between waiting
time and riding time. By splitting both times and adding weights we can more accurately reflect
user preferences. The weights could be balanced, for example, by conducting a survey between
TNC users in order to know their priorities. Some authors included this type of distinctions in
their algorithms like for example Psaraftis (1980). His minimization equation included the
notation [* WT + (2 — a) * RT], being WT the waiting time, RT the riding time and « the
customers’ time preference constant.

To include this differenciation, the total time has to be divided into WT and RT. In our
formulation it could be done with the following formulation:

WT The waiting time for each user is the value of the flow variable when the car

arrives at the pickup point. Then, the total waiting time is the sum of values of flow for

every pick-up point.
=01

IET jEP keM

RD The riding time is the difference between arrival time and waiting time. To obtain
the total riding time we take the total values of the flow variable at the drop-off
points and substract the total waiting times.

For each user j

RTj=ZZfif‘U+m)—ZZE§

IET keEM iET kEM

In total

I LW

jeP \i€T keM IET keM

And since D includes the set of vertices of P+m we can rearange that into

DI BIPN

i€ET jED keM iET jEP kEM

Which is the substraction of arrival time and waiting time

Puting it all together and adding the time preference constant & we get:
Minimize azz Zflk] +(1-a) ZZ Zfl"] —zz Zfl"]
i€T jEP keM i€T jeD keM i€T jEP keM
Which can also be expressed as:
Minimize aWT + (1 — a)RT

Being 0 < a < 1 the user preference of riding over waiting. If @ > 0.5 users prefer spending
time in the car and if @ < 0.5 users prefer waiting for it.

B3. Minimizing difference between shortest and actual ride times

There is also another third variation that minimizes the differences between actual and shortest

possible ride times. In other words, users are discomforted if the route taken by the car is longer
than the shortest possible route. This type of minimization was used in algorithms like Bodin and
Sexton (1986) and Diana and Dessouky (2004). It is a very logical minimization objective and
it’s very applicable for the TNCs problem. If the actual ride time is much higher than time it
would take with a direct trip, users might prefer to use other ways of transportation. What is
more, that also increases the probability that other TNC competitors will be offering shorter
routes for the users. This might affect the company by causing a reduction of user requests. In
order to account for this, the formulation necessary is the following:

Minimize (Actual time — Shortest possible time)

The total actual time for arrival is

2.2, 2.5

€T jE€D keM

The total shortest possible time is the sum of distances between pickup and their respective drop-

off points
z di (i+n)

iEP

Subtracting both terms we get to the minimization equation:

Minimize z z z fl{j — z di,(i+n)

i€ET jED keM iEP

C. Minimization of both discomfort and cost

Once reviewed the formulation for each of the approaches for minimization, we propose an
objective function that is a linear combination of cost and discomfort. The aim of this function is
to minimize user discomfort while keeping the operational costs low. We obtain this by simply
adding a weighted sum of both time and total distance.

Minimize w, z z z xd;j + ws z z z 5

i€T jEPUD kEM i€T jED keEM

Where w; and w; are the weights given to the minimization of cost and discomfort, respectively.
For this time term, we have selected the first of the time minimization functions proposed earlier
to keep the function simple and to not add too much complexity to the algorithm.

A similar approach was made in DARP algorithms like Melachrinoudis et al. (2007) which
minimized a convex combination of total vehicle transportation costs and total clients’
inconvenience time.

2.5 XPRESS Code

The software we used to solve the algorithm is FICO Xpress Solver. It uses Mosel programming
language so it is necessary to translate the mathematical notation into Mosel language. In order
to test the program, we included in it an algorithm that creates random data depending on the
parameters. Every time the program is run the positions of every car, pickup and drop-off point
are randomly set, allowing for us to test many different scenarios. We will now present the code
and explain its different parts. To facilitate the lecture, the code is written in different colors.
Parts of the code presented in blue represent commands and parts in green are comments
included in the code.

The program starts calling the Xpress-Optimizer solver and a graphic tool.

!@encoding CP1252

model TFG_Transportation Network Companies Assignation System
uses "mmxprs";

uses "mmsvg"

First, we introduce the parameters in the code. Parameters are selected by the user. Apart from
the basic parameters presented in the mathematical notation: the number of cars(N_CARS) and the
number of customers(N_CUSTOMERS); there are other parameters included here:
SIZE: Refers to the scale at which the user wants to run the program en km*. The bigger
the size is the longer the distances will be. It’s relevant because waiting times and
distances are not the same in a small area than in a big one, even if there is the same
number of users and cars.
CAR_SPEED: It’s the speed used to approximate the time it takes the drivers to traverse
the arcs. It’s the same for every car. For the program we used 50km/h, which is a usual
speed limit inside a town.
SHARE PROB: This parameter refers to the probability of the random data generator to
assign a ride to be shared. If this variable is set to 1, all the requests will be of shared
rides, and if it is set to 0, none of them will. Changing the parameter allows to get
different sets of data and observe how routes change depending on the portion of people
sharing.
BASE and COST parameters: They are used to estimate the price each user will have to
pay for the trip. To estimate the prices, the pricing strategy is similar to the one used by
Uber and Lyft, which includes a base price, a cost per minute and a cost per km driven.
Also, there are different fares and costs for shared and non-shared trips, as the first ones
are usually cheaper. The specific fares used below and used to test the program are the
Uber prices in Washington DC.

parameters
N _CARS
N_CUSTOMERS

SIZE
CAR_SPEED

SHARE PROB = 0.5 !Probability to share ride

BASE FARE = 3.21 !Base fare for normal car

COST KM = 0.5 !Cost per KM

COST_MINUTE = 0.3 !Cost per minute

BASE FARE SHARE = 2.74 !Base fare for shared cars

COST_KM_SHARE = 0.5 !Cost per KM on shared cars

COST _MINUTE _SHARE = 0.25 !Cost per minute with shared car
end-parameters

After the parameters, the program receives the declaration of sets and variables. Next to each
declaration is, in parenthesis, the corresponding variable of the ones presented in the formulation.

declarations

CUSTOMERS = |.N_CUSTOMERS !(Corresponds to set P of pickup points)
DESTINATIONS = ((N_CUSTOMERS+1)..(2*N_CUSTOMERS)) !(Set D of drop-off points)
CAR_POSITIONS = ((2*N_CUSTOMERS+1)..(2*N_CUSTOMERS+N_CARS)) !(Set C of car initial positions)

TOTAL _NO_CAR = 1..(2*N_CUSTOMERS) !(P+D of pickup and drop-off points)
TOTAL = 1..(N_CARS+2*N_CUSTOMERS) !(Set T of total data)
CARS =1.N_CARS !(Set M of number of cars)

COORD: array(TOTAL, 1..2) of real !coordinates x,y of each driver, customer and final destination
DIST: array(TOTAL, TOTAL) of real !(d)driving distance from i to |
SHARE: array(CUSTOMERS) of real !(s)Whether a customer wants to share ride or not

FLOW: array(TOTAL, TOTAL, CARS) of mpvar !(f) Variable that controls: 1.That routes only start at
cars and end up at cars(no impossible loops). 2.Time passed since the start of the model to when the car
arrives at a certain point

X: array(TOTAL, TOTAL, CARS) of mpvar !(x) Weather the car 'k' goes from '1' to '] or not
PASSENGERS: array(TOTAL, TOTAL, CARS) of mpvar !(p) Number of passengers car k has when
travelling from i to j

end-declarations

After that, some formulation is needed before the constrains are introduced. First, the program
creates random coordinates for each of the car initial positions and for each pick-up and drop-off
points. Then, it saves the distances between each node in the variable DIST. It also assigns
whether users requested a shared ride or not depending on the SHARE PROB parameter.
Finally, the X variable is set binary so that it can only take the values of 1 and 0.

forall iin TOTAL,jin 1..2) !Randomly assigns coordinates to customers, cars and destinations
COORD(ij) := 100*random

forall (i in CUSTOMERS) do !Randomly assigns whether customers want to share or not
SHARE(i) := random
if(SHARE(i) <= (I-SHARE PROB)) then
SHARE() := 0 !If share is 0 then the customer doesn't want to share
else

SHARE() := | !If share is 1 then the customer wants to share
end-if
end-do

forall (i in TOTAL. j in TOTAL)
DIST(i.j) := sqrt((COORD(j.1)-COORD(i. 1)) 2+ (COORD(j.2)-COORD(i.2))"2)

Icalculates all distances between points and adjusts it to the size of the map if the parameters

forall (i in TOTAL, j in TOTAL, k in CARS)
X(i,j.k) is_binary 'makes X binary

SPEED := CAR_SPEED/60 !Speed in kilometers per minute

If instead of generating random data the intention is to use a specific set of data, the user can do
it by substituting the section of the code above with the one below. The data is taken from a .txt
document that must include the coordinates of every node and the SHARE matrix.

This formulation was used to perform different tests with the program to observe the results
obtained with different sets of data. The results are presented later in this document.

