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Abstract

In a default corridor [0; B] that the stock price can never enter, a deep out-

of-the-money American put replicates a pure credit contract (Carr and Wu,

2011). Assuming discrete (one-period-ahead predictable) cash �ows, we

show that an endogenous credit-risk model generates, along with the default

event, a default corridor at the cash-out�ow dates, where B > 0 is given by

these out�ows (i.e., debt service and negative earnings minus dividends).

In this endogenous setting, however, the credit-contract replicating put is

not American, but rather European. Speci�cally, the crucial assumption

that determines an endogenous default corridor at the cash-out�ow dates is

equityholders�deep pockets absorb these out�ows; that is, no equityhold-

ers�s fresh money, no endogenous corridor.
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1 Introduction

In Merton (1974), a key result is the link between put options and credit protection.

For a leveraged �rm, a corporate bond is the sum of a riskless bond and a short put on

the �rm�s assets, which is an insight extended along many avenues (see Carr and Wu,

2011). A derivative contract that directly provides exposition to a �rm�s credit risk also

exists, namely, credit default swaps. In a striking work, Carr and Wu (2011) introduce

a default corridor in which deep out-of-the-money (DOOM) equity puts mirror pure

credit contracts� and provide the same direct credit-risk exposition. Speci�cally, in a

default corridor, �the stock price stays above a barrier B before default but drops below

a lower barrier A after default, thus generating a default corridor [A;B] that the stock

price can never enter�. In this scenario, �a spread between two co-terminal American

put options struck within the corridor replicates a pure credit contract, paying o¤when

and only when default occurs prior to the option expiry�(p: 474).

As Carr and Wu show, a default corridor [0; B] occurs if A vanishes (A = 0). In

this simple case, a single DOOM American put (i.e., struck within this corridor [0; B])

becomes a digital put, which replicates a pure credit contract. That is, the price of a

DOOM American put is linear in the strike price falling within the corridor [0; B]; the

forward price of the DOOM European counterpart, scaled by the strike price, gives the

one-period risk-neutral default probability. Both American and European DOOM puts

essentially provide the same credit protection in a default corridor, only that exchange-

listed options in the US are American style. If equity prices can jump to zero (Merton�s

jump-to-default model, 1976), a default corridor [0; B] can be readily accommodated,

if the jump to zero is from above the barrier B (Carr and Wu).

In this paper, we study whether endogenous credit-risk models also generate a

default corridor. Assuming discrete cash �ows, we show that an endogenous credit-risk

model generates, along with the (endogenous) default event, a default corridor [0; B] in

a natural way. In this endogenous setting, however, the default corridor only necessarily
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happens at the cash-out�ow dates, where B > 0 is given by these out�ows, which we

require to be one-period-ahead predictable. It follows the equity put that replicates a

pure credit contract is not DOOM American, but rather European, expires at out�ow

dates, holds for any moneyness, and has a strike price lower than the out�ows (B).

In an endogenous model, besides limited liability, which implies nonnegative equity

prices, equityholders optimize the default decision and absorb (with their deep pockets)

the �rm�s net cash �ows� in Leland�s tradition. This discrete-time cash �ow is either

an in�ow (e.g., a cash dividend) or an out�ow. Then an endogenous setting generates,

along with the default event, a default corridor at the out�ow dates. That is, in contrast

to the ex-dividend equity price, which falls on dividend days, if B1 > 0 is the �rst

out�ow, either the ex-cash-�ow equity price increases and is larger than B1 at the �rst-

out�ow date if the �rm survives, or it is equal to zero if the �rm defaults (i.e., the equity

continuation value C1 is less than or equal to B1). Speci�cally, the ex-cash-�ow equity

price equals C1 � 1fC1>B1g, which is either zero or larger than B1>0.

Therefore, this model simultaneously generates a default event fC1 � B1g and a

corridor [0; B1] at the �rst-out�ow date (i.e., C1�1fC1>B1g =2 (0; B1]), in which the stock

price cannot enter and in which B1 is equal to the out�ow. By contrast, if equityholders

do not absorb the out�ow B1, but instead B1 is subtracted from the �rm�s assets or

is re�nanced, default is delayed until the assets are entirely depleted and a corridor

does not exist (i.e., the equity price can be arbitrarily small). Because cash �ows are

random, that B1 is one-period predictable (or paid in arrears or a lower bound) is a

necessary requirement in our setting; otherwise, the corridor [0; B1] is random. Other

than being one-period predictable, cash �ows are unconstrained. Hence, the corridor

[0; B1] is robust to the process followed by them and the endogenous equity price.

An example in which B1 is deterministic is when B1 is given by a bond�s coupon

or principal (Merton, 1974; Geske, 1977). In this scenario, if equityholders absorb all

coupons, a default corridor is present at all coupon dates. In general, B1 includes both

�nancial and operational leverage, namely, debt service and negative earnings minus
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dividends. Naturally, if the predictable out�ow is rather zero or an in�ow B1 � 0, such

as a cash dividend, defaulting is entirely irrational (i.e., assuming C1 > 0), implying

no credit protection is necessary and the corridor [0; B1] is empty.

Indeed, as in the standard case of call options, we assume endogenous equity prices

are strictly positive between out�ow dates, which has two implications. First, default is

never optimal, and hence a corridor does not exist (is empty) between two out�ow dates.

Namely, equity prices can be arbitrarily small without triggering default. Second, a

deep in-the-money American put is optimally exercised before expiration (Du¢ e, 2001).

Therefore, only the European put counterpart replicates a pure credit contract, with

a maturity equal to the �rst-out�ow date and a strike price (K) less than or equal to

the out�ow� B1. That is, the binary payo¤ of this low strike-price put is given by

max
�
0; K � C1 � 1fC1>B1g

	
= K � 1fC1�B1g if K � B1.

