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Abstract: This study presents a review of the state-of-the-art on the coordination of generation and transmission expansion
planning. First, the authors present the different investment and operation modelling approaches, with an emphasis on the
centralised co-optimisation problem. Second, a comprehensive review of co-planning hierarchical equilibrium models, under a
market environment, is carried out. The authors categorise the distinctive market approaches that usually represent the lower
level of co-planning problems. They offer an updated and detailed classification of multilevel equilibrium models, based on their
hierarchical and regulatory structure versus their equivalent reduced structure. Finally, the authors identify research gaps in the
literature of each one of the mentioned model categories.

1 Introduction
Power systems were conventionally structured under a centralised
environment, where a cost minimising vertically-integrated utility
was in charge of deciding, among other matters, both transmission
expansion planning (TEP) and generation expansion planning
(GEP). However, due to computational limitations, in the past, TEP
and GEP were usually solved as independent problems. A great
amount of research has been published on these separate problems,
with the focus shifting recently to contemplating bigger networks,
the more detailed operation of conventional units, renewable
generation, batteries, distributed generation, and their
corresponding support schemes. For a complete review of these
separate problems, please refer to [1].

With the development of computational capability, the joint
consideration of TEP and GEP became possible, allowing the
important links between generation dispatch and transmission
supply along with their siting and sizing decisions. These models,
usually known as GEP and TEP co-optimisation models (GEPTEP
co-optimisation models), take into consideration the links between
generation and transmission, resulting in a lower system cost
compared to a separate GEP/TEP optimisation approach, as shown
in [2–5]. This cost minimisation framework is equivalent to
maximising the total welfare of the system when three assumptions
are made: (i) perfect competition, (ii) simultaneous operating and
investment decisions, and (iii) perfect information. However, this
co-optimisation framework does not address sequential and
strategic decisions that emerge in a decentralised market
environment.

The vast majority of power systems today are structured in a
liberalised market, in which private companies compete with each
other (in generation and retail). Therefore, the investment and
operation decisions in this market environment are quite different
from those in a centralised environment. In a liberalised market,
generation expansion and operation are decided in a competitive
way where every generation company (GENCO) makes its own
decisions aiming to maximise total profits, while the transmission
planning remains centralised.

In this sense, the liberalisation of electricity markets has
introduced new dynamics that lead to conflicting interests between
the different decision makers in the electric power system. The
behaviour of GENCOs can be modelled by means of game theory
to represent their strategic interactions as Nash equilibrium.
Moreover, if we consider the sequence between investment and

operation for these strategic agents, hierarchical models (bi-level)
allow us to represent such structures. Bearing this in mind,
hierarchical equilibrium models represent an adequate tool to study
how different agents in GEPTEP problems behave under a market
environment.

Once the context is set, we can move on from the term ‘co-
optimisation’ to the more accurate ‘co-planning’. We introduce this
term, given that these models do not address, in essence, a single
optimisation problem. Thus, co-planning models help us to
understand how transmission companies (TRANSCOs) and
GENCOs take strategic and sequential decisions. For example,
consider the case where transmission expansion decisions are made
first, and subsequently, under a market framework, GENCOs make
their expansion decisions. In this sense, equilibrium models, in
particular, bi-level or multi-level problems help us model this kind
of interaction.

It is important to note that strategic behaviour does not only
occur in operation but also in investment decisions. This is
particularly true nowadays because of the shorter construction span
of generation units (mainly for renewables technologies) and
longer times for transmission lines (because of stricter
environmental restrictions or more demanding communities) allow
GENCOs to site their units strategically in such a way that they
induce congestions in the network, leading to higher operational
incomes for GENCOs.

This review aims to present an overview of the current state of
GEPTEP models: in Section 2, the classical network and
generation modelling are presented. We update the references
presented in Krishnan et al. [3] for co-optimisation models and we
extend it to the co-planning models. In Section 3, the properties of
co-planning models and their solutions are analysed. As a novelty,
we classify hierarchical GEPTEP papers based on their general
hierarchical structures and sequential decisions.

Therefore, we contribute to the relevant literature by classifying
both the hierarchical structure and the solution techniques of the
co-planning models, offering a direct comparative of co-planning
models based on consistent parameters. Additionally, we describe
and classify the most commonly used techniques to solve
equilibrium models, and we consider the different investment and
operation modelling options and their impact on both the
equilibrium structure and the type of mathematical problem. Lastly,
in Section 4, we conclude.
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2 GEPTEP modelling approaches
There are two general approaches to GEPTEP modelling. On the
one hand, GEPTEP models can be used to assess national and
regional energy issues (including transportation, electricity or gas
sectors) to provide guidelines to policy makers. Some examples of
such policy-oriented models are MARKAL/TIMES (market
allocation developed by US International Energy Agency) [5],
National Energy Modeling Systems developed by the US Energy
Information Administration [6] and integrated planning model by
US Environment Protection Agency [7]. More recently, Cole et al.
[8] conducted a detailed comparison of US policy analysis models,
including [6, 7, 9, 10]. On the other hand, there are some GEPTEP
models focused more closely on the electricity sector and,
therefore, offer a more detailed representation of technical
constraints. In this group, the Regional Energy Deployment System
developed by the National Renewable Energy Laboratory model is
worth noting [9–24].

When discussing GEPTEP models in general, it is important to
understand how they represent the complex reality of the decision-
making process in mathematical format, as modelling
simplifications can potentially have a great impact on model
results. The purpose of this section is to point out the most
important modelling questions in GEPTEP models and to discuss
the pros and cons of different modelling approaches. The
remainder of the section will discuss what we consider to be the
most important modelling topics. The representation of the
transmission network in GEPTEP models in Section 2.1. The
representation of generation investment and operation in GEPTEP
models in Section 2.2. How to deal with end effects regarding the
temporal horizon in Section 2.3. How to reduce the model size by
employing size reduction techniques to the network and the time
horizon in Section 2.4; and finally, how to deal with the most
recent developments in the field, with the representation of storage
and renewable technologies along with the uncertainty GEPTEP
models in Section 2.5.

Please note that this discussion is aimed at providing the
necessary background on basic modelling issues in the GEPTEP
realm, which will be fundamental to understand the subsequent
analysis of Section 3. Let us now analyse the modelling topics
previously pointed out, and extend the work of Krishnan et al. [3]

by classifying the relevant works in the literature according to each
modelling category. This classification, as well as an updated list of
references on co-optimisation models, is presented in Table 1. 

Please note that the classification on co-planning models
contains the modelling categories from the co-optimization models;
however, given that co-planning models are more general, their
classification is presented separately in Table 2 (see Section 3). 

