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Abstract

Risk Assessment of Transmission Network Faillures in a Single-Price Electricity

Market using Conjectural-Variation Equilibrium

by Abdin, Islam Fouad

Risk assessment is a key aspect in power systems’ design and planning. Under the new com-

petitive framework of the electricity sector, power systems are found to be more and more

strained and operated near their technical limits. On the economic front, problems arising due

to transmission lines’ limited capacities and reduced reliability becomes an obstacle to perfect

competition among the market participants, and negatively affect the electricity market prices.

Under these scenarios, it is crucial for the system operator (SO) to have tools that allow the

correct assessment of the impact of network failures on the total system’s running costs. In this

work, we propose a novel risk assessment method that aims to assist the SO in evaluating these

costs under different line failure scenarios. The risk is quantified in a single-price market not

only in terms of the ENS cost, but also in terms of the so called correction costs arising due to

the necessity of correcting the dispatch in case of a line failure. The latter takes into account

the effect of exercise of market power by the generation companies (GenCos) if they can antici-

pate that such failure would occur. The study is conducted on the IEEE 6-bus Reliability Test

System (RBTS) by solving a bi-level model consisting of a conjectural-variation equilibrium

model, and a DC optimal power flow model. The results shown to offer a guideline for the SO

to identify the critical network lines by means of a classification of which line’s vulnerability

contribute higher costs for the network.

Keywords: Risk Assessment, Network Failures, Equilibrium Modeling, Electricity Markets,

Conjectural-Variation, Optimal Power Flow
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Chapter 1

Introduction and Motivation

There is no need to emphasize the fact that electricity has become the backbone of any industri-

alized society and economy. Modern countries rely heavily on a steadily uninterrupted supply

of electricity for carrying out almost all their economic activities. The ever increasing depen-

dency on continuous power supply related to the wide spread of electronics, the ever increasing

industrial production, and all aspects of daily life makes today’s society much more vulnerable

concerning power supply interruptions. A few minutes of interruptions may already cause some

inconvenience for many users, yet a few hours or even days would have a significant impact on the

entire economy [Kim et al., 2013], [Bruch et al., 2013]. Other than this increasing dependency

which is already straining the operation of the power systems, this industry experienced two

major changes during the last two decades: the liberalization and privatization of the electricity

systems [Pérez-Arriaga, 2014], and the fast expansion of renewable energy production capacities

[International Energy Agency, 2014]. It is well understood that most industrialized countries

have many years of experience with dealing with the liberalization of their power systems, yet

this separations of activities which have created many additional interfaces, have impacted the

coordination activities between all the different stakeholders. This has led to a clear problem of

incentive to invest in reliable, and well maintained infrastructures, that most countries are still

experimenting with different mixture of policies, regulations and mechanisms to solve. On the

other hand, although the expansion of renewable generation in itself is a positive development

towards a sustainable energy future, the volatile nature of many of these sources adds to the

vulnerability of the system [Flick and Morehouse, 2010], [Nasiruzzaman et al., 2014], [Negeri

et al., 2015]. Not only may a scarcity of electricity result in a power outage, an oversupply can

also lead to grid instabilities and hinder its secure operation.

Yet a reliable system is not the only challenge confronted; even in instances of secure system

operation, significant economic losses can be incurred due to the departure of the competition

performance in liberalized systems away from the optimal case of perfect competition, which is

1
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the considered as the benchmark in microeconomics analysis. Several causes related to market

design and regulatory policies stand behind either a positive or a negative market outcome. Yet

for those causes related (even partly) to the technical nature of the system, transmission line

constraints would certainly have a leading role in affecting the efficiency of the system’s operation

as a whole. Several studies have addressed this issue, providing insights especially on the effect

of the most commonly faced problem of transmission line congestion on the market performance.

So far it has been well documented that regardless of the underlying market clearing scheme

implemented (e.g. nodal pricing, zonal pricing or single-price markets), transmission congestion

allows a significant chance for market participants to exercise market power, increasing the

market prices and decreasing the overall welfare of the society [Gao and Sheble, 2010], [Liu and

Wu, 2007], [Delgadillo and Reneses, 2013]. Less explored, however, is the effect of total line

contingency on the market outcome and on the behavior of its participants. Perhaps the reason

behind that is that the focus on the secure operation of the network considering standards

such as the N-1 criterion, may have led to the belief that even in the most severe cases, such

contingency would not occur enough times or last long enough to distort the market outcome.

Perhaps this is true for cases where investments in the planning and construction phase of

the transmission networks have been made to account for an adequate level of reliability in

the network. However, this might change as new developments in the power system such as

distributed renewable generation and demand side management, may direct the trend towards

an opposite direction of decreasing dependency on several parts of the grid, with even less

clear incentives for the different stakeholders to maintain its reliable operation. In addition,

other studies have pointed out that in many instances, the often neglected effect of extreme

weather conditions results in an underestimation of the failure rates in the network, and also

an underestimation of its consequences [Rocchetta et al., 2015], [Alvehag and Söder, 2011].

There is a need therefore, to account for the risk of such contingency in operation of the system,

and not only in the original planning of the investment. Risk by definition is a probabilistic

measure; it assesses the consequence and severance of the occurrence of an undesired effect

relative to its probability of occurrence [Zio, 2007], hence providing an insight on its significance.

This is especially useful in assessing event commonly perceived as insignificant due to the lack

of a quantified measure that verifies this perception. Yet, apart from the typical reliability

assessment in terms of the power delivery security aspect often considered, risk assessment

methods have been used in a vast variety of studies both related to electric power systems, and

electricity markets. Since there are many stakeholders in these systems (generation companies

(GenCos), transmission and distribution companies, system operator, consumers, etc.), risk

indices have been adopted from different view points including financial, economic and technical

assessments [Li, 2014]. From the point of view of the operation of transmission network, these

risk assessments have been seen to commonly consider the technical aspect of the system in
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assessing line contingencies (in terms of risk of energy not being served), and have been found

to seldom considers the effect of the power market performance.

Therefore, the present work provides an attempt for proposing a novel risk assessment method

which takes into account the impact of network line failures on the performance of the power

markets. The aim is to evaluate whether in a specific case of line failure significant distortions

of the market performance could occur in such a way so as to give incentive for the network

operators to prepare preventive actions for both the market operation and the final dispatch of

the network.

Since the nodal pricing market scheme is already designed in such a way that internalizes market

inefficiencies in its operation, we consider for this study a single-price market, where GenCos

submit bids to maximize their profits in the day-ahead market without taking into consideration

any effects for the network constraints. The market is cleared purely on the basis of economic

considerations, by aggregating the supply and demand bid offers, and setting the day-ahead

market price equal to the marginal unit scheduled for dispatch in the next day. All scheduled

GenCos receive this single market price per unit of their dispatch. The system operator (SO) is

responsible for the secure, feasible and optimal final dispatch plan which is scheduled taking into

account the final received bids. In case of a line failure occurrence, the SO will re-dispatch the

system to maintain a secure operation and prevent any potential collapse in other parts of the

network. This means that some generation units will be required to increase or decrease their

final dispatch relative to the day-ahead market schedule. The re-dispatch schedule is decided

while taking into consideration each GenCo’s bid offer for an upward or a downward correction

of its dispatch.

We consider the ability of the GenCos to anticipate the re-dispatch schedule imposed by the

SO in case of a line contingency, and therefore their ability to act strategically to increase their

profits from both the day-ahead market operation and the so called correction market combined.

This strategic behavior would lead to the need for the SO to correct higher power discrepancy

between the day-ahead market schedule and the real time operation after the line failure, leading

to a higher efficiency loss (quantified as a cost) in the operation of the network.

The risk assessment proposed combines the typical effect of the cost of energy non-served that

could be incurred due to a line failure, with a quantification of the increased correction cost

necessary incurred by the SO, due to the strategic behavior of the market participants. This

way, the SO can have a new insightful tool for assessing those risks.

The rest of this dissertation is organized as follows:

• In Chapter 2, a comprehensive literature review covering the state of the art in market
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modeling techniques is provided, with special emphasize on the studies that explicitly con-

siders competition modeling taking into account transmission network constraints. More-

over, a review on some of the most commonly considered reliability and risk assessment

methods related to power transmission network is summarized to show the positioning of

the proposed assessment method among the existing ones.

• In Chapter 3, the bi-level model used for carrying this study is fully described, consisting

of a conjectural-variation equilibrium model for modeling the market competition, and a

DC optimal power flow model for simulating the behavior of the SO in finding the feasible

schedule. The chapter is concluded by a full description of the solution method for the bi-

level model, and the formal quantification of the risk concept and risk assessment method

in the context of this study.

• In Chapter 4, the case study chosen for the numerical example is illustrated, and all failure

cases considered are fully identified. The results are reported for all the cases and a critical

analysis covering all the important results’ observations is provided.

• Finally in Chapter 5, an overview of all the milestones achieved is given, and the most

important results are summarized, with the main message reached up to this phase of

research. The chapter ends with the main suggestions on the future tasks to be considered

in enriching and improving this work.



Chapter 2

Literature Review

2.1 Market Modeling in Electric Power Systems

As previously discussed, the deregulation and liberalization of the power sector in many of the

systems across the globe, have created an important need and interest for the adequate modeling

of the behavior of those systems under the new operating conditions. As well as the studies

for the different regulatory schemes and market designs in continuous attempts to optimize the

social welfare. This section intends to broadly illustrate the topics that have been covered in

the market modeling in electric power systems, the different formulation techniques used to

represent these models, and the different solution techniques implemented. Special emphasis

is given to summarize the references that address the electricity market modeling taking into

consideration the transmission network constraints.

Although it has been around 10 years since Marino Ventosa, Álvaro Baıllo, Andrés Ramos and

Michel Rivier published their paper “Electricity Market Modeling Trend” [Ventosa et al., 2005],

no sign have been shown during this literature review compilation that indicated that their

general description of the modeling trends in terms of structure have undergone any significant

change. It remains useful therefore to start with a brief illustration following these major trends.

2.1.1 Structural approaches in Electricity Market Modeling

Ventosa et al. [2005] illustrate that from a structural point of view, the different approaches

that have been proposed in the technical literature can be classified according to the scheme

shown in Fig 2.1.

In general, research developments follow three main trends: optimization models, equilibrium

models and simulation models. Optimization models in electricity markets often focus on the

5
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Figure 2.1: Schematic representation of the electricity market modeling trends. [Ventosa
et al., 2005]

profit maximization problem of one of the firms competing in the market. Due to its mathe-

matical nature specifically in terms of tractability, these problems can often be highly complex

representing high level of details of the system. Equilibrium models on the other hand, repre-

sent the overall market behavior taking into consideration competition among all participants,

this interaction is often studied based on the notion of “Nash Equilibrium” which will be ad-

dressed in details in the next section. Finally Simulation models can be seen as an alternative

to equilibrium models when the problem under consideration is too complex to be addressed

within a formal equilibrium framework. Although there are many other possible classifications

based on more specific attributes, the present classification based on the different mathematical

structures of these three modeling trends would help establish a clear division.

Since in this dissertation an equilibrium based model is chosen to undergo the study, I intend

to review this type of modeling in more details. Interested readers in any of the two methods

(optimization and simulation) could therefore refer to Ventosa et al. [2005] for a more detailed

description.

2.2 Equilibrium Modeling in Electric Power Markets

As previously mentioned, the notion of an equilibrium in general is a fundamental concept that

can be used in a variety of disciplines. At its core, an equilibrium is a state of the system

being modeled for which the system has no “incentive” to change. These incentives are often
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monetary in the case of electric power systems modeling, since it most often has to do with the

profit of the market participants, but it also can be physical or chemical in nature.

From a modeling perspective, identifying the equilibrium state of a system allows one to predict

where the system might be in the future under certain conditions. This is not to say that it

is a definite state or a completely accurate prediction, in part due to the potential multiple

equilibria that might exist 1, but as well because in reality it may take a certain amount of time

to transition to one of these equilibria states, especially when we are examining vast complex

systems such as the electric power system. Nevertheless, knowledge of such equilibria can be

instrumental in determining various characteristics of the system under consideration and could

serve as a benchmark in any analysis.

The “equilibrium” notion can be viewed in many different ways, a detailed survey on all of the

different conceptual methods addressing the notion of equilibrium is beyond the scope of this

thesis. It is however of interest to examine the equilibrium concepts that are relevant for the

energy markets context and for the present work. Specifically we can illustrate the model for

“Equilibria in Dominant Actions” and the more relaxed concept of “Nash Equilibria”.

2.2.1 Nash Equilibria as a relaxation of Equilibria in Dominant Actions

Equilibrium searches for the state where the system (i.e. system participants) has no incentive

to change. Clearly if we project this idea on any market context, it will be equivalent to the

state at which each market participant receives the best possible profit. Within this framework,

it would be easy to see what “Equilibria in Dominant Actions” is referring to. We call an

Equilibria in Dominant Actions (EDA) if each market participant can take actions that leads

to the best outcome for herself regardless of what the other participants do [Shy, 1995]. This is

clearly a reasonable concept when trying to predict “players” actions in a competition, but it

is not without its practical limitations. This concept can be expressed mathematically as:

fi(x
EDA
i , x−i) ≥ fi(xi, x−i), ∀xi ∈ Fi, x−i ∈ F−i, i = 1 : N (2.1)

where i represents the participants “players” in a game, N is the number of participants, Fi is

the feasible region for the decisions of player i, fi(xi, x−i) is the objective to be maximized, and

x is the decision variable, namely the production quantity if it is in the context of electricity

markets.

A numerical example of this type of games can be seen in Shy [1995]. It is clear however that in

many competitive contexts, such dominant actions may not exist, i.e. it might not be possible

1For a comprehensive description and examples of this type of games the reader could refer to Basar et al.
[1995] or any documentation on Multiple-equilibria in Non-Cooperative Games.
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for one or several players to find a single optimal strategy regardless of what the others do. A

relaxation of this is called a Nash Equilibrium (NE). Here, each player decides her best strategy

to optimize her payoff while considering what other players’ strategies will be. Or in brief,

it is only to assert the same sort of inequality shown in the EDA equation 2.1, but only for

equilibrium values of the other players [Shy, 1995]. That is, the decision variables (xNEi , xNE−i )

such that:

fi(x
NE
i ;xNE−i ) ≥ fi(xi;xNE−i ), ∀xi ∈ Fi, x−i ∈ F−i, i = 1 : N (2.2)

This expression is what implies in the formal definition of Nash Equilibrium that there should be

no unilateral incentive to deviate from such a state (xNEi , xNE−i ). Several complications, however,

often arise in the handling of equilibrium problems. A problem of this type could possibly

have one equilibrium solution, which is the easiest and most straightforwards problem, but it

could also have either no equilibrium, multiple equilibria, or an infinite number of equilibria.

Especially in the later cases of multiple equilibria, special attention should be taken in analyzing

and interpreting the achieved results.

Indeed, there exist various types and variations of a Nash Equilibrium game (e.g. Pure vs Mixed

strategy games). However, this level of details might not be of an important significance for

the purposes of this dissertation. It is of importance nonetheless, to examine in some details

the different type of strategic interactions possibly depicted in an equilibrium model, and to

understand the typical nature of this formulation and the computational methods required to

solve them.

2.3 Types of Strategic Interaction in Equilibrium Models

When we talk about competition in most industries, we are often referring to strategic choices

of production quantities q and selling price p that maximize each company’s profit function

given a set of technical and shared constraints. This description holds of course in the context

of electricity markets. For simplicity moreover, we often consider that the good being traded

(i.e. in this case electricity) is a homogeneous good; meaning that the buyer (demand) will

not differentiate between the electricity produced from a certain producer or the other in any

particular quality other than the price 2. In addition, we assume for the purpose of the following

definition, that the market operation results in a single market clearing price; this means that

the result of the supply and demand interaction result in a single price being paid to all the

producers who are participating in the market, regardless of each individual producer’s bid. A

possible variation from that is the “pay your bid” type of auctions, in which producers who

enter in the market receive their bidding price only, regardless of the final market clearing price.

2Indeed this could be different in several models to estimate competition for instance between a “green”
electricity producer (i.e. renewable sources) and a typical fossil fuel producer.
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This later scheme is not covered throughout this text, and interested readers could refer to

Pérez-Arriaga [2014] for examples.

We thus proceed to define several types of strategic interaction among electricity suppliers in

an electricity market, most of these definitions being familiar concepts from game theory and

industrial organization, [Tirole, 1988], [Fudenberg and Tirole, 1991], [Shy, 1995], . They differ

in how each generating firm i anticipates that rivals will react to its decisions concerning either

prices p or quantities q when submitting their own bids to the market. The main types of these

strategic interactions that have been or could be included in power market models include the

following:

2.3.1 Perfect Competition

There are three main characteristics that describe what we mean by a perfectly competitive

markets:

1. The buyers and sellers are numerous so that no single buyer or seller can influence the

market price, they are said to be price takers.

2. All agents have perfect information, with no time lags.

3. Given that all agents have perfect information, it is assumed that they make rational

decisions to maximize their self interest.

4. There are no barriers to entry into or exit out of the market.

5. There are assumed to be no externalities, either positive nor negative.

Within this setting, it is assumed that every market agent would like to maximize his profit;

that is, for the buyer the aim is to:

Max
q

Ud(q)︸ ︷︷ ︸
Utility of demand

− p · q︸︷︷︸
Demand expenditure

(2.3)

And for the seller his problem is to:

Max
q

p · q︸︷︷︸
Revenue

−C(q)︸︷︷︸
Cost

(2.4)

It is important to note that although these are two separate problems, they remain linked by

the market price p. The same unitary price is paid/received for each unit purchased/sold. It

can be easily shown that taking the first order derivative for each of the equation (2.3, 2.4) and

equating with zero to find the optimal solution, we end up with the famous equality:

dUd(q)

dq
= p =

dC(q)

dq
(2.5)
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or:

Marginal Revenue = Marginal Cost

This of course is the same result we obtain if we assume centralized planning of the system (i.e.

no competition and the whole system is run by a single entity that does not receive profit, and

with the sole aim of reducing production cost subject to certain constraints). Although indeed

this is a well known result in microeconomics, it remains important to be illustrated since the

perfectly competitive market result serves as the benchmark for the analysis of all other modes

of competition.

2.3.2 Generalized Bertrand Strategy (Game in Prices)

We have seen that in the perfectly competitive markets, firms deal with the commodity price

(electricity price) as an “exogenous” variable, and they seek to determine the quantities to

be produced. This is different in Bertrand strategy, where firms use price p as their strategic

variable in maximizing the profit function (2.4) given their quantity q. Although the homoge-

neous Bertrand case is often considered as a simple problem, it can be difficult to analyze the

results obtained. Perhaps we can illustrate this type of strategies by means of a simple example

[Ledvina and Sircar, 2012], as follow;

Consider a duopoly where each firm has a constant but different marginal cost, which we denote

by MCi for Firm i, where MC1 < MC2, and there is no capacity constraint for any of the firms.

We illustrate the best response for the two firms, that is to charge a price while your opponent

is pricing above your cost, and then to price at your opponent’s price minus a small amount

ε, which we could denote informally as p(1,2) = (p2 − ε, p2). Firm 1 in this case captures all

of the demand and Firm 2 receives zero profit, this would lead Firm 2 to decrease the price

in response and Firm 1 responding accordingly by lowering the price by a small amount and

thereby capturing the entire market at a price above cost. Until finally the only equilibrium

p∗ = (MC2 − ε,MC2) is reached. The same concept extends to N firms in the sense that the

lowest cost firm is the only one who ever receives demand from the market.

This obviously leads to price being equal to marginal cost in case of identical producers, a result

that is shared with the perfectly competitive outcome seen in section 2.3.1. However, the elec-

tricity market price almost always deviates from the standard Bertrand price game. The reason

is that most often, the electricity producers competing in a market have a maximum production

capacity, as well as other forms of capacity limits. This capacity-constrained oligopoly would

lead to marginal cost pricing unlikely to be an optimal bidding strategy [Armstrong et al.,

1994]. Therefore, only a few relevant references can be found in recent publications. Some

representative Bertrand competition based models are summarized in Table 2.1.
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Cui et al. [2012] present a model of profit maximization for utility companies in an oligopolistic

market. They formulate a simulation model to study the effect of the interaction of the supply

side and the consumer side in a “smart” electricity grid under dynamic pricing. They model

the consumers’ preference for the choice of a supplier as a Bertrand game where consumers will

initially arbitrarily chose the cheapest utility company, and then both consumer and utility com-

pany will attempt to maximize their profits taking into account demand response to electricity

prices. In this model, utility companies are considered as non-cooperative, i.e., always making

decisions based on their own best solution. A feedback system is utilized based on consumers’

reaction to task scheduling and supply selection. The model was implemented and tested on

simplified systems, the results showed that all companies achieved significant improvements

on their expected profit compared to the solution prior to taking into account the consumers’

behavior effect.

Hu et al. [2010] define Bertrand-Edgeworth3 auctions as a modified version of Bertrand-Edgeworth

games where the demand is inelastic and a price cap is set exogenously. Bertrand-Edgeworth

auctions are motivated by the discriminatory procurement auctions used in some wholesale

electricity markets. They characterize the equilibrium structure for Bertrand-Edgeworth auc-

tions with multiple asymmetric bidding suppliers. Based on a proposed numerical algorithm,

it is numerically illustrated that a weak (low-capacity) bidder do not necessarily price more

aggressively in an oligopoly market [Hu et al., 2010].

Bompard et al. [2008] present a medium run electricity market simulator based on game theory.

The simulator incorporates two different games, one for the unit commitment of thermal units

and one for the strategic bidding and hourly market clearing. They differentiate between a

Forchheimer (one leader) game and a Bertrand (all players are leaders) one allowing for the

simulation of markets with different levels of concentration. The simulator was applied to

analyze producers’ behavior during the first operative year of the Italian power exchange, while

comparing the results with true market results to validate the simulator.

Finally, Federico and Rahman [2003] analyze the effects of changing auction rule from uniform

pricing in the wholesale market to pay-as-bid under two polar market structures (i.e., a perfect

competition or Bertrand structure and a perfect collusion or monopoly bidding) with demand

uncertainty. It is found that under Bertrand structure there is a trade-off between efficiency and

consumer surplus while changing to the pay-as-bid rule. Also, a move from uniform pricing to

pay-as-bid under monopoly conditions has a negative impact on profits and output, a positive

impact on consumer surplus, and ambiguous implications for the welfare and average prices

[Federico and Rahman, 2003].

3Bertrand Competition but considering firms with maximum output capacity (no single firm can satisfy the
whole demand)
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Table 2.1: Representative Bertrand competition models in electricity markets.

Reference Model Basis Assumptions Applications

Cui et al. [2012] Bertrand Competition Small system: 3 Utility compa-
nies, 1000 consumers

Modeling the consumers’ demand response
behavior in a smart grid in the process of
determining the prices

Hu et al. [2010] Bertrand Competition Inelastic demand and exoge-
nous price cap, simplified sys-
tem

Profit maximization in a dynamic
oligopolistic market

Bompard et al.
[2008]

Forchheimer and
Bertrand

Realistic representation of a
system (technical minima, cost
functions, flexibility, mainte-
nance, unavailability)

Simulation model that incorporates two
different games, one for the unit commit-
ment of thermal units and one for strategic
bidding and hourly market clearing

Federico and
Rahman [2003]

Bertrand Competition Perfect competition or collu-
sion

Market design under the pay-as-bid auc-
tion rule.