Moreover, although in Carr-Wu�s model, in-the-money American/European puts struck

within the corridor [0; B1] cannot exist because the equity price can never enter in the

corridor, in our setting, in-the-money puts exist; that is, the credit-contract replicating

put is not necessarily DOOM, but rather a low strike-price (LSP) European put.

The distortion created by an endogenous default corridor implies that only the price

of European (not the American) puts that expire at the �rst-out�ow date is linear in

the strike price falling within [0; B1]. This linear price yields an implied-volatility skew

for low strike prices K � B1, whereby this implied volatility soars because, within the

corridor, the put payo¤ is not the capped di¤erence between the strike and equity prices

as in a benchmark setting, but rather the strike price (i.e., max f0; K � C1g < K).

It follows that for riskier �rms, such as speculative-grade �rms, we can have linear-

in-the-strike-price (falling within [0; B1]) put prices and a steep skew at maturities

matching cash-out�ows dates. These �rms are more leveraged, which potentially leads

to larger out�ows, B1 > 0. By contrast, for investment-grade �rms, these linear-in-
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the-strike put prices should correspond to a thinner corridor.

For puts with a shorter maturity than the �rst-out�ow date, a default corridor is

not there (i.e., equity prices can be small without triggering default). By contrast, for

puts with slightly larger maturity than this �rst-out�ow date, in which a corridor [0; B1]

means the ex-cash-�ow equity price is either 0 or larger than B1 > 0, the equity price is

also likely larger thanB1 conditional on nondefault, and the low strike-price put can still

provide a good approximation to a digital put� a pure credit contract. Naturally, after

the �rst period ends and (conditional on nondefault) the second period becomes a new

�rst period, we again have a default corridor (if a new out�ow B2 > 0 exists).

For a same interval [0; B1], DOOM European puts expiring at the �rst out�ow date

provide the same credit protection in Carr and Wu�s as in our endogenous corridor.

Then, if we see a credit default swap as a multiperiod insurance contract, the protec-

tion leg of this long-term contract is replicated by rolling over LSP European puts.1

However, if not corridor exists, and default happens (i.e., the equity price equals zero)

before the option maturity, although the American put could be exercised in the money

prior to default, the European put always pays the largest amount, that is, the strike

price. Conversely, if the European put ends out-of-the-money, the �rm survives. It

follows the price of LSP European puts and credit-default-swap rates must be linked,

and empirically correlated (Carr and Wu).2

Finally, although endogenous default is standard in credit-risk modelling (Du¢ e,

2001), �rms also get short-term �nancing or rollover expiring debt in practice. For this

reason, we provide an extension of the endogenous corridor. Two other extensions are

provided latter; one of them is motivated by the (tentative) takeover of a distress �rm.

Perhaps in normal times, that is, when defaulting is not an option for equityholders,

the �rm can easily absorb/�nance any out�ows. However, perhaps in bad times, that

is, when defaulting is an option, debt markets are tapered, and therefore only fresh

1And, if necessary, entering in a swap on the recovery rates of corporates bonds on default.
2For low interest rates, the prices of DOOM European and American puts are similar too.
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injections of new capital can support the out�ows and daily operations of the �rm,

keeping the same �rm alive.3 In this scenario, that is, in the bad times, a default

corridor exists. For example, consider equityholders have some liquidity issues, and

cannot absorb the out�ow, B1 > 0. It is logical to assume they will transfer the �rm

to the debtholders, perhaps for an amount distinct from C1 �B1, rather than default.

Then, if debtholders cannot re�nance B1 with a second (and new) lender, they have to

absorb B1 as well, and threrefore the same default corridor [0; B1] exists.

Section 2 motivates our endogenous-default corridor in a coupon-bond model. Sec-

tion 3 prices European puts in a default corridor. Section 4 provides two extensions of

the corridor, and relates our work to the literature. Section 5 concludes. An appendix

contains omitted proofs and shows the corridor in a general discrete-time setting.

2 A coupon-bond model

We consider a two-period model N = 2, n 2 f1; 2g and respective times 0 < T1 < T2.

We denote by Vt the value of the �rm�s assets, 0 � t � T2. The �rm issues a two-period

coupon bond (Merton, 1974; Geske, 1977), where T2 is the maturity, D > 0 is the face

value, and c � D > 0 is the coupon. In this structural setting, we denote by r the

riskless rate and assume a Q risk-neutral measure exists.

As in any endogenous credit-risk model, the debt service (coupon or face value) is

absorbed by equityholders�deep pockets (e.g., Leland, 1994; Leland and Toft, 1996�s

rollover model; Manso et al., 2010�s performance-sensitive debt model; Carr and Wu�s

structural model; Du¢ e, 2001). Otherwise, if the debt service is subtracted from the

�rm�s assets or is simply re�nanced, default is delayed until these assets are entirely

depleted. Then, B1 = cD > 0 and B2 = (1 + c)D > 0 are the two respective cash

out�ows at T1 and T2.

3In bad times, retained earnings are exhausted and short-term �nancing soars. Rolling over the full
face value of debt leads to a maturity rat race (Brunnermeier and Oehmke, 2013). Binding covenants
may limit further indebtness. Directly selling the �rm�s assets may be expensive, carrying a discount.
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We denote by Ct the equity continuation value. We assume equityholders�limited

liability, which implies Ct � 0, 0 � t � T2. It follows that because Bn > 0, defaulting

at Tn is optimal if and only if

Cn � Bn, n = 1; 2;

with indi¤erence between defaulting and paying the cash out�ow if Cn = Bn. This

default choice maximizes equity value; that is, it is endogenous.