2.1 Network representation

The way the network is represented is a key issue for TEP and, as a
consequence, for GEPTEP problems. The transmission network is
usually represented as a pipeline (the most simplified approach), as
a DC lossless network (the most used approach) or as an AC
network (the most accurate approach). In the case of the
transportation model (also known as transhipment or pipeline), the
network is represented by pipelines in which the flows can be
decided to ignore the physical laws that govern power flows in an
electrical network. In several long-term models [5, 6, 9, 12], the
network is represented in such a way because its mathematical
formulation is very simple and linear. Apart from having an overly
simplistic network representation, these models also consider
continuous transmission investment variables (by disregarding
investment lumpiness [lumpiness of investments refers to the
discrete nature of the investment decisions, for instance, half
transmission line cannot be built]), which allows them to solve
large-scale systems while remaining under a linear formulation.

Conversely, in order to successfully represent the lumpiness of
transmission investment, binary variables should be used. For
instance, Spyrou et al. [25] claim that a transhipment model with
binary decisions approximates well real operation. This is shown in
[47] by comparing a DC model with binary investment variables
versus both a DC model with continuous investment and a
transportation model with discrete investment variables. Munoz et
al. [47] show that, for a 2–11% renewable portfolio standard target,
disregarding lumpiness creates more distortion than disregarding a
DC network approximation. However, given that a lossless DC
approximation would be a better approximation (while still
maintaining linearity), it is found that most of the existing detailed
transmission planning models implement it. Additionally, we can
also find TEP models that consider DC network losses [48],

Table 1 Classification of co-optimisation models according to their modelling approaches
References [4] [5, 7] [9] [11] [12] [13] [14] [16, 17]1
Year 2012 2009 2012 2016 2012 2016 2011 2018/19
network represents model pipe line X X X X

DC X X X
AC X

network investment binary X X X X X X
integer

continuous X X
generation investment binary X X X X X X X

continuous X
end effect rec./pres value X

annual value X X X X X X X
extended period

time represents load level X X X X X X X
represents periods X

dynamicity static X X X X X
dynamic X X X

storage modelling short term X X X X* simplified
long term X simplified X* X

none X X X X
uncertainty deterministic X X X X X X X

probabilistic
stochastic X1

test system Brazil-46 flexible data Flex Zonal-5 WECC 50 Eastern interconnection
(EI)-25

Garver-6 IEEE-24
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however, they have not been applied to mathematical-based
GEPTEP problems. In particular, some heuristics models such as in
[49] have considered DC losses in their planning frameworks.

Finally, the AC power flow is the most accurate representation
of the network, even though it includes highly non-linear
constraints that yield more complicated models such as mixed
integer non-linear programming (MINLP)s. Some linear
approximations have been applied to the AC-TEP problem. The
authors of [50, 51] proposed a non-scalable linear approximation
that reaches a global optimum under certain conditions.
Additionally, Camponogara et al. [52] propose a piece-wise linear
approximation that proves global optimality for small instances,
but only feasibility for large instances. Some other techniques have
been developed, such as second-order cone programming and
semi-definite programming that formulate convex approximations
for the AC power flow [53, 54]. In fact, the authors of [16, 17, 24]
propose an AC GEPTEP co-optimisation problem including a
second-order relaxation of the AC power flow.

The authors of [16, 24] show that central processing unit (CPU)
time decreases up to 10 times compared to the traditional mixed
integer conic programming. It is important to note that AC
formulation makes it possible to integrate flexible alternating
current transmission system (FACT)s [24] technology in the co-
optimisation problems by assessing the load shedding caused by
reactive power [17].

We would like to emphasise that all the manuscripts reviewed
on GEPTEP co-planning (see Table 2) consider a DC power flow
network representation (which implies that the only difference
between co-planning models is whether transmission investment is
binary or continuous). In particular, in [55], the application of an
AC power flow for a bi-level model in the context of transmission
system operator (TSO)–distribution system operator (DSO)
coordination is implemented. This framework can be used as
reference for future research on how to represent the AC network
in the co-planning context.

2.2 Generation representation

The aspect of the representation of generation and generation
expansion that interests us here is the use of binary or discrete
variables. While using discrete variables instead of continuous ones
might represent reality more accurately in many cases (i.e.
investment decisions, start-up/shut-down decisions), it also greatly

impacts the computational complexity of the resulting GEPTEP
model. In general, the representation of unit commitment
constraints is not included in GEPTEP problems mainly due to
CPU limitations. To the best of our knowledge only [21] has
considered a detailed unit commitment formulation. Additionally,
in terms of investment decisions, generation expansion can be
modelled either as continuous variables [7, 47] integer variables
such as the approach followed by the authors of [13, 14, 25] or as
binary decisions taken in [22–25, 30, 47–55]. The alternative of
using continuous variables instead of binary variables decreases the
search space and computation time, but it reduces model accuracy.
However, given that economies of scale in generation are much
lower than in transmission investment, generation lumpiness can be
sometimes disregarded. Therefore, under certain circumstances, the
binary generation investment variables can be relaxed [27] and
finally adopt different rated capacities for each generator and
achieve accurate results. More recently, some reliability models
have been developed to tackle units’ availability. These models are
solved either by optimisation [19, 20] or by meta-heuristics [47,
56].

2.3 End effect

As a consequence of computational limitations, the planning
horizon for GEPTEP models is usually lower than the real lifetime
of generation and transmission assets. Consequently, in GEPTEP
models, the value in use of the investments can be usually distorted
at the end of the planning periods. Therefore, modelling investment
recovery is a key point in the generation and TEP approaches. This
issue can be solved by including recovery values for the assets at
the end of the study horizon as shown in [57]. Additionally, an
extended simulation can be run as shown in [25], where authors
consider a 40 years horizon by duplicating the results of the first 20
years of operation.

The annualised value of investments can be implemented to
internalise the value of money over time, as shown in [18]. For a
multiyear model, the annual value of investments contemplates not
only the value of money but also the optimal building time of the
facilities (as opposed to static approaches). All these approaches
have some pros and cons, as shown in [58]; either choice
represents a trade-off between the CPU time and accuracy.
However, among the papers reviewed here (see Table 1), modelling
an annualised value is by far the most used option, because it easily

 
References [18] [19] [20] [21] [22] [23] [24] [25]
Year 2015 2018 2014 2017 2013 2018 2017 2017
network represents model pipe line X

DC X X X X X X
AC X

network investment binary X X X X X X X
integer X

continuous
generation investment binary X X X X X X

continuous X X
end effect rec./pres value X X X

annual value X X X X
extended period X

time represents load level X X X X X X X
represents periods X

dynamicity static X X X X X X
dynamic X X

storage modelling short term X X X* X*
long term X X

none X X X
uncertainty deterministic X scenario analysis X X X X

probabilistic X X ex-post simulation
stochastic X

test system IEEE-14 IEEE-118 IEEE-118 IEEE-24 IEEE-118 Chile-27 IEEE-118 EI- 24
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introduces the value of money over time in the whole optimisation
horizon.