SPEED := CAR_SPEED/60 !Speed in kilometers per minute

initializations from 'T11 3-6 1.txt' ! Gets the information from the data document
COORD as 'COORDINATES'
SHARE as 'SHARE'

end-initializations

forall (i in TOTAL. j in TOTAL)
DIST(i.j) = sqrt((COORD(j.1)-COORD(i. 1)) 2+ (COORD(j.2)-COORD(i.2))"2)

Icalculates all distances between points and adjusts it to the size of the map if the parameters

forall (i in TOTAL, j in TOTAL, k in CARS)
X(i,j.k) is_binary 'makes X binary

Then, the constrains are introduced into the program. These constrains are the same ones
presented in the mathematical notation. Next to each constrain is, in parenthesis, the number
assigned to their respective constrain from the section 4. Formulation.

!Constrains

forall (i in CUSTOMERS+DESTINATIONS) do
sum(j in TOTAL. k in CARS)(X(i,j.k)) = 1 (1) a car must arrive to every customer
forall(k in CARS)
sum(j in TOTAL)(X(i,j.k)) = sum(j in TOTAL)(X(j.i.k)) !(2) if a car goes to a customer it
must leave from that customer
end-do

forall (i in CAR_POSITIONS)

sum(j in TOTAL. k in CARS)(X(i,j,k)) <= 1 I(3) From every car location only one car can depart. No cars
will depart if that car is not needed

forall(k in CARS)
sum(j in TOTAL)(X(k+2*N_CUSTOMERS j.k)) = 1 [(4) each car has to leave from its initial position

forall(k in CARS)
sum(j in TOTAL)(X(j, k+2*N_CUSTOMERS k)) = | !(5) each car has to end at its initial position

forall(j in DESTINATIONS, k in CARS) do
sum(i in TOTAL)(X(i, j, k)) = sum(i in TOTAL)(X(i,]-N_CUSTOMERS. k)) !(6) if a car picks up a
customer it must deliver that customer
sum(i in TOTAL)(FLOW(i.j.k)) - sum(i in TOTAL)(FLOW(i.j-N_CUSTOMERS k)) >= DIST(j-
N_CUSTOMERS j)*sum(i in TOTAL)(X(i.j.k)) !(17) we make sure that a car doesn't deliver a customer
before picking it up

end-do

forall(i in CAR_POSITIONS. j in CAR_POSITIONS, k in CARS| i<>j)
X(i.j,k)=0 1(18) Cars should never drive to another car's position. This constrain is not necessary but
helps finding a solution faster

W = sum(i in TOTAL)(max(j in TOTAL_NO_CAR)(DIST(i.))))

forall(iin TOTAL, j in TOTAL, k in CARS)
FLOW(ij.k) <= X(1,j.k)*W !(15) The flow of a route that is not taken by the car is 0. Also, flow
should never be bigger than the sum of biggest arc incoming to each point (W)

forall(k in CARS)
sum(j in TOTAL)(FLOW(k+2*N_CUSTOMERS,j.k)) = sum(j in
TOTAL)(X(k+2*N_CUSTOMERS.j.k)*DIST(k+2*N_CUSTOMERS j)) !(14) When cars depart their
initial distance driven is 0 so the distance driven when they arrive to their first customer has to be the
distance of that arc.

forall(k in CARS, j in TOTAL _NO_CAR) do
sum(i in TOTAL)(FLOW(j.i.k)) - sum(i in TOTAL)YFLOW(i.j.k)) = sum(i in TOTAL)(X(j.i.k)*DIST(.i))
!(13) We use the variable FLOW not only to make sure no loops are created but also to account for the time
it has taken the car to arrive at one location.

end-do

forall(j in TOTAL NO_CAR, k in CARS)
X(.j.k)=0 !(16) Forbids travels from one point to itself. Without this constrain loops are formed
between points and themselves as, because distance from i to i is 0, the previous condition doesn't restrain it

forall(k in CARS, j in TOTAL)
PASSENGERS(k+2*N_CUSTOMERS, j, k) = 0 !(7)The number of passengers a car has when it starts is 0

forall(j in CUSTOMERS, k in CARS)
sum(i in TOTAL)(PASSENGERS(, 1, k)) - sum(i in TOTAL)(PASSENGERS(I, j, k)) = sum(i in
TOTAL)(X(i,j.k)) !(8) When a car picks up a customer the number of passengers adds 1

forall(j in DESTINATIONS. k in CARS)
sum(i in TOTAL)(PASSENGERS(I, j, k)) - sum(i in TOTAL)(PASSENGERS(], i, k)) = sum(i in
TOTAL)(X(i,j.k)) !(9) When a car drops a customer the number of passengers subtracts 1

forall(iin TOTAL, j in TOTAL, k in CARS)
PASSENGERS(1.j.k) <= 4%X(i.j.k) !(10) There are passengers only in the routes that the car drives.
Also number of passengers must always be 4 or less.

forall(k in CARS, j in CUSTOMERS | SHARE(j)=0) do !For customers that don’t want to share:
sum(i in TOTAL)(PASSENGERS(i.j.k)) = 0 !(11) The car must arrive to them empty
X([.j+*N_CUSTOMERS k)= sum(i in TOTAL)(X(i,j.k)) !(12) It must take them directly to their destination
end-do

forall(i in CUSTOMERS| SHARE(i)=0) do !For customers that don’t want to share:
sum(k in CARS)(X(i,itN_CUSTOMERS k))=1 !(19) There is always going to be one car that goes from
the customer to it’s destination
forall(j in TOTAL, k in CARS| j<>(i+N_CUSTOMERS))
X(j.k)=0 !Arcs that go from the customer to any other point that is not his destination will
not be traversed

end-do

forall(i in CUSTOMERS, j in CAR_POSITIONS, k in CARS)
X(i,j,k)=0 !(21) There is no reason why a car would travel from a pick-up point to a car initial position

forall(i in CAR_POSITIONS, j in DESTINATIONS, k in CARS)
X(i,j.k)=0 1(22) There is no reason why a car would travel the initial position to a drop-off point

In reference to the constrains 18-22, which are the simplification constrains, they don’t affect the
final solution. Their only function is to avoid the program from looking into routes that are
known beforehand that will not be taken. However, it is important to check how the program
runs without these constrains to ensure that basic constrains are well designed. If the solutions
with and without constrains 18-22 are different, it could mean that the route selected by the
program includes illogical or non-optimal arcs, like sending cars to other car initial positions, for
example. If that is the case, knowing that no optimal route would include arcs like that, it means
that basic constrains are wrong.

Once all the constrains have been included, the program looks for the optimal route. The object
that the program will try to minimize is indicated in the objective function. In section 4.2
Minimization function we presented three different approaches for the objective function:
minimization of cost, discomfort and a weighted sum of both. For each approach, the
corresponding minimization function in XPRESS language is:

(@) minimize(sum(i in TOTAL, j in TOTAL_NO_CAR, k in CARS)(X(i,j,k)*DIST(i,j)))! A. Minimization of cost

(b) minimize(sum(i in TOTAL, j in DESTINATIONS, k in CARS)(FLOW(i,j,k))) ! B1. Minimizing total time

(c) minimize (alpha*sum(i in TOTAL, j in CUSTOMERS, k in CARS)(FLOW(i j,k))+(1-alpha)*(sum(i in TOTAL, j in
DESTINATIONS, k in CARS)(FLOW(i,j,k)) - sum(i in TOTAL, j in CUSTOMERS, k in CARS)(FLOW(i,j,k))))
I B2. Minimizing weighted sum of times

(d) minimize(sum(i in TOTAL, j in DESTINATIONS, k in CARS)(FLOW(i j,k))- sum(i in

CUSTOMERS)(DIST(i,i+N_CUSTOMERS)))
I B3. Minimizing difference between shortest and actual ride times

(e) minimize(W1*sum(iin TOTAL, j in TOTAL_NO_CAR, k in CARS)(X(i,j,k)*DIST(i j))+W2*sum(i in TOTAL, j in
DESTINATIONS, k in CARS)(FLOW(i,j,k))) !C. Minimization of both discomfort and cost

Only one minimization can be done at a time so the program must only contain one of the
equations (a)-(e) when running, depending on what the user wants minimize.

For the approach (c) it would be necessary to declare a/pha in the parameter declaration section,
selecting the desired value € [0.1]

Likewise, for the approach (c) it would be necessary to declare W1 and W2. The values selected
for these variables to run the program where:

Wil:=1
W2 := 1/SPEED

By choosing these values we are staying that the value of saving 1 minute is equivalent to the
value of saving 1 kilometer. In this program we approximate the time to the distance driven with
the formula Time=Distance/Speed. So by setting W2= 1/SPEED we are converting the second
term of the minimization into time.