2.1 Endogenous equity pricing

Given the terminal assets value (V2 � 0), the continuation value of equity is de�ned

recursively as follows (where, in an abuse of notation, Cn = CTn, n = 1; 2):

C2 = V2 � 0; (1)

Ct = EQt
�
e�r(T2�t)max f0; C2 � (1 + c)�Dg

�
� 0; T1 � t < T2,

Ct = EQt
�
e�r(T1�t)max f0; C1 � c�Dg

�
� 0; 0 � t < T1:

In particular, C1 is the price of a European call, whereas C0 is the price of a compound

option. The de�nition of C1 and C2 recognizes the debt service (i.e., the coupon cD

and (1 + c)D, respectively) is absorbed by equityholders�deep pockets, and is never

subtracted from the �rm�s assets (i.e., from V1 and V2).

Importantly, the process Ct is always discontinuous at T1 (and T2); that is,

lim
t"T1

Ct ! max f0; C1 � c�Dg < C1 if c�D > 0: (2)

Although the left-hand-side limit is only well de�ned if Ct does not jump at t = T1

(where t " T1 means t! T1, t < T1), the inequality is always correct (if C1 > 0).
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In addition, we assume the equity continuation value is strictly positive; that is,

Ct > 0, t 2 [0; T2] : (3)

As shown next, this assumption implies equity prices are also strictly positive between

cash-out�ow dates (i.e., conditional on no previous default), and default is never opti-

mal outside the out�ow dates.

To de�ne the ex-cash-�ow equity price (denoted by E), which is subject to default

risk, we introduce an auxiliary binary process, a 2 f0; 1g. Namely, a0 = 1 and

an = an�1 � 1fCn>Bng, n = 1; 2; :::; N; (4)

and hence an = 0 indicates the company has defaulted (i.e., aj = 0, j = n; n+1; :::; N).

Consequently,

E2 = a2 � C2 = 1fC1>B1g � 1fC2>B2g � C2; (5)

Et = a1 � Ct = 1fC1>B1g � Ct; T1 � t < T2,

Et = a0 � Ct = Ct; 0 � t < T1:

The (ex-cash-�ow) equity-price function En (Cn) is discontinuous at T1 and T2.

That is,

E1 = 0 if C1 � c�D; (6)

E1 = C1 > c�D > 0 otherwise,

7



both with positive probability.4 Likewise, either

E2 = 0 or E2 = C2 > (1 + c)�D > 0:

In particular, because equityowners absorb the entire debt service, conditional on non-

default (a2 = 1), the equity value equals the asset value at T2; that is, E2 = V2.

Moreover, the discontinuity at T1 implies the equity-price function is also close to

discontinuous right after T1. That is, if a1 = 1 and T1 < t < T2, Et = Ct, where Ct > 0

can be arbitrarily close to zero. However, in the limit t # T1, E1 = C1 > c�D, which

implies that for t > T1 and t not far away from T1, the probability that Ct 2 [0; c�D]

should be relatively small (i.e., a function of a small t� T1).

Importantly, Ct > 0 implies Et = Ct > 0 between out�ow dates, conditional on no

previous default. Strictly positive equity prices imply default is not optimal between

out�ow dates. Hence, we next focus on out�ow dates.

2.2 The endogenous default event and the default corridor

Implicit in the de�nition of the equity value (i.e., equation (5)) are two endogenous-

default events at periods T1 and T2, that is,

fC1 � c�Dg and fC2 � (1 + c)�Dg , (7)

respectively. These two events are endogenous because they maximize equity value,

and are default events because they imply equity value becomes zero. These two default

4The process Et is also discontinuous at T1 if the �rm survives (otherwise, is zero); that is,

lim
t"T1

Et ! max f0; C1 � c�Dg < 1fC1>c�Dg � C1 if C1 > c�D and c�D > 0;

where the limit is only well de�ned if Ct does not jump at t = T1.
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events de�ne two respective optimal default thresholds, Y1 and Y2. That is,

V1 = Y1 : C1 (Y1) = c�D and fC1 (V1) � c�Dg � fV1 � Y1g ;

V2 = Y2 : C2 (Y2) = (1 + c)�D and fC2 (V2) � (1 + c)�Dg � fV2 � Y2g :

In general, Y1 > 0 and Y2 > 0 are unique because (i.e., we assume if necessary that)

call-type payo¤s are increasing functions in V . If V depends on stochastic parameters,

Y1 and Y2 are threshold functions.

Moreover, because the out�ows are absorbed by equityholders�deep pockets, from

equation (6), these two endogenous default events lead to two default corridors,

[0; c�D] and [0; (1 + c)�D] ; (8)

respectively, in which the ex-cash-�ow equity price cannot enter. That is, E1 =2 (0; c�D]

and E2 =2 (0; (1 + c)�D], at periods T1 and T2, respectively. Thus, at T1, the following

four default events are equivalent:

fV1 � Y1g ; fC1 � c�Dg ; fE1 � c�Dg ; and fE1 = 0g ;

which depend, respectively, on the �rm�s low asset value, low continuation value, low

equity value, and exhausted equity value.

Remark 1. We provide an example in which a default corridor is empty. If c �D

is exclusively paid from the �rm�s assets, the default event at T1 is trivially given in

terms of the asset value, namely, by fV1 � c�Dg. This speci�c default event implies

a default corridor does not exist at T1, because the equity-price function is continuous

(i.e., zero or larger than zero). That is, if limt"T1 Vt = c � D + �, with � > 0 and

t < T1, V1 = � (after the coupon-payment date), and we assume the value of equity E

is arbitrarily close to zero if � ! 0.

Moreover, if C1 � V1, that is, if equity value is bound by the value of the assets,
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endogenous default leads to an earlier default than if the �rm�s managers entirely

deplete the �rm�s assets or holdings previous to default.

Remark 2. As in Merton, C1 > 0 is the premium of a European call that expires

at T2 (with a strike price equal to (1 + c) � D). However, if we consider that C2 =

fV2 �Dg+, a default corridor exists at T2, but it is very thin; that is, [0; c�D]. Note

that if we de�ne

Ct = E
Q
t

�
e�r(T2�t) �max f0; C2 � c�Dg

�
; T1 � t < T2;

the continuation value (C) is the same process as in equation (1), because

fV2 � (1 + c)�Dg+ =
�
fV2 �Dg+ � c�D

	+
;

implying the de�nition of the equity price, default events, and default corridor are

robust and carry over for t < T2.