Finally, it is important to note that the mathematical-based
algorithms usually consider a single target year because they are
not suitable for large-scale problems. Consequently, most of the
work done for multi-year programming has been tackled with some
alternative meta-heuristics algorithms [49]. However, recent
advances in computational speed, by properly considering the most
relevant assumptions, have allowed tackling multistage
programming as seen in [21], making it possible to determine not
only the optimal siting but also the optimal time of construction of
the investments. Additionally, the advancements in algorithms to
represent uncertainty, that also considers large-scale problems (see
Section 3.4.2), has also permitted to tackle the multistage
programming [46].

2.4 Size reduction techniques

Long-term models have to deal with the trade-off between the
representation of short-term operation constraints and the
representation of long-term investment decisions. This implies that
hourly operating constraints cannot be retained for several years in
a large system because the model becomes computationally
intractable. This concern has increased because of the high
penetration of renewable technologies that make the impact of
ramping constraints, and the capability of storage technologies to
balance them, more relevant.

Consequently, current research is focused on reducing either the
network size or the time steps representation. The actual
transmission network can be reduced so that an equivalent resulting
network renders the same or approximate solution. Some of these
techniques [59–62] have been applied only for TEP problems. On
the other hand, time-steps can be reduced by, for example, using
load levels or representative days. As seen in Table 1, most of the
models used a traditional load level approach and only a few of
them used a representative period approach.

Table 2 Classification of GEPTEP co-planning models
Authors  [26]/[27]  [28]/[29]  [30]  [31]  [32]/[33]  [34]  [35]/[36]/[37]
publication year 2006/2007 2013/2018 2009 2011/2012 2007/2012 2010 2013/14/17
type optimistic optimistic optimistic optimistic optimistic optimistic optimistic/

pessimistic
network
investment

fix investment binary new
lines

binary new lines binary new lines binary new lines binary new
lines

CONT/binary new
lines

TSO objective
function

max social welfare max SW/max
PR–Ic (FB)

max PR – IC
with FB

max welfare-IC max profits/min
CP-IC

several
planning
criteria

min total cost/min
OC min–max

generation
investment

CONT. CONT. CONT. CONT. binary new
generation (NG)

binary NG CONT/binary NG

GENCOs
objective

max profit max profit max PR-IC max profit max PR & CapPay max PR-IC max profit

ISO objective max social
welfare/RD

max social
welfare

min CP max SW min P. mis. min OC max SW min cost operation/

dynamicity static static static static static static static
regulatory
framework

proactive versus
reactive

proactive other see
Table 5

other other (GEPTEP in
the upper level and

MO in the lower
level)

proactive proactive

hierarchical
structure

MLMF one leader
multiple
followers
(OLMF)

one level OLMF multi leader one
follower (MLOF)/

MLMF

MLMF MLMF

operation
competition

strategic perfect strategic strategic strategic/perfect strategic perfect

uncertainty no no no no yes no no/deterministic
(DET)/yes

demand
elasticity

elastic inelastic inelastic elastic elastic/inelastic inelastic inelastic

time represent. 1 h load level 1 h 1 h load level load level blocks
end effect annual annual annual annual net present value

(NPV)/annual
NPV annual

storage
represent.

no no/short-term no no no no no

test cases (when
several cases
are tested only
the biggest one
has been
referenced)

Chilean 32 /Cornell
30

IEEE-21
Garver-6

IEEE 14 bus 6-bus 6-bus/IEEE-118 5- bus 4-bus/Chilean
34/24 Node

solution
technique

sequential quadratic
programing- linear
complementarity

problem (first level)

MIP quadratically
constrained

program

MIP (authors
compare NLP,
mixed integer

quadratic
program (MIQP)

and MIP
approaches)

iterative (holistic
simulation by using

benders and the
Lagrange

relaxation)/MIP

iterative
agent based

MIP (generation
strategies are

enumerated and
finally a MIP is

solved)/CG (CG
and disjunctive
Cutting plane)
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In general, detailed clustering approaches for time reduction
[63–66] are proposed for GEP problems when intraday constraints
are needed to be modelled, as in the case of battery operation.
However, only some of these techniques have been applied to
GEPTEP problems. For instance, Bustos et al. [23] applied a load
level approach with a square-mean-error clustering technique in a
GEPTEP problem with batteries deployment. Additionally, they
characterise wind and solar availability profiles of each hour before
clustering load levels, but they disregard transitions between
clusters. Some of these techniques have been applied to GEPTEP
co-planning problems, as will be discussed in 3.4.

2.5 Most recent developments

The major recent developments in GEPTEP have been the
introduction of renewables generation, which brings along a high
uncertainty in renewables resources, and the utilisation of storage
technologies that help manage the intermittency introduced by
renewables.

2.5.1 Uncertainty representation: There are multiple sources of
uncertainty for GEPTEP problems; some of them are long-term
uncertainties such as climate variables (i.e. hydro seasons), fuel
availability, and demand growth; some are short terms, such as
daily weather for renewables, units availability, daily demand, and
transmission capacity factor. The representation of uncertainty was
initially approached by probabilistic methods, in which the
availability of either generation units or lines is simulated to take
into account reliability measures [14, 20]. Later, stochastic
programming has been considered in a few cases [17, 21] applied
to the traditional co-optimisation model. Finally, other techniques

such as robust optimisation have appeared, mainly applied to co-
planning models in a market environment context, as will be
discussed in Section 3.4.2.

2.5.2 Storage modelling: Co-optimisation of transmission and
storage investments can be found most notably in [18, 21], both
studies achieve a lower cost system compared to a separate
optimisation. Energy storage systems (ESS) sizing and siting
optimisation are also presented in [67, 68]. Wogrin and Gayme [67]
demonstrate that the conditions of siting are dependent on the type
of ESS technology; Fernández-Blanco et al. [68] conclude that a
minimum profit constraint should be included in order to guarantee
recovery of investment.

Additionally, Hu et al. [4] show that investment in ESS reduces
transmission investment costs. In [69], the authors consider ESS
and a DC transmission loss approximation, the conclusion is that
ESS reduces transmission costs and add flexibility to the system.
The general inference of the previous studies is that ESS is a
substitute for transmission, however, Bustos et al. [23] show that
ESS can also be complementary to transmission, depending on the
system characteristics and the level of distribution of the ESS
deployment.

