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Abstract

Despite substantial progress in recent years, the global community is projected to fall short in its goal to achieve
universal electricity access by 2030. State-of-the-art electrification planning models enable planners to outline path-
ways towards improving the economic feasibility of extending access. The studies presented in this paper employ the
Reference Electrification Model (REM) to investigate the value of accurately modeling detailed demand characteris-
tics for electrification planning endeavors. Additionally, the benefits of demand stimulation are explored. REM uses
information about consumer demand, existing grid topology, network and generation components, and other features
to produce detailed engineering designs of recommended systems for every consumer in an area of interest. These
designs may comprise different supply technologies including grid extension, mini-grid, and stand-alone systems.
In our case study, the model determines the cost-optimal technology mix to provide full electrification for a 10,914
km2 area of Uganda with 366,946 individual consumers. These consumers are categorized into 20 consumer types.
The studies presented are unique from those previously reported due to the high (consumer-level) spatial granularity,
technical detail in system designs, and large areal extent of analysis. A number of contributions are made. First,
the criticality of adequately estimating demand and its evolution is demonstrated for large-scale planning; notable
cost and supply technology sensitivities are observed as a function of anticipated demand levels. Second, the impor-
tance of representing demand heterogeneity is elucidated via modeling a diversity of consumer types. In the “central
demand case” presented, modeling demand heterogeneity results in least-cost plans that are 9% less costly than mod-
eling assuming one single customer type. Modeling heterogeneity also decreases prescribed grid extension shares
from 89% to 77%, increasing the prevalence of mini-grid and stand-alone systems. Lastly, the potential economic
benefits of demand stimulation are characterized. We show how stimulating demand can lead to positive feedback
loops: increasing electricity demand can lower electricity unit-costs through the realization of economies of scale
and improved network utilization, which can improve the viability of additional electric loads, continuing the cycle.
Specific studies comparing the economics of clean cooking via electric and liquefied petroleum gas (LPG) cookstoves
show how these feedback loops can jointly benefit progress towards universal access to clean cooking and electricity.
The demand assumptions modeled show that coordinated planning can reduce electricity costs by 34% and increase
electric cookstove viabilities from 42% to 82%.

Keywords:
demand characterization, demand stimulation, demand forecasting, productive use of energy, energy for growth,
electrification planning, clean cooking, electric cooking, universal energy access, reference electrification model

?This paper documents spotlights presented in IEA’s World Energy
Outlook 2018 [1]. Descriptions have also appeared in [2, 3].

Email address: leesj@mit.edu (Stephen J. Lee)

1. Introduction

The International Energy Agency (IEA) recently esti-
mated that roughly 860 million people live without elec-
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tricity today [4]. While this figure represents notewor-
thy progress from the 2016 figure of roughly 1 billion
without access, there is still significant room for im-
provement. The IEA projects that, unless progress is
accelerated, 650 million will still be left without access
to electricity in 2030 [4]. While complex sociotechni-
cal factors can hinder progress towards universal elec-
tricity access [5, 6], economic constraints predominate
for the majority of cases. In 2018, the IEA estimated
that achieving universal energy access by 2030 would
require roughly $55 billion of investment per year, with
the majority being apportioned for electricity access [1].
These expenditures are almost double the amount of in-
vestment expected [1].

“Geospatial electrification plans”1 aim to prescribe
cost-optimal and practicable mixes of grid extension,
mini-grid, and stand-alone system solutions to power
areas without electricity services. They can additionally
guide the rollout of infrastructure over time, improve
coordination among stakeholders, and provide trans-
parency to investors [1, 7]. Because of the financial con-
straints mentioned previously, geospatial electrification
plans are essential instruments for achieving universal
electricity access in a timely manner.

The use of electrification planning models to assist
in the production of geospatial electrification plans has
popularized in recent years. These computer-based
models employ optimization algorithms that automate
parts of the engineering design process. They have
shown to be particularly effective in supporting elec-
trification planning because of the significant technical
complexity associated with designing systems that can
employ a diversity of supply technologies in different
places with unique demand, geography, and resource
characteristics. Traditional and manual approaches to
engineering design generally do not scale as well as
computer-based methods. While numerous electrifica-
tion planning models are available [10, 11, 12], many of

1The specific vocabulary describing a “geospatial electrification
plan” is not well-defined in the planning literature. The types of in-
dividual consumer-level and large-area electrification plans modeled
in this study are sometimes referred to as “comprehensive geospatial
plans,” and also “nationwide geospatial coverage least-cost plan[s] for
implementation” and “national electrification rollout plan[s]” when
extended to the country-scale [7]. They are sometimes equated to
“electrification master plans,” which may also go by variants includ-
ing “rural electrification master plan,” “national electrification master
plan,” “low cost rural electrification master plan,” “rural electrification
strategy and plan,” and “national electrification plan” [8, 9]. Never-
theless, some sources differentiate between the two groups due to the
level of granularity employed. “Electrification master plans” may not
necessarily encompass detailed system designs in the way “compre-
hensive geospatial plans” do [7].

them have different characteristics and occupy unique
niches, as elucidated by Ciller et al. [12].

Users of some of the more detailed electrification
planning models are benefiting from improving data
availabilities, remote sensing capabilities, and machine
learning-powered inference to produce high-resolution
country-scale plans. While these methods were pre-
viously limited to areas with detailed geospatial data
collected via extensive surveys, they are now able to
extend to larger areas as massive data sets of build-
ing locations, electrification status, productive uses, ex-
isting grid topology, and inferred demand are becom-
ing available [13, 14, 15, 16]. Previously, only more
coarse (region-level) electrification planning modeling
was feasible for planning over large spatial extents due
to input data limitations.