If C2 = fV2 � (1 + c)Dg+, that is, if the entire debt service (coupon and face value)

is depleted from the �rm�s assets, E2 = a1 � C2 and a default corridor is empty at T2.

2.3 European puts, digital puts, and pure credit contracts

We denote by K the strike price of puts and calls. At T1, we show a low strike-price

European equity put becomes a digital put, which replicates a pure credit contract.

That is, for a put with maturity T1, the payo¤ reduces to

max f0; K � E1g = (K � E1)� 1fE1�Kg (9)

= K � 1fE1=0g + (K � E1)� 1fc�D<E1�Kg

= K � 1fE1=0g if K � c�D;
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which is a digital option in the case of low strike-price (LSP) puts, namely, K � c�D.

The second equality follows from equation (6).

Then, from equation (6), En = En � 1fEn>Bng, from which follows 1fE1=0g =

1fE1�c�Dg, and hence

max f0; K � E1g = K � 1fE1�c�Dg if K � c�D; (10)

which replicates a pure credit contract, in which fE1 � c�Dg is the endogenous-

default event. In particular, in this endogenous setting, a DOOM put (that replicates

a pure credit contract) is rather an LSP put, for all moneyness.

A similar result follows for T2, in which B2 = (1 + c)�D; namely,

max f0; K � E2g = K � 1fE2�(1+c)�Dg if K � (1 + c)�D: (11)

3 The price of European puts in a default corridor

We study the pricing of European puts/calls in a default corridor.

1) Under the Q�measure, from equation (10), the price of an LSP put with maturity

T1 is given by

EQ0
�
e�rT1K � 1fE1�c�Dg

�
= e�rT1K �Q (V1 � Y1) , K � c�D: (12)

Like DOOM puts in Carr and Wu, in our setting, LSP European-put prices are linear in

the strike price falling within the corridor (i.e., K � c�D), a straightforward empirical

prediction. The forward price of this European put, scaled by the strike price, gives

the one-period risk-neutral default probability.

2) In terms of the implied volatility �, where PBS (E0; �) denotes the Black-Scholes-
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Merton put-price formula, we have that

e�rT1K �Q (V1 � Y1) = PBS (E0; �) : (13)

Then the implied-volatility curve � (K) holds that (see the Appendix)

�0 (K)�
p
T1 =

�N (�d1)
K �N 0 (d1)

< 0, K � c�D; (14)

where N () is the cumulative Gaussian-distribution function.

A negative skew, �0 (K) < 0, implies LSP puts are expensive. First, they are more

expensive in a default corridor than in the standard case of no corridor. That is,

compared to a benchmark setting, LSP European puts that expire at T1 are overpriced

by the following amount:

e�rT1 � EQ0
�
e�rT1C1 � 1fC1�minfK;B1gg

�
+ e�rT1K � EQ0

�
1fK<C1�B1g

�
> 0:

Conditional on C1 2 [0; B1], the �rst (second) term covers the in-the-money (out-of-

the-money) part of the put. Second, the deeper out of the money the put is, the more

expensive this put is in implied-volatility units. For instance, in our numerical exercise,

� (K) is unbounded when K ! 0.

3) The same linear (in the strike price) result happens in the case of the second-

out�ow date T2, in which B2 = (1 + c) � D. The price of an LSP put with maturity

T2 is given by

EQ0
�
e�rT2K � 1fE2�(1+c)�Dg

�
(15)

= EQ0

h
e�rT2K � 1f1fC1>c�Dg�1fC2>(1+c)�Dg�V2�(1+c)�Dg

i
= e�rT2K � (Q (V1 � Y1) +Q (V1 > Y1)�Q (V2 � Y2)) , K � (1 + c)�D:

Scaled by the discounted strike price e�rTnK, the price di¤erence of two LSP European
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puts with the same strike but di¤erent maturity equals the probability of default at T2,

namely,

Q (V1 > Y1)�Q (V2 � Y2) > 0, K � c�D;

given that c�D < (1 + c)�D.

4) For no LSP European puts at T1 (i.e., K > c�D),

EQ0
�
e�rT1 max f0; K � E1g

�
(16)

= e�rT1K �Q (V1 � Y1) + EQ0
�
e�rT1 (K � E1)� 1fc�D<E1<Kg

�
, K > c�D;

and no LSP puts are also more expensive than in a benchmark setting.

5) Lastly, for European equity puts and calls (with respective prices pt and ct), with

the same strike price (K) and expiring at the �rst-out�ow date (T1),

K +max f0; E1 �Kg = E1 +max f0; K � E1g ;

which follows from put-call parity at T1. Then, from the law of one price (see the

Appendix), put-call parity at T0 becomes

e�rT1K + c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + p0; (17)

where B1 = c � D and Q (V1 > Y1) = Q (E1 > B1). Similar to the case of a paying-

dividend stock, put-call parity is also adjusted, in this case, by e�rT1B1 �Q (V1 > Y1).

From the last equation, the call price is given by

c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + p0 � e�rT1K: (18)

Speci�cally, for DOOM puts (i.e., K � B1), from equation (12),

c0 = E0 � e�rT1 (K �B1)�Q (V1 > Y1) : (19)
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For example, consider a spread between two co-terminal European calls struck within

the corridor, with respective strike prices K1 and K2, K1 < K2 � B1. Then,

erT1 � c0 (K1)� c0 (K2)

K2 �K1

= Q (V1 > Y1) ; (20)

which is the one-period risk-neutral surviving probability.

