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Empathy 

Reciprocity 

Progress and improvement 

The tool offered to us by Machine Learning 

along with the Big Data revolution, will provide 

us medium and long-term support for a 

countless number of applications. 

Similar to when the light was only used to 

illuminate or internet to send text messages. For 

a drastic evolution of ML is necessary that the 

support, hardware and software improvements 

as well as more, better and different data 

continue to evolve on the already started paths. 

Until recently the vast amount of unstructured 

data hindered its analysis. This has been 

reduced due to the improved AI approaches and 

the great reduction of computing and memory 

cost. This has led to develop specialized 

optimization techniques and demonstrate their 

application in hundreds of fields, from hard and 

soft-science, to lines of existing business or 

ventures to explore. 

Being able to teach a machine to be much better 

than yourself in many tasks, not only will give us 

plenty of options but also challenges and 

opportunities. Even more so if the ability of 

these systems is expected to grow at a 

geometric rate over the coming decades. 

The risks, ethical and social dilemmas that the 

new generation of machines will make us face, 

will ultimately define part of the progress of our 

society. 

In this document we demonstrate the great 

advantages of these tools applied to various 

problems related to energy and water. Starting 

with the basic theory, we’ll continue developing 

and comparing models of varying complexity. 

Specifically prediction systems, support decision 

and risk-minimization under an automatic and 

deep analysis. 
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1. Introduction 

1.1 Motivation 

 

The main incentive to spend more than a year self-learning this topic has been the clear 

conviction about its future, and the desire to understand and apply its known benefits to current   

issues, either professionally or for personal interest. 

Another important aspect has been the curiosity to grasp the problems in the 

development, limitations and real aspirations of these models. In order to apply them in various 

projects, either software or hardware made in the past, where these models would have meant 

a qualitative progress in many aspects, or could have significantly expanded the range of 

applications, or in the future. It is worth to say that 90% of the scientists in this field believe that 

before 60 years, intelligence of machines will be superior to that of humans, with all the risks, 

dilemmas, problems and consequences of all kinds that it entails much before reaching these 

capabilities.  (FutureOfLife, 2014) (Bostrom, 2014) 

The integration of these systems either directly in hardware, software or via internal 

cloud services for applications, devices or robotics will suppose an increment in the quality of 

findings and decisions made in all fields of the "hard and soft science" and business. (Howard, 

2014) 

With the foundations granted by the vast amount of data that is generated 

unconsciously and gets collected and analyzed throughout the years. This new scope, or tools 

available to the new society, if applied to its progress, can help us evolve while providing us with 

aspects that were unthinkable years ago. (Norvig, 2012) (Markram, 2009) (Kurzweil, 2005) 

Making more complex, deeper and better grounded strategies is a direct application of 

the union of gigantic databases with software expected to reach super intelligence and even 

virtues of a Turing machine in the next decade. (Bloom, 2014) (Brynjolfsson, 2013) 

Therefore, the final decision-making is up to us, with ranges of confidence about 

forecast, assumptions or even future scenarios outside historical data. This is the reason why 

the scope of this document has been oriented towards decisions, either automatically or 

manually taken, with information that has been ultimately predicted. 

For such purposes and to learn a little of everything, both types of machine learning 

have been used, without discussion whether it is considered a statistical model or not. 

Unsupervised learning will be responsible for the definition of scenarios and patterns and 

supervised learning will guide the final objective. Other approaches and algorithms, much better 

in many aspects and considerably more optimized, have been studied. However, their scope and 

development falls outside the time available for this document. 
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Applying all the theory, the expected progression and joining personal tastes with real 

problems of the industry that feeds and will  feed such progress or not, it is surprising not to see 

utilities or companies directly related to the electricity sector and water, either in regulation, 

supervision, generation, supply, transmission, distribution or marketing being more firmly 

involved in these developments. We are on the threshold of a new generation, as was the light 

or the Internet. One change is the large amount of data available and the most effective tool to 

take advantage of these changes, to which must be added the hardware and software is 

machine learning. (Siemens, 2015) (SAS, 2013) 

 

Given the numerous benefits and advantages they can offer at all stages affecting the 

electric power industry and water they should be exploited. While many of the approaches 

studied have existed for decades, only in recent years when have they begun to bloom in a 

practical manner. (SEO, 2015) Which turns these technologies into useful tools to increase 

profitability, as Philip Evans defends in the foreseeable future will shift from vertically integrated 

to horizontal business lines. “The plummeting of transaction costs weakens the glue that holds 

value chains together, and allows them to separate. The polarization of scale economies 

towards the very small allows for scalable communities to substitute for conventional corporate 

production.” (Evans, 2013) 

This document tries, attempts to demonstrate that it is possible to take advantage of all 

the information available to these companies and that different machine learning approaches 
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have shown great results in almost any discipline and goal, compared with traditional algorithms 

and methodologies. 

 

1.2 Objectives 

 

The main objective of this document, and the non-written work that has been needed, 

will be to learn about machine learning and the necessary about data mining and intelligent 

optimization in order to improve the model. Identify and understand with which methodologies 

and algorithms are being achieved the best results mainly oriented to the short-term and 

midterm load forecasting; without forgetting that recognition of scenarios, decision support or 

risk management are key aspects in Electric Power Industry. 

With the intention of no limiting this study only to forecasting,  and taking advantage of 

the time spent in gaining a good foundation that could be exploited beyond the realization of 

this document,  a significant amount of the work would be dedicated to understand the 

theoretical basis and the current limitations of machine learning. This veteran discipline whose 

foundation lies in statistics, mathematics and programming with certain aspects of optimization 

and artificial intelligence certainly will be one of the pillars of the next revolution that mankind 

will live,  therefore it becomes a necessity for a sector as essential as electricity or water, to 

accompany, prove and apply its advantages. 

Given the stage of this topic and its continuous improvement it is necessary to find, 

understand and carefully analyze the new and different approaches that the scientific 

community is proposing. They have surpassed previously existing limitations as well as 

increasing the success rate, thanks to new models that combine algorithms with different 

properties to deal more efficiently with specific problems or simply to obtain more accurate 

results. These methodologies, as well as the latest developments that are taking place, will be 

applied to various real problems directly related to the Electric Power Industry. 

Defining a problem, predicting load curves in the short term and with the intention of 

demonstrating the improvements of these developments regarding the methodologies 

previously used by the industry in at least one practical case, several models will be developed 

and compared. The ARIMA model will be taken as a reference since it is the most widely used by 

various public utilities and generally achieves very good results in the estimation of load curves. 

The other models developed and compared at this stage must meet various 

requirements such as being applicable to aspects of the electricity sector, like forecasting, 

decision support and risk management. They have to demonstrate near state-of-arts results in 

their respective applications in recent years. Initially, they should cover different approaches 

with several fundamental properties and limitations if possible. They should be able to be 

developed in a practical way with free software and/or completely open source. Greater 
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incentive will enable the implementation of successful improvements in a way that does not 

require too much time. They must have room for enhancement both in accuracy and 

optimization as in the range of fields in which they can be applied. Finally the results should 

provide measurable, comparable improvements and information that could be applied in real 

cases in the industry. 

After this comparison,  the model that offers more capacity for improvement will be 

studied in depth and will be in this one where we’ll  try with greater emphasis to apply  the 

recent advances,  in configuration as well as the essential factor of integration with other 

methodologies, both prior and subsequent treatment of data and its efficiency, analysis and 

application. 

The numerical goal which will validate the developed model will be to get a lower rmse 

tan the one achieved with a properly defined ARIMA model or a rmse < 2.9 %, in case lower 

values are obtained. 

Once the main objectives have been checked and fulfilled, it is desirable to be able to 

integrate this model with other tools foreseeing its automatically exploitation and 

generalization. The model must be able to adapt to small variations in the requirements without 

any or with the minimum necessary variations. 

If needed, the proposed procedure can be written in other languages that use it or 

connect it with different modules or applications in order to obtain greater adaptability and 

better efficiency and integration. 

A great reward would be the ability to adapt the model in question to different aspects 

of the Electric Power Industry and obtain results that encourage them to continue working in 

directly related topics. Given the foundation that will be obtained during the first stages, it is 

expected to achieve interesting tools with a considerable range of utilities and improvements. 

Specific modules and libraries for Matlab, Python and R will be used. Other services 

have been used to try to reduce the hardware limitation, mainly cloud services and specified 

programs like Weka-Hadoop to manage big amounts of data. Despite these possibilities and 

tests, economic and data availability constraints have limited practical use to Oracle-SQL and 

VBA. 

 

1.3 Thesis Organization  

 

The structure of the present document follows the process that has been created for 

the final development of the model. Sin order to enable the reader to understand from the most 

basic concepts up to some of the more concrete knowledge obtained as well as the various 



 
 

 

 

13 

stages of development, the information has been organized according to the learning flow used 

in research, development and improvements. 

The first point of this document introduces the motivation that has led to its 

implementation, the objectives and requirements of the model that will be developed and the 

structure of the document. 

The second point concentrates a large part of the work performed, focusing on showing 

the basics of Machine Learning with the following structure. First, there is an introduction of 

what is considered Machine Learning in a broad and generic form as well as their types. 

Subsequently, the foundations of which are based are described, the depth in which each 

paragraph of ML theory will be treated depends on our goals as well as its importance and the 

advantages of its properties. We will finish this point with a review of the main limitations as 

well as the different solutions that have been proposed and developed to overcome them. Most 

of the models studied use part of these strategies and their fields of improvement are defined 

by their limitations. Therefore, understanding this section along with the theory that defends its 

progress is mandatory to proceed with any development, especially when it comes to 

implementing non-trivial improvements. 

The third section exposes part of the theory, therefore the selection of data which best 

represents our case would post a problem. However, its analysis and treatment is essential to 

progressively achieve better results. It also adds more foundations to what would later be seen 

as Data Mining and Unsupervised Learning, a field that has shown great progress and better 

results in various aspects directly related to Machine Learning, which is a fundamental 

requirement and without a doubt will accompany the ML in its evolution. 

Going into more detail, the fourth point will show one of the most recognized theorems 

in unsupervised learning, Bayes theorems and their interpretation theorem. The reason why we 

have chosen this theorem from the range offered by Unsupervised Learning, it’s due all the 

applications that used its approach in both models of learning. Unsupervised Learning has 

strong ties with Data Mining and today there is no doubt that they will be, possibly already are, 

the methodologies with the higher expectations of growth and application. However, as far as 

our interest is concerned, for the time being, it is more practical to clearly define the results we 

want to obtain or more precisely our function objective. 

For this reason we have focused on Supervised Learning in the fifth section. Firstly, 

neural networks will be exposed in a generic way since they will be used the most and will be 

fundamentally treated in the final model. After an introduction to define what is considered an 

artificial neural network, we’ll see their differences as well as the evolution that they have had 

and are expected to have in the next few years. Going into greater detail, we analyze the main 

characteristics that will define our typology of network as well as their respective properties. 

Due to the great expectation that its foundations might create and all problems, both 

mathematical as well as human and computational cost involved in its development, we expose 
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part of the criticism against it, which is somewhat answered with real-life examples or 

foreseeable future improvements. 

Continuing with artificial networks, we treat with several depths the main types that 

define a network approach, their results and their applications and limitations. Since they all 

vary, not all of them will be considered when predicting load curves. However, all exposed 

networks have proven to be close to state-of-art examples that can be applied to requirements 

of the electricity sector. Radial Basis Networks have modifications according to its end use that 

with a simple implementation achieves good results efficiently, Self-Organizing Map with 

support Vector Machines Algorithms is widely used in classification problems but with direct 

application to regression problems or just scenario selection. Boltzmann is a version of a 

recurrent network theoretically capable of solving complex problems. Reservoir Computing for 

its part, is a dynamic network methodology that has given a lot of information on the input data, 

a large mapping problem, is able to dynamically adapt very effectively, reason why it has been 

taken as a reference for the development of various approaches, as we will see. 

For these reasons, this diverse selection of algorithms represents the types of neural 

networks that not only offer the best results but are also substantiating part of its evolution. Not 

only that, all of them have direct approaches presented and demonstrated on the field that 

deals with this document’s application. 

But Artificial Neural Networks are only one of many approaches to Machine Learning. 

Although some of the methodologies described below can also be applied to Unsupervised 

Learning, the explanation and descriptions are oriented to Supervised Learning. Online Machine 

Learning is a process where each new value updates the model in question, as all the others, but 

the fact that the amount of memory remains constant offers various properties. Bayes Networks 

build upon the theorem with the same name and given the widespread use of its formulation by 

Markov’s approach, whose applications are used in lots of fields, makes it an opponent of equal 

height to the latest developments in Artificial Neural Network. Not only that, Online Machine 

Learning with Bayesian Networks and Hidden Markov Models would have been the models to 

use in the development of the final model if it were not for the advances in Deep Learning that 

has been made in recent years. Yet these three methods, along with their properties and 

limitations are, after all current studies and opinion of the author, the three with higher growth 

prospects, especially if we divide the range of applications of each. 

Continuing with different approaches, there are two that have been the most used by 

different companies in the sector over the last decade. While the ARIMA model will be the 

reference because of its wider understanding, Bagged Trees or their modifications are used in a 

wide range of business and its results in regression functions have always been at the height of 

the best. In this case, these two models together with typical regression models, will be used 

since they are the most commonly used when dealing with problems of adjustment and 

prediction. 
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In the sixth section, we begin with the development of the model upon which the 

improvements will be made and which is expected to continue working in the future, probably 

accompanied at various stages by some of the improvements previously exposed. Neural 

Network Development seeks to explain from the basic operation of a neural network, we start 

with an overview of how the algorithms and approaches in the theory are implemented. We will 

continue with how it is, what features it has and how a neuron Works as an independent unit. 

We will expand our network with a finite number of neurons and see the problems that add the 

configuration of these layers. Subsequently, we will analyze, while still complicating our model, 

the differences of having a static or dynamic network. It is worth mentioning at this point that 

some of the models previously exposed, especially recurrent or dynamic neural network, only 

differ from the exposed one in detail, in this configuration of neurons and their 

interconnections. 

Since our model will be multilayer in the end, we will continue the development, 

focusing on the characteristics of this type. Turning to see the importance of the input data and 

how it defines the behavior of the model as well as the results obtained with applied examples. 

And we will continue with the bases of the training functions of our network mainly based on 

gradients and their characteristics. Taking as reference the previously exposed learning 

methodology, we will see other types of learning and different functions because adapting our 

model to other problems entail a fundamental part of the optimization process. Continuing the 

development phase we will see how various functions can allow us to improve and analyze our 

network from this stage onwards. 

In the same way that our final model will be multi-layered, it will be dynamic. For this 

reason, we continue the explanation of the development with a brief introduction to the 

characteristics of a dynamic model. It continues to add various configurations aimed directly at 

our problem at hand, first preparing our model to analyze and learn time series, subsequently 

setting up the model so that the outputs depend on multiple entries and finally adapting the 

model to produce multistep forecasting. Because of the use to be given later to the Radial Basis 

Networks we will introduce their behavior, structure and main applications. 

In order to present possible improvements that could be applied to our model, in the 

chapter dedicated to Improvements we will describe important points in the development of 

this type of models. These improvements in development and its potential applications are 

more oriented to more professional models or with higher requirements than the ones we have. 

Initially the great virtues of most of these neural networks are discussed. Subsequently, briefly 

theoretical and hardware aspects as well as the logical evolution of these systems, in both 

development and implementation, are introduced. Finally, we analyze two widely used 

techniques to improve the performance of a forecast and model optimization oriented network, 

either base on continuous or discrete learning. 

Later in the seventh chapter, we will analyze the results obtained with different models 

and the progressive improvement achieved in the case of neural networks with explanatory 
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variables. At the beginning, we will see how the selection and processing of variables has 

affected the results. Then we’ll analyze different types of error which, in certain circumstances, 

we can reduce or even eliminate, this way we came to the conclusion to add another dimension 

to the input parameters. Finally, before dealing with the results, we further elaborate the 

consequences of the way values are loaded and some improvements aimed at improving the 

behavior of the model in general will be proposed and implemented. 

Then, we present the process undertaken to achieve the values obtained with ARIMA 

and its best results. Following the same mechanics, we present the results achieved with 

different linear regression adjustment algorithms, trees decision and a simple generic neural 

network. 

Entering the first stage in the adjustment and optimization of neural network NARX we 

will make a brief introduction. On this simple network, we will study the behavior it has when 

increasing the number of neurons, although given the importance in the last stage we will be 

searching for the optimum point of neurons. In the next phase, we will compare the difficulties 

in the implementation and consequences of changing inputs and feedback delays in our 

network, in such way we’ll define objectives in our first layer of parameter. We will continue by 

comparing the consequences of changing the processing, number, form of data loading and in 

which part of the model they are considered. Following the strategy of optimization, we 

compare how the results and requirements are affected by modifying generic parameters of the 

model as well as convergence requirements. 

In the last stage of our configuration, we will see the consequences of dividing the 

problem manually; we will analyze how this automatic pattern selection process should be 

conducted. The first point of unsupervised shows the results obtained, as well as its meaning 

and explains the values of the weights of the network and the conclusions reached by the 

machine without more information than the input data on the one hand or the output on the 

other. Considering the results obtained in this last point we will see two ways to apply the 

results in our model. In a way that help us distinguish between conclusions in order to improve 

the recognition of patterns and behaviors. We also analyze how the network internalized 

exogenous values in their intermediate layers and the final result. 

Before we conclude, we will see in a simple way how in our regression case the tests do 

not seem to demonstrate a substantial improvement when we increase the complexity of the 

network architecture. What comes to corroborate the behavior described in the first point of 

the theory, which describes the reason why a single network with sufficient number of neurons 

can replicate the behavior of others with greater number of layers, backed or with different 

structures. Before reaching the results, we show a table with the results and their evolution up 

to the point of convergence. While some algorithms are not focused on regression and its use in 

forecasting are not correct, we will see the reason for the final choice. Understanding their 

behavior to different parameter settings and everything to do with the data that serves as the 
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base, we will detail the final choice of Bayesian regulation with part of the foundations of 

Levenberg-Marquardt. 

We will finally see the application of the same model in a relatively discrete problem 

that will help us to make decisions according to the forecast of requirements by the system 

operator in auxiliary services. In this case, in order to show the simplicity and the virtues of this 

model to various problems in the real world without big variations, we will not modify the 

network configuration nor the parameters. 

The conclusions chapter is divided into four points. The first focuses on the objectives 

achieved and the limitations that have been taken during the process and those that affect the 

result. Then summarizes the conclusions obtained during the process of learning, its 

applications, the benefits and complications that exists to develop, implement, and integrate 

these models in an intelligent system. Finally a brief mention apart from the tools used and 

available for learning and development of this type of models is made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

18 

2. Machine Learning 

2.1 Introduction 

 

The main objective of this field of computer science and statistics is the search and 

study of algorithms which can conclude and learn from the data which are presented to them. 

The way of working with these models is based on the inputs, decisions are made according to 

the final objective of the model, but not based only on structured pre-programmed instructions, 

i.e. the model will be capable of adapting to the inputs it receives. 

It’s worth mentioning at the beginning of this point the differences between Machine 

Learning and Knowledge Discovery in Databases, since while using a very similar theory they aim 

for different although closely related. However, we can even consider them as equals if we 

extend the perspective of machine learning, so it is somewhat debatable. 

Knowledge Discovery, thanks to the tools provided by Data mining, focuses on finding 

properties, structures or relationships in data that were previously unknown. As we shall see in 

more detail, this objective is similar enough or is the implementation of unsupervised learning 

with a particular purpose and manner. 

On the other hand, the main objective of machine learning is the prediction and helping 

in the decision making, but with reasonably clear information provided by learning input values. 

However, in addition to the many similar techniques used in both cases, usually data mining is 

used as pre-processed data before loading it on the model of machine learning. 

The main methodologies when it comes to the use of these algorithms will be presented 

in the section where they correspond according to their typology of supervised or unsupervised. 

Later we will see in more detail the approaches and algorithms whose latest results do indicate 

they may help to get better results in the part of the Electric Power Industry problem that we 

are dealing with. Finally, we will progressively come into neural networks from the basics up to 

some complexities and other algorithms will be defended with certain length for their high 

expectations when it comes to applying them in the industry that interests us. 

 

2.1.1 Typologies 

 

Much of the theory comes from the fields of computational complexity theory and 

statistics along with artificial intelligence and optimization. Machine learning is often divided 

into two types depending on the method of learning and the desire of their behavior. Although 

it is a very broad field normally used and mixes about ten approaches as we will explain and 

analyze. 
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In the first case is usually divided into three categories depending on whether the way 

to learn is by “sign" or by a "feedback". Of course, there are problems where a mixture of two or 

even all three models are used in different stages of learning in order to improve the results. 

It is interesting how as a data preprocessing method, we use unsupervised learning, 

then pass the results to a model where we are directly marking a desired goal and then use 

several of these models with reinforcement learning to go beyond the capacity of predicting 

these values. 

As we will see in more detail, on the feedback side, we have supervised learning, where 

the model is given the input data and the output values it should get  with more or less 

confidence. This modeling occupies most of our cases, applied to the energy industry. Without 

abandoning the models that allow to teach to the machine according to its own interactions 

with the environment that surrounds it. 

Unsupervised learning for its part, is independent and, is solely responsible for finding 

patterns, relationships, similarities and therefore differences that allows the auto-creation of a 

solution tailored to the structure of these input values. The series of algorithms have been given 

the freedom to find patterns that are not displayed directly. 

Last but not less interesting, we have reinforcement learning, with this type of model is 

allowed to interact with one or more models able to adapt to the behavior of the model we are 

trying to train but without saying which goals should be sought. Thus, our player will be learning 

the rules governing the models that interact with itself and therefore the consequences and 

generalizations that may occur. 

The other way to categorize the type of machine learning, according to the target 

behavior we are looking for, would be classification, regression, clustering, density estimation 

and dimensionality reduction. In our case we will focus on the first three as they will be the most 

attractive for our purposes. 

Classification looks to spread data across various sub-groups in which other data have 

previously been distributed, so it is generally a way of supervised training. 

Clustering resembles to classification in its goal, but with the difference that the division 

of groups is not known beforehand. The model therefore must be able to create these groups 

and decide which group data should be assigned. Whether by the biggest difference with other 

groups or their relative similarity with their peers in the candidate group. 

Meanwhile, regression, in which this paper focuses, is generally also a methodology of 

supervised data. Looking to find the functions that achieve the desired outputs depending on 

the number of inputs that are offered. Unlike classification where a discrete set of groups is 

generated or pre-fixed, these values are continuously learning. 
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2.2 Theory 

 

It is an essential briefly comment on which theoretical foundation machine learning is 

based, then we will see the main problems or limitations. Although, we will follow a logical 

order for his understanding from the most basic, there are sections of the document that could 

be considered a theory not found at this point. This is because these explanations or 

developments are not generic to machine learning, but approaches or algorithms that we will 

see more closely as we focus on our goal, for this reason they will be found in the corresponding 

sections. 

 

2.2.1 Bias-variance tradeoff 

  

This dilemma is of considerable importance in this field of study, when much of our goal 

is to minimize two types of errors, which will be in charge of deciding whether we have been 

able to learn beyond our initial data. 

We have a clear definition of bias and variance. Bias refers to the error as false 

assumptions in the learning algorithm. Variance at the same time, measures the error produced 

by small variations in the training data. 

Breaking down these errors together with the inherent error of noise in the signal or 

data set to analyze, we can generalize the error that the algorithm will have. 

The tradeoff is that ideally we look for a model capable of generalizing sufficiently well 

the problem, to be able to predict outside of the data provided in the learning stage, but at the 

same time is desired that the algorithm in question takes into account the generalization of the 

data used. As expected, it is arguably impossible to conform perfectly to the loaded examples 

while attempting to correctly predict the behavior variations of these. 

Algorithms with a large variance will be able to represent data well, but fail in predicting 

further space defined by our values. On the other hand a very high bias model tends to generate 

simpler models, but they fail to capture the relative behavior of the problem. If our algorithm 

has lower bias, it will be able to better capture the complexities and therefore it will reproduce 

the problem proposed with better accuracy, but also considering the noise in the values used as 

valid, which reduces at the same time this precision. We would therefore have a complex model 

capable of learning the values of input, but not effective to generalize. (Snijder, et al., 1998) 

(Stuart, 1992)  
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2.2.2 Computational learning 

    

This branch is responsible for studying the calculation complexity of these algorithms. As 

we will see many of these models require exponential growth depending on the complexity or 

size of the problem in question, in addition to that, many operations can be complex; the time 

required for learning can render a model useless. 

Very generically and applying the example of supervised learning, the algorithm in 

question, calculates the difference between the generated output, and the output that should 

have been obtained producing a classifier. This in turn affects the model in question and the 

values that have not yet been processed. It is in this part where we try to optimize in such a way 

that it reduces as much as possible, errors or unnecessary decisions that will be applied to the 

next dataset. 

Time complexity (measures the time required to find a solution regarding the length of 

the input), feasibility of learning and performance like the ones introduced before are also 

analyzed by this branch. We can divide part of this time complexity depending on whether the 

functions may or may not be learned by a polynomial algorithm.  

Many of the assumptions are based on being able to generalize principles taken as valid, 

although they have not been tested, and thus being able to analyze from a faster point of view 

part of the theory behind the computational learning. 

For example, measuring the probability of something occurring can be seen as the 

probability with regard to the frequency that the event occurs in a finite number of trials or as 

for example the interpretation that makes Bayesian probability, where in order to evaluate the 

probability of a hypothesis new cases provided are updated and taken into account. 

Citing some of the approaches, since its analysis is not the subject of this document, 

stand out performances that have led to practical examples applied today in machine learning 

as we shall see in more detail by its remarkable results are: Support vector machines/regression 

thanks to VC theory, belief networks based on Bayesian inference, online machine learning 

driven by Nick Littlestone, algorithmic learning theory or boosting in learning thanks to probably 

approximately correct learning theory. (Enzo Busseti, 2012) (Xiao, 2009) 

 

2.2.3 Risk minimization 

 

This principle is used in order to have some theoretical limits on the performance of 

learning algorithms, so that part of the theory of statistical learning is integrated and applied, for 

example, in simple problems studied in computational complexity. Let's see what Empirical Risk 
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minimization and Structural Risk minimization is based on step by step under a single generic 

example of supervised learning. 

To calculate the risk we need to know certain distribution which is unknown. We can 

then approach it by calculating the mean of the objective function on the data we use as 

training. Therefore, if we optimize a hypothesis that minimizes the empirical risk we’ll obtain the 

scenario where this objective function is smaller. 

Formulating the problem, since it is an important base for our type of problem. We have 

an issue where we want to know which assumptions have to be followed to get Y from X data. 

We know the probability distribution of X and Y, however, we don’t know their relationship 

known as conditional probability. 

Similarly, we have our loss function, which is responsible for measuring the difference 

between our hypotheses (unknown) and true (provided by and belonging to Y known). 

Therefore the risk associated with a hypothesis is the expected value of the objective function, 

or the integral of the objective function with the result hypotheses applied to x, and with y 

result, respective to x and y. In order to find the correct hypothesis where the risk is lower. 

In supervised learning we have a data set x, and a set of targets y to which they should 

direct those data, our problem is to find the function or hypothesis h such that ℎ: 𝑋 → 𝑌 where 

X and Y are the respective spaces of x and y. 

If we understand the problem as a joint probability distribution such that P(x,y) we can 

generalize and say that it does and does not depend on x, we have a certain conditional 

distribution for each x, P(y|x). See in the pictures below the graphic meaning of joint probability 

and conditional and joint relationship in the second. 

                   

      Figure 2.1 - Probability density example                Figure 2.2 - Different probability densities 
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Before seeing the differences we must also define the loss function, which represents 

the difference between the value obtained by certain assumptions and the actual value ŷ, L(ŷ,y). 

Therefore the risk of each hypothesis x, is defined as the expected value of the loss function of 

some hypothesis h for some value x. The following formula represents the risk of hypotheses 

respect to the conditional probability. 