The goal of this paper is to explore the value of de-
mand characterization and stimulation for electrifica-
tion planning. Numerous accounts in the literature de-
scribe how characterizing demand is critical to electrifi-
cation planning [17, 18, 19, 20, 21]; however, to our best
knowledge, these accounts miss key insights that can
only be appreciated when modeling at very high levels
of granularity and large spatial extents.

The studies presented in this paper employ the Ref-
erence Electrification Model (REM) [12, 22] to ana-
lyze sensitivities for a 10,914 km2 area of Uganda with
366,946 individual consumers, representing 20 con-
sumer types. REM uses information about areas with
poor electricity access to determine cost-optimal elec-
trification modes (e.g., grid-connected, mini-grid, or
stand-alone system) for each consumer, estimate costs
of electrification, and produce detailed engineering de-
signs of recommended systems. The model takes ac-
count of highly granular economic and technical detail:
it considers multiple customer types with different de-
mand profiles, individual lines, transformers, and gen-
eration assets, medium and low voltage network codes,
voltage drops, solar resource availability, and even to-
pographical and streetmap-level information if desirable
[12, 22].

The studies presented are unique from those previ-
ously reported due to the high (individual consumer-
level) spatial granularity, engineering design detail, and
large areal extent of analysis. A number of contributions
are made:

1. The criticality of adequately estimating demand
and its evolution is demonstrated for large-scale
planning; significant cost and supply technology
sensitivities are observed as a function of antici-
pated demand levels. Efforts to improve methods
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for demand forecasting are essential to prospects
for right-sizing system designs. Over the domain
of aggregate demand values modeled, the average
cost of service provision range from $0.13/kWh to
$0.37/kWh: a nearly three-fold difference.

2. The importance of consumer-level modeling and
representing a diversity of consumer types is eluci-
dated; using homogeneous consumer type assump-
tions can significantly distort costs and prescribed
designs over heterogeneous representations. Im-
proved characterizations of consumer types are
shown to decrease costs and yield plans that more
efficiently serve populations of interest. For the
“central demand case” modeled, modeling demand
heterogeneity results in least-cost plans that are
9% less costly than modeling assuming homoge-
neous demand. When comparing supply technol-
ogy shares for cost-optimal designs, modeling het-
erogeneous demand decreases prescribed grid ex-
tension shares from 89% to 77%.

3. The potential economic benefits of demand stim-
ulation are demonstrated. Mechanisms are eluci-
dated showing how stimulating demand can lead
to positive feedback loops: increasing demand
can lower electricity unit-costs through realized
economies of scale and improved network utiliza-
tion, improve the viability of additional electric
loads, and further increase demand, continuing the
cycle. Specific studies comparing the economics
of clean cooking via electric and LPG cookstoves
demonstrate how these feedback loops can jointly
benefit progress towards universal access to clean
cooking and electricity through coordinated plan-
ning. The demand assumptions modeled show that
coordinated planning can reduce electricity costs
by 34% and increase electric cookstove viabilities
from 42% to 82%.

2. Case Study: the South Service Territory in
Uganda

According to the World Bank, Uganda had a 22%
electrification rate in 2017 [23]. As a result, universal
electricity access in Uganda is seen as a major national
priority. The country split into 13 electric service ter-
ritories. The study region modeled in REM comprises
the majority of current and potential consumers across
one of them: the South Service Territory (SST). The
SST covers the districts of Masaka, Rakai, Isingiro, and
Ntungamo, with electrification rates of 37%, 15%, 11%,
and 12%, respectively, according to the Uganda 2014

Census [24]. The case study that the following analy-
ses are based on was originally produced and compiled
by the MIT-Comillas Universal Energy Access Lab in
partnership with German Corporation for International
Cooperation GmbH (GIZ) in support of master electrifi-
cation planning and mini-grid project evaluation across
the territory.

3. Methods

The studies that will be presented employ REM and
make a number of general assumptions when analyz-
ing cost-optimal plans for the SST. Detailed accounts of
the methods employed in REM are provided by Ciller
et al. and the MIT-Comillas Universal Energy Access
Lab in [12] and [22], respectively. Although REM has
the ability to account for topography when designing
electrification plans, it is omitted in these analyses be-
cause this region is mostly flat, it does not affect the
conclusions of this study, and disabling this feature im-
proves computation times. Lastly, diesel generation is
not employed as an option in these studies; mini-grids
and stand-alone systems are powered exclusively using
solar generation and battery storage options. This mod-
eling decision conforms to specifications of the original
SST study in REM and relates to area-specific ambitions
for low-carbon electrification.

The buildings across the SST were identified using
satellite imagery from the Google Maps API and a con-
volutional neural network for semantic segmentation

Figure 1: Buildings identified in the Uganda South Service
Territory (SST). An image showing a basemap with the
SST border (white outline), building locations from deep
learning-based building extraction (yellow points), a sub-area
with manual corrections (orange outline), and building loca-
tions from German Corporation for International Cooperation
GmbH (GIZ)-led manual building identification efforts (blue
points). Note that building points are fully missing in regions
where high quality satellite imagery was not available (green
outlines).
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with human-based manual corrections. 366,946 indi-
vidual consumers were identified, as shown in Fig. 1.
Some consumers were not accounted for due to incom-
plete satellite image coverage for the service territory.
The supplement for this working paper enumerates the
assumptions that were used in the base model, includ-
ing the network and generation component catalogs that
were employed in REM, financial modeling assump-
tions, and other key parameters.2

While some parts of the SST are already electrified,
it is assumed that all buildings are non-electrified in the
following experiments in order to observe the full ef-
fects of the demand assumptions made on cost-optimal
plans. Georeferenced data representing the existing
medium-voltage (MV) grid was shared by partners at
the Rural Electrification Agency of Uganda (REA).