3.1 Numerical example: Merton�s structural model

FollowingMerton (1974), we consider a one-period setting in which equity is a European

call, with a strike price of B > 0 and a maturity of T1 (which are the face value and

maturity of a zero-coupon bond). In particular, Merton�s model is widely used to infer

a �rm�s distance to default.

First, we emphasize that although puts with the same maturity as debt are expen-

sive if a default corridor exists, in which case B1 = B, they are more expensive in the

original Merton�s noncorridor model. That is, if V1 is the asset value, although the put

payo¤ in a benchmark setting is max f0; K � V1g, this payo¤, which equals the strike

priceK within the corridor [0; B] ifK � B, is increased by (K +B � V1)�1fB<V1�K+Bg

in the latter noncorridor model. Namely, ifK � B, these three payo¤s, where fV1 � Bg

is the unique default event, hold:

noncorridor existsz }| {
(K � V1)� 1fV1�Kg| {z }
benchmark setting
(V1 is the asset value;

K is the put strike price)

<

here, a default corridor
exists (B1=B)z }| {
K � 1fV1�Bg| {z }

equityholders absorb debt

� K � 1fV1�Bg +
this part implies noncorridor exists (B1=0)z }| {
(K +B � V1)� 1fB<V1�K+Bg| {z }

debt is repaid by selling the �rm�s assets (original model)| {z }
Merton�s structural model (B is the face value of a zero-coupon bond)

:

For maturities shorter than the debt maturity, a corridor does not exist� the two put

payo¤s in Merton�s model are the same.

Second, we assume a lognormal asset value, ln V1
V0
� N

�
(r � �2

2
)T1; �

p
T1

�
, where

r is the riskless rate and � is volatility. From the Black-Scholes-Merton formula, the
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equity price is equal to

E0 (V0) = V0 �N (d1B)� e�rT1B �N (d2B) ;

d1B =
ln V0

B
+ (r + �2=2)� T1

�
p
T1

and d2B = d1B � �
p
T1;

However, we assume equityholders absorb the out�ow B > 0, which implies a default

corridor [0; B] exists at T1. That is,

E1 = max f0; V1 �Bg+B � 1fV1>Bg = V1 � 1fV1>Bg:

Consider a European equity put, with strike price K > 0 and maturity T1 as well.

Given the same maturity of the equity claim (or Merton�s call) and this equity-put

derivative, and given that E1 = V1 � 1fV1>Bg, the price of this equity put simpli�es to

p0 = EQ0
�
e�rT1 max f0; K � E1g

�
(21)

= e�rT1K � EQ0
�
1fV1�Bg

�
+ EQ0

�
e�rT1 (K � V1)� 1fB<V1�Kg

�
= e�rT1K �N (�d2B)

+
�
e�rT1K � (N (�d2K)�N (�d2B))� V0 � (N (d1K)� V0 �N (d1B))

�
� 1fK>Bg;

where d1;2K are de�ned akin to d1;2B with K instead of B. In particular,

p0 = e
�rT1K �N (�d2B) ; K � B:

Conversely, for a reciprocal call with the same maturity and strike price, the payo¤

in terms of the asset value is given by

max f0; E1 �Kg = max
�
0; V1 � 1fV1>Bg �K

	
= max f0; V1 �Kg � 1fK�Bg + (V1 �K)� 1fK<B<V1g;
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where the �rst (second) term corresponds to strike prices higher (lower) than B. It

follows that, in contrast to a benchmark setting, low strike-price (i.e., K < B) calls

are underpriced, because they pay nothing if V1 2 (K;B].

Following Carr and Wu, we de�ne B as a low strike price, B = 3. We assume

� = 30%, r = 2%, a maturity of T1 = 6 months, and four equity prices E0 =

f2:03; 3:03; 4:03; 6:03g, which are associated with the asset values of V0 = f5; 6; 7; 9g,

respectively. Each price implies a risky, healthier, sound, and super sound �rm. For

asset values lower than 5, the implied volatility of low strike-price equity puts quickly

soars above 100%. In Figure 1, we show the four implied-volatility curves, for a range

of strike prices K 2 [1; 20]. Hence, the volatility-smile function, � (K), solves

p0 (� = 0:3) = e
�rT1K �N (�d2K ; � (K))� V0 �N (�d1K ; � (K)) ; (22)

and in particular, for K � B,

e�rT1K �N (�d2B; � = 0:3) = e�rT1K �N (�d2K ; � (K))� V0 �N (�d1K ; � (K)) :

From Figure 1, for risky �rms (i.e., V0 � 6), the default corridor generates a clear

volatility smile, with large implied-volatility levels away from the money. However, for

sound �rms (i.e., V0 � 7), the default corridor generates more of a volatility smirk,

where the implied volatility approximates the asset volatility for strike prices higher

than B = 3. We also see the riskier the �rm, namely, the lower V0, the larger the

implied volatility, which is an example of a leverage e¤ect. These results are robust to

the maturity, T1 2 f3; 6; 12g months.

*** to include Figure 1 ***
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4 Extensions of the Endogenous Default Corridor

We now provide two extensions. First, that equityholders absorb cash out�ows in

bad times is su¢ cent for the existence of an endogenous default corridor. Speci�cally,

because we assume a �rm cannot re�nance any out�ow B1 > 0, the default corridor

and the defaulting region are given by the same interval [0; B1]. However, if we split

the surviving region (B1;1) into two complementary regions, (B1; b] and [b;1), where

B1 � b, but we allow re�nancing in the good-times region [b;1), the default corridor is

given by [0;min (B1; b�B1)]. It follows that, if good times start soon (i.e., if b � 2B1),

we have a thinner corridor [0; b�B1] at the �rst out�ow date; otherwise, the corridor

is [0; B1]. Again, how equityholders�deep pockets absorb the cash out�ows explains

the size of the default corridor.