2.6 Modelling approaches gaps

Cole et al. [8] research the challenges for renewables generation
modelling in policy analysis models and compare results for a US
study case. They conclude that active areas for modelling
enhancement are (i) spatial and temporal resolution, (ii) resource
adequacy, and (iii) economics of energy production. Additionally,
lower times of constructions for a renewable generation (wind,

 
Authors  [38]  [39]/[40]  [41]  [42]  [43]/[44]  [32]1, [34]2,

[45]1, [46]2
publication year 2014 2014/2017 2017 2018 2015/2019 18/17/19/18
type optimistic pessimistic pessimistic optimistic optimistic robust
network investment binary new lines binary new lines binary exp./CONT. binary upgrades cont./binary new

lines.
binary new lines

TSO objective
function

min weighted
sum CC-gencos

profit (GP)

min IC–SW min LIC + GIC + 
OC

min LIC + Exp. OC min IC + OC min IC + OC

generation
investment

binary NG CONT binary expansion CONT CONT CONT

GENCOs objective max profit max profit max exp PR-IC max exp PR-IC max profit __
ISO objective min accep. bids max social welfare min OC max social welfare max congestion

rent (CR)
min OC

dynamicity multi-period static static static static stat.1/dyn2
regulatory framework proactive proactive proactive–reactive reactive proactive other see Table 5
hierarchical structure MLMF MLMF OLMF/MLOF MLMF OLMF OLMF
operation competition perfect strategic perfect perfect perfect/strategic perfect
uncertainty no no yes no no yes
demand elasticity inelastic elastic inelastic inelastic elastic inelastic
time represent. 1 h 1 h/blocks blocks represen. periods 1 h/ERP represen. periods
end effect NPV annual annual annual annual annual
storage represent. no no no short term short/short & long-

term
no

test cases (when
several cases are
tested only the
biggest one has been
referenced)

Garver-6 IEEE-118/IEEE-14 IEEE-118 WEEC-240 4-bus 118/Chile
20/118/118

solution technique Kth best
algorithm

diagonalization (DG) and
complementarity

reformulation (CF)/mixed
integer linear

programming (MILP)

MBA/MILP MIP/iterative CG MIP CG2

SW, social welfare; CC, costumer cost; CP, consumer payment; IC, investment cost; OC, operation cost, ERP, enhanced representative periods; CONT, continuous; LIC, line
investment cost; GIC,  generation investment cost.
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solar), and longer construction time for transmission allow
GENCOs to exercise more market power in response to
transmission siting, making the analysis of strategic decisions more
relevant. Finally, considering strategic reactive power in the co-
planning problem could help reduce load shedding and overall cost
of the system, through joint allocation of transmission lines,
conventional units, and reactive power sources [17].

3 Co-planning equilibrium models
In this section, we present a literature review on equilibrium co-
planning GEPTEP models (as opposed to co-optimisation models)
with a particular focus on multi-level models. We will consider
four different categories in the analysis of co-planning GEPTEP
models: equilibrium structure, regulatory framework, solution
techniques, and the most recent development on the modelling of
storage and uncertainty in a market environment. We will provide a
detailed literature review and a classification of the existing
equilibrium GEPTEP models, as well as the individual discussion
on each category.

In Section 3.1, we classify the different GEPTEP co-planning
models depending on their equilibrium structure. In order to do so,
we first introduce market-only (no investment) equilibrium models,
as they usually constitute the lower level of multi-level co-planning
models. We then present the possible different structures of
equilibrium models and we classify co-planning models
accordingly.

In Section 3.2, we examine the possible regulatory frameworks
where co-planning GEPTEP models are applied, and the
corresponding hierarchy of decisions and the degree of competition
considered. Section 3.3 explores the most common solutions
techniques for hierarchical equilibrium models and classifies the
literature in the corresponding categories. Finally, Section 3.4
contains a review of storage and uncertainty approaches under a
co-planning market framework. Table 2 summarises the properties
of GEPTEP co-planning models explored in the whole Section 3.

3.1 Equilibrium structure

When discussing the equilibrium structure of GEPTEP models,
several different cases have to be considered, as depicted in Fig. 1. 

The first distinction is whether the nature of the game is
simultaneous or sequential. Simultaneous games are equilibrium
structures where all decision variables are assumed to be taken
simultaneously, i.e. TEP investment, GEP investment, and market
operating decisions happen all at once. In a sequential or
hierarchical structure, one set of decisions is taken before the other
in a Stackelberg manner. Section 3.1.1 introduces simultaneous
equilibrium models, both market and co-planning. In Section 3.1.2,
we continue with sequential equilibrium markets and conclude
with the characterisation of sequential co-planning models.

3.1.1 Simultaneous one-level structure: We present
simultaneous market models, to then cite some simultaneous co-
planning models, despite the latter being scarce in the literature
(given that co-planning models are usually more interesting when
studying the sequence between investment and operation
decisions).

Simultaneous market models: There exists a wide range of
research on simultaneous equilibrium models that simulate the
electricity market functioning, mainly to represent oligopolistic
behaviour among decentralised GENCOs. In this sense, the
following modelling approaches are usually studied: (a) perfect
competition: no market power, (b) Cournot: firms decide on
quantity, (c) Bertrand: firms decide on price, (d) conjectural
variations: a generalisation that over a ‘conjecture’, can result in
models (a) & (b), and (e) supply function equilibrium (SFE): firms
decide a price-quantity bid. A description of simultaneous
equilibrium models applied to electricity markets when the
network is disregarded is shown in [70]. Additionally, a review of
oligopolistic network-constrained models (ONCMs) is presented in
[71]. The seminal paper on ONCMs by Hashimoto [72] introduces
the network equilibrium model to study systematically the
oligopolistic behaviour of producers in a simplified transportation
network. Under this framework, we identify two decision makers:
GENCOs and ISO (or TSO). It is important to distinguish the two
main features that affect the way prices are created in ONCMs
(please refer to Table 3 for the summary) 

(a) GENCOs reaction to transmission prices. As shown in [73],
even if generation operation is competitive, GENCOs can exercise
market power if transmission rights are passive. As an alternative,
in [73], a parallel market that is proposed for transmission rights
that affect generators' bids and leads to optimal pricing.
Subsequently, in [74, 75], the authors consider two different ways
for modelling transmission prices, stamp (uniform), and marginal
prices. This is obtained by considering that GENCOs react a la
Cournot to transmission prices. Authors claim that multiple
equilibria can arise under stamp pricing; while uniqueness can only
be guaranteed for marginal.
(b) Nodal price difference: a concern with previous models [73–75]
is that differences in nodal prices might not necessarily be
explained by GENCOs’ marginal costs. Hobbs [76] proposes
adding an arbitrager to the network. With this in mind, Hobbs [76]
proposes solving the bilateral market with a quadratic optimisation
problem (that copes with large-scale systems). Under this
framework, GENCOs compete a la Cournot; while they react to
transmission prices a la Bertrand (GENCOs cannot affect
transmission prices). Hobbs [76] also shows that a bilateral market
with an arbitrager is equivalent to a POOLCO market (where
players react a la Cournot to transmission prices).