Solar irradiance data is estimated using the National
Renewable Energy Laboratory’s PVWatts tool [26, 27]
in order to describe the generation potential of solar re-
sources in the territory. Because PVWatts data was not
available in the SST, historical PV performance data is
used for Mombasa, Kenya, which is assumed to have
adequately similar solar irradiance characteristics for
modeling purposes.

4. Why estimating demand and its evolution de-
serves more attention

Demand forecasting is the process of projecting how
a population’s explicit and latent demand will evolve
into the future. Calculating demand functions is a non-
trivial task and forecasting their evolution can be even
more difficult. A recent review paper by Riva et al. cat-
egorizes 85 studies that pertain to long-term electricity
and thermal energy planning [28]. The authors classify
demand forecasting methods for developing countries
as belonging to one of five categories: “fixed demand,”
“arbitrary trends,” “extrapolation,” “input/output,” and
“system dynamics” [28]. Each has drawbacks for use in
support of high-resolution and large scale electrification
planning. Additionally, since data constraints are ubiq-
uitous for electricity demand forecasting in developing
countries, it is often common to rely on non-local data
to construct plausible demand scenarios. In this section,
we argue that this problem deserves more consideration
by showing how forecasting demand may be critical to
efforts for right-sizing infrastructure development pro-
grams. Section 5 investigates a related but different di-

2This work was published in [25]; however, document is not pub-
licly available as of the time of writing

mension of the problem: the importance of modeling
demand heterogeneity.

The demand scenarios employed in this section and
Section 5 should be contrasted up-front. For this pur-
poses of paper, we define demand heterogeneity as vari-
ability in the demand profiles modeled for the con-
sumers of interest. In contrast, demand homogeneity
assumes that there is only one consumer type: all con-
sumers are assumed to have the same demand profile.
In this section, we assume heterogeneous demand types
for all the cases modeled. In Section 5, these cases are
contrasted with those assuming homogeneous demand.

4.1. Modeling Assumptions

While electricity demand for any one consumer is
theoretically a function of price, reliability, individual
preferences, available productive uses of energy, histor-
ical consumption, precise time and day of the year, and
other factors, we make a number of simplifications in
order to make electrification modeling straightforward
and tractable. For every consumer and for every hour of
a full year, two types of demand are modeled in REM:
critical and regular demand. Each type of demand is
assumed to have a different cost of non-served energy
(CNSE), with the CNSE of critical demand set to a per-
kWh value higher than that of regular demand. REM
then takes account of the specified demand profiles and
CNSE values in order to prescribe designs for supply in-
frastructure that minimize the sum of these social costs
with the explicit costs of service provision.

Consumer
type

Number of
consumers
modeled in
region

Demand
multiplier
for low case

Demand
multiplier
for central case

Demand
multiplier
for high case

Cell office 271 8.98 32.08 79.55
Coffee washing station 29 6.74 24.06 59.66
Health center 91 8.08 28.87 71.60
Health post 11 4.49 16.04 39.78
Large market 10 58.38 208.50 517.08
Small market 65 35.93 128.31 318.20
Irrigation pumping 5 13,472.53 48,115.44 119,325.86
Milk collection center 10 6.29 22.45 55.69
Mining 16 112.27 400.96 994.38
Preprimary school 96 1.80 6.42 15.91
Primary school 259 1.80 6.42 15.91
Secondary school 213 5.84 20.85 51.71
Sector Office 67 6.29 22.45 55.69
Tea Factory 2 17,065.21 60,946.23 151,146.10
Technical Schools 7 116.76 417.00 1,034.16
Telecom Tower Type 1 45 1,257.44 4,490.77 11,137.08
Telecom Tower Type 2 47 1,257.44 4,490.77 11,137.08
Universities and Institutes 18 583.81 2,085.00 5,170.79
Water pumping stations 16 179.63 641.54 1,591.01
Residential 365,668 0.28 1.00 2.48

Table 1: Heterogeneous consumer type information. For each
of the 20 consumer types modeled, this table shows the num-
ber of consumers modeled in the SST and corresponding de-
mand multipliers over the basic demand profile shown in Fig.
2 for the low, central, and high demand cases.
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Figure 2: The base demand profile. The base demand profile
shown corresponds to a residential consumer in the hetero-
geneous central demand case. Note that critical and regular
demand is differentiated.

There are two steps required to define demand pro-
files for the consumers considered in REM. The first is
to specify a basic hourly demand profile or pattern span-
ning a full year, and the second is to optionally specify a
nonnegative scalar multiplier to be applied to this basic
profile to proportionally increase or decrease demand
values at every hour of the year.

In the experiments described in this section, one base
demand profile was specified for all of the consumers
modeled, shown in Fig. 2. This base pattern was com-
puted by taking time series data of hourly aggregate
consumption for the agricultural village of Karambi in
Rwanda and scaled to match the total energy demanded
annually by a typical residential consumer in the “cen-
tral case with heterogeneous demand,” which will be de-
scribed shortly. Because Karambi has residential loads,
a school, health center, bank, government buildings and
shops, using its demand profile may be considered a
reasonable composite for the types of profiles found in
other rural parts of East Africa. Additional information
about the base demand profile can be found in [29, 30].
Because appropriate data on the effects of seasonality on
basic demand profiles was not available, the basic pro-
file described was used for every day of the year mod-
eled in REM.

Critical and non-critical shares for this base demand
profile were differentiated by applying expert-validated
logic for determining which hours are critical and not
critical for individual consumer types. For instance, ev-
ery hour of health center demand is considered critical;
residential demand is only considered to be critical in
the evening hours; and school, government building,
and shop-related demand is considered critical during
the day. Differentiated critical and non-critical demand
values are summed across all consumer types. For each
hour, critical shares are computed as the fraction of ag-

gregated critical demand in Karambi over the village’s
total demand.