𝑹(𝒉) = 𝑬[𝑳(𝒉(𝒙), 𝒚)] =  ∫ 𝑳(𝒉(𝒙), 𝒚)𝒅𝑷(𝒙, 𝒚)   ( 2.1 ) 

The goal of our algorithm will obviously be to find the hypothesis that minimizes this risk 

to certain hypotheses ℎ𝜖𝐻. As we are considering that we are able to differentiate between the 

results obtained so in many cases the models based in part on this approach are known as 

discriminative training. (Ke-Lin Du, 2014) (Suvrit Sra, 2012) (Jaakkola, 2010) 

 

2.2.3.1 Empirical 

 

In the case of Empirical Risk Minimization, we are trying to find the hypothesis h that 

best fits our input data, which best represents these probabilities. 

As the joint probability 𝑃(𝑥, 𝑦) is unknown, the risk associated with each scenario 

cannot be calculated, but if an approach which we call empirical risk, which will be the average 

of the function with respect to the input data loss (from which we know the y, with respect to 

each x). 

𝑹𝒆𝒎𝒑(𝒉) =  
𝟏

𝒎
∑ 𝑳(𝒉(𝒙𝒊), 𝒚𝒊)𝒎

𝒊=𝟏      ( 2.2 ) 

Similarly as in the previous approach, our algorithm should seek the hypothesis that 

minimize this error, converting the problem into an optimization problem, which will be raised 

from the principles of Enterprise Risk Management. 

 

2.2.3.2 Structural  

 

Furthermore Structural Risk Minimization is based on the above but adds a function that 

controls the bias-variance tradeoff (penalty function), so that the overfitting is avoided and tries 

to find the simplest solutions representing the issue as significantly as possible. 

Because there are different definitions of complexity, multiple formulations have been 

proposed, without going into detail, we’ll see their expression and a graph where the part on 

the right of the hypothesis h* mean that we selected a hypothesis with underfitting and the 

opposite side overffiting, as described in the bias-variance tradeoff point.  
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Figure 2.3 - Risk minimization trade-off 

Being C(g) the penalty function, if 𝜆=0 we have a low bias and ERM with large variance 

and backward with lambda close to one, such that lambda is calculated by cross validation in 

most cases. This adds great complexity when applied to models, but we will not go into detail 

since this will not affect our model. 

𝑱(𝒈) =  𝑹𝒆𝒎𝒑(𝒈) +  𝝀𝑪(𝒈)     ( 2.3 ) 

 

2.2.4 Probably approximately correct learning 

 

Defines the framework for mathematical analysis of machine learning. At first, not very 

different from the previous approach to ERM. 

Under this theory, the model with certain input data must find a function (usually called 

hypothesis), from a repertoire of functions. Therefore, we seek the most probable hypothesis 

that is able to internalize data, or seen otherwise, return a small error. Given its generalization 

the model should be able to learn about any probability or data distribution. 

There have been important advances in this framework thanks to the concepts shown 

previously, with which the objectives to find procedures that get functions efficiently, with time 

and size limits provided that can be solved by a polynomial function is introduced. 

 

2.2.5 Statical learning 

 

It’s a related, but not the same approximation to a similar field. Usually machine 

learning focus on: network, graphs, weights, learning, generalization, supervised and 

unsupervised learning. However, statistics are related to: models, parameters, fitting, test set 
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performance, regression, classification, density estimation and clustering. So we can consider 

this work part statistics with some of the machine learning theory. 

Statistically, in whose theory the model of support vector machines is focused and on 

which we’ll delve into its corresponding point. Focuses on finding the prediction algorithm 

regarding the provided data. Even though it enters all categories of learning we can explain it as 

mapping functions that lead from an input to an output in such a way that the function is able to 

predict future outputs. 

In our problems, the values will be continuous so statical networks will be a regression 

problem. With Ohm's simplified law example, our algorithm given voltage as input and current 

output returns that the function that converges will be when the current is equal to 1/R 

multiplied by voltage. 

Let’s understand it better with the mathematical formulation, similar to the 

demonstration of Empirical Risk Minimization performed previously, but with a slightly different 

approach, xϵX where X is the space of possible inputs of yϵY outputs. The way to analyze the 

problem of statical learning consists of (same as ERM), there is a probability of a distribution 

(unknown at the beginning), such that 𝑝(𝑧) = 𝑝(�⃗�, 𝑦), the product such as 𝑍 = 𝑋⨂𝑌.  Having n 

couples of training in such a way. 

𝑺 = {(𝒙𝟏⃗⃗⃗⃗⃗, 𝒚𝟏), … , (𝒙𝒏⃗⃗ ⃗⃗⃗, 𝒚𝒏)} =  {𝒛𝟏⃗⃗⃗⃗⃗, … , 𝒛𝒏⃗⃗⃗⃗⃗}   ( 2.4 ) 

Therefore, we need to find the function such that 𝑓(�⃗�) ~ 𝑦. If H is the space of 

hypotheses where there are all f() which generalizes X to Y. If we have the objective function V, 

we can calculate the risk implied that exists between the difference of the outputs and inputs, 

with the same approach and formulations as (2.1) y (2.2). 

The previous function concludes that the best function f () is the one where the value 

tends to infinity (the area of the optimal objective function is the largest), respecting the 

boundaries. When calculating the integral we find the value 𝑝(𝑥, 𝑦) which is unknown, so we 

need to approach it. As we have seen this is the ER, and recalling the previous development the 

ERM is the function that minimizes the risk and therefore our objective. (Andrew Ng., 2014) 

(Trevor Hastie, 2009) (Breiman, 2001) (White, 1989) 

 

2.2.6 Vapnik-Chervonenkis (VC theory and dimensions) 

 

The goal of this theory is the understanding of learning processes from a statistical point 

of view, with an empirical basis. It is defined as the number of elements in a (cardinality) subset 

which is divided and have parts in common. Explaining it over the following image,  we choose 

that points, and the algorithm "name" those points and seeks the hypothesis that meet a 

correct division or classification of those subsets, may occur that some subsets do not capture 
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these points but the dimensions or points which manage to classify the information are the 

concept of VC dimension. 

 

        Figure 2.4 - Vapnik-Chervonenkis dimension 

Starting with the consistency in learning processes (finding the laws to categorize the 

subsets) it defines which are the necessary and sufficient conditions to meet the principle of 

ERM. It continues with the speed of convergence in a possible solution and the ability of the 

algorithm to generalize the problem. Lastly, we study how to create algorithms that are able to 

carry out the third step, in order to improve the ability of the algorithm to learn the hidden 

complexity of the problem, in this case the divisions of input data. (Bousquet, 2003) 

In this way VC is able to find the function that stabilizes the subsets in the given 

dimensions, provides reference conditions to generalize the learning algorithms. 

     

2.3 Limitations and Strategies 

2.3.1 Statistical classification 

 

Statistical classification refers to the problem of giving data divided into groups to 

identify which sub-group it is from. When referred in unsupervised learning it is known as 

cluster analysis as we will see later. 

The classifier or the algorithm responsible for analyzing instances due to certain 

characteristics of a variables sub-set, known as features, will assign a certain value to a class or 

subgroup. 

There are several types of statistical classification based on frequency, Bayesian, binary 

and multiclass, which focus on the feature vectors or linear models. One of the most widespread 

examples are those based on probabilistic classification, which using statistical inference (where 
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several hypotheses are considered to then apply them to larger groups of data) finds the best 

recognition or subgroup that most likely belongs. 

With respect to not probabilistic models (like autoencoders (Anon., 2015) (Baldi, 2012)) 

it has several advantages, in the first place and continuing with the idea exposed in the previous 

paragraph, we have a value for each data that measures the probability that this data 

corresponds to a specific subset, therefore we might decide to create a sub-group of values that 

just does not fit into any group with any level of trust required. This way when a new data is 

presented, we are not littering the feature vector. 

  

2.3.2 Cluster analysis 

 

Unlike statistical classification, which is in charge of identifying to which class certain 

observation is referring to, cluster analysis automatically generates multi-dimensional groups 

called in this case clusters. It is an important part of the data mining, the main difference in 

algorithms is the definition of what is considered a cluster and what is the most efficient way of 

achieving it. 

Some of these methods are, assigning observations to clusters in such a way that there 

is less distance between them, so we would have to be defined what it is considered as distance. 

Another way to deal with this problem is to find the densest zones from the given data 

characteristics spaces. Next, we can give greater importance to the intervals between 

observations and consider them as statistical distributions that can be later combined. 

Although considered part of unsupervised learning, some parameters (referred to in the 

above paragraph) should, however, be raised in the development of the algorithm. Being an 

iterative process in the search for patterns in the data, it can be considered a multi-object 

optimization problem and therefore this opens up other roads with their tools from where we 

can analyze it. 

One of the main differences with knowledge discovery is that, in our case, we’re not 

giving importance or interest to the cluster, since our goal is the initial classification of these 

values. 

This branch of the analysis is very interesting and promising, both by its approach as the 

achievements that different techniques which are based on it are making. (Kumar, 2012) 
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Figure 2.5 - Clustering example 

 

2.3.3 Regression analysis 

 

As its name suggests, regression analysis is a broad field that is in charge of finding 

function relationship, or more broadly, relations between variables. Keep in mind that at the 

stage results analysis, correlation does not imply causation. Therefore, it is necessary to analyze 

and model the system in such a way that those relationships between the dependent variable; 

and that one or more independent variables are represented in the most efficient possible way, 

trying to respect possible limitations of the mathematical analysis or from the own problem in 

question. 

The result of this branch of the analysis is the function known as regression function, 

although this result is accompanied by various probability distributions which are reflected as a 

result, in variations in the dependent variable; it is the relationship with the independent 

variables which are recorded in the function. 

In this way we can find relations, values, shapes or interrelationships and draw 

conclusions that will help us to predict our values. In cases of problems that you can generalize 

to parametric, where a limited number of data is proposed, and there are no big complications if 

they exceed specific problems limits, we have simple examples and others with significant 

assumptions and simplifications such as linear regression and ordinary least squares. 

Nonparametric regression has the freedom to search these relationships using not an 

unique function in a multidimensional spectrum. Therefore the model is not pre-limited in the 

number of dimensions and will be itself the one that, with a large amount of data, will conclude 

what are the interrelationships between its inputs. (Rob Hyndman, 2010) 
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2.3.4 Anomaly detection 

 

As we have mentioned in statical analysis, we have data that does not come within any 

class. These values do not have to be only outliers; also we have novelties (new values that the 

model had not been previously trained with), noise, detours, or simply exceptions. 

If we are dealing with data in an unsupervised manner, we can find these small 

groupings and decide post-analysis they are values that were not expected. However, in certain 

cases of supervised learning these decisions must be taken and we come to the choice of 

whether these values should or should not be considered since they represent at the same time 

part of the problem behavior. 

 

2.3.5 Association rules 

  

It is a method that seeks to find the rules that govern the data set, seen another way, 

the strong relations that we can conclude by measuring different levels or relationships that 

may be of interest. 

Discovering these rules or behavior that does not take in count the time or order in 

which events happen or presented data, follows a series of widely studied processes due to 

their direct application to real cases. 

We can start with a binary representation with a specific range of trust and in order to 

discover the relationship, we consider the number of times that some value has been generated 

and what has caused that to occur. Considering the frequency of one of these paths a candidate 

is generated, who is compared against another to the reduce cases as desired. 

Is at this stage where the beginning of A priori becomes important, as we see in the 

image if certain scenario has been caused by a certain range of trust and frequented by a certain 

sub-scenarios, we can conclude that in order for the general scenario to occur those prior 

scenarios should exist. 
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Figure 2.6 - Association rule example 

Another important property is that of monotonicity, which comes to the conclusion that 

if certain events is infrequent or unlikely, all events that depend in any way on it will be unlikely. 

Viewing the case in the image above, suppose the event ab is rare, we can decide that abx and 

abxx will be rare because they are strongly related with ab, this can be extended up to abxxx 

and that branch of scenarios may well be disqualified or will be strongly reduced with some level 

of security. (Petr Berka, 2010) 

  

2.3.6 Behavior psychology  

 

Behavior psychology is the basis for reinforcement learning, which analyzes how must 

an algorithm or model behave such as the accumulation of its actions under the particular 

model generate or accumulate the maximum benefit. 

In economic theory and game theory, this would be seen in how two agents or 

participants reach balance when neither of them have the necessary information to make the 

decision, i.e. under bounded rationality. There are models who seek these balances among 

actors who predict individual cases from the econometric point of view with considerable 

success. 

From the point of view that concerns us is usually oriented through the Markov decision 

process (MDP). This dynamic model provides a series of possible states, possible actions, the 

real values of "reward" and a description of how every decision affects each state. Note that the 

effects of an action that is taken at each stage are only affected by that decision, not the 

decisions which have been taken up that point. 

Games can be given with a finite limit or a theoretical infinity, in such a way that policies 

that can be learned create different expectations of reward. Since the same state can be 

reached from different paths, we should try to limit it. 
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Therefore, it uses a dynamic programming where the global problem is divided into 

smaller problems and solutions are combined in each iteration. In this way, we try to find rules 

that enable greater reward along the path or in the most efficient way (short in this case). 

 

         Figure 2.7 - Reinforcement learning example 

If we consider the actions as deterministic, for every decision at every stage we define a 

new state. If it is stochastic, we will define the probability distribution of the following 

statements. The path will be called a policy (a policy that has been taken) to reach from a certain 

point to the next and go iterating. At one point, we will see what is the accumulated 

(deterministic) value or the total expected reward we get for following this policy; in both cases 

we might obtain an infinite value. 

Therefore, we need to resort to the objective function, which will be in charge of 

mapping all these policies and transform them into a value. For this, we need to define a finite 

horizon and therefore a maximum benefit, or as it is more usual to decide whether we prefer 

higher profits in initial step (seeing step as time). 

Because of the need to find the optimum from these dynamic programming models we 

use the Bellman equations, or dynamic programming equations, which divide the initial 

optimization problem into simpler problems. Taking the value of each decision at some point 

(time) as an accumulation of the initial decisions as well as those yet to be taken but that are 

limited by the initial decision. 

One of the reasons we used this methodology is the ability to deal with major problems 

which is where many of the previous methods are not viable. 

Another advantage of reinforcement learning is that since couples of correct data are 

never presented, its performance is to find the balance between the unexplored and  explored 

paths, i.e. being able to deal with the trade-off of exploration vs exploitation, which of itself 

represents a useful strategy to focus machine learning on. (Matthew M. Botvinick, 2008) 

(Krichmar, 2002) (Boden, 1988) 
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2.3.7 Structured prediction 

 

This study focuses on finding structures that shape some problem or data set. The most 

popular models of this methodology are random fields and Bayesian networks. In both cases 

there is a large supervised problem, with the added complexity of understanding the 

relationships arising. Training in itself is generally unfeasible therefore the use of approximate 

inferences, such as the Markov Chain Monte Carlos method, are usually considered. Which deals 

with the tradeoff of reducing the processing time in exchange for accuracy. 

We have a wide repertoire of methods to choose from, but given the purpose of this 

document, we use Bayesian Networks which will be detailed at greater length later. In general 

the results of these models can be represented by acyclic graph and conditional probability 

tables, so that it shows the conditional probability that a certain event occurs when an event or 

prior hypothesis has occurred. 

 

             

                 Figure 2.8 - Inputs examples           Figure 2.9 - Graphical dependencies 

In figure 2.8 above, considering a day where there is sun, ie (𝑆𝑢𝑛 = 𝑌𝑒𝑠) = 1,0 , the 

odds of that same day being humid are as follows. 

𝑃(𝐻𝑢𝑚𝑖𝑑 = 𝑌𝑒𝑠) = (0,5 ∙ 0,8 ∙ 1,0) + (0,3 ∙ 0,2 ∙ 1,0) = 0,46 

𝑃(𝐻𝑢𝑚𝑖𝑑 = 𝑁𝑜) = (0,5 ∙ 0,8 ∙ 1,0) + (0,7 ∙ 0,2 ∙ 1,0) = 0,54 
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3. Variable Selection (IVS) 

3.1 Introduction  

 

The main problem in implementing this type of models is what, how much, and how to 

provide the data. Just as in our example this is largest constraint, its optimization and analysis is 

a real problem in the application of more advanced models to real-life problems. We have done 

considerable testing by trial and error to select these three factors, but currently there are some 

more advanced methodologies as the modified versions of the Standard Step Method, to name 

one. 

As defined by some researchers, once we achieve a correct algorithm capable of 

efficiently representing the problem to be treated, it is preferable to focus the efforts on 

achieving better input data. Small variations in the approach to the problem, or just slightly 

different configurations can achieve in the best scenario, given the prior exposed case, a very 

slight improvement due to the limitations of the theory of this type of problems. 

The previous paragraph comes to defend a greater dedication on the time invested in 

the selection, collection, analysis and processing of data, possible improvement with respect to 

a deeper re-optimization of a previously optimized model. As we will see throughout the 

document the understanding of the errors, the analysis and meaning of the parameters learned 

by the model as well as the results, will help us directing the search and definition of the data 

used in order to optimize the behavior of the model. In this way we will have greater freedom to 

direct the effectiveness of our algorithms. (Eirola, 2014) (CheGuan, 2013) 

 

3.2 Function complexity  

 

An evolution of the problem of bias variance tradeoff and focusing on supervised 

problems we have to deal with the complexity of the problem to represent regarding the data 

provided. If these are correct, we can generalize correctly while reducing the error, however if 

the function or model you need to represent is complex this complexity must decode from the 

data loaded. 

If the problem is complex and we have considerable limitations on the input data our 

model can only generate results with low bias and high variance. Different models are capable 

of self-adapting this trade-off according to the complexity observed on each stage of processing 

and the utility of the input data. 
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3.3 Dimensionality  

 

The importance of the dimensionality of the data set to be loaded will influence both, 

the solution reached and the route the algorithm will have to take to find sufficient conditions 

to be considered as valid. 

In practice a problem with a relatively simple representation may become a complex 

problem for the model since these extra dimensions are forcing the system to take them into 

account, which affects the outcome provoking a large variance. So if this problem is known, we 

must pre-process the input data to try to reduce the unnecessary dimensionality or try to find 

the initial relationships between the inputs prior to loading them into the model. If part of it 

persists, then we configure the model to obtain a small variance and high bias. 

 

3.4 Noise  

 

As we have previously described if we want our result to fit the actual values extremely 

well, with supervised training, we risk overffitting. The noise in the results can be there even 

having this noise in the input data, if the model we want to represent is more complex for our 

approach. This is because the complexity that cannot be properly represented in the model is 

corrupting the performance of the algorithm, so that adds to what is known as deterministic 

noise. 

As there are ways to deal with the noise of the input data and focusing on the 

unreduced data sets, as in our case that they get to reduce the error, once we have used this 

data pre-treatment we must look a configuration which allows us to obtain a lower variance and 

higher bias. 

 

3.5 Data kinds and Linearities 

 

Although as a rule the data is processed so that whatever their rank or meaning they are 

on the same scale, to avoid saturating the intermediate functions, there are problems in which 

we’ll have types of continuous and/or discrete data in various scales, in most analysis, except 

decision trees it is necessary to transform the meanings into numerical values to be treated by 

the algorithm later. 

If you do not correctly use regularization in the input data, due to the treatment of data 

and numerical instabilities in the process many models get results that are far from optimal. 
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On the other hand, if the problem we deal with having strong nonlinear relationships, 

different models as neural networks or decision trees are undoubtedly the best to predict the 

behavior because they represent and detail these relationships more easily. However models for 

representing linear relationships, such as SPV, or models based on Bayes regression won’t 

behave efficiently. 
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4. Unsupervised Learning 

4.1 Introduction 

 

This category of machine learning deals with the problem of finding unpaired 

relationships with a correct interpretation. So at this learning stage there isn’t any error or signal 

to evaluate the process, therefore the task of  the algorithm itself is to find information or 

patterns hidden behind the data. 

Though much of the concepts discussed above can be applied to both supervised 

learning and unsupervised learning, at this point we will briefly introduce more characteristic 

concepts of unsupervised learning and we won’t go into much detail since most of the 

applications that we use will be with supervised learning. The models that are getting more 

support from researchers as we have previously defended are clustering and Markov models, 

although there are neural network models as self-organizing map (SOM), which seeks the 

closest elements represented dimensionally to find similarities, which have proved a correct 

performance. 

The vast majority of the models can be seen as finding the probability of a certain event 

on the loaded data. That is, the probability of a certain new input considering the values 

previously analyzed, taking or not its time representation into account. Thus, these models are 

useful for predicting rare or rather unexpected behavior or to monitor the expected progress of 

certain parameters because some values may not fall within that probability previously 

calculated. 

They are also useful for classification as we have seen with the example of clustering, 

looking at the probability that some new input x has of falling into two distributions of different 

probability; we can decide which one corresponds with varying success (many other conjectures 

can be taken to decide what forms a cluster). 

Although not the objective of this document, these methods have also proved their 

worth for communications and data compression. Not only that, these machine learning 

systems, possibly accompanied by other algorithms to improve efficiency, are likely the future 

since they enable to learn what is really important and draw on their own what is most useful 

for a certain purpose, without the need to specify what matters. Similar to a higher level of 

supervised learning as how humans learn, create and conclude ideas. (Langkvist, 2014) (Kim, 

2012) 
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4.2 Bayes theorem and interpretation 

  

Today there is no doubt of the importance that the application of the Bayes rule, known 

as Bayesian inference, has in a large number of fields and applications. A basic understanding on 

the part of the mathematical statistics as well as Bayesian probability is required in order to 

understand the functioning of many of these algorithms. 

In essence, it corresponds in part to a formula with considerable importance in the work 

of conditional probabilities (measures the probability that a certain event will occur if another 

has previously occurred). It is important to say that when considering hypothesis, there is some 

discussion on its supports, however, the most successful developments are based on objective 

methods and can be derived directly from the probability axioms and different considerations 

on probability as we will see later. Next we have the formula and a partial demonstration. 

𝑷(𝑨│𝑩) =   (
𝑷(𝑩|𝑨)𝑷(𝑨)

𝑷(𝑩)
)    ( 4.1 ) 

 

 

Figure 4.10 - Probability equality example 

Being P(A) the prior probability, 𝑃(𝐴│𝐵) the conditional probability of A if previously B 

occurs. We can also extend this dependence as  𝑃 = (𝑋 = 𝑥) and then it can be interpreted as 

the frequency with which X is x (frequentist statistics) or as a confidence level representation in 

which X is x. Simply extending this vision we can generalize to 𝑃 = (𝑋 = x│Y = y). 

Generalization and depth of Bayes rule together with other aspects of statistics as Cox's 

axioms, which have been used to defend the Bayes approach, have led to this branch to become 

an interpretation with lots of applications and very good results once implemented. Also, thanks 

to this theorem we can update our values as we receive new information. However, the factor 

of considering "subjective" probabilities creates some discussion, but is part of the basis of their 

applications and multiple extensions. So we can have the probability of something that has not 

been confirmed, but we know could happen. 
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Suppose we have a space generated by two unknown variables, which we consider 

random. So if we apply Bayes' theorem it results in zero when any of the two has a finite 

probability density. To continue we need to modify the initial approach from which this theorem 

is concluded and instead of using the conditional probability previously exposed, useful in the 

use of events. We will get to the Bayes theorem from the definition of conditional density and 

so can apply this theorem equally to continuous variables. To simplify the formulation typically 

the denominator is eliminated by using the law of total probability so the denominator becomes 

an integral. See the formula and obtained space if both variables are continuous. 

𝒇𝒙(𝒙|𝒀 = 𝒚) =  
𝒇𝒀(𝒚│𝑿=𝒙)𝒇𝒙(𝒙)

𝒇𝒀(𝒚)
                               ( 4.2 ) 

 

  

Figure 4.11 - Event space example with two continuous variables 

The Bayes rule numerically defines the relationship that exists between the probability 

of two events, thus came to the conclusion that according to this approach to probability, the 

probability that there is a future for something is the number of times occurred previously by 

the Bayes factor. Bayes factor is a way of considering hypothesis that are given by the following 

application of the own theorem. 

𝐾 =  
Pr (𝐷│𝑀1)

Pr (𝐷│𝑀2)
=

∫ Pr (𝜃1 │𝑀1)Pr (𝐷│ 𝜃1,𝑀1) 𝑑𝜃1

∫ Pr (𝜃2 │𝑀2)Pr (𝐷│ 𝜃2,𝑀2) 𝑑𝜃2
   ( 4.3 ) 

As we have seen the implementation of these principles can help us predict what we 

hope will be in the future. Not knowing the exact odds and having a subjective part we can have 

a greater ability at the time to interpret the results. It is here where we see part of its 

application in Bayesian Networks; first it will allow us to find relationships between all variables 

even if we are missing values. Given their nature also they will give us some information about 

casual relationships with what we can better define the domain of certain variables or events. In 

short, thanks to all this theory, we can see graphically and efficiently the joint distribution of a 

large set of data. This can be improved depending on the problem with which we deal based on 

various of the inference tasks, unobserved variables, parameter learning and recently more 

popular structure learning. (Anon., 2015) (Triola, 2006) (Olshausen, 2004) (Joyce, 2003) 
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4.3 Competitive learning  

 

Another approach that is useful for our purposes is based on the winner-take-all 

strategy, with this form of training the neuron that was to receive the major upgrade of its 

weight receives the total variation of weights for that scenario, or rather pattern. The rest of 

neurons are not updated at this stage. 

A less radical version of this model is to make interconnections to this neuron in such a 

way that certain variations with winning neurons, others will be proportionately affected. 

Following the way of operation, in the first place the updating of weights would be calculated, 

we will normalize all these modifications, would choose and would update the neuron with the 

major change, will normalize the weight once that neuron has been updated and we’ll see 

whether we would modify other neurons connected or we would start the next iteration. 

In this way a neuron or a group of them specialize in a scenario or pattern, which, if 

applied would be a fundamental part of our model. Different types of outputs will activate 

different neurons, specialized solely in its particular problem. The generated vectors will be able 

to either represent or adapt, minimizing the errors of their sub group or single neuron. 

This approach comes in relationship and has similarities to algorithms that we will see 

later such as self-organizing Maps with K-means clustering or specific versions of Online 

Learning. In both cases a neighborhood of winning neuron is updated at each iteration with its 

ensuing consequences, the definition of neighborhood, as well as the rule for updating the 

weight among other features, define the behavior of each model. 

The following image represents how as a subset of neurons and their possible 

connections with the next layer will be modified. (Peter Sussner, 2011) (Stanley C. Ahalt, 1990) 

(David E. Rumelhart, 1985) 

 

 

Figure 4.12 - Example of relationships between neurons 
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5. Supervised Learning 

5.1 Introduction  

 

In this methodology, the data are displayed in pairs or at least with an indication of what 

results should be obtained given the number of entries so that the difference or inferred-

function serves in a guided or supervised way to understand the behavior of the data and 

information well enough to generalize the steps to be taken and thus to correctly transform 

values, scenarios or units not previously analyzed. 

Generally the overall process of this problem begins with the selection, cleaning and 

preprocessing of the input data. The next issue to deal with is the selection of the learning 

function, this will depend on numerous factors such as the type of problem, the type of input 

data as well as its size, level of generalization and detail we want to achieve, among others. 

Setting the methodology or architecture that will be used to address the problem in 

question. Considering the pros and cons of each model and the characteristics of our approach, 

there's no such thing as a free lunch. Determine the specific parameters of each resolution 

system if needed, whether related to the treatment of data, processing or sub-system processes 

that are created. 

To assess and validate the model, adjust it and try as far as possible to optimize it in 

order to apply or draw conclusions from the results. (Bontempi, 2013) (Mishra, 2008) (Kumar, 

2008) 

 

5.2 Artificial Neural Networks  

5.2.1 Introduction 

 

It will be the base of our model and upon which we will implement improvements, both 

in data processing and the analysis and configuration of an architecture that allows us to find 

and give a numerical value to the interrelationships that are discovered in the dataset, 

simplifying and approaching depending on the information’s configuration that it contains. We 

will therefore extend with greater length in its introduction. 