Second, as any endogenous model assumes, substantial evidence shows default is not

entirely random, but rather �rms default in poor economic conditions or with expired

debt (Asquith et al., 1994; Du¢ e et al., 2007; Campbell et al., 2008; Davydenko, 2012).

However, because a �rm�s bankruptcy has severe economic consequences from layo¤s

to large distress costs, creditors may have a say in default (Carey and Gordy, 2007).

Motivated by this strategic say, assume the following scenario in which endogenous

default is rather delayed. In hard times, in the interval [0; B1], the equity price is

either 0 or larger than Bmin (0 < Bmin � B1) until all uncertainty is solved� in which

case either E1 = 0 or, if the �rm survives, E1 > B1. This setting supports Carr-Wu�s

corridor [0; Bmin] after the out�ow date and until uncertainty is solved, as well as an

endogenous corridor [0; B1] if the uncertainty has an expiring time. In this setting,

the key assumption is the equity price cannot slip in the corridor, namely, if Bmin is

meaningful. We illustrate this example with the (tentative) takeover of a distress �rm.5

The distress �rm needs fresh capital, and a large shareholder (L1) announces a

5Speci�cally, Dia, which is a Spanish retailer, with 46,000 employees, and is present in several
countries. Like many other retailers, because of serious competition in this sector, it is in di¢ cult
economic (poor sales) and �nancial (large expiring debt) conditions. See, for example, the following
article, https://elpais.com/economia/2019/04/26/actualidad/1556263740_217086.html
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capital-injection plan, but only if (in addition to banks extending a new credit line and

bondholders increasing the maturity of expiring loans so all stakeholders contribute) it

gets the control of the �rm (>50% of shares). L1 o¤ers a price per share of 0.67; an o¤er

expiring in six months. In six months, two mutually exclusive scenarios are possible,

either L1 does not get control and hence (no capital injection but �rm default and) the

equity price sinks to zero, or L1 gets control and the price per share is 0.67 or above.

However, because other equityholders want a better deal than 0.67, they not only

put at risk the L1-control plans and solvency of the �rm, but also push down the price

per share to a low 0.34 during this six-month period. Associated to this potential

takeover, two corridors exist for the troubled �rm. First, a Carr and Wu�s corridor

[0; 0:34] during the six months. Second, a corridor in six months, at the o¤er expiring,

in which the price is either zero or above 0.67. The following (DIA Spanish retailer)

stock price in Figure 2 seems consistent with both corridors.

*** to include Figure 2 ***

For this distressed �rm, in a perfect world, the quotes of low strike-price Ameri-

can/European puts or credit default swaps expiring in six months can be used to get

the risk-neutral probability of L1 not gaining control, and the �rm stock price jumping

to zero. Actually, a price per share of 0.34 represents a 50% risk-neutral probability of

each of the two scenarios.

Related literature This paper is related to two strands of the literature. First, it is

related to the literature on the link between tail risk, credit risk, and equity derivatives

and on the spanning property of option markets (Cremers et al., 2008; Coval et al.,

2009; Carr and Wu, 2009 and 2010; Collin-Dufresne et al., 2012; He et al., 2017; Cheng

et al., 2018). Kelly et al: (2016) study the US �nancial-sector tail risk during the 2007-

2009 crisis from the price of out-of-the-money puts. Culp et al: (2018) empirically

extend Merton�s put insights. Siriwardane (2018) uses Carr and Wu�s default corridor

to infer credit-risk spreads. Ibáñez (2018) develops a measure of default risk based on
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Leland-type models. This measure is linked to the default corridor/event of the same

endogenous model.

Second, it is related to the literature on the valuation of derivative securities in

structural models, a problem that until recently (Geske et al., 2016; Bai et al., 2018)

has received limited attention (Toft and Prucik, 1997). Bai et al: show Merton�s model

explains puts on a risky �nancial sector better than a benchmark setting. Speci�cally,

all these works emphasize that even if the asset volatility is constant as in Merton�s

model, structural models generate a leverage e¤ect in a natural way, because equity

is a call option on leveraged assets. In all extant models, however, a default corridor

does not exist, which is in contrast to Carr and Wu as well as this paper.

5 Concluding remarks

This paper shows an endogenous credit-risk model generates a default corridor [0; B].

This corridor is linked to the endogenous-default event, fE � Bg, in which E is the

ex-cash-�ow equity price and B > 0 is given by the out�ows (i.e., debt service and

negative earnings minus cash dividends), which we only require to be one-period-ahead

predictable. In this setting, the default corridor only necessarily happens at the out�ow

dates, which implies the low strike-price put (that replicates a pure credit contract) is

not DOOM American but rather European style, and expires in the �rst out�ow with

a strike less than or equal to the out�ow. The corridor [0; B1] especially applies to

speculative-grade �rms; these �rms are more leveraged, which implies a larger out�ow

B1 > 0. If the early-exercise premium is a small fraction of the American price,

such as in a DOOM case, the exchanged-listed American price can provide a good

approximation to the European counterpart, namely, a pure credit contract.

In sum, although endogenous credit-risk models are preferred by academicians,

reduced-form models and credit-risk sensitive securities, such as credit default swaps

or DOOM puts, are the workhorse for practitioners. In this paper, we bridge the gap
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between both worlds by deriving a default corridor in the former setting.
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6 Online Appendix

The implied volatility of low strike-price European equity puts

For a put option, from the Black-Scholes-Merton formula,

PBS (E0) = e�rT1K �N (�d2)� E0 �N (�d1) ;

d1 =
ln E0

K
+ (r + �2=2)� T1
�
p
T1

and d2 = d1 � �
p
T1;

which implies the following two Greeks:

@PBS

@K
= e�rT1 �N (�d2) and

@PBS

@�
= E0N

0 (d1)
p
T1;

where N () is the cumulative Gaussian-distribution function.