After the minimization, the program shows the results thanks to the following formulation:

'Writes results

T := sqrt(SIZE)/(SPEED*100)*sum(i in TOTAL, j in DESTINATIONS, k in CARS)(getsol(FLOW(i.j.k)))

ITime= Distance/Speed and then multiplied by sqrt(SIZE)/100 to scale the coordinates to the size of the map
selected

D = sqrt(SIZE)/100*sum(i in TOTAL, j in TOTAL NO CAR, k in CARS)(getsol(X(i.j.k))*DIST(.j)) ITotal
distance driven by cars to customers and destinations and scaled to the size of the map

forall(j in CUSTOMERS) do
writeln("Passenger ", j, ":")
KM PICKUP := sum(k in CARS, i in TOTAL)(getsol(FLOW(i.j.k)))*sqrt(SIZE)/(100) !Calculates the
distance from car's initial position to pickup and scale it to KM. Coordinates go from 1 to 100 so we divide
by 100 to get a percentage oF the map. Then we multiply by map size to make distances proportional to the
map size.
KM_ARRIVAL := sum(k in CARS, i in TOTAL)(getsol(FLOW(i,j+N_CUSTOMERS k)))
*sqrt(SIZE)/(100) !Calculates distance driven from car's initial position to arrival
WAIT := KM_PICKUP/SPEED !Time passed since the car is ordered to when it picks up the customer
ARRIVAL = KM_ARRIVAL/SPEED !Time passed since the car is ordered to when it drops the
customer off
PRICE := (1-SHARE())*(BASE_FARE + COST KM*(KM_ARRIVAL-KM_PICKUP)+
COST_MINUTE*(ARRIVAL-WAIT)) + (SHARE(j))*(BASE_FARE SHARE +
COST_KM_SHARE*(KM_ARRIVAL-KM_PICKUP)+COST _MINUTE_SHARE*(ARRIVAL-WAIT))
writeln("Wait ", round(WAIT*100)/100, " min")
writeln("Arrive in ", round(ARRIVAL*100)/100, " min")
writeln("Price $" ., PRICE)

end-do

writeln("")

writeln("Total time to arrival =", T . " min")

writeln("Average time =", (T)/N_CUSTOMERS, " min")

writeln("Total distance driven =", sqrt(SIZE)/100*sum(i in TOTAL, j in TOTAL NO CAR. k in
CARS)(getsol(X(i.j.k))*DIST(i.j)), " km")

writeln("Total deadheading distance =", sqrt(SIZE)/100*sum(i in TOTAL, j in TOTAL NO_CAR, k in CARS|
getsol(PASSENGERS(i.j.k))=0)(getsol(X(i.,j.k)) *DIST(.j)), " km")

The results include the time waited by each passenger for the car to arrive, the total time to
arrival and the estimated price of the trip. This price is calculated with the formula:

Price = Base fare + Cost per km * Km + Cost per Minute * Minutes
It also shows the total time to arrival, the average time per user, the total distance driven and the

total deadheading distance. Deadheading distance refers to the distance driven by the car with no
users inside it.

Passenger 1:

Wait 1.22 min

Arrive in 4.31 min

Price $5.425511323
Passenger 2:

Wait 10.71 min

Arrive in 15.58 min

Price $6.702809045
Passenger 3:

Wait 14.05 min

Arrive in 17.97 min

Price $6.021103487
Passenger 4:

Wait 4.26 min

Arrive in 5.97 min

Price $4.439083957
Passenger 5:

Wait 5.93 min

Arrive in 8.94 min

Price $5.371031523
Passenger 6:

Wait 8.88 min

Arrive in 11.58 min

Price $5.144190755

4.37080038 min

3 min

7.96554091 km

e = 11.8638138034 km

Total time to arrival =
Average time = 10.7284¢66
Total distance driven = 2
Total deadheading distanc

6
7

Figure 7 Program results display example with 6 users

Coordinates are random and different every time the program is run. For that reason, the
formulation also displays the coordinates used in the run so they can be used as data to run the
program again. This is useful to run the program using the same data but with different
minimization approaches in order to compare. Also, to see how changes in the data affect the
design of the routes, like for example changing users from shared to non-shared requests, or
reducing the number of cars available.

!'Write down the coordinates used so they can be used again
writeln("")
writeln("COORDINATES:[")
forall(i in TOTAL)
writeln(COORD(i,1), " ", COORD(i,2))
writeln("]")
writeln("SHARE:[")
forall(i in CUSTOMERS)
writeIn(SHARE(i))
writeln("]")

Here is an example of how it looks.

COORDINATES: [

47.86420844 49.51615713
73.123748621 79.84625184
77.32200594 50.95376011
20.9704002 5$3.75123935
41.97780511 14.95700968
18.12027¢l1 97.07967634
82.59048494 49.4482847¢
90.80260349 97.60886077
0.6898233205 24.12673357
98.01113368 4.62432657¢
33.51723251 52.27160573
37.45583773 34.20314581
30.65278564 28.87744458
17.57492433 22.27052358

0.9672076912 21.05676011

1
SHARE: [

—_—0 000K O

Figure 8 Example of the display of data by the program

Finally, the last part of the code consists on the display of a map that shows the results. Using the
coordinates given in the data and the results obtained from the minimization function the
program draws a map that shows the routes taken by the cars and the passengers inside the car at
every arc.

!Display visual result

svgsetgraphviewbox(-10,-10,120,120) ! Graph size

svgsave("Carsmap.svg") | Save graphic to file

svgaddfile("PASSENGER2.png", "CUSTOMER") !Adds the image used to indicate pickup point
svgaddfile("DESTINATION.png", "DESTINATION") !Image used to indicate drop-off points
svgaddfile("CARS.png", "CAR") !Image used to indicate car initial position

!Draws positions of cars and customers
svgaddgroup("CIRCLES","Coordinates ", SVG_BLACK)
forall(i in TOTAL) do
svgaddcircle(COORD(i,1),COORD(i.2), 0.1) !Creates a circle wherever there is a coordinate
svgsetstyle(svggetlastobj, SVG_STROKEWIDTH, 0.2) | Wider border
if(i<=N_CUSTOMERS) then ! For customer locations:
svgsetstyle(svggetlastobj, SVG_FILL, SVG RED) ! Fills circle red
svgaddimage("CUSTOMER", COORD(,1)-2.5,COORD(i.2), 5, 5)
svgaddtext(COORD(i, 1)+1, COORD(,2)+2, " +i+"P"+i+" "+ SHARE()) ! Adds
a label to each customer that shows its number and whether he shares or not
end-if
if (>N_CUSTOMERS and i<=2*N_CUSTOMERS) then ! For customer destinations:
svgsetstyle(svggetlastobj, SVG_FILL, SVG_GREEN) ! Fills circle green
svgaddimage("DESTINATION", COORD(, 1)-2.5,COORD(,2), 5, 5)
svgaddtext(COORD(, 1)+1, COORD(,2)+1, " +1i+ "F" + (i-N_CUSTOMERS)) | Adds
a label to each destination
end-if

if (>2*N_CUSTOMERS) then !For each Car:
svgsetstyle(svggetlastobj, SVG_FILL, SVG_BLUE) !Fills circle blue
svgaddimage("CAR", COORD(i, 1)-2.5.COORD(i,2)-2.5, 5, 5)
svgaddtext(COORD(, 1)+1, COORD(i,2)+2, "" + i+ ".C" + (i-2*N_CUSTOMERS))
!Adds a label to each car

end-if

svgsetstyle(svggetlastobj, SVG_FONTSIZE, "Ipt") !Size of the labels names

svgsetstyle(svggetlastobj, SVG_FONTWEIGHT, "bold") !Makes the labels bold

end-do

forall(k in CARS) do
svgaddgroup("CAR_ROUTE"+k, "Car route "+ k, SVG_BLACK)
forall(i in TOTAL, j in TOTAL| getsol(X(i.j.k))>0.1) do !For every trip existing between i and j
svgaddarrow(COORD(i, 1).COORD(i,2).COORD(],1),COORD(j.2)) !Draws the line between the
coordinates of i and j
svgsetstyle(SVG_STROKEWIDTH, 0.2) 'Wider line
svgaddtext((COORD(i,1)+COORD(j, 1))/2, (COORD(i,2)+COORD(j,2))/2, ""+
getsol(PASSENGERS(1.j.k)))
svgsetstyle(svggetlastobj, SVG_FONTSIZE, "2pt") !Size of the labels names
svgsetstyle(svggetlastobj, SVG_FONTWEIGHT, "bold") !Makes the labels bold
end-do
end-do

svgrefresh ! Display graphic
svgwaitclose ! Wait until window is closed

end-model

Every time the program is run, once the minimization is complete the program displays a map
like the one shown in Figure 8 below.