2.3.3 Cournot Strategy (Games in Quantities)

The classic Cournot models are probably the most known and the most used scheme to model

competition. In fact, the study of non-cooperative oligopolistic competition originated with the

seminal work of Cournot [Cournot, 1838]. His original model assumed firms choose quantities

of a homogeneous good to supply and then receive profit based on the single market price as

determined through a linear inverse demand function of the aggregate market supply, where

marginal costs of production were assumed constant and equal across firms [Ledvina and Sircar,

2012]. The result of Cournot’s analysis is what now considered common knowledge: with equal

marginal costs across firms, every firm chooses the same quantity to supply and the market

price is above cost by an amount that is inversely proportional to one plus the number of firms

in the market. Hence, as the number of firms tends to infinity, the price approaches marginal

cost, but with a finite number of firms, prices are above cost and firms earn positive profits.

Unlike Bertrand, the Cournot’s strategy assumes that firms set their prices p and then compete

by choosing their quantities q. This is represented through the inverse demand function pi(q)

for each firm i, which is equal to the change in consumer’s response due to the changes in the

quantities produced or ∂U
∂qi

(the rate of change of utility with respect to the rate of change of

quantities supplied). Briefly this can be seen formally through: for firm i, revenue =

p · qi = p(q) · qi = p(qi + q∗−i) · qi (2.6)

where p(q) is the inverse market demand function discussed above, and q−i is the quantity

supplied by all firms other than i. The asterisk in q∗−i means that firm i chooses its strategy

while assuming that the quantities chosen by its rivals are known and will not change, and

thus it is a fixed value. We can therefore deduct that for each firm to maximize its profit , the
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first-order optimality conditions will have the following marginal revenue term:

MR = ∂(p · qi)/∂qi

= p+ (∂p/∂q)(1 + ∂q∗−i/∂qi)qi

= p+ (∂p/∂q)(1 + 0)qi

= p+ (∂p/∂q)qi (2.7)

Although intuitively Cournot competition may not seem the most applicable, in the sense that

one would not expect that in a real scenario companies would be setting their quantities instead

of their prices, it can be seen through the vast literature produced using both models that

indeed Cournot results in a more realistic observation albeit its eccentric assumption [Ledvina

and Sircar, 2012] [Dastidar, 1995]. We have seen that following Bertrand’s model under the

assumption of a single market price leads to very harsh and contradictory results relative to

common market observations. If all firms have equal cost, then as long as there are two or more

firms in the market, all firms price at cost and have zero profit. This perfectly competitive

outcome differs substantially from the Cournot outcome and is commonly referred to as the

Bertrand paradox. In general one could think of it that in most settings, the correct set-up of

Bertrand leads to the wrong result, while Cournot model gives the right answer for the wrong

reason.

Perhaps most importantly after this brief description of Cournot competition is to examine the

use of this method for the modeling of competition in electric power systems. There exists a

vast literature on this matter that perhaps it would be difficult to comprehensively cover it in

this section. Ventosa et al. [2005] presented us with a thorough literature review on the type of

issues addressed in electricity market modeling through Cournot competition. In general, they

have shown that these models have been extensively used to address market power analysis,

hydrothermal coordination, effect of network congestions, and risk analysis for competing firms

to name a few [Ventosa et al., 2005]. However, the aim here is to focus on the most significant

and recent publications, and especially the publication that explicitly consider the effect of the

electricity network on the market outcome.

Table 2.2 summarizes some of the most recent and most relevant literature I have been able to

find that considers Cournot competition in electricity market modeling. The emphasis was pri-

marily on those publications which explicitly considers the power network flows and its effects on

the competing market players. As summarized, Parente et al. [2012] considers a Nash-Cournot

equilibrium model in an oligopolistic market. Some key features of their model are short-term

planning horizon, pumped storage hydro units representation, and transmission network con-

straints. They consider a system composed of thermal and pumped-storage hydroelectric power

units, sharing a bounded capacity network. They proceed to develop a mathematical model
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to solve the unit scheduling, the methodology applied is a variable metric proximal decomposi-

tion method, they show that this method is effective for small-sized and medium-sized network.

Their results show how the production patterns change in water-stressed situations compared

to excess water availability especially due to pump-storage units production, as well as due to

modifications in network line capacities. Lee [2013] considers a probabilistic Mixed-Strategy

Nash Equilibrium problem for analyzing suppliers’ strategic generation quantities under trans-

mission line constraints. They present a heuristic method to solve the optimization problem

with a set of linear and nonlinear equations arising.

Badri and Rashidinejad [2013] considers a day ahead oligopoly market, whereas a multiperiod

auction framework is addressed to simulate market clearing mechanism by means of social wel-

fare maximization, in which the behaviors of market participants are modeled through perceived

block curves. The formulation explicitly considers demand eleasticity and transmission security

constraints. Likewise, they introduce a heuristic method to solve the model. They model a 24

hours effective-supply curves for the GenCos and show the differences in the strategic bidding

under Cournot competition and under perfect competition scenarios. Zhang et al. [2012] and

Zhang et al. [2009] addresses the electricity market equilibrium problem in both spot and for-

ward markets. Zhang et al. [2012] addresses the market equilibrium when Gencos sell financial

call options or buy financial put options. The Cournot equilibrium model developed takes into

account the financial contracts, and the reliability of the generation units (through the forced

outage rate). The model also considers the uncertainty in load demand. The results show that

call options with relatively low strike prices or put options with relatively high strike prices

could be helpful to reduce Gencos’ interests to raise market price by strategic behavior. Zhang

et al. [2009] on the other hand considers competition in spot and forward markets, where they

formulate is as a two-stage game. First level considers the optimal strategies for the Gencos in

the spot market, and then the second level is solved considering the GenCos strategies in the

forward market. They formulate the problem using two competition representations; namely

Cournot and Supply Function Equilibrium, and they propose a co-evolutionary algorithm to

solve this two stage problem and apply it on two case studies; one with three GenCos and the

other with five GenCos. They conclude that the decision for the companies on whether or not

to enter the forward market depends significantly on what type of competition governs the spot

market.

Siriruk and Valenzuela [2011] primarily focus on the uncertainty modeling in deregulated elec-

tricity markets through Monte Carlo simulations, and its effect on the expected profits for the

firms in order to underline its importance for being taken into consideration in firms’ decisions.

They model a stochastic Cournot Model considering uncertainties in fuel costs and unit outages

and present a case study for 3 firms competing owning several hydro and thermal units each.



Chapter 2. Literature Review - Islam ABDIN 15

Ruiz et al. [2008] focus on the computational aspects for a Cournot competition model, their

work provides some theoretical results pertaining to the Cournot model applied to short-term

electricity market. Price, quantities and profits formulation are presented . These are applied

to a simple case study with three identical GenCos, and in another case with only one dominant

generation company. They demonstrate the results obtained from their formulation and conduct

a sensitivity analysis of the price with respect to the proposed formulation’s parameters. Finally,

Mookherjee et al. [2008] discuss the dynamic nature of power networks. They propose a more

general Nash-Cournot competition model on power networks that explicitly accounts for intra-

day dynamics that describe the markets’ evolution throughout 24 hour planning horizon, raming

constraints and costs for changing the power output of generators, and joint constraints that

include variables from other generating companies within the profit maximization problem for

individual generators.

Table 2.2: Representative Cournot competition models in electricity markets.

Reference Model Basis Assumptions Applications

Parente et al.

[2012]

Classical Nash-

Cournot

Short term planning horizon,

hydro reservoir and pumping

units, representation of net-

work constraints

Scheduling of hydroelectricity production

considering all the market players and net-

work constraints. Application on a small-

size and medium-size networks.

Lee [2013] Mixed Strategy Nash-

Cournot

Probabilistic Generation out-

puts and transmission lines

constraints.

Two-level hirerchical optimization problem

to model competition among multiple par-

ticipants.

Badri and

Rashidinejad

[2013]

Cournot based model Uniform price market. All gen-

erators bid with three blocks

piecewise increasing curves.

All elastic loads bid with three

blocks piecewise decreasing

curves. DC power flow.

Day ahead optimal bidding strategy of

GenCos in oligopolistic power markets tak-

ing into consideration the impact of trans-

mission security constraints on paritci-

pants’ market power.

Zhang et al.

[2012]

Cournot Competition Oligopoly in a pool-based

electricity wholesale market.

Linear demand representation.

Consideration of Generation

units’ forced outages.

Considers the electricity market equilib-

rium with contractual arrangements (fi-

nancial options).

Siriruk and

Valenzuela

[2011]

Cournot Competition Private contractual agreement

for power delivery at future

time period. Representation of

the operation state of the units

through Markov process.

Effect of uncertainty in deregulated elec-

tricity markets, related to unit outages and

fuel cost.
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Downward et al.

[2010]

Cournot Competition Electricity pool markets. Ra-

dial transmission networks.

Linear demand Function.

Application of a novel methodology to find

the optimal power dispatch to the New-

Zealand electricity transmission network.

Zhang et al.

[2009]

Cournot and Supply

Function Equilibrium

models

Two-stage game model. For-

ward market and spot market

competition. Risk neutrality

on all generation companies.

Novel coevolutionary approach to model

the generation companies strategic behav-

ior in choosing among spot and forward

markets. Case studies with 3 gencos and

with 5 gencos.

Badri et al.

[2009]

Cournot Competition Transmission constraints, lim-

ited number of electricity pro-

ducers. Representation of the

independent system operator

through solving an optimal

power flow.

Strategic bidding for GenCos. Bi-level op-

timization model proposed. Application

on an IEEE-30 bus test system.

Ruiz et al.

[2008]

Cournot competition. Competition in short term elec-

tricity market.

Provides closed formulae for price, quanti-

ties and profits for a short-term electricity

market whose participants rely on Cournot

models.

Mookherjee

et al. [2008]

Generalized Nash-

Cournot

Dynamic formulation for Gen-

cos competition. Ramping con-

straints and costs for changing

the power output of generators.

Joint constraints between Gen-

Cos.

Bidding strategy for competing Gencos un-

der dynamic Cournot competition.

2.3.4 Cournot Variation (I): Stackelberg models

We have seen in section 2.3.3 how in Cournot models it is assumed that all the competitors in

a market have equal opportunity. Meaning that whenever there is a market opportunity (in

our case opportunity for electricity production and sales), companies have equal information,

equal positioning and in general can equally respond to market demand limited only by their

own intrinsic constraints (production capacities, production costs or any other internal factors).

However, in some cases, perhaps due to historical, institutional or legal factors, the competitors

are placed into a differential or inequitable position in the market. For example, the firm that

discovers and develops a new product would have a natural first-mover advantage, or an uneven

access to information could also lead to the same situation.

Heinrich von Stackelberg presented an important oligopoly model in 1934 [Von Stackelberg,

1934]. In the Stackelberg model, one firm acts before the others. The leader firm picks its

output level and then the other firms are free to choose their optimal quantities given their

knowledge of the leader’s output. The follower’s best response is determined as in the Cournot

model that competitors’ output is assumed to be fixed. However, the leader’s action is different



Chapter 2. Literature Review - Islam ABDIN 17

from the followers’ actions in Cournot model. Perhaps it is of interest to consider the formulation

of the Stackelberg model as follows: consider an oligopoly where firms have generating marginal

cost; MCi = miqi, and the inverse demand functions of the market is pi(qi) or pi = a−r(qi+q−i)
if we consider a linear form. The leader firm is considered to be Fi, while F−i are the followers.

The followers’ best response condition in terms of profit π is as follows:

∂π−i
∂q−i

=
∂

∂q−i
{p · q−i − C(q−i)}

=
∂p

∂q−i
· q−i + p−m−iq−i (2.8)

This would result in an optimal quantity production for F−i denoted as q∗−i, the leader’s firm

Fi’s revenue in this case is expressed as:

πi = p[qi + q∗−i(p)] · qi4 (2.9)

To illustrate how this leader-follower problem might result in different outcomes compared to

the classical Nash-Cournot formulation, Anderson and Engers [1992] compare the two models

considering the Stackelberg leader-follower problem in perhaps its most extreme case; where each

firm is preceded by a leader firm, in what they refer to as the Hierarchical Stackelberg Model.

They analyze two distinct interactions in which i firms choose outputs. In the first, hierarchical

Stackelberg is considered, where the equilibrium is the sub-game perfect outcome that arises

when firms choose their outputs sequentially according to some exogenously determined order

of moves. In the second, the equilibrium when firms choose their outputs simultaneously. They

show that for a linear demand case, each firm under the Stackelberg scheme earns half the profit

of its immediate predecessor, however they highlight that such interpretation for the profit is

not straightforward and requires careful analysis.

Stackelberg indicated that generally, history, institution, law or development can all be factors

affecting the determination of the leader and the followers in any industry. But we are more

interested in understanding how this could arise specifically in the electric power industry. Lee

[2014] argues that one of the most important factors for this differentiation in the electric power

markets is the transmission network itself. He argues that the physical limits of transmission line

can restrict the economic dispatch of the generation power, the generation firms would change

their strategies by depending on the site with respect to the congested line. He proceeds to

compare the social welfare in terms of surplus analysis by both Stackelberg model and classical

Cournot.

Table 2.3 summarizes some of the most recent work implementing Stackelberg model. Nekouei

et al. [2014] illustrates a game-theoretic model for demand response from an electricity market

4Notice how this result is different than the one obtained in 2.6



Chapter 2. Literature Review - Islam ABDIN 18

perspective. They formulate a Stackelberg game to capture the interplay between a Demand

Response Aggregator (DRA) and electricity generators, where the DRA acts as the leader of

the game and makes demand reduction bids by taking into account their profitability. The gen-

erators are considered as the followers compete for power generation in the wholesale electricity

market which is modeled as a strategic game. Based on the results obtained, they have shown

that the peak demand period in a highly concentrated market is potentially the only profitable

scenario for the demand response. Avila and Behnke [2013] on the other hand considers the

problem of generation expansion planning and new entrance in the market under a Stackelberg

multi-leader multi-follower approach. The oligopoly is modeled as a group of leader companies,

with the first option to invest, facing potential new investors to enter the market. They apply

their formulation on a case representing the Chilean power system, and the results suggest that

the market power of the oligopoly depends on its ability to control the most profitable expansion

technologies.

Campos et al. [2012] study the effect of increasing or decreasing the numbers of leaders and fol-

lowers in a Stackelberg game. They represent the Stackelberg model in the European Electricity

Market (EEM) with price response conjectures for both leaders and followers, and propose a

simple convex quadratic optimization problem for solving the model. Bompard et al. [2010b]

consider several game theory formulations, namely Cournot, Stackelberg, Conjectur supply

function, and supply function equilibrium to assess the performances of network constrained

electricity markets. The competitive markets have been analyzed and tested by using the IEEE

30 and 57 bus systems. They measure the market performance using Lerner index and mar-

ket inefficiency index. They show that Cournot model demonstrated the worst behavior, both

under constrained and unconstrained networks. They conclude with an illustration of how the

transmission network plays an essential role in determining the market equilibrium. Under con-

strained network, the simulation results demonstrated that the market clearing price is higher

and the cleared demand are lower than the corresponding values under unconstrained network.

Table 2.3: Representative Stackelberg competition models in electricity markets.

Reference Model Basis Assumptions Applications

Nekouei et al.

[2014]

Stackelberg, Single-

leader Multi-followers

Interaction between Demand

Response Aggregators (DRAs)

and GenCos. Where DRA acts

as the leader and generators act

as followers.

Game theoretic model for demand re-

sponse in electricity market constext.

Shows how generators adjust their produc-

tion levels due to demand response.



Chapter 2. Literature Review - Islam ABDIN 19

Avila and

Behnke [2013]

Multi-leader Multi-

followers

Generation expansion under

imperfections such as indivis-

ibility of projects, risk aver-

sion and oligopolies investing

strategically.

Application on the Chilean power system.

Chang et al.

[2013]

Single leader, Single

follower

Social welfare function is con-

sidered composed of a con-

sumer’s suplus, producer su-

plus and the environmental

damage function of green house

gas. Linear demand function

assumed.

Analysis of feed-in-tarifs scheme and its ef-

fect on social welfare. Two power plants

considered: one that generates power by

using traditional fossil fuel, the other gen-

erates power by using renewable resources.

Campos et al.

[2012]

Multi-leader-follower

conjectural Stack-

elberg equilibrium

model.

Considers price-response con-

jectures.

Proposes a simple convex quadratic opti-

mization problem to analyze how market

competition changes with the number of

leaders or followers.

Bompard et al.

[2010b]

Stackelberg, Cournot,

Supply Function Equi-

librium (SFE), Conjec-

ture SFE.

Considers the ISO as simplified

optimal power flow problem.

Studying the effect of network constraints

on generation bidding strategy and market

price. Comparison between several game

theory representation. Application on the

IEEE 30 and 57 Bus test systems.

Lavigne et al.

[2000]

Stackelberg, Monopo-

listic pricing, and Per-

fect Competition.

Employment of MARKAL

(Market Allocation) model

to model both supply and

demand sectors.

Propose an original heuristic decomposi-

tion techniques to compute pure competi-

tion and Stackelberg equilibria. A large-

scale application to the energy system of

Quebes is reported and discussed.

2.3.5 Cournot Variation (II): General Conjectural Variations (CVs)

In all the previous types of competition examined, we have always assumed that when a firm

decides its optimal output which would maximizes its profit, the decisions of the other firms are

considered fixed. This means that the firm indeed assumes that all other rivals will maximize

their profits implementing similar logic, but that these decisions or outputs would not change

particularly due to changes in its own decisions. This might of course seem as an oversimplifica-

tion of real behavior, albeit -as seen- being fairly a good approximation in many cases especially

when considering general outlines for the market agents’ behaviors.

Bowley [1924] sought to improve on this point by introducing the concept of conjectural varia-

tions5. The idea is that a firm in an oligopolistic market believes that the quantity (or price) it

chooses will affect the quantities (or prices) chosen by its rivals. This belief is taken into account

by the firm when selecting the profit maximizing output level. The reactions of the rivals to

5Whereas in fact the term conjectural variation was coined in Frisch [1933]. [Dockner, 1992]
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the output decision of firm i, as subjectively perceived by firm i, is what is called conjectural

variation. To keep the convention we can simply represent this concept mathematically as:

p · qi = p[qi + q−i(qi)] · qi (2.10)

Here we can see that the output q−i(qi) from all firms other than i is assumed to be a function

of qi, or in other words the rivals are assumed to be reacting to the decision taken by the firm.

Again, if we take the first order optimality condition for this revenue function to find the profit

maximization expression we get:

MR = ∂(p · qi)/∂qi

= p+ (∂p/∂q)(1 + ∂q−i/∂qi)qi

= p+ (∂p/∂q)(1 + θ)qi (2.11)

The term θ represents the constant conjectural variation that the firm assumes will be the

reaction of its rivals. Indeed the estimation of this term is a complicated task and I intend to

briefly discuss it in a later part of this section. It is of course easy to see that if θ becomes

equal to zero, the marginal revenue in equation 2.11 becomes = p + (∂p/∂q)(1 + 0)qi which

is exactly the Cournot result obtained in 2.7, whereas if θ is equal to −1 we obtain MR = p

which is the perfectly competitive result we have seen in 2.5. Any value in between [0,-1] gives

an oligopoly behavior which is less aggressive than the Cournot model (which is regarded to

represent the extreme case of exercise of market power) but also less competitive than the

perfect competition model. Therefore, the conjectural variation model is very useful if one

wants to have the flexibility to represent different extents of market power exercised, although

this model also comes with a fair amount of criticism and limitations. The main criticism for

the conjectural variation concept, is that when Bowley introduced it he clearly had in mind a

dynamic phenomenon, although the analysis is a static one [Dockner, 1992]. Traditionally the

main criticism was summarized in the work of Friedman [1983] where he criticizes the conjectural

variations analysis in static models and lists several arguments against it:

1. The model is not actually dynamic, thus a dynamic interpretation is not correct.

2. The firms are assumed to maximize one-period profits rather than the discounted stream

of profits over a given planning horizon.

3. Firms have incorrect expectations about how their rivals will behave.

The third point especially received a lot of attention in literature, where many researchers have

tried to improve on the model in this particular point, giving rise to what is called “consistent

conjectural variation”. According to Perry [1982], a conjectural variation is consistent if it

is equivalent to the optimal response of the other firms at the equilibrium defined by that
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conjecture. In his work he includes many references that have addressed this issue, including his

own. Cabral [1995] on the other hand presented a view where many authors see that despite the

theoretical shortcoming for the conjectural variation model in representing dynamic games, it is

still a useful tool for many practical purposes if considered as a reduced form of the real model.

He elaborates that conjectural variations are “best interpreted as reduced form parameters

that summarize the intensity of rivalry that emerges from what may be complex patterns of

behavior”; in particular, from “the equilibrium of an (unmodeled) dynamic oligopolistic game”

[Farrell and Shapiro, 1990]. He proceeds to prove this idea himself where he models an explicit

dynamic game of which the CV solution is an exact reduced form. The dynamic game is a

quantity-setting oligopoly with the equilibrium under the following rules: in each period, each

firm produces some designated quantity. If in any period one firm alone deviates from its

designated action, then it is minimaxed for T periods (thus receiving a payoff of zero). For

some given value of the discount factor δ, there exists a unique solution (optimal equilibrium)

that maximizes total profits. His results assert that for each value of δ in a given open set, there

exists a value of conjectural variation (in our convention it is designated θ) such that, for any

linear oligopoly structure each firm’s quantity along the optimal equilibrium path is equal to

that firm’s quantity in the CV solution [Cabral, 1995]. This result although limited to the case

of linear oligopolies and for a particular class of equilibria of the dynamic game, still provides a

very important insight on the capabilities of conjectural variations models.

Since the conjectural variation model is the basis of this dissertation, it is important to care-

fully navigate through the recent literature to review what have been done in electricity market

modeling using this technique. Dı́az et al. [2010] reviews and analyses the main formulations

of conjectural equilibria applied to electricity markets. They illustrate five main different types

of conjectural variation formulation: (1) Cournot conjecture approach (which is basically the

CV model when we assume that the price conjecture is equal to zero), (2) conjectural variation

approach, (3) conjectural supply function approach where the conjecture for the firm i is the

derivative of the competitors’ production with respect to market price (further discussed in

subsection 2.3.6, (4) conjectural demand elasticity approach where the conjecture is the rela-

tive residual demand curve elasticity, and (5) conjectural price response approach where the

conjecture is the derivative of the market price with respect to the changes in production quan-

tities. Dı́az et al. [2010] noted that all these formulations (2 to 5) are equivalent, and that the

conjecture of any approach can be computed from that of any other. They also summarize

the literature on the publications that considers the conjectures as an exogenous variables, and

those which provides ways to calculate the conjectures endogenously in their models.

Table 2.4 summarized some of the most recent publications which makes use of the CV method.

First, we could see that some conjectural variations models allow for uncertainty analysis

through the introduction of stochastic variables, such as the work of Barquin et al. [2005]

and Campos et al. [2008]. Barquin et al. [2005] provide a stochastic representation of market
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equilibrium including its equivalence as an optimization problem. The main sources of stochas-

ticity in their model have been identified to be: uncertainty in hydro inflows, fuel prices, system

demand, generating units’ failures and competition behavior. They included the stochastic

variables through a scenario tree, and solve a case study with stochastic inflows showing the

model application. Campos et al. [2008] on the other hand propose a market model to represent

agents’ strategic behavior in energy markets, by making use of what they refer to as “possibility

distributions” to model the agents’ residual demand curve (RDC) which is considered as uncer-

tain 6, taking into account the risk-averse attitudes of the agents. The authors argue that the

“possibilistic” model is easier to solve than its probabilistic counterpart. The paper also pro-

poses a new and globally convergent Variation Inequality algorithm to solve the complementary

equilibrium constraints. They provide a case study including around 200 generation units and

more than 100,000 constraints and variables, and show that it can be easily solved using their

proposed method.