Demand heterogeneity is modeled using 20 multipli-
ers, one for each consumer type analyzed, as reflected
in Table 1. The same base demand profile is applied
to each consumer type before accounting for the mul-
tiplier. Though it is certain that the various consumer
types modeled have different relative demand patterns
from the base profile chosen, constraints on data avail-
ability and the fact that the base pattern reflects a com-
posite of residential and non-residential East African
consumers justified the modeling decision. The multi-
pliers and the number of consumers for the consumer
types shown are derived from a data set shared by
Rwanda Energy Group Limited (REG) Energy Devel-
opment Corporation Limited (EDCL) across the coun-
try of Rwanda [31]. The data set provides frequencies
of these various consumer types and peak demand val-
ues for each type. Relative multipliers for the differ-
ent consumer types in the SST case study are computed
in accordance with relative levels of peak demand from
the Rwanda data set. The implicit assumption that all
consumer types have the same load factor may be rea-
sonable since likely load factor variations would only
cause minor distortions. Additionally, while data sets on
Rwandan consumers are certainly different from those
that would be most appropriate to our Uganda SST case
study, they are assumed to be acceptable proxies in the
absence of better information. Each of the 20 con-
sumer types are spatially distributed across the Ugan-
dan SST in a random manner following a multinoulli
distribution. The parameters of the distribution specify-
ing the probabilities of each of the 20 possible consumer
types were simply set to the empirical share of the con-
sumer types from the Rwanda data set. In essence, the
multinoulli distribution reflects a 20-sided die, each side
of which is weighted and represents a single consumer
type; this die is rolled once for each consumer, dictating
its type. Although the Uganda SST and Rwanda have
different characteristics in reality, it is assumed that their
respective distributions of consumer sizes and frequen-
cies of occurrence are similar enough to provide these
experiments with an adequate level of realism.

4.2. Analysis
Demand growth in the real world is a phenomenon

with intrinsic uncertainty. Forecasting demand for any
population at any future date with very high accuracy
is typically infeasible, though on-going research in the
planning community is aimed at making improvements
to current forecasting methods. Because of this uncer-
tainty, we try to appreciate the value of demand fore-
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casting improvements by modeling three cases that are
designed to target aggregate demand levels within a rea-
sonable range of what a planner may consider. We show
sensitivities to aggregate demand in cost-optimal plan-
ning under heterogeneous demand assumptions by mod-
eling a “low case,” “central case,” and “high case” with
annual aggregate demand levels of 103 GWh, 369 GWh,
and 915 GWh respectively. Demand multipliers for var-
ious consumer types across these cases are summarized
in Table 1; it can be noted that multipliers across cus-
tomer types are higher for demand cases with higher

(a) Low case with heterogeneous demand

(b) Central case with heterogeneous demand

200 km 

MV Microgrid LV Microgrid 

       MV Existing Stand-Alone 

MV Extension LV Extension 

0 50 100 150 

(c) High case with heterogeneous demand

Figure 3: Prescribed system designs featuring grid extension,
mini-grid, and stand-alone systems. These cases use the het-
erogeneous consumer type assumptions reflected in Table 1.
Key metrics for these different runs are provided in Fig 5

aggregate demand.
Demand multipliers for residential and commercial

& industrial (C&I) consumer types were computed dif-
ferently from one another. Residential demand values
were scaled in accordance with empirical consumption
data for newly electrified consumers in Kenya. Monthly
demand for a residential consumer under the “low case,”
“central case,” and “high case” are 7.1, 25.3, and 62.8
kWh, respectively. These values roughly match median
consumption values observed by grid-connected con-
sumers in Kenya at 0.25, 1, and 10 year time spans from
initial connections as presented by Fobi et al. [32]. As-
suming demand growth in Uganda may progress sim-
ilarly to how consumption growth has proceeded in
Kenya, the 0.25 to 10 year time horizons chosen may
be considered to be reasonable bounds on the domain of
residential demand values modeled.

Demand multipliers for C&I consumer types are cal-
culated differently than those for residential consumers
in these three cases. A linear relationship between resi-
dential and C&I consumption per capita for all of Kenya
was discerned using country-level data from the IEA’s
World Energy Statistics database [33] and the World
Bank’s World Development Indicators data set [23] be-
tween 1971-2012 as shown in Fig. 4. Per capita values
are used instead of aggregate ones to mitigate the effects
of potential nonstationarities from population growth.
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Figure 4: Historical relationship between residential and com-
mercial and industrial (C&I) consumption in Kenya. Ag-
gregate country-level statistics from the IEA’s World Energy
Statistics database [33] and population data from the World
Bank’s World Development Indicators data set [23] are used
to understand the relationship between residential and com-
mercial consumption in Kenya. Each point on the scatterplot
represents residential and C&I consumption per capita for a
single year between 1971-2012. This relationship is used as a
proxy for how C&I demand could reasonably develop in the
Uganda SST for the three demand cases defined.
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Given aggregate levels of residential demand for the
three cases as defined in the preceding paragraph, ag-
gregate C&I demand figures are determined following
this learned function. It is assumed that the historical
relationship between residential and C&I consumption
in Kenya can serve as an adequate proxy for that be-
tween residential and C&I demand in the Uganda SST.