W Coordtinates
W Carroute 1
W Carroute 2
W Carroute 3

Figure 9 Example of the graphic display of the program run with 6 users and 3 cars

In the map, car initial positions are represented by blue triangles, pickup points are represented
by orange figures and drop-off points are represented by red pins. Next to each location is
showed a text that indicates the position in the data followed by a letter that indicates what kind
of node it is: Car(C), P(Passenger) or Final destination(F); and a number that indicates in which
position it is inside its set. Therefore, the drop-off point that corresponds to Passenger 1(P1) is
the Final destination 1(F1), P2 corresponds to D2 and so on. Additionally, next to each pickup-
node there is a number that indicates the value of the SHARE variable for that customer: “1” if
the user requested a shared trip, or “0” if not. The designed routes are indicated with arrows that
connect the nodes. Next to each arrow there is a number that indicates the number of passengers
being carried by the car on each arc. The objective function used in figure 9 was the
minimization of total arrival time. In this example, there are 3 cars and 6 user requests. The
number 1 shown next to passengers 5 and 1 indicates that they requested a shared. In this case,
the program decided that the shortest route was to make use of the sharing option and pick both
of them consecutively. That is why in the arc(1,7) there are 2 passengers inside the car.

In addition, the display of the map has been programmed so that it gives the option to select
which routes the user wants to be shown, making it possible to see each of the routes
independently. The figure 10 below shows the same display as figure 9 but only route 1 has been
selected, making it easier to visualize.

910.;4 . N .Caoidiinatgs, | .
-

5.P51 ‘% W carroute1

142
apPs0 "tranpannnnt®
1.P4 .
;ufe

6.P61

Figure 10 Example of program display with only route 1 selected

2.6 Observations

We used the program to generate a set of random data sets in order to observe the results given
by the program to different conditions and using different approaches.

One of the first objectives was to test the performance of the program. The map display allows
the user to quickly check if the routes created had any major problems, which could be due to
either lack of constrains or, on the contrary, too much constrain restriction. After that, we tested
the performance of the simplification constrains. To do that, we run the program using the same
data with and without the simplification constrains, and observed that in any of the cases the
routes designed were changed, which is something positive. However, after including the
simplification constrains, the time required by the program to get to the optimal solution was
always reduced. We also noticed a big difference in the running time after selecting a good value
for the W in constrain 15. Both things together significantly reduced the processing time.

2.6.1 Comparing minimization approaches
Minimization of cost
In reference to the Minimization of cost approach, the tests performed on random data showed

that, in most of the cases, not all the cars where used, and in many of them, the shortest route was
performed by only one car which provided the entire service.

6.P60

Passenger 1:
Wait 3.75 min
Arrive in 5.51 min
Price $4.470322237
Passenger 2:
Wait 0.94 min
Arrive in 1.89 min
1e10 Price $3.371410148
Passenger 3:
Wait 19.29 min
Arrive in 21.41 min
Price $4.726739037
Passenger 4:
Wait 5.96 min
Arrive in 16.68 min
Price $9.8833776é8
Passenger 5:
Wait 11.33 min
Arrive in 15.59 min
Price $5.5837€383¢
Passenger 6:
Wait 24.71 min
Arrive in 30 min
Price $7.003751519
Total time to arrival = 91.08020082 min
Average time = 15.18003347 min
Total distance driven = 25.00375048 km
Total deadheading distance = 7.644785699 km

Figure 11 Results from test 10 using a minimization of distance

In the picture above it can be appreciated how, although there are three cars available, the route
designed by the program only includes one of the cars, because that is the shortest route. Also, in
one of the arcs there are two users in the car, which means that making use of the sharing
possibility allowed the driver to take a shorter route. However, due to the lack of any time
constrains, this approach often causes for some users to experience very long waits. Since there

aren’t any time limitation constrains, there is no limit to the time a customer can wait. In this
example, passenger 6 takes 30 minutes to get to its drop-off point, even though there are two
more unassigned drivers available. In fact, from the ten different sets of data used with three
available cars, in four of them only one of the cars was used, and in the other six, only two cars
where used. This indicates that only focusing on minimizing the distance driven is not the best
approach for this problem, since cars are not used in an efficient way and customers experience
long waits.

Minimization of user discomfort

The second approach studied is the Minimization of user discomfort. We run the program
using the same initial sets of data as with the previous approach but with a different minimization
function. The results showed that, in all the cases, all the cars were used and the routes where
optimized so that the users could get to their destination in the minimum time.

Passenger 1:

Wait 4.25 min

Arrive in 6.01 min

Price $4.470322237
Passenger 2:

Wait 1.44 min

Arrive in 2.39 min

1P10 Price $3.371410148

Passenger 3:

Wait 3.7 min

Arrive in 5.82 min

Price $4.726739037
Passenger 4:

Wait 0.88 min

Arrive in 4.38 min

Price $5.072312627
Passenger 5:

Wait 7.83 min

Arrive in 12.09 min

Price $5.58376383¢
Passenger 6:

Wait 9.12 min

Arrive in 14.42 min

Price $7.003751519

6.P60

Total time to arrival = 45.12002334 min
Average time = 7.520003891 min

Total distance driven = 27.10407818 km
Total deadheading distance = 12.20423993 km

Figure 12 Results from test 10 using a minimization of total time

The figure shows the same example presented in the previous figure but, this time, it has been
solved using the first of the discomfort minimization approaches presented: the minimization of
total time (B1). The map shows that, in contrast with the previous case, the three cars have been
assigned a route. In this case, no users had to share car with other individuals. Comparing the
results shown in both cases, the average time waited has decreased from 15 to 7 minutes, which
is a significant difference. The biggest improve is received by the passenger 6, whose travel time
was reduced from 30 minutes only 14, and at the same price. Price hasn’t varied because price
doesn’t depend on the time waited but on the time and distance inside the car. Also, although
total time decreased significantly, the total distance driven only increased by 2km. The result is a
better route, since the user discomfort is much lower and cost only a little bit higher. In addition,
it is better for the company if more cars are used, instead of one of them doing the entire job.
Having too many cars without assigned routes might upset drivers and cause them to stop
providing the service for the company.

We generated 20 different data sets to compare the results obtained with the minimization of cost
and with the minimization discomfort approaches. The solutions given by the program showed
that, on average, the routes obtained when minimizing total time were 36.3% faster, but the
distance driven was 8% longer. Deadheading distance also increased in the second case by
almost 60%.

The other two variations of the discomfort minimization were also studied: the minimization of
weighted sum of times (B2) and the minimization of difference between actual and shortest
time (B3).

The Minimization of weighted sum of times approach provided the expected results. The
solutions were similar to the ones obtained with the minimization of total time, but with
variations depending on the value of user preference constant (alpha) selected. Big values of
alpha prioritize the minimization of waiting time while small values prioritize the minimization
of riding time.

Passenger 1:

6.P60 Wait 4.25 min

Arrive in 6.0l min

Price $4.470322237
Passenger 2:

Wait 1.44 min

Arrive in 2.39 min

Price $3.371410148
Passenger 3:

Wait 3.7 min

Arrive in 5.82 min

Price $4.726739037
Passenger 4:

Wait 0.88 min

Arrive in 9.7 min

Price $8.615087705
Passenger 5:

Wait €.25 min

Arrive in 10.78 min

Price $5.759407474
Passenger 6:

Wait 9.12 min

Arrive in 14.42 min

Price $7.003751519

1P10

Total time to arrival = 49.11949203 min
Average time = 8.186582005 min

Total distance driven = 26.00849991 km
12Fe Total deadheading distance = 9.332439092

Figure 13 Results from test 10 using a weighted minimization of time

The image shows the same example presented in the two previous cases but using the
minimization of weighted times. The alpha selected was 0.9, which gives a high priority to
minimizing the waiting time. It can be appreciated that the waiting time was reduced by looking
at the deadheading distance, which measures the distance the car travels without passengers.
Minimizing waiting time induces the program to pick up customers as soon as possible, reducing
the deadheading time. Comparing this image with the previous one shows that deadheading
distance was reduced by from 12.2km to 9.3km, and total distance driven was also reduced from
27.1km to 26km. However, minimizing waiting time also caused an increase in the average total
time for arrival, from to 7.52 to 8.19 minutes.

On the other side, the minimization of difference between actual and shortest time didn’t
provide new solutions. All the tests provided the exact same solution as the minimization of total

time approach. This led us to realize that both minimizations were actually the same. One of
them is the minimization of total time and the other one the minimization of the difference
between total time and a constant. These two cases, from a minimization point of view, are the
same. However, the idea that actual routes shouldn’t be much longer than the shortest path
possible is a logical statement. Users whose TNC route takes much longer than the shortest route
are likely to select another option. One way to keep this gap small could be to square the
differences between actual and shortest time. By doing this, we would ensure that there aren’t
big differences between those two values. Nevertheless, that would make the solution to stop
being linear, so it wouldn’t be solved with this program.