Fig. 1  General mathematical structure of equilibrium models
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Simultaneous co-planning models: As mentioned before, our
search only found two papers that deal with simultaneous co-
planning models. On the one hand, Wei and Smeers [74] model
both transmission and GEP. However, computation limitations at
the time of publication prevent the study of a real size model.
Additionally, in [30], the authors formulate an equilibrium model
to study the strategic interactions between TRANSCOs and
GENCOs; then they transform the resulting mixed
complementarity problem (MCP) to a quadratic programming
problem, allowing them to solve big size problems. While a
simultaneous decision-making structure leads to simpler models, it
is also a simplification of reality that can potentially lead to a
distortion of optimal planning results.

3.1.2 Hierarchical multi-level structure: Contrary to
simultaneous games, the sequential games model a decision-
making hierarchy a la Stackelberg [82].

Von Stackelberg [82] simulates a market with a leading firm
and multiple followers. This game is defined as an equilibrium,
where the decisions of the leader are made considering the best
reaction of the followers that, simultaneously, make their decisions
knowing how the leader would react anticipating their own
decisions. In this sense, bi-level programming generalises the
Stackelberg model by extending the number of players (and the
type of decision) in the game. Table 4 classifies these models
following [83]. 

It is important to note that the different levels in a multi-level
framework can be either represented by different actors (e.g.
TRANSCO, system operator or GENCOs) or by different types of
decisions (e.g. investment and operation). As mentioned in Section
3.1.1, the market is generally considered as a simultaneous game,
where GENCOs and system operator decisions are taken.
Nevertheless, other models consider a sequence between the
decisions of GENCOs and the clearing process made by the system
operator. These models are called ‘hierarchical market models’,
and some of their properties will be discussed because they are
relevant for the subsequent review of hierarchical GEPTEP
models.

Hierarchical market models: In Table 3, the main characteristics
of simultaneous ONCMs (see in 3.1.1) and hierarchical ONCMs
(as an alternative to improve transmission pricing) are presented.

In this respect, Metzler [78] extends the work on simultaneous
ONCM done in [76]. They propose a sequential Stackelberg model
where GENCOs anticipate TSO decisions (leader). The main

contribution of [78] is to demonstrate that their proposal is a
generalisation of [76]. Additionally, Neuhoff et al. [84] make a
comparison of three large-scale hierarchical market models.
Neuhoff et al. [84] make a comparison of the model
comprehensive market power in electricity transmission and energy
simulator [85], Cambridges I, II [79], and the Madrid model [80].

Neuhoff et al. [84] find that, when the perfect competition is
considered, production and pricing results are the same for all
models. However, when the oligopolistic competition is
considered, pricing results might highly differ; prices could be
twice as much in one case compared to others. Therefore,
whenever a GEPTEP model is analysed, a strong emphasis must be
made on how the market is represented, given that the resulting
prices can highly affect investment decisions.

Hierarchical GEPTEP models: In this sub-section and the
following sections (Sections 3.1.2, 3.2, 3.3, and 3.4), we
characterise co-planning equilibrium models. Table 2 summarises
this information.

Bi-level models can represent the sequence between investment
and operation decisions in either GEP or TEP problems separately.
For instance, Garcés et al. [57] consider a bi-level TEP by
modelling market competition in the lower level and transmission
expansion in the upper level. Some other authors develop a bi-level
GEP by considering either perfect or imperfect competition in the
lower level [86–89]. In order to properly classify and understand
the existing hierarchical structure of GEPTEP problems, the
difference between decisions and decision-makers must be pointed
out.

Decision-makers can be typically classified as GENCOs,
TRANSCO(s), and market operators. On the other hand, decisions
can be classified as GEP, TEP, and market operation (MO). MO
could also be split into a market clearing (MC) and GENCOs
operation (GO). In reality, there is an inherent sequence in
GEPTEP decision making: the investment stage before the market
stage. Now, as we have pointed out previously in Table 3, there
even exist different sequential stages within the market stage.
Conceptually, a complete GEPTEP model consists of multiple
concatenated hierarchical stages; however, when decisions are
assumed to be simultaneous, they are reduced mathematically to
one single stage.

In the remainder of this section, and summarised in Table 5, we
characterise GEPTEP co-planning models according to their
conceptual sequence and their corresponding mathematical
sequence. 

Table 3 ONCM models characteristics
TSO/ISO* objective function GENCO objective function Reaction to prices Arbitrage Structure

 [73] maximise: social welfare maximise: profits – TP Cournot no SIM
 [74] i) min: investment cost maximise: profits – TP Cournot no SIM

ii) fixed rule
 [75] fixed rule maximise: profits Bertrand no SIM
 [76] maximise: congestion rents maximise: profits – TP- ABP Bertrand both SIM
 [77] maximise: social welfare i) max: profit + nodal premium i) Bertrand no i) SIM

ii) anticipate ii) Stackelberg ii) SEQ
 [78] maximise congestion rents + ABP maximise: profits – TP- ABP i) Cournot yes i) SIM

ii) Stackelberg ii) SEQ
 [79] maximise: social welfare maximise: profits – TP Stackelberg yes SEQ
 [80] maximise: utility maximise: benefits Stackelberg no SEQ
 [81] maximise congestion rents + ABP maximise: profits i) Bertrand yes i) SIM

ii) Stackelberg ii) SEQ
SIM, simultaneous; SEQ, sequential; TP, transmission price; ABP, arbitraged payments (nodal price × traded quantities).

 

Table 4 Classification of hierarchical multilevel models
Leaders Followers

OLOF one one
OLMF one multiple
MLOF multiple one
MLMF multiple multiple
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In Table 5, we classify the GEPTEP models considering the
investment and operation decision hierarchy. To that purpose,
Table 5, lists eight (I–VIII) different options, which are shown in
the column space. The row space of Table 5 represents the separate
mathematical levels of each model. Please note that simultaneous
decisions are represented in Table 5 when decisions appear
together on a single level. The simplest GEPTEP option, option I,
is a single-level equilibrium model, which considers GEP, TEP and
MO decisions simultaneously. Options II, III, and IV represent bi-
level models, in which mathematically speaking there are only two
levels.

This means that conceptually speaking two of the three decision
levels (GEP, TEP, and MO) are considered to be taken
simultaneously. Options V, VI, and VII represent three-level co-
planning models with the following structure: some investments
are made in the upper level (GEP/TEP) given some other
investments in the middle level (TEP/GEP), subject to MO in the
lower level. Finally, model VIII is a four-level model with the same
structure as the previous three-level models; but also considers the
market model is itself hierarchical. Additionally, some techniques
can be applied to reduce the initial three-level model to a two-level
structure as shown in [26, 33].

Anyhow, reduction techniques are applied only for solving
purposes, and therefore the underlying hierarchical structure
remains an MLMF, which is much more complex than an OLMF
structure (when no anticipation of the market and only one leader is
considered). This fact would imply to have, instead of a
mathematical programme with equilibrium constraints (MPEC), an
equilibrium programme with equilibrium constraints (EPEC),
whose solution technique is more complex (see Section 3.3).