Based on the performance of the biological brain whose neurons are represented in the 

artificial model by nodes called neurons, and which connections or synapses have values or 

weights. These weights will, along with the bias affecting the intermediate value processed by a 

neuron as a separate unit,  adjust their values during the learning process in such a way that will 

let us store the knowledge just as a real animal brain. As is the case with our brain, according to 
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the interconnections of our neurons we will have some memories or knowledge recorded in the 

form of synapses in our memory, in our model, these synapses are represented by the weight 

which a neuron has over another (in a simplified model without recurrence or other 

architectures or added complexity). (Schmidhuber, 2014) (Amjady, 2011) (Ong, 2011) (Guoqiang 

Zhang, 2007) (D.C. Park, 2001) 

 

5.2.2 Differences 

 

The differences are enormous when we enter into details or scales, while the vast 

majority of artificial models does not exceed the hundred neurons configured in one or more 

layer, as we will discuss later, and a few tens in one or three layers are more than enough as a 

general rule to represent patterns of considerable complexity, even with these small units the 

computational requirements easily become unacceptable. 

The human brain has more than 30.000 million neurons (depending on gender, age, 

condition...) and each one is connected with up to 10.000 other neurons through different 

synapses, interconnected by electrical signals, all this is immersed in a complex system filled 

with different cells and proteins that interact at the same time in a different way. 

However, the theory of artificial networks tells us that with a single layer with a finite 

number of neurons, any problem can be represented without added complications. The 

problem is once again time and the calculations and memory requirements necessary to carry 

out such training. 

One of the main advantages and at the same time its similarity to the brain of living 

beings is that data processing does not occur in a linear manner, i.e., as in a real brain 

performing millions of operations at the same time, in our case we will be able to perform 

operations in parallel. At the same time we can delimit these operations in sub-functions or 

spread them in distributed systems, to reduce the memory limitations and increase the 

calculation power. 

In reality the differences are the vast majority, since when it comes to represent this 

model with algorithms, the theory that cements it come from statistics or from some aspects of 

signal processing, part of its parameters are adaptable, but others - a vast majority of utmost 

importance - are not, since as the configurations, interconnections, layers, features among many 

others that in the end define their capabilities and behaviors, aren’t either. In turn, these 

dynamic systems have had the need for essential support from other branches for its evolution, 

such as artificial intelligence, machine learning, and expert systems among others. 
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5.2.3 Evolution 

 

Because we rely on their work and contributions, we will make a small, mandatory and 

more than deserved mention of major events that have allowed the advance of this type of 

modeling. In 1943, Warren McCulloch and Walter Pitts developed a model known as threshold 

logic that will be the first system in addressing a neural network with mathematical algorithms 

in a very simplified way. As we know one of the greatest virtues of a brain is its plasticity and 

adaptability, which we seek to exploit with our network of artificial neurons, it was Donald 

Hebb, who around 1950 with his hypothesis of Hebbian learning, laid the groundwork for a 

mechanism of neuronal learning. 

In 1954, these advances are applied for the first time with computers, at then calculates. 

Until in 1958, thanks to Frank Rosenblatt, they received a major boost with the development of 

the perceptron algorithm, in a simple model of two layers using addition and subtraction. The 

perceptron although it is detailed in this document was and is a fundamental part of the 

development and application of artificial neural networks, enabling the learning of linear type. 

Subsequently, using backpropagation techniques to train the network allowed the use of 

multilayer perceptron, thanks to which nowadays we can differentiate between data that are 

not linearly separable. Also Rosenblatt describes a circuit only with OR doors in a mathematical 

way, so that when it was possible to be perform in 1975 by Paul Werbos it led to the well-known 

backpropagation, which is still widely used. Until then, this algorithm of Rossemblatt was limited 

by the problem of processing OR doors in a single layer and the computational power required, 

which were solved in 1969 by Marvin Minsky and Seymour Papert. (Dataconomy, 2014) 

Around 2010 with the advances in recurrent and deep feedforward networks significant 

progress was made in the recognition of patterns, at the same time developments in the back 

propagation algorithm and deep training have shown significant improvements in many 

scenarios and casuistry. Meanwhile the use of these improvements with various modifications, 

creating convolutional NN launched in advanced GPUs systems have won numerous awards as 

the models with better results in pattern recognition in recent years.  

Although for many years the interest of the scientific community for this methodology 

was losing incentives, the advent of deep learning and increasing power while reducing costs 

has allowed these algorithms to be the architects of many state-of-arts in various applications, 

especially in broader issues such as classification (pattern recognition) and on a few occasions in 

terms of regression. Looking into the future,  as will be discussed in extension in its 

corresponding section,  the evolution of FPGA’s and even prepared nano-devices for convolution 

can open a new stage in the use of neural networks, not only for its computing power but 

because it will mark the change from digital to analog. (Lloyd, 2013) 

In addition, the use of big data along with the next generation of neural networks is 

allowing to reach the cerebral cortex-like virtues. For example, if we have a network of millions 
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of neurons, which in turn has several network structures in its interior, these sub-networks 

interact among them. If these structures are organized in layers, the data processing is divided 

more efficiently, which impact that plasticity is dealt in a more optimal way. This is just one 

example, but there are many others that show how progressively the artificial brain resembles, 

slowly but with a progressive evolution, the crucial parts of our brain without having to be 

dramatically simplified. (Cukier, 2014) 

 

5.2.4 Characteristics 

 

Most systems are defined by the number and interconnections between different 

neurons in different layers, the learning methodology in which the values of the weights and the 

function that converts the internal value of the neuron update its corresponding output. 

Analyzing it from the unique viewpoint of functions, a network is a function that is 

represented by a series of functions which in turn can be represented by a number of other 

functions. This architecture is responsible for finding the dependencies between the data 

loaded. 

In the context of optimization, we can see the behavior of this series of functions like an 

input x, from which a number of vectors v are obtained, which in turn are transformed into 

other vectors, or a vector with a number of dimensions to finally become a one-dimensional 

function. From the probabilistic point of view, the output value depends on a probability of a, 

which in turn depends on a certain probability of b, which comes from some probability x, 

where x is the variable initially charged. 

If our network only allows one sense of direction, as the cases described in the previous 

paragraph, is called feedforward and is able to represent problems of considerable complexity 

given the ability to learn the weights if they were not limited by the computing power. If there 

are loops or the flow of the output is redirected to certain layers or previous neurons then it will 

be called recurrent. 

 

5.2.5 Learning 

 

The ability to learn as we have seen is what makes these systems interesting. This 

implies the need for an objective function, preferably convex, which seeks to minimize or 

maximize its opposite, during the learning process, iteration after iteration; we will be looking 

for the space of possible solutions for which our objective function is the smallest. Whereas our 

space depends on the variables that are teaching the system and the possible risk of being 
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trapped in a local minimum generates certain aspects to take into consideration to properly 

configure our network. 

A typical feature is the mean-squared error (that can be viewed from a broader 

perspective as a way of seeing the variance being obtained), which measures the difference 

between the value obtained and the value that should have been delivered (supervised 

learning). If we minimize this function by the method of gradient descent (which we will see in 

detail, the reason why it is desirable that the objective function is also easily derivable) we have 

the known and aforementioned backpropagation algorithms. This algorithm updates the values 

of the weights, using the error obtained by mse which is calculated on each iteration, either 

using the complete set of data or part of it. First is derived with respect to the parameters, and 

the gradient with respect to the weights are updated in successive layers, opposite the 

processing direction input values. Thus backpropagation is responsible for efficiently calculate 

the gradient of a nested function, generated by the deep network. 

Although there are many learning algorithms, most of them are based on the previous 

example and they are applications of optimization theory and statistical estimation. (Hugo 

Larochelle, 2009) 

 

5.2.6 Properties 

 

In a study conducted by Hava Siegelmaan and Eduardo D. Sontag, it is demonstrated 

that with a specific recurrent structure and rational values (previously it was thought real values 

were necessary) in the weights is sufficient to create a universal Turing machine (it can emulate 

any other machine with any variable). (DeepMind, 2014) They have even shown that the use of 

irrational values in the weights gives the power of a super-Turing machine. 

Turning to practical cases the parallel processing capabilities and adaptation are the 

most practical while fundamental. Other features are the capacity of information that certain 

network can store, once extracted from the data set. Convergence to a global minimum which 

will in turn depend on the definition of the objective function. Not forgetting that many 

methodologies become unviable when the data or parameters of the network are very high, 

because depending on the data treatment functions it may require exponential growth. 

In the previously cited text we must add all the limitations and problems drawn from 

the machine learning theory exposed as an introduction at the top of this document. Some of 

these limitations as the bias-variance tradeoff can be delimited effectively in a confidence 

interval assuming a normal distribution if we use the mse objective function. Others may be 

reduced or redirected using other functions and the needed data pre-treatment or network 

configuration and settings according to the type of input data and the purpose of the network. 
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We briefly expose part of their main problems when applying all this theory to real cases 

in a practical and efficient way. Like any machine learning system is necessary to provide the 

model with sufficient data, containing sufficient information so that the algorithm can 

generalize correctly when it is exposed to new variables. 

 

5.2.7 Criticisms and counterexamples 

 

One of the main problems we do have to recognize is relative to the amount of 

processing consumption, or in other words time, although as a rule very good results are 

obtained the amount of human time and complexity required for its development and the cost 

of computing are often  far from being the most efficient. On the other hand, thanks to the 

evolution of GPUs it has enabled the scientific community to expand its uses while developing 

better adaptations according to each field, rather than profound advances directed or targeted 

to specific purposes. 

For example, in many works of this type of models, it is argued that once you have an 

effective and capable model, it is best to focus on the collection and preprocessing of data 

rather than in the optimization of the model. 

Another point to recognize is that the use of neural networks has spread and has proven 

effective for a wide range of sectors and real-world problems. We can really understand the 

process and internal findings of the model or not, but we must not forget that if something 

works, there is no reason to push it away because it is too complex or expensive to be internally 

analyzed in detail. 

Advances in deep learning in unsupervised learning are progressive, with some 

limitations, able to overcome many of the algorithms that in recent years had reached the top 

positions in various problems they deal with a wide range of researchers now, including 

traditional neuronal networks, Support Vector Machines or Support Vector Regression and 

Hidden Markov Models. However, as we will see the optimization process and the goal-

requirements are a key aspect to choose the optimal model. 

Finally, if processors finally give the big leap and allow analog operations that would 

cause a terrifying growth of these algorithms that loaded on specially designed machines for 

processing will be able to have unimaginable capabilities. 
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5.2.8 Types 

 

There are dozens of types of neural networks based on the software; in turn each type 

has multiple configurations that can use some of the ideas of others so we have a huge 

collection of algorithms. Advances in various aspects of machine learning accompanied by the 

growing popularity of artificial neural network in recent years and the drive that it has received 

from the "deep learning" has increased the range of models and they are expected to continue 

to grow as they are optimized and adapted to specific tasks. 

Starting with the feedforward networks which we could be considered the simplest 

since they don’t have any kind of feedback, ie information during the learning process only goes 

in one direction, later adapting the weights with some methodology as seen in previous 

sections. 

Later we do a brief description of the most important features of some of the networks 

that are achieving better results in the fields that interests us, in order to not overextend the 

document length we will not enter into details or specific models. (Yann LeCun, 1998) 

 

5.2.8.1 Radial basis function    

 

Without any doubt, RBF-based models are one of the most interesting nowadays. Their 

outputs are a combination of input values treated with the model parameters along with radial 

basis function as function of activation. In a simplified way, this function measures the distance 

of a point with respect to an origin, hence its name with the following formula generalized. 

𝑓𝑥(�⃗�) = ∑ 𝑐𝑖ℎ𝑖(‖�⃗� −𝑘
𝑖=1 𝑧𝑖⃗⃗ ⃗‖) + 𝑝(�⃗�)     ( 5.1 ) 

Where x is the vector with input data, z centers, c coefficients, h the scalar function and 

p a polynomial function. It Works the following way, first the distance of the vector of entry to 

their respective centers is calculated. These values are transformed by the function h() to be 

subsequently added to the input values modified by a constant and p. Generally the functions 

that are often used to define h(x) are multiquadratic (i.e √𝑥 + 𝑦2) or gaussians (i.e 𝑒−𝑥/𝑦2
). 

Since the values are real results, we can normalize the output values if we consider they 

do not conform entirely to our problem or provide meaning independently. 

You can also apply this methodology to represent nonlinear data or multi-layer 

networks, although its more widespread use is the monolayer. Depending on the characteristics 

of our problem we can set the network one way or another. As it will be done in the 

development of this model in order to compare it and it is introduced with greater depth in the 

corresponding section of Radial Basis Networks. (Kon, 2006) (Schilling, 2002) (Leung H, 2001) 
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Figure 5.13 - Weighted sum of Radial Basis Function 

 

5.2.8.2 Self-Organizing Map (SOM) 

 

Based on the known Learning Vector Quantization (LVQ), it represents an algorithm 

generally used for dimensional maps, the main difference with the majority of neural networks 

is the use of neighborhood function (in extremely simplified manner the neighborhood will be 

the space in which the point can vary without losing its characteristics) in a way that does not 

lose the topological features (characteristics of space that makes up the neighborhood 

mentioned above) in the training phase. It is the expansion of LVQ for supervised learning 

applied to unsupervised learning. 

In the image we see the learning process of the algorithm, having the dataset defined by 

the blue region, and being the white point the first value in reading, the structure of the map is 

able to adapt to the values of a set of inputs. 

 

Figure 5.14 - Process of SOM learning 

In practice, we are learning to classify data vectors in different groups of subspaces 

according to their differences, the definition of "difference" is where part of their differences 

with other models reside. In our case we use k-means as we shall see in the next item. 

Another characteristic feature of this approach is that each neuron is able to affect the 

neighboring group in the space, similar to an RBN with multiple centers and high radios. This can 

be a positive factor because it allows us to learn the data space distribution and the topology of 

the training. 
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When choosing which topology function we will use, or how the neurons will form the 

network to map the subgroups, we can choose from a variety of functions as long as our 

processing limits and/or time will allow us. Similarly, the distance between neurons can be 

calculated by a distance function quite freely in the choice. 

We have mentioned previously in the second approach to competitive learning that 

there are similarities with SOM. In the example, if a winning neuron affects a number of 

neighbors proportionally - while other rules can be applied -, these will focus on its type of 

scenario, very similar to the result that we get with SOM. With each iteration the neurons 

groupings will be representing better characteristic vectors while neurons near the borders will 

tend to move away if the topology and the distance function to facilitate it. (Ceperic, 2013) 

(Bullinaria, 2004) 

 

5.2.8.2.1 k-Means Clustering 

 

It is responsible for dividing the data into different clusters, in our case we will 

implement it in order to divide the set of data by clustering to help us better define the 

scenarios, patterns, and decisions. Although it is a problem that requires a lot of processing, 

heuristic algorithms that help to converge more quickly in optimal locations have been defined. 

The definition of difference as well as the formulation that defines the optimal, either by 

minimization of the objective function, Gaussian distributions or a mixture of both, has 

substantially improved the results that are expected from these models. These approaches 

generate groups with significant differences and therefore the behavior and specialization of 

each subgroup of related neurons is modified. 

The advantages of hierarchical clustering (either by an ascending or descending process) 

reside in the greater efficiency when dealing with large data sets. This way each value is 

represented in the space defined by a certain number of dimensions. Because of this, we can 

search the distances in this space between each value and grouped them according to the 

number of desired clusters. This approach, which also can be defined according to the distance 

to the "next" point in the space, creates a lot of variations in defining the final algorithm. 

The centroid is defined as the point where the subset of points is smaller, similar to the 

RBN Center. This way of defining the cluster can vary in such a way that we could achieve a 

space defined by cluster as compact as possible and where their respective points differ 

significantly from the rest of the cluster. 

The most typical way to iterate, is a heuristic optimization problem which seeks to 

minimize the distance from each point to its centroid. The points may vary from centroid until 
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the sum of the distances between each point and its centroid, may not be reduced any more. 

(Pham, 2004) (Tapas Kanungo, 2002) 

 

5.2.8.3 Recurrent Networks 

 

There are dozens of algorithms that would fit within the definition of recurrent 

networks; many of the ones analyzed in some detail in this document are of this type mainly due 

to their memory property. Another of their properties is due to some dynamic capacity given 

the fact of being in states of change or adaptation according to the learning methodology. Other 

recurrent networks are called in relaxation when they are changing their parameters (weights 

and bias) and temporary processing while only applying the stored values. 

Parts of its drawbacks are a possible chaotic behavior, for such cases the problem 

should be treated with a model more focused on dynamic algorithms. On the other hand, most 

of these models tend to require processing time, which grows inefficiently when the number of 

inputs is very high which makes them less practical models in these cases. This problem can be 

reduced if we convert the problem from continuous to discrete, with this we'll lose some 

accuracy but not necessarily its usefulness. However, depending on the characteristics of the 

problem to treat various configurations of these recurrent models have proved to be at the 

highest level when they are used in conjunction with other algorithms for pre-processing or 

post-processing of data. 

In the following sections, and more especially when we develop recurrent network 

models, we will carefully review some stages, configurations, and some of the types used when 

we want to focus the results to the forecasting. 

 

5.2.8.4 Boltzmann machine 

 

Networks such as the Boltmann machine that could be considered similar to a Hopfield 

NET with some variations (Monte Carlo), in such a way that it forms a recurrent and stochastic 

network, although they are based on mathematical foundations and very interesting ideas they 

have too many problems when it comes to put them into practice, for this reason they won’t be 

described. For example, with this approach is necessary to deal with more important the risk of 

falling into a local minimum. So random values or functions, methods, proper Stochastic 

Neuronal Network, are used to reduce this drawback up to some extent. 

They have had lots of study, due to the interesting approach of connections and part of 

its findings are applied to Markov Models as we will see later. Moreover, improvements in the 

learning methodology have been developed to deal with their efficiency as Restricted 
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Boltzmann Machines, which has proved to be useful for various purposes such as recognition. 

However the majority of studies that we are interested in, in case of being related, is using 

derivations of this model and not the model itself. (Roweis, 2010) 

 

Figure 5.15 - Boltzmann nodes interconnections 

 

5.2.8.5 Reservoir Computing  

 

It uses a dynamic system, known as a reservoir, which is loaded with input values, and 

which is capable of independently training to achieve the desired output. The biggest advantage 

lies in the possibility of having a great capacity for adaptation for this reserve yield better 

performance than other models in similar problems. 

Most of the configurations of artificial networks could be considered to be recurrent 

and therefore tend to some instability. Echo State Network, based in part on Reservoir 

Computing, focuses on this problem in such a way that it tends to be used to represent simple 

problems of time series with certain characteristics, it differs from the rest in the limited 

interconnection between its neurons. Which,  summed up to the fact  it can only vary the 

weights, allows that while still having the ability to approach to non-linear models, the error 

function is easily derivable (quadratic, since it can only vary weights) and therefore transformed 

to a linear system. Without forgetting its greater dependency on the initial values unless a 

specific training. 
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Figure 5.16 - Reservoir Network architecture example 

The trend in recent years has been to combine a number of approaches and exploit 

their properties to improve efficiency and/or accuracy. The following picture shows a typical 

example, which aims to extract the information stored in a data set with some of the types of 

neural networks and subsequently applied to other models to give greater value to the 

conclusions that the first model has reached. Deciding which analyzes should be performed on 

the input data set before processing it is complicated, because tools such as Data Mining can 

clean noise or information that initially  didn’t add value to our model but may at the same time 

be delimiting subsequent information that the network or model could extract from the dataset. 

Whether the first stage is under an unsupervised model or the network is supervised, 

deleting information or grouping datasets in information clusters will be subtracting 

generalization ability and we will be back to the bias-variance tradeoff problem. For this reason 

and without forgetting that the quality and quantity of data that we give to the model will be 

significant in obtaining a model better suited to our requirements, the scientific community is 

focusing on the process of that information taken directly from the dataset, similar in principle 

but with refinements. 

As we know one of the main problems of neural networks is learning and its 

computational cost. So this methodology, which main advantage deals with this problem, is 

becoming one of the paths chosen to skirt these current limitations. The following picture shows 

the application of a Neuronal Reservoir model limited in memory usage with a slight 

modification of Online Algorithms. As we will see in the next section, it is applied to extract 

information from  the iterative changes that are produced in the reserve while new observations 

are added. The use of the formulation based on Bayes, as we will see later, is used to get 

probabilistic values rather than specific predictions. 
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Figure 5.17 - RN with Sparse Online postprocessing 

In this way a single model gets probabilistic results (thanks to Bayes) and continuous 

and dynamic learning (thanks to Online Algorithms). All this is possible thanks to the advantages 

in terms of memory usage and simplification of the order of complexity that offers Neuronal 

Reservoir, besides and as an even greater incentive this mixed model can be applied close to 

real time. (Harold Soh, 2014) (Benjamin Schrauwen, 2007) 

 

5.3 Online Machine Learning    

  

Sometimes the data set follows a sequential evolution, with some input data that point 

to output values, as it is part of our main problem. In these cases the model is being updated as 

new data is coming, we have other ways in addition to the already known feedback in neural 

networks. This time we'll talk about Online Machine Learning, whose memory is adapted to the 

input data and targets received without changing its size which carries its consequences. As in 

all previous cases, these approaches can be paired with others to adapt the algorithm or make it 

more flexible, in this case reducing processing time. 

The initial approach is exactly the same as in most of the machine learning algorithms, 

as we have already detailed, we seek to minimize certain objective function, which as a general 

rule, will be the error or risk, but the interpretation is different as we will explain later. What 

differentiates a big part of the model are the functions and limitations that we will include in our 

algorithm. 

In a simplified but not very far from the reality case, our model in the t-1 stage, we will 

only store one function, in the next iteration t, this function is updated with the new values of 

input and output targets. In other versions, the function in t, will depend on the function in t-1 
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and also all the subsets of values previously analyzed, this directly affects the resources needed 

to find a solution while it is impossible to adapt the function of t, in a single iteration. 

We have the values of input 𝑋𝜖𝑅𝑑, the target values 𝑌𝜖𝑅, H is the set of functions 𝑤𝜖𝑅𝑑 

and V is the objective function, that as in all other occasions we will assume to be convex or 

more directly differentiable.  As we have described we will have the function in 𝑤(𝑡 + 1) which 

will depend on 𝑤(𝑡) minus the gradient of the objective function of {𝑥(𝑡), 𝑦(𝑡)} applied in 𝑤(𝑡). 

𝑤𝑡+1 ← 𝑤𝑡 −  𝛾𝑡∆𝑉(⟨𝑤𝑡 ,𝑥𝑡⟩, 𝑦𝑡)    ( 5.2 ) 

If we use recursive least squares (RLS) algorithm, which seeks to minimize the average 

mse objective function value, as the majority of the cases of regression, looking for values 

iteratively as in a filter. The mathematical proof of this algorithm is long and complex and does 

not fall within the scope of the document. 

Its conclusions applied to our interpretation give us the formula with which we can 

update our function. Not only that, the complexity of the algorithm is an order of magnitude less 

than the problems were all the subsets are considered at each stage and the memory required 

does not depend on the number of stages since it is constant, thus we can get more efficiency if 

we apply the Bayesian statistical inference for example. (Jonathan Eastep, 2006) (StatLearn, 

2003) 

𝛤𝑖 = Γ𝑖−1 −  
Γ𝑖−1𝑥𝑖𝑥𝑖

𝑇Γ𝑖−1

1−𝑥𝑖
𝑇Γ𝑖−1𝑥𝑖

     ( 5.3 ) 

𝑤𝑖 =  𝑤𝑖−1 −  Γ𝑖𝑥𝑖(𝑥𝑖
𝑇𝑤𝑖−1 − 𝑦𝑖)   ( 5.4 ) 

 

5.4 Hidden Markov Models and Bayesian Networks 

 

To understand how this methodology works, it is necessary to understand the theorem 

on which is founded, the theorem of Bayes, which is useful mainly when it comes to decision 

support rather than forecasting problems. The bases of this theorem have been explained in the 

theory section of this document. 

This section continues with the explanation, focusing on the prediction of time series 

based on the theory developed by Andrey Markov. One of the main underlying properties is that 

the result does not depend on previous processes, but only in the process currently addressed. 

The applications found for this property is immense and cover practically all the fields in which 

match can be applied in one way or another. The mathematical properties of this stochastic 

model where only the previous stage is considered, include reducibility, periodicity, transience 

(recurrence, expectations of values, states), ergodicity and states of balance. 
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Here's an example of a chef known as Chip and a regular friend named Eric. Eric always 

chooses his dinner depending on what he has eaten that day. Meanwhile, cook Chip does not 

know exactly what his friend has eaten, but does have some ideas, so depending on the choice 

of Eric for dinner (in Markov's Models called observations), our cook is known with more or less 

certainty what Eric has eaten. For Chip, the food eaten by Eric is unknown, but he knows that it  

should be between some “historical choices”, ie a discrete Markov chain. Chip knows some 

probability of Eric behavior, for example, what he usually eats on a Sunday or Friday, or that he 

never wants fish on Monday... so, then Chip can guess or have some “hypothesis” of what is 

what Eric is going to order that day. 

If we write this approach in code, we will start with a medium probability of what Eric 

has eaten based on comments received by Chip. The balance will come when we take into 

account the probability of change, in which the likelihood of change is represented regarding 

only the previous election. That is, if Eric in t has eaten chicken, there is less chance than in t+1 

he will eat pizza and therefore Chip will have delimited with greater certainty what Eric might 

choose for dinner. 

There are a lot of methods to learn from observations along with the uses of the Markov 

Model properties with other algorithms or recognition or forecast techniques. In this case, and 

taking the basis of Bayes' theorem and Markov chains, we will see a dynamic version an 

algorithm based on these two models. 

Thanks to the basis in which, to predict a future event we only consider the current 

values, and the parameters learned, we can greatly simplify our forecasting model. So if we 

rewrite Bayes' theorem it becomes. 

𝑃(𝑌1:𝑇) = 𝑃(𝑌1)𝑃(𝑌2|𝑌1) …  𝑃(𝑌𝑇|𝑌𝑇−1)    ( 5.5 ) 

If we want to give more freedom to our models, we can allow “temporary" jumps, i.e. 

we can accept that it jumps from 𝑌𝑡−𝑛 to 𝑌𝑡 , this adds dimensionality, but allows us to 

encompass more complex nonlinear problems. We can also set up the model so that each 

observation depends on a hidden variable (in our previous case, directly associating a meal with 

a distribution of possible dinner) which we will call a state, being the sequence of states a 

Markov chain. 

Regarding the learning methodology and operation, let’s make an example that allows 

us to build on the models. We have a new observation and we want to incorporate this 

information into our model, as in the following image, from n we will update the values of the 

two dependent subspaces of n. In this example 𝑒− will receive the probability of a certain n, 

given certain configuration 𝑒+, if values are real, the probability will be given by the probability 

density between the values that can take n. The values that n will send to the subspace 𝑒+ will 

be the probability of observations received by 𝑒−. In such a way that the probability of n will be 

proportional to the observations of 𝑒+ weighted by the conditional probability of n given 𝑒+ and 

observations of 𝑒−. 
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Figure 5.18 - Bayes Network dependencies 

In the above example, we have a very simplified graphical representation of 

dependencies between variables, and the vectors represent the conditional probability that 

exists among variables. In most of these dependencies, when we use the definition of 

dependency provided by Markov, they are calculated by the Markov Blanket (image and top 

paragraph), where the subspace 𝑒+ are considered parents and the 𝑒− children, the operation 

are exactly the same as described previously. In such a way that it is only that subspace of 

parents and children the one necessary to predict the behavior of the node n. 

Updating the stored information is typically done through what is known as Bayesian 

inference. It's based on the application of Bayes' theorem and various axioms, as we know in 

this approach a degree of expectation is assigned for the belief that with some probability a 

hypothesis will be fulfilled. In theory, with the update of successive observations, arguably in a 

finite number of iterations the accumulated information will reach the same state. 

(Ghahramani, 2001) (Heckerman, 1996) (Geiger, 1990) (Sharon-Use Normanda, 1992) 

 

5.4.1 Baum-Welch algorithm and Markov property 

 

Let's look at the implementation of the Baum-Welch algorithm which generally is used 

to efficiently find parameters of Hidden Markov Models. We will first explain its operation and 

will end up continuing the example exposed according to the understanding of Bayesian 

probability in Hidden Markov Models. While in the application we use Expectation-maximization 

algorithm, in the example we will observe a simplified way to use forward-backward algorithm 

(in this case also called smoothing), to calculate the parameters with the estimated 

observations, although the Viterbi algorithm teaches a more optimal way to converge. 