4.3. Results and Discussion

Independent consumer-level electrification plans
were designed using REM for the low, central, and high
cases described. Geospatial maps of the different runs
are shown in Fig. 3 showing qualitative changes to the
prescribed designs as demand increases. Fig. 5 commu-
nicates key metrics from these plans more concretely.
For this section, we will only discuss general trends for
the heterogeneous cases (the red curves in the figures).
Fig. 5a depicts how total system and administrative
costs increase with increasing total system demand and
follow a nearly linear relationship. While this should
be expected, understanding the general shape of this
relationship is critical to right-sizing planning. Under-
estimating demand leads to more non-served energy and
lower reliability levels, undermining potentials for eco-
nomic growth. Over-estimating demand can lead to un-
necessary expenditures and underutilized infrastructure.
Fig 5b reinforces this finding, as it shows how the ra-
tio of grid-extensions to mini-grids and stand-alone sys-
tems can change by tens of percentage points over the
modeled range of demand cases. Large demand fore-
casting errors can change the supply technology path-
ways planned for large shares of a population. Although
planners may have the ability to make adjustments, such
forecasting errors are likely to precipitate the need for
costly reactive measures.

Fig 5c reflects the economies of scale that impact per-
kWh system costs. The explicit costs of service provi-
sion decrease significantly as demand grows: the aver-
age cost in the central case is half that in the low de-
mand case at $0.18/kWh and $0.37/kWh, respectively.
These effects weaken, however, as demand continues to
increase. The average cost of the high demand case
only falls to $0.13/kWh. These trends reveal part of
how beneficial it can be to stimulate demand for elec-
tricity, especially if demand is initially very small. In-
creasing demand can improve the affordability of elec-
tricity services for the system as a whole. Section 6
investigates the benefits of stimulating demand further.
Furthermore, lower per-unit electricity costs can help
accelerate development. Adequately characterizing the
economies of scale associated with increasing demand
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Figure 5: Cost and grid share sensitivities for various demand
cases across heterogeneous and homogeneous consumer type
assumptions. The analyses presented in Section 4 only discuss
the general trends shown in the heterogeneous cases. Section
5 contrasts both heterogeneous and homogeneous cases. (a)
As demand increases, total system and administrative costs
increase nearly linearly. (b) As demand increases, the share of
consumers prescribed grid extension-based supply increases
as well. Homogeneous demand assumptions bias plans to-
wards higher costs and high grid extension shares. (c) Finally,
average costs per kWh of electricity served show significant
economies of scale.
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can be instrumental to endeavors around planning for
infrastructure and development.

5. Why consumer-level modeling and characterizing
demand heterogeneity is needed

Many of the published approaches to large-area elec-
trification planning aggregate consumers spatially when
performing analyses at the region-level. As a result,
they ignore consumer-level characteristics. While ag-
gregate analyses can provide value and have numer-
ous advantages in terms of improved input data avail-
ability, the simplifications they make inhibit their util-
ity for detailed system design. Furthermore, even
when consumer-level electrification planning models
are used, they are sometimes employed to assume that
all consumers are of the same “type,” with one single
demand profile and level of annual demand3. When
these assumptions are made, it is likely because more
granular demand data is unavailable at high spatial res-
olutions. A review of planning models and the methods
they employ is provided in [12].

5.1. Analysis
The importance of characterizing demand hetero-

geneity is demonstrated by contrasting the difference
in key metrics of cost-optimal plans for the Uganda
SST designed when modeling with homogeneous and
heterogeneous demand assumptions. The same low,
central, and high demand cases are used as those de-
scribed in Section 4.2, demonstrating the sensitivities
of cost-optimal designs to total system demand. The
three cases previously discussed employ multipliers for
20 consumer types as described in Table. 1. These
cases will now be designated the “low case with het-
erogeneous demand,” “central case with heterogeneous
demand,” and “high case with heterogeneous demand.”
These cases are contrasted with three new homogeneous
demand cases, each of which are constrained to have
the same total system demand as one of the previous
three, but only have one composite consumer type mod-
eled. We refer to these cases as the “low case with ho-
mogeneous demand,” “central case with homogeneous
demand,” and “high case with homogeneous demand,”
and their demand profile multipliers are provided in Ta-
ble 2. As with the heterogeneous cases, the homoge-
neous cases reflect annual aggregate demand levels of
103 GWh, 369 GWh, and 915 GWh respectively.

3To the authors’ best knowledge, REM is the only consumer-level
electrification planning model that can be employed at large scales
[12, 22]

Consumer
type

Number of
consumers
modeled in
region

Demand
multiplier
for low case

Demand
multiplier
for central case

Demand
multiplier
for high case

Aggregated 366,946 0.94 3.35 8.31

Table 2: Homogeneous consumer type information. In the ho-
mogeneous case, only one aggregated consumer type is mod-
eled per case. Demand multipliers are based on the basic de-
mand profile shown in Fig. 2.

5.2. Results and Discussion

As in Section 4, the key metrics evaluated for the
case studies presented include total system and admin-
istrative cost, grid extension share, and average cost per
kWh of demand, as shown in Figs. 5a, 5b, and 5c, re-
spectively. In this section, the comparison of interest
pertains to the blue and red trend lines, contrasting ho-
mogeneous and heterogeneous demand assumptions. It
should be noted that while the general trends for each
series are similar, systematic shifts in these key metrics
are observed. When comparing the total and average
costs, as in Fig. 5a and Fig. 5c, modeling more gran-
ular types of demand decreases costs relative to cases
under the homogeneous demand assumption. For the
central demand cases in particular, modeling demand
heterogeneity results in least-cost plans that are 9% less
costly than modeling assuming homogeneous demand.
When comparing the supply technology shares of these
cost-optimal designs for the central case as in Fig. 5b,
heterogeneous demand types decrease prescribed grid
extension shares from 89% to 77%.

Our analyses demonstrate that failing to account for
demand heterogeneity at the consumer-level for large-
scale and cost-optimal plans can potentially distort
plans in significant ways. The homogeneous demand
assumption biases designs towards higher grid shares
and costs. This results in large part from the fact that
such an assumption effectively blends C&I and resi-
dential consumers into a single composite consumer
type. While this assumption keeps demand distributed
in ways consistent with average demand across the ho-
mogeneous and heterogeneous demand cases and in
both urban and rural areas, the assumption contrasts sig-
nificantly with the power law-distributed demand types
(reflecting few consumers with very high demand, many
consumers with low demand, and some in between) rep-
resented by the heterogeneous cases, as reflected in Ta-
ble 1.