Minimization of weighted sum of cost and discomfort

Finally, the last minimization approach presented was the combination of the minimization of
cost and discomfort (C) through a weighted sum of both. The results obtained testing this
approach were, in many cases, the same results obtained using the minimization of time
approach. However, in other cases, the results showed routes which had a noticeable smaller
distance driven with a negligible increase in the time waited. This indicates that this could be
more reliable that the previous ones. It often provides shortest routes that have a smaller cost and
a lower impact on the environment while barely increasing user discomfort. And in the worst
scenario, where there is no possible improvement, the route selected is simply the same that
would be obtained with the minimization of time. The level at which the company is willing to
provide a slower service in exchange of a shortest route can be determined with the parameters
wl and w2 presented in the code before. The values of wl and w2 selected to perform the tests
for this approach where 1 and 1/Speed, respectively, which results in a relation of 1km to 1
minute. Meaning that routes that save more km than minutes will be chosen by the program.
Also, this usually brings a reduction of the deadheading distance.

3p30

Figure 14 Comparison of the results of test 19 using minimization of Time (on the left) and minimization of both distance and
time (on the right)

The figures shows one of the tests carried where the routes designed for the each of the two
approaches were different. In this example, the total time increased by 2.7%, but the distance
driven decreased by 9.6% and the deadhead distance by 27%.

From 10 tests performed with this approach, six of them resulted in the same route selected by
the minimization of total time approach. In the other four, there was a reduction of the number of
kilometers driven with a smaller increase in time waited. In those four tests, on average, the total
distance driven was reduced by a 6.8% while the time only increased by a 2.14%. Also, the
deadheading distance was reduced by an 18%.

2.6.2 Modifying number of cars available

Using the Minimization of car and discomfort, we observed the results obtained after eliminating
one of the cars from the data set. This, in practice, could happen if one of the drivers available
rejects the request for service. Comparing the results of ten random data sets, we observed that,
on average, after removing one of the cars, the arrival time of the users increased by a 30%,
however, the total distance increased only by less than 1% and the deadheading time stayed the
same. This indicates that the number of cars is not a big determining factor of the total distance
driven. Reducing the number of cars only has an impact on the time waited, but the total distance
traveled reminds relatively steady. This also matches the results obtained with in the
minimization of cost approach, where the shortest assignation of routes included usually only
one car. Increasing the number doesn’t necessary increase or decrease the total distance neither.
Adding more cars can result in either shorter distance, if the new car is placed in a favorable
position, or longer distances, if the program assigns a route that is longer but saves time.
Furthermore, once the number of cars has surpassed the number of users, the total distance
remains very steady since adding more cars only causes for more cars to not get assigned a route.

5.P50

Figure 15 Comparison of the results from test 10 after eliminating one of the cars

2.6.3 Comparing effect of shared trips

Lastly, we used the program to compare the effect that shared trips have on the design of the
routes. We compared the routes designed by the program for five different sets of coordinates in
two different scenarios: first, with all the requests being for non-shared trips, and then, all of
them being for shared trips. The comparison of the two different scenarios showed that, on
average, the total arrival time was 7% lower when all users had requested shared trips. Also, the
total distance was 20% lower and the deadheading distance was reduced by 41%. This indicates
that shared trips are much more efficient than non-shared trips, as they allow for many more
possible route combinations, allowing for routes to be shorter and faster at the same time.
However, users are not always willing to share the trip with other people. For shared routes to be
significantly more efficient, the number of shared requests must be high, since two users won’t
share if one of them doesn’t want to.

Something else to mention is that the time needed for the program to reach the optimal solution
was much lower when there were no shared requests. That is because shared requests
substantially increase the number of possible routes. Here is an example of one of the data run by
the program.

4aPa0

5.P50

Figure 16 Comparison of the results from test 2 setting all requests to non-shared (on the left), and shared (on the right)

The result from these tests suggest that the sharing system could be a potential way to decrease
overall deadheading travelling and carbon emissions, while also reducing total time.

CONCLUSION

TNCs meet the demand for flexible, fast and cheap mobility. The wide range of possibilities it
can offer has allowed it to have a big impact on many different transportation systems. In
particular, the taxi industry is the most affected sector, and continues to decrease its market share
as TNCs gain popularity. This is due to the lower prices, better service, and more effective
design of routes of ride-hailing services, thanks to the use of optimization programs, neural
networks and new features, like shared rides.

There is inconclusive data about weather TNCs increase the number of cars on the road or, by
the contrary, induce people to reduce their car usage and ownership. There is still room for the
improvement of TNCs service through the advances in technology. Advances in neural network
training can lead to more accurate predictive models. Optimization systems can also be improved
to decrease carbon emissions and deadheading travelling. The results obtained from the tests
have shown that the most effective way to do that without affecting waiting times is the use of
shared trips. If companies promote the use of the shared requests between users they could
increase the effectivity of their routes and reduce their impact of congestion and on the
environment. On top of that, the minimization approach that provided the best results was the
minimization of the sum of costs and user discomfort. By including both terms in the
minimization it’s possible to obtain routes that keep both length and waiting times low. The
results also showed that the number of drivers is not a big determining factor on the total
distance needed to provide the service, but it affects the waiting times of the users.

Lastly, some TNCs like Uber and Lyft are already working on the autonomous mobility-on-
demand. This new service could bring all the advantages of traditional TNCs service but without
the drawbacks. Their introduction is expected to reduce carbon emissions, congestion, accidents
and maybe even revolutionize the private car industry. If this service is reliable and fast-
responsive, it could decrease the dependence of owning a private car, leading to a decrease of car
production, transportation prices, carbon emissions and an increase in parking spaces. For all this
to happen, autonomous cars need on-road experience to train their neural networks.

Appendix

Full code

!@encoding CP1252
model TFG_Transportation Network Companies

uses "mmxprs"; !gain access to the Xpress-Optimizer solver
uses "mmsvg" !gain access to the graphs plotter

parameters !Customizable variables
N_CARS =3 !Number of cars
N_CUSTOMERS =6 !Number of passengers

SIZE =25 !Size of the map in km”2

CAR _SPEED =50 !Average car speed in km/h

SHARE PROB =1 !Probability to share ride

BASE FARE =3.21 !Base fare for normal car

COST_KM =0.5 !Cost per KM

COST_MINUTE = 0.3 !Cost per minute

BASE FARE SHARE =2.74 !Base fare for shared cars

COST_KM_SHARE = 0.5 !Cost per KM on shared cars

COST_MINUTE_SHARE =0.25 !Cost per minute with shared car
end-parameters

declarations

CUSTOMERS = 1.N_CUSTOMERS

DESTINATIONS = (N_CUSTOMERS+1)..2*N_CUSTOMERS))
CAR_POSITIONS = ((2*N_CUSTOMERS+1)..2*N_CUSTOMERS+N CARS))
TOTAL NO_CAR = 1..(2*N_CUSTOMERS)

TOTAL = 1..(N_CARS+2*N_CUSTOMERS)

CARS = 1.N_CARS

COORD: array(TOTAL, 1..2) of real !coordinates x,y of each driver, customer and final destination
DIST: array(TOTAL, TOTAL) of real !driving distance from i to j
SHARE: array(CUSTOMERS) of real !Whether a customer wants to share ride or not

FLOW: array(TOTAL, TOTAL, CARS) of mpvar !Variable that controls: 1.That routes only start at cars
and end up at cars(no impossible loops). 2.Time passed since the start of the model to when the car arrives at a
certain point

X: array(TOTAL, TOTAL, CARS) of mpvar !Weather the car 'k' goes from 'i' to 'j' or not

PASSENGERS: array(TOTAL, TOTAL, CARS) of mpvar !Number of passengers car k has when
travelling from i to j

end-declarations
SPEED := CAR_SPEED/60 !Speed in kilometers per minute

forall (i in TOTAL,jin 1..2) !Randomly assigns coordinates to customers, cars and destinations
COORD(i,j) := 100*random

forall (i in CUSTOMERS) do !'Randomly assigns whether customers want to share or not