Previously we will mark some limits of use, if our problem is discrete then we will use 

Markov Chain. If it is a continuous problem, for instance the treatment of a signal which 

provides information to the model, then we use Markov Process, generalized in Wiener Process. 
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In general, both cases are stochastic events with the Markov property where the conditional 

probability distribution 𝑃(𝐴|𝐵) of the future value of a variable depends on its present value, 

but not on the history of that variable. 

We continue our search for a model that is able to understand and predict a time series. 

Given a set of observations 𝑂1:𝑡 = (𝑂1, … , 𝑂𝑡), iteratively we will seek the model parameters 

𝑋𝑘 ∈  {𝑋1, … , 𝑋𝑡} that maximize the likelihood 𝑃(𝑋𝑘|𝑂1:𝑡). To do this we need to calculate the 

expected number of transitions leading from O to a state i, and again the expected number of 

transitions from state i to a j one. To this end we define the probability of being in state 𝑖(𝑡) and 

𝑗(𝑡 + 1), efficiently calculating with Forward-backward algorithm. Subsequently, we iterate 

updating the values, being the most optimal sequences between states i have given some 

observations O, the one obtained by the Viterbi algorithm, which exceeds the scope of the 

present document. 

With our example, we want to predict Eric breakfast by this methodology, but the 

choice of Eric depends on what he had the previous night. Let’s suppose, to simplify,  that there 

are only two variables; sleeping S or awake W. A priori, we ignore both, the likelihood of if has 

not slept a day that will he do the next, and vice versa, and what breakfast will he choose 

depending on what has happened to him that night. 

First, we try to guess the initial point, as well as the transition and the emission 

matrices. Suppose that the probability of if he has slept a night that he sleep the following is 0.5. 

Besides supposing that if he has slept that night he will ask toasts with tomato with a probability 

of 0.7 and eggs with bacon with 0.3. The rest of the initial odds for cases of the night awake are 

the values that normalize these probabilities. In the tables below, we can see the early 

estimates of values and the observations available. 

 

 O =  (TT, TT, TT, TT, TE, EE, ET, TT, TT) 

If we calculate the probabilities of each transition if S->W and the sequence where there 

is more probability of finding such a sequence, we get the following table. 
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If we perform these calculations for all observations we get the "Pseudo probabilities" 

of going from S->W which is  0.22 2.423 = 0.0908⁄  

The way to continue iterating would be to recalculate the transition matrix, normalizing 

the values and estimating the new array of emissions, with new observations. 

 

In the following table only W->E appears, but we need to update all the pseudo 

probabilities, we should do so for, W->T, S->E and S->T. 

 

The new estimate we get for "E" if we come from "W" is 0.2394 0.2730 = 0.8769⁄    

If in Eric’s case we converge sufficiently in the first iteration, we could conclude that the 

probability that not sleeping if the previous night he slept 𝑃(𝑊|𝑆) is 9% and in these days the 

percentage of he having eggs with bacon for breakfast is 88%. (Chang, 2007) (Agosta, 2004) 

(Baggenstoss, 2001) (Pitt, 1971) 

 

State 1 State 2

State 1 0.3973 0.6027

State 2 0.1833 0.8167

Transition
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Figure 5.19 - Example of discrete-time Markov process 

 

5.5 Bagged Trees    

 

There are currently several versions of decision trees, these models have grown from 

the need to take out valuable information from the immense databases which nowadays keep 

increasing their pace of growth. In this case the analysis focuses on classification instead of  

forecast, but due to uses that are being found and the great achievements that are being 

reached  in recent years in data mining is worth understanding the approach as well as the 

generalization and different versions of these models. 

Most of the algorithms for predicting discrete or continuous values, either oriented to 

classification or with a statistical basis, have some memory. In this case we create rules that 

allow us to analyze data on an individual basis. Using the greedy algorithm approach which 

allows us to find the quasi-optimal solution in each iteration. Subsequently, several algorithms 

have been developed which have turned these models into very practical solutions depending 

on the entropy that exist in the database to analyze. 

Iterative Dichotomiser 3, which evolved more into a statistical classifier with the C4.5 

algorithm, included several improvements such as allowing continuous and discrete values by 

dividing the data in a threshold. Another substantial improvement is to allow certain values to 

lack features or to read the tree in order to find the branches that don't create value and 

replacing them with potential candidates. These were the main problems when developing 

tools, so this supposed a considerable advance, improving some of the features with the version 

C5.0 of the algorithm, mainly aimed at the computational cost. In addition to those mentioned 

previously there are various techniques that allow us to efficiently find non-linear relationships, 

which is useful in the field of prediction. 

The model is presented with nodes as class definitions and the branches as the features. 

Its graphical representation shows the data and no conclusions, but it does not prevent that this 

output can be used in decision models. (P. Rivas-Perea, 2011) 

 



 
 

 

 

59 

  

Figure 5.20 - Decision Tree and Random Forest 

Summarizing their characteristics we can conclude that it is a Non-parametric model but 

consistent. It can be adapted to the problem in question so it is able to handle heterogeneous 

data. In our examples it achieves good results with continuous and discrete values. It is very 

quick and easy to train, to predict and interpret. While a single tree gets very small bias and high 

variance, this can change if we use forests, in such a way that we reduce the variance to 

increase the very low bias. The best way to adapt the decision tree to the problem is changing 

the functions that generate the leaves and which pruned it.  

If we use random forest probabilistic can get value at the same time that we better 

adapt the model. This algorithm has a number of advantageous features compared to neural 

networks. Virtually no need for tuning since fitting the same, control of the bias-variance is 

simple using randomization to get the best performance. Continues to be fast in training and 

forecast, but losing performance against a single tree. There are other models based on trees 

such as Gradient Boosted Regression Trees that adds a function to better adjust the time series. 

Generally, when GBRT is recommended to use it, it produces better results, is more flexible in 

terms of the objective function, allows regularization but adjustment is necessary and 

significantly increases the time required in the training. 

 

5.6 Multiple Linear Regression 

 

Without a doubt one of the methodologies most frequently used in prediction of load 

curves are the ARIMA models. These models are mainly useful when there is a relatively 

constant level over time, i.e. they are "stationary" or don’t have seasonality in which case we 

should use SARIMA models. Although there are several methods for the analysis of time series, 

we can divide them between methods of frequency and time, which are related by the Fourier 

transform. In our case, we will focus on the domain of time and verifying that the relationships 

exist and how they affect the final values. 



 
 

 

 

60 

 

 

Figure 5.21 - Time and Frequency domains 

Time domain is shown in red and in blue is the conversion by Fourier transform to the 

frequency domain, or to put it in another way, the composition of the red function given the 

amplitudes of the blue functions. 

Other ways of dividing the time series analysis can be between linear and nonlinear or 

between parametric and nonparametric. In the case of parametric, we understand that the 

process can be described by a number of parameters and therefore the aim is to find which 

ones best fit the loaded values, although as we have seen in chapter 2.3 there are several 

limitations. Non-parametric processes seek covariance (dependency between variables) without 

necessarily having data structure. 

Returning to the ARIMA model, and without going into depth on mathematical aspects, 

let briefly see how it is constructed and what it is based on. An auto regressive model or AR 

attempts to explain certain values set by a linear dependency of the previous values plus an 

error. The nomenclature is AR (B), where B is the order of the model, or the number of previous 

observations that are considered for the value t. 

𝑌𝑡 = 𝜙0 + 𝜙1𝑌𝑡−1 + ⋯ + 𝜙𝑝𝑌𝑡−𝑝 + 𝑎𝑡    ( 5.6 ) 

Generalization for AR(p) 

𝜙𝑝(𝐿)𝑌𝑡 = 𝜙𝑜 + 𝑎𝑡      ( 5.7 ) 

In theory the mean of the error must be zero, its constant variance and the covariance 

between errors of different observations should also be zero. If we abbreviate the upper 

expression and define our delay as L. Our delay slows the values considered so  in general low 

values are used or values that match the periodicity of the series to be represented. 

𝜙𝑝(𝐿) = 1 − 𝜙1𝐿 − 𝜙2𝐿2 − ⋯ − 𝜙𝑝𝐿𝑝    ( 5.8 ) 
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Another model that is known as a moving average model or AM, seeks to give a value in 

a time series regarding an independent valuation and an adjusted weighting of previous errors. 

The formulation and meaning is the same as for AR models. 

𝑌𝑡 = 𝜃𝑝(𝐿)𝑎𝑡 + 𝜇      ( 5.9 ) 

Now we can go into the ARIMA models, before applying our model we have to define 

the order of its components (p, d, q). That defines the auto regressive function, the integrated 

and the average mobile respectively. The resulting function is. 

𝑌𝑡 = −(Δ𝑑𝑌𝑡 − 𝑌𝑡) + 𝜙0 + ∑ 𝜙𝑖Δ𝑑𝑌𝑡−𝑖 − ∑ 𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡
𝑞
𝑖=1

𝑝
𝑖=1        ( 5.10 ) 

Where 𝜙  is a constant, 𝜀𝑡  is the error, 𝜃𝑖  are the values of AR, MA and Δ𝑑𝑌𝑡 = 

(𝑌𝑡 − 𝑌𝑡−1) used to convert the series into stationary. To use this model properly we must be 

able to identify the functions of full and partial autocorrelation in our series and compare them 

to the models we obtain independently of AR, MA and ARMA. Another simple way is to observe 

the error obtained by our model and see if it meets the theoretical  requirements of the error. 

How many parameters of each model must we incorporate will be the main problem 

when setting our model. For this, besides the two ways previously exposed, we can use the Box-

Jenkins method. 

This method consists of three steps. First, to make sure that the variables are stationary, 

identifying the seasonality in case of having it. The first stage is to determine if is stationary 

which can be seen in the autocorrelation graph, if it is not stationary then the graph should 

decay slowly but progressively. In the same graph, we can see if the series has seasonally and if 

so derive the function, even though there are other methodologies to reduce this seasonality. 

Subsequently, it should identify the value of order for p and q, for this purpose there are 

multiple methods, in our case will do so based on the autocorrelation and partial 

autocorrelation plots. 

The verification of the model’s results, including that the residues or errors fulfill their 

theoretical properties. As it will be seen in practice it is not so simple, although there are generic 

rules based mainly on the role of autocorrelation, choosing which model and which parameters 

(order) to use as stated in this methodology is part art and part science. Moreover, the choice 

gets complicated when we gather several models, so lacking experience the method of trial and 

error will be the one to use to find the configuration that best fits our series. (Hongzhan Nie, 

2012) (L. Suganthia, 2012) (Mehdi Khashei, 2010) 
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5.6.1 Stepwise regression 
 

It refers to a typology of models in which the selection of the variables is performed 

automatically. There are several approaches as well as different selection criteria, being the 

most used: t-test, F-test, R-square, Akaike information criterion or Bayesian information. 

Bayesian information (BIC) and Akaike information criterion (AIC) are used to measure 

the quality of the model, and is normally added a penalty term to avoid overfitting. In the case 

of BIC models they are compared from the perspective of decision theory, as measured by 

expected loss and in AIC models are comparable from the perspective of information entropy. 

Because of these differences in the final processing of the model varies substantially, 

especially because we are using the same technique to measure the efficacy of the model as we 

use to make the adjustment. This causes that the models are worse than they appeared initially, 

the same occurs with the degrees of freedom which must be previously defined and we should 

not only consider them as the resulting variables chosen in the setting. 

Although these models have considerable criticism for oversimplifying the data set, in 

certain circumstances once they have been verified by another method and dataset not 

previously used in the initial setting, they can be a practical way to adjust the regression to the 

required level. 

In our case we will be eliminating or adding data to our model according to their 

statistical significance in the regression. On each iteration the p-value of the model with and 

without the element in question, if the result indicates that the new hypothesis is more then we 

continue with the procedure and we increase the value of the required p-value to consider that 

information is being given to the model.  

It is deduced from this method that depending on the order in which the variables are 

provided one or another model will be produced. 
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6. Neuronal Network Development 

6.1 Introduction 

 

At this point, it is explained how to create, configure, and train neural network along 

some possible improvements. We will begin with an introduction to the most fundamental 

aspects, the configuration of a neuron, different types of provision of these neurons that form 

the structure of the network and how different concepts about the training of these networks 

are implemented. 

We will continue to complicate our network, adding several layers of neurons, 

commenting on the dramatic importance of input data, different types of functions that are 

applied to input data and that define, together with the architecture of the network, the global 

performance and capacity to learn the information hidden in the data provided. We will see the 

best-known learning algorithms and will give a few brief comments on the meaning of the 

values that our trained network returns and its results. 

As we move forward, we will focus on the type of network that interests us for our 

purpose of predicting time series in the short term. After an introduction to dynamic neural 

networks, we will see what the structures are and algorithms of training that are achieving 

better results nowadays. We will explain a fundamental point of these networks, the delay, and 

some of the different architectures with which these networks can be built. Such as NARX 

(Nonlinear AutoRegressive with eXogenous inputs) which will allow us to predict values that 

depend on more than one input value in an efficient way for not too big databases. After some 

initial testing together with a few adaptations by trial and error, we will better parameterize the 

network’s settings once trained, closing the cycle, i.e. giving the value calculated in the previous 

step as an extra input value and we will this network to predict values more distant in time. 

We will continue focusing on our goal of prediction, but these may also be applied to 

the varied challenges of the power sector. 

Finally, it is necessary to mention the problems and different solutions or improvements 

involved in this type of development. Similarly the hardware where they are processed as well 

as the necessary infrastructure to interacting with other models and applications is discussed. 

Before going into details, part of the studied documentation proving their great benefits 

in predicting load curves will be listed. (WahHe, 2014) (Dalto, 2014) (Awan, 2012) 
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6.1.1 How a Neuron Works 

6.1.1.1 Neuron 

 

We will begin explaining how the simpler model of neuron works, in the case of the 

image below, we have a single input p to an output a. 

 

Figure 6.22 - Simple Neuron 

Now the procedure that is described in the block diagram of the neuron is the following: 

first input p value is multiplied by the weight w forming the weight function, in such a way that 

in the block of the sum it reaches wp, where it joins the bias b. This produces the net input 

function 𝑛 = (𝑤𝑝 + 𝑏) which is given to the transfer function f(), once this function has been 

applied it will define the outcome 𝑎 = 𝑓(𝑤𝑝 + 𝑏). 

In this simple example, we have applied to the sum function to the weight function and 

the bias, but it could have been any other, according to the behavior that we want our network 

to have. We should mention that both w and b are scalar parameters that define the operation 

of our network according to their values, these are the values that we will be changing during 

the training phase, and these together with the network architecture will define how our 

network behaves with a certain dataset. 

 

6.1.1.2 Transfer Functions 

 

Although you can use practically any function that is derivable (for reasons of 

optimization in the stage of training) because of the advantages of the Log-Sigmoid Transfer 

function is the most widespread in the hidden layers, and a simple linear transfer function is the 

one used in the last layer of our network. Besides the advantage of being easily differentiable 

the Transfer Log-Sigmoid function limits the output values between (1,0) which is highly 

recommended especially if the values to be processed may have considerable differences. 

Imagine that entry values or the values intermediate between layers (if you do not use 

this type of function) are of the order of 106 but the characteristics of the problem to consider 

are of the order of 102 when training the network, the weights and biases are changed, the 
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values won’t be taken with the same consideration, since the difference between the target 

value (supervised training) or problem definition (unsupervised learning) as we will see later, 

could differ considerably. 

 

Figure 6.23 - Common Transfer Functions 

 

6.1.1.3 Vectors as Inputs 

 

In the majority of real world problems, we will not use a single scalar as input value, but 

vectors with several of these values. This directly forces us to define as many numbers of 

weights as values in the vector and then - now it makes more sense - we will apply the bias. Let's 

see the block diagram to better understand the procedure. 

 

Figure 6.24 - Vector Inputs 

As we conclude from the image, the vector 𝑝(𝑝1, 𝑝2, … , 𝑝𝑅) is multiplied by its 

corresponding weights 𝑤1, 𝑤2, … , 𝑤𝑅, subsequently the bias and the net input function n is 

added, and the function f() that we have defined is applied. 

𝑎 =  𝑓(𝑤1𝑝1 + 𝑤2𝑝2 + ⋯ + 𝑤𝑅𝑝𝑅 + 𝑏)   ( 6.1 ) 

Now that we understand the basic operation of a neuron and the basis on which a 

neural network is built, let's take a moment to generalize the representation to expand our 

network in a way that is directly understandable with only a view its structure diagram. 
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Figure 6.25 - Neuron 

In this case, we have a vector W(1xR) as we have seen in the previous example, which is 

multiplied by a vector p of size Rx1 and then the 1x1 bias is applied. After applying, in this case 

the sum, it returns a net input function 1x1 that after being applied the transfer function will 

return the output of 1x1. 

 

6.1.2 Network Architectures 

6.1.2.1 One layer 

 

In all the above examples we have seen how a neuron works. If we have S neurons in 

parallel, we have a layer of neurons. Let's take a look at the graphic example and its 

consequences. 

     

                Figure 6.26 - One layer            Figure 6.27 - Weight Matrix 

Directly, we see that if several neurons are connected to input values, we need to define 

the weight of these connections for each neuron. Therefore the matrix of weights IW (input 

weights) will define the importance with which each neuron should treat each input value 

vector 𝑝 . Two considerations are necessary before proceeding, first as we can see from the 

annotation, R should not be equal to S, we may have an array with five values that will be 

processed by seven neurons in the first layer; on the other hand and referring to the system that 

will be taken into account in all work, the superindex of the values of the weights indicate, in the 

first place which neuron is being referred, and in second place the position of input vector, in 

this way 𝑤2,3 will be the weight which will take the third value of the input vector in the second 

neuron. 
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6.1.2.2 Multiple layers 

 

Along with freedom of connecting neurons or layers in the way desired, the factor of 

having several layers of neurons is one of the main advantages of the neural networks, since is 

this depth which will allow the network to adapt to complex nonlinear problems effectively. 

Note that while in theory, one layer with a finite number of neurons could adapt to solve every 

linear problem; this is not a competitive advantage over other models. While again theoretically 

a network with only two layers, being sigmoid the transfer function of the first one of them and 

the second a linear function, can be approximated to any function. 

Before proceeding to explain the operation of a network with several layers we know 

that just as there is an array of weights that connect with each of neurons input values, there 

are some weights that connect the output of one layer with the desired connections, in the 

following cases all the outputs of the second layer will be the inputs of layer three, once applied 

the matrix of weights that we will define as LW (layer weights) whose superindex as well as of 

the one in  IW will define the target and source layer. 

     

Figure 6.28 - Simple Multiple Layers 

We see in the picture that the way of analyzing each layer does not differ from the 

simple examples above. Before continuing, let's define the last layer before the output values as 

output layer and the other layers as hidden layers, in this way the output will be 𝑎3 values, if 

required might be treated later by one or several functions , in the example of the image. 

𝑎3  =  𝑓3(𝐿𝑊3,2𝑓2(𝐿𝑊2,1𝑓1(𝐼𝑊1,1𝑝𝑅 + 𝑏1) + 𝑏2) + 𝑏3)   ( 6.2 ) 

    

6.1.3 Concurrent and Sequential examples.  

 

After treating the input data as we will see in greater detail later, we need to create our 

network, configure it, give some initial values to the weights and bias, train it, validate it and 

improve it. Before continuing with some simple examples, let’s define as concurrent input 

values those who do not have a temporary unit or follow a sequence, those who comply with 

this will be denoted as sequential. 
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6.1.3.1 Static Networks 

 

All of the examples we have seen previously, have been static networks, hence this 

example should not cause major problems, therefore it will help us to better understand the 

following example which introduces the concept of dynamic networks with very simplified. 

Following the order described at the beginning of this topic, let see step by step the 

stages up to the output values. Having four vectors p as shown in the following example, in this 

case the treatment of datasets is direct (image), however, is in the more complex problems 

where the power of these networks resides. 

𝑝1 = (
0

1
) , 𝑝2 = (

1

2
) , 𝑝3 = (

2

3
) , 𝑝4 = (

3

0
) 

 𝑃 = [ 0 1 2 3; 1 2 3 0] 

Let’s create and configure the easiest possible network, a static, i.e. without feedback or 

delays and with a linear transfer function. We will continue configuring the values of the weights 

and the bias as 𝑤 = [1 2] and 𝑏 =  0, respectively. 

The internal procedure that will make the network 𝑎 = 𝑓(𝑝𝑤 + 𝑏) will be: 

𝑎 = [𝑝1,1𝑤1,2 + 𝑝1,2𝑤2,2 + ⋯ + 𝑝1,𝑅𝑤1,𝑅 + 𝑝2,𝑅𝑤2,𝑅]        ( 6.3 ) 

𝑎 = [0 ∙ 1 + 1 ∙ 2    1 ∙ 2 + 2 ∙ 2    2 ∙ 1 + 3 ∙ 2    3 ∙ 1 + 0 ∙ 2] 

𝑎 = [2 6 8 3 ] 

 

6.1.3.2 Dynamic Networks 

 

Because of the temporary nature of our problem, as a general rule, we will use dynamic 

networks, we go more in depth on the following points, however let’s see a simple example to 

understand its operation. 

We have a dynamic network with a delay equal to one, i.e. the input values follow a 

sequence of value one. To further simplify this first example we omitted the bias and we will set 

the weights with the same values than in the example above 𝑤 = [1 2]. 

𝑝1 = [1],  𝑝2 = [2],  𝑝3 = [3],  𝑝4 = [4]  

𝑃 =  {1 2 3 4} 

𝑎(𝑡) = 𝑤1,1𝑝(𝑡) + 𝑤1,2𝑝(𝑡 − 1)   ( 6.4 ) 
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𝑎(∗) = [1 ∙ 1 + 2 ∙ 0 ]  [2 ∙ 1 + 1 ∙ 2]   [3 ∙ 2 + 2 ∙ 1]   [4 ∙ 1 + 3 ∙ 2] 

𝑎(∗) = [1]  [4]   [7]   [10] 

 

6.2 Multilayer Neuronal Networks 

6.2.1 The importance of Inputs 

    

As we have been insisting, one of the most important factors to optimize the results of a 

network, is what and how we will introduce the input values. Depending on the level and depth 

of data preprocessing, we can provide better information that will influence significantly the 

results of our network, especially for complex problems like the ones in real scenarios. 

Although these factors will be explained in greater detail in the following sections, with 

the preliminary analysis of the input data, we can conclude relations, groups, clean out the data 

that we consider is not useful or reduce the dimensionality and size of a large dataset without 

losing information. 

 

6.2.1.1 Saturation of the Input Channels 

 

Some of these steps, mainly if we limit them to functions, also can be applied to the 

output values. Then we will see how these improvements will help to create a model that is 

both more efficient, and more accurate. 

Commenting on the simplified case of the use of functions in the hidden layers generally 

sigmoid function, this function has its advantages but is also limited, as discussed in previous 

sections, specifically when the values it transforms are of the order of 103 it starts to become 

saturated. If this occurs at the beginning of the training, the gradients which change our weights 

and bias will be very small so that the network will learn very slowly. 

Similarly, if the input values are very high, the weights must be very small to avoid 

saturating the transfer function. Therefore, we can generalize that, except in specific cases, it is 

convenient normalize at least the input values before loading it on our network. 

Obviously, if we have normalized input values, we must do the same with the objective 

values and of course the values returned by our network will equally be in the range that we 

have defined in our initial values, we must therefore do the inverse function to be able to make 

sense of the values. As a small comment, it is worth mentioning that in the majority of the tools, 

both paid or free, that are used as a the basis to develop neural models, these functions are 

applied to the values of input and output even if the user does not notice it. 
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These normalization functions can be configured; however the standard use of some of 

them tends to facilitate the process. Normalize input and objective values between [-1,1], delete 

values that do not add information (constants), extract the main components of the vectors, 

adjust them so that they have a mean equals to 0 and variance equal to the unit or a grouping  

of extreme values if required are all examples of these functions. 

 

6.2.1.2 Overfitting and Subsets 

 

One of the most widespread practices when processing data before passing them to a 

neural network is to dive it into subgroups. This step, which is practically used in 100% of cases, 

except where the amount of data that is available is very small to emulate the complexity of the 

underlying problem, consist in separating the data into three groups. Generally, the first and 

largest will be the "training set" which will be used to train the network, i.e., calculate the 

appropriate values of weights and bias. The second subset will be used to validate that our 

precision is enough to finish the training; on each iteration of the training, the error of the 

model will be calculated and compared with the validation subset. 

However, when the network begins to learn the problem and not the underlying 

complexity, this error starts to increase, since our network has learned to represent the problem 

in question, but it will not be able to predict future values logically, this is what is known as 

overfitting and will be greater when the data you give to the problem in question is not enough. 

Since the number of neurons and layers are able to represent the given problem, but it will not 

learn how to solve them, this problem is accentuated if you add more layers than really 

necessary, since it is increasing the capacity of the system to reproduce without understanding 

the intrinsic complexity of the problem. 

The third subset will be the testing one, if the minimum error we get is not on par with 

the subset of validation error; it meant that the data is not properly divided. 

Some of the methods most widely used at this time to divide the data into these three 

subsets are: to choose data randomly, continuous blocks or defining specific indexes. 

 

6.2.2 Gradient and Jacobian development and performances 

 

The training process is responsible for adjusting the values of weights and bias for the 

network to be able to reproduce the problem in the most effective and optimal way. One of the 

most used functions to measure the performance of the training is the mean square error, 

mean-square error between the outputs and target values. 
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𝑭 = 𝒎𝒔𝒆 =  
𝟏

𝑵
 ∑ (𝒆𝒊)𝟐 =

𝟏

𝑵
 ∑ (𝒕𝒊 − 𝒂𝒊)𝟐𝑵

𝒊=𝟏
𝑵
𝒊=𝟏    ( 6.5 ) 

As we have previously said many other functions can be used, if we focus of multilayer 

networks, other functions can be used to measure the performance of our stage, however, most 

of the outstanding ones are using the gradient of the network performance with respect to the 

network weights (from the previous stage) or the Jacobian of the errors of the network with 

respect to the weights. 

In both cases, these are calculated by the widely studied backpropagation algorithm 

which supposes an undoubted boost to the development of such networks. 

    

6.2.2.1 Development 

  

Given the importance and the widespread use of the Backpropagation algorithm let see 

what it is based upon and its development in order to better understand how the network is 

learning in each iteration.  

Let's start with the basics; the weights will be updated according to the following 

formula. 

𝑾(𝒕 + 𝟏) = 𝑾(𝒕) +  ∆𝑾(𝒕)    ( 6.6 ) 

But we want to vary proportionally to the gradient of the error function that we have 

defined, which has been described four paragraphs above, mse (6.5). 

𝑾(𝒕 + 𝟏) = 𝑾(𝒕)−∝ 𝛁𝑬[𝑾(𝒕)]       ( 6.7 ) 

Let’s leave weights aside for a moment, to remember how we had formulated our 

problem initially. We had one output, which we called from a signal to which a function was 

applied, see simple formulation (6.1). If we simplify this function to the maximum, our 

preprocessed signal (before transfer function) will only be input data by weights. 

𝒂𝒊(𝒕) = 𝒇𝒊(𝒉𝒊(𝒕))     ( 6.8 ) 

𝒉𝒊(𝒕) =  ∑ 𝒘𝒊𝒋𝒙𝒋(𝒕)𝒋      ( 6.9 ) 

By comparing the output we get 𝑌𝑝 with the value target or expected 𝐷𝑝, again using 

the function described above. Where k is the number of neurons in the last layer and M the 

number of neurons of the mentioned layer. 

𝒆𝒑 =  
𝟏

𝟐
∑ (𝒅𝒑𝒌 − 𝒚𝒑𝒌)𝟐𝑴

𝒌=𝟏     ( 6.10 ) 
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So far we have only applied knowledge that we had previously described in detail. Let’s  

move forward a little more, if we extend the previous function we get the total error of the 

network, being p the entered value and P index the total number of values used. 

𝒆 =  
∑ 𝒆𝒑

𝑷
𝒑=𝟏

𝑷
      ( 6.11 ) 

Recovering the function weights change and recalling that we want to be proportional 

to the gradient of the error function, we get that by applying the chain rule it becomes. 