To understand the distortive effects of modeling ho-
mogeneous demand, consider a hypothetical example
with a number of non-electrified rural villages. Each
of these villages has equal land areas, consumer densi-
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ties, and distances to the existing grid. In the heteroge-
neous case, most of these hypothetical villages will only
have consumers with very low latent demand: the con-
sumers may be mostly residential with perhaps a school
and a health center. The small remainder of these vil-
lages may have very high demand, with the vast ma-
jority coming from one or a few massive-demand con-
sumers: a tea factory, telecom tower, or farm employ-
ing large-scale irrigation. The many low-demand vil-
lages are much more likely to be cost-optimally sup-
plied with mini-grids and stand-alone systems while
the few high demand villages are much more likely to
be supplied by extensions to the main grid. Because
there are many fewer high-demand villages than low-
demand villages, the overall grid-extension share will
be low. Now, consider the homogeneous demand case
where we assume that all consumers in each of these
villages have the same medium-level of demand. Since
we are now effectively distributing demand from the few
massively-demanding tea factories, telecom towers, and
commercial farms across all villages in our example, de-
mand will rise significantly for villages that were low-
demanding in the heterogeneous case. Such a large in-
crease can change the cost-optimal mode of supply from
mini-grid and standalone-systems to grid-extensions,
necessitating higher infrastructure costs. As a result, the
share of grid-extensions and total and average costs in
cost-optimal planning can be inferred to rise. The phe-
nomena described by this thought-experiment is directly
observed when analyzing results for the consumer-level
designs produced by REM. While other complexities
may also affect the designs ultimately produced, the
underlying observation is that cost-optimal plans can
demonstrate significant sensitivities to spatial character-
izations of demand heterogeneity.
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Figure 6: The demand profile for residential consumers with electric
cooking. This alternative demand profile corresponds to a residen-
tial consumer that has adopted electric cooking. Critical demand in-
creases significantly for three hours out of the day

6. How coordinated clean cooking and electrifica-
tion planning can yield significant co-benefits and
why demand stimulation pays dividends

In this section, demand stimulation using electric
cookstoves is explored to investigate techno-economic
pathways towards the joint achievement of universal
electricity access and universal access to clean cooking
solutions. Although the topic of clean cooking is com-
plex and involves cultural and behavioral challenges
(e.g., it may be difficult to prepare some traditional
foods with electric cookstoves, etc.) [34, 35], techno-
economic dimensions to the problem are still important
to explore. This is especially true considering that there
are 2.7 billion people without access to clean cooking
solutions. Furthermore, under current and planned poli-
cies, the number of people without access is expected
to be 2.2 billion in 2030, with significant impacts on
health, environment, and gender equality [4]. There is
much to be said about the potential for electric stoves
to displace solid fuels and compete with LPG-powered
options. In 2018, the IEA reported that around 1.7
billion of those without access to clean cooking have
some sort of electricity connection [1]. Urban markets
in some countries, including India, already have a ma-
ture market for electric induction stoves. Furthermore,
electric-powered appliances including pressure cookers,
rice cookers, and insulated pots may be preferable for
more specialized cooking-related loads [1, 36].

The studies presented in this section aim to isolate
just the techno-economic dimensions of choosing be-
tween alternatives for clean cooking fuels and technolo-
gies. To demonstrate the synergistic effects of clean
cooking and electrification goals, the Uganda SST REM
base case is used. A new demand profile is introduced
for residential consumers who cook meals exclusively
with electric cookstoves, and REM sensitivities are ana-
lyzed showing the effects of demand from different pen-
etrations of electric cookstoves on cost-optimal electri-
fication designs. Analyses are subsequently presented
that characterize the economic viability of clean cook-
ing solutions assuming that each residential consumer
is constrained to choose between adopting electric- or
LPG-powered cookstoves.

Although the benefits of cooking with electric stoves
are central to the analyses presented [37], more general
effects are demonstrated concerning electricity demand
stimulation and how notable positive feedback effects
can result from it.

9



6.1. Analysis

The analyses in this section build off of the “central
case with heterogeneous demand,” initially described
in Section 4. In this case, 20 consumer types are dis-
tributed throughout the Uganda SST as shown in Ta-
ble 1. The key difference between runs for this section
and the “central case with heterogeneous demand,” is
the modeling and implementation of one additional con-
sumer type: residential households that have adopted
electric cookstoves. The demand profile for this con-
sumer type is shown in Fig. 6, representing the same
basic demand profile shown in Fig. 2, but with ad-
ditional critical demand from electric cooking for five
hours of the day. These modeling assumptions reflect a
conservative level of demand from electric cooking, as
expounded upon in the supplement.

Five additional REM cases are modeled for these
cooking analyses. The “central case with heteroge-
neous demand,” reflects electrification planning assum-
ing there is 0% electric cookstove penetration; addi-
tional cases with 20%, 40%, 60%, 80%, and 100% elec-
tric cookstove penetration are modeled, assuming that
electric cookstoves are distributed randomly across the
residential population of interest.

After modeling REM cases with a full range of elec-
tric cookstove penetrations, analyses are performed to
investigate the economic viability of electric cookstoves
assuming universal access to clean cooking solutions
is achieved in addition to universal electricity access.
The most salient assumption in these analyses is that
clean cooking can only be brought about using elec-
tric or LPG-powered cookstoves and that LPG prices
are $2.5/kg across the study region. Since the fixed
costs of these two different cookstove options are simi-
lar, only the energy costs are compared in these analy-
ses. While numerous clean cooking technologies have
been developed including solar and biogas stoves, the
analyses were constrained to LPG and electric cooking
solutions as these technologies have the greatest poten-
tial to scale and serve the majority of consumers.