SHARE(i) := random
if(SHARE(i) <= (1-SHARE PROB)) then
SHARE(G) :=0 ITf share is 0 then the customer doesn't want to share
else
SHARE() := 1 !If share is 1 then the customer wants to share
end-if
end-do

forall (i in TOTAL, j in TOTAL)
DIST(1,j) := sqrt((COORD(j,1)-COORD(j, 1))"2+(COORD(j,2)-COORD(},2))"2)
Icalculates all distances between points and adjusts it to the size of the map if the parameters

forall (i in TOTAL, j in TOTAL, k in CARS)
X(,j,k) is_binary !makes X binary

!Constrains

forall (i in CUSTOMERS+DESTINATIONS) do
sum(j in TOTAL, k in CARS)(X(i,j,k)) =1 !a car must arrive to every customer
forall(k in CARS)
sum(j in TOTAL)(X(i,j,k)) = sum(j in TOTAL)(X(j,1,k)) lif a car goes to a customer it must
leave from that customer
end-do

forall (i in CAR_POSITIONS)
sum(j in TOTAL, k in CARS)(X(i,j,k)) <= 1 !From every car location only one car can depart. No cars will
depart if that car is not needed

forall(k in CARS)
sum(j in TOTAL)(X(k+2*N_CUSTOMERS,j,k)) =1 !each car has to leave from its initial position

forall(k in CARS)
sum(j in TOTAL)(X(j, k+2*N CUSTOMERS,k)) =1 leach car has to end at its initial position

forall(j in DESTINATIONS, k in CARS) do

sum(i in TOTAL)(X(i, j, k)) = sum(i in TOTAL)(X(i,]-N_CUSTOMERS, k)) !if a car picks up a
customer it must deliver that customer

sum(i in TOTAL)(FLOW(i,j,k)) - sum(i in TOTAL)(FLOW(i,j-N_CUSTOMERS,k)) >= DIST(j-
N_CUSTOMERS,j)*sum(i in TOTAL)(X(i,j,k)) ! we make sure that a car doesn't deliver a customer before picking
it up
end-do

forall(i in CAR_POSITIONS, j in CAR_POSITIONS, k in CARS| i<>j)
X(i,j,k)=0
ICars should never drive to another car's position. This constrain is not necessary but
helps finding a solution faster

W :=sum(i in TOTAL)(max(j in TOTAL NO_CAR)(DIST(i,))))
forall(i in TOTAL, j in TOTAL, k in CARS)

FLOW(,j,k) <= X(1,j,k)*W Ithe flow of a route that is not taken by the car is 0. Flow will never be
higher than W.

forall(k in CARS)

sum(j in TOTAL)(FLOW (k+2*N_CUSTOMERS,j.k)) = sum(j in
TOTAL)(X(k+2*N_CUSTOMERS,j,k)*DIST(k+2*N_CUSTOMERS,j)) !When cars depart their initial time is 0
so the time when they arrive to their first customer has to be that distance divided by its velocity

forall(k in CARS, j in TOTAL NO CAR) do
sum(i in TOTAL)(FLOW(j,i,k)) - sum(i in TOTAL)(FLOW(i,j,k)) = sum(i in

TOTAL)X(,i,k)*DIST(j,i)) 'We use the variable FLOW not only to make sure no loops are created
but also to account for the time it has taken the car to arrive at one location.
end-do

forall(j in TOTAL NO_CAR, k in CARS)
X(.,j,k)=0 !Forbids travels from one point to itself. Without this constrain loops are formed between
points and themselves as, because distance from i to i is 0, the previous condition doesn't restrain it

forall(k in CARS, j in TOTAL)
PASSENGERS(k+2*N_CUSTOMERS, j, k) = 0 !The number of passengers a car has when it starts is 0

forall(j in CUSTOMERS, k in CARS)
sum(i in TOTAL)(PASSENGERS(j, i, k)) - sum(i in TOTAL)(PASSENGERS(I, j, k)) = sum(i in
TOTAL)(X(i,j,k)) !When a car picks up a customer the number of passengers adds 1

forall(j in DESTINATIONS, k in CARS)
sum(i in TOTAL)(PASSENGERS(, j, k)) - sum(i in TOTAL)(PASSENGERS(, i, k)) = sum(i in
TOTAL)(X(i,j,k)) !When a car drops a customer the number of passengers subtracts 1

forall(i in TOTAL, j in TOTAL, k in CARS)
PASSENGERS(,j,k) <= 4*X(i,j,k) IThere are passengers only in the routes that
the car drives. Also number of passengers must always be 4 or less.

forall(k in CARS, j in CUSTOMERS | SHARE(j)=0) do !For customers that don’t want to share:
sum(i in TOTAL)(PASSENGERS(,j,k)) =0 !The car must arrive to them empty
X([,j*N_CUSTOMERS k)= sum(i in TOTAL)(X(i,j,k)) !Tt must take them directly to their

destination

end-do

forall(i in CUSTOMERS| SHARE(i)=0) do !For customers that don't want to share:

sum(k in CARS)(X(i,i+N_CUSTOMERS,k))=1 ! There is always going to be one car that goes from the
customer to it's destination
forall(j in TOTAL, k in CARS| j<>(i+N_CUSTOMERS))
X(i,j,k)=0 !Arcs that go from the customer to any other point that is not his destination will not be
traversed
end-do

forall(i in CUSTOMERS, j in CAR_POSITIONS, k in CARS)
X(i,j,k)=0 ! There is no reason why a car would travel from a pick-up point to a car initial position

forall(i in CAR_POSITIONS, j in DESTINATIONS, k in CARS)
X(i,j,k)=0 ! There is no reason why a car would travel the initial position to a drop-off point

T := sqrt(SIZE)/(SPEED*100)*sum(i in TOTAL, j in DESTINATIONS, k in CARS)(FLOW(i,j,k)) !Time=
Distance/Speed and then multiplied by sqrt(SIZE)/100 to scale the coordinates to the size of the map selected

D :=sqrt(SIZE)/100*sum(i in TOTAL, j in TOTAL NO CAR, k in CARS)(X(1,j,k)*DIST(i,j)) 1Total distance
driven by cars to customers and destinations and scaled to the size of the map

minimize(T) !You can either minimize(T) to minimize time or minimize(T+D) to get a small time but decreasing
deadheading too or even minimize(D) to minimize distance.

!'Writes results
forall(j in CUSTOMERS) do
writeln("Passenger ", j, ":")
KM_PICKUP :=sum(k in CARS, i in TOTAL)(getsol(FLOW(i,j,k)))*sqrt(SIZE)/(100) !Calculate the
distance from car's initial position to pick up and scale it to KM. Coordinates go from 1 to 100 so we divide by 100
to get a percentage of the map. Then we multiply by map size to make distances proportional to the map size.
KM _ARRIVAL :=sum(k in CARS, i in TOTAL)(getsol(FLOW(i,j+N CUSTOMERSk)))
*sqrt(SIZE)/(100) !Calculate distance driven from car's initial position to arrival
WAIT := KM_PICKUP/SPEED !Time passed since the car is ordered to when it picks up the customer
ARRIVAL := KM ARRIVAL/SPEED !Time passed since the car is ordered to when it drops the
customer off
PRICE = (1-SHARE(j))*(BASE_FARE + COST KM*(KM_ARRIVAL-KM PICKUP)+
COST_MINUTE*(ARRIVAL-WAIT)) + (SHARE(j))*(BASE_FARE SHARE +
COST KM SHARE*(KM_ARRIVAL-KM PICKUP)+COST MINUTE SHARE*(ARRIVAL-WAIT))
writeln("Wait " , round(WAIT*100)/100, " min")
writeln("Arrive in ", round(ARRIVAL*100)/100, " min")
writeln("Price $" , PRICE)
end-do

writeln("")

writeln("Total time to arrival =", getsol(T), " min")

writeln("Average time =", (getsol(T)/N_CUSTOMERS), " min")

writeln("Total distance driven =", sqrt(SIZE)/100*sum(i in TOTAL, j in TOTAL NO CAR, k in
CARS)(getsol(X(i,j,k))*DIST(.j)), " km")

writeln("Total deadheading distance =", sqrt(SIZE)/100*sum(i in TOTAL, j in TOTAL NO_CAR, k in CARS]|
getsol(PASSENGERS(1,j,k))=0)(getsol(X(i,j,k))*DIST(i,j)), " km")

writeln("")
writeln("COORDINATES:[")
forall(i in TOTAL)

writeln(COORD(;,1)," ", COORD(},2))
writeln("]")
writeIn("SHARE:[")
forall(i in CUSTOMERS)

writeln(SHARE(i))
writeln("]")
!Display visual result
svgsetgraphviewbox(-10,-10,120,120) ! Graph size
svgsave("Carsmap.svg") ! Save graphic to file
svgaddfile("PASSENGER2.png", "CUSTOMER")
svgaddfile("DESTINATION .png", "DESTINATION")
svgaddfile("CARS.png", "CAR")

svgaddtext(20,90, "") ! Tittle

t:=svggetlastobj

svgsetstyle(t, SVG_FONTSIZE, "6pt") ! Size

svgsetstyle(t, SVG_FONTSTYLE, "oblique") ! Font
svgsetstyle(t, SVG_FONTWEIGHT, "bold") ! Makes it bold

!Draws positions of cars and customers

svgaddgroup("CIRCLES","Coordinates ", SVG_BLACK) !Maybe make that each customer's start and finish is the
same color?