∆𝒘𝒋𝒊 =  −∝
𝝏𝒆𝒑

𝝏𝒘𝒋𝒊
;       

𝝏𝒆𝒑

𝝏𝒘𝒋𝒊
=

𝝏𝒆𝒑

𝝏𝒉𝒋

𝝏𝒉𝒋

𝝏𝒘𝒋𝒊
    ( 6.12 ) 

In the above equation, we have the derivative of the error depending on other two 

derivatives. The first indicates how the ℎ𝑗 result varies when the error varies by changing the 

input neuron j. The other derivative represents how it varies regarding the weight of the neuron 

wj when you change the input value of the neuron j. This second derivative can be expressed 

with the following terms. 

𝝏𝒉𝒋

𝝏𝒘𝒋𝒊
=  

𝝏 ∑ 𝒘𝒋𝒊𝒊 𝒚𝒑𝒊

𝝏𝒘𝒋𝒊
= 𝒚𝒑𝒊     ( 6.13 ) 

Thus, if we simplify the first term with the previous equation, it is. 

𝝏𝒆𝒑

𝝏𝒉𝒋
= −𝜹𝒐𝒋;      

𝝏𝒆𝒑

𝝏𝒘𝒋𝒊
= −𝜹𝒑𝒋𝒚𝒑𝒊    ( 6.14 ) 

Therefore, our equation becomes as. 

∆𝒘𝒋𝒊 = −∝ 𝜹𝒑𝒋𝒚𝒑𝒋     ( 6.15 ) 

If we again apply the chain rule, the equation expands. 

𝜹𝒑𝒋 = −
𝝏𝒆𝒑

𝝏𝒉𝒋
= − (

𝝏𝒆𝒑

𝝏𝒚𝒑𝒋

𝝏𝒚𝒑𝒋

𝝏𝒉𝒋
)       ( 6.16 ) 

And we get thanks to the fourth and fifth expression, the following formulation. 

𝝏𝒚𝒑𝒋

𝝏𝒉𝒋
=

𝝏𝒇𝒋(𝒉𝒋)

𝝏𝒉𝒋
=  𝒇𝒋

′(𝒉𝒋)      ( 6.17 ) 

Here we need to pause and differentiate in two cases, if we are in the output, i.e. j 

neuron layer, it will return an output or if the neuron j is in a hidden layer and their signal will be 

processed later. 

In the first case, 𝑗 = 𝑘 and we can express the function as. 

𝝏𝒆𝒑

𝝏𝒚𝒑𝒋
=

𝝏
𝟏

𝟐
∑ (𝒅𝒑𝒋−𝒚𝒑𝒋

𝑴
𝒋=𝟏 )𝟐

𝝏𝒚𝒑𝒋
=  −(𝒅𝒑𝒋 − 𝒚𝒑𝒋)    ( 6.18 ) 
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Therefore the variation of the weights of a connection that is passed to the outer layer 

of output is calculated by. 

∆𝒘𝒋𝒊 = ∝ (𝒅𝒑𝒋 − 𝒚𝒑𝒋)𝒇𝒋
′(𝒉𝒋)𝒚𝒑𝒊    ( 6.19 ) 

On the other hand, if the neuron j is on a hidden layer, we must apply again the chain 

rule, being k, the index of the next layer of neurons. 

𝝏𝒆𝒑

𝝏𝒚𝒑𝒋
= ∑ (

𝝏𝒆𝒑

𝝏𝒉𝒌

𝝏𝒉𝒌

𝝏𝒚𝒑𝒋
)𝒌         ( 6.20 ) 

This equation can be rewritten as by applying the equation obtained in (6.13) we get. 

𝝏𝒆𝒑

𝝏𝒚𝒑𝒋
= ∑ (

𝝏𝒆𝒑

𝝏𝒉𝒌

𝝏(∑ 𝒘𝒌𝒋𝒚𝒑𝒋𝒋 )

𝝏𝒚𝒑𝒋
)𝒌 = ∑ (𝒌

𝝏𝒆𝒑

𝝏𝒉𝒌
𝒘𝒌𝒋)   ( 6.21 ) 

𝝏𝒆𝒑

𝝏𝒚𝒑𝒋
= ∑ −𝜹𝒑𝒌𝒘𝒌𝒋 = − ∑ 𝜹𝒑𝒋𝒘𝒌𝒋𝒌𝒌       ( 6.22 ) 

Therefore weights variation of connection in a hidden or intermediate layer, will be. 

∆𝒘𝒋𝒊 =∝ ∑ (𝜹𝒑𝒌𝒘𝒌𝒋)𝒇𝒋
′(𝒉𝒋)𝒚𝒑𝒊𝒌       ( 6.23 ) 

If we remember the learning rate, in our example proposed α = 0,1. We can see directly 

into the equation that the greater the value the faster the process will be, with the risk of 

oscillating near a local minimum as we will explain in more detail in the future. To reduce this 

impact, we can use a moment which defines as β, hence and as we can see in the following 

formula, this time determines the effect in step t+1 of the change that we have performed in 

step t. 

∆𝒘𝒋𝒊(𝒕 + 𝟏) =∝ 𝜹𝒑𝒋𝒚𝒑𝒋 +  𝜷∆𝒘𝒋𝒊(𝒕)      ( 6.24 ) 

This addition has more advantages than those mentioned in the preceding paragraph. 

Suppose that the modification of weights in t and t+1 is going in the same direction (i.e. is 

increased or reduced in both cases), thanks to our β, the surface impact in t+1 (imagine it as the 

area where we are looking for the solution as either a local or global minimum) will be higher. 

However, if the direction of the changes is the opposite (in one case the value of the 

weights is increased and in the other is reduced), the change in t+1 is lower. This is the point, 

because this means that we have passed close to that minimum and therefore we want to 

adjust the search even more and progressively reduce our changes, since if we imagine the 

surface of the problem once more, we are approaching the point with maximum gradient, and 

therefore we have to give greater importance to the gradient and try to reduce the search area 

not to jump without letting ourselves fall into the solution. 
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Figure 6.29 - Jacobian Learning with adaptative β 

Let's see briefly what the previous image; the area represented is the area where we are 

looking for the solution, as we can see we have fallen into a local minimum, since it is 

computationally too high if not impossible for the majority of problems to find out the global 

minimum. In the plane x the variation of gradients is represented and dotted is iterations where 

it has "taken measures", as we have explained previously due to β, the more we approach a 

point with maximum gradient the smaller the distance between point and we can therefore find 

that minimum more effectively. (Chien-Cheng, 2002) (J. Leonard, 1990) (Riedmiller, 1994) 

 

6.2.3 Training Algorithms 

 

During the implementation of the backpropagation algorithm, learning occurs through 

the subsequent presentation of a training set. Each full presentation of the training set to the 

multilayer perceptron is called an epoch. Thus, the learning process is repeated epoch after 

epoch until the synaptic weights are stabilized and the performance of the network converges 

to an acceptable value. 

The way in which synaptic weights are updated results in two different training modes, 

each one with its advantages and disadvantages. 

 

6.2.3.1 Incremental Training 

  

In this training mode the weight update is performed after the presentation of each 

example of training, for this it is also known as pattern mode. If a training set has n examples, 

the sequential mode of training has as a result n corrections of synaptic weights for each epoch. 
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6.2.3.2 Batch Training 

 

With this mode of training, weight update is performed only once after the processing 

of all the values in the training subset. On each epoch the mean quadratic error is calculated as 

we have seen above (6.5) in our network. And changes in our weights defined by (6.19) and 

(6.23), which will have a derivative as we have seen in the previous development. 

∆𝒘𝒋𝒊 = −∝
𝝏𝒆

𝝏𝒘𝒋𝒊
= −

𝜶

𝑵
∑ 𝒆𝒋

𝝏𝒆𝒋

𝝏𝒘𝒋𝒊

𝑵
𝒏=𝟏       ( 6.25 ) 

If training sets present themselves to the network randomly, the sequential training 

mode will turn the updating of the weights space in stochastic by nature, and decreases the 

likelihood that the backpropagation algorithm gets trapped in a local minimum. However, the 

stochastic nature of the sequential training mode hinders the establishment of the theoretical 

conditions for the convergence of the algorithm. 

Furthermore, the use of the batch mode training provides an accurate estimate of the 

vector gradient, thereby guaranteeing the convergence towards a local minimum. 

 

6.2.3.3 Functions 

 

It is difficult to anticipate in advance which function will be the one to converge more 

quickly in a given problem. The complexity of the problem, is one of many factors; the number 

of neurons, layers, recurrence or if we are looking to approximate a function (regression – in our 

example) or patterns (discriminant - possible scenarios) next to the desired error will make the 

time spent at this stage vary substantially. 

We will see three examples of functions with better results when it comes to 

approaching functions. We will see that generally speaking Levenberg-Marquardt is usually the 

one that returns the best result. 

Simple function (sin): a network with a hidden layer of five neurons and an output, and 

error measure with mse. As we have argued, we will use tansig transfer function and a basic pre-

processing. We see in the two following graphs how LM is up to four times faster, but this type 

of problems is where LM stands out since it requires a simple approach with a few hundred 

weights. 

We see in the first graph, than the accuracy directly affects the performance of the 

algorithms, comparing the averages of 30 executions, together with the mse and the time 

required. The algorithms in comparison that matters the most to our model are: LM (Levenberg-

Marquardt), SCG (Scaled Conjugate Gradient), OSS (One Step Secant) and GDX (Variable 
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Learning Rate Backpropagation), although in some graphs others are shown, we will in the 

examples that the most useful ones for our purpose will be those previously mentioned. 

In the second graph we see the time that it takes to reach a valid solution or the number 

of maximum epochs versus the mse. LM stands out since it behaves better when the objective 

error is less. 

       

Figure 6.30 - LF comparison #1, convergence vs speed    Figure 6.31 - LF comparison #1, mse evolution 

Real function #1 (nonlinear): in this case, networks are configured with two inputs and 

outputs and 30 neurons in the hidden layer, again the tansig function will be responsible for 

providing values to the output layer and it will process them in turn with a linear function. The 

convergence is obtained when the mse with validation data is less than 0.005. We will again see 

how LM together with SCG outperforms; this is because one of the advantages of LM, not very 

extensive networks, has been reduced by a factor of 10. Let’s see again the results with a more 

complex problem, drawing the same conclusions as in the example above, while the network 

size begins to be important. 

       

Figure 6.32 - LF comparison #2, convergence vs speed        Figure 6.33 - LF comparison #2, mse evolution 

Real function #2 (nonlinear): following the increase of the complexity of the network, 

and therefore its added complexity of network design, we will see how the advantages of the 

use of LM cease to be so remarkable. In this case, we will have 21 entries, with 15 neurons in 
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the hidden layer and 3 outputs, weights and bias started randomly in each of the 20 examples, 

from which the mean is taken and an objective to converge by less than 0,027 mse. 

Following the progression of results from previous examples, LM has reduced its 

performance mainly by increasing the size of the network, 100% with respect to case two (Real 

function #1), and SCG is the best choice since it does not require a geometric increase of the 

calculations regarding the network parameters as is the case with LM. 

        

Figure 6.34 - LF comparison #3, convergence vs speed      Figure 6.35 - LF comparison #3, mse evolution 

As a conclusion, we can say that as shown in example one, with a network containing a 

few hundred weights and bias LM is considerably better as we reduce the level of objective 

error, while memory and processing capacity requirements soar as we increase the complexity 

and size of the network. For its part, Scaled Conjugate Gradient behaves better both in time and 

reducing errors when the size of the network increases. (MathWorks, 2015) 

 

6.2.4 Analyzing and Improving the Network 

 

In this section we will not analyze in depth, nor will we detail important historical 

aspects in uni-layer or linear networks, neither in the known and studied perceptron, decision 

boundary, outliers in multi-layer networks, nor Hopfield NN since they will not be used in our 

model. All these studies and development have been part of the process of the development of 

neural networks and many of its limitations have been greatly reduced with the use of multi-

layer networks, more advanced algorithms and the increase of the computational capacity. 

However, some important factors when it comes to validate the training of our network 

should be mentioned. Remember that even though we have explained in detail a learning 

algorithm many others can be used and some are more efficient than others for the 

management of different types of problems. 

Let’s make a small stop with the overfitting problem, imagine that the neuron ratio is 

high in comparison to the amount of data that you enter, or this data does not contain much 
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information or is not enough to reflect the problem’s complexity. In this case, while training 

takes place, the error will progressively be very small (since it is not a problem for the network 

to assimilate those relations or information) but when we introduce new data, an error will peak 

very far from the errors previously obtained. In other words, the network has learned the 

examples shown but has not learned to generalize the problem for different inputs. 

Graphically, with the passing of each epoch the error with our validation subset 

increases, as shown in the right picture below; in this case if we are limited by the number of 

layers or neurons or is not possible to vary the analysis of input data (expand the amount of 

information that is loaded into the model), then we can stop before our learning is done well 

enough, this is known as early-stopping. 

    

        Figure 6.36 - Overfitting example          Figure 6.37 - Selection of early stopping 

Let keep in mind that when increasing the number of neurons in the hidden layer(s) we 

are giving the model greater flexibility since we have more parameters to learn. 

Although reviews of the style have been done already, is worth to mention in this 

section a few concepts with important consequences if they are not taken into account. The 

point of the space of solutions where the problem converges will vary according to the initial 

values of weights and inputs, as well as how we divide the input data that we have (learning, 

testing and validation). Therefore, it is essential to train our model completely several times to 

stay with the model that best fits our needs. 

Continuing with the concept previously described, we can use all of these trained 

models to, whenever possible, ask each one for values, and then make an average among all of 

them. If we see that as a general rule, we get more appropriate values, this simple 

generalization could increase our accuracy a few tenths or hundredths. 

If once trained we represent our output vs targets values as a regression, we can see 

with a good confidence how the values we get are in accordance with our objective values. If 

the numerical value that we get is far from 1, we will have to perform the above steps or change 

our learning function as we will see in other chapters. It is expected that with sufficient, correct 

and cleverly pre-treated input data and settings that gives enough freedom to model the 

problem, a neural network with good convergence should return values close to one; as long as 
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randomly provided or not correctly loaded factors affect the results in a remarkable way. (Adam 

P. Piotrowski, 2013) (Kakade, 2012) (Prechelt, 1998) 

                 

Figure 6.38 - Output analysis example 

 

6.2.4.1 Performance Function 

 

Another way to adjust our network is regularization, by automatically changing the 

performance function, we can better generalize the limited data that we have. Remember that 

as a general rule, we always talk about the use of mse when calculating the performance during 

the training. 

If we recall when we calculated the value that should be considered when calculating 

the gradient (6.24)  we had been able to give greater importance to the closest t values, in our 

case in an exponential manner. 

Suppose, however, that we want our function to have a more gentle behavior to avoid 

the effect that occurs with the overfitting. This can be done in an efficient manner with a factor 

and or performance ratio, which will be the average sum of weights and bias values to the 

square, leaving our new function as follows. 

    𝒎𝒔𝒆𝒓𝒆𝒈 =  𝜸𝒎𝒔𝒆 + (𝟏 − 𝜸)𝒎𝒔𝒘;        𝒎𝒔𝒘 =  
𝟏

𝒏
∑ 𝒘𝒋

𝟐𝒏
𝒋=𝟏             ( 6.26 ) 

Having lower weights and bias, the network will have a softer behavior in the face of 

input variations and therefore such problems will be reduced in part. This change of course 

brings its contraindications, so we will try that the model itself would look for the most suitable 

values. 
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6.2.4.2 Bayesian Regularization 

 

One of the most extended ways to automatically calculate this factor is the Bayesian 

method. Thus, weights and bias are initiated randomly (as normal) but with some specific 

distributions. Regularization parameters relate to the variance in these distributions. It is 

important to note that this ceases to be a small change and affects the performance of the 

algorithms described in this document; therefore it must be used carefully. 

Following this development, thanks to this system, we can see what weights and bias 

are being used (or being modified), in theory once our network is trained and with a 

convergence that we consider to be acceptable, i.e. without overfitting or high error, we can see 

what parameters are being consulted by the network when calculating the outputs, hence 

reducing our number of parameters. If the network is well trained, as much as we increase this 

number it shouldn’t be affected. This is theoretical, will largely depend on the degree of 

convergence achieved and on the function and our network configurations. Another way of 

seeing that this convergence has been reached is to see that the values the network really uses 

are not being modified. 

 

6.3 Dynamic Neuronal Networks 

6.3.1 Introduction 

 

In such networks, the output does not exclusively depend on the input values, but the 

previous values for both input and output are also considered. 

Within a dynamic neural networks, we have two categories, those that only have 

feedforward connections and those that have feedback or recurrent connections. Let’s see the 

difference with three simple and very representative examples. In the first case we have the 

signal shown in the picture, if we make this signal go through a static network (use the example 

as a reference) with a single neuron, a weight of two and a bias of zero, we get the output signal 

shown in the picture on the right. As we see the treatment of the pulse only lasts while the 

signal is processed. 
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              Figure 6.39 - Input example                        Figure 6.40 - Output example with non-dynamic network 

Let’s now apply the same impulse to a dynamic network but without recurrent 

connection, the values will be [1 -1] for weight, zero for the bias a delay of one, a neuron and a 

single layer. We'll see how the response to our pulse lasted more than the own input signal, 

because as we have shown our network has the ability to remember the values previously 

processed. Therefore the output returned by our network will be conditioned by a number of 

factors. 

 

Figure 6.41 - Output example with dynamic network 

Another conclusion that we can draw from the processing shown in the previous picture 

is that not having recurrent connections, only a finite capacity of data will be taken into account, 

our memory may not be extend. Our delay was one, we see that a unit is as far as a previous 

value affects the value t+1. 

Now, let's build a dynamic recurrent network, e.g. a NARX network with closed loop. In 

this case and following the policy of maximum simplicity our network configuration will be, IW = 

1 (input weights), LW = 0.5 (weights between layers), a delay equal to the unit, a neuron and a 

layer. 
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       Figure 6.42 - Output example with a dynamic and recurrent network 

Let’s focus on how this time the memory effect or previous values that affect our signal 

processing are extended in time, and theoretically never reach zero. It is important to note of 

this, we have been insisting on the importance of the data with which we teach our network, it 

will be what defines its accuracy and efficiency to represent the problem. 

Returning to the block diagrams and formulation we represent the simplest case of a 

recurrent dynamic network as we've seen before with examples of pulses by way of signal 

processing. 

   

Figure 6.43 - Simple dynamic network 

𝒂(𝒕) = 𝑰𝑾𝟏,𝟏𝒑(𝒕) + 𝑳𝑾𝒂(𝒕 − 𝟏)        ( 6.27 ) 

Note that the weights, including the initial parameters, have two effects on output. At 

each stage they affect the resulting value of a(t) but also affects the results of (t-1). Turning 

these last values into a function of the parameter that the neuron previously had, i.e. its weight 

in the previous stage. This second influence has several consequences, the first one is that the 

surface where we search for the minimum is complicated considerably and there are more 

possibilities of being trapped in a local minimum. On the other hand the computational 

requirements also increase and in order to have enough confidence of finding a good result, or a 

reliable network configuration, we have to train our model several times without forgetting to 

change the initial values of the weights and the bias. 
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6.3.2 Time-Delay Structures and Training 

 

Let’s focus on our objective, time series forecasting. It is no longer necessary to justify 

that we begin using dynamic networks (open that will be later closed) with backpropagation to 

calculate the gradients and as we go in depth we can use other systems. It is worth mentioning 

at this point that the most common way to predict more than one value in a time series is to 

load that value back in the model, so be processed thus generating the value of (t+1). 

 

Figure 6.44 - Network with Time-Delay 

The image above is a simple case of a network with time delay, TDL, the network is 

powered by inputs according to the set delay. In the above image we see an example that 

expose what we have previously explained, the output of the first layer serves as feedback for 

that same layer, which gives part of the advantage of recurrent networks. Finally the output is 

used as the value in the first layer and the second, the consequences and values of 𝐿𝑊2,3 will be 

more difficult to understand. 

This time we complicate our previous signal of one byte, once treated, normalized and 

converted in such a way that our model understands it as a sequence of data, we can load it and 

train our model. Let’s configure the maximum delay of our model for better understanding with 

a value of eight, in the first iteration will try to predict the value of the ninth, as the minimum 

value of the delay will be one. 
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Figure 6.45 - Example of a simple Time-Delay Network response and error 

As we can see, the error we get is small, not only that, since there’s no need for a 

dynamic workout to calculate the gradient that changes our weight, training has been 

significantly faster than in the opposite case. This advantage shown here is due to the fact that 

the value calculated for t, is not entered in an intermediate layer and doesn’t change an 

intermediate parameter, so learning would be just like on a simple network.  

 

6.3.3 NARX Time Series 

 

This type of network will be the base that we’ll use for part of our models, so we will 

introduce them with special care, keeping in mind the basic concepts previously exposed. Since 

we know what each one of these concepts involves, we can define a nonlinear autoregressive 

network with exogenous inputs (NARX) as a neuronal dynamics and recurrent network, with 

feedback connections enclosing several layers. See the simplest example and the simplified 

equation that governs it. 
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Figure 6.46 - NARX Network with Time-Delay 

𝒚(𝒕) = 𝒇(𝒚(𝒕 − 𝟏), 𝒚(𝒕 − 𝟐), … . , 𝒚(𝒕 − 𝒏𝒚), 𝒖(𝒕 − 𝟏), 𝒖(𝒕 − 𝟐), … . , 𝒖(𝒕 − 𝒏𝒖))      ( 6.28 ) 

The equation means that the value we get in y(t) depends on the previous values that 

has been returned by the model 𝑦(𝑡 − 𝑛𝑦), as we can see by its feedback branch with TDL and 

the values of our matrix 𝐿𝑊1,3. But also the u(t) values of input that we are loading as 

independent (exogenous) signals. In the example exposed above, a two-layer model with 

feedforward from exit 2 to 1 is shown. 

This type of model has considerable advantages since the value we get depends on 

other values calculated by a non-linear dynamic network which tries to represent the complexity 

of the problem treated. An improvement to this model is the possibility of using the value return 

by the model in t as another exogenous value, in cases where a real value is available; we can 

provide this value directly. This obviously entails a series of advantages, the first and most direct 

is that we are providing real value as input, so that the data with which our network shall be 

adjusted will be more accurate. Another advantage, as we have mentioned with the previous 

model, is that being a network with a feedforward architecture (exactly the same as in the 

example previously presented and therefore with the same consequences) we can use a static 

backpropagation algorithm thus the training is considerably faster, and in some cases very 

accurate. 

As shown in the image above, we got that thanks to the feedback by the branch the 

process becomes static, going from parallel to a series-parallel architecture. In this way we can 

feed this dimension of neurons with values that can go from the initial ones, others with some 

level of processing from any other stage or layer or the expected output from the network. In 

this last way we are forcing the network to analyze once again their results and trying to 

understand the consequences of what will have happened in that environment with this 

previous expected output. In such a way that it is able to learn from their actions and above all 

as they influence their decisions in order to minimize the loss function. Once the network is 

trained, we can close the loop and we can use our new network, with feedback from the 

outputs, to predict one or more values at the time. 
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The logical procedure that we conclude with our development would be to train and 

validate our network with a configuration in open loop, to obtain the benefits of this type of 

network. And then, close and the feed the input back (one of our exogenous values) to be able 

to predict more than one distant value over time. The importance of training, which will be done 

with a series-parallel structure, will be a key factor so that once we close the network with a 

parallel structure the error is less. A common practice already exposed is to train the model 

several time with different weights and initial bias in such a way that the model will find 

different minimums. 

Remember that by introducing a series of values, which do not have to be on the same 

scale, since their meaning can vary widely, the standardization of all of them before using them 

in our network is necessary. As we have explained previously, when calculating the gradient, 

with a typical sigmoid function, we begin to saturate it with values that tend to 104 and 

therefore the information contained in these values not only is being lost; its noise that is 

inserted directly in our network, when changing our weights with values close to their 

maximum. 

It remains to explain how we can learn as we introduce real values, even with our closed 

loop, as we are going to see in the next chapter. (Xiaofeng, 2014) 

   

6.3.4 Multistep Prediction 

 

As we have seen with NARX models in open or closed mode, we are able to make 

predictions that are extended in time because we use as inputs to (t+1) the value calculated in t. 

NARX network configured with the closed loop allows us to, predict d values, and where 

d is the delay that we have set, without having to depend on any previous calculated value. 

This methodology also carries negative consequences, if it is predicting values far away 

in time and our problem is not stable over time, as we go away from the real values, we will be 

progressively  depending more on the no-real values calculated in previous stages, or we will be 

making predictions far in time with values progressively less updated. 

To reduce part of this impact, we can configure the calculation of our mean squared 

error, so that it gives weights or different importance according to the position or value that we 

are dealing with. In our case it would be -large amount of data with no specific problems in its 

collection- convenient to give greater importance to the latest objective values. In this way, the 

error obtained from the latest values of the time series influences more the weights due to that 

the gradient will be multiplied by some factor. If our problem meets these conditions, it is more 

efficient to increase the global mean error to significantly reduce the error in the short term 

past values of the series. For this we can use an exponential function which is also easily 
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derivable, and as we have seen is a very considerable advantage when it comes to consumed 

resources and therefore training time.  

Slightly complicating the architecture, these internal relationship coefficients, either 

pre-defined or dynamic, give us enough freedom if are applied in intermediate layers. Since we 

can limit regions of the network in a premeditated way, getting into deeper networks we can 

force certain groups of multidimensional neuron to focus on generalizing certain patterns of 

scenarios. Thanks to that these sub-networks will be focused in how understating the evolution 

of certain patterns leads to certain scenarios. Therefore we can predict values in a multi-

dimensional way and so minimize the objective function, optimizing the overall process. 

For this we can use an exponential function which is also easily derivable, and as we 

have seen is a very considerable advantage when it comes to consumed resources and therefore 

training time.  

𝑭 = 𝒎𝒔𝒆 =
𝟏

𝑵
∑ 𝒘𝒊

𝒆(𝒆𝒊
𝑵
𝒊=𝟏 )𝟐 =

𝟏

𝑵
∑ 𝒘𝒊

𝒆(𝒕𝒊 − 𝒂𝒊
𝑵
𝒊=𝟏 )𝟐                  ( 6.29 ) 

Let’s recall the previous result of the Figure 6.45, with this single change of value over 

the data closer to t when lim𝑡→𝑛 𝑦(𝑡), being n  the number of input up to t-1 values. Let's see 

the result of applying this exponential to the weight of the errors. 

 

Figure 6.47 - Network response with exponential weight of errors over time 

It stands out that the errors in the last part of the forecast are minor, at the expense of 

increasing them for values closer to t = 0; Note that in Figure 6.45  the values were between (2,-

2) and now the graph shows (75,-75). As expected, this decision has its counterpart; however, in 

the majority of cases for ST predictions with large amount of input data, in the short term, it can 

be very useful when making adjustments for predictions not very far from t.  
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6.3.5 Radial Basis Networks 

 

As we have previously described radial neural networks have certain advantages over 

the traditional models of NN, such as backpropagation or feedforward. They have a greater 

number of neurons, they work best with lots of values (but not good enough with raw huge 

databases) and can be trained in considerably less time. In our typology of radial networks that 

we will always use the radial transfer function in the hidden layer, and as it has already been 

detailed in the section for the description of these models, that the values that are inserted into 

the neuron will be the distance to the "center" multiplied by the bias. 

𝒓𝒂𝒅𝒃𝒂𝒔(𝒏) =  𝒆−𝒏𝟐
           ( 6.30 ) 

Following the representations we see the block diagram of our new network. 

 

Figure 6.48 - Basic Radial Basis Network 

The values that are obtained from subtracting inputs to the center of each neuron will 

be the distance, which after being transformed by the transfer function; if they are similar it will 

have values close to zero and therefore very low importance. More directly, if the value is close 

to the center of that neuron the value received by the layer with linear function will be high, i.e. 

it will be taken more into account and therefore will affect the output value to a greater extent. 

If in our training we want our model to approximate more to the values initially 

provided and therefore generalize for the cases not shown, we can use this approach. Let’s have 

a network with as many radial neurons as input parameters, in such a way that adjusting the 

input with the output values; we have exactly the same values. Only have to define the area (of 

the space formed by the problem’s parameters) that we want to cover with each neuron. This 

area should be large enough so that several neurons are activated when asked by the result in a 

certain point in the space which in turn will give some level of generalization to the problem, but 

allowing differences in the responses. 