Most importantly and most relevant to the work presented in this dissertation are the works of

Delgadillo et al. [2013], Delgadillo and Reneses [2013], Campos et al. [2014], and Delgadillo and

Reneses [2015]. In fact, the model presented in this presentation is primarily extracted from

the models proposed in Delgadillo and Reneses [2013] and Campos et al. [2014]. Therefore, an

important emphasis is placed on these models which will be fully described in details in the

coming chapters. However, it is important to give here an overview of these models, since what

they share is that they consider the effect of the network constraints on the market outcomes

in different settings. Delgadillo et al. [2013] presents a conjectural-variation based equilibrium

model of a single-price electricity market taking into account the effect of network congestion on

the behavior of market agents. The single-price market is the one used in most of the European

countries, where suppliers are compensated uniformly with the same market price (most often

the marginal bidding price of the most expensive committed bid) in each “zone”. This differs

from the “nodal” pricing system where each zone is further broken down into many network

nodes, and each one of these nodes represents a unique price for the generation and demand

concerned with this node 7. This scheme is the one implemented for example in the United

States. The authors assume inelastic demand and provide a simple case study of only two

areas (zones) to study the effect on network congestion on the bidding strategy of the agents in

both zones. An important feature of their model is that the market equilibrium equations are

formulated as an equivalent minimization problem taking into account the network congestion.

Since if we only consider two areas power system (a sending area and a receiving area) as in

the work of Delgadillo et al. [2013], there is no need to solve a power flow model to represent

the network (as it consists of one line only). Delgadillo and Reneses [2013] expands on this

6The uncertainty stems from both the uncertainty in the competitors’ response and of the demand curve
7For a comprehensive explanation for the difference between the two schemes the reader is advised to refer to

Pérez-Arriaga [2014]
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concept by modeling a DC optimal power flow for the network representation, to allow for the

analysis of a model consisting of several sending and receiving areas instead of just one. The

main difference is that the network congestion is solved through modeling an optimal power

flow problem (which represents the System Operator’s control over the network security) to

figure out which lines are congested and how this congestion should be solved. The authors also

studied the effect of this network congestion on the bidding strategies of the suppliers, yet this

time solved on a three-areas network 8. Campos et al. [2014] provides a similar study to support

interconnectivity analysis for weakly connected systems, by considering the effect of network

congestion on the exercise of market power for two-zone electricity market. They propose for

their analysis a conjectural variation based model solved using Mixed Integer Programming.

Table 2.4: Representative Conjectural Variations models in electricity markets.

Reference Model Basis Assumptions Applications

Barquin et al.

[2005]

Conjectural Variation Uncertainty in hydro con-

ditions, demand, generating

units’ failures and fuel prices.

Medium term generation scheduling plan-

ning considering uncertainties in market

and system conditions.

Liu et al. [2007] Consistent conjectural

variation

Considers the conjectural vari-

ation term as a decision vari-

able and assume that in an

oligopoly, supplier’s objective

is to maximize the discounted

stream of profits over an infi-

nite planning period.

Studies the dynamic oligopolistic competi-

tion to explore the unique property of con-

sistent conjecture variation equilibrium in

electricity markets.

de Haro et al.

[2007]

General conjectural

variation

Implicit estimation of the con-

jectural variation term assum-

ing marginal cost consisting of:

fossil-fuel prices, thermal ef-

ficiencies, hydrothermal water

value, unit commitment cost

and capacity payments.

Suggesting a parameter inference method-

ology for conjectural variations based mod-

els called “advande inference estimation”.

Campos et al.

[2008]

General conjectural

variation

Considers the nonlinear resid-

ual demand curves to be rep-

resented by an uncertainty dis-

tribution depending on the pro-

duction of generators such as a

probability or a possibility dis-

tribution.

Considers the risk averse attitudes of

generation companies through uncertainty

analysis. Also, proposes a new and glob-

aly convergent Variational Inequality algo-

rithm to solve the equilibrium constraints.

Execution on real size problems.

8A detailed representation of this model and all the concepts mentioned will be provided in later chapter as
they are the basis of this present work.
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Vali and Kian

[2008]

Conjectural Variation Dynamic form of quantity

setting conjectural variations.

Linear inverse demand func-

tion.

New model of strategic bidding via learn-

ing quantity setting conjectural variations

for electricity markets.

Dı́az et al. [2010] Cournot, Conjectural

Variation, Conjec-

tural Supply function,

Conjectural demand

elasticity, Conjectural

price response

- Reviews and compares different types of

conjectural variation formulation applied

to electricity markets’ studies.

Ruiz et al.

[2010]

Conjectural Variation Assumes all producers have

identical cost functions. As-

sumes linear demand.

Analytical method for the analysis of: the

influence of changes on the reaction param-

eters of the producers -in cooperative and

non cooperative manners - on the market

outcomes, comprehensive analysis of the

case in which all producers are identical.

Alikhanzadeh

and Irving

[2012]

Conjectural Variation Assumed demand (and supply)

curves for the counterparty of

the bilateral market.

Bilateral market modeling combining a

conjectural variations equilibrium model

of an oligopolistic set of generators with

a corresponding oligopsonistic equilibrium

model of a set of supply companies.

Delgadillo et al.

[2013]

Conjectural variation Effect of congestion in network

lines. Two area system with

one network line.

Studies the effect of the congestion between

areas on the agents’ strategic behavior in a

single-priced electricity market.

Delgadillo and

Reneses [2013]

Conjectural variation Network representation by a

DC optimal power flow. As-

sumed costs for requirements of

increased or decreased genera-

tion for solving network conges-

tion.

Conjectural-variation based model of a

single-price electricity market considering

network congestion’s effect on GenCos

strategic bidding.

Campos et al.

[2014]

Conjectural Variation Single zone and two zones mar-

kets. Linear supply biding

curve. Transmission network

congestion.

New mathematical model for two-zone

electricity dual pricing computations using

mixed integer linear programming.

Kalashnikov

et al. [2014]

Consistent conjectural

variation

Relaxation of the assump-

tion of continuous differentia-

bility of the demand func-

tion. Quadratic structure of

the agents’ cost functions.

Study of the CV equilibrium in a model

of mixed oligopoly, establish the existence

and uniqueness results for the CV (called

exterior equilibrium for any set of feasible

conjectures and introduce the notion of in-

terior equilibrium by developing a consis-

tency criterion for the conjectues.
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Delgadillo and

Reneses [2015]

Conjectural Variation Network representation by an

AC optimal power flow to ex-

amine voltage level require-

ments in the network.

Studies the voltage requirements on com-

panies’ strategic behavior in a single-price

electricity market.

Finally, Delgadillo and Reneses [2015] as well studies the effect of network congestion, but this

time to analyze the voltage requirements of the network and how it affects the strategic behavior

of the suppliers in a single-price electricity market. To represent the voltage requirements,

the paper provides an AC optimal power flow for the network modeling. The conjectural-

variation equilibrium model is cast as a mixed complementarity problem instead of the equivalent

optimization problem previously proposed. A numerical example is provided illustrating three

nodes connected by three transmission lines and an analysis is provided for several cases of

different generation units’ ownership distribution by the competing companies in these three

nodes.

2.3.6 Conjectural Supply Function Equilibrium (CSF)

We have seen in subsection 2.3.5 how in conjectural variation competition, it is assumed that

the output of rival companies −i respond to the output of firm i according to the function

q−i(qi) in the equation 2.10. I.e. we have assumed that companies’ reaction is interpreted in

terms of “quantities” produced much like in Cournot competition. Conjectural Supply Function

equilibria (CSF) models differ in that they posit a response in terms of “prices”, i.e. output by

rival companies is anticipated to respond to price according to the function q−i(p). As a result,

the revenue of firm i in a conjectural supply function model is calculated according to:

p · qi = p[qi + q−i(p)] · qi (2.12)

Conjectural supply function is thought to have been applied to the study of market power for

the first time in the electricity sector in the work of Day et al. [2002]. Day et al. [2002] argue that

CSF models give modelers the flexibility to consider more realistic supply responses than any of

the previously mentioned market representations. They affirm that CSF suffers from the same

limitations of the general conjectural variation approach; that is any particular supply response

assumption will be somewhat arbitrary albeit it is possible to empirically estimate it from

historical market prices and marginal costs. They further argue that CSF models do not distort

the consumption behavior in response to high prices assumption; such as what is observed when

we rely on Cournot representations with artificially high and arbitrary elasticities to simulate

more intensive competition. In these Cournot models it is noted that demand decreases when

prices are high, when in actuality demand would not change, leading to a misrepresentation for

the economic and environmental market outcomes [Day et al., 2002].
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Table 2.5 summarizes some of the most recent studies that address the effect of network conges-

tion on the electricity markets’ agents behavior implementing the CSF approach. Hobbs and

Rijkers [2004] and Hobbs et al. [2004] combined represents a long study of the effect of different

network pricing schemes for congestion management on the oligopolistic behavior of generation

companies. They generalize the CSF model to include each generator’s conjectures concerning

how the price of transmission services will be affected by the amount of those services that

the generator requires. Different transmission system pricing policies are examined to provide

insights on their suitability and efficiency in terms of distortions they cause on market power,

they include [Hobbs and Rijkers, 2004]:

• Congestion pricing of networks, in which load flows are approximated by a linearized DC

model.

• Auctions of capacity along administratively predetermined paths, where these paths can

differ from the actual power flows.

• Export fees or other fixed (per megawatt hour) network use tariffs that have no necessary

relationship to congestion costs.

Another purpose of these papers, is to illustrate how a network-constrained market equilibrium

model formulated as a mixed complementarity problem (MCP) can be derived from models of

generator, Transmission System Operators (TSOs), and arbitrager behavior. In [Hobbs et al.,

2004], the authors apply the model to the northwestern Europe including the interconnection

between Belgium, the Netherlands, France, and Germany. Their application shows that the

inefficiencies in allocation of network prices can significantly exacerbate the effects of market

power. The second application is to show how generators might expect that transmission prices

will change when demands for transmission services are altered, they illustrate that such expec-

tations can lower revenues to transmission providers and weaken effective competition.

Barqúın et al. [2009] propose a model to compute CSF equilibrium in an electricity nodal

market with limited transmission capacity. They propose an optimization algorithm based on

a Gauss-Siedel approach to compute a fixed point, which if it converges to that point then

market equilibrium conditions are fulfilled, and therefore a market equilibrium is assumed to

be found. The model is applied to a case study consisting of a two-area system and a yearly

time horizon is analysed. The case is aimed to resemble the Iberian electricity system. They

conclude that the model converges to one equilibrium in some cases, while keeps cycling in

others as it is considered the conjectured price response as a function of congestion. Dı́az

et al. [2012] seek to extend on the type of studies presented in this section, by suggesting a

method for the endogenous computation of CSF, instead of the typical consideration as an

exogenous parameter, or estimation from historical data. They include the network congestion
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effect through DC optimal power flow formulation, and propose a method for calculating the

parameters of the linear supply function approximation for the generators’ supply curve by

solving two equilibria at two demand scenarios close enough, consistently with the network line

congestion. In this sense, the generators’ stratgies adapt to the market structure as well as to

the network status, providing more realistic results for long term analysis under different market

scenarios. The behavior of the proposed algorithm is analyzed with a simplified version of the

Iberian electricity market and a with a meshed three-node electricity market with a close-loop

interconnectinon system [Dı́az et al., 2012].

Table 2.5: Representative Conjectural Supply Function models in electricity markets.

Reference Model Basis Assumptions Applications

Day et al. [2002] Conjectural Supply

Function (CSF)

Afine demand and supply func-

tions. Nodal pricing network

scheme. Existense of Arbi-

trageur to eliminate price dif-

ference between nodes. Gener-

ators are price-takers with re-

spect to trasmission.

Formulation application on a case of

bilateral-contract market with arbitrager,

and a case with a PoolCo market. Appli-

cation to the England-Wales market with

and without taking into account trasmis-

sion constraints.

Hobbs and Rijk-

ers [2004]

Conjectural Supply

Function (CSF)

Considering network represen-

tation (nodal scheme) under

different assumptions for a

mixed transmission pricing sys-

tem: fixed transmission tariffs,

congestion-based pricing, auc-

tions of interface capacity.

Part I: Formulation of the conjectural sup-

ply function problem and formulation of

the solution technique as a Mixed Comple-

mentarity Problem.

Hobbs et al.

[2004]

Conjectural Supply

Function (CSF)

Considering network represen-

tation (nodal scheme) under

different assumptions for a

mixed transmission pricing sys-

tem: fixed transmission tariffs,

congestion-based pricing, auc-

tions of interface capacity.

Part II: Application of the proposed

method to northwest Europe case study.

Barqúın et al.

[2009]

Conjectural Supply

Function (CSF)

CSF assumed to be linear with

constant slopes. Conjectured

price response assumed to be

dependent on the system line’s

status (congested or not con-

gested).

A procedure based on solving an optimiza-

tion problem is proposed. Application on

a two-area multi-period case study.
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Dı́az et al. [2012] Conjectural Supply

Function (CSF)

DC optimal power flow for

transmission network represen-

tation.

Endogenous calculation of CSF response

of generators under network congestion.

Application on a simplified version of the

Iberian electricity market (MIBEL Spain-

Portugal).

2.3.7 Supply Function Equilibria (SFE)

Supply Function Equilibrium poses a fundamental difference from both Cournot and Bertrand

based models previously discusses. Originally proposed by Klemperer and Meyer [1989], supply

function equilibrium (SFE) posit the most general and most natural behavior of firms in a com-

petitive environment. Klemperer and Meyer [1989] argued that an oligopoly facing competition

in an uncertain environment (uncertain demand) would prefer to set supply functions (both

quantities as a function of price or vice versa), instead of competing only in prices (Bertrand

competition) or in quantities (Cournot competition). They observed that under such uncer-

tainty, and regardless of how the other firms decided to behave, the residual demand facing the

firm is not known in advance, and hence each firm has a variety of best response actions (profit

maximizing points) each corresponding to every possible residual demand. If firms will decide

on their strategies in advance of the realization of demand, then they are better off specifying

an entire supply curve (price-quantity pairs) rather than a single price or quantity. SFE of

course is not without its limitation. I intend to provide a brief overview of the SFE model, its

limitations, and some of the most notable application of this model in a context where network

constraints are taking into consideration in this section.

It is well known that SFE was introduced by Klemperer and Meyer [1989], and that it was

first used in the context of electricity markets by Green and Newbery [1992]. They analyzed

competition in the British electricity spot market using SFE approach and built the model to

accommodate for the circumstances of the British electricity sector at the time of privatization.

They assumed in their work two strategic generators who submit continuously differentiable

supply functions to the pool, rather than discrete step functions, and that the market equilibrium

was the static one-shot supply function equilibrium [Green and Newbery, 1992] [Von der Fehr

and Harbord, 1998]. To illustrate SFE consider the following; we are going to assume a linear

demand function, a quadratic convex cost function, and a linear supply function such as: cost

function of firm i

Ci(qi) = αiqi + βiq
2
i , βi > 0 (2.13)

Also assume firm i to bid a linear increasing supply function with two strategi parameters:

intercept θi and slope γi such that:

p = θi + γiqi, γi > 0 (2.14)
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And assume a linear decreasing demand function. The profit for firm i :

π = p · qi(p)− Ci(qi) (2.15)

Each firm optimizes its parameters, intercept θi and slope γi to maximize its profit, while the

market-clearing condition is satisfied (total production = total demand). The supply function

equilibrium implies that no player can increase its profit by unilaterally changing its bid supply

function. To solve the profit maximization problem, we set the first-order profit derivative to

be zero for all firms:

∂πi
∂p

= qi(p) +

[
p− ∂Ci(qi)

∂qi

]
∂qi(pi)

∂p
= 0, ∀i (2.16)

Combining this equation with the market clearing condition Demand(Q) =
I∑
i=1

qi we obtain:

qi(p) =

[
p− ∂Ci(qi)

∂qi

]−∂Q
∂p

+
I∑

v=1,v 6=i

∂qv(p)

∂p

 = 0, ∀i,∀v = i (2.17)

Any solution to these coupled differential equations such that each qi is non-decreasing over the

relevant range of prices is a SFE [Gao and Sheble, 2010]. However, the SFE may not exist since

it is a non-linear differential equation system. One important note is that the resulting supply

function equilibrium generally represent an intermediate level of competition, lying between

the Bertrand (or perfect competition) and the Cournot results. A drawback of SFE is that it

is very difficult to solve as it requires solving a set of differential equation. As we have seen

the optimization problems for the generators taking into account the network constraints are

inherently nonconvex which poses even a bigger challenge for the solution of these problems.

Nonetheless, SFE conjecture makes it attractive for many research purposes both seeking to

overcome its limitations or wish to examine the robustness of the results obtained from using

these models. Many research work have been done to propose solution methods and to provide

procedures to obtain a unique and stable equilibrium solution using the SFE formulation. Some

of the recent representative work in include [Liu et al., 2004], [Chen et al., 2005], [Rudkevich,

2005], [Langary et al., 2014], and [Rashedi and Kebriaei, 2014], where each author proposes

a solution method and discuss the existence and uniqueness of the solution for the SFE. I

intend to focus however on the publications that explicitly consider network representation in

the equilibrium solution of the market agents.

Table 2.6 summarizes some representative publications addressing this issue. In general, most

of the publications found assumes linearity in both the supply and demand curves, also almost

all consider that the pricing scheme for the market is the nodal pricing scheme, which is very
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reasonable considering that in a uniform pricing scheme, SFE would not necessarily add much

benefit for the estimation of the agents’ bidding behavior relative to the complication in the

calculations. Xian et al. [2004], Bompard et al. [2007], Liu and Wu [2007], Bompard et al.

[2010a], Gao and Sheble [2010] and Niknam et al. [2013] all consider a DC representation for

the network to take into account the effect of network congestion on the suppliers’ behavior in an

electricity market. The difference between these publications are mainly; in the solution method

they propose (e.g. non-linear complementarity problem, Interior point algorithm, heuristics,

etc.), in the size of the case study application, and the time scope (single period vs multi-

periods). Petoussis et al. [2007], Petoussis et al. [2013], and Soleymani [2013] on the other

hand consider an AC optimal power flow representation of the network, to take into account

requirements for the voltage level and the reactive power of the network.

Table 2.6: Representative Supply Function Equilibrium models in electricity markets.

Reference Model Basis Assumptions Applications

Xian et al.

[2004]

Supply Function Equi-

librium (SFE)

DC optimal power flow for

network representation. Lin-

ear cost functions for suppli-

ers. Linear demand curve.

Nodal scheme for the transmis-

sion network.

Bidding strategy based on linear supply

function cast as a nonlinear complemen-

tarity problem and solved by an inex-

act Levenberg-Marquardt-type algorithm.

Application on IEEE 30-bus test system.

Bompard et al.

[2007]

Supply Function Equi-

librium (SFE)

Nodal pricing scheme. Trans-

mission network representation

through DC optimal power

flow. Elastic demand.

Modeling the effect of different degrees of

demand elasticity on the strategic behavior

of generation companies and on network

congestions. Application on IEEE-30 bus

test system.

Liu and Wu

[2007]

Supply Function Equi-

librium (SFE)

DC optimal power flow. Nodal

pricing system.

Impact of network constraints on electric-

ity market equilibrium. Application on a

three-node system.

Petoussis et al.

[2007]

Supply Function Equi-

librium (SFE)

AC optimal power flow network

representation. considers net-

work losses. Considers the re-

quirements for reactive power.

Bidding strategy based on linear supply

function cast as a nonlinear complemen-

tarity problem and solved by an interior

point algorithm. Application on IEEE 14-

bus and 30-bus systems.

Bompard et al.

[2010a]

Supply Function Equi-

librium (SFE)

DC optimal power flow model.

Inelastic demand. Nodal pric-

ing.

Proposes and approach to find the SFE in

the constrained electricity market assum-

ing the slope of the supply function as a

decision variable. Application on IEEE-

118 bus test system.
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Gao and Sheble

[2010]

Supply Function Equi-

librium (SFE)

Considers multi-period situa-

tion. DC optimal power flow.

Model considers supply function equilib-

rium applied in a multi-perio and multiple-

market situation. The paper proposes a set

of Nash Equilibrium conditions based on

discrete time optimal control for the pro-

posed model.

Niknam et al.

[2013]

Supply Function Equi-

librium (SFE)

Linear cost function. One gen-

erator per node. Linear de-

mand function. Linear DC op-

timal power flow.

Proposes a new enhanced bat-inspired al-

gorithm to calculate the SFE of GenCos in

a network-constrained electricity market.

Petoussis et al.

[2013]

Supply Function Equi-

librium (SFE)

AC optimal power flow. Nodal

pricing scheme. Linear supply

function.

Examines the impact of the choice of pa-

rameterization method for the linear SFE

model on the market equilibrium solution,

considering network congestions. Proposes

a primal-dual nonlinear interior point algo-

rithm to find the equilibrium. Application

on systems ranging from 3 to 57 buses.

Soleymani

[2013]

Supply Function Equi-

librium (SFE)

Non linear AC power flow anal-

ysis. Assumes both active and

reactive poewr markets.

Determination of market equilibrium

points as well as a method for GenCos

to present their bidding strategies in the

ancillary service markets. Application on

IEEE 39 bus system.
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2.4 Risk and reliability assessment of electricity transmission

network

Risk management and quantified risk assessment are very important in the context of power

systems. A power system consists of many components, including generators, transmission

lines, cables, transformers, breakers, switches, protection and communication devices, and many

others. The default of any of them can provide a chance for a failure in the system. Therefore

many studies have attempted to quantify the different sources of risk inherent in the system

to show their effect on the power system’s cost and security levels. Risk in general, is the

product of the probability of occurrence of an undesired event and the negative consequence of

this occurrence. In the context of power systems, there is a degree of overlap in the concept of

“reliability” and that of “risk”. For example, the reliability of an electrical grid is the degree of

performance of delivering the electricity amount desired by customers within acceptable defined

standards. Since there are many chances that different components defaults resulting in these

requirements not satisfied; we see that a higher risk might indicate lower reliability. In this

section, in order to better illustrate where this current research work is positioned within the

existing literature. I attempt to provide a brief overview and examine selected publications that

have addressed the issue of risk and reliability assessment in power systems and in particular

that of the transmission network.

Table 2.7 summarizes selected publications addressing the risk and reliability assessment in the

planning and operation of the transmission network. The publications below can generally be

divided in explicitly addressing one of the following:

• Proposing a definition for a suitable risk index to assist in the evaluation of power network

operation (e.g. Rocchetta et al. [2015], Arroyo et al. [2010], Henneaux et al. [2012],

Mousavi et al. [2012], and Xiao and McCalley [2009]).

• Considering reliability assessment in the analysis of the network’s expansion and main-

tenance (e.g. Hooshmand et al. [2012], Alizadeh and Jadid [2011], Arroyo et al. [2010],

Volkanovski et al. [2009], and Zhao et al. [2009]).

• Considering risk analysis for system security in the short term network dispatch (e.g.

Zhang et al. [2014], and Wang et al. [2013]).

For risk indexes, there is no certain one defined that is more often used or can be considered

more suitable than the others. In fact authors compete in defining different indexes which could

be suitable for implementation in different cases and from the point of view of different users and

stakeholders. In general, they all follow the same basic definition: that is all indexes consider

the probability of an undesired event and the consequence of its occurrence. On the other
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hand, for reliability assessment it is somewhat different; there exists indexes measuring different

aspects of power system reliability; for example Loss of Load Probability (LOLP) quantifying

the probability of load loss [Allan et al., 2013], and System Average Interruption Duration Index

(SAIDI) measuring the average outage duration for each customer served [Allan et al., 2013].

