

GENERAL INFORMATION

Course information				
Name	Fundamentals on electrical engineering and optimization techniques			
Code	MEPI-513			
Degree	Official Master's Degree in the Electric Power Industry (MEPI)			
Year				
Semester	Fall			
ECTS credits	3 ECTS			
Type	Extra training			
Department	Electrical Engineering			
Area				
Coordinator	Damián Laloux			

Instructor		
Name	Damián Laloux	
Department	Electrical Engineering	
Office	D-517 (Alberto Aguilera, 25)	
e-mail	dlaloux@icai.comillas.edu	
Phone	915422800 ext. 2405	
Office hours	Arrange an appointment through email.	

Instructor	
Name	Alberto Campos Fernández
Department	Institute of Technological Research
Office	D-303 (Sta. Cruz de Marcenado, 26)
e-mail	Alberto.Campos@iit.comillas.edu
Phone	915402718
Office hours	Arrange an appointment through email.

Instructor	
Name	Sonja Wogrin
Department	Industrial Organization
Office	D-203 (Sta. Cruz de Marcenado, 26)
e-mail	sonja.wogrin@comillas.edu
Phone	915422800 ext. 2717
Office hours	Arrange an appointment through email.

DETAILED INFORMATION

Contextualization of the course

Contribution to the professional profile of the master's degree

The overall objective of the course is to provide students who have no training in electrical engineering or operations research with the basic concepts necessary to successfully address the study of other mandatory courses where these topics are assumed to be known.

Prerequisites

Students willing to take this course should be familiar with basic mathematics, linear algebra and complex numbers. Some background in scientific or technical subjects is also desired although not strictly required.

CONTENTS

Contents

Part I: Electrical Engineering

Chapter 1. Introduction

- 1.1 Basic quantities: voltage, current, energy and power
- 1.2 Basic laws: Ohm, Joule and Kirchhoff

Chapter 2. DC Circuits

- 2.1 Basic techniques
- 2.2 Node voltage and mesh current equations
- 2.3 Superposition and Thévenin/Norton Theorems
- 2.4 Solving DC circuits

Chapter 3. AC Circuits

- 3.1 Definitions
- 3.2 Power in AC
- 3.3 Impedances
- 3.4 Phasors and complex numbers
- 3.5 Solving AC circuits
- 3.6 Transformers

Chapter 4. Laboratory sessions

- 4.1 Voltage and current measurements
- 4.2 Real and reactive power measurement and power factor correction
- 4.3 Electrical machines: transformers
- 4.4 Electrical machines: induction and synchronous machines

Part II: Optimization Techniques

Chapter 5. Introduction

- 5.1 Meaning and formal definition of optimization
- 5.2 Examples and computer implementation

Chapter 6. Duality

- 6.1 Minimization of costs vs. utility maximization
- 6.2 Mathematical formulation
- 6.3 Primal and dual variables

Chapter 7. Multidimensional problems

- 7.1 Algebraic and mathematical formulations
- 7.2 Computer implementation

Chapter 8. Optimization problem of mixed-integer (MIP)

- 8.1 Draw the feasible points and equations
- 8.2 Sensitivity analysis

Competences and Learning Outcomes

Competences

General Competences

Basic Competences

CB4. Ser capaces de predecir y controlar la evolución de situaciones complejas mediante el desarrollo de nuevas e innovadoras metodologías de trabajo adaptadas al ámbito científico/investigador, tecnológico o profesional concreto, en general multidisciplinar, en el que se desarrolle su actividad.

Specific Competences

CE22. Para aquellos alumnos sin formación previa en ingeniería eléctrica ni en técnicas de optimización, comprender los fundamentos de ambas materias que les capacite para ser capaces de asimilar los contenidos presentados en el resto de asignaturas del Título.

Learning outcomes

By the end of the course students should be able to:

- LO1. Understand the fundamental concepts of electricity.
- LO2. Know and understand the terms used in this area.
- LO3. Predict the value of the most relevant magnitudes in electric circuits, and to control the decision variables in complex optimization problems.
- LO4. Solve basic problems of electric circuits (Kirchhoff's laws, Ohm's Law, Thévenin-Norton equivalences, circuit theorems, etc.) both in direct current, and in alternating current (in single phase systems).
- LO5. Formulate an optimization problem (using linear and/or mixed-integer linear mathematical programming) from a statement, encoded in a programming language designed to optimize and analyze the results.