This approach creates a problem with n constraints (data pairs) and each radial neuronal 

has n+1 unknowns values (n weights and its bias), which have theoretically infinite solutions. As 

you would expect this methodology is only practical when there are few parameters or more 



 
 

 

 

89 

specifically, when the problem needs to present a lot of data for its representation, actually it is 

not so easy. 

Another even more interesting practice that will be used in the comparison between 

different models will be to iteratively add a radial neuron to the model, until a previously 

defined goal is reached. Similarly to the previous case, the radio or area covering each of the 

neurons must be broad enough to encompass areas of other neurons, giving certain dynamism, 

but not to the point where it might remove value to the characteristics of that region of space. 

In the next two figures we can compare how a different number of centers affect the 

decision bounders. 

 

Figure 6.49 - Graphical representation of RBN centers 

Directly, we understand that to have a good radial model we need a considerably larger 

number of neurons (memory) but given than they are considerably easier to train than 

traditional models using sigmoid function as transfer functions, we will have a significant 

advantage. We must add to this that if we use the methodology explained in the previous 

paragraph, we will have a network with only the number of neurons that are really useful to us, 

given this approach and configured so that in certain cases, we can have models with even less 

neurons than recurring or non-traditional models. (Hutchinson, 1994) 

 

6.4 Improvements 

6.4.1 Computing 

 

It’s worth mentioning that he three milestones in neural networks that have enabled its 

development up to today have been the backpropagation (optimization of the method of 

learning), the increase in computational capacity in recent years and the deep learning that we 

will study later. 
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It is therefore required, to detail some of the most important factors relating to the 

computational ability of these models, since it will not only enable us to understand and reduce 

training time, but also to optimize the models to be launched with higher requirements or add 

more complex architectures or casuistry. 

Due to the objectives of this document, we will not give special consideration to the 

characteristics of the hardware, but we’ll try to develop from basic knowledge to the application 

of the problem we are dealing with. 

Neural networks are a series of algorithms in parallel. We are trying to perform 

thousands of operations at a time to be able to process functions, calculation of gradients, 

operations, update values and the re-feeding in a certain way and following certain steps. 

Everything could be done in parallel. 

Therefore, first we will try to focus on exploiting this feature of this series of algorithms, 

and then we’ll try to find other approaches that allow us to take advantage of the structure and 

static part of an already defined and optimized network. 

 

6.4.1.1 Parallel Computing 

 

The main advantage of a GPU, along with its low cost in relation to its power, its great 

capacity for parallel processing and the advantage of the efficient use of the floating point make 

this architecture designed to carry most of the primitive operations in the most direct way to 

increase processing capacity. Other examples of multi-core or multi-processor combine 

advantages of a single machine with parallel processing, since the current limitation on the 

frequency can partially limit other types of architectures. 

Internally this leads to considerable complications, errors in software such as race 

conditions (the result of the operation depends on the order of execution) or theoretical 

limitations such as Amdahl's law which study part of these problems. 

Within the GPU many instructions were carried out simultaneously, but at the same 

time the tasks, data, instructions or bits can be processed in parallel so small adaptations will 

allow us to make these calculations in a distributed manner. 

 

6.4.1.2 Distributed Computing 

 

Processor needs can be divided between multiple processors or computers, as long as 

they have enough RAM to gain access to the data in an efficient manner. The way of processing 
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would be to split the input values, once the values are calculated; they return to the matrix or 

initial vector and so on. 

If the amount of data to be treated is very high and you can take decisions as the data is 

divided, these sequential partitions allow dealing with more data, for example with equipment 

without enough RAM, or to better spread the work load. Also, if certain specifications for the 

equipment vary the load to each unit, sizes can be also varied so that the loads between units 

are balanced. 

Let's imagine that we have organized a lot of data in a sequential manner, each sub-set 

is treated by different groups, after then its reload. 

Regarding the use of used memory while you run the learning and the gradient is 

calculated limitations may arise, the required size can be reduced n times, if we divide the 

process in n threads with n subsets of data, whenever possible. (Dean, 2012) 

 

6.4.1.3 GPU Computing 

 

Due to the characteristics of the GPU is not recommended to use it with Jacobian, but 

yes, they have proven to be useful with training using gradients. Other considerations when 

using the GPU for processing of neural networks in an efficient way, matrices need to be loaded 

transposed and padded so that the first item of each column is loaded on the first block of 

memory at the time of launch to the GPU, remember that we are optimizing the processing 

cost. 

As well as the inputs, the outputs should be processed. Another highlight is the use of 

exponential functions, since they are not implemented in hardware, software libraries are 

normally used. Because this slows down the process considerably, if using exponential functions 

is required an approximation like Elliot-sigmoid may be used and you will not need to call higher 

order functions. On the contrary, using this function instead of tan-sigmoid (whose use is more 

widespread and continues to have progress) can, theoretically, reduce the speed of training. 

Again, your choice brings with it their pros and cons. In the following graph this function can be 

seen in purple. 
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Figure 6.50 - Alternatives to sigmoid function 

Following the defense of the processing of neural networks in this type of hardware 

architecture, remember that parallelism (any level) occurs between different sub-sets or in our 

case time-series, between different series. However if the network only has inputs delays (not 

layer delays) as in our case, inputs with delay can be pre-calculated so that when calculating 

each stage data can be separated and therefore be processed in parallel. 

Our training, NARX in open loop, NARNET or time delay net are examples of cases where 

applying what we described in the previous paragraph we can use this parallel computing. 

However, if we want to directly train our closed loop NARX network when there are delays 

between layers, this cannot be flattened and therefore processing cannot be performed in 

parallel; on the other hand if our problem consists of multiple data streams, the same can be 

parameterized for parallel processing. 

 

6.4.1.4 Hardware Machine Learning & FPGA vs Cloud computing 

 

Realizing that theses models have reached a point in which is really economically 

feasible to invest there are various industries that are trying to take advantage and push this 

technology forward. 

In this case the main bottleneck that we find is the hardware, there are now dozens of 

companies focused on the development of chips with different types of machine learning, 

although most of them use different neural network to approach according to the purpose of 

their products. 

As we have commented in the paragraphs above, the fact that it is a problem that can 

be performed in parallel and distributed facilitates the evolution of these businesses since in the 

majority of cases, their processors, modules or devices take advantage of these benefits among 

many others. 
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The big difference of these companies lies in the optimization of brute force, while other 

companies are more practical to use large servers and data processing centers, even though in 

some cases they have the same approach to analysis and information processing. 

The future of nanotechnology and its ability to deal with analog data will be the one 

true breakthrough that allows us to really get the dreaded Super Machine Intelligence. In the 

meantime and with the expectations held today in the evolution of systems and algorithms, we 

are at a stage where root limitations are arithmetic but its field for application will grow 

exponentially. 

Is for this reason that the development of this hardware equipment designed and 

oriented for such purposes sooner rather than later will have a direct application and a market 

expansion, either for their more efficient management of energy or for its speed in massive 

databases. Integration with various tools, applications and a growing amount of fields make its 

usage in the medium and long term something certain. In annex one we can view two images 

that summarize part of the above explained in a very graphic way. (Alex Graves, 2014) 

(Narayanan Sundaram, 2010) (Janardan Misraa, 2010) (Markos Papadonikolakis, 2009) (LeCun, 

2007) 

As an example that less than five years in NN tournaments began using GPUs instead of 

CPUs. Today on many occasions already used specific processors for neural networks as cuDNN 

and they are starting to sell more complete equipment focused to these algorithms, like 

Neuronal Processing Units (NPUs) or TrueNorth. All this exploded with the generalization of 

cloud services, but above all with the not distant aspirations of this decade like equipment 

based on memristor, silicon photonics, crossbar switch and even efficient focused quantum 

processors to ML. The optimization of the algorithms to take actual advantage of all these 

improves will open other branches to study. (Anon., 2015) (MIT_Press, 2015) (Intel, 2014) (IBM, 

2014) (HP, 2014) (Qualcomm, 2013) 

 

6.4.2 Bootstrap aggregating 

 

Is a meta-heuristic technique aimed to improve the stability and accuracy of the 

machine learning, it also reduces variance and overfitting. Widely used in regression and 

statistical classification. Not being possible to directly find a global optimum is a practical way to 

improve the overall efficiency of the model using a kind of averaging models. 

Commonly it is also known as bagging; we will explain how the technique works to 

obtain these advantages, due to the needs of our model we will apply in k-nearest neighbors. 

Assume it is true that the risk of k-nearest neighbors is at most twice than the one based on 

Bayes classifier; however we cannot verify that the classification is consistent. 
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Thanks to bagging if we choose 𝑛′ with a large number of elements the classifier will be 

consistent. Although 𝑛′ → ∞ diverges, 𝑛′ 𝑛 = 0⁄  in a set with large number of observations. In 

reality, where the number of elements is finite, when practical application is more similar to k-

nearest neighbors with weights. In this way the risk is defined by the following formula, where 

𝑅𝑅(𝐶𝑛,𝑛′
𝑏𝑛 ) reflects the risk of K-nearest neighbors with bagging and 𝑅𝑅(𝐶𝐵𝑎𝑦𝑒𝑠) the Bayes one, 

𝐵1 and 𝐵2 are constants and seek to choose the size 𝑛′ which balance the two terms of the 

expression. 

𝑅𝑅(𝐶𝑛,𝑛′
𝑏𝑛 ) − 𝑅𝑅(𝐶𝐵𝑎𝑦𝑒𝑠) =  (𝐵1

𝑛′

𝑛
+ 𝐵2

1

(𝑛′)
4

𝑑⁄
) {1 + 𝑜(1)}  ( 6.31 ) 

It is for this reason that it is called packaging, since we are looking for the optimal 

number of elements that when grouped, will reduce the risk of diverging. 

Seeing the results in the following example, we have a number of observations and 

instead of performing a regression for all elements, since as we know in this case it would not 

give good results. What we do is to divide the inputs into smaller packets, but large enough to 

have a distribution and variability similar to the data set. We repeat this process and then 

calculate a simple average of all the models obtained, as we see in the picture we get a result 

with an average much more adapted, stable and considerable less overfit. (Zheng, 2006) (Zhang, 

2002) (Richard Maclin, 1997) 

 

Figure 6.51 - Bootstrap aggregating example 

 

6.4.3 Pruning functions and Evolutionary Algorithms 

 

With this modification in the algorithms we seek to trim the network size in order to 

improve the performance of the network. The way to achieve it is by identifying the nodes that 
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if deleted won’t affect the outcome of the network significantly. There are several ways to make 

this optimization, one of the easiest ways would be to see the value of the weights once the 

network is trained, if the value is very close to zero compared to the rest, we can deduce that it 

hardly brings added value to the network. 

The problem of doing this during training is the risk of over trim, and we are possibly 

changing part of the network architecture. A correct pruning algorithm should approach the 

network to its optimal configuration in a similar manner as a Genetic Algorithm would do it. 

However, this has drawbacks in cases very similar to the ones they are trying to reduce, 

value setting before or after the tuning, complexity of the calculations... which as a rule is often 

not applicable to real problems. A place where an interesting application of the GA in NN has 

been shown is in the initial approximation of weights or helping other more traditional 

algorithms to escape from local minimal.  

There are a number of studies on the uses of GA to optimize neural networks 

abandoning the old use of the technique of pruning mentioned at the beginning of this point, 

training and gradually eliminate. In a simplified way there are two traditional types of pruning 

incremental and selective. In the first case the training begins with a basic configuration and is 

progressively increasing its complexity. 

The picture below comes to reflect the previously mentioned use of "Neuroevolution" 

or GA in NN, although it should be noted first that there is a wide variety of these algorithms 

and secondly, is a field that is still in continuous study and the joint use of traditional Back-

Propagation algorithms with some advantages of the GA can improve both training and general 

model optimization. (Dimitrios Mantzaris, 2011) (Huang, 2005) (Mao K., 2004) 

 

Figure 6.52 - GANN, GA and NN w/ Back-Propagation learning rate 
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7. Comparisons 
 

We begin this chapter by defining the data set with which we’ll work and the numerical 

results we will use for further selection. We’ll apply the selected models to two different load 

curves: last forecast supply in d-1 offered by load curve REE (Spanish TSO) and the actual 

demand. Another load curves with a wide range of customers spanning the three economic 

sectors and finally five groups of different industries: farms, dairy, confectionery, metallurgy, 

workshops, transport and supermarkets have been studied. The results do not differ 

substantially from the actual demand despite having completely different patterns and 

behaviors, so that we can generalize the results of the real demand, having a respectable 

amount of white noise. 

For comparison as we have defined and defended, with different studies referenced 

throughout the document, we will use the MAPE obtained for the load curve that will be used 

for learning and validation data collected from 2009-2011 (the first tranche of relative economic 

recovery) to a total of 609 days, see graphs in Annex 2. And one second MAPE obtained from 

the prediction that our model makes with a month in advance. Although our main goal is to 

predict the load curve for the next 24 hours, we proved how the MAPE varies for different days 

and under different conditions from values very close to one - even lower - to value of seven, 

with means by models between three five as detailed below. It is for this reason it was decided 

to do the average for a month with these models, that not being recurrent, and given all the 

information necessary to not depend on calculated values to predict subsequent iterations, does 

not change the average MAPE that would be obtained in the 24 hour prediction. 

 

7.1 Input selection and preprocessing 

7.1.1 Factors and data selection  

 

Because of the peculiar difficulties of the prediction of load curves more even if we deal 

with a wide range of consumers, from industrial sized to small consumers with different rates, it 

is rather limited the number of factors that we can include. So a key element to our correct 

prediction will be the use of relatively high groups of customers with similar characteristics of 

consumption and cost. 

For the selection of which factors will be included in our models first we have to keep in 

mind how the models and their algorithms work internally, so it isn't the same loading data to a 

neural network that uses NARX or to an ARIMA model. Generally, we try to give information 

that provides the ability to predict values both within the range of scenarios - or values - 

previously analyzed and slightly outside them, see bias-variance tradeoff. 



 
 

 

 

97 

Since we only have the load curve and the daily average temperature. It will not interest 

us to force the model to analyze values carefully from the day before, since dynamically it 

considers them due to being a network trained by total stages. Feeding with so many values 

without actual information which deviates significantly we are losing considerable efficiency in 

the process. 

One of the factors that will be used to decide which factors are valuable to our set will 

be the coefficient of Pearson, without forgetting that, as we have cited previously, correlation 

does not imply causality or normally distributed and uncorrelated does not imply independent. 

This factor calculated according to the following formula measures the force and direction in 

dependence of two variables, i.e. the correlation, in the linear case. 

𝑟𝑥𝑦 =
𝑛 ∑ 𝑥𝑖𝑦𝑖−∑ 𝑥𝑖 ∑ 𝑦𝑖

√𝑛 ∑ 𝑥𝑖
2−(∑ 𝑥𝑖)2√𝑛 ∑ 𝑦𝑖

2−(∑ 𝑦𝑖)2
           ( 7.1 ) 

Note that there may be a wide range of relationships for the same value of Pearson as in 

the following image. 

 

Figure 7.53 - Examples of same correlation coefficient 

The correlation between the load curves and the values that we introduce will therefore 

be important to decide a priori which factors influence, in our case we present data with 

examples for the curve of demand in Spain. 

First, let's look at a few graphs that represent the load curve according to months, days 

and hours. 



 
 

 

 

98 

 

 

 

Figure 7.54 - Load time series divisions 
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Knowing our purpose and seeing the graphs we don’t need greater defense of their 

inclusion as values of the time series. Even though they are progressive values, our algorithm 

should be able to replicate the evolution, i.e. knowing that after summer comes fall that there 

are weekends or that most people doesn't consume a lot at night. More graphs of this type are 

not shown since they have a relative similarity, even with the respective variations daily, weekly 

and monthly to the different areas of business generally. 

On the other hand the holidays are a factor of relevance, in our case, we have used a 

percentage of the population affected and the long weekend effect, but the fact that many 

companies have work calendars slightly different to the officials or peaking when certain 

coincidences of dates are met. In summary, there are many factors that we can include both if 

we're trying to model the behavior of a company or a group of them. We’ll see that these 

factors that are not included affect our results significantly and we’ll see several methodologies 

to analyze the data and errors that we get to be able to better choose the data we load in our 

model. 

Temperature is another known factor that affect consumption, mainly in low-voltage 

customers or companies with a moderate power consumption. In our case the maximum and 

medium daily temperature will be used, since we do not possess hourly, weighted by 

inhabitants of the ten most important cities of Spain. Other factors such as relative humidity, 

solar radiation, time and sunset would add more information to our system, but the conclusions, 

or rather internal algorithms parameters values, won’t change significantly. 

In certain industries or services the price of a commodity on which they depend could 

be added, or factors of evolution of the sector provided by the Government, expectations, or 

even manually adding predictable growth factors or temporary depending on expected 

developments and their impact on power consumption. Seeing some examples, for instance, if 

we are analyzing the curves of hospitals and it is expected that flu season will have its onset and 

peak a week earlier than usual, we can add this information if this factor affects consumption. If 

a new law or direct or indirect tax affects an important aspect of production for better or worse, 

we can include the expected change, whether progressive or not, on our load values. If we know 

events with a measurable impact on demand that are not public holidays and for example occur 

every few years, sometimes on different dates we can get conclusions of their relative impact in 

previous circumstances and apply them to our forecasts... 

Therefore the only thing that we have is the historic load curve, which we try to find 

factors that provide more information without looking only at its correlation. It seems logical to 

include consumption at the same time in the previous day and the average of the previous day. 

To continue providing information after several tests it was decided to also make the average of 

the last four hours of the previous day. In the latter case we could choose to contribute more 

hours individually, however to simplify calculations and because the results in our tests do not 

vary significantly, the decision above was chosen. 
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As mentioned, values that are more significant a priori, along with the time and month, 

are loaded at the same time the previous day and the same hour a week earlier, but the final 

choice of variables has been chosen in such a way to provide information without being 

"unnecessary" data. Finally, we have performed multiple tests to check whether certain values 

are getting better results without excessively increasing the processing time. Two decisions 

resulting from these studies have been to include the average of the previous three days and 

the average of eight hours earlier in the d day, factors that initially we would think would not 

improve the results. See a table with the MAPEs initially obtained, we see how the neural 

networks stand out since is able to store more information. 

 

Table 1 - MAPEs comparison between different inputs 

The variables that after several trials and errors have been selected to be used, on 

occasion depending on the model and its Pearson correlation factor and variance,  are shown to 

be the best idea of the relationship between the variable described and load in hour h. This 

table does not include other variables that are loaded, but are more specific, such as type of 

behavior of the day, level difference with preceding and following days, etc. Variables such as 

the day have been eliminated as they don’t provide information to the model, but others as the 

year even though it has a very small correlation, if it influences our model then will be 

considered. 

 

Table 2 - Pearson correlation and variance for inputs 
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The main problem we have here is the redundancy,  since many of these values have a 

very high correlation and as we shall see in the next section the dimension of the loaded matrix 

can be easily reduced as to reduce this dimensionality. So after checking its benevolence for 

each model, principal component analysis will be used regardless to reduce the dimensionality 

of the data set if considered appropriate. 

 

7.1.2 Initial preprocessing 

 

As we have argued throughout the document, a key part in obtaining good results, 

regardless of the model that we use, is the data we load and how we load it. In our case and for 

reasons of length and time we will not extend in advanced techniques, we’ll consider 

unsupervised learning oriented to this aspect, but we will use the most basic and necessary 

techniques with the ones we will obtain the presented results. 

Most of the data has been obtained through searches in databases. The first step is to 

make sure that the dates for which values are obtained exactly match all data we load. In our 

case we have had to deal with the 23 and 25 hour days. Another important point is to analyze at 

a glance that the results have coherence, for reasons such as simple errors in the readings or 

measures, we have had to clean some curves since we obtained unreal values or behaviors. 

Once we have properly sorted the data, we have calculated the values we want to add 

as information, mean of the previous day, the value of the same time in the week before... And 

subsequently they have been normalized to values between 0 and 1 according to the following 

formula. 

𝑥′ =
𝑥−𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛 (𝑥)
     ( 7.2 ) 

Regarding the dependence between years, even though the ΔGDP is a decent indicator 

in the case of this example, in practice, we will take out the trend of our objective values. We do 

this with the fast Fourier transform, obtaining a mean value equal to zero. In addition, we will 

make sure our vectors have a standard deviation equal to the unit. 
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Figure 7.55 - Load with simple pre-processing 

As an addition, and because during the first 168 + 1, seven days in advance to get the 

time on the day d-7 h and one by the delay that we initially chose. It is convenient to use two 

columns in such a way that if the algorithm is not capable of handling "empty values" or Not a 

Number, it knows how to behave in such a situation. For this, it is common to replace values 

unknown by the average value of the vector and add another column with 1 where the value is 

correct and 0 where the value should not be taken into account, i.e., where value were not 

available. 

In our case, the last step before we load data to the models will be a principal 

component analysis or PCA, whose main characteristic components as detailed in the last 

paragraph of the previous point is to reduce the dimensionality. It also allows us to find the 

pattern of that variability in the data set and sort them by importance. This representation of 

the data set, considering square minimum will be used one time to obtain data and as an 

attempt to improve, since there are several methods according to the correlations, covariance 

and limitations that forces us to divide the set of data that we previously analyzed. For example, 

it is assumed that all data are linear combination to a unknown reference and if we use the 

covariance method means that the data follow a Gaussian distribution and only focuses on the 

sense of the space generated by the set of data, which in our case is not met. 

The three main effects of this technique appreciably affect to the data set, since they 

orthogonalize the vectors so they are uncorrelated between them. Subsequently ordered the 

main component of these in such a way that those who have a greater variation reach first the 

loaded model and finally removes values that provide less variation in the set of data. It is 

important to mention that this technique can be useful for some algorithms, but sometimes 

counterproductive for others. 

Another methodology that has been tested is Partial Least Squares regressions (PLS) 

which are based on projecting the predictors and objective values in a plane then get a linear 
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regression. In this way the relationship between two vectors or matrices are reflected. If we 

extend this methodology we can find in a space of multi-dimensional predictors the direction of 

maximum variance in the multidimensional space of objective values. However the results have 

not risen to the level of those shown. 

Continuing with PCA and keeping in mind the table of correlations when applying this 

technique the size of our matrix is has been reduced from fifteen to eight, in particular and as 

you might expect, the vectors that were trying to provide more information on the evolution 

and behavior of the load have been reduced from ten to three. 

In the table below we have the MAPEs calculated with PCA and the best values obtained 

previously without Cap. In neural networks, mainly since the number of neurons and settings 

has sufficient capacity to collect and decide on the correlations between variables it is not 

affected significantly. In simple regression, coefficients are worsened drastically, not having so 

many dimensions it is given less parameters to configure and thus loses flexibility. However, it is 

striking the drastic improvement in Bagged Decision Trees, reducing the dimensionality 47% has 

improved the result by 15%, in reduced values is an enhancement that we appreciate. It's 

understandable, again, is by the way of working on algorithm, even if we do not limit the nodes 

or branches while less "noise" or rather in this case, information not optimal, we load our 

model, the better able it will be to divide the roads that will end up deciding the predictions. 

 

Table 3 - MAPE values with and without PCA 

 

7.1.3 Clustering and dataset division 

 

At this stage we must first decide how are we going to divide our initial data set. 

Generally, we need three data sets, even though on some models with two will be enough since 

they are not dynamic processes. The first subgroup will be the learning one, with which our 

algorithms will conclude information in case of unsupervised learning, or the data that it will 

need to learn to conclude the objectives in the case of supervised learning. 

The other two groups will be the validation and testing ones. The first is used during the 

learning process as one of the methods to terminate the learning, when we reach some level of 

performance or success, the learning finishes. Is then when we enter the testing set with which 

our model tries to actually predict and check the outcome. 

Given the importance in the choice of data, and with the aim of not tweaking the 

results, it has been decided to split data randomly whenever the learning algorithm is launched. 
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Similarly, all the curves for all models work with the same data, being the group of testing the 

same month in all of them. 

Regarding the month election, we have chosen June as it contains a bit of a varied 

complication, there are holidays, we begin to notice the summer holidays, the temperature 

increase, and different patterns in different businesses... We've found than typically the month 

of February, March, April, May, September, October and November as a rule have achieved 

better results because the values on which the load curve depends are greater. June, along with 

December are the months when our models, as a rule, perform slightly worse. 

This directly leads us to try to improve where the model performs worse. Something 

that is totally understandable and can give us lots of ideas on how to improve it. In this section 

we will focus on the data that we can improve to that end. As we see in the picture below, 

where we have the error obtained -in this example on a neuronal network model l- in respect to 

time, we try to focus on why the greatest amount of error is seen in the various periods. 

 

Figure 7.56 - Example of fit error 

We can see that in E1 considerable errors is obtained along almost three weeks, but 

overall we see what information can be given to the model to learn that the values are not the 

ones that the example data is expected for that period. Similarly, in E2 where the error number 

is concentrated only in a week, maybe we can improve our values of holidays in that period, 

without forgetting that if we load information for that period, we must do so for the rest of the 

time series and check that the results don’t get noise. 

Instead L1 possibly from an error in inserting data to an unpredictable factor with which 

we have to bear. If we focus on where we see a high L2 errors for just over a month, especially 

for two weeks. We see how the normal pattern of the week changes considerably and although 

the model, probably due to the holidays, is able to predict with relative accuracy it stops being 

so efficient. In this case as in that of L1 is more difficult to reduce because either we manually 

change these events and we have to load larger data sets with tighter values and a variety of 

them to reduce the error in this type of circumstances. In other words, we have to increase the 

ability to predict outside the typical behavior, which returns us to the bias-variance tradeoff. 
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Figure 7.57 - Zoom in L2 error 

On the other hand, if zoom even more on the errors, see picture below, we can see 

directly as it obtains very good results on the slopes and hours valleys, but fails right at the most 

important time, at peak times, where all services are more expensive or higher paid. In the 

example, sought with intention, we see very clearly a Monday that the model was not able to 

proceed correctly, is perhaps a long weekend, or in the case of being a festive can raise the 

factor that we have considered and in this way, try to force that under those conditions, the 

model should give greater importance to certain factors. 

In keeping with what matters to us, the cost, we will have to find ways to improve the 

prediction at peak times even at the cost of reducing it in the high slopes or base hours. One of 

the ways has been mentioned previously and is as simple as applying algorithms of 

preprocessing more drastically. Others will be seen when we go into greater depth in 

customized neural networks, where you can specify in considerable detail how our network 

should behave or more applied to the case, which importance to give to which factors, for 

example, giving greater weight to the last values of the time series, being closer to the horizon 

that interests us to predict, or values that exceed a certain threshold, because they have more 

value for us. 
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Figure 7.58 - Example of error due to long weekend 

A third form, with considerable amount of benefits in the case being possible to   

implement is the one we’ll name clustering. As we have seen even though our model behaves 

normally with a reduced MAPE, we can separate the holidays - including bridges - weekend, 

even if provide enough valley and peak hours information, in certain circumstances it could even 

be interesting to split the sets into summer and winter. This entails the complication of having 

to train several models and better adapt the input values according to the requirements as 

appropriate for each one of them. 

But at the time of its development, it is not so difficult, without leaving aside other 

methods that we have seen and we will see for the classification, for simple tasks we could use 

an easy decision tree so depending on the date or hours, it will calculate a set of data and run a 

certain model. An approach having nothing to do with calculating various models and find the 

average value of their predictions. 

The results we get in this case, will be, as far as possible due to the limitation in our 

input data, good enough to develop them. A model specializing in holidays, will predict much 

better than one focused on general regression. We are giving the model a capacity of 

classification which it does not possess by itself and that in these cases, where possible, is a 

substantial improvement, but we will have to use various models, both classification and 

regression, to significantly improve our results. 

What has been exposed previously is one of the many reasons why in machine learning, 

even in aspects mainly focused on forecasting, we can see algorithms initially thought for 

classification and decision support. It is therefore necessary to understand the operation, 
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advantages and disadvantages of the models that nowadays are getting state-of-art results and 

the need to describe it at least superficially in this document is defended. 