Generally, the most common indexes are:

• Loss of load expectation (LOLE) (e.g. Hooshmand et al. [2012]).

• Loss of load cost (LOLC) (e.g. da Silva et al. [2010]).

• Energy Expected not Supplied (EENS) (e.g. Zhao et al. [2009]).

• Reliability improvement index (e.g. Chanda and Bhattacharjee [1998]).

Let us first consider the publications in the first category presented. Rocchetta et al. [2015]

develop a probabilistic risk assessment for a distributed generation (DG) system, taking into

account the effect of severe weather conditions which can impose a major threat and significantly

increase the failure rates of the lines. The weather scenarios are accounted for by means of a non-

sequential Monte-Carlo simulation, and their effects are included onto the probabilistic failure

models of the system components. The risk index is defined as the probability of the severe

weather condition multipied by the contingency of the line. The results show that indeed extreme

weather conditions leads to an increment in the expected system risk. Moreover, a comparison

between a system that includes DG with one that does not confirm the benefits of DG installation

in terms of bus voltage, line flows and post-contingency severity. Henneaux et al. [2012] aim to

provide a method to identify potential cascading scenarios and better calculate their frequency.

They apply their analysis using a Monte Carlo simulation to consider scenarios of coupling

between events in cascading failure, and the dynamic response of the grid to stochastic initiating

perturbations.

Mousavi et al. [2012] propose a risk assessment method for the effect of cascading outages that

could lead to a complete blackout. The cascading outage considers the effects of the active

power and the frequency response of the system. The risk index analyzed is based on the

Expected Load Not Served (ELNS) and Complementary Cumulative Density Function (CCDS)

which is calculated from the lost load data. Xiao and McCalley [2009] develop a probabilistic

risk index to assess real-time power system security level. It explicitly considers security levels

associated with low voltage and line overload withing a multi-objective framework using Non-

Sorting Geneatic Algorithm optimization method. Risk indices are defined as the low voltage

risk and overload risk for the assessment of the post contingency severity. They show that the

multi-objective approach results in a less risky and less costly operating conditions, and provides

a practical algorithm for implementation.
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Arroyo et al. [2010] as shown spans over two of the aforementioned categories; it presents a risk-

based approach for the transmission network expansion planning; therefore explicitly proposing

a risk index definition within a an expansion problem. The risk in this work is defined as the

risk of deliberate outages, i.e. intentional attacks which expose network planners to non-random

uncertainty of outages, having the need to plan in such a way that mitigates those outages within

budgetary limits. Risk index used in association with this type of low frequency and high impact

phenomena is modeled by a regret function, that is the regret felt by the network planner after

verifying that the selected decision is not optimal. The risk aversion of the network planners is

characterized by the minimax optimization of this regret function.

For the second group, Hooshmand et al. [2012] differs from the aforementioned studies in that

it considers reliability assessment of transmission network in deregulated power system. Which

means that the cost faced by the planner is not only the investment cost in new lines, but also

the congestion management cost, congestion surplus, and some others. Although no explicit

risk analysis is done, the study considers a reliability assessment for the transmission system

based on minimizing the EENS and the LOLE by a Monte-Carlo simulation approach. It

shows through an AC optimal power flow modeling of the problem how their proposed method

significantly improves the planning cost of the system.

Alizadeh and Jadid [2011] also proposes an expansion planning optimization problem considering

system reliability through hierarchical indices consisting of the Loss of Load Probability (LOLP)

and Expected Loss of Load (ELOL). It is suggested that for a large power system, the system

planner can use it as a tool to thoroughly eliminate the probable unsafe states of the system

(in terms of the reliability indices) by reinforcement of the system. A risk assessment in this

case would typically consider the economic quantification of the reliability indices with respect

to cost.

Volkanovski et al. [2009] integrate fault tree analysis and power flow model for the assessment

of power system reliability. The results identify the reliability measures related to a particular

network node and the reliability measures connected to the power system as a whole. The

study proposes the so called “importance measures” which are two risk measures; network risk

achievement worth (NRAW) and network risk reduction worth (NRRW) characterized by the

impact on the power system reliability, to identify systems deficiencies.

For the third group, Zhang et al. [2014] and Wang et al. [2013] as mentioned consider the short

term operation of the network. Zhang et al. [2014] considers the effect of increased uncertainty

in the operation of the power systems on the cost of operation. The sources of increased

uncertainties are considered to be due to the high penetration of renewables and depend on

several factors including market design, performance of renewable generation forecasting and

the specific dispatch procedure. They propose the usage of a Risk Limiting Dispatch (RLD)

model to study the effect of these uncertainties as well as network congestion on the dispatch
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procedures and the optimal cost. The RLD is formulated as a two stage optimization problem

where one stage is the real time optimal power flow, while the other is the day ahead stochastic

power flow. The latter model takes into account the expectation of the forecast and enforces a

constrain that limits the purchase of generation power within the acceptable range (risk range).

Wang et al. [2013] propose a concept for the modeling of risk-based security-constrained eco-

nomic dispatch. The risk is modeled as a product of contingency probability and overload

severity, three levels of severity are considered each considering a trade off between the system

security level and the system cost (chosen arbitrarily). They argue that including risk as-

sessment to the traditional (SCED) problem improves the economic performance of the power

system while enhancing the system’s overall security level. A case study test was applied to the

IEEE 9-bus system, and another one validated on a real power system (New England system).

Finally, although it has been shown in this review that many studies addressed the issue of

exercise of market power in an electricity market context, and especially due to transmission

network line congestion, as well as all the different studies that sought to quantify the risk faced

by the network operator in both the planning and control of the network, and specifically due

to reliability requirements, to the best of the author’s knowledge, no studies have considered

the calculation of the risk index for a network failures taking into account a combined measure

of energy not served, and market operation inefficiency. More specifically the well-fare loss

considered, quantified by the so called correction cost used in this dissertation.

Table 2.7: Selected publications considering risk and reliability of the transmission network.

Reference Application

Rocchetta et al. [2015] Develops a probabilistic risk assessment and risk-cost optimization framework

for distributed power generation systems , and taking the effects of extreme

weather conditions into account using non-sequential Monte-Carlo algorithm.

Zhang et al. [2014] Studies a two-stage stochastic economic dispatch problem to provide an ana-

lytic quantification and an intuitive understanding of the effects of uncertainties

and network congestion on the dispatch procedure and the optimal cost.

Wang et al. [2013] Proposes a Risk-Based Security-Constrained Economic Dispatch (RB-SCED)

applied on a case study of the IEEE 9-bus system and a real power system

(New England system).

Hooshmand et al.

[2012]

Proposes an AC model of transmission expansion planning, associated with

Reactive Power Planning using Monte Carlo simulation to determine system

reliability considered as the Expected Energy Not Supplied (EENS) and Loss

of Load Expectation (LOLE).
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Henneaux et al. [2012] Proposes a Monte-Carlo simulation model specifically developed to identify

dangerous cascading scenarios and better calculate their frequency.

Mousavi et al. [2012] Proposes a risk assessment method for power outages considernig the effect of

cascading network failure. The risk of blackout is quantified through a comple-

mentary cumulative density function and expected load not served (ELNS).

Alizadeh and Jadid

[2011]

DC power flow model for the transmission expansion planning including envi-

ronmental constraints and fuel supply limitations.

Arroyo et al. [2010] Proposes a risk-based approach for the transmission expansion planning con-

sidering deliberate outages. The risk aversion attitude is characterized by the

minimax weighted regret criterion.

Xiao and McCalley

[2009]

Proposes a risk based decision support model for secure network operation, for-

mulated as a multiobjective optimization for finding optimal trade off between

the security level and the cost, and solved using evolutionary algorithm.

Volkanovski et al.

[2009]

Proposes a method for power system reliability analysis using the fault tree

analysis approach. It shows that through the quantitative evaluation of the

fault trees it is possible to identify the most important elements in the power

system.

Zhao et al. [2009] Proposed method for transmission expansion planning using mixed integer non-

linear programming so that conflicting objectives can be optimized simultane-

ously.

Hamoud [2008] Describes a probabilistic approach for assessing the criticality of bulk transmis-

sion system components in the de-regulated electricity market.

Yamin et al. [2004] Considers the impact of transmission failure on a GenCos’ expected profit in a

competitive environment.



Chapter 3

Model Assumptions and Formulation

3.1 Overview

We proceed to describe in details the model formulation. As mentioned in Chapter 1, the aim

of this present study is to quantify the risk that the system operator is facing when operating

the network to ensure secure, reliable and economic dispatch of power. I extend on the notion

that has been previously and extensively studied which is that the quantitative risk the System

Operator is facing is in terms of “cost of energy not served (ENS)”, to also attempt to examine

the more subtle effects that such failures can induce in terms of strategic behavior of gener-

ators and the chance they have to exercise market power. It is well understood (and will be

further discussed), that typically the strategic behavior modeling methods covered in Chapter 2

represent medium to long term equilibrium behaviors of GenCos, that is at least from several

weeks to several years long. Line failures of course occur at a much less frequent pace and lasts

much shorter time periods (maximum could be one or two days [Billinton et al., 1989]) due

to the critical importance of those line remaining operational. Gaming behavior in this sense

is ought to give a general guideline for the quantification of the risk of different line failures,

and is not intended to represent real market prices nor propose what would be exactly the real

final generation scheduling. This “comparative” analysis could thus prove useful to identify the

effect of network security, not only in terms of cost for the energy not supplied, but also taking

into account the strategic behavior of market agents.

As seen in the literature review, almost all of the models that consider the GenCos bidding

behavior taking into account network constraints, are done so as bi-level models; a market

equilibrium model which examines the strategic behavior of GenCos within the notion of Nash

Equilibrium, and an optimization model which represents the network and the decisions facing

the network’s System Operator. These bi-level representation have shown to be the mostly used

not only while incorporating a specific market modeling technique, but generally in utilizing

37
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any of them. The bi-level representation indeed makes sense, the problem that the SO is facing

in the operation of the network on real time basis is to maximize social-welfare. This “welfare”

for the society as mentioned, is to ensure secure, uninterrupted, most economical, and least

polluting dispatch possible among other things. This problem in essence is an optimization

problem; a set of exogenous parameters which allows the SO to minimize or maximize one of

the decision variables involved (e.g. cost, security, emission) subject to system constraints. The

alternative for solving a bi-level model would be to combine both models in a single optimization

or equilibrium problem. Although if modeled correctly this would perhaps provide better and

more tractable result. One could argue however, that the ambiguity inherent in a two-stage

solution method in fact better resembles what we observe in reality; where there is no closed-

loop solutions or completely instantaneous exchange of information between the market agents

and the System Operator, leading to results that perhaps could be better simulated as separate

problems as presented here.

In this chapter, the model formulation is discussed in details. Two separate problems are

modeled; a market equilibrium model based on Conjectural-Variation technique, and a DC

optimal power flow. The equilibrium model is borrowed from the work of Delgadillo and Reneses

[2015], and the solution technique used is an adaptation of the work of Delgadillo et al. [2013]

and Delgadillo and Reneses [2013]. The proposed model’s main feature is that it considers the

market to be a “single-price” market, where all scheduled generators are paid the same market

price, regardless of their location on the network. This is one of three most common market

designs for electricity trading; the other two being the “zonal” pricing scheme widely adopted

in Europe, and the last being the nodal-price markets widely adopted in the United States and

Canada. It is perhaps of interest to first illustrate the general characteristics and differences

among those three schemes.

Nodal-Price, Zonal-price, and Single-Price electricity markets

There exist different regulatory options to deal with the allocation of limited transmission

capacity for trading among the market participants under normal market conditions. Typically,

these schemes can be combined in one of two groups: the regulatory schemes which involves

algorithms that solves a detailed representation of the transmission network (such as the nodal

pricing scheme), and those other which only consider a simplified one (such as the zonal pricing

and the single pricing ones) [Pérez-Arriaga, 2014].

Nodal Pricing applies security constrained economic dispatch to calculate a bus by bus Lo-

cational Marginal Prices (LMP), it reflects the value of energy at a specific location at the

time that it is delivered. Nodal pricing provides an accurate description of the technical and
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economic effects of the grid on the cost of electricity by internalizing the losses and congestion

effects in a single value that varies at each system node.

Zonal Pricing consists of using a single market price except where signigicant grid constraints

arise frequently between a limited number of sufficiently well-defined zones of the power system.

This pricing mechanism distinguishes energy prices by zone instead of nodes, and the same price

prevails at all nodes within a given zone.

Single Pricing completely ignores the transmission system (in terms of losses and congestions)

when the electricity market is cleared. This is typically in systems where supposedly no system-

atic or structural congestions or failures occur. In the few cases in which such constraints are

detected, the System Operator re-dispatches the system, determining which generation units

must withdraw from the system and which are to be included [Pérez-Arriaga, 2014].

3.2 Market Equilibrium Model: Conjectural-Variation based

Equilibrium

In electricity market, competing generation companies who wish to produce, have to participate

in what is called the day ahead market, by offering bids that consists of quantities and prices

pairs for next day production schedule to the market operator. The market operator aggregates

all these supply bids, and also collects and aggregates all the demand bids to construct the

supply-demand curve. The market operator rearranges all the bids received from the supply in

an ascending order (each generation unit considered separately), and each bid received from the

demand in a descending order, until the total generation equals the demand. Thus, the market

marginal price is set to the bid price of the last unit dispatched. In a single price market, this

price will be the same price used for the remuneration of all the units committed. If we do not

take into account the network constraints, equilibrium models are enough to study the type of

competition that could take place between the different companies; they can range in the degree

of complexity of representation of the competing firms (e.g. taking into account ramp rates,

start-up and shut-down costs, maintenance cost, etc.), by taking into account several sources of

uncertainties (e.g. stochastic demand, reliability of generation units, hydro inflow, etc.), or by

taking into consideration the dynamic nature of the problem allowing it to span over multiple

periods (hours, days, or even months).

3.2.1 General formulation of the equilibrium problem

We proceed to formulate the conjectural-variation equilibrium model proposed by Delgadillo

and Reneses [2015]. Let us assume in the simplest situations, that in an electricity market
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competition, the profit πi of the generation company i is equal to the revenues minus the costs

of the company; or

π = λ · qi − Ci(qi) ∀i (3.1)

Where λ is the single market clearing price resulting from the aggregate supply and demand

curves, qi is the production quantity of firm i, and Ci is the cost function of firm i as a function

of the quantity produced. The equilibrium point is found by expressing the first-order profit-

maximization condition for each generation company which yields

∂πi
∂qi

= λ+ qi ·
∂λ

∂qi
− ∂Ci(qi)

∂qi
= 0, ∀i (3.2)

The term ∂λ/∂qi is the conjecture price response or it is how each firm assumes that its quan-

tity decisions affect the market price as shown in the description of the conjectural variation

method in the literature survey. If we assume that the conjecture price response is equal to

θ = −∂λ/∂qi ≥ 0∀i and substitute into (3.2) we obtain:

λ− θ · qi =
∂Ci(qi)

∂qi
, ∀i (3.3)

In this manner, the market equilibrium is reached when the marginal revenue MRi [the left-

hand side of equation 3.3] is equal to the marginal cost MCi [the right-hand side of equation 3.3]

for each company i. Furthermore, in electric power systems, it is mandatory that the generation

and demand are balanced: ∑
i

qi = D (3.4)

The inverse demand curve, λ(D), is the relationship between market price and demand D. To

ensure the existence of the equilibrium, the inverse demand curve must satisfy certain properties.

This function is continuous, differentiable, monotone and strictly decreasing. In this simplest

form, the optimization problem of each firm would be to maximize its profit 3.1 taking into

consideration the conjecture price response for its quantities decisions, if we assume that each

company i owns more than just one generation unit j this can be expressed as:

max
λi,qi

λi ·
∑
j∈ji

qj −
∑
j∈ji

Cj(qj) (3.5)

Subject to:

λi = λ− θi ·

∑
j∈ji

qj −
∑
j∈ji

q∗j

 (3.6)

qj ≤ qmaxj ∀j. (3.7)

qj ≥ 0 ∀j. (3.8)
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It should be noted that here we changed the market equilibrium price λ with the market price λi

representing company i’s belief about what the market price is going to be. Hence it is necessary

to add constraint (3.6) which reflects the relationship between this believed price λi and the final

market price λ that results from the difference of the chosen supply quantity qj with respect

to the optimal quantity q∗j , multiplied by the conjectured price response θi. Constraint (3.7)

ensures that the production quantity of every unit j of firm i does not exceed its maximum limit

qmaxj , and constraint (3.8) ensures that no unit can produce negative quantities. It is important

to note than in the equilibrium state, this maximization problem needs to be solved for all firms

simultaneously, an important constraint in this case would be the demand balance equation

(3.4) for all generation units for all firms, this is constraint will be shared by all generation

companies and will be the link between all optimization problems. The market price λ will be

the dual variable of this demand balance equation. This will be further illustrated in details in

the following sections.

3.2.2 Effect of Network Representation and Line Failure on the Equilibrium

Formulation

We proceed to derive the formulation of the equilibrium problem if in this single-price market

we want to represent the network effect as proposed in Delgadillo and Reneses [2015]. If we

do not take into consideration the network representation, it is very probable that the schedule

resulting from the solution of the equilibrium problem may not be feasible or may exceed the

maximum capacity in lines. Moreover, in the case of line failures, it is assumed that the System

Operator will need to re-dispatch the generators to minimize the energy not served due to this

failure, and to ensure the system stability, in the sense that no other line becomes overloaded

perhaps leading to a cascade network failure. Although the model of Delgadillo and Reneses

[2015] is originally developed with the idea that the network representation has the aim of

eliminating overflows leading to congestions, it can be seen that the same principle proposed

could be used in a similar sense in which line failures would also lead to the need for re-dispatch

of the generators. Generation companies can anticipate the reaction of the system operator in

cases of network failures, allowing them the chance to exercise strategic behavior during these

periods, even though these failure typically would not last long due to maintenance activities.

The re-dispatch strategy assumed in the present work, is similar to the congestion management

mechanism discussed in Delgadillo et al. [2013]. A brief description of this mechanism is as

follows: network failures occurs unexpectedly, typically in real-time operation after the day-

ahead market clearing process. The SO in the day-ahead market receives price and quantity

bids from the agents about the production schedule, and other bids about what the firms

are willing to increase or reduce for the production of each unit with respect to the result of

the day-ahead market. The system operator would typically solve an optimal power flow to
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perform a security analysis of the system, taking into account the schedule proposed in the

day-ahead market. Normally this analysis would have the aim of identifying and eliminating

network congestion, however, in addition to this aim, if a network failure occurs, the system

operator will have to increase the production of some units and decrease the production of

other, to ensure the optimal and secure operation of the system. For those units that will

have to increase their production, the difference between the real time production and the day-

ahead market schedule will be paid at the price that the agents offered in his participation

in the congestion management mechanism (the secondary market after the day-ahead market,

as described above). On the other hand, if a unit is required to decrease its production, and

finally will not be producing the total quantity originally scheduled, it will be considered as a

charge that the company is paying equal to the difference in the real time quantity and the bid

quantity, multiplied by the day-ahead market price. Or in other words, the opportunity cost

that the company could have earned but finally did not. Obviously, the quantities increased

and decreased by the units are planned according to the lowest cost solution, which will have

to be represented in the optimization problem solved by the SO.

To illustrate this mathematically, the profit πi of firm i in a single-price market with a correction

market mechanism as described above will look like:

πi = λ ·
∑
j∈Ji

qj + γ ·
∑
j∈Ji

xj − λ ·
∑
j∈Ji

zj −
∑
j∈Ji

Cj (qj + xj − zj) , ∀i ∈ I (3.9)

where:

• λ is the day-ahead market clearing price.

• γ is the correction-market (secondary market) clearing price.

• qj are the scheduled quantities for each unit j in the day ahead market.

• xj are the increased quantities for each unit j requested by the system operator with

respect to the original scheduled quantities qj , due to network constraints.

• zj are the decreased quantities for each unit j requested by the system operator with

respect to the original scheduled quantities qj , due to network constraints.

• Cj is the cost for unit j as a function of real-time production quantities.

The first term represents the total revenue obtained from being scheduled in the day-ahead

market such as; λ is the day ahead market price multiplied by the total quantity produced qj

for all scheduled units j that belong to firm i. The second term represents the revenue earned

from the request of the system operator from firm i to increase any production quantities xi.

As discussed, this production increase xj will be paid at a different price γ corresponding to

the correction market price. The third term represents the opportunity cost that company i



Chapter 3. Model Assumption & Formulation - Islam ABDIN 43

incurs as a result of decreasing its production quantities by an amount zj , this opportunity cost

is equal to this reduced amount multiplied by the day-ahead market price. Finally, the last

term represents the firm’s production cost function for every unit Cj , the cost function could

be linear, quadratic or a step-function and depends on the quantity scheduled in the day-ahead

market qj plus the increased quantities xj minus the decreased quantities zj ; or in other words

what firm i is actually going to produce in real time based on the system operator’s decision.