6.2. Results and Discussion

The results of analyzing REM cases with various lev-
els of electric cookstove penetration are summarized in
Fig. 7. Fig. 7a shows a boxplot depicting the dis-
tribution of energy costs per meal using electric cook-
stoves as a function of electric cookstove penetration.
The figure shows that as electric cookstove penetrations
increase, the distributions of energy costs per meal for
electric cooking shift downward due to economies of

scale and economies stemming from increased utiliza-
tion of discrete network investments. As the distri-
bution shifts with each subsequent increase in electric
cookstove penetration, it can be observed that greater
and greater shares of households are more economically
served with electric-powered cookstoves than by LPG-
powered ones.

The comparisons of energy costs per meal from
electric- and LPG-powered cookstoves enable calcula-
tion of the share of residential households for which
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Figure 7: Positive feedback from demand stimulation via elec-
tric cooking showing the benefits of coordinated planning. (a)
As electric cookstove penetrations increase, the distributions
of energy costs per meal for electric cooking shift downward
due to economies of scale and economies stemming from in-
creased utilization of discrete network investments. The box-
plots depict the minimum, first quartile, median, third quar-
tile, and maximum energy costs per meal using electric cook-
stoves, and the dotted line reflects the energy cost per meal
assuming LPG is employed with a market price of $2.5/kg.
(b) Assuming that LPG costs are a constant $2.5/kg, the share
of households for which electric cooking is economically vi-
able over LPG-powered cooking is calculated. As more elec-
tric cookstoves are adopted, electricity prices for cost-optimal
plans fall and electric cooking becomes viable for more house-
holds.
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electric cooking is economically viable. Energy costs
per meal from electric-cooking are calculated for ev-
ery consumer modeled in REM given costs for elec-
tricity, the efficiency of electric cookstoves, and the en-
ergy required to cook two and a half meals each day,
as described in the supplement. It is reasoned that elec-
tric cooking is viable if the energy costs per meal from
electric cooking are lower than those for LPG-powered
cooking. Using these energy cost-based comparisons,
the shares of residential households for which elec-
tric cooking is economically viable over LPG-powered
cooking is computed as a function of electric cookstove
penetration and displayed by the blue line in Fig. 7b.
An interesting comparison can be made between the
blue line and the reference line in black, the latter of
which shows economically rational electric cookstove
penetrations. The assumption of rationality reflects the
fact that electric cookstove penetrations should be equal
to the share of households for which electric cooking is
economically viable. If electric cookstove penetrations
are lower than this share, then some consumers that
are recommended LPG-powered cooking could cook
more cost-effectively with electric solutions, and costs
could be decreased by increasing electric cookstove
penetrations. The reverse is also true: if electric cook-
stove penetrations are higher than the share of house-
holds for which electric cooking is economically viable,
some consumers recommended electric cooking solu-
tions would save by switching to LPG-powered solu-
tions. Costs could be decreased by decreasing electric
cookstove penetrations. Because of the characteristic
shape of the blue curve in Fig. 7b, positive feedback ef-
fects may be discerned. At 0% electric cookstove pene-
tration, electric cooking is economically viable in 42%
of residential households. A Pareto improvement can
be made by naively increasing electric cookstove pen-
etrations to the 42% of households for which electric
cooking is less expensive than LPG-powered options.
When this is done, however, demand for electricity in-
creases, the economies of scale in electricity provision
and economies stemming from increased utilization of
discrete network investments cause electricity prices to
fall, and the share of households for which electric
cooking is economically viable actually increases. This
effect reflects a positive feedback loop of increasing
electric cookstove penetrations, falling electricity costs,
and greater demand for electric cookstoves. Fig. 7b
shows that this positive feedback loop can continue un-
til Pareto optimality with an equilibrium share of 82%
electric cookstove penetrations.

The analysis presented demonstrates how there is
promise for coordinating planning endeavors around

universal electricity access and clean cooking goals.
Without coordinated planning, it is conceivable that sys-
tems for universal electricity access are planned assum-
ing that no additional demand for electric cooking per-
sists; a planner may assume that clean cooking might
not be achieved in a reasonable time frame or that LPG
stoves would predominate. Such independent or unco-
ordinated planning around clean cooking and universal
electricity access results in cost-optimal plans reflect-
ing 42% electric cookstove viability and $0.51 average
electricity costs per household meal. On the other hand,
coordinated planning accounts for positive feedback ef-
fects from electric cooking-related demand stimulation,
and results in plans with 82% electric cookstove via-
bility and $0.33 average electricity costs per household
meal.

While the results presented demonstrate how coor-
dinated clean cooking and electrification planning can
yield significant co-benefits, it more generally reflects
how demand stimulation can have profound effects on
prospects for the provision of affordable electricity.