 

7.1.4 Feeding the data and deeper inputs analysis focus in NN 

  

Once we have chosen and pre-treated the data we needed to load it into our models. As 

discussed briefly, we’ll divide the data set into three subdivisions, depending on the models. In 

our case we use 80-85% for training, 10-20% for validation during the learning process -if 

necessary- and 5-0% for testing. These divisions even if randomly, as in our case, create 

significant variations in the results so it is important to do multiple trials to find a relatively 

optimal balance point. Similarly, being random subdivisions and initializing the weights and bias 

in the case of NN randomly each time we teach our network will get us significantly different 

results. 

Unfortunately, all our results tend to confirm that if they're much more value available 

in the time series our results would improve. Since this is not possible, we will considerably 

force the percentage of data to devote to each end, trying to mitigate it with a larger number of 

trials as explained below. 

We’ll add that the validation set is used to measure the generalization that holds a 

particular state in the training so that learning stops if you think you can generalize well enough. 

Another part is to define what is considered good enough. In our case, we will repeat multiple 

times as we go optimizing the results and we are not interested in the mean values of the 

configuration MAPEs but in the configuration that gets best results. We will directly find these 

configurations, even if they are not the best; in certain situation they have been able to 

internalize the problem better. In practice, we’ll stay with the excellent model, even if we only 

have one, and not with others who are very good on average. 

While our requirements to stop learning will be that the learning is reducing 

continuously towards success of the results, we will keep the parameters that have achieved the 

best result, or considerable requirements in which the increment made on the parameters will 

produce inappreciable changes on the outputs. Given that our goal is to have models that either 

do not re-learn in a systematic fashion, or they are simply updated, it doesn’t matter to us if the 

first learning time is high. 

In the case of the subset of validation, it must be accompanied by requirements under 

which the algorithm stops updating its parameters. It is important to recall again that our aim is 

to predict with lower percentage of error when its knowledge brings greater economic value. 

Therefore, we should use all the data that we can. 
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Our models are provided as part of the pre-processing of several special vectors to 

indicate this type of days, in such a way that if the behavior of a workday - supposedly - distorts 

the behavior of the time series too much, we add a value of difference as a flag to try to provide 

more information for the algorithms.  

With this marker and because of that we accept a reduced level of error we are 

deceiving the network. Thanks to this, we reduce the noise and pollution on our results. Let us 

remember that our data are far from being perfect and are our biggest constraint. Very briefly, 

in the case of electricity demand, there are hundreds of factors that we do not include; in the 

example of power reserves there is an important human factor that we don’t provide any 

information about. Ask for our simple model try to internalize these scenarios without more 

information only worsened our media results. 

Given that this analysis should be able to generalize identically for all the data set, once 

we have the results we should look for the reason of why these behaviors occurred. In our case, 

and with the purpose of providing two examples, we will measure the difference between the 

peak and the valley from the average value of the day to define the type of day pattern on one 

side and the average value of the day on the other. We will compare these values with those 

expected depending on the type of day and date of the year obtaining a value that will identify 

uncommon days. In this way we will have two extra identifiers, which we will use in the cases 

that we consider to be necessary, or rather, in cases where the input improves the results. 

 

Figure 7.59 - Example of time series used to get expected errors 

With this example, without any other additional pre-processing for highlighting the 

improvements,  we have done a sampling of 20 executions with the identical NARX neural 

network configuration and we have improved the results 3.6%, passing a best result of 2.11 to 

2.03 and an average of 2.28 to 2.25 being these the values of the obtained MAPEs. In our case, 

we will make dozens of small improvements gradually while we will make various optimizations 

of our configuration, in such a way that the actual percentage of improvement that each 

approach adds will be considerably more reduced, but we’ll try to add them and achieve better 

results. 
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On the other hand, but without abandoning the analysis of input data and 

preprocessing, we’ll see other techniques that improve both the speed of learning and the 

precision of the output data. Given that initially we won't use many ratings or labels, it will be 

enough to indicate the values in the corresponding vector. However, in the case of different 

problems, for instance decision support; we can load the information with the method known as 

thermometer coding where the definition of the tag is described in binary manner. Label one 

could be 0 0 0 0, label two would be 0 0 0 1, the third 0 0 1 0 and so on. 

According to our own experience in hundreds of tests with different models and 

multiple configurations of optimization algorithms or the improvements discussed in point 8.1, 

we get to significantly reduce the MAPE between one and three points, compared to a gross 

insertion of a lot of raw data and no other process than the normalization. 

 Before proceeding with the comparisons, remember that in the case of predictors the 

same processing done to the target values, has to be done to the outputs of any model. 

For clustering with several models according to their classification, we can automate the 

division and subsequent union in a trivial manner. As a general rule our models will be better 

interpolating than extrapolating (bias-variance trade off) so it will be interesting to get a target 

with a range of probability or even better a confidence interval. 

In addition to the normalization and scaling, we can transform our vector in the dataset 

in such a way that they have a normal distribution. The trends also has been processed and 

eliminated in part, but if we want to analyze the relative volatility - not in the example in which 

we focus - we can limit this part of the preprocessing for results with different meanings 

according to the purpose of our problem. 

Another point to consider is the seasonality, in our case 24 hours, 7 days and seasons. In 

none of the studies that have been read about the development of this document have they 

achieved better results with delays of 24 hours. In our attempts, besides seeing the RAM 

requirements increasing considerably - expected - the processing time and the results do not 

provide good expectations, MAPEs over 10. So this factor, although it is important,  we 

understand that the models we use –focusing on all configurations of NN- are able to internally 

understand this seasonality without affecting the results. It also shows that it is important to 

know the state at earlier stages, even if they won’t be compared (same time or same day or 

month) as well as in the case of hours and days, from previous stages. 

The needs to introduce dates will create a circular discontinuity problem in our network, 

since we pass from December 31 to January 1. Because of our approach we cannot load it as a 

simple temporary series since it does have those repetitive decisive factors. To better 

understand how a neural network thinks, in the time step 365 a series of neurons activate but in 

365 + 1 another quite different set of neurons is activated. However the difference is only a time 

step, i.e., we are saying to our network that the 365 value differs substantially from the value at  

365 + 1, concerning time step, but we know that it is not so. If we see it with the PCA applied 
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example, where we have seven vectors and four of them are indicative of dates, we will have 

that more than half of the information that we provide is not giving information to the model in 

the simplest way possible. Again, we're saying that circumstances in t + 1 has nothing to do, 4/7 

in our example, with respect to the events in t, although we know only one hour passed. 

The best and most efficient way to deal with this problem, is devoting two neurons only 

to date. These two neurons in the input layer will change very slightly as the time series 

develops. An example, which we will test, will be encoding the date 0-365, and divide this vector 

into two vectors, for example: sin(t) and cos(t). 

 

7.2 Results  

7.2.1 ARIMA 

 

In this section only the final values of MAPE should be considered. The accomplished 

process, adjustment of parameters and final results with the exception of the MAPE should not 

be taken as a reference or comparison. This chapter has the sole and exclusive purpose of 

showing which results can occur in the form of MAPE with traditional methods and not to be 

understood as part of the study, learning or development accomplished. 

ARIMA methodology already has been explained very briefly in Chapter 5.6 Multiple 

Linear Regression; at this point we will take into practice the theory previously exposed. We 

have a stationary model, i.e. without trend, a linear trend model and a model with seasonality. 

Understanding that this approach to the problem of the time series is that there is a systematic 

behavior and the value obtained in t, depends on the systematic behavior and a random 

disturbance. Other methods such as ARIMAX give more parameters and adaptability to provide 

more external variables to return the objective result. However, these parameters are outside 

our comparative to take as a reference. 

The ARIMA model is affected by the volatility of the time series, however, for "type" 

periods is hopefully a good behavior. In our example to predict demand, we see that we have a 

high frequency, different seasonality, media and non-constant variance, high volatility, influence 

of other factors such as weekends and public holidays and a considerable amount of atypical 

consumption, especially during periods of high demand. The procedure we will follow is 

presenting the series with constant mean and variance. In the case of the mean we use 

differentiators and logarithms to stabilize the variance. We’ll make use of the autocorrelation 

and partial autocorrelation functions to identify initially, which model best fits our time series; 

also it will help us to identify seasonal behaviors. 
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Following the Box-Jenkins methodology, we will first remove the seasonality of the 

series. In this first graph we see the function of autocorrelation linearly decaying by what we can 

conclude that our function is not stationary and we must derive it. (Pankratz, 1983) 

 

 Figure 7.60 - Initial and first derivative autocorrelation and partial autocorrelation 

The next step of this methodology is to estimate the parameters of the model, in our 

case the one with the best results is with ARIMA (3,1,5) and higher values, we can say that 

according to (Galván, 2011) an ARIMA (1,0,1) model should get significantly similar values. In the 

next image we see the residual of the resulting model; we will take the opportunity to ensure 

that they follow a normal distribution and are uncorrelated. 

 

Figure 7.61 - Errors and correlations after ARIMA 
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The residuals are reasonably normal distribution and are uncorrelated. Despite this, the 

results obtained with (3,1,5) differ significantly from being  acceptable outside a horizon more 

than eight hours. So any discussion in the configuration should be heard, since with Monte Carlo 

simulations the obtained MAPEs are superior to 12, with values of p, d, q close to what one 

would expect. 

 

Table 4 - Coefficients and significant values of ARIMA(3,1,5) 

On the other hand, if we calculate the similarity of the estimated with the objective 

value, we obtain much better MAPEs, primarily with AR (n, n), but to get to the MAPEs 

estimated with one or two orders of polynomials in our case we need to multiply these values 

up to 10. With even higher orders we have reached a MAPE for the time series of 2.77 in total, 

however the fact that it is necessary to increase considerably the orders of polynomials does 

indicate that it is not done correctly. Using ARMAX hasn’t achieved best values of MAPE neither, 

nor even close to expectations which again indicates an error in the definition of its parameters. 

In short, the best MAPE results that have been obtained by this method, for the global 

data set called Fitting, and for the next month of the time series and Forecasting, are shown in 

the following table. 

 

 

7.2.2 Multiple linear regression 

 

With this model, we estimate the general trends of the time series, however it can’t  

predict nonlinearities. Basically, it generates a vector with coefficients that as they multiply 

different values of the input vectors they try reduce the difference with the expected targets. 

The lower MAPE achieved was 13.71, as for the time series as well as for the month we 

used to measure the ability of prediction. If we go more into detail, we can see the values and 

their meaning. 

The estimate column refers to the approximate value, is the standard error of 

coefficients calculated. And pValue comes from t statistics under the assumption of normal 

MAPE Fitting Forecasting

ARIMA 2.77 2.93
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errors, we can see as there are values very close to 0, these will be the values that interest us 

the most, since they will be with those who can better predict the behavior of the time series. 

The MAPE only increases to 14.16, 7% and have reduced the amount of data in more than 30%. 

This analysis is useful for models that are based on this optimization, similar to the pre-

processing techniques oriented to neural networks, which reduce the results obtained with this 

type of models. 

 

 

Table 5 - Statistical coefficients for inputs 

To identify the outliers we will select in the high-leverage points, those that have 

greater Cook's distance. This measure serves to estimate how it influences each point when a 

square regression analysis, as in our case is, done. Thus we can select two periods where values 

are  "more in consideration" than others, so you should make sure to minimize the error and if 

possible provide better or more information. 

 

Figure 7.62 - Cook’s distance 
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In the histogram of residuals, we see that they follow a normal distribution with zero 

mean by which the model has been adjusted well to the entered values. However, we see in the 

following graph that there is a correlation between the residuals, which shows us another field 

of improvement. We can also identify a cluster that should be analyzed to find out the reason 

for its existence and treat it if possible.  

 

 Figure 7.63 - Histogram and plot vs lagged residuals 

Following the analysis of results, we can see how the final value influences the 

variations of each variable. We can understand the values, x1 refers to the hours of the day, and 

generally consumed more when these values are higher. A similar thing happens with x2 that 

reflects the type of day, however, in the graphic in question when calculating the average it is 

not appreciated significantly since 7 is Saturday and 1 refers to Sunday. We can also conclude, 

according to the graph the x4 maximum temperature affects more than the minimum x3, and 

without abandoning these parameters than the range in which the effect of low temperatures is 

less than the higher, so on days where this factor is relevant, we can expect one range less than 

the expected values. The chart continues with parameters such as load from yesterday and last 

week, daily and by groups of hours, mean values as well as pending. 

 

    Figure 7.64 - Effect of each variable on the outcome 
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Other methodologies to fit the curve have achieved close, but worse results, highlighting 

Fourier eight parameters achieves a MAPE of 16.23, Gaussian with eight parameters a MAPE of 

16.25 and a ninth grade polynomial function 16.26. Due to the high number of inputs, R2 values 

obtained by different interpolation methods are very close to one, but when calculating the 

MAPE does not prove to be as good. In the picture an example of an interpolation between the 

load nearest neighbor in hour h of day d-1, d-7 and the target value, the load on h. 

 

Figure 7.65 - Load in t vs t-24 vs t-7·24 and fit 

The best results obtained by this method have obtained MAPEs as shown in the 

following table. 

 

 

7.2.3 Bagged Decision Trees 

  

With this methodology, in our case focused on fitting and forecasting, which is explained 

in the section 5.5 Bagged Trees, the best result obtained is a MAPE of 3.3 for the complete data 

set and 2.34 for the month forecasted. Below is a picture of a very small part of the decision tree 

created. 

MAPE Fitting Forecasting

MLR 13.71 13.86
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               Figure 7.66 - Small section of the Bagged Tree 

It has been decided not to reduce the number of nodes or branches, or increase the 

number of possibilities or ways since the memory requirements are not high and although 

slightly if affects the retrieved MAPE. 

 

 

7.2.4 Neuronal Networks 

7.2.4.1 Introduction 

 

We will discuss some of the results that we have obtained in this section of the neuronal 

network. Firstly the results shown will be made with Levenberg-Marquardt backpropagation 

training algorithm; however, we will analyze other algorithms and Bayesian regulation 

backpropagation is used since normally it returns better results despite its longer calculation 

time as it will be discussed later. These other algorithms with Bayesian regularization will be 

analyzed in the final stages because of the good results they have in learning or better said in 

the case of Bayes, the cumulative update Bayesian probability that an event occurs according to 

the historic of events that have been empirically until such time. 

To obtain reliable results in each configuration we’ll take ten samples, five in the case of 

algorithms not LM. We will get on the one hand the mean value and the minimum value for 

each model, generally we’ll keep the configuration that gets the lowest MAPE for the time 

series.  

However, due to the difficult decision of some parameters in certain occasions, we will 

chose points or settings that even though they are close to the local minimum, our expertise 

makes us believe that according to the theory they should behave better in general. In the final 

stage of selection we’ll add another indicator of performance being the average of the best 

model among the MAPE obtained for the entire time series and obtained as a pure predictor. 

MAPE Fitting Forecasting

BD-Tree 3.30 2.34
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Another point to consider is the aggregation of different models are trained networks 

and getting its average, in this aspect we will use this idea to try to find a more optimal bias-

variance's point as we will see in the tables. As already explained there is a considerable 

difference between the results for the different configurations, the standard deviation of the 

results sometimes is substantial, so in addition to our intuition we will use the results to raise 

questions and corroborate the theory previously studied. Again, we are still limited largely by 

data, the time, the computational power and memory for the learning phase. 

On the other hand, we will understand if one improvement has been chosen, unless our 

knowledge tells us otherwise, it means that it is a good choice, and remains as the right path to 

follow while various improvements are accumulated. Yet different checks will be made during 

the process to make sure the selected configurations do not go against decisions previously 

taken. In this way we can choose the relationship between bias-variance that best meets our 

needs. 

 

Figure 7.67 - Actual bias-variance dilemma 

In the following example as well as in subsequent ones, until is mentioned otherwise,  

the basic configuration will be a NARX neural network, with two layers, 170 neurons in the 

hidden layer, without recurrence (like in open loop), sigmoid function in the hidden layer and 

linear in the exit. In this way, even though we know that it is different from the final result, we 

can compare the performance of different changes in a more precise manner. We start with a 

NARX model  because we have the possibility of bringing more information than only the 

temporal series and in certain circumstances, holidays, temperature and events add more 

information that otherwise could be considered noise or random component depending on the 

features. Finally, remember once more the bias-variance trade off, that accompanies us 

throughout the process and will be our decision according to the demands of the objective 
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relationship, for our part we will try to achieve the lowest value in both within our current 

limitations. The actual third grade polynomial regressions of the values obtained are shown in 

the next graph to show the behavior of the model vs the number of epochs. 

 

7.2.4.2 Number of neurons 

 

We will begin with the initial optimal number of neurons in order to store and 

understand the problem to represent. As we shall see in the following graph, as we expand the 

number of neurons, our bias is increased, but the ability to predict outside the set decreases 

rapidly. On the other hand, the results of the average value of the total MAPE, indicates that we 

are approaching an asymptote with the configuration where it corresponds to the factor of 

neurons. So the values that have been analyzed to a greater extent [160 and 180] have 

increased to 20 the number of repetitions. The results have not been expected, but tend to 

reflect the ones retrieved previously, although it would be ideal to repeat this process with a 

greater number of iterations once the structure of the network, it is well defined. 

If we see how the improvements in other aspects evolve, we can conclude that the 

point of intersection between the curves have sacrificed it in exchange for getting a slight 

increase of the bias. The number of neurons where the reduction of the total MAPE is negligible 

and the MAPE of the set of testing does not skyrocket is (170-180), for our future cases, we will 

use the reference of 170 as the number of neurons, since we don't want to move unnecessarily 

from the previously mentioned intersection point. Although values around 50 or less showed 

better performance in addition to significantly reducing the time required as we will see later, at 

the moment the choice of 170 gives us more flexibility in testing without seeing us limited by 

this factor. The great variation in the monthly values is due in part to the configuration of the 

network, in our case, the amount of data is not very far from the optimal but it is not reduced. 

So during this stage 15% of all data have been used for terminating the network training. This is 

reflected in major changes since a small percentage of the value of the time series is used for 

stopping the learning, so we'll have iterations where the level of learning change significantly. 

This aspect and its consequences will be treated in greater detail later. Increasing the number of 

repetitions has failed to draw a more linear graph, but if it gives us an idea of its behavior. (Eric 

B. Baum, 1989) 

Finally, we should highlight the reduced MAPE obtained with values around 50, which 

also significantly reduces the training time. Let us remember that we cannot abandon the value 

obtained in the testing month, since the economic results in a relatively high point of interval 

confidence given by the model could well be these values. So, subsequent analysis will return to 

these numbers. 
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 Figure 7.68 - Comparison under different number of neurons 

 

7.2.4.3 Delays and feedbacks 

 

Secondly, we will make a comparison between the input delays, which we will call id, 

and the feedback delays which we call fd, in the majority of the papers read a better result is 

obtained with the use of one delay, but this is affected by how the data is loaded, and this is not 

usually detailed with sufficient depth. For this reason we will do our study of our data and how 

we load them. 

In the first test set we analyze how it changes the MAPE only varying the delay on 

inputs, with fd=1. As we can see in the following table, with id zero we obtain better values than 

with one, this is because in the input values, the descriptive time series is paired with objective 

values without gaps. So to describe the hour h, we must consider exogenous h parameters, 

since the values of h-1 (which explains the result in h-1) provide less information, and they are 

the ones we use in the case of id equal to the unit. 

This is because of the data and how we are loading the data in each stage, according to 

our variables the model in each iteration has the necessary information on h-24, so if you need 

that information to carry out the forecast they are directly available. Similarly, the other 

variables that we are giving are not displaced in time, so to predict the value t, we are giving the 

values t Otherwise, we are teaching our network to predict the value t with values of t(id), when 

the last values it has received and adjusted their weights are the t-1. 
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On the other hand, we already are in the first stage of the configuration with the third 

boundary that will prevent us to achieve results worthy of this methodology. Adding time and 

input data, we need to add capacity calculation and memory for that state. In all cases, these 

three factors can be reduced substantially in simple ways as explained throughout the 

document, but in our case we cannot extend our limits in a practical way. 

Observe as our MAPE is less if we use all day as added information values, this requires 

a nearly exponential increase of memory and thus in our case it can’t be realized in hundreds of 

trials as it is our aim. Other values have been considered, for example, if we include the h value 

and the previous value in the same stage of calculation of gradients to change weights and bias, 

we obtain an improvement in the variance, which as we have explained, has an economic 

impact. The following table shows the values have them as reference later for a fd = 1. 

  Average MAPE Minimum MAPE 

InputsDelays Total Test Total Test 

0 1.98 3.57 1.71 2.78 

1 2.32 2.52 2.16 2.23 

24 2.49 4.23 2.19 3.55 

0:1 2.00 2.49 1.69 2.21 

0:6 1.83 1.95 2.55 2.52 

0:24 <1.74 <1.84 <1.68 <1.66 

Table 6 - Several inputs delays with feedback delay equal to one 

This parameter will be linked, especially in the case of a NARX simple network, with the 

feedback delay, even more so when we close the network, the value of the feedback delay will 

be decisive when it comes to predicting values without more information than continuing with 

the time series. Unfortunately, we are very limited and we cannot configure the network in a 

manner radically aimed at the lower values of MAPE. However, we have obtained good values 

with id = 0 and fd = 1:24, being reasonable learning time. The following table shows the values 

obtained with fd = 1:24. 

  Average MAPE Minimum MAPE 

FeedbackDelays Total Test Total Test 

0 1.60 1.99 1.43 1.86 

1 1.62 1.92 1.55 1.73 

1:6 1.82 2.18 1.69 1.97 

0:1 1.71 1.76 1.65 1.61 

0:3 1.74 1.70 1.67 1.67 

0:6 1.77  2.19  1.71 2.02 
 

Table 7 - Several inputs delays with feedback delay from one to twenty four 
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7.2.4.4 Preprocessing, variables and simple divisions 

 

The number of explanatory variables directly affects the considered optimal number of 

neurons. If we only have two explanatory variables the number of neurons that we need will be 

considerably less than 50 or 170. After considerable testing, we have concluded that best results 

are obtained with our current model and the previously selected and parameters and variables, 

the more information we provide the better results we’ll obtain. This is one of the capabilities of 

this plasticity of the neural networks; it knows how to differentiate what information is 

important, when and under what conditions apply to it. Below is a small table, the relationship 

of variables has been obtained following the values of the p-value table. As we can see between 

the SubSet #4 and all the DataSet we have the point of intersection between bias and variance, 

so the last data that we are loading is too focused on understanding the data set and not the 

generic behavior of the load curve. The subsets are composed by: 

 SubSet #1 = prevDayLoad 

 SubSet #2 = SubSet1 & averL4PrevHours & averL8PrevHours 

 SubSet #3 = SubSet2 & weekDay & holidays & slope4PrevHoursPrevDay & 

slope6PrevHoursPrevDay 

 SubSet #4 = SubSet3 & hours (the NN knows the 24/7 time-series pattern 

anyway) & lPrevWeek & averLPrevD & averLPrevDtoDminus3 & SpecFlag 

 

  Average MAPE Minimum MAPE 

SubSet # Total Test Total Test 

1 9.08 7.10 9.02 7.04 

2 3.95 3.47 3.83 3.34 

3 2.62 2.40 2.59 2.33 

4 2.22 2.04 2.14 1.95 

DataSet 2.10 2.28 1.94 2.11 
 

Table 8 - Comparison between inputs subdivisions  

While the Bayesian regulation algorithm does not need validation set, due to the 

considerable increase in time required for training, we’ll see how the division of data affects the 

results. In this case, we’ll use 20 samplings due to the small variation expected to be found. 

Because, as the factor of "only" providing a year and a half of data and not excessive 

explanatory values, it is, has been, and will be the main limiting factor of our results. We will 

aggressively try to devote the largest amount of data to learning and as a method to reduce the 

consequences a greater number of repetitions will be performed. In the case of using the 

Bayesian approach we will reduce the set of testing since we checked separately, this way we 

can dedicate all data, except those used to check the forecast, for learning skills. 
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  Average MAPE Minimum MAPE 

Division Total Test Total Test 

70/15/15 2.17 2.30 2.08 2.21 

80/15/5 2.23 2.27 1.93 2.11 

88/10/2 1.95 2.08 1.89 1.87 
 

           Table 9 - Comparison between divisions for learning, testing and validation 

With the following comparison, we seek the optimum point of pre-processing. While we 

talked extensively about this aspect, the following table only shows the results that have 

contributed something to the final model. In the majority of cases the results have not improved 

or have been ambiguous, although as a general rule the training time was reduced; in some 

cases information was lost. 

Returning to the table, as we can see we don't have decisive results. And although 

sometimes PCA seems to get good results, we remember that we considerably simplify the 

information we deliver to the model. This goes against the peculiarities of neuronal networks, 

such as memory, dynamism etc. as we expand the number of neurons and layers we will be 

granting greater freedom to conform to the dataset. For example, if we are providing a massive 

amount of data and have a limited RAM and time, a strong pre-processing would be advisable, it 

won’t be necessary initially using PCA or other regressive methods of variable 'simplification' or 

variable's relationship. Otherwise, we can try to give freedom to the model to fit itself using 

simple and plain pre-processing methods, as it will be our case, normalization, cleaning of data 

that do not provide information, zero mean and deviation standard equal to the unit and fixing 

the unknown values. 

  Average MAPE Minimum MAPE 

Preprocessing Total Test Total Test 

Reference 2.17 2.30 2.08 2.21 

MapStd + MapMinMax 1.99 3.24 1.91 2.94 

MapStd + FixUnknown  2.08 2.67 1.96 2.51 

MapStd + MapMinMax + PCA 1.97 2.71 1.89 2.44 

MapStd + FixUnknown + PCA 1.97 3.01 1.80 2.34 

MapStd + FixUnknown + MapMinMax 2.24 3.19 1.98 2.80 

MapStd + FixUnknown + RemoveCst + PCA  2.14 2.95 2.00 2.59 

MapStd + FixUnknown + MapMinMax + PCA 2.09 2.47 1.95 2.21 

MapStd + FixUnknown + MapMinMax + RemoveCst 2.11 2.98 1.81 2.67 

MapStd + FixUnknown + MapMinMax + PCA + RemoveCst 2.07 2.68 2.00 2.39 
 

  Table 10 - Comparison between preprocessing 
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7.2.4.5 Common Learning algorithms  

 

We come to the most interesting part where we see how the learning algorithm affects, 

due to the increase in time and the need for at least 10 iterations in order to have reference 

values we only compare the algorithm used so far Levenberg-Marquardt with Bayesian 

regulation, which does not require validation set. 

Again, we come to the point of intersection of bias variance, as in all the previous 

examples, the chosen point is slightly displaced towards better value of the total test for the 

main reason of being a global data set considerably larger than the test and therefore we can 

deduce with greater certainty that they will have a greater economic impact. Most likely, we can 

define our results, i.e. the uncertainty range. 

First, let us remember that we use the Levenberg-Marquardt algorithm for solving 

nonlinear least-squares. We'll complete the training once the number of iterations is reached; 

we remember that an iteration may take from seconds to days, depending on the data that has 

to be considered in each iteration to adjust the values of the weights. Also, we will stop once the 

goal is reached, or the gradient to update the values are very small. Modifying these 

parameters, along with others such as relationship of memory, processing, use of GPU, 

parallelism and states in memory retrieval... We get a clear improvement in the results as 

expected, although the significant increase in training time causes that it is not practical for 

cases in which a full re-training is required. 

  

Average MAPE Minimum MAPE 

 

Settings Total Test Total Test 

Levenberg-
Marquardt 

Common 2.17 2.30 2.08 2.21 

Advance 1.93 2.11 1.89 1.87 

Advance+ 1.85 2.00 1.78 1.92 

Bayesian 
regulation 

Common 1.69 2.37 1.65 2.15 

Advance 1.56 2.80 1.46 2.34 
 

   Table 11 - Comparison between learning requirements 

These results are significantly limited by the training time we deem practical, the 

relationship between memory and processing capacity has been chosen in the limit of the 

technical characteristics of the equipment used, both on CPU, GPU, RAM and virtual memory. 