Now we need to consider how the system operator will decide which units should decrease their

quantities to solve the network problem, especially if several units exist on the same bus where

it is required that the production decreases. Delgadillo et al. [2013] explain one of the possible

mechanisms, which is the one used in their model which is borrowed here, and represents how

this mechanism works in Spain: in the case of network congestion, the quantity reduced by the

units depends on what is called the contribution factor to this congestion, commonly referred to

as Generator Shift Factor. This factor expresses the change in the flow over the interconnection

line that results from increasing the generation of each unit at the exporting area [Delgadillo

et al., 2013]. In general, the unit with the highest contribution factor to the network problem

is reduced first, and the following units with highest factors will be reduced until the network

problem disappears. If we assume the simplest case, we can consider that all units in the

same bus which can solve the network problem have the same contribution factor. This would

be indeed logical in the case of a network problem induced by a line failure, in which is not

straightforward to attribute the cause of this failure to a specific unit on a specific bus. If we

assume this uniform contribution factor for all units, then the quantities reduced zj can be

expressed as a percentage of the original scheduled quantities qi such as:

zj = mj · qj (3.10)

where mj in this case will be the reduction factor which is the ratio of the quantity reduced zj

for unit j with respect to the original quantity scheduled. Thus equation (3.9) can be expressed

as:

πi = λ ·
∑
j∈Ji

(1−mj) · qj + γ ·
∑
j∈Ji

xj −
∑
j∈Ji

Cj ((1−mj) qj + xj) , ∀i ∈ I (3.11)

Equation 3.11 is the profit function for each firm considering its bid in the day-ahead market and

in the correction-market discussed. In order to express for each firm i its strategy of maximizing

its profit, we need to calculate the first-order optimality condition of this profit equation. It is

important to note however, that firm i needs to maximize its profit taking into consideration

both the revenue from the day ahead market and what it expects to have as a revenue from

the correction market. That is we need to calculate the first order optimality with respect to
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production quantity qj and increased production quantity xj . Thus we obtain:

∂πi
∂qj

= (1−mj) · λ+
∂λ

∂qj
·
∑
k∈Ji

(1−mk) · qk

− (1−mj) ·
∂Cj ((1−mj) qj + xj)

∂ ((1−mj) qj + xj)
= 0, ∀i ∈ I, ∀j ∈ Ji

(3.12)

∂πi
∂xj

= γ +
∂γ

∂xj
·
∑
k∈Ji

xk −
∂Cj ((1−mj) qj + xj)

∂ ((1−mj) qj + xj)
= 0, ∀i ∈ I, ∀j ∈ Ji (3.13)

The term [∂Cj ((1−mj) qj + xj) /∂ ((1−mj) qj + xj)] is the Marginal Cost of unit j evaluated

at the respective real time production, or MCj ((1−mj) qj + xj). If the cost function Cj is

linear, then the marginal cost will be a constant value. However, the model gives the flexibility

for different representation of the cost function other than the linear representation. Impor-

tant to note are the terms [∂λ/∂qj ] and [∂γ/∂xj ] which are the conjectured-price-response for

company i in the day-ahead market and that of the correction-market respectively. This is

how, in the model, the conjectural-variation is incorporated, or how firm i conjectures that its

choices in quantities will affect the market price and hence the decisions of the other firms. The

conjectured price responses for firm i are herein represented as:

θi = − ∂λ
∂qj

, ∀i ∈ I, ∀j ∈ Ji (3.14)

βi = − ∂γ

∂xj
, ∀i ∈ I, ∀j ∈ Ji (3.15)

θi being the conjectured-price response in the day-ahead market, and βi being that of the

correction market. As discussed in Chapter 2, the values of these parameters are difficult to

be endogenously calculated and are most often arbitrarily chosen to represent different levels of

competition. These conjectures can take continuous values between 0 and 1; where 0 represents

no conjecture assumption (or perfect competition behavior), and 1 represents the highest form

of exercise of market power (or Cournot competition behavior). We can see here that both

conjecturd-price responses θi and βi are assumed to be the same for all the units of the agent

regardless of their location, this is because as discussed, when we consider a single-price market,

the market clearing process does not take into account the power network, and the day-ahead

price will be the same for all areas. Therefore, the agent is indifferent to the location of its units

because modifying the production of any of them, the market price will be effected in the same

way. Hence, the constant conjectured-price response value.
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Substituting (3.14) and (3.15) in equations (3.12) and (3.13) respectively, and rearranging we

obtain:

λ = MCj ((1−mj) · qj + xj) +
θi

(1−mj)
·
∑
k∈Ji

(1−mk) · qk, ∀i ∈ I, ∀j ∈ Ji (3.16)

γ = MCj ((1−mj) · qj + xj) + βi ·
∑
k∈Ji

xk, ∀i ∈ I, ∀j ∈ Ji (3.17)

These very important equations (3.16) and (3.17) clearly show us how the day-ahead market

price λ and correction price γ are affected by the firm’s decisions in quantities qj and xj , by the

level of competition θi and βi, but above all, by the correction decision of real-time production

imposed by the SO due to system security and reliability constraint, which is represented here

primarily by the reduction factor mj . Of course these equations arranged in that manner

calculates the values of λ and γ for each unit j, thus only the marginal unit or in other words

the most expensive unit committed in the day-ahead market, and the one committed in the

correction market, are the ones which are setting the single market prices λ and γ respectively.

However, calculating those prices for each individual unit still gives a very important insight;

for any unit other than the marginal unit, the calculated λ and γ from equations (3.16) and

(3.17), result in what is called the apparent cost of the respective unit. This apparent cost

corresponds to an equivalent marginal cost that is perceived by the system participants when

this unit produces a determined quantity in the day-ahead market [Delgadillo and Reneses,

2013].

To understand this concept, consider for example how a line constraint, congestion or failure,

modifies the conjectured-price response of the agent and consequently the unit’s apparent cost

and the market price. If we take for example a case in the day-ahead market price equation

(3.16), where unit j does not affect and therefore can not correct the flow-gate’s congestion,

the factor mj is equal to 0. Leading to the apparent cost of this unit to be the marginal cost

MCj plus the conjectured-price response θi ·
∑
k∈Ji

(1−mk) · qk. If however the unit is required

to reduce its production, the factor mj is greater than 0. Thus, the conjectured-price response

θi is modified by the factor [1/(1−mj) > 1], leading to this unit’s increased apparent cost as

perceived by the firm. The unit seems more expensive because the agent anticipates that it

will have to reduce its production due to the system reliability requirement as imposed by the

system operator, and hence it foresees that he will lose a part of the planned profit resulting from

this unit’s production. This translation into the apparent cost of the unit could give the agent

incentive not to bid quantities with this unit in the day-ahead market if it is more profitable to

do so, resulting in a different bid portfolio and potentially a different marginal unit scheduling

leading to a different (and obviously higher) market price.

Finally, in the electricity market, the constraint that links all the optimization problems of all
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market participants is the demand-balance equation. The total generation scheduled from all

units belonging to all agents must meet the total demand in the system:

∑
j∈J

qj =
∑
a∈A

Da + losses (3.18)

∑
j∈J

xj =
∑
j∈J

mj · qj . (3.19)

where Da is the demand at bus a. Equations (3.18) and (3.19) are the power balance con-

strains in the day-ahead market and in the correction market respectively. Notice that in the

correction-market, the balance is between the total production increase requested (xj) and the

total production decrease imposed (mj · qj) or (zj) to ensure that the total demand remains

served even after implementing those changes.

Individual firm’s optimization problem

We proceed to gather all the concepts described above in order to formulate the individual firm’s

profit maximization problem. Each firm i will need to solve the following optimization problem

[Delgadillo and Reneses, 2015]:

max
λi,γi,qi,xi

λi ·
∑
j∈Ji

(1−mj) · qj + γi ·
∑
j∈Ji

xj −
∑
j∈Ji

C ((1−mj) · qj + xj) (3.20)

Subject to:

λi = λ∗ − θi ·

∑
j∈ji

qj −
∑
j∈ji

q∗j

 (3.21)

γi = γ∗ − βi ·

∑
j∈ji

xj −
∑
j∈ji

x∗j

 (3.22)

qj − qj ≥ 0 : (µj) ∀j (3.23)

qj · uj − xj ≥ 0 : (νj) ∀j (3.24)

qj − qj − xj ≥ 0 : (ξj) ∀j (3.25)

qj ≥ 0, xj ≥ 0 ∀j (3.26)

{mj , uj} ∈ arg Ξ (3.27)

where Indices:

• i is the firm index.

• j is the production unit index.
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Sets:

• J is the set of indices of production units.

• Ji is the set of indices of production units owned by Firm i.

• Ξ is the set of decision variables of the optimization problem solved by the system operator

(DC optimal power flow problem), described in details in the next section.

Parameters:

• C is the cost for unit j as a function of real-time production quantities.

• θi is the conjectured price response of firm i in the day ahead market.

• βi is the conjectured price response of firm i in the correction market.

• qj is the maximum production capacity for unit j.

• mj is the reduction factor for the units j that will need to reduce their production relative

to their original schedule to solve the network problem.

• uj is a binary-variable which is equal to 1 if unit j has to increase its production in the

correction mechanism, and 0 otherwise.

Variables

• λi is the assumption made by firm i for the day-ahead market clearing price.

• γi is the assumption made by firm i for the correction market clearing price.

• qj are the scheduled quantities for each unit j in the day ahead market.

• xj are the incremented quantities for each unit j requested by the system operator in the

correction mechanism.

• µj , νj , and ξj are the dual-variables for constraints (3.23), (3.24) and (3.25) respectively.

• λ∗ is the real single-market price in equilibrium.

• γ∗ is the real correction market price in equilibrium.

• q∗j are the optimal quantities produced in the equilibrium state.

• x∗j are the final production increments in the equilibrium state.

Equation (3.20) is the objective function to be maximized for each firm, described in full-details

in the previous section. Constraints (3.21) and (3.22) represent how the firm conjectures that

the electricity prices will change if the company changed its production; each company i has an

estimation of the prices in the day-head and in the correction market λi and γi. This estimation

λi is different (less) than the real market price λ∗ as long as the firm does not produce its optimal

quantity q∗j . The firm seeks to maximize its revenue by increasing the price as much as it could,
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therefore this constraint models the incentive that the firm produces at the optimal quantity

q∗j so as to reach that the price estimated λi or γi is equal to the equilibrium market prices.

Since all firms will behave in the same manner looking for optimal values while satisfying those

constraints, and since the prices λ∗ and γ∗ are the same and shared by all companies, then the

choice for the production for any unit belonging to any company affecting these market prices

will also affect the decisions reached for other firms, until an equilibrium is reached. Constraints

(3.23)-(3.26) are the boundaries of the decision variables. Important to note is how in constraint

(3.24), unit j is only allowed to increase its production in the correction mechanism based on the

recommendation of the system operator, which is communicated through the binary variable uj .

This variable uj is a binary decision variable from the subsequent problem of real time network

operation, and is equal to 1 only when the corresponding generation unit is required to increase

the production. Finally, equation (3.27) indicates that both the input parameters for this profit

maximization problem mj and uj are decision variables in the system operator’s DC optimal

power flow problem described in the next section.

Now that the optimization problem for each firm is defined, the next step is to try to find

the market equilibrium solution. The equilibrium as described in chapter 2 in which all firms

decide on their quantity bids such as no firm has an incentive to deviate unilaterally from this

decision, or what we mentioned as the Nash Equilibrium. As a concept, in order to achieve

this mathematically in the model, we need to solve all the optimization problems for all firms i

simultaneously. This can be achieved through various methods; Delgadillo and Reneses [2013]

proposes a method in which all the optimization problems are expressed as a single quadratic

optimization problem possessing some special characteristics. On the other hand, in Delgadillo

and Reneses [2015], the authors proposed that the simultaneous solution for all the profit max-

imization problem to be expressed and solved as a Mixed Complementarity Problem (MCP).

In essence, this is done by gathering together the first-order optimality conditions for all com-

panies and then adding the market-clearing conditions in a single problem which defines the

mixed complementarity problem.

The constraints of the proposed formulation represents the Karush-Kuhn-Tucker (KKT) con-

ditions of the maximization problem (3.20)-(3.27). I chose to express the problem as the MCP

proposed in Delgadillo and Reneses [2015] since there exist ready solvers to solve such problems

(such as the PATH solver in GAMS language) and because of reported problems of convergence

in the other equivalent quadratic optimization formulation proposed. A detailed representation

follows in the next section.
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Equilibrium Problem formulation

Mixed-Complementarity Problem (MCP)

Equations (3.28)-(3.34) define the MCP which solves the profit maximization problems for all

agents simultaneously. An MCP problem is typically read as follows. Find (λ∗, γ∗, q∗j , x
∗
j)

such that:

∑
j∈J

qj = D : (λ unrestricted) (3.28)

∑
j∈J

xj = Y : (γ unrestricted) (3.29)

0 ≤ µj ⊥ qj − q∗j ≥ 0, ∀j ∈ Ji, ∀i ∈ I (3.30)

0 ≤ νj ⊥ qj · uj − x∗j ≥ 0, ∀j ∈ Ji,∀i ∈ I (3.31)

0 ≤ ξj ⊥ qj − q∗j − x∗j ≥ 0, ∀j ∈ Ji, ∀i ∈ I (3.32)

0 ≤ q∗j ⊥− (1−mj) · λ∗ + θi ·
∑
j∈Ji

(1−mj) · q∗j

+ (1−mj) ·MCj
(
(1−mj) · q∗j + x∗j

)
+ µj + ξj ≥ 0, ∀j ∈ Ji, ∀i ∈ I

(3.33)

0 ≤ x∗j ⊥ −γ∗ + βi ·
∑
j∈Ji

x∗j +MCj
(
(1−mj) · q∗j + x∗j

)
+ νj + ξj ≥ 0, ∀j ∈ Ji,∀i ∈ I

(3.34)

Constraints (3.28) and (3.29) represents the supply-demand balance equations in the day-ahead

market and in the correction market respectively. Constraint (3.28) ensures that the total

production of all units j regardless of which firm is owning which unit is equal to the total

market demand D. This constraint links all the production of all generation units together

and the market price λ is the dual variable (or shadow price) of this constraint. Similarly for

(3.29), the total increment in production imposed by the system operator in the correction

market should be equal to the total decrements required Y , to ensure that the total generation

and demand remains balanced after the correction. The correction market price γ is the dual-

variable resulting from this constraint. The dual-variables λ and γ represents how much it costs

the system to supply an extra unit of electricity (or more accurately a marginal unitary increase

in the right-hand side of the equation) if there is a unitary increase in demand D (or a marginal

unitary increase in the left-hand side of the equation. This extra unit production cost is the

marginal cost of the most expensive unit scheduled, and hence it represent the market clearing

prices. Important to note is that the dual-variables λ and γ are unrestricted, which means that

no bounds should be imposed on these variables for the calculation. Constraints (3.30)-(3.34) are

the Karush-Kuhn-Tucker (KKT) conditions of the maximization problem (3.20)-(3.27) for each
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company i. The “perp” operator (⊥) denotes the inner product of two vectors equal to zero. It is

important to note that in constraints (3.33) and (3.34), the variables λi and γi are substituted by

constraints (3.21) and (3.22) respectively. Moreover, since the solution of the MCP corresponds

to the equilibrium, production variables qj and xj in the maximization problem are replaced

by the equilibrium variables q∗j and x∗j in the MCP problem, respectively. The dual variables

µj , νj , and ξj from the maximization problem are incorporated into constraints (3.33) and (3.34)

of the MCP. For the generation units j whose optimal productions q∗j and x∗j are less than the

maximum values qj , constraints (3.23)-(3.25) are not binding and therefore those dual-variable

µj , νj , and ξj are equal to zero. If we remove those variables from constraints (3.33) and (3.34)

and rearrange them we obtain:

λ∗ = MCj
(
(1−mj) · q∗j + x∗j

)
+

θi
(1−mj)

·
∑
k∈Ji

(1−mk) · q∗k, ∀i ∈ I, ∀j ∈ Ji. (3.35)

γ∗ = MCj
(
(1−mj) · q∗j + x∗j

)
+ βi ·

∑
k∈Ji

x∗k, ∀i ∈ I, ∀j ∈ Ji. (3.36)

Which are exactly the same equations (3.16) and (3.17) obtained in the previous section. Those

equations follows the same description provided above regarding how they represent the apparent

cost of the unit. Or the unit cost perceived by the system (the firms and the system operator)

due to the anticipated change in production relative to the original schedule.

To summarize, the above equations represent the conjectural-variation equilibrium problem of an

electricity market. Where generation firms decide their supply bids in the day-ahead market,

while taking into consideration the network constraints through the decisions of the system

operator in the correction market. Firms in the formulation can undergo strategic behavior

modeled through the conjectured-price response in the day-ahead market as θi and that in the

correction market as βi. It has been mentioned that the decision of the system operator is

communicated via the input parameters mj and uj which are the active power reduction factor,

and the chosen unit commitment decision respectively. We proceed to illustrate how those

input parameters are obtained as decision variables from the following DC optimal power flow

problem.

3.3 Direct-Current (DC) Optimal Power Flow Model

As previously discussed, the technical representation of the electricity grid is modeled through a

DC optimal power flow problem. This problem illustrates the decision that the system operator

needs to take shortly before real-time dispatch, and after receiving the final supply bids and

demand bids from the market participants. The SO is required to take many aspects in his

operational decisions for the network; essentially the supply security, network reliability, and
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economic operation. The security of supply is of course one of the most important aspects and

its aim is to ensure that all demands are served. The reliability of the network is also critical

to ensure that the network is operated under both its thermal limits and its voltage limits, and

finally the operation of the network must be accomplished under minimum cost to maximize

the social welfare the society. Each of these aspects is represented in the SO’s problem through

several constraints. Since the SO possesses most information about every aspect of the system

(supposedly having all the information about the supply as well about the demand), the optimal

power flow problem can have many details and many constraints to reflect all these information

in the SO’s decisions. Constraints for example taking into account -in addition to the production

and active power flows in lines- parameters such as the upward and downward ramp-rate limits

for the generation units, the unit commitment of these units, the temporal relationship in units’

scheduling, the spatial relationship between hydro-reservoirs, the uncertainties in demand, and

many more can be included in this problem. In this work however, we consider only the simplest

case for the representation of the network operation, which is a deterministic DC power flow

taking into account active power production only, similar to what is proposed by Delgadillo and

Reneses [2013]. One of the reasons of this simplified model in this phase of the research work,

is to be able to clearly and easily make sense of the results and identify a meaningful reliability

index solely emphasized on the strategic behavior of the generation companies, without other

distortions (more on that in the results chapter).

We formulate a Mixed-Integer Linear programming problem, to obtain the solution for the

decisions-set faced by the SO such as:

min
Ξ

∑
j∈J

ACXj · xΩ
j + (K −ACZj) · zΩ

j (3.37)

Subject to: ∑
j∈Ja

qΩ
j +

∑
a′∈N

F(a,a′) −Da = 0, ∀a, a′ ∈ N, (a, a′) ∈ L (3.38)

qΩ
j = qj + xΩ

j − zΩ
j , ∀j ∈ J (3.39)

zΩ
j = mj · qj , ∀j ∈ J (3.40)

0 ≤ qΩ
j ≤ qj , ∀j ∈ J (3.41)

0 ≤ xΩ
j ≤ qj · uj , ∀j ∈ J (3.42)

0 ≤ zΩ
j ≤ qj · (1− uj), ∀j ∈ J (3.43)

F(a,a′) = mc(a,a′)B(a,a′) (δa − δa′) , ∀a, a′ ∈ N, (a, a′) ∈ L (3.44)

mc(a,a′)B(a,a′) (δa − δa′) ≤ V ×Amp(a,a′), ∀a, a′ ∈ N, (a, a′) ∈ L (3.45)
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−mc(a,a′)B(a,a′) (δa − δa′) ≤ V ×Amp(a,a′), ∀a, a′ ∈ N, (a, a′) ∈ L (3.46)

mj ∈ [0, 1], ∀j ∈ J (3.47)

uj ∈ {0, 1}, ∀j ∈ J (3.48)

where Indices:

• a is the electricity bus index.

• N is the bus number.

Sets:

• Ω The decision set of the optimal power flow problem.

• L Set containing the existing flowgate between the bus combination (a, a′).

Parameters:

• K is a constant that is higher than the maximum value of ACZj .

• Da is the demand at bus a [MW].

• qj is the net production of unit j obtained from the market-equilibrium problem [MW].

• ACXj is the apparent cost of units j which will be required to increase their productions

with respect to the original supply bids [e/ MW].

• ACZj is the apparent cost of units j which will be required to decrease their productions

with respect to the original supply bids [e/ MW].

• mc(a,a′) is the mechanical state of existing flow-gates [0,1].

• B(a,a′) is the line susceptance [1 / Ohm].

• V Nominal voltage of the network (constant and is equal to 1 per unit) [kV].

• Amp(a,a′) is the ampacity of the flow-gates (a, a′) [A].

Variables:

• xΩ
j is the increments required in the power production of unit j in the optimal power flow

problem [MW].

• zΩ
j is the decrements required in the power production of unit j in the optimal power flow

problem [MW].

• qΩ
j is the optimal net production of unit j (after taking into account the increments xj

and the decrements zj in the optimal power flow problem [MW].

• mj is the reduction factor of units j.

• uj is a binary-variable that is equal to 1 if unit j is required to increase its production (or

if xj > 0) and is equal to 0 otherwise.
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• F(a,a′) is the active power flow from bus a to bus a′ if (a, a′) 6= 0 [MW].

• δa is the voltage phase angle at bus a [rad].

First, let us consider the objective function for the optimal power flow problem. As previously

mentioned, there are several aims the System Operator seeks to achieve in terms of system

security, reliability and cost. Any of these aims could formulate the objective function of the

problem at hand, and the others being the constraints that should have values that remains

within certain limits. Typically, system cost is the aspect that is sought to be minimized,

given that the security and reliability aspects remain within certain permissible tolerances. As

such, the cost that is much more often minimized in the OPF problems, is the “cost of power

dispatch”; the S.O. would typically (and correctly so) seek to run the optimization problem while

scheduling the generators in the increasing cost order in a way that is feasible to the network.

Minimizing the “marginal cost” or the “bid price” of the generation units therefore seems to be

the most logical and straightforward problem to consider. However, the minimization problem

that Delgadillo and Reneses [2015] proposes -and which is considered here- does not consider

the units marginal cost, but rather it consider the apparent cost of those units as described in a

previous section. For my own purposes in using this model, the reason why I used the apparent

cost as the objective function parameter is explained in the “Solution Method” section 3.4, as

it is more related to the philosophy of the solution implemented. For now, I proceed to explain

how the objective function (3.37) is constructed, and what it means.

The objective function (3.37) is to find the values for the decision variables set Ξ = (qΩ
j , xΩ

j , zΩ
j ,

mj , uj , F(a,a′), δa) by minimizing the total cost of changes in the production quantities

due to network constraints, with respect to the original schedule . Obviously, the

amount of change in quantities is represented by the variable xj and zj which are the increments

and the decrements respectively. The meaning of the apparent cost of increasing generation

units ACXj , and that of the apparent cost of the decreasing generation units ACZj have been

previously explained in section (3.2.2), where they are the same as equations (3.17) and (3.16)

respectively. Or for a more clear illustration consider the following:

ACXj = MCj ((1−mj) · qj + xj) + βi ·
∑
k∈Ji

xk, ∀i ∈ I, ∀j ∈ Ji. (3.49)

ACZj = MCj ((1−mj) · qj + xj) +
θi

(1−mj)
·
∑
k∈Ji

(1−mk) · qk, ∀i ∈ I, ∀j ∈ Ji. (3.50)

It can be easily seen that both apparent costs will always be equal or higher than the marginal

cost MCj of the generation units. This is an obvious observation since we consider strategic

behavior of firms to exercise market power expressed by the conjectured-price response θi and

βi. Yet, how does the change in the apparent cost affects the system operator’s minimization

problem? In fact, those units whose apparent cost ACXj is lowest, will be the ones selected to
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increase their production if needed. This is straightforwardly seen if we consider that ACXj is

basically the marginal cost of each unit. On the other hand for those units whose apparent cost

ACZj is highest, will be the ones selected to decrease their production, again a straightforward

conclusion. However, this is not straightforwardly calculated in the minimization problem; since

the problem minimizes zΩ
j which is the decrease in production, then the units with the highest

cost should be the ones allowed to have positive values of zΩ
j , this is ensured through subtracting

ACZj from the constant K which is higher in value, to make the more expensive units space

in the algorithm to obtain the highest reduction values. Other less obvious implication for the

use of the apparent cost, however, will be discussed in the next section.

Now that we have set the optimal power flow problem to minimize the changing cost of gener-

ation, we formulate the technical constraints of the network. Constraint (3.38) is the supply-

demand balance equation considering the power flows in lines F(a,a′) which are either entering

(positive) or leaving (negative) bus a. Constraint (3.39) ensures that the final production qΩ
j of

generation unit f in the optimal power flow problem, is equal to the the original production bid

qj plus or minus whatever amount which needs to be increased or decreased respectively. Hence,

ensuring the logical consistency of the OPF problem. Constraint (3.40) calculates the reduction

factor mj as the ratio between the production decrease decision zΩ
j of each unit with respect to

its original production schedule. Constraints (3.41)-(3.43) are the boundaries for the decision

variable. Worthy to note that here the binary variable uj ensures that any generation unit j

can not both increase and decrease its production simultaneously. The variable uj will only be

equal to 1 if the unit is required to increase its production based on the solution of the optimal

power flow problem. Constraints (3.43)-(3.45) describe the technical limits for the transmission

lines. These equation link the susceptance and bus voltage angles with the maximum capacity

for the lines. The binary variable mc(a,a′) represents the mechanical state of the transmission

lines, where 1 means the line is operation and 0 means that the line is not, and that is how the

failure of lines is introduced in the model. Finally, constraints (3.47) and (3.48) set the limits

for the variables mj and uj respectively; mj being a factor can have any continuous values

between 0 and 1, while the binary variable uj can only have values of either 0 or 1.