7. Conclusions

This paper uses large-scale, high-resolution electri-
fication modeling to demonstrate “why estimating de-
mand and its evolution deserves more attention” in
Section 4, “why consumer-level modeling and charac-
terizing demand heterogeneity is needed” in Section
5, and “how coordinated clean cooking and electrifi-
cation planning can yield significant co-benefits and
why demand stimulation pays dividends” in Section
6. Changes to aggregate demand assumptions and the
characterization of how these demands are distributed
geospatially can have outsized effects on both the con-
tents of electrification plans and projected costs for
achieving universal energy access. Improving georefer-
enced demand forecasts can help planners to ‘right-size’
infrastructure designs and lower risks associated with
under- or overbuilding energy systems. Average per-
kWh costs under the central demand case with heteroge-
neous consumer types were 51% lower than those under
the corresponding low demand case. Additionally, plans
considering demand heterogeneity resulted in 9% lower
costs than those employing a single, homogeneous con-
sumer type. Section 6 goes further to show that coor-
dinated clean cooking and electrification planning can
yield significant co-benefits. Positive feedback loops of
increasing electric cookstove penetrations, lower elec-
tricity costs through economies of scale and economies
stemming from increased utilization of discrete network
investments, and increasing electric cooking viabilities
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can have significant effects on lowering per-unit costs
and expanding access to clean cooking solutions. The
demand assumptions modeled show that coordinated
planning can reduce electricity costs by 34% and in-
crease electric cookstove viabilities from 42% to 82%.
These same effects are characteristic of demand stimu-
lation more generally, and demonstrate the significant
potential benefits of electrifying other economic sec-
tors including agriculture and transportation. As better
data becomes available, more attention should be paid
to improving methods for demand forecasting. While
the geospatial electrification modeling community has
recently made significant advances in large-scale and
highly granular planning [12, 22], sensitivity analyses
demonstrate that much of the potential benefit from such
methodologies can only be realized provided better ca-
pabilities around characterizing demand, forecasting its
evolution, and determining ways to stimulate its growth.

8. Ongoing and Future Work

While the version of REM used in this work can
be considered state-of-the-art for large-scale and high-
resolution electrification planning models, ongoing and
future work is aimed at improving modeling method-
ologies relevant for this research. The most important
methodological improvement pertains to how REM is
currently treating aggregated ‘cluster-level’ demand as
the sum of corresponding individual demands. This im-
plies that coincident factors are not properly applied
when designing distribution networks. Ongoing work
is directed towards better modeling the aggregation of
individual demand profiles.

Additional improvements are planned around devel-
oping metrics for the total costs of over- and underplan-
ning system designs, improving representations of the
spatial distributions of consumer types, and increasing
the number of basic demand profiles modeled in order
to improve the realism of modeling a variety of con-
sumer types.
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atya, R. Stoner, and I. J. Pérez-Arriaga, “Promotion of mini-
grids for rural electrification in Uganda,” MIT-Comillas Univer-
sal Energy Access Lab, submitted to GIZ, 2019.

[26] A. P. Dobos, “Pvwatts version 5 manual,” tech. rep., National
Renewable Energy Lab.(NREL), Golden, CO (United States),
2014.

[27] B. Marion, “Pvwatts-an online performance calculator for grid-
connected pv systems,” in Proc. of the ASES Solar 2000 Conf.,
June 16-21, Madison, WI, 2000.

[28] F. Riva, A. Tognollo, F. Gardumi, and E. Colombo, “Long-term
energy planning and demand forecast in remote areas of de-
veloping countries: Classification of case studies and insights
from a modelling perspective,” Energy strategy reviews, vol. 20,

pp. 71–89, 2018.
[29] V. Li, “The Local Reference Electrification Model: A Compre-

hensive Decision-Making Tool for the Design of Rural Micro-
grids,” Massachusetts Institute of Technology, 2016.

[30] F. Santos and P. Linares, “Metodologı́a de ayuda a la decisión
para la electrificación rural apropiada en paı́ses en vı́a de desar-
rollo,” Universidad Pontificia Comillas, 2015.

[31] Rwanda Energy Group, “The National Electrification Plan: Re-
port on Definition of Technologies (On-grid and Off-grid) at Vil-
lage Level,” Rwanda Energy Group, 2019.

[32] S. Fobi, V. Deshpande, S. Ondiek, V. Modi, and J. Taneja, “A
longitudinal study of electricity consumption growth in kenya,”
Energy Policy, vol. 123, pp. 569–578, 2018.

[33] International Energy Agency, “World energy statistics (Edition
2015).” IEA World Energy Statistics and Balances (database),
2015. https://doi.org/10.1787/53d29913-en.

[34] L. Y.-T. Lee, “Household energy mix in uganda,” Energy Eco-
nomics, vol. 39, pp. 252–261, 2013.

[35] S. Batchelor, E. Brown, N. Scott, and J. Leary, “Two birds, one
stone—reframing cooking energy policies in africa and asia,”
Energies, vol. 12, no. 9, p. 1591, 2019.

[36] D. Jacobs and T. Couture, “Beyond fire : How to achieve electric
cooking,” Hivos, 05 2019.

[37] S. C. Anenberg, K. Balakrishnan, J. Jetter, O. Masera, S. Mehta,
J. Moss, and V. Ramanathan, “Cleaner cooking solutions to
achieve health, climate, and economic cobenefits,” 2013.

13

View publication statsView publication stats

https://code.facebook.com/posts/1676452492623525/connecting-the-world-with-better-maps/
https://code.facebook.com/posts/1676452492623525/connecting-the-world-with-better-maps/
https://code.facebook.com/posts/1676452492623525/connecting-the-world-with-better-maps/
https://code.fb.com/connectivity/electrical-grid-mapping/
https://code.fb.com/connectivity/electrical-grid-mapping/
http://datatopics.worldbank.org/world-development-indicators/
http://datatopics.worldbank.org/world-development-indicators/
http://www.ubos.org/2014-census/
http://www.ubos.org/2014-census/
https://doi.org/10.1787/53d29913-en
https://www.researchgate.net/publication/335662906

	Introduction
	Case Study: the South Service Territory in Uganda
	Methods
	Why estimating demand and its evolution deserves more attention
	Modeling Assumptions
	Analysis
	Results and Discussion

	Why consumer-level modeling and characterizing demand heterogeneity is needed
	Analysis
	Results and Discussion

	How coordinated clean cooking and electrification planning can yield significant co-benefits and why demand stimulation pays dividends
	Analysis
	Results and Discussion

	Conclusions
	Ongoing and Future Work
	Acknowledgments
	References