3.1.3 Equilibrium structure gaps: In terms of the commented
structures of GEPTEP equilibrium models, we can identify some
issues for potential further research. For instance, in Table 3, we
have identified a potential model II that has not been proposed in
the literature yet. This model could represent an electricity market
with generation investment in the upper level and merchant
transmission investments and operation at the lower level.
Additionally, most of the research has focused on proactive models
(see Table 5) type VII, but a large field of research on reactive
model types V and VI still remain almost unexplored. Finally, the
most realistic framework would be similar to structure VIII (four
levels), where there is a sequence between TEP and GEP, while
investment decisions anticipate the market outcome and, at the
same time, MC anticipates generation operation (as in hierarchical
market models). However, this framework is intractable from an
equilibrium point of view, and therefore iterative algorithms can
help to simulate the real operation of the market.

3.2 Regulatory framework

From a regulatory point of view, GEPTEP co-planning models can
be classified depending on the decision maker considered to be the
leader (which implies which investment decisions are assumed to
be taken first). Depending on whether GEP or TEP is considered to

be first, the regulatory framework can be proactive or reactive.
Moreover, co-planning models can also be classified according to
the level of competition in the market: markets with an
oligopolistic structure versus those closer to perfect competition,
both will be discussed below.

3.2.1 Proactive versus reactive planning approaches: A key
issue in generation and TEP is the choice of which investment
decision is considered to be taken first. Does the transmission
planner take its decisions after the generation has been sited or do
the GENCOs plan their investments after transmission assets have
been decided? What comes first, the chicken or the egg?

These choices are proactive and reactive transmission planning
approaches. Sauma and Oren [27] propose a proactive planning
approach as a framework in which the network planner has the
ability to influence generation investment and spot market
behaviour. In terms of the hierarchy, it means that TRANSCO is
the leader and the GENCOs that anticipate market outputs are the
followers.

Respectively, under a reactive planning approach, the network
planner assumes that generation capacities are given, and then
makes an optimisation based only on the spot market equilibrium.
Reactive planning is thus represented by a model with multi-
leaders GENCOs and one or several TRANSCOs as followers.
Sauma and Oren [27] consider an oligopoly structure and
demonstrate theoretically how proactive planning leads to greater
social welfare in comparison to reactive planning.

Some alternative approaches are available like presented in [31]
(please see Table 5). Here, a two-level model is defined, where the
upper level represents the investment decisions (both GEP and
TEP), while the lower level represents the MO. Jin and Ryan [31]
additionally consider fuel supply as another investment variable. In
practice, as mentioned in [25] most of the TRANSCO companies
in the world follow a reactive approach, and, to the best of our
knowledge, no institution has applied a strictly proactive approach
as the one proposed in [27]. However, as mentioned in [37] there
are some other approaches that are close to proactive planning. For
example, the US government approved a regulation that includes
the concept of anticipative (proactive) transmission planning to
obtain a higher social welfare [94]. In Chile, a regulation that
enforces the consideration of coordination between transmission
and generation has also been approved [95]. Additionally, in the
current European context, ENTSOE plays the role of a centralised
agent that proposes future planning pathways, coordinated
regionally, and then GENCOs can react to its decisions. Thus,
under this regulatory context, a proactive planning approach would
make more sense.

Proactive planning approach: Most of the literature in co-
planning equilibrium models for GEPTEP has used a proactive
planning approach. Proactive planning research can be summarised
as follows. On the one hand, Sauma and Oren [26] extend the work
done in [27]; they analyse different objective functions and
consider a spot market where the distinctive ownership structures
are reflected (one GENCO can own several units), as proposed in
[77]. Pozo et al. [35] extend the theoretical work done in [26, 27]

Table 5 GEPTEP model classification depending on hierarchical structure (mathematical levels 1–4 versus GEPTEP options
I–VIII)

I II III IV V VI VII VIII
1 GEP TEP GEP TEP GEP GEP GEP TEP TEP

MO TEP
2 — TEP GEP MO TEP MO GEP GEP

MO MO
3 — — — — MO TEP MO MC
4 — — — — — — — GO
  [30] —  [28, 29]  [32]  [41]  [90]  [38, 91]  [34]

 [74]   [43]  [31]  [42]   [26, 41]
 [44]  [33]  [35, 37]
 [92]  [93]  [36, 39]

 [27, 40]
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where the complete multi-level model was not solved and only a
set of different fixed transmission investment plans were evaluated.
The work done in [35] proposes the first complete model; however,
they relax the Cournot assumption and consider only perfect
competition in the spot market.

On the other hand, Pozo et al. [36] also define three levels and
assume perfect competition in the market in the lower level,
strategic generation expansion in the middle level and transmission
expansion in the upper level. Compared to [35, 36] adds
uncertainty in the demand and applies the model to a real-size case
study. The same authors in [36] extend their work in [37] by
proposing a pessimistic and optimistic network planner (the
pessimistic case is used to eliminate multiple equilibria by
considering the worst generation expansion case) to describe all
possible outcomes of the EPEC in the lower level. The authors
conclude that in practice, if multiple generation expansion exists in
the equilibrium, proactive planning does not always yield the best
welfare results, and it can even reduce social welfare.

Additionally, Jin and Ryan [39] extend this approach and
propose a model with Cournot strategic decisions in the market.
Finally, Motamedi et al. [34] relax the Cournot assumption (in
reaction to transmission prices) and propose a two-level approach
in the market outcome by considering the interaction between ISO
MC problem and GENCOs optimal bidding strategies (please see
Section 3.1.2 and Table 5), resulting in a four-level model. This
model is solved by means of an agent-based methodology.

Apart from the three-level proactive approach, there are two-
level approaches where transmission investment decisions are
taken first and then generation investment and operation decisions
are taken simultaneously. On the one hand, the work in [28] models
the lower level based on the work of [76]. Jenabi et al. [28]
consider perfect competition in the lower level and define different
objective functions in the upper level that are compared with a
vertically integrated one-level approach. Additionally, they
consider a network fee so the TRANSCO can recover investments
in the case of a flow-based fee regulation, typically used in the US.
Later, Weibelzahl and Märtz [29] extend the work in [28], choosing
a pessimistic TRANSCO and demonstrating some subsequent
uniqueness properties, battery expansion is also considered in their
framework.

On the other hand, Maurovich-Horvat et al. [43] consider a
stochastic bi-level model with merchant (for details on modelling
of merchant TRANSCOs refer to [96, 97]) investors of
transmission in the upper level and wind expansion and MO in the
lower level, considering Cournot competition. Finally, the authors
of [44, 92] apply the same structure, but consider storage
expansion and Cournot competition in the lower levels.
Additionally, Gonzalez-Romero et al. [92] compare the bi-level
model with the traditional inelastic cost minimisation approach.
Both works [43, 44] find counterintuitive results when considering
Cournot competition in the lower level compared to a perfect
competition case.