The simplified OPF is thus defined, as well the Market-Equilibrium problem. Since now we have

the tools to represent the decision making of both the generation companies and the system

operator, we proceed to illustrate how those models combined can be solved.

3.4 Model Solution Method

First we consider each problem separately; for the Mixed Complementarity Problem (3.28)-

(3.34), the problem is formulated on the GAMS (General Algebraic Modeling System) software
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[GAMS Development Corporation, 2014], and is solved using the PATH solver 1 [Dirkse et al.,

2013]. For the DC optimal power flow, the problem is formulated on Matlab [MATLAB, 2013].

Since the optimal power flow problem contains the binary decision variable uj , it has to be

solved as a Mixed Integer Linear Programming (MILP) to ensure that the variable only takes

the values of [1,0]. The ILOG - CPLEX solver is used to solve this MILP in Matlab.

Now we consider the solution for the general problem; we have seen that mj and uj are con-

sidered input parameters with respect to the equilibrium problem (3.28)-(3.34), representing

the anticipated decision the the SO is taking regarding the decrease or increase of a certain

generation unit j. Since these values mj and uj are decision variables in the optimal power flow

problem (3.37)-(3.48), an iterative method is then needed to be implemented in order to find the

general optimal solution of both problems. Delgadillo and Reneses [2013] and Delgadillo and

Reneses [2015] propose a simple iterative method that have been implemented in the present

work with some modifications, the solution method is as follows:

1. Set a smoothing factor α such as α ∈ [0, 1].

2. Set an iteration counter (υ) and initialize it with 1.

3. Initialize the variables m
(υ)
j = 0, u

(υ)
j = 0, D(υ) =

∑
a

Loada, Y
(υ) = 0. These values

corresponds to the case with no technical constraints (without taking into account the

system operator’s decisions).

4. Solve the Mixed Complementarity Problem (3.28)-(3.34). We obtain a solution for q∗j , x
∗
j ,

λ∗, γ∗.

5. Update the active power q
(υ)
j , the power increment x

(υ)
j , the day-ahead market price λ(υ)

and the correction-market price γ(υ) following:

q
(υ)
j = α · q∗j + (1− α) · q(υ−1)

j (3.51)

x
(υ)
j = α · x∗j + (1− α) · x(υ−1)

j (3.52)

λ(υ) = α · λ∗ + (1− α) · λ(υ−1) (3.53)

γ(υ) = α · γ∗ + (1− α) · γ(υ−1) (3.54)

6. Evaluate the apparent cost for the units required to increase their production ACXj , and

the apparent cost for the units required to decrease their productions ACZj at the current

1The PATH solver relies on a generalization of the Newton’s numerical method for solving a square system of
non-linear equations, it relies on a non-smooth reformulation of the complementarity problem [Ferris and Munson,
2000].
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iteration (υ) such as:

ACX
(υ)
j = MC

((
1−m(υ)

j

)
· q(υ)
j + x

(υ)
j

)
+ βi ·

∑
j∈Ji

x
(υ)
j (3.55)

ACZ
(υ)
j = MC

((
1−m(υ)

j

)
· q(υ)
j + x

(υ)
j

)
+

θi(
1−m(υ)

j

) ·∑
j∈Ji

(
1−m(υ)

j

)
· q(υ)
j (3.56)

7. Solve the DC-OPF (3.37)-(3.48). This gives a solution for qΩ
j , xΩ

j , zΩ
j , mj , uj , F(a,a′), δa.

8. Update the optimal power flow total active power q
Ω(υ)
j , power increments x

Ω(υ)
j and power

decrements z
Ω(υ)
j as following:

q
Ω(υ)
j = α · qΩ

j + (1− α) · qΩ(υ−1)
j (3.57)

x
Ω(υ)
j = α · xΩ

j + (1− α) · xΩ(υ−1)
j (3.58)

z
Ω(υ)
j = α · zΩ

j + (1− α) · zΩ(υ−1)
j (3.59)

9. Calculate an updated value for the variables D(υ) and Y (υ) such as:

D(υ) =
∑
j∈J

q
Ω(υ)
j (3.60)

Y (υ) =
∑
j∈J

z
Ω(υ)
j (3.61)

10. If the difference in the values of the variables in iteration (υ) and iteration (υ−1) is lower

than a tolerance value (ε), the algorithm stops; otherwise the iteration counter increases

by one and go to step 4.

The smoothing factor α is in fact a critical component for this solution method; it can be

considered as a learning rate and is primarily used to achieve a smooth convergence in the value

of the variables. This is especially difficult in problems involving iterative solutions and more

specifically when it is highly non-linear as in the present case. Of course if α is equal to zero,

then that means that the iteration will just keep solving the original problem with the initialized

values over and over with no change at all in the solution obtained in the first iteration. If α is

equal to 1, however, the solution is obtained using only the information given in the previous

iteration.

I have previously mentioned, that an explanation for the reason why the apparent costs ACXj

and ACZj are specifically used in this model, rather than any other cost definition (which would

also provide a solution to the problem). In fact, in order to illustrate the reason, it is important

to consider the iterative nature of the solution proposed. If we examine the problem from the
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point of view of the SO, we see that since he/she is simulating the reactions (behavior) of the

market agents with respect to his decisions in the network operations, then in each iteration

we consider that the GenCos are learning what the SO would typically do, and thus reacting

accordingly. This reaction changes in each iteration as they anticipate the next step, until both

equilibrium problem solution and OPF solution no longer update their values in the iterative

interaction, indicating that this would be the final equilibrium (learning) state if this interaction

occurred enough number of times to allow it. In this case, considering a fixed marginal cost in

the OPF problem for each unit would fail to capture the effect of this learning procedure that

the market agents are undergoing which for example, make them value less the units anticipated

to be required to reduce their production (and therefore provide an opportunity cost (loss) for

the GenCo). The apparent cost provides therefore, a very important “behavioral” link between

the two problems that better captures the rational behavior of real time agents. It provides the

system operators’ OPF problem with the insights to see how those firms value their units based

on his/her decisions, and hence be able to solve the network problem accordingly.

3.5 Risk Index and Assessment Method

Risk is a composite index meant to reflect both the probability and the severity of a negative

outcome in certain operating conditions. To adopt a quantitative definition of risk, we refer to

the most commonly used one as the product of the probability of occurrence of an undesired

event (e.g. transmission network line failure) and the related consequence [Zio, 2007]. To

take into account the negative effect of several undesired events, the definition is extended by

summing all the relevant contribution. More formally we can express the risk definition as:

Risk(R) =
∑
n

p(En) · Sev(En) (3.62)

where n is the event index, p(En) is the probability of occurrence of the undesired event En, and

Sev(En) is the severity of the related consequences. Typically in the context of power systems,

system contingency is considered as the unexpected loss of one or more of several elements:

distribution line, transformer, or generator. In addition, commonly severity function is related

to the cost of energy not served (ENS). Below I proceed to define those functions for the purpose

of our study.

3.5.1 Probability Model

Very simply, the undesired event considered for this case study is the transmission line failure.

There can be different considerations for the calculation of the probability of occurrence of such

failure; for instance one could consider failures related to the active power overflows in the
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networks, those could result from dispatch errors or the default of a critical generator leading

to power flows instabilities. On the other hand, one could consider the probability of extreme

weather conditions which endangers the power lines, or even the intentional power outages

discussed in the literature review. Moreover, the calculation of probability of a line failure can

be related to voltage stability for instance due to high dependence on the stochastic renewable

resources generation. Each of these cases leads to different definitions of the probability model.

Here, we adhere to the intrinsic failure characteristics of the power lines themselves, relying

on extrapolating their historical calculation in terms of of the permanent outage rate for each

line, and their respective outage duration in hours. Formally, the probability model for the risk

assessment in this work is defined as:

p(El) =
ORl · Tl
Hrs

, ∀l (3.63)

where l is the transmission line index, ORl is the outage rate per year per line, Tl is the average

outage duration for transmission line l in hours, and Hrs is the total number of hours per year.

It should be noted that we changed the general index n in the former equation to the line index

l as we are concerned with calculating the undesired event being the line failure probability, if

no line failure is considered then the probability function is simply equal to zero.

3.5.2 Severity calculation

We consider an economic severity function, meaning that the risk impact is considered to in-

fluence the system cost. Since we are aiming at adopting the SO’s point of view for running

the system. We refer to his/her main objective which is operating the system in a way that

maximizes the social welfare. Of course the major target for the SO is to ensure that all net-

work demand is served. In an electricity market context, this means all demand which can be

“economically” served (i.e. bidding higher than the final market clearing price). We consider

the typical reliability index for not meeting all demand in the network that is the amount of

Energy Not Served (ENS) quantified through the cost of ENS in (e/ MWh) as being one of the

consequences the SO is facing. Moreover, since we consider oligopolistic market behavior, many

economic inefficiencies arise due to the exercise of the market power by the market agents. In

the previous sections we discussed about those agents’ strategic behaviors in anticipating the

re-dispatch of the network as a consequence of line failures supported by a correction market,

and the objective of the SO to make sure that these changes are implemented as efficiently as

possible. We thus define another severity factor, which is the cost of correcting the dispatch

schedule in the case of line failure. The reason we consider this cost, is that this is an ineffi-

ciency that arises in the power system when run in a market context. In a centralized system,

no correction costs would exist as the SO has full control on the generators. We formally define
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the schedule correction cost as:

ACZj · zj +ACXj · xj (3.64)

These terms have been discussed in details in section 3.3. The first one is the cost of decreasing

the scheduled generation relative to the original day-ahead market clearing, while the second

is the cost of increasing them. Both upwards and downwards corrections incurred to ensure

feasible system dispatch. It should be noted that these costs do not necessarily reflect real

monetary transactions in running the power system2, i.e. the SO does not in fact pay the

generators which will be required to reduce their productions (only those required to increase

are paid the correction market prices), however, we still consider this cost for the SO as it

reflects a reduction in the social-welfare in the system in general. Formally, the severity cost

that the SO is facing in case of a line failure is considered to be:

Sev(El) = (censa · ENSa,l) + (ACZj,l · zj,l) + (ACXj,l · xj,l), ∀a,∀j,∀l (3.65)

where (censa) is the cost of energy not served at network bus a, and ENSa,l is the amount of

energy not served at bus a in the case of failure of line l. ACZj,l and ACXj,l are the apparent

cost of units required to decrease their production and the apparent cost of those required

to increase their production respectively, in case of line l failure. Finally zj,l and xj,l are the

production amount decreases or increases respectively, in case of line l failure.

The risk assessment index considered is thus calculated as:

Risk(R) =
∑
l

ORl · Tl
Hrs

·[(censa · ENSa,l) + (ACZj,l · zj,l) + (ACXj,l · xj,l)] , ∀a,∀j (3.66)

It should be noted that the severity function definition provided is the main focus of this study.

For the probability function; several factors can be considered within the forced outage rates

(e.g. probability of failure due to extreme weather conditions). In the next chapter, we apply

the model formulated and the risk index defined on a numerical example, and provide a critical

analysis of the results obtained.

2Cost allocation in case of failures is a complex topic and highly depend on the regulations designed for each
system, therefore we will not be addressing them here, only considering the cost as an inefficiency that need to
be accounted for.



Chapter 4

Numerical Example, Results and

Analysis

In this Chapter, I proceed to illustrate the numerical example built for the analysis of the

model, and discuss the results obtained. In the first section, all the characteristics of the network

constructed are shown and discussed, and in the second section the model results under different

line failures are portrayed. In the last section, a critical analysis is provided with emphasis on

the difficulties and limitations of the method used.

4.1 Numerical Example

The electricity system under study is a simple 6-bus system adapted from the IEEE 6-bus

Reliability Test System [Billinton et al., 1989]. This system although being small (to permit the

conduct of a large number of reliability studies with reasonable solution time) provides sufficient

details to reflect the actual complexities involved in a practical reliability analysis. In general,

the method applied for the study on this system, and the algorithm developed is reported to be

suitable for applications including larger and more complex systems [Delgadillo and Reneses,

2013]. I adhere however to this simple network in order to provide concise explanation of the

results, and to remain able to provide intuitive analysis, with more complex case studies to

follow in later phases of the research.

4.1.1 Overview of the Reliability Test System (RBTS)

Figure 4.1 shows the single line diagram of the adapted RBTS system. As shown the system

has 2 PV buses (generator buses) containing 11 generation units, 4 PQ buses (load buses), and

60
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Figure 4.1: Single line diagram of the Reliability Test System Modeled.

7 transmission lines. The minimum and the maximum ratings of the generating units are 5

MW and 40 MW respectively. The voltage level of the transmission system is 230 kV. The

system has a peak load of 185 MW and the total installed capacity amounts to 240 MW. The

transmission network’s line lengths in Figure 4.1 are shown in proportion to their actual lengths

summarizes in Table 4.3.

Table 4.1 summarizes the percentage of the generation mix per technology, 46% of the network

generation capacity are assumed to be coming from thermal units (Coal, Gas, fuel, etc.), while

54% are assumed to be generated from hydro units. Table 4.2 illustrates the breakdown of the

total available capacity and demand per network bus. Demand is distributed from bus 2 to bus 6,

and the values shown in the table represent the peak hour demand values. Generation however,

is concentrated along two network buses only, which is a logical and typical representation

for the positioning of traditional fuel and hydro units, since hydro resources might often be

concentrated in certain locations on the grid, as well as there might be social requirements for

the highly polluting thermal units to be located away from the consumers. Finally, since I do

not consider reactive power requirements and reactive power flows in the network, it is assumed

that bus voltages magnitude is constant and is equal to 1 per unit. In addition the power factor

at each bus is equal to 1.
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Table 4.1: Generation Mix in the Electricity System.

MW %

Thermal 110 46
Hydro 130 54

Table 4.2: Bus Power Capacity and Bus Demand.

Bus
Total Available
Capacity (MW)

Demand (MW)

1 110 0
2 130 20
3 0 85
4 0 40
5 0 20
6 0 20

Total 240 185

Table 4.3: Transmission lines Characterization

Buses

Line From To
Line Length

(Km)
Resistance R

(p.u.)
Reactance X

(p.u)
Susceptance B

(p.u)

1 1 2 200 0.0912 0.480 2.010
2 1 3 75 0.0342 0.180 5.362
3 2 4 250 0.1140 0.600 1.608
4 3 4 50 0.0228 0.120 8.043
5 3 5 50 0.0228 0.120 8.043
6 4 5 50 0.0228 0.120 8.043
7 5 6 50 0.0228 0.120 8.043

100 MVA base
230 kV base

With regards to the transmission lines, Table 4.3 summarizes the technical characteristics of the

transmission flow-gates. Lines resistances, reactances and line susceptances are reported in the

table as “per unit” values. They are calculated on the basis of the system’s base power rating

being 100 MVA and voltage rating being 230 kV.

4.1.2 Detailed Generation Units’ Breakdown in the Network

We further breakdown the network to illustrate the detailed topology of the system, and the

positioning of each generation unit along the network. Figure 4.2 shows the individual generation

units’ placement on the electricity grid. It is worthy to note that although previously mentioned

that the total number of units in the network grid are 11 units, the single line diagram 4.2 is
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Table 4.4: Generation Units Capacity and Cost Data.

Variable costs, e/MWh

Unit Num. Technology Capacity (MW) Fuel Cost Operation Cost Total Cost

1 Thermal 10 10 3.5 13.5
2 Thermal 20 9.75 2.75 12.5
3 Thermal 40 9.75 2.5 12.25
4 Thermal 40 9.50 2.5 12
5 Hydro 5 0.65 0.15 0.8
6 Hydro 5 0.65 0.15 0.8
7 Hydro 20 0.45 0.05 0.5
8 Hydro 20 0.45 0.05 0.5
9 Hydro 20 0.45 0.05 0.5
10 Hydro 20 0.45 0.05 0.5
11 Hydro 40 0.45 0.05 0.5

showing 17 units. This is because 6 of these units (units 12 to unit 17) are virtual generators

which do not actually produce active power. Their presence in the network is for calculating

the amount of energy not served in their respective demand bus.

Table 4.4 shows the technical capacities and the cost data for each of the generation unit (the

real units providing active power). The maximum unit capacities as seen range from 5 MW to

40 MW, where we do not consider losses due to the efficiency of the units, or in other words the

efficiency factor is assumed to be equal to 1. The cost data represent the units’ variable costs

in (e/ MWh), it consists of the fuel cost and other operation cost such as the maintenance

cost. The major component of the units’ variable cost is the fuel cost as seen in Table 4.4,

being the cost directly associated with energy production. This is clearly understood for the

thermal units as the cost of different types of oil, fuel or gas. For hydro units however, the

fuel cost represents the “water value” or “water rental charges”. This is a concept that links

the temporal aspect for the usage of water as a source of electricity, since the way that a firm

values its water content in stored in its reservoirs depends on many uncertainties such as the

forecast for hydro inflows, the uncertainties in future market prices, regulation requirements in

certain countries, and many others. A comprehensive discussion about the calculation of water

value is beyond the scope of this dissertation, especially given the static nature of the model in

this phase of the research work, which eliminates the need for a detailed consideration of this

concept. The water charge is considered here as an exogenous parameter with the values shown

in the table.

Next, we consider the “virtual generators” which are added to the network buses. The aim of

these generators is to provide an easy and convenient way for modeling the load that is not

served due to network failure. In case a certain bus load can not be satisfied with the real

(and cheaper) active power coming from generators 1 to 11, then one or several of the virtual

generators 12 to 13 will have to produce a “virtual” quantity to compensate for the difference
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Figure 4.2: Generation units’ placement on the RBTS Single line diagram.

and keeps the supply-demand balance equation (3.38) in the OPF problem satisfied. The virtual

production value of these units are thus the amount of energy not served in each bus; Table 4.5

illustrates the capacity limits and cost data for those virtual units. First, we discuss how the

cost of these units, or rather the cost of energy not served (ENS) is obtained. There are many

ways to calculate the ENS cost as it differs from one system to another and from one country

to another, depending on the policy implemented. In Billinton et al. [1989] it can be found a

well detailed guideline for the cost of interruption of power per sector (industrial, household,

commercial) as a function of duration. In this work, however, quite simply we calculate the

ENS cost per MW as having a constant value for all network demand, dependent only on the

distribution of the load among the network buses. The ENS value is multiplied by the percentage

of the demand in a certain bus with respect to the total network demand, resulting in the values

shown in Table 4.5.

Regarding the capacity of those generators, although being virtual units they can possibly have

unlimited capacity, the limits are set to the maximum amount of load in each network bus to

ensure that no virtual generator compensates for loads located in any other place in the network

other than the bus where it is located. This is especially crucial when we consider the cost of
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Table 4.5: Load Shedding (Virtual Generators) cost data.

Unit Num. Technology Capacity (MW) ENS Cost e/MWh

13 Virtual Generator 20 132.973
14 Virtual Generator 85 175.135
15 Virtual Generator 40 145.946
16 Virtual Generator 20 132.973
17 Virtual Generator 20 132.973

Table 4.6: Transmission lines Capacities and outage data.

Buses

Line From To
Maximum

Line Capacity
(MW)

Permanent
Outage rate
(per year)

Outage
duration
(hours)

1 1 2 40 4.0 15.0
2 1 3 95 1.5 15.0
3 2 4 70 5.0 15.0
4 3 4 20 1.0 15.0
5 3 5 20 1.0 15.0
6 4 5 30 1.0 15.0
7 5 6 20 2.0 15.0

ENS due to the failures of different lines, which leads to load shedding in different locations in the

network. Finally, Table 4.6 illustrates the transmission lines maximum capacity assumptions,

and the outage data expressed as the number of complete line outage for each line per year,

and finally the duration of this outage in hours. Important to note is that the maximum lines

capacities are not chosen arbitrarily, rather they represent the maximum stable loading of these

lines under the current load and supply distributed on the network. The logic behind that, is

the attempt to simulate the behavior of the network taking into consideration that lines are

operated close to their maximum technical capacity. This is a reasonable assumption when we

consider a market context where suppliers have incentives to earn as much profit as possible, as

well as the long term nature of the transmission network expansion, that could pertain a certain

network capacity for long time although both demand and supply are constantly increasing.

Therefore, it is of interest to study the risk assessment of this network close to its maximum

capacity.

4.1.3 Market Agents Representation

Since we consider a market representation for the electricity system operation and power dis-

patch, we need to characterize the competition aspect in the network. Typically, we have seen

in Chapter 3 that we assume i firms each owning j ∈ Ji generation units competing in the single
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Table 4.7: Characterization of market agents.

Agent θi βi Unit Bus Marginal Cost qj

i
[
e/MWh
MW

] [
e/MWh
MW

]
j a [e/MWh] [MW ]

1 0.02 0.1
3 1 12.25 40
4 1 12.00 40
5 2 0.80 5

2 0.02 0.1
8 2 0.50 20
10 2 0.50 20
11 2 0.50 40

3 0.01 0.1
1 1 13.50 10
2 1 12.50 20
6 2 0.80 5

4 0.02 0.1
7 2 0.50 20
9 2 0.50 20

price market. Table 4.7 illustrates how the different generation units are distributed among the

different market agents. In this case study, it is assumed that 4 generation companies (GenCos)

are competing. As shown, each one of the four companies owns a different generation mix and

has in its possession different total production capacities divided differently along the network

buses. The important thing to note is the conjecture-price response terms θi and βi for the com-

petition in the day-ahead market, and for the correction market respectively. For the day-ahead

market, firms are assumed to have the ability to exercise market power as most often electricity

market are governed by an oligopoly behavior rather than a perfectly competitive behavior. As

previously mentioned the value of θi can range from 0 to 1; 0 simulating the perfect competition,

and 1 simulating the Cournot competition. The value for θi in this work is chosen arbitrarily,

although in different existing publications there are methods to calculate it endogenously. In

this work θi is chosen to be equal to 0.02 for firms 1, 2 and 4, and equal to 0.01 for firm 3.

Since we assume that a firm having the smallest capacity and the most expensive units (such

as firm 3) would typically have less chances to exercise market power than the firms which have

“cheaper” units more often scheduled. For the correction market, firms are also assumed to be

excising market power, the conjecture-price response (βi) for this market is set to be equal to

0.1 for all firms. Finally, for simplicity it is assumed that the cost functions for the generation

units are linear, although as seen in the problem formulation, it can accommodate non-linear

functions.

For the case studies considered; it is assumed in each of them that a line failure occurs indepen-

dently; i.e. no more than one line fails simultaneously. Line failure is modeled by setting the

mechanical state parameter for the respective line equal to zero in equations (3.45) and (3.46)

in the optimal power flow problem. Both the equilibrium model (3.28)-(3.36) and the optimal

power flow model (3.37)-(3.48) are solved iteratively, for each case of the line failures (line 1
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to line 7). The benchmark for the study is the case solved with no line failure, which is the

normal operating scenario for peak hour in our system. In the next section, I start by showing

the model results for the base case of no line failure, then proceed to present and analyze the

results of all other failure cases considered and subsequently propose a definition for the risk

index. The different cases solved are enumerated from “Case I” to “Case VI”, where “Case I”

represents the solution for the instance of line 1 failure up to “Case VI” which represents that

of line 7 failure. Finally, it is important to note that the smoothing factor “α” discussed in the

“solution method” section 3.4 is set throughout this whole study at a fixed value equal to “0.1”.

4.2 Results and Analysis I - Reduced bids in case of load shed-

ding requirement

There is one important note regarding the results of the different case studies. We separate the

results reported below in two sets; the first is solved assuming that in the case of the anticipation

of a definite load shedding in the network resulting from a line failure, market agents are allowed

to submit reduced bids that matches only the remaining demand that can be reached in case

of this failure. This means that constraint (3.28) in the equilibrium problem considers the total

demand minus the load that is not possible to be reached. The other results set relaxes this

assumption, and regardless of the load shedding reason or amount in the network, market agents

must keep bidding for the total demand. A discussion is provided regarding these assumptions

at the end of the results section.