Numerous examples indicate that greatly increasing processing time only achieved a decimals 

improvement in the outcomes, for example, if we get a MAPE of 2 with a time of 5 minute 

training and just 1 GB of memory RAM requirements. Increasing the time to four hours and the 

memory to almost 40GB we can obtain values close to 1.5 MAPE. While these differences will be 

smaller as we go optimizing the model. This has its positive side since in theory, we only train 

the network only once and thereafter we can simply update the values as new data are 

obtained, however, since generally speaking, it is necessary to perform several iterations to 
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obtain a good model with the chosen settings, it can take several days only to train a model in 

which small changes lead to changes in outcomes. As we have seen this limitation can be 

reduced considerably if there are multiple computers, renting power and memory online or by 

dividing the problem, due to its capacity of parallelism. 

 

7.2.4.6 Simple supervised clustering 

 

Let’s see how results are affected by an approach that first,  via unsupervised learning, 

decides the type of day - not necessarily exclusively to the number of days - and then applies a 

model to predict with greater certainty every day type, based on the cumulative behavior of a 

set of days as if they were clusters of behavior. The following table shows a simplified way, what 

we can expect from this pre-treatment, we must add, to significantly reduce the amount of 

data, we can extend the requirements to terminate the training or the number of feedback, thus 

if the results follow the theoretical behavior it should reduce the minimum MAPE at least a 

couple of tenths. 

Another important factor is the case where the network learns the dataset, but does not 

understand it, which will obtain some very low, even close to 0, MAPEs however, it won’t know 

how to predict outside the field of behavior or circumstances that it has learned. For this reason 

we always add a column with the MAPE of the testing month. In the table below, we see how in 

the case of holidays - been reduced in comparison with the capacity of our network and 

algorithms - surely has happened. Then we will see a better example of this possibility, but it will 

also help us to see how it affects in different circumstances the use of other algorithms. 

  Average MAPE Minimum MAPE 

Division Total Test Total Test 

Workweek  1.47 3.58 1.33 2.56 

Weekend 2.38 7.90 2.15 5.91 

Holidays 3.09 40.88 2.23 18.50 

Monday 1.92 11.27 1.52 9.16 

Tuesday 1.19 10.13 0.95 6.87 

Wednesday 1.03 8.31 0.88 5.55 

Thursday 1.08 8.19 0.92 5.54 

Friday 0.94 5.00 0.81 2.37 

Saturday 1.29 10.57 1.11 7.76 

Sunday 2.27 13.65 1.89 7.65 

19:24 Hours 2.24 10.57 1.50 6.37 

1:18 Hours 1.81 9.50 1.39 7.09 
 

Table 12 - Comparison between scenarios 
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7.2.4.7 Unsupervised clustering and SOM  

 

The first defense that will be made is the use of post-preprocessed of data with an 

unsupervised clustering, to subsequently make the prediction with a supervised learning. 

This approach could be seen as a network of considerable size, taught by a competitive 

methodology where a not-small number of neurons are modified each time that a neuron of the 

subgroup is the one that best defines a particular pattern or scenario as a dynamic series of 

memories; however, there is a big difference in the interconnections with neurons outside the 

specialized subgroup. The idea is to make the mapping of networks in an unsupervised way 

(force and relations between neurons) while the calculation of weights is done in an independent 

quasi supervised way. So we get a network with many non-totally independent small networks 

which, in turn, have several centroids, which, along with their brothers (strongly related neurons 

within their own group), redirected to children (linked neurons with their parents, or top layer) of 

the previous sub integrated network. Annex 5 - Hybrid model concept proposal 

In this way multiple benefits are achieved, without a priori higher contraindication as 

long as the quantity and quality of data is enough: 

1. Significantly improves the forecast for the scenarios previously presented as 

well as its generalization capability. 

2. Considerably reduces the time of training and adaptation of weights 

according to the availability of new observations. 

3. Lets you enhance and analyze separately behaviors at a glance which are 

unappreciable. 

4. Facilitates decision support oriented processing to generate ranges of 

probabilities for their results. (According to the number of times that a 

subgroup has been activated) 

5. Simplify part of the optimization process. To be able to identify clearly 

dimensional groups of neurons that do not add value to the model, you can 

identify the patterns of memories that can be improved or eliminated, 

similar to the process of optimization in a microprocessor. 

To demonstrate, a clustering of the data set used in the project and an analysis of the 

weights is shown, although there’s still a broad field of study and analysis in both respects. Take 

note that to achieve an efficient understanding between unsupervised analyzer section 

(Brendan van Rooyen, 2015), dynamic memory, and the decision-maker guided by supervised 

learning. The network generated by a modified version of the radial basis network should be 

easily understandable and changeable by the modified deep competitive learning network. 

In the first picture you can see how the machine splits the data according to its 

proximity by means of the modified algorithm for k-means explained in the chapter on Data 
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mining. We can then automatically apply a simple decision model as seen in the following point, 

to try to separate the stages or patterns of behavior according to our limitations. 

If we separate the twenty patterns data set, we have sufficient capacity to differentiate 

each behavior, while not increasing the size of the model in excess. In our case the cluster has 

been performed in a crude way, but a pre-processing more oriented to this analysis will improve 

the results without a doubt. Due to the significant differences between each training on the 

same network, the scarce field of improvement due to the exposed limitations makes it 

unnecessary to separate such pre-processing. Therefore, we will use a basic preprocessing for 

unsupervised learning and we’ll add to another more differentiated once the supervised 

learning is performed.  

 

          Figure 7.69 - Number of times each pattern is activated in a 400 division 

Following the approach of the document, in order to optimize the configuration of all 

aspects that come into play in our model we must analyze how each parameter affects it and 

what importance it has. 

As expected and because of its purpose, the parameter called SpecialFlag adds 

additional value in certain cases in a similar way that it happens with festive days. With 

maxTemp and minTemp we can see that it is a range of values that really affect the scenarios, it 

is conceivable that while we are in mean values of temperature, this factor does not affect the 

stage, but as we get closer to extreme it gains greater importance. Unfortunately, our values are 

average daily temperature values, but are littering our model partly because hourly values 

would be the minimum desirable or weighted average historical consumption would also be 

desirable. 
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Different conclusions can be obtained in a similar manner from the importance of the 

rest of the weights in the face of improving both the network and the data set provided. 

Progressive weights and values of the interconnections to the hours, weekends and weekday 

that link to the load of the previous day or the previous week, months (seasons). In the 

examples of this point there has been a 20 by 20 matrices, but higher or lower divisions may 

facilitate understanding of data and reduce the size of the full model. 

 

Figure 7.70 - Neuron’s weights for each variable 

In the image below you can see our first set of explanatory data represented with a 

topographic hexagon where the red lines represent the connections between neurons and the 

color of each side refers to the distances between them, being higher in the darkest areas. In 

the example shown, it is difficult to find relations, and if it should be separated more it would 

get very similar to those of the previous image. Dark areas are very loose links so we would use 

them to differentiate between behavior patterns; however, there is no doubt that a dynamic 

process with their respective algorithm is required. In the picture on the right, we have the same 

case, but only for vector objective in order to perform reverse engineering in certain cases. Due 

to the extension of the document we won’t enter into a deep analysis of the results of this 

example, but we can in the second case where on top there is a zone of significant or total 

division, this analyzed in more detail could provide us with some degree of certainty the 

possibility of separating these scenarios, not depending on the explanatory values but rather on 

the values that we hope to find, giving us a certain range of probability for a given scenario. 
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Figure 7.71 - Distance and relationship between neighbors 

 

7.2.4.8 Radial Basis and k-means Classification 

 

Separately or after our unsupervised clustering, we must make the decision of how to 

split the dataset to be able to later analyze it in a better way. 

The operation and significance of this type of network, mainly its transformation 

function has been previously explained. Now let’s see their performance as well as some 

examples of the results that should be obtained. First, the hypothetical centers are determined, 

and then the beta ratio is calculated, which is the radius of space covered by each radio network 

neuron. These, together with the weights are re-calculated on each iteration after presenting 

the entire data set with the gradient descent algorithm also explained previously. 

The following image shows the centers and the spaces they cover; our initial approach 

would be to conduct a supervised learning training with a modified algorithm an optimized 

configuration of a neural network for each behavior or scenario. Looking at it another way, for 

each site that covers enough information. 

 

Figure 7.72 - Example of decision boundary 
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Under certain limitations, it is not practical to have multiple modifications of a general 

model. Therefore, we can apply decision boundary to help us, according to our requirements; to 

reduce the number of models that once trained will only have to be updated. In the next picture 

we have the described example applied to the above scenario, dividing all the subspaces of 

behavior in two patterns. 

Finally, we mention the main difference when applying RBF and KNN. In the first case 

we have multiple areas of space where neurons have a considerable weight though with k-

means we will have a well-defined space with a single category assigned by a point. 

               

Figure 7.73 - Important difference between RBNN and k-mean NN 

 

7.2.4.9 Shallow vs Deep Architecture and customized connections 

 

Due to the limitations previously exposed we won’t study other types of networks or 

search its optimal configuration in depth. However to defend the use of the chosen network, 

we’ll show a few examples where while there is no significant difference it can be concluded 

that at least the referenced NARX network does not behave worse than other types. 

In the table we have the used NARX network as reference as well as its performance, 

which reflects the minimum mse - mean square error - retrieved. In both cases the smaller the 

number the better our model will be, more specifically more accurately will have. The data that 

are loaded to the three networks has been pre-processed, since in the third case they are 

loaded directly in intermediate layers and a gross load will possibly erase any virtue in our 

network. 

The second exposed network is a neural network with more than one hidden layer, it 

should be understood that this is the future on the part of the artificial intelligence, mostly if we 
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focus on deep learning, or reaching machine super intelligence. The advantages and 

disadvantages of using networks with more than one hidden layer do not enter within the 

extension of this document. Very briefly, we got a considerable increase in the capacity of 

understanding the problem even though the training time increases considerably when raising 

the number of interconnections between the neurons that the model has. Thus, in our case, 

would reduce the cost variance at the expense of increasing the bias; in our case we are looking 

for a point where both are as small as possible. In our case the time factor and other constraints 

prevent us from deeply analyzing this type of network, although an advanced setting would 

ensure better results. 

There is considerable documentation on Shallow vs Deep Architecture (Depth-Breadth 

Tradeoff) which analyzes the consequences of the complexity of the circuit which forms the 

network, considerably increased in the case of convolutional layers (Anon., 2015). In the case of 

a deep architecture, we are giving ways of nonlinear modules, all those composed of trainable 

parameters. In this way we can make compact models since we are changing depth for breadth. 

A good summary of some complications associated with having multiple convolutions layers and 

a summary of as GEMM and Basic Linear Algebra Subprograms is based on what can be found in 

the following reference. (Warden, 2015) 

Following this reasoning, an important factor is to decide the size of the hidden layers, 

many studies have been performed (Anon., 2014) although none has come to get any concrete 

value. In our case it has been decided based on the advice of the paper studied using 50 and 20, 

to see how it affects the result in the provision of the same number of neurons. With the same 

reasoning, the loaded parameters and functions have been chosen so that they are as similar as 

possible. 

The algorithm between layers is another decisive factor, sometimes it is recommended 

to use a hidden layer with a particular function because the values in this layer have a 

mathematical meaning or can be analyzed separately. 

In terms of outcome, as we reflected, theoretically the same results can be achieved 

either with a single or a finite number of them. Standard general regression with non-elevated 

complexity problems is not recommended, is not necessary,  to increase the number of layers 

due to the increase in complexity of the model and the small increase in the results when losing 

bias. 

In recent years, the efficiency in training networks has been improved with more than 

one couple of hidden layers. However, most of the studies have shown empirically that although 

they can represent complex problems, they don’t get significantly better results than a model 

with one or two layers with the sufficient number of neurons to represent the problem. This is 

consistent with the fact that most efficient training algorithms in most of the studies are used to 

determine the number of layers, the number of neurons in each of them as well as the 
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interconnections between them and how they affect different functions in each layer. (Yann 

LeCun, 2015) (David Eigen, 2013) (Yoshua Bengio, 2007) 

The third example is a network with two hidden layers where NARX network’s input 

values are used as parameters to update the values of the other layers. It is a simple example for 

our purpose, to demonstrate the almost total freedom that we have to configure our neural 

network according to the requirements of our problem. 

Ideally, we could have a NARX entry in the first layer, and later various configurations 

and feedback to finally close network, linking the output with any layer in such a way that we 

can considerably improve the behavior of the network. Both, in bias and variance, since, 

although we trained in open mode, without that last commented recurrence due to the increase 

in the required time, achieving that the weights fit according to the results obtained, reducing 

the bias-variance. Our results indicate that we can obtain MAPEs below the unit for the training 

set and very close to one for relatively seen scenarios, i.e. with a reasoned understanding, the 

problem can be predicted. (Graves, 2012) 

 

Table 13 – Comparison between architectures 

 

7.2.4.10 More configured learning algorithms 

 

Due to the large number of algorithms that exist in training, the modifications that each 

can have and its main scope of use, at this point we will only will represent the algorithm that 

has been finally chosen for the training: Bayesian regularization backpropagation. The following 

table is attached in order to compare the results with some of the other most used algorithms 

today.  

Network MAPE Performance

Common 2.23 1.1882e-04

Common 2.29    1.2153e-04

Common 2.27 1.3095e-04
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The operation method of our algorithm will be to minimize the linear combination of 

error and weights, in our case, and for the reasons stated previously, we will use mean square 

error in measuring the error, although after that we use mean average percentage error to 

check their goodness. (Sohl-Dickstein, 2014) 

In order not to lose generalization ability,  as it goes understanding the model in each 

iteration the linear combination will be  modified so that it does not increase in a high way. If 

you want to understand in greater depth the functioning of the algorithm you can read about 

the Bayesian interpretation of regularization for kernel methods.  Whether the target value is a 

scalar or several of them, as well as the perspective of the regularization and Bayesian 

perspective of the process significantly exceeds the level of this document. 

 

Table 14 - Comparison between learning algorithms 

aquí poner LM

Total 1.50 Test 1.37 Total 1.65 Test 2.83 Total 1.71 Test 1.74

Total 1.81 Test 1.77 Total 2.19 Test 1.79 Total 2.43 Test 2.36

       MAPE Total 6.40 Test 6.86 Total 6.81 Test 8.41 Total 6.94 Test 7.09
      * The algorithm doesn't need validation set, however is incorporated to facilitate comparison.
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With the bases previously exposed Levenberg-Marquardt algorithm is used (Anon., 

2015), then the Jacobian of the objective function is calculated with respect to the weights and 

bias 𝑗𝑋 and the parameters are updated by backpropagation. Where E is the matrix of the 

errors, I is the matrix that identifies the values to update, 𝑚𝑢 is a value that fits in each iteration 

as the improvement or worsening of the objective function at each stage and 𝑑𝑋 is the increase 

made in the parameters. “Automatically chooses the weighting ratio that multiplies the sum of 

squared weights that is added to the sum of squared errors to form the objective function. The 

choice depends on the effective number of weights” (Hagan, 1997) 

𝑗𝑗 = 𝑗𝑋 ∙ 𝑗𝑋     ( 7.3 ) 

𝑗𝑒 = 𝑗𝑋 ∙ 𝐸     ( 7.4 ) 

𝑑𝑋 =  −( 𝑗𝑗 + 𝐼 ∙ 𝑚𝑢 ) \ 𝑗𝑒    ( 7.5 ) 

 

7.2.4.11 Integration in decision support 

 

The following example shows the application of the same model in predicting the needs 

of auxiliary services by the transport net operator. In order to vindicate the benefits of the 

models based on this methodology no change will be made within the previously load oriented 

forecasting model. However and because the problem goes from being continuous in time and 

value to being quasi discrete in both respects, a direct and simple postprocessing of the values 

returned will be required. If this model is integrated into this post-processing is not required as 

it will define the range of confidence with which to predict certain value and therefore the 

decision whether in the short or medium term will have some reference. 

There are a lot of different algorithms and programs focused on such problems, 

however, with this example we demonstrate the virtues of our approach. While the fitting 

problem is easily overcome by increasing the number of weights and increasing the time, the 

important point is to optimize the capacity of forecasting. As we will see in the results, we again 

have the dilemma of bias variance tradeoff. 

Regarding the data loaded, Annex 3, has been for the requirements of the problem, 

values obtained at least two hours in advance. The major issue in this case would be the 

consideration or not of the latest technological mix with available programs or simply base it on 

aspects that can be previewed with this or other models, understanding load forecasting, 

pricing, renewable supplies... A change in this decision would predict the needs of the system 

operator with more than 24 hours horizon and as we will see, it doesn’t significantly affect the 

results, so it will be the approach with the greatest benefit for forecasting. 

In order to see how it affects the inclusion of this important element, a comparison will 

be made, using as a reference a value we’ll name MAP2, calculated with the same formula that 
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the ASM/10. The name change will be so as not to cause confusion, since the results cannot be 

compared to the rest of the document are considered to understand the level reach by the 

results. These values are only useful for comparisons between themselves. The following results, 

they make sense and are in line with expectations. The third column indicates the percentage of 

hours, which returns with a certain probability of having or not a reservation and is not the right 

thing in the use of prediction. You should bear in mind that this value includes many hours that 

with a greater postprocessing would be cleaned, the reason why the values or error expected 

are around 5%. 

 

Finally, before moving on to the results, it should be noted that in this example, seeing 

the results obtained in 7.2.4.6 and the proposals made in 7.2.4.7 and 7.2.4.8 you'd expect 

significantly better results, like by adjusting the number of neurons, parameters, network 

architecture and optimization of the global model. In the first picture the prediction vs the real 

needs in the first tier forecasted are shown. For its part on the volume of requirements, the 

average negative error is considerably higher than the positive, varying substantially between 

months, so there is room for improvement. By the hour, the average error except in H18 is less 

than 500MW so is good enough to be able to take decisions with considerable certainty. If we 

believe that when the requirements are for groups of hours, the average error of [H18,H20:H23] 

is lower than this reference value. Therefore our decisions are going to be in the vast majority of 

the hypothesis (a minimum of three sessions in the case of being required) within a range of 

confidence lower to 100MW of error, represented in the graph under the title of hypothesis. 

 

Figure 7.74 - Ancillary services requirements forecast 

 

MAP2 Fitting Forecasting Periods

<2 hours 3.14 3.66 8.1%

>24 hours 2.51 4.76 10.2%
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   Figure 7.75 - Ancillary services requirements average error 

 

7.2.4.12 Results 

 

Before understanding the results we have to take into account the dilemma between 

adjusting the time series and forecasting capacity. Similarly, it has been mentioned previously, 

some techniques that improve the short-term forecast, for example, giving more values to the 

changes made to the weights for the latest observations. In our case, the extent of the 

adjustment has been made over a period of nearly two years and the prediction period refers to 

an entire month, so the 30th of the month the ability of prediction is considerably worse than in 

the first days outside of the time series provided. This factor significantly affects the results, but 

in exchange we get a more realistic average value to the actual capacity of the model, both in 

prediction in the case of load curves as in the case of ancillary services. 

The limitations as will be further discussed in the next chapter, significantly affect the 

outcome and process. The noise obtained can be understood as white noise, but arguably could 

be reduced if we improve the capabilities of the model along with the input data. 

There are other features of the learning process of the evolution of the parameters in 

the algorithm that help indicate the state and aspirations that can be expected in the process. 

The evolution of these values has been taken into account both in the case of early stopping as 

to consider the learning as finished, see the summary in annex 4. 

In certain cases, where the behavior is significantly different, and every time we have 

enough observations, it has been proved that specialize networks or groups of neurons for 

different scenarios can significantly reduce the error. However, high errors in the prediction 

aspect are obtained with much greater ease. As an example of a Saturday, we may have a MAPE 

of average prediction of 1.11 while for the Sunday we get values close or even greater than 5. 
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The values shown below are as we reflect on our methodology the ones that obtain the 

lowest average values between the adjustment and forecasting. If we focus on each feature 

separately, we can easily reduce the value of adjustments with values lower than the unit, 

reaching 0.39 without it being our main objective, but in terms of the average prediction it has 

not been reduced below a MAPE of 1.0687. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MAPE Fitting Forecasting

TSO day ahead forecast 0.892 1.145

Weekdays model average 1.060 0.890

Actual demand 2.990 2.864
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8. Conclusions 

8.1 Achievements and limitations 

 

In a brief way, we have been able to achieve in a manner superior to the requirements 

the objectives initially raised. In addition, we have proposed and demonstrated variations that 

allows the model to grow and develop in various problems and applications. All cases exposed in 

the document have been substantially limited by some factors that are discussed below. 

1. Time. The time to be able to study and apply other algorithms and approaches, in 

order to configure and optimize the network model chosen in greater detail, in 

order to be able to devote more time to process and better refine the weights of the 

network and be able to optimize the input data. 

2. Input data. Information to predict with, both in quality and in quantity. This has 

arguably been the most important factor constraining the respective results. In our 

case, we have the hourly value of demand and only a weighted value of the 

maximum and minimum temperature in Spain in the day. In addition, using 

observations from two years ago, quite limited to the time of specialize groups of 

neurons in different scenarios, and making the capacity of prediction more difficult 

because in the greater number of occasions we are predicting outside of history. 

3. Processing capacity and memory. In certain algorithms this factor not only increases 

inefficiently the time required, but it also restricts the use of algorithms and 

architectures desired. We don’t get the same values in each iteration if we only take 

into account the values for that hour, that if in each iteration we use the set of 

values for the entire day; we are increasing the efficiency of the algorithm at each 

stage. 

Focusing on the achievements, we consider the initial objectives reached by far. On the 

one hand, we have learned that this field of science has spent years growing, and today it seems 

very difficult to know all aspects that affect even a single approach. We have studied more than 

a dozen algorithms and tried to use methodologies with relative ease of implementation and 

great results, serving for a first layer on machine learning and data analysis. 

Focusing on the results obtained, we have achieved amazing results even with reduced 

learning time. We have managed to adjust time series close to the 20,000 elements with hardly 

a dozen neurons with a MAPE around the unit. However, the greatest achievement has been to 

optimize the model to face the prediction of different problems. In the case of the load curve 

published by REE on the previous day, we have obtained a MAPE slightly higher than the unit, 

under very significant limitations. On the other hand, we have been able to reduce this value in 

five of the seven days of the week, and everything points out that with greater amount of data it 

could be possible to reduce the error at specific periods in a manner that is appreciable. 
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With regard to the anticipation of the actual demand, it is necessary to include other 

factors that cannot be predicted statistically today. If we understand a MAPE less than 2.3 as a 

result with an exceptional amount of time, data, models and professional equipment. We have 

gotten closer in a  great way with an insignificant investment in all aspects. 

The conclusions obtains continue in the following two points, especially in matters 

relating to machine learning in point 8.2.3 Business Intelligence and Learning Intelligent 

Optimization (LION). 

 

8.2 Further developments and research 

8.2.1 Energy Industry Applications 
 

Possibly the most interesting aspect of these models in the short term is the wide range 

where they can be applied: forecasting, market analysis, trading, decision support, risk 

management and scenarios, some optimization problems, competence behaviors, supervision 

and regulation are some of the aspects where you have data and a supervised or unsupervised 

analysis can help us to understand the underlying problem and make better decisions. 

Specialized machines can follow self-learning, behaving by their own account and enriched by 

their or our decision-making for later use in our strategies. 

In our case, we have demonstrated that these methodologies have a good behavior in 

predicting, but its main use today is in the classification. For this reason, in certain circumstances 

where the problem and objectives can be particularly complicated, we can base on the mixed 

model submitted to help us both in analysis and decision-making. However, to put into practice 

a model with these features it generally requires a large amount of time, which moves at a 

faster rate than the results once certain values are obtained. 

The mixed use of algorithms, with modifications and approaches in some of its features 

gives an immeasurable number of different models that can be studied and also designed for 

certain problems. Here lies part of its progress, the improvement of models directed to certain 

requirements and with their respective limitations and tradeoffs.  

 

8.2.2 Business Intelligence and Learning Intelligent Optimization (LION & RSO) 

 

As it has been mentioned in the previous point, there is a large amount of learning-

oriented algorithms. On the other hand, there are many methodologies of optimization, as a 

general rule, it tends to minimize some objective function. The problem in the application to 

various real-life problems lay in the objective function and its complexity for internalizing 

behaviors or real situations. If we gather the whole experience in optimization, more specifically 
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Reactivate Search Optimization (RSO), with machine learning, we can focus on problems 

considerably more complex in a more practical and automatic manner. 

As illustrated in (Roberto Battiti, 2014): “Reactive Search Optimization (RSO) advocates 

the integration of sub-symbolic machine learning techniques into search heuristics for solving 

complex optimization problems” and “Intelligent optimization, a superset of Reactive Search, 

refers to a more extended area of research, including online and offline schemes based on the 

use of memory, adaptation, incremental development of models, experimental algorithmic 

applied to optimization, intelligent tuning and design of heuristics.”  These approaches promise 

in a joint fashion to greatly reduce the main problems of ML in its development, implementation 

and optimization. 

        

      Figure 7.76 - ML and intelligent optimization as the intersection 

The main problem when applying these analysis and decision support systems in 

professional environments is the lack of staff with experience and ability. This is in addition to 

the difficulties mentioned throughout the document, as a summary and according to their order 

as well as the process carried out in our model can be summed up as. 

1. Identifying the most effective machine learning technique 

2. Accurate parameter tuning 

3. Optimization problem 

4. Final integration 
 

         

Figure 7.77 - Business integration 
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Another problem, which was inherited from the great complexity and difficulty of the 

point two, is the factor of the small but significant increase in the results with different but 

similar approaches. Seeing the actual example done in the elaboration of this document. We 

used a clustering and NARX network relatively optimized to achieve our objectives. However, we 

have mentioned 

• More than ten techniques to optimize their behavior 

• More than ten techniques to improve the results 

• More than ten algorithms and approaches with which better results can be 

expected. 

• Optimization methods, both for the selection of parameters as for the 

improvement of final results 

• Various changes in the algorithm to adjust the behavior of the model for our 

particular problem. 

These are the same problems faced by a professional development, there are a lot of 

improvements, but its implementation and enforcement are too costly in time with respect to 

the measurable improvements. In our case we have taken several weeks to reduce a MAPE of 

2.2 to one of 1.1. How long would it take reduce it to 0.7? Or better said, how long would it take 

to apply all improvements mentioned and how would they influence? Surely years, if we need to 

optimize the hundreds of parameters and possible changes that we will get in the final model. 

Finally, today there are many companies that offer highly complex models of these 

systems, either only ML or LION that can be applied to a huge amount of problems and surely in 

all of them excellent results are obtained, but it seems difficult to believe they can be optimized 

in detail for each problem. They are excellent models, able to generalize and adapt in a certain 

way to the requirements presented. It is in this together with the advantages of the processing 

where the main virtue in the short term in this field and at the same time one of their biggest 

problems lies. (Roberto Battiti, 2010) 

 

8.3 Open tools and libraries 

 

None of the next document would have been possible without all the information and 

tools available online to the general public. In the last few years progress in these 

methodologies has gained considerable popularity, and has left the academic world thanks in 

part to the multitude of online courses (mathematicalmonk, 2014) (Aksoy, 2013) (LIONos, 2011) 

(OCWmit, 2006) (Standford, 2012) and the great amount of various libraries, modules, tools and 

programs both open as well as various paid versions. (Haddop, 2014) (Spark, 2014) 

The online community continues to grow progressively, supported by the initiatives of 

various companies and entrepreneurs which facilitate both the learning and the advantages of 
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the application of these algorithms. (Theano, 2014) (Torch7, 2014) (SciKit, 2014). There are also 

paid tools for many companies that under certain licenses are free, and include manuals that 

allow you to apply and learn with programs targeting the private sector. (Microsoft, 2014) (IBM, 

2014) 

 

   Figure 7.78 - Algorithms available in SciKit 

For reasons of extension we will mention only some of the most popular online free 

tools. Its approach and limitations gives each one a particular market, but in most cases, 

because they are open and use common languages, several can be used depending on the 

requirements. This facilitates drastically any approach to this world and allows any user to 

explore and implement their advantages with the only limitation of the time, quantity, and 

quality of data. In the last two cases and for certain problems there are platforms and projects 

available which dispose and inform about data as well as the processes and reference advances. 
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Annexes  
 

Annex 1 - Machine learning environment and on board example 
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Annex 2 - Spanish Load used for Fitting and Forecasting 
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Annex 3 - Spanish TSO Upwards reserve requirements 
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Annex 4 - NARX learning and error summary 
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Annex 5 - Hybrid model concept proposal 
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