Reactive planning approach: As mentioned above, the reactive
planning approach was first proposed in [26], where some
theoretical properties were shown and some other practical results
were presented for fixed transmission plans. Unfortunately,
subsequent research is limited. In general, under this approach,
several GENCOs are considered as the leaders and a single
TRANSCO as a follower. However, it could also be the case that
only one GENCO is the leader and the rest GENCOs and
TRANSCO(s) are followers, this would represent an OLMF
structure, which, as mentioned above, is simpler to solve.

There are only three subsequent studies on reactive planning. In
[41], the authors propose a new comparison between proactive and
reactive approaches. In contrast to the work done by Pozo et al.
[36], Tohidi et al. [41] do not consider anticipation of market
outcomes by GENCOs and propose the elimination of the multiple
Nash equilibria by considering a pessimistic or optimistic
TRANSCO. Additionally, Dvorkin et al. [42] propose a real size
reactive planning approach in which merchant storage is decided in
the upper level, while transmission investment and MO are decided
in the middle and lower level, respectively. The authors conclude
that the co-planning of storage and transmission lead to greater cost

savings than an independent storage planning. Akbari et al. [90]
propose a four-level with merchant TRANSCOs.

Finally, in terms of transmission modelling, it is important to
note that for all proactive planning models, capacity expansion of
new lines is represented by binary variables, while, in reactive
planning, line expansions are represented by continuous variables
to keep the convexity of the lower level, as shown in [41].
However, in [42], transmission expansions are represented by
binary variables by applying the dual formulation of the lower
level and using the strong duality condition as it will be discussed
in Section 3.3

3.2.2 Perfectly competitive versus oligopolistic GEPTEP
approaches: In the usual proactive planning approach, a
centralised TEP and several GENCOs are considered. Thus, given
the three-level structure of GEPTEP problems (see Section 3.1.2);
there could be strategic decisions either on GO decisions or on
GENCOs investment decisions. As mentioned in Section 3.1.1, the
competition between generators in the spot market, and their
reaction to transmission prices, can be modelled as either Cournot,
Bertrand or SFE. We will discuss the different approaches found in
the literature for GEPTEP problems.

Competitive market: Most of the GEPTEP hierarchical models
consider perfect competition in the spot market (please see
Table 2). This simplifies the solution techniques, and more
importantly, guarantees that under certain conditions, the
uniqueness of the solution is achieved.

If perfect competition (both in GENCOs investment and market
functioning) and cost minimisation objective is considered in both
levels, there would not be a difference between a proactive bi-level
decentralised GEPTEP problem and a centralised vertically
integrated co-optimisation problem, as shown in [98]. In other
words, if the objective function of both levels is aligned and a
perfectly competitive market is considered, both approaches will
render the same solution.

Oligopolistic market: As mentioned above, there could be
strategic behaviour either in the investment or in the generation
operation decisions. If only strategic investment decisions are
considered and no anticipation of the competitive spot market is
assumed (simultaneous generation and perfectly competitive MO),
the problem will have an MPEC structure. However, even in this
case, multiple Nash equilibria can arise. As mentioned in Section
3.1.2 no anticipation of the spot market is assumed in [15, 28, 41].
In [29, 41], multiple equilibria are eliminated considering a
pessimistic TRANSCO approach.

If the only anticipation of the spot market is considered, there
might still exist multiple Nash equilibria (as pointed out in [36])
given that an EPEC problem would be tackled. As mentioned in
Section 3.2.1, in the context of proactive planning some models
consider strategic decisions in both investment and operation
levels, as shown in [34, 39] (Cournot or SFE). However, they
represent a MLMF structure, whose solution method does not
guarantee a globally optimum solution.

3.2.3 Regulatory framework gaps: In spite of the fact that
proactive planning has been proven to lead to the most efficient
investment and operation results (and most of the research has
focused on its analysis), in practice, few jurisdictions have strictly
applied this approach. Therefore, it is important to compare
different regulatory contexts to be able to propose additional
formulations of the GEPTEP problem for understanding the
operation and investment strategies in an imperfect market
structure. Additionally, the lower construction times for generation
and the higher construction times for transmission lines allow
GENCOs to exercise strategic investment and operation decisions
more easily. This scenario leaves an open field for future research
on novel regulatory structures to model the entrance of new
merchant GENCOs in the market.

3.3 Solution techniques

In this section, we present the techniques used to solve hierarchical
GEPTEP co-planning problems. Depending on the initial
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hierarchical structure (please see Section 3.1.2), the techniques
might be different. Therefore, in order to solve problems with a
single leader, i.e. an one leader one follower (OLOF) or OLMF
structure, the solution techniques for the arising mathematical
programmes with equilibrium constraints (MPECs) described in
Section 3.3.1 are to be used. Alternatively, if there are multiple
leaders in the upper level, i.e. an MLOF or MLMF structure, the
techniques explained in Section 3.3.2 to solve EPEC are to be used.

3.3.1 Mathematical programmes with equilibrium
constraints: When a bi-level problem is defined as an OLMF
game (as defined in Section 3.1.2), its mathematical structure is
seen as an MPEC or as a simple bi-level programming problem. As
seen in Fig. 2, the OLMF is a type of mathematical structure in
which a single optimisation problem (upper level) is constrained by
several simultaneous optimisation problems (lower level) that
represent an equilibrium. In Fig. 2, x and y represent lower and
upper level decision variables, respectively.

As explained in Section 3.1.2, in some cases, this lower-level
equilibrium can be converted into a single optimisation problem.
Nevertheless, even if this is possible, the resulting complete
problem cannot be solved directly by classical optimisation
techniques, because an optimisation problem is constrained by
another optimisation problem.

Therefore, in order to solve a bi-level problem with an OLMF
structure, we can follow the next steps. First, the set of lower-level
optimisation problems can be converted into a set of non-linear and
non-convex constraints by applying the Karush–Kuhn–Tucker
(KKT) (if the optimisation problem is convex) conditions. As seen
in Fig. 3, the resulting optimisation problem is constrained by the
primal feasibility constraints, the dual feasibility constraints and
the complementarity conditions (CC). 

The resulting set of constraints is non-linear and non-convex,
given the CC of the problem. This lower level has the structure of a
MCP, and therefore the whole problem has the structure of an
MPEC. Please note that bi-level (OLMF) problems are particular
cases of MPECs.

Now we list the most used techniques to solve this kind of
problem. As mentioned in [99], these techniques can be divided
into dedicated (efficient algorithms that ensure global optimality
but require significant additional coding) and non-dedicated
algorithms. We explain here the non-dedicated algorithms (that can
be implemented directly using commercial software): NLP/MPEC,
regularisation, penalisation, MIP KKT-DUAL.