4.2.1 Base Case: No Network Lines Failures

We start with the basic case of no network failures under oligopolistic behavior. The network is

originally characterized in a manner that allows for the operation of the network with no lines

congestion if line failure occurs, albeit being operated near their capacity limits. In this case we

expect that only the market forces (price competition for supply and demand) will determine the

dispatched schedule in the network; as there is no technical interventions necessary. Moreover,

since the total installed generation capacity in the network exceeds the total demand even in

the peak hour modeled; the only logical power dispatch will be based on the least cost solution

(merit order) even as competition is modeled through the conjecture-price response assumption.

The solution for the base case is reached by solving both equilibrium model and the optimal

power flow model iteratively leaving all network lines operational. Table 4.8 summarizes the

most important results obtained in this case. As shown, the results are arranged by the units’

location on the network and then further arranged in decreasing marginal cost order. Table 4.8a
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shows the active power production by the generation units, while Table 4.8b illustrates the

amount of load not served in each demand bus due to any technical limitations in the network.

Let us first consider the results illustrated in Table 4.8a. The “Final Schedule” results are the

results of the optimal power flow problem as seen by the system operator and taking into account

the network constraints. The SO receives the initial agents’ quantity bids, run the optimal

power flow with the objective of minimizing the cost of changes (if needed) in the original bids,

and obtain the final feasible schedules as those seen in the table. The “Agents’ Bids” column

summarizes the quantity bidding decision of the market agents (electricity suppliers) after they

have anticipated the SO’s possible reaction in case of network limitations and the need of re-

dispatch. ACZ and ACX illustrated are the apparent costs of the units in the day-ahead market

and in the correction market respectively, and finally the reduction factor results are shown.
Table 4.8: Model solution for Base Case

(a) Active power production

Bus Unit Marginal Cost Final Schedule Agents’ Bids ACZ ACX Reduction
a j [e/ MWh] qΩ

j [MWh] qj [MWh] [e/ MWh] [e/ MWh] Factor

1

1 13.50 0.00 0.00 13.75 13.50 0.00
2 12.50 20.00 20.00 12.75 12.50 0.00
3 12.25 0.00 0.00 13.05 12.25 0.00
4 12.00 35.00 35.00 12.80 12.00 0.00

2

5 0.80 5.00 5.00 1.60 0.80 0.00
6 0.80 5.00 5.00 1.05 0.80 0.00
7 0.50 20.00 20.00 1.30 0.50 0.00
8 0.50 20.00 20.00 2.10 0.50 0.00
9 0.50 20.00 20.00 1.30 0.50 0.00
10 0.50 20.00 20.00 2.10 0.50 0.00
11 0.50 40.00 40.00 2.10 0.50 0.00

Oligopoly: θi 6= 0, βi 6= 0
Market Price λ = 12.80 e/ MWh
Correction Price γ = 0 e/ MWh

(b) Load Shedding

Bus Unit Final Schedule ENS cost
a j [MWh] [e/ MWh]

2 13 0.00 132.973
3 14 0.00 175.135
4 15 0.00 145.946
5 16 0.00 132.973
6 17 0.00 132.973

As expected, since there is no line failures, only the market equilibrium solution dictates the

power dispatch in the network, the SO does not face any technical constraints and therefore
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accepts the agents’ bids as received, resulting in exactly the same final schedule. The market

agents are modeled as competing, and therefore only the lowest cost units are dispatched. This

is consistent with the results obtained where only the units with lowest costs are committed.

Important to note however, is that since we assume an oligopoly market, agents’ are modeled

as exercising market power (and therefore bidding higher than their marginal costs); this means

that the bidding prices are not those illustrated in the “marginal cost” column, but rather

those shown in the (ACZ) one which considers the conjecture-price response. We see then that

all the cheap hydro units located on bus 2 are dispatched at maximum production capacities,

whereas for thermal units located on bus 1, only the cheapest one (unit 2) is scheduled at full

capacity. The second cheapest (unit 4) is partially dispatched and is therefore considered the

“marginal unit” setting the day-ahead market price (λ), this value is obtained as being that of

the dual-variable of the supply-demand balance equation (3.28) in the equilibrium problem.

Regarding the subsequent correction market, it is quite straightforward to see that since there is

no need for any unit to increase its generation beyond what it was originally bid, the correction

market price (γ) is equal to zero. Moreover, the agents are not competing at all in this market

and this is the reason why the apparent cost of the units in this market (ACX) is the same as

the marginal costs of the units. Same applies for units required to decrease their production,

since there is no reduction requirements, the reduction factors are equal to zero. This ensures

that there is no incentive for the market participants to alter their behavior from what they

would have originally bid by not taking into account the network constraints. Finally, Table 4.8b

confirms that there is no demand which will not be served. The virtual units (13 to 17) are not

producing indicating that there is no need to compensate for any energy loss.

Base Case: Comparison to Perfect Competition

I find it perhaps of interest before departing from the base case shown above, to consider how the

model outcome would differ if we assume perfectly competitive behavior (i.e. no conjectured-

price response θi, βi = 0) in the day-ahead market and in the correction market. The aim

for this illustration is to validate the logical consistency of the model, in the sense that we

should expect to see lower market prices if agents are perfectly competitive than if they de-facto

exercise market power. Table 4.9 summarizes the most important results under the assumption

of perfect competition (4.9a) and under the previous assumption of oligopoly behavior (4.9b).

Here however, the units are rearranged according to the agents’ ownership to better illustrate

how each agent’s behavior is specifically different for each competition level.

It is interesting to see in the scenario of perfect competition, how the apparent cost of the units

in both the day-ahead market and the correction market (ACZ and ACX) are the same as the

marginal costs of the units; i.e. agents are bidding their marginal costs. This indeed leads
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Table 4.9: Comparison of model solution for the base case under perfect competition and under oligopolistic
behavior

(a) Perfect Competition θi, βi = 0

Agent Unit Final Schedule Agents’ Bids ACZ ACX
i j qΩ

j [MWh] qj [MWh] [e/ MWh] [e/ MWh]

1
3 15.00 15.00 12.25 12.25
4 40.00 40.00 12.00 12.00
5 5.00 5.00 0.80 0.80

2
8 20.00 20.00 0.50 0.50
10 20.00 20.00 0.50 0.50
11 40.00 40.00 0.50 0.50

3
1 0.00 0.00 13.50 13.50
2 0.00 0.00 12.50 12.50
6 5.00 5.00 0.80 0.80

4
7 20.00 20.00 0.50 0.50
9 20.00 20.00 0.50 0.50

Market Price λ = 12.25 e/ MWh

(b) Oligopoly θi, βi 6= 0

Agent Unit Final Schedule Agents’ Bids ACZ ACX
i j qΩ

j [MWh] qj [MWh] [e/ MWh] [e/ MWh]

1
3 0.00 0.00 13.05 12.25
4 35.00 35.00 12.80 12.00
5 5.00 5.00 1.60 0.80

2
8 20.00 20.00 2.10 0.50
10 20.00 20.00 2.10 0.50
11 40.00 40.00 2.10 0.50

3
1 0.00 0.00 13.75 13.50
2 20.00 20.00 12.75 12.50
6 5.00 5.00 1.05 0.80

4
7 20.00 20.00 1.30 0.50
9 20.00 20.00 1.30 0.50

Market Price λ = 12.80 e/ MWh

to a lower day-ahead market price of (λ = 12.25 e/MWh) as opposed to the higher oligopoly

price of (λ = 12.80 e/MWh). However we notice that the merit order of the units is different

(leading to different dispatch of units 2, 3, and 4) in both scenarios, especially if we consider

that the relative apparent cost change ought to have remained constant, resulting in the same

dispatch despite at a higher market price. The key to that is the different assumption for

the conjectured-price response value θi for agent 1 (who owns units 3 and 4), and for agent 3

(who owns unit 2). Agent 3 is assumed to have a smaller θ value than the rest of the market

participants, resulting in his/her inability to raise her bid prices as high as the other agents

would do. This is since he/she owns the least total generation capacity (distributed among two

of the most expensive generators) and therefore less incentive to raise his prices in order to

mitigate the risk of not being committed. The consequence is that in the oligopoly scenario,

agent 3 bids a lower price for unit 2 (12.75 e/ MWh) than that for unit 3 or unit 4 (13.05 and

12.80 e/ MWh, respectively) allowing her to capture the entire demand up to the maximum

capacity of this unit.

The resulting agents profits in both cases are illustrated in Table 4.10 showing the percentile

change in profit between both competition scenarios. The logical consistency of the model is

validated in this case, as it is clearly shown that the profit under oligopolistic behavior is higher

than that under perfect competition assumption.

4.2.2 Case I: Failure of Line 1

We proceed to consider the more advance cases of simulating line failures. We start by simulating

the failure of line 1 and observe the model behavior and outcome. First, if one refers to Figure 4.2

to visualize line 1’s failure, it could be deducted that the failure of this line would result in the
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Table 4.10: Profit of market agents considering different competition levels considering no
line failures (Base Case)

Agent Profit when θi = 0 Profit when θi 6= 0 Percentage Change
i e e %

1 67.50 88.00 +30.37
2 940.00 984.00 +4.68
3 57.25 66.00 +15.28
4 470.00 492.00 +4.680

inability of all the capacity of the cheaper hydro units in bus 2 to be exported to the rest

of the network serving as much demand as economically as possible. Hydro units located in

bus 2 can only export their production using line 3 whose maximum capacity is less than the

total capacity required to be transported. This in a way imitates the consideration of line 3 as

being congested, which indeed is expected to have an effect on competition and therefore on the

market price. On the other hand, the most expensive thermal units in bus 1 are now required

to compensate for this shortage in capacity for the rest of the network, which we expect could

lead to a higher market price than that we have seen in the base case.

The bi-level model is solved iteratively simulating the result in case of the ability of market

agents to anticipate the occurrence of the failure of line 1 and therefore preparing their bids

accordingly. The results obtained are reported in Table 4.11, and again arranged according to

the units’ location on the network to better assist with the following illustration. First, we see in

Table 4.11b that despite of the line failure, all loads are served and there are no load shedding.

This is because bus 1 possess enough spare generation capacity previously too expensive to be

committed that would compensate for the power lost in the network. More importantly are

those results combined in Table 4.11a representing the summary of the solution for the active

power production. First of all, we notice the differences between what the market agent’s are

considered to be bidding qj and what the final schedule qΩ
j is ought to be. In addition, we

observe that the final schedule in this case is different than the one seen in the base case. We

start by exploring the first observation; agents who have units located at bus 2 foresee that in

case of line 1 failure some of their units will have to reduce production, this results that the

apparent cost of those units is not only affected by the conjecture-price response θi as in the

base case, but also with the reduction factor (mj) that those units are facing, by the amount

1/(1−mj) as seen in equation (3.50). The agents solve the equilibrium problem again and check

if their profit is maximized with respect to the anticipated changes that would be imposed by

the optimal power flow problem, until a meta equilibrium is reached where there is no better

bidding proposal made that would result in a higher profit after those final changes. Same

procedure is undergone from the SO point of view with respect to the correction costs incurred.

Indeed the final schedule in that case shows that units in bus 2 have to reduce their productions
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Table 4.11: Model solution for Case I (Line 1 failure)

(a) Active power production

Bus Unit Marginal Cost Final Schedule Agents’ Bids ACZ ACX Reduction
a j [e/ MWh] qΩ

j [MWh] qj [MWh] [e/ MWh] [e/ MWh] Factor

1

1 13.50 0.00 0.00 13.62 14.783 0.00
2 12.50 20.00 7.17 12.62 13.783 0.00
3 12.25 35.00 25.16 13.307 14.467 0.00
4 12.00 40.00 27.66 13.06 14.217 0.00

2

5 0.80 0.00 0.00 1.857 3.017 0.00
6 0.80 5.00 5.00 0.92 2.083 0.00
7 0.50 20.00 20.00 1.30 0.50 0.00
8 0.50 20.00 20.00 1.40 0.50 0.00
9 0.50 20.00 20.00 1.30 0.50 0.00
10 0.50 20.00 20.00 1.40 0.50 0.00
11 0.50 5.00 40.00 7.70 0.50 0.875

Oligopoly: θi 6= 0, βi 6= 0
Market Price λ = 13.307 e/ MWh
Correction Price γ = 14.467 e/ MWh

(b) Load Shedding

Bus Unit Final Schedule ENS cost
a j [MWh] [e/ MWh]

2 13 0.00 132.973
3 14 0.00 175.135
4 15 0.00 145.946
5 16 0.00 132.973
6 17 0.00 132.973

due to network constraints and the opposite for those in bus 1 compared to the base case. In

addition, in the base case we explained how the apparent cost in the correction market (ACX)

was the same as the marginal cost due to no exercise of market power in this market as there are

no units committed. In this case however, agents behave strategically by withdrawing quantities

in the day-ahead market so that they would be required to increase them in the correction market

at higher prices and therefore earn higher profits. This results in (ACX) being higher than the

marginal cost, and that the marginal unit which will be required to increase its production (in

this case unit 3) is the one that sets the correction market price γ.

The final result reached from solving the model is one that maximizes the agents’ profits and

minimizes the SO’s market correction costs; to translate this behavior from the output of the

model let us compare our current case with the base one, considering the re-arranged units in
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the order of agents’ ownership as depicted in Table 4.12. We can see that in the final agents’

bid in Case I (table 4.12b), the only unit which will be required to decrease its production after

the modified proposed bids is unit 11 (located in bus 2). Even though this unit will finally

reduce its production by 87.5%, agent 2 still bids full capacity for this unit exactly as she did

in the base case, except that this time he/she perceives that the cost of producing with this

unit is significantly higher than that of the base case (7.70 e/ MWh as opposed to 2.10 e/

MWh). On the other hand, agent 1 who owns more thermal units in bus 1 (which can solve

the loss in production) acts strategically by increasing his/her bid prices relative to the ones in

the base case (as shown in Table 4.12b). In this case however, he/she also considers that since

unit 5 is going to reduce its production that it is more profitable not to bid with this unit. Last

significant observation is regarding unit 2; here agent 3 anticipates that the correction market

price would be higher than the day-ahead market and accordingly bid less capacity for this unit

in the day-ahead market, benefiting from the anticipation that it will be required to increase

the production to correct the power shortages at a higher price.

Table 4.12: Comparison of day-ahead market bidding behavior (Base Case & Case I)

(a) Base Case: No Failure in Lines

Agent Unit Final Schedule Agents’ Bids ACZ Reduction
i j qΩ

j [MWh] qj [MWh] [e/ MWh] Factor

1
3 0.00 0.00 13.05 0.00
4 35.00 35.00 12.80 0.00
5 5.00 5.00 1.60 0.00

2
8 20.00 20.00 2.10 0.00
10 20.00 20.00 2.10 0.00
11 40.00 40.00 2.10 0.00

3
1 0.00 0.00 13.75 0.00
2 20.00 20.00 12.75 0.00
6 5.00 5.00 1.05 0.00

4
7 20.00 20.00 1.30 0.00
9 20.00 20.00 1.30 0.00

Oligopoly: θi 6= 0, βi 6= 0
Market Price λ = 12.80 e/ MWh
Correction Price γ = 0 e/ MWh

(b) Case I: Failure of Line 1

Agent Unit Final Schedule Agents’ Bids ACZ Reduction
i j qΩ

j [MWh] qj [MWh] [e/ MWh] Factor

1
3 35.00 25.16 13.307 0.00
4 40.00 27.66 13.06 0.00
5 0.00 0.00 1.857 0.00

2
8 20.00 20.00 1.40 0.00
10 20.00 20.00 1.40 0.00
11 5.00 40 7.70 0.875

3
1 0.00 0.00 13.62 0.00
2 20.00 7.17 12.62 0.00
6 5.00 5.00 0.92 0.00

4
7 20.00 20.00 1.30 0.00
9 20.00 20.00 1.30 0.00

Oligopoly: θi 6= 0, βi 6= 0
Market Price λ = 13.307 e/ MWh
Correction Price γ = 14.467 e/ MWh

The resulting day-ahead market price (λ) and correction market price (γ) are 13.307 e/ MWh

and 14.467 e/ MWh, respectively. We calculate the agents’ profit from the previously defined

maximization function and we obtain the results shown in Table 4.13. Compared to the base

case, all agents except for agent 2 are making higher profits, either due to the higher day-ahead

market price (agent 4), to their participation in the higher price correction market (agent 3),

the scheduling of units previously out of the market competition (agent 1), or a combination of

the three. For agent 2, the decreased profit is essentially due to the reduced dispatch of his/her

unit.
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Table 4.13: Comparison of agents’ profit (Base Case & Case I)

Agent
Profit if no line fails

(Base Case)
Profit if line 1 fails

(Case I)
Percentage Change

i e e %

1 88.0 115.004 +30.69%
2 984.0 576.315 -41.43%
3 66.0 93.558 +41.75%
4 492.0 512.280 +4.12%

Oligopoly profit: θi 6= 0 for both cases.

4.2.3 Case VII: Failure of Line 7

So far, both failure cases discussed did not result in load shedding in the network. It is important

perhaps before moving on to present the summary of the results for all cases to briefly analyze

a failure case that results in energy not served. Case VII would be an interesting illustrative

case since the failure of line 7 would undoubtedly leads to non served energy since it is the only

line connecting bus 6 (which has 20 MW of demand at peak hour) to the rest of the network.

In addition, since we assume that in the case of a probable loss of load in some scenario having

certain probability, agents are allowed to submit a reduced bid (which is required to meet only

the definite load remaining after the failure), then this case is expected to illustrate only the

model’s behavior due to load shedding and isolate it from the effect of network congestion in

any part of the network.

We refer to the load shedding results in Table 4.14b to show that indeed in this case all demand

in bus 6 can not be serve due to line 7 failure, this means that in this particular scenario, with a

certain probability, market agents will submit reduced bids in terms of quantities to supply only

the remaining demand in the network. Market agents find a bidding strategy that maximizes

their profit which will be accepted by the SO with no requirements for any unit to change its

production (neither increasing nor decreasing) as shown in Table 4.14a. Similar to the base case,

the apparent cost of the units in the correction market (ACX) are equal to the marginal costs of

the units since no unit will be required to increase its production if this schedule is implemented.

Moreover, the results obtained for the apparent cost of the units in the day-ahead market; in

the comparison summarized in Table 4.15 between the base case and case VII, it is seen that

ACZ has in fact decreased compared to the base case, specifically for the units owned by the

agents who are required to reduce their total production due to the shedding. This of course

results in a lower market price (λ) of 12.63 e/MWh compared to initial value of 12.80 e/MWh.

Leading to all agents receiving a lower profit as shown in Table 4.16.



Chapter 4. Case Study and Results - Islam ABDIN 75

Table 4.14: Model solution for Case VII (Line 7 failure)

(a) Active power production

Bus Unit Marginal Cost Final Schedule Agents’ Bids ACZ ACX Reduction
a j [e/ MWh] qΩ

j [MWh] qj [MWh] [e/ MWh] [e/ MWh] Factor

1

1 13.50 0.00 0.00 13.63 13.50 0.00
2 12.50 8.33 8.33 12.63 12.50 0.00
3 12.25 0.00 0.00 12.88 12.25 0.00
4 12.00 26.67 26.67 12.63 12.00 0.00

2

5 0.80 5.00 5.00 1.43 0.80 0.00
6 0.80 5.00 5.00 0.93 0.80 0.00
7 0.50 20.00 20.00 1.30 0.50 0.00
8 0.50 20.00 20.00 2.10 0.50 0.00
9 0.50 20.00 20.00 1.30 0.50 0.00
10 0.50 20.00 20.00 2.10 0.50 0.00
11 0.50 40.00 40.00 2.10 0.50 0.00

(b) Load Shedding

Bus Unit Final Schedule ENS cost
a j [MWh] [e/ MWh]

2 13 0.00 132.973
3 14 0.00 175.135
4 15 0.00 145.946
5 16 0.00 132.973
6 17 20.00 132.973

Table 4.15: Comparison of day-ahead market bidding behavior (Base Case & Case VII)

(a) Base Case: No Failure in Lines

Agent Unit Final Schedule Agents’ Bids ACZ Reduction

i j qΩ
j [MWh] qj [MWh] [e/ MWh] Factor

1

3 0.00 0.00 13.05 0.00

4 35.00 35.00 12.80 0.00

5 5.00 5.00 1.60 0.00

2

8 20.00 20.00 2.10 0.00

10 20.00 20.00 2.10 0.00

11 40.00 40.00 2.10 0.00

3

1 0.00 0.00 13.75 0.00

2 20.00 20.00 12.75 0.00

6 5.00 5.00 1.05 0.00

4
7 20.00 20.00 1.30 0.00

9 20.00 20.00 1.30 0.00

Oligopoly: θi 6= 0, βi 6= 0

Market Price λ = 12.80 e/ MWh

Correction Price γ = 0.00 e/ MWh

(b) Case VII: Failure of Line 7

Agent Unit Final Schedule Agents’ Bids ACZ Reduction

i j qΩ
j [MWh] qj [MWh] [e/ MWh] Factor

1

3 0.00 0.00 12.88 0.00

4 26.67 26.67 12.63 0.00

5 5.00 5.00 1.43 0.00

2

8 20.00 20.00 2.10 0.00

10 20.00 20.00 2.10 0.00

11 40.00 40.00 2.10 0.00

3

1 0.00 0.00 13.63 0.00

2 8.33 8.33 12.63 0.00

6 5.00 5.00 0.93 0.00

4
7 20.00 20.00 1.30 0.00

9 20.00 20.00 1.30 0.00

Oligopoly: θi 6= 0, βi 6= 0

Market Price λ = 12.633 e/ MWh

Correction Price γ = 0.00 e/ MWh
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Table 4.16: Comparison of agents’ profit (Base Case & Case VII)

Agent
Profit if no line fails

(Base Case)

Profit if line 7 fails

(Case VII)
Percentage Change

i e e %

1 88.00 76.047 -13.58 %

2 984.00 970.640 -1.36 %

3 66.00 60.273 -8.68 %

4 492.00 485.320 -1.36 %

Oligopoly profit: θi 6= 0 for both cases.

4.2.4 Summary of results for all failure cases

Now that some detailed analysis have been presented spanning different possible results, we

proceed to provide a summary for the model solution for all aforementioned cases (Base Case

to Case VI) modeling no line failure and line failure 1 to line failure 7 respectively. As discussed

these results are all considering oligopolistic behavior parametrized according to the conjectured-

price response values (θi and βi) defined in the model formulation section. Tables 4.17 - 4.22

illustrate the final feasible schedule, final agents’ bids, energy not served, apparent cost in the

day-ahead market and in the correction market, reduction factor, market prices and agents’

profits respectively; for all generation units, for all agents, in all network buses and for all 8

cases.

Except for the base case, case I and case IV; all other failure scenarios result in energy not

served in the network. The reason for that in the case of line 1 have been discussed. Regarding

line 4, it is important to note in general it is a redundant line that is mainly used when there

is limited capacity in either line 5 or line 6. Therefore when simulating the failure of this line

independently it does not affect the operation of the network in any way; leading to the final

solution being exactly similar to that of no line failure. Another important remark is that the

reduction factors for every generation unit (mj) summarized in Table 4.20 is reduced to show

only the cases that have non zero values; meaning that any reduction factor not shown in the

table has a value equal to zero.