forall(i in TOTAL) do
svgaddcircle(COORD(1,1),COORDC(1,2), 0.1) !Creates a circle wherever ther is a coordinate
svgsetstyle(svggetlastobj, SVG_STROKEWIDTH, 0.2) ! Wider border
if(i<=N_CUSTOMERS) then ! For
customer locations:
svgsetstyle(svggetlastobj, SVG_FILL, SVG_RED) ! Fills circle red
svgaddimage("CUSTOMER", COORD(j,1)-2.5,COORD(1,2), 5, 5)
svgaddtext(COORD(i,1)+1, COORD(,2)+2, " +i+"P"+i+" "+ SHARE()) ! Adds a label to
each customer and weather it shares or not

end-if
if (>N_CUSTOMERS and i<=2*N_CUSTOMERS) then ! For customer destinations:
svgsetstyle(svggetlastobj, SVG_FILL, SVG_GREEN) ! Fills circle green

svgaddimage("DESTINATION", COORD(j,1)-2.5,COORD(],2), 5, 5)

svgaddtext(COORD(i,1)+1, COORD(,2)+1, "" + i+ "F" + (i-N_CUSTOMERS)) ! Adds a label
to each destination

end-if

if (i>2*N_CUSTOMERS) then !For each Car

svgsetstyle(svggetlastobj, SVG_FILL, SVG_BLUE) !Fills circle blue

svgaddimage("CAR", COORD(1,1)-2.5,COORD(},2)-2.5, 5, 5)

svgaddtext(COORD(i,1)+1, COORD(i,2)+2, "" + i+ ".C" + (i-2¥*N_CUSTOMERS)) ! Adds a
label to each car

end-if

svgsetstyle(svggetlastobj, SVG_FONTSIZE, "Ipt") !Size of the labels names

svgsetstyle(svggetlastobj, SVG_FONTWEIGHT, "bold") !'Makes the labels bold
end-do

forall(k in CARS) do
svgaddgroup("CAR_ROUTE"+k, "Car route "+ k, SVG_BLACK)
forall(i in TOTAL, j in TOTAL| getsol(X(i,j,k))>0.1) do !For every trip existing between i and j
svgaddarrow(COORD(i,1),COORD(},2),COORD(j,1),COORD(j,2)) !Draws the line
between the coordinates of i and j
svgsetstyle(SVG_STROKEWIDTH, 0.2) 'Wider line
svgaddtext((COORD(i,1)+COORD(j,1))/2, (COORD(i,2)+COORD(j,2))/2, ""+
getsol(PASSENGERS(1,j,k)))
svgsetstyle(svggetlastobj, SVG_FONTSIZE, "2pt") !Size of the labels names
svgsetstyle(svggetlastobj, SVG_FONTWEIGHT, "bold") !Makes the labels bold
end-do
end-do

svgrefresh ! Display graphic
svgwaitclose ! Wait until window is closed

end-model

Results obtained from the program tests

TEST # Result D Change % CHANGE D Change % m=m-1 Share=0 Change % Share=1
Test1 Total time 104.82| -0.54493417 47.7] 0.0163522 48.48| 0.32673267 64.32 42.69| -0.1194307 48.48
n=6 Av.time 17.47| -0.54493417 7.95| 0.0163522 8.08| 0.32673267 10.72 7.11| -0.1200495 8.08
m=3 T.Dist 25.5| 0.099607843 28.04 -0.068117 26.13| 0.07003444 27.96 21.05| -0.1944126 26.13
Share = 0.5 |DH.Dist 9.4| 0270212766 11.94| -0.1599665 10.03| 0.18344965 11.87 6.72 -0.33001 10.03
Test 2 t.time 86.82| -0.53144437 40.68 0 40.68| 0.21238938 49.32 39.81| -0.0342067 41.22
n=6 av.time 14.47| -0.53144437 6.78 0 6.78| 0.21238938 8.22 6.63| -0.0349345 6.87
m=3 T.Dist 15.8 0.4 22.12 0 22.12| -0.1424051 18.97 21.1| -0.0391621 21.96
Share = 0.5 |DH.Dist 0.89| 3.966292135 4.42 0 4.42| -0.3529412 2.86 3.04| -0.4512635 5.54
Test 3 t.time 76.38[-0.45011783 42 0 42 0.16571429 48.96 41.41 -0.041657 43.21
n=6 av.time 12.73| -0.45011783 7 0 7| 0.16571429 8.16 6.9] -0.0416667 7.2
m=3 T.Dist 17.67| 0.161856254 20.53 0 20.53| 0.01607404 20.86 20.06| -0.1582039 23.83
Share = 0.5 |DH.Dist 4.73| 0.610993658 7.62 0 7.62| 0.04461942 7.96 7.23| -0.2183784 9.25
Test4 t.time 63.78| -0.33113829 42.66 0 4266 0.36990155 58.44 41.29| -0.0321144 42.66
n=6 av.time 10.63| -0.33113829 7.11 0 7.11| 0.36990155 9.74 6.88| -0.0323488 7.11
m=3 T.Dist 23.08| 0.102686308 25.45 0 25.45| 0.01335953 25.79 19.39| -0.2384132 25.46
Share = 0.5 [DH.Dist 4.83| 0.933747412 9.34 0 9.34| 0.03640257 9.68 4.94| -0.4710921 9.34
Test5 t.time 52.8[-0.37386364 33.06] 0.03085299 34.08[0.26584507 43.14 30.68| -0.1316162 35.33
n=6 av.time 8.8| -0.37386364 5.51| 0.03085299 5.68| 0.26584507 7.19 5.11| -0.1324278 5.89
m=3 T.Dist 15.56| 0.181876607 18.39| -0.0739532 17.03| 0.014679598 17.28 12.87| -0.3974719 21.36
Share = 0.5 |DH.Dist 3| 1.016666667 6.05| -0.1619835 5.07| 0.04930966 5.32 3.17| -0.6017588 7.96]
Test 6 t.time 68.25| -0.24717949 51.38 0 51.38(0.32288828 67.97 -0.071805
n=7 av.time 9.75| -0.24717%49 7.34 0 7.34| 032288828 9.71 -0.0722855
- Average tests 1-5

m=3 T.Dist 22.65| 0.0158%9404 23.01 0 23.01| 0.1029987 25.38 -0.2055327
Share = 0.5 |DH.Dist 2.8| 0.703571429 4.77 0 4.77| 0.19916143 5.72 -0.4145006
Test 7 t.time 91.08] -0.50461133 45.12 0 45.12] 0.21409574 54.78
n=6 av.time 15.18| -0.50461133 7.52 0 7.52| 0.21409574 9.13
m=3 T.Dist 25 0.084 27.1 0 27.1| -0.0206642 26.54
Share = 0.5 |DH.Dist 7.64| 0.596858639 12.2 0 12.2| -0.0459016 11.64
Test 8 t.time 57.54 -0.21793535 45 0 45 0.31866667 59.34
n=6 av.time 9.59| -0.21793535 7.5 0 7.5] 0.31866667 9.89
m=3 T.Dist 24.67| 0.040535063 25.67 0 25.67 -0.009739 25.42
Share = 0.5 |DH.Dist 569 0.34973638 7.68 0 7.68] -0.1627604 6.43
Test9 t.time 78.3[-0.38850575 47.88 0 47.88] 0.20676692 57.78
n=6 av.time 13.05| -0.38850575 7.98 0 7.98| 0.20676692 9.63
m=3 T.Dist 26.55(0.044821092 27.74 0 27.74| -0.0230714 27.1
Share = 0.5 |DH.Dist 9.72 0.12345679 10.92 0 10.92| -0.0586081 10.28
Test 10 t.time 83.1| -0.4830324% 42.96 0 4296| 0.38826816 59.64
n=6 av.time 13.85| -0.48303249 7.16 0 7.16| 0.38826816 9.94
m=3 T.Dist 24.08 0.08513289 26.13 0 26.13| 0.02296211 26.73
Share = 0.5 |DH.Dist 8.67| 0.23644752 10.72 0 10.72| 0.05503731 11.31