TEACHING METHODOLOGY

General methodological aspects

This is an intensive course during only three weeks in order to provide the students with basic concepts and tools they will require in the following courses. To obtain a good understanding of the different concepts, it is necessary to combine theory and practice. As the students will have to assimilate a wide range of knowledge in a short period of time, their commitment will be essential as well.

In-class activities

Lectures and problem-solving sessions (16 hours): The lecturer will introduce the fundamental concepts of each chapter, along with some practical recommendations, and will go through worked examples to support the explanation. Active participation will be encouraged by raising open questions to foster discussion and by proposing short application exercises to be solved in class either on paper or using a software package.

Lab sessions (13 hours): Under the instructor's supervision, students, divided in small groups, will apply the concepts and techniques covered in the lectures to real problems: On the one hand they will connect electrical devices and machines and measure electrical quantities and on the other hand they will become familiar with widespread optimization software tools.

Evaluation for the electrical part will consist in a test **(1 hour)** whereas for the optimization part the exam will be a practical case study implemented during the last lab session.

Out-of-class activities

- Personal study of the course material and resolution of the proposed exercises: individual activity by the students, in which they will read, analyze and question the readings provided as background material, and that will be discussed with other students and lecturers in the classroom (30 hours).
- Learning activity that will be carried out individually, outside of the classroom, and that will require personal research or analysis of different materials (30 hours).

GRADING AND COURSE RULES

Grading

Regular assessment

- Electrical engineering will account for 60%
- Optimization techniques will account for the remaining 40%

In order to pass the course, the global mark must be greater or equal to 5 out of 10 points, but the mark of each part must be greater or equal to 3 as well. Otherwise, the final grade will be the lower of the two marks.

Retakes

If one part has a passing grade, its mark will be preserved, and only the failed part will be subject to a retake exam. Otherwise, the student will retake both exams. The resulting grade will be computed following the same rule as before:

- Electrical engineering: 60%
- Optimization techniques: 40%

As in the regular assessment period, in order to pass the course, the global mark must be greater or equal to 5 and the mark of each part must be greater or equal to 3.

Retake exams are reserved to students who have failed the course exclusively.

Course rules

- Class attendance is mandatory according to Article 93 of the General Regulations (Reglamento General) of Comillas Pontifical University and Article 6 of the Academic Rules (Normas Académicas) of the ICAI School of Engineering. Not complying with this requirement may have the following consequences:
 - Students who fail to attend more than 15% of the lectures may be denied the right to take the final exam during the regular assessment period.
 - Regarding laboratory, absence to more than 15% of the sessions can result in losing the right to take the final exam of the regular assessment period and the retake.
 - Students who commit an irregularity in any graded activity will receive a mark of zero in the activity and disciplinary procedure will follow [cf. Article 168 of the General Regulations (*Reglamento General*) of Comillas Pontifical University].

WORK PLAN AND SCHEDULE¹

In and out-of-class activities		
Electrical engineering lectures		
Electrical engineering Lab sessions		
Optimization techniques Lectures		
Optimization techniques Lab sessions		
Review and self-study of the concepts covered in the lectures		
Problem-solving		
Electrical engineering exam		
Optimization techniques practical session and evaluation		

STUDENT WORK-TIME SUMMARY						
IN-CLASS HOURS						
Lectures	Problem-solving	Lab sessions	Assessment			
13	3	12	2			
OUT-OF-CLASS HOURS						
Self-	study	Individual teri	m papers			
3	30	30				
ECTS credits: 3 (90 hours)						

BIBLIOGRAPHY

Bibliography

- J.W. Nilsson, S.A. Riedel. Electric Circuits (8th Edition). Pearson Prentice Hall, 2008. (Or any other book on Electric Circuits).
- J.L. Kirtley Jr. *Introduction to Power Systems.* MIT Course 6061 Class Notes, chapters 1 and 2. MIT OpenCourseWare, 2003
- Nash, S.G., and Sofer, A. Linear and Nonlinear Programming. McGraw-Hill 1996

¹ A detailed course schedule can be found in the course moodle portal. Nevertheless, this schedule is tentative and may vary to accommodate the pace of the class.