In terms of the implied volatility �, the low strike-price (LSP) put price veri�es

that

e�rT1K �Q (V1 � Y1) = PBS (E0) , K � c�D:

Then, the implied-volatility function, � (K), holds that

e�rT1 �Q (V1 � Y1) = e�rT1 �N (�d2) +
@PBS (E0)

@�
� �0 (K) , K � c�D; (23)
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implying

�0 (K)�
p
T1 = e�rT1 � Q (V1 � Y1)�N (�d2)

E0 �N 0 (d1)
(24)

=
�N (�d1)
K �N 0 (d1)

< 0, K � c�D;

which is equation (14). �

European put-call parity and call pricing

We derive the initial value of the ex-cash-�ow equity price at T1, where B1 = cD

and a1 = 1fC1>B1g. From equation (5), where E1 = a1C1,

EQ0
�
e�rT1E1

�
= EQ0

�
e�rT1a1C1

�
(25)

= EQ0
�
e�rT1a1 (C1 �B1)

�
+ e�rT1B1 � EQ0 [a1]

= E0 + e
�rT1B1 �Q (V1 > Y1) ;

because B1 is predictable at T0.

For European equity puts and calls (with respective prices pt and ct), with the same

strike price (K) and expiring at the �rst-out�ow date (T1), from put-call parity at T1,

K +max f0; E1 �Kg| {z }
=c1

= E1 +max f0; K � E1g| {z }
=p1

:

Then, from the law of one price, put-call parity at t = 0 becomes

e�rT1K + c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + p0; (26)

The call price is given by

c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + p0 � e�rT1K:

As in the case of a paying-dividend stock, put-call parity is also adjusted, in this case,
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by e�rT1B1 �Q (V1 > Y1).

Speci�cally, for LSP puts (i.e., K � B1), from equation (12),

c0 = E0 + e
�rT1B1 �Q (V1 > Y1) + e�rT1K �Q (V1 � Y1)� e�rT1K (27)

= E0 + e
�rT1B1 �Q (V1 > Y1)� e�rT1K �Q (V1 > Y1)

= E0 � e�rT1 (K �B1)�Q (V1 > Y1) :

For example, consider a spread between two co-terminal European calls struck within

the corridor, with respective strike prices K1 and K2, K1 < K2 � B1. Then,

c0 (K1)� c0 (K2) = e
�rT1 � (K2 �K1)�Q (V1 > Y1) ; (28)

which implies the following surviving probability, c0(K1)�c0(K2)
K2�K1

= e�rT1 �Q (V1 > Y1) :

For no LSP puts (i.e., K > B1), from equation (16),

c0 = E0 + e
�rT1B1 �Q (V1 > Y1) (29)

+e�rT1K �Q (V1 � Y1) + EQ0
�
e�rT1 (K � E1)� 1fB1<E1<Kg

�
� e�rT1K

= E0 � e�rT1 (K �B1)�Q (V1 > Y1) + EQ0
�
e�rT1 (K � E1)� 1fB1<E1<Kg

�
: �

6.1 A default corridor in an endogenous setting

We show the link between European puts and credit protection is given by endogenous

default.

1. The endogenous credit-risk model We study a general discrete-time setting

with stochastic cash �ows. Consider a model with N periods, n = 1; 2; :::; N , and

respective times 0 < T1 < T2 < ::: < TN . We denote by Bn the negative payout rate

of the �rm. Thus, Bn is an out�ow that is paid if Bn > 0 (an in�ow that is collected

if Bn < 0) by equityholders�deep pockets, in Leland�s tradition.
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The equity continuation value is denoted by Ct. We assume equityholders�limited

liability, implying Ct � 0, 0 � t. It follows that if Bn > 0, defaulting at Tn is optimal

if and only if

Cn � Bn, n = 1; 2; :::; N;

with indi¤erence between defaulting and paying the cash out�ow if Cn = Bn. This

default choice maximizes equity value; that is, it is endogenous.

In addition, we also assume strictly positive values for the process Ct; that is,

Ct > 0, t 2 [0; TN ] ;

which implies default is never optimal between out�ow dates.

2. Endogenous equity pricing Given a terminal value CN � 0, the equity contin-

uation value is de�ned recursively as follows:

Ct = E
Q
t

�
e�r(Tn�Tn�1) fCn �Bng+

�
� 0; Tn�1 � t < Tn, (30)

for n = 1; 2; :::; N . The process Ct is discontinuous at Tn; that is,

lim
t"Tn

Ct ! fCn �Bng+ < Cn if Bn > 0, n = 1; 2; :::; N: (31)

Similarly, fCn �Bng+ > Cn > 0 if Bn < 0.

The ex-cash-�ow equity price, as in the previous coupon-bond model, is given by

EN = aN � CN and

Et = an�1 � Ct; Tn�1 � t < Tn, (32)

for n = 1; 2; :::; N , where a0 = 1 and an is in equation (4). In particular, Et = Ct;

0 � t < T1. The (ex-cash-�ow) equity-price function En (Cn) is also discontinuous at
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Tn. That is, either

En = 0 or En = Cn > Bn > 0 if Bn > 0, n = 1; 2; :::; N , (33)

both with positive probability. By contrast, in the case of a cash in�ow (i.e., Bn < 0),

and conditional on no previous default (i.e., an�1 = 1), En = Cn > 0 if Bn < 0.

Then Ct > 0 implies Et = Ct > 0 between out�ow dates, conditional on no previous

default. It follows that default is never optimal between out�ow dates. Hence, we focus

on out�ow dates. First, we provide an example.

Example In Figure 3, we provide a typical equity path that ends in default at T3.

The �rm�s assets mature in four periods. Three deterministic cash �ows exist, namely,

B1 = �5, B2 = 4, and B3 = 4 (i.e., B1 < 0 is a cash dividend and B2, B3 > 0

are debt service or out�ows). The assets are risky and have an expected value of 7:5

at T4. The value of the �rm is C0 = E0 = 6, which equals the intrinsic value (i.e.,

5� 4� 4 + 7:5 = 4:5) plus some option/upside value (i.e., 6� 4:5 = 1:5).