In general the analysis of each case separately follows the same logic for those discussed in the

previous section. We focus here on the most important observations that can be obtained from

this aggregated picture of the network. First one being the agents’ profits. In Table 4.22 it

is shown that the line failure almost always results in a reduced profit for all market agents

compared to the base case, again with the exception of case I and IV. The reason for the no

change in profits due to line 4 failure has been discussed. For line 1 also, we have seen that this



Chapter 4. Case Study and Results - Islam ABDIN 77

line’s failure does not result in any load shedding. In fact, the only effect that this particular

failure has is forcing congestion in all the other lines. So in principle this case is modeling

the agents’ exercise of market power in case of line congestion and therefore follows the same

analyses undergone in the work of Delgadillo et al. [2013] and Delgadillo and Reneses [2013].

The results of line 1 failure show an opposite trend than all other cases; some agents are able to

make higher profits due to the failure being one of those trends, and the other significant one is

that it is the only case where the day-ahead market price (λ) would increase due to the failure

(Table 4.21). This confirms the results concluded in Delgadillo and Reneses [2013] regarding

how network congestions modify the agents’ strategic behavior in the day-ahead market.
Table 4.17: Model solution for day-ahead market bid schedule and final schedule (all cases)

(a) Day-ahead market bid quantities by market agents (MWh)

Feasible Schedule qΩ
j [e/MWh]

Agent i Unit j No Failure Case I Case II Case III Case IV Case V Case VI Case VII

1
3 0.00 35.00 0.00 0.00 0.00 0.00 0.00 0.00
4 35.00 40.00 0.00 40.00 35.00 30.00 26.67 26.67
5 5.00 0.00 5.00 0.00 5.00 5.00 5.00 5.00

2
8 20.00 20.00 13.33 20.00 20.00 20.00 20.00 20.00
10 20.00 20.00 13.33 15.00 20.00 20.00 10.00 20.00
11 40.00 5.00 13.33 0.00 40.00 40.00 40.00 40.00

3
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 20.00 20.00 0.00 15.00 20.00 15.00 18.33 8.33
6 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

4
7 20.00 20.00 20.00 0.00 20.00 20.00 20.00 20.00
9 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

(b) Final feasible schedule as imposed by the system operator (MWh)

Agents’ Bids qj [e/MWh]
Agent i Unit j No Failure Case I Case II Case III Case IV Case V Case VI Case VII

1
3 0.00 25.16 0.00 0.00 0.00 0.00 0.00 0.00
4 35.00 27.66 0.00 35.00 35.00 30.00 26.67 26.67
5 5.00 0.00 5.00 0.00 5.00 5.00 5.00 5.00

2
8 20.00 20.00 13.33 20.00 20.00 20.00 20.00 20.00
10 20.00 20.00 13.33 20.00 20.00 20.00 20.00 20.00
11 40.00 40.00 13.33 0.00 40.00 40.00 40.00 40.00

3
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 20.00 7.17 0.00 15.00 20.00 15.00 8.33 8.33
6 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

4
7 20.00 20.00 20.00 0.00 20.00 20.00 20.00 20.00
9 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

As we have solved the model for most major line failure cases, and have reached a solution
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Table 4.18: Amount of energy not served (all cases)

ENS [MWh]
Bus No Failure Case I Case II Case III Case IV Case V Case VI Case VII

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 45.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 10.00 30.00 0.00 0.00 0.00 0.00
5 0.00 0.00 20.00 20.00 0.00 0.00 0.00 0.00
6 0.00 0.00 20.00 20.00 0.00 10.00 20.00 20.00

representing what would be the equilibrium outcome in case both market agents and SO can

anticipate the actions of each other, we can now adopt the point of view of the SO and identify

what costs he/she is facing in operating the network under the different failure scenarios. We

know that in the economic sense, the SO aims to operate the network while maximizing the

social welfare; that is the benefits for both the consumers and the producers. There is obviously

no doubt that any scenario which leads to power cuts and demand not being served will represent

a significant welfare loss for the SO. One major element to consider is therefore the cost of non

served energy reported in Table 4.23.

The other important cost that the SO is facing is what we have been referring to as the “cor-

rection cost”; that is the cost of correcting the power dispatch in the system to ensure the most

reliable (subject to the technical constraints) and most economic dispatch. This correction cost

is in fact the objective function we have illustrated in the optimal power flow problem simulat-

ing the role of the SO. We have seen that failure cases themselves as well as their effect on the

congestion of other lines impose a need for these corrections to occur. We calculate the cost of

these corrections as the sum of the apparent cost of day-ahead market for each unit required to

reduce its production times the quantity to be reduced, and the apparent cost of the correction

market for each unit required to increase its production times the quantity to be increased. Or:

ACZj · zj +ACXj · xj (4.1)

It should be noted however, that this correction cost is a conceptual cost that the SO is facing,

since in fact he/she would not be paying the generation units to decrease their productions

from the one they bid. Yet it can be argued that this cost represent the inefficiencies arising in

running a system characterized by an oligopoly where many transaction costs and exercise of

market power hinder the smooth and optimal operation of the system. The so called correction

cost of this study based on the above definition is calculated and illustrated in Table 4.23 for

all cases. It can be seen that this correction cost is not correlated to load shedding in the

network; there might be a need to correct the dispatch in a case where there is no load shedding

(Case I) or in a case where there is (Case III, VI), and vice versa. In fact it follows no rule in

this regards except for the objective of the agents to maximize their profits by adjusting their
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Table 4.19: Apparent cost of generation units (all cases)

(a) Apparent cost of the units in the day-ahead market bidding ACZj (e/ MWh)

ACZ [ e/MWh]
Agent Unit No Failure Case I Case II Case III Case IV Case V Case VI Case VII

1
3 13.05 13.31 12.35 12.95 13.05 12.95 12.88 12.88
4 12.08 13.06 12.10 12.70 12.08 12.70 12.63 12.63
5 1.60 1.856 0.90 1.44 1.60 1.50 1.43 1.43

2
8 2.10 1.40 1.30 1.20 2.10 2.10 1.90 2.10
10 2.10 1.40 1.30 1.43 2.10 2.10 3.30 2.10
11 2.10 7.70 1.30 1.257 2.10 2.10 1.90 2.10

3
1 13.75 13.62 13.55 13.70 13.75 13.70 13.63 13.63
2 12.75 12.62 12.55 12.70 12.75 12.70 12.63 12.63
6 1.05 0.92 0.85 1.00 1.05 1.00 0.93 0.93

4
7 1.30 1.30 1.30 0.94 1.30 1.30 1.30 1.30
9 1.30 1.30 1.30 0.90 1.30 1.30 1.30 1.30

(b) Apparent cost of the units in the correction market bidding ACXj (e/ MWh)

ACX [e/MWh]
Agent Unit No Failure Case I Case II Case III Case IV Case V Case VI Case VII

1
3 12.25 14.467 12.25 12.75 12.25 12.25 13.00 12.25
4 12.00 14.217 12.00 12.50 12.00 12.00 12.75 12.00
5 0.80 3.017 0.80 1.30 0.80 0.80 1.55 0.80

2
8 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
10 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
11 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

3
1 13.50 14.783 13.50 13.50 13.50 13.50 13.75 13.50
2 12.50 13.783 12.50 12.50 12.50 12.50 12.75 12.50
6 0.08 2.083 0.80 0.80 0.80 0.80 1.05 0.80

4
7 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
9 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Table 4.20: Generation units’ reduction factor mj (all cases)

Reduction Factor mj

Agent Unit Case I Case III Case VI

2
10 0.00 0.25 0.50
11 0.875 0.00 0.00
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Table 4.21: Market Price (all cases)

Market Price [e/ MWh]
Market No Failure Case I Case II Case III Case IV Case V Case VI Case VII

λ 12.80 13.307 1.30 12.70 12.80 12.70 12.633 12.633
γ 0.00 14.467 0.00 12.50 0.00 0.00 12.75 0.00

Table 4.22: Agents’ Profit in different cases of line failures

(a) Agents’ profits (e)

Profit [e]
Agent No Failure Case I Case II Case III Case IV Case V Case VI Case VII

1 88.00 115.00 2.50 27.00 88.00 80.50 76.05 76.05
2 984.00 576.32 32.00 427.00 984.00 976.00 849.31 970.64
3 66.00 93.56 2.50 62.50 66.00 62.50 62.77 60.27
4 492.00 512.28 32.00 244.00 492.00 488.00 485.32 485.32

(b) Percentile change in agents profits with respect to the base scenario

Agent No Failure Case I Case II Case III Case IV Case V Case VI Case VII

1 0.00% +30.69% -97.16% -69.32% 0.00% -8.52% -13.58% -13.58%
2 0.00% -41.43% -96.75% -56.61% 0.00% -0.81% -13.69% -1.36%
3 0.00% +41.75% -96.21% -5.30% 0.00% -5.30% -4.89% -8.68%
4 0.00% +4.12% -93.50% -50.41% 0.00% -0.81% -1.36% -1.36%

bidding behaviors.

The SO thus can be considered as facing both these costs illustrated in Table 4.23 in assessing

the economic risks associated with operating the network. Yet these line failures do not have

the same probability of occurrence, it is therefore necessary to quantify them in terms of their

respective probabilities so as to provide a risk assessment tool for the failures of these lines in the

network. For the purpose of this study, we have opted for the probability of the forced outages

defined in the RBTS system data as seen in the “Overview of the Reliability test System”

section. For each line, we multiply the permanent outage rate value by the outage duration to

get the total amount of outage hours per line per year. Dividing these values by the total number

of operational hours per year (24hrs ·365days = 8760hrs) gives us the probabilities of occurrence

of those events illustrated in Table 4.23. Multiplying each probability by the relevant cost would

result in the “load shedding risk index” and the “schedule correction risk index” summarized in

Table 4.24. The “combined index” is merely the summation of the other two and is the index

suggested to be used for assessing the risk of different lines failures. For instance, notice how

the index for Case I is higher than those of Case V and Case VI, meaning that it posits a higher

cost on the system although in this case there is no expensive load shedding but only cost of

market correction. There are of course many factors, assumptions and parameters that could
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Table 4.23: Different system operating costs face by the SO (all cases)

No Failure Case I Case II Case III Case IV Case V Case VI Case VII
Probability of occurrence 97.35% 0.68% 0.26% 0.86% 0.17% 0.17% 0.17% 0.34%

ENS Cost [e] 0.00 0.00 14659.60 9697.30 0.00 1329.70 2659.40 2659.40
Correction Cost [e] 0.00 764.00 0.00 69.67 0.00 0.00 160.50 0.00

affect this result; most obviously is the cost of non served energy assumed and the probability

of occurrence of the failures. In the last chapter, I attempt to provide a critical view on which

parameters could have a high effect on the solution.

Up to this point, an attempt has been made to quantify the risk faced in running an electricity

power system in a single-price market facing various line failure scenarios. The behavior of the

system participants have been analyzed under oligopolistic behavior, assuming that in case of

high expectation of the inability to serve all demand, agents are permitted to deposit reduced

bids matching only the remaining demand. Based on these assumptions a risk index definition

have been proposed.

In the next section, I provide a sample solution for relaxing the assumption of the permission

of submitting reduced bids by the market agents even if they can anticipate the inevitability of

load shedding, comparing it to the solutions achieved here.

Table 4.24: Risk Index for system operator

Risk Index
Risk No Failure Case I Case II Case III Case IV Case V Case VI Case VII

Load shedding risk index 0.00 0.0 38.11 83.40 0.00 2.26 4.52 9.04
Schedule correction risk index 0.00 5.20 0.00 0.60 0.00 0.00 0.27 0.00
Combined index 0.00 5.20 38.11 84.00 0.00 2.26 4.79 9.04

4.3 Results and Analysis II (Non reduced Bids)

It might be argued that in sudden failure cases, market agents would not be allowed to reduce

their bidding quantities in the day-ahead market to match less demand than that which can be

economically achieved in the system. In such case, market agents would anticipate the effect of

a particular line failure on the final dispatch taking into account the exact same supply/demand

balance constraint, while still finding an optimal bidding solution that maximizes their profits.

At first instance, this basically mean that there are more bid quantities that will be reduced in

the final dispatched schedule. Yet how exactly would this affect the market prices, the agents

profits the load shedding and the final correction cost?
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We consider in our analysis three cases namely: Case V, Case VI and Case VII which are line 5, 6

and 7 failures respectively. Those three cases are already shown having load shedding in the final

dispatch. We solve the model in these cases, yet this time forcing constraint (3.28) to remain

equal to the total demand in the network. Obviously, the most apparent expectation is that

load shedding would not be different; those line failure de-facto hinder the possibility of serving

all demand in the network. Table 4.25b confirms this expectation showing the exact same final

loads shed in the network under the different cases. Table 4.25b in general summarizes all the

important results regarding the feasible schedule and the agents’ bids. We are more interesting

however in the analysis of these results.

Table 4.25: Model solution - Non reduced demand (Cases V, VI, and VII)

(a) Day-ahead market bid quantities by market
agents (MWh)

Agents’ bids qj [MWh]
Agent i Unit j Case V Case VI Case VII

1
3 0.0 0.00 0.00
4 35.00 35.00 35.00
5 5.00 5.00 5.00

2
8 20.00 20.00 20.00
10 20.20 20.00 20.00
11 40.00 40.00 40.00

3
1 0.00 0.00 0.00
2 20.00 20.00 20.00
6 5.00 5.00 5.00

4
7 20.00 20.00 20.00
9 20.00 20.00 20.00

(b) Load Shedding

ENS [MWh]

Bus Case V Case VI Case VII

2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 0.00 0.00 0.00
5 0.00 0.00 0.00
6 10.00 20.00 20.00

First important observation is that in all three cases, the day-ahead market prices (shown in

table 4.26) in the case of not permitting reduced bids are higher than those in the case where it is

permitted. There is more room for market agents to exercise higher market power as the system

virtually assumes that there is more demand offer in the system. With higher market prices and

similar final dispatch; the agents receive higher profits in their real time operations. The ENS

cost the system is facing remains the same, yet it is shown that now the SO operator is facing

“correction costs” in cases that was not previously expected to have any cost for correction

under equilibrium. Specifically as seen for line 5 and line 7 failures in Table 4.28b.

Although under the assumptions presented in this study, this increased correction cost did not

lead to any significant changes in terms of risk ranking of the different failure cases, it shows

that there are increased inefficiencies if a policy is designed in such a way that does not give

enough flexibility for the electricity market participants to adapt their behaviors according

to their evaluation of the risk. Although this inversely-proportional relationship between risk
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Table 4.26: Market Price comparison (Reduced bids vs Non reduced bids)

(a) Reduced bids permitted

Market Price [ e/ MWh]
Case V Case VI Case VII

Day-ahead (λ) 12.70 12.633 12.633
Correction (γ) 0.00 12.75 0.00

(b) Reduced bids not permitted

Market Price [ e/ MWh]
Case V Case VI Case VII

Day-ahead (λ) 12.80 13.050 13.030
Correction (γ) 0.00 0.00 0.00

Table 4.27: Agents’ Profit comparison (Reduced bids vs Non reduced bids)

(a) Reduced bids permitted

Profit [e]
Agent Case V Case VI Case VII

1 80.50 76.05 76.05
2 976.00 849.31 970.64
3 62.50 62.77 60.27
4 488.00 485.32 485.32

(b) Reduced bids not permitted

Profit [e]
Agent Case V Case VI Case VII

1 88.00 85.543 76.795
2 984.00 878.50 1002.40
3 63.00 72.25 71.75
4 492.00 502.00 501.20

Table 4.28: Risk Index comparison (Reduced bids vs Non reduced bids)

(a) Reduced bids Permitted

Case V Case VI Case VII
Probability of occurrence 0.17% 0.17% 0.34%

ENS Cost [e] 1329.70 2659.40 2659.40
Correction Cost [e] 0.00 160.50 0.00

Load shedding risk index 2.26 4.52 9.04
Schedule correction risk index 0.00 0.27 0.00
Combined index 2.26 4.79 9.04

(b) Reduced bids not Permitted

Case V Case VI Case VII
Probability of occurrence 0.17% 0.17% 0.34%

ENS Cost [e] 1329.70 2659.40 2659.40
Correction Cost [e] 128.00 161.68 260.53

Load shedding risk index 2.26 4.52 9.04
Schedule correction risk index 0.218 0.27 0.89
Combined index 2.478 4.79 9.93

and flexibility is well known, a quantification of its negative effects could provide incentive for

adjusting the market design if proven that it could provide enough benefit.



Chapter 5

Conclusion and Future Work

In the present work, a novel risk assessment method has been proposed considering the operation

of the electricity network in a liberalized market, under different cases of transmission line

failures. The risk assessment index is a probabilistic quantification of the combined effect of

energy not served due to a line failure and the effect of the exercise of market power by the

GenCos, if they can anticipate the consequence of this failure on their final dispatch, and hence

bid strategically to collect profits from participating in the correction market. The former effect

have been calculated as the product of the amount of energy not supplied and its cost, while the

latter have been calculated as the production quantity required to be increase or decreased in the

final dispatch, multiplied by the respective cost of this increase or decrease. The combined risk

index is the product of the total cost incurred due to the failure of the line and the probability

of occurrence of this failure.

The market model adopted in this study is a single-price market where GenCos do not consider

network constraints in their day-ahead market bidding and receive the same price for all power

dispatched from their committed generation units, equal to the bidding price of the system’s

marginal unit. Any corrections necessary in the final dispatch due to network failures is un-

dergone by the system operator according to the bidding prices in the so called “correction

market”.

The activities performed during this research work include:

1. A comprehensive literature survey covering the existing electricity market modeling meth-

ods, focusing on the equilibrium modeling techniques, and discussing their main underly-

ing conceptual and mathematical formulation differences. For each equilibrium modeling

technique, a summary of selected publications have been provided, primarily focused on

those studied which explicitly consider transmission network constraints’ effect on market

competition. Moreover, the literature survey covered some of the most recent publications

84
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on risk and reliability assessment in power systems, summarizing the most commonly used

reliability indexes in network assessment, and discussing some of the risk indexes proposed

for the risk assessment of the transmission network. It has been concluded that to best

of the author’s knowledge, no work have previously proposed the risk assessment method

proposed in this work.

2. A suitable model have been identified for the calculation of the desired market interaction.

For this purpose, a bi-level model proposed in the the work of Delgadillo and Reneses [2013]

and Delgadillo and Reneses [2015] have been adopted. Consisting of a conjectural-variation

equilibrium (CVE) model for modeling the oligopolistic behavior of market agents in both

the day-ahead market and in the correction market, and a DC-optimal power flow model

for modeling the SO’s optimal decision for the final dispatch of power in the network. The

CVE model is cast as a mixed complementarity problem and is solved using the PATH

solver in GAMS, while the DC-optimal power flow model is solved using mixed integer

linear programming in Matlab. The bi-level model is finally solved iteratively until a

convergent solution is achieved, simulating the interaction among both the SO and the

GenCos. Finally, the risk concept formulation is given, and it follows the definition given

at the beginning of this chapter.

3. An example system has been constructed for application of the study, it consists of a

network adapted from the IEEE 6 bus Reliability Test System (RBTS), consisting of

11 generation units with a total capacity of 240 MW distributed along two buses, and

total network demand of 180 MW distributed along 5 buses. Furthermore, the generation

units are assumed to be owned by 4 competing GenCos having different conjectured-price

response values in order to simulate the oligopolistic behavior. The network comprises 7

transmission lines, and their characterization is given including maximum line capacities,

line outage rates and outages duration.

4. The numerical example is solved for each independent failure of all 7 lines, with the

benchmark case considered as the model solution in case of no line failure. The case study

have been solved twice considering two different underlying market design assumptions:

the first is assuming that market agents are allowed to submit reduced bids in terms of

production quantities in the day-ahead market, if they anticipate that a line failure would

undoubtedly result in load shedding, and the second is assuming that reduced bids will

not be allowed.

In general, the validation and logical consistency of the model’s results have been discussed,

and a detailed explanation for understanding them have been provided. Under the first market

design assumption, it has been shown that even though the cases of line failures that lead to

ENS, have caused the reduction in the profits of the market agents, and the reduction of the
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final market prices (since agents are only meeting reduced demand), in many cases the SO still

faces correction costs due to the inefficiency imposed by the agents’ strategic behaviors. Such

inefficiency could have a significant impact on the total cost, and their assessment would assist

in mitigating their occurrence if it provides enough benefits. If a line failure does not lead to

ENS in the network, then its effect has shown to be exactly similar to that of solving the model

assuming congested network line: which means a final higher market prices in addition to the

correction costs.

If in case of a line failure agents are not allowed to submit reduced bids, it is shown that on one

hand market prices will inevitably be higher. Yet more importantly, that in all cases leading

to energy not served, the SO will be facing higher schedule correction costs, making the index

even more relevant in assessing those cases.

Future Work

Currently, the possibility of including the effect of modeling demand-response on the risk as-

sessment proposed is being investigated. By demand-response we mean the ability of demand

to actively participate in the market by bidding its willingness for being considered for load

shedding, in cases where the system is facing network constraints such as line failures. This can

be done via representing the demand in each bus by a virtual generator and find its optimal

bidding strategy by including it in the CVE problem. It is already being experimented with this

concept, however, formal results would require a more rigorous definition of the pricing system

and bidding rules for these new participants to be added as constraints in the model.

An important development to be carried on, is the inclusion of stochastic renewable power

sources in the network, and the examination of their effect on its risk assessment index proposed.

Methods such as Monte Carlo simulation would be required to simulate the different states of

the network and provide a probabilistic overview of its performance. Moreover, more analytic

and simulation techniques will be investigated for the ability to modeling a multi-period analysis

of the system.



Bibliography

Alikhanzadeh, A. and Irving, M. (2012). Combined oligopoly and oligopsony bilateral electricity

market model using cv equilibria. In Power and Energy Society General Meeting, 2012 IEEE,

pages 1–8. IEEE.

Alizadeh, B. and Jadid, S. (2011). Reliability constrained coordination of generation and trans-

mission expansion planning in power systems using mixed integer programming. Generation,

Transmission & Distribution, IET, 5(9):948–960.

Allan, R. et al. (2013). Reliability evaluation of power systems. Springer Science & Business

Media.

Alvehag, K. and Söder, L. (2011). A reliability model for distribution systems incorporating

seasonal variations in severe weather. Power Delivery, IEEE Transactions on, 26(2):910–919.

Anderson, S. P. and Engers, M. (1992). Stackelberg versus cournot oligopoly equilibrium.

International Journal of Industrial Organization, 10(1):127–135.

Armstrong, M., Cowan, S., and Vickers, J. (1994). Regulatory reform: economic analysis and

British experience, volume 20. MIT press.

Arroyo, J. M., Alguacil, N., and Carrión, M. (2010). A risk-based approach for transmission

network expansion planning under deliberate outages. Power Systems, IEEE Transactions

on, 25(3):1759–1766.

Avila, R. and Behnke, R. (2013). Oligopolistic generation expansion: A multi-leader multi-

follower approach. Latin America Transactions, IEEE (Revista IEEE America Latina),

11(4):1029–1035.

Badri, A., Jadid, S., Moghaddam, M., and Rashidinejad, M. (2009). Impact of generators’

behaviors on nash equilibrium considering transmission constraints. European Transactions

on Electrical Power, 19(6):765–777.

Badri, A. and Rashidinejad, M. (2013). Security constrained optimal bidding strategy of gencos

in day ahead oligopolistic power markets: a cournot-based model. Electrical Engineering,

95(2):63–72.

87



Bibliography 88

Barquin, J., Centeno, E., and Reneses, J. (2005). Stochastic market equilibrium model for

generation planning. Probability in the Engineering and Informational Sciences, 19(04):533–

546.
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