Time -0.40727627 0.27912687

AVERAGE |Dist 0.12164101 0.00442292
DH_Dist 0.880798339 -0.0052231

Test 11 t.time 39.7341| -0.35779092 25.5176 0 25.5176
n=8 av.time 4.96677| -0.35779188 3.1897 0 3.1897
m=4 T.Dist 223.801| 0.042162457 233.237 0 233.237
Share = 0.5 [DH.Dist 71.0028| 0.132883492 80.4379 0 80.4379
Test 12 t.time 73.7606| -0.21070599% 58.2188 0 58.2188
n=8 av.time 9.22008| -0.21070641 7.27735 0 7.27735
m=4 T.Dist 541.064| 0.010209513 546.588 0 546.588
Share = 0.5 [DH.Dist 150.349| 0.036741182 155.873 0 155.873
Test 13 t.time 125.541| -0.44836269 69.2531 0 69.2531
n=8 av.time 15.6927 -0.4483658 8.65663 0 8.65663
m=4 T.Dist 649.932| 0.115750571 725.162 0 725.162
Share = 0.5 |[DH.Dist 196.285| 0.383274321 271.516 0 271.516
Test 14 t.time 108.019| -0.49009063 55.079%| 0.0081409 55.5283
n=8 av.time 13.5024| -0.49009139 6.88499| 0.0081409 6.94104
m=4 T.Dist 516.208| 0.122946564 579.674| -0.0508199 550.215
Share = 0.5 |[DH.Dist 162.742| 0.389979231 226.208| -0.1302341 196.748
Test 15 t.time 154.479| -0.47847021 80.5654 0 80.5654
n=8 av.time 19.3099| -0.47846959 10.0707 0 10.0707
m=4 T.Dist 700.611| 0.089349154 763.21 0 763.21
Share = 0.5 [DH.Dist 221.401 0.28273585 283.999 0 283.999
Test 16 t.time 90.3499 -0.419079%6 52.4861 0 52.4861
n=8 av.time 11.2937| -0.41907789 6.56076 0 6.56076
m=4 T.Dist 518.437| 0.040188104 539.272 0 539.272
Share = 0.5 [DH.Dist 133.012| 0.156640002 153.847 0 153.847
Test 17 t.time 68.14(-0.30871001 47.1045 0 47.1045
n=8 av.time 8.5175 -0.3087103 5.88806 0 5.88806
m=4 T.Dist 401.493| 0.10253977 442.662 0 442.662
Share = 0.5 [DH.Dist 63.0533| 0.72114703 108.524 0 108.524
Test 18 t.time 120.501| -0.40839495 71.289 0 71.289
n=8 av.time 15.0626 -0.4083943 8.91112 0 8.91112
m=4 T.Dist 571.377| 0.120622636 640.298 0 640.298
Share = 0.5 [DH.Dist 99.905(0.501366298 149.994 0 149.994
Test 19 t.time 66.8065| -0.09925082 60.1759| 0.0273897 61.8241
n=8 av.time 8.35081| -0.09925025 7.52199| 0.02738903 7.72801
m=4 T.Dist 523.969| 0.126106697 590.045| -0.0963198 533.212
Share = 0.5 [DH.Dist 160.573| 0.448506287 232.591| -0.2698944 169.816
Test 20 t.time 63.1092| -0.16227903 52.8679| 0.02526675 54.2037
n=8 av.time 7.88865| -0.16227998 6.60848| 0.02526905 6.77547
m=4 T.Dist 508.04%| 0.09103059 554.297| -0.0491975 527.027
Share = 0.5 [DH.Dist 114.38(0.404336422 160.628| -0.1697711 133.358
Test 21 t.time 85.4191| -0.31388993 58.6069 0 58.6069
n=8 av.time 10.6774| -0.31389102 7.32586 0 7.32586
m=4 T.Dist 570.51| 0.006643179 5743 0 5743
Share = 0.5 [DH.Dist 174.736| 0.021689864 178.526 0 178.526
Test 22 t.time 75.6867| -0.13347258 65.5846| 0.02504094 67.2269
n=8 av.time 9.46083| -0.13347138 8.19808| 0.02504001 8.40336
m=4 T.Dist 591.643| 0.120939485 663.196| -0.0780433 611.438
Share = 0.5 [DH.Dist 169.655| 0.305608441 221.503| -0.1625847 185.49

-0.31920812 0.00715319

Average test -0.31920835 0.00715325

11-22 0.08237406 -0.022865

0.315409035 -0.0610404

o st
AVERAGE

0.598103687

Bibliography

Anderson, D. N. (2014). 'Not just a taxi’? For-profit ridesharing, driver strategies, and VMT.
Transportation, 41, 1099-1117.

Barter, P. (2013, Februaty). "Cars are parked 95% of the time". Let's check! Reinventing parking.

Bertoncello, M., & Wee, D. (2015, June). Ten ways autonomous driving could redefine the
automotive world. McKensey & Company.

Bodin, L. D., & Sexton, T. (1986). The multi-vehicle subscriber dial-a-ride problem. . TIMS Studies
in Management Science, 2, 73-86.

Borndorfer, R., Klostermeier, F., Grotschel, M., & Kittner, C. (1997). Telebus Berlin: Vehicle
Scheduling in a Dial-a-Ride System. Konrad-Zuse-Zentrum fu'r Informationstechnik
Berlin, Technical report SC 97-23.

Brodeur, A., & Nield, K. (2016). Has Uber made it easier to get a ride in the rain? Dept. Econ.,
IZA Inst. Lab. Econ., Bonn, Germany, IZA, 9986.

Certify. (2015). Sharing Economy Q2 Report. Room for More: Business Travelers Embrace the
Sharing Economy.

Cordeau, J.-F., & Laporte, G. (2003a). A tabu search heuristic for the static multi-vehicle dial-a-
ride problem. Transportation Research B, 37, 579-594.

Cordeau, J.-F., & Laporte, G. (2007, May 5). The dial-a-ride problem: models and algorithms.
Springer Science+Business Media, LLC, 153, 34.

Cramer, J., & Krueger, A. B. (2016). Disruptive change in the taxi business: The case of Uber.
Amer. Econ. Rev, 106 no.5, 177-182.

Desrosiers, J., Dumas, Y., & Soumis, F. (1986). A dynamic programming solution of the large-
scale single- vehicle dial-a-ride problem with time windows. American Journal of
Mathematical and Management Sciences,, 6, 301-325.

Desrosiers, J., Dumas, Y., Soumis, F., Taillefer, S., & Villeneuve, D. (1991). An algorithm for mini-
clustering in handicapped transport. Les Cahiers du GERAD, G-91-02.

Diana, M., & Dessouky, M. M. (2004). new regret insertion heuristic for solving large-scale dial-
a-ride problems with time windows. Transportation Research Part B, 38, 539-557.

Dumas, Y., Desrosiers, J., & Soumis, F. (1989a). Large scale multi-vehicle dial-a-ride problems.
Les Cahiers du GERAD, G-89-30.

Erhardt, G. D., Roy, S., Cooper, D., Sana, B., Chen, M., & Castiglione, J. (2019, May). Do
transportation network companies decrease or increase congestion? Science Advances,
5no.5.

Geier, B. (2015, June). 10% of All Uber Rides Happen in China. Time. Retrieved from
http://time.com/3914378/uber-china.

Greenwood, B., & Wattal, S. (2015). Show me the way to go home: An empirical investigation of
ride sharing and alcohol related motor vehicle homicide. Fox School of Business
Research Paper, 15-054. Retrieved from http://papers.ssrn.com/sol3/papers.
cfm?abstract_id=2557612

loachim, I., Desrosiers, J., Dumas, Y., & Solomon, M. M. (1995). A request clustering algorithm
for door-to- door handicapped transportation. Transportation service, 29, 63-78.

KPGM. (2013). Self-Driving Cars: Are We Ready? .

KPMG. (2014). Me, my car, my life. KPMG LLP.

Lyft. (2019). Retrieved from https://www.lyftimpact.com/analysis/casestudy/0

Lyft. (2019). Lyft. Retrieved from http://level52019.wpengine.com/partners/

Melachrinoudis, E. I. (2007). A dial-a-ride problem for client transportation in a health- care
organization. Computers & Operations Research, 34, 742—759.

National Academies of Sciences, Engineering, and Medicine. (2016). Between Public and Private
Mobility: Examining the Rise of Technology-Enabled Transportation Services. . The
National Academies Press.

Ngo, V. (2015, October). Transportation Network Companies and the ridedesourcing industry. A
Review of Impacts and Emerging Regulatory Frameworks for Uber. The University of
British Columbia School of Community and Regional Planning.

Orman, A. J., & Williams, H. P. (2004). A survey of different integer programming formulations
of the travelling salesman problem. LSEOR, 04.67.

Psaraftis, H. N. (1980). A dynamic programming approach to the single-vehicle, many-to-many
immediate request dial-a-ride problem. Transportation Science, 14, 130-154.

Psaraftis, H. N. (1983). An exact algorithm for the single-vehicle many-to-many dial-a-ride
problem with time windows. Transportation Science, 17, 351-357.

Rayle, L., Shaheen, S., Chan, N., Dai, D., & Cervero, R. (2014). App-based, on-demand ride
services: Comparing taxi and ridesourcing trips and user characteristics in San Francisco.
Berkeley: University of California Transportation Center.

Rekiek, B., Delchambre, A., & Saleh, H. A. (2006). Handicapped person transportation: an
application of the grouping genetic algorithm. Engineering Applications of Artificial
Intelligence, 19, 511-520.

Sexton, T. (1979). The single vehicle many-to-many routing and scheduling problem. SUNY at
Stony Brook.

Sexton, T., & Bodin, L. D. (1985b). Optimizing single vehicle many-to-many operations with
desired delivery times: Il. Routing. Transportation Science, 19, 411-435.

Shaheen, S., Chan, N., & Rayle, L. (2017, Spring). Ridesourcing’s Impact and Role in Urban
Transportation. Acces magazine.

Taylor, A. (2014). How the Anti-Uber Backlash is Spreading Around the World. The Washington
Post.

Uber Technologies Inc. . (2019). Uber. Retrieved from Uber Newsroom:
https://www.uber.com/en-PK/newsroom/company-info/