*** to include Figure 3 ***

Equity value increases in the �rst period from E0 = 6 to 7. Namely, right before T1,

the value of equity is 7, that is, C1 = E1 = 7�5 = 2, which is the (downward-jumping)

ex-dividend equity price. After this large dividend, most of the �rm value is option

value (C1 = 2). From T1 to T2, the �rm remains stable. Right before T2, the value of

equity is also 2, that is, C2 = E2 = 2 + 4 = 6, and the equity price jumps upwards.

However, after T2 and a high-volatility period, the �rm quickly loses value and defaults

at T3 because C3 = 3 is less than B3 = 4. Hence, we advance that a default corridor

[0; 4] exists at T2 and T3.

At T3, it is optimal to equityholders to not absorb the debt service but default,

which implies Et = 0, t � T3. From C3 = 3, and given no additional cash-�ows, V3 is

also close to 3 (which is less than the initial expected value of 7.5). In brief, after this
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poor path/performance, all stakeholders lose. Equityholders get 5 � 4 = 1, which is

less than the initial equity value of E0 = 6, and debtholders get 4 and 3, instead of the

promised cash �ows of 4 and 4, which implies a loss of 1=8 for them.

3. The endogenous default event and the default corridor Implicit in the

de�nition of the equity value (i.e., equation (32)) are N endogenous-default events;

that is,

fCn � Bng , n = 1; 2; :::; N: (34)

These N endogenous-default events lead to the N default corridors, in which the ex-

cash-�ow equity price cannot enter. That is, from equation (33),

En =2 (0; Bn] , n = 1; 2; :::; N:

In particular, the event fCn � Bng is equivalent to fEn � Bng, n = 1; 2; :::; N . Natu-

rally, the event/corridor is empty if the cash �ow is an in�ow, that is, if Bn < 0.

However, because the payout rate Bn follows a random process, the N default

corridors are conditional on Bn. Therefore, assuming Bn is one-period predictable, the

only possible default corridor is at time T1 and is given by [0; B1] (i.e., E1 =2 (0; B1]). In

a general setting with operational leverage, earnings are stochastic; hence, we assume

predictability. In the case of �nancial leverage, (no �oating) coupons and principal are

known since issuance time, and only re�nancing costs are random.

Naturally, time advances, and after the �rst period ends (and conditional on non-

default), the second period becomes a new �rst period, and we again have a default

corridor. That is, if C1 > B1 at T1, we have a new default corridor at T2 if B2 > 0,

because E2 =2 (0; B2]. So, without loss of generality, we assume B1 > 0.

4. European puts, digital puts, and pure credit contracts At T1, an LSP

European put becomes a digital put, which replicates a pure credit contract. That is,
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for a put with maturity T1, the payo¤ reduces to

max f0; K � E1g = (K � E1)� 1fE1�Kg (35)

= K � 1fE1=0g + (K � En)� 1fB1<E1�Kg

= K � 1fE1=0g if K � B1;

which is a binary option in the case of LSP puts, namely, K � B1. The second equality

follows from equation (33). As emphasized above, the latter result only happens for

n = 1, because Bn is predictable yet stochastic for n > 1.

Then, from equation (33), En = En � 1fEn>Bng, from which follows 1fE1=0g =

1fE1�B1g and hence

max f0; K � E1g = K � 1fE1�B1g if K � B1; (36)

which replicates a pure credit contract, where fE1 � B1g is the endogenous-default

event at T1. In this setting, the DOOM put (that replicates a pure credit contract) is

rather an LSP put.

5. The price of European puts in a default corridor Similar to the coupon-

bond model, in which leverage is only �nancial (and B1 = cD), from equation (36),

the price of an LSP European put with maturity T1 is given by

EQ0
�
e�rT1K � 1fE1�B1g

�
= e�rT1K � EQ0

�
1fE1�B1g

�
, K � B1; (37)

and the same implications follow as in section 3.

That is, LSP European-put prices are linear in the strike price, and the implied-

volatility skew is negative, �0 (K) < 0, K � B1. Put options are more expensive in a

default corridor than in a benchmark setting of no corridor. Put-call parity is adjusted

by the cash out�ow (for t < T1), and from this parity link, we price call options. All

28



these results happen for a maturity T1 that is equal to the �rst-out�ow date, in which

the out�ow is assumed to be predictable.
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Figure 1: From a default corridor [0; B] at T1, we show the implied-volatility curves
generated by European put options. At T1, the value of equity equals V1�1fV1>Bg. We
de�ne the corridor by B = 3. The lognormal assets volatility is � = 30%, the interest
rate is r = 2%, and the maturity is T1 = 6months. Equity and the European equity put
have the same maturity. We consider four equity prices, E0 = f2:03; 3:03; 4:03; 6:03g,
corresponding to the four asset values, V0 = f5; 6; 7; 9g, respectively.
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Figure 2: Price per share of DIA retailer (in Euros) from June 1, 2018 to May 31, 2019.
Since October 23, 2018, DIA stock price looks consistent with a default corridor.
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Figure 3: In a default corridor, a typical equity path that ends in default. The �rm�s
assets mature in four periods. Three deterministic cash out�ows exist, B1 = �5,
B2 = 4, and B3 = 4, where B1 < 0 is a dividend and B2, B3 > 0 are debt payments.
The initial value of the �rm is E0 = 6. At T1, equityholders receive a dividend of 5,
and equity falls from 7 to 2. T1 to T2 is a calm period, equityholders pay a debt service
of 4, and equity jumps from 2 to 6. After T2 and a high-volatility period, the �rm
quickly loses value, and equityholders choose defaulting at T3 because the value of the
assets is 3, which is less than the debt service of 4. That is, Et = 0, t � T3.
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