NLP/MPEC: The only non-convexity in Fig. 3 is the one
introduced by the CC. Therefore, this problem can be solved
directly using an ordinary NLP solver. However, given that this is a
specific NLP structure embedded in an MPEC, specific solvers,

such as PATH, that tackle directly this problem more efficiently can
be used. Unfortunately, both non-linear and MPEC solvers cannot
guarantee a globally optimal solution to the MPEC, given that all
feasible points are non-regular [99], and consequently, solution
methods can easily get stuck in a local optimum or not even find a
feasible solution.

Regularisation: This method [99] relaxes the complementarity
condition of the MPEC problem. Instead, the set of equations for
gn xn, y ≤ t are solved. Then the NLP problem for small values of

t is iteratively solved. The solution of each iteration will be the
initial point of the following iteration; this process is faster but only
provides a local optimum point solution for the MPEC.

Penalisation: The penalisation approach [99] is similar to
regularisation. Conversely, in this case, the CCs are penalised in
the objective function by a parameter that is reduced along with the
iterations until a sufficiently small value of the parameter is
reached. As before, the solution of each iteration will be the initial
point of the following iteration.

MIP KKT-DUAL: As an alternative, the non-linear problem
described in Fig. 3 can be converted into a MILP (when the upper
level objective function is linear) by linearising the CC. This
linearisation can be achieved by applying the methodology
proposed by Fortuny-Amat and McCarl [100] or by the
discretisation method proposed in [101]. In the first case, a
disjunctive formulation is applied to transform complementarity
constraints into binary constraints. This is done by splitting the
original constraint into two disjunctive constraints limited by a
large enough parameter. This is usually known as the Big M
constraints.

This method is, by far, the most used method to solve bi-level
problems. However, most of the papers that use it do not explicitly
mention a method to determine the Big-M values. In fact, as
mentioned in [102] if these values are small, suboptimal solutions
can appear, and conversely, too large Big-Ms can lead to numerical
issues (when different variable magnitudes are reflected in dual
variables), such as unstable solutions or large execution times. In
[99], a method is proposed to define Big M values by mixing the
regularisation and KKT-MIP previously commented methods. The
authors show that this method is more efficient computationally
speaking and it reaches the optimal solution in more cases
compared to other methods. This method is proposed for linear bi-
level problems, but it seems to be also efficient for convex
problems in general.

Additionally, instead of applying the whole set of KKT
conditions, the CCs can be replaced by the strong-duality
conditions (where the objective function of the dual problem equals
the objective function of the primal problem), which together with
its primal and dual feasibility conditions, leads to an equivalent
primal–dual formulation.

In [103], a comparison of the KKT and the primal–dual
formulation is presented and applied to a vulnerability analysis of
the power system. The authors find that the primal–dual approach
is more efficient because the size of the problem is highly reduced.
This is the result of the lower number of Big Ms (alternatively
index constraints or SOS1 variables can be used to programme
disjunctive constraints [104]) needed to linearise the strong duality
conditions compared to those needed to linearise the CCs (it
depends on the ratio #variables /#constraints).

3.3.2 Equilibrium problem with equilibrium constraints
(EPEC): In case of structures with multiple leaders and one

Fig. 2  Bi-level problem with an OLMF structure
 

Fig. 3  OLMF problem with lower level KKT conditions
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follower or multiple followers, it will be more difficult to solve the
resulting problem, given that the resulting formulation consists of
several optimisation problems (equilibrium) subject to several
optimisation problems (equilibrium). This problem can be seen as a
collection of several MPECs. As shown in [83], in order to solve
this problem, the following techniques are available: (a)
diagonalisation algorithms, the MPEC of every agent is solved
sequentially one after the other. (b) Simultaneous solution method,
all problems are solved simultaneously by defining the strong
stationary condition. (c) System of inequalities with equilibrium
constraints used when the problem has finite strategies.

Unfortunately, the solution of multilevel equilibrium problems
can only be guaranteed for the case of OLMF models (MPECs).
For MLOF and MLMF (EPEC) problems, there is no guarantee of
the existence of the equilibrium. As mentioned in [83], there is still
a lack of understanding of the existence of EPEC solutions, thus,
only simulation models and approximation algorithms are applied.
Additionally, we can have hybrid methods as the one level
reformulation of bi-level games. In this case, the lower level is
reformulated by its equivalent KKT conditions and then it is
inserted into every optimisation problem in the upper level. Then
the KKT conditions of the whole problem are formulated and
solved again. However, the resulting solution might not be an
optimum. Ex-post validation should be carried out to verify its
optimality. An example of this approach can be found in [40].

Albeit the difficulty of solving these mathematical structures, in
the literature, there are several models that tackle more than two
levels, by trying to reduce the multi-level problems into a two or
one level equivalent problem.

For instance, Motamedi et al. [34] propose a coordination
framework to take into account the reaction from GENCOs by
adopting generation expansion decisions within a four-level
problem. They solve the coordination problem iteratively using
agent-based modelling and a search-based optimisation technique.
In [105], they further extend the model and develop an iterative
process by simulating the interaction between TRANSCOs and the
ISO and they propose a multi-leader–multi-follower agent-based
model. They consider both several TRANSCOs and GENCOs.
Additionally, we can find an EPEC problem when only one
TRANSCO is considered in the upper level and multiple investing
GENCOs in the middle level to anticipate the market outcome of
the lower level. In this case, the middle and lower level results in a
MLMF structure and thus an EPEC formulation is solved as
presented in [36].

Finally, it is important to note that, in most co-planning models,
generation expansion is modelled as a continuous variable, as
shown in [25, 30, 35, 91]. This assumption responds to the need to
obtain convexity conditions in the lower levels and implies that (in
most cases) only repowering of existing units is represented.

Alternatively, other authors represent the expansion decisions
with integer variables, as [13, 33, 38], but in these cases, only the
GEP model is solved for new wind generators. Finally, to the best
of our knowledge, only [37, 41] consider binary variables in both
investment levels of the GEPTEP problem, which yields non-
convex sub-problems that can only be solved by using complex
algorithms such as column generation (CG) or the Moore–Bard
Algorithm (MBA). Authors in [37] propose a CG and cutting plane
algorithm to solve a three-level proactive problem. The CG
algorithm is close to the usual diagonalisation technique, but it
considers a master problem that creates a meaningful solution to
the sub problem that is solved by a diagonalisation-like procedure.
This algorithm guarantees a global solution and efficient
computation times.

3.3.3 Solution technique gaps: In the case of MPEC problems,
there is still an active field of research for finding efficient methods
to solve these optimisation problems. As mentioned before in
[102], Big M is the most common technique to solve the one-level
reformulation of bi-level programs. However, small values of Big
Ms can lead to suboptimal solutions and large constants can lead to
numerical issues (if different orders of magnitude are present in the
dual variables of the lower level). Additionally, some authors have
tackled the consideration of binary variables in the lower level but

all the solutions imply the implementation of complex dedicated
algorithms [37, 41, 42]. Finally, even though some progress has
been done in the resolution of EPECs [37] there is even more space
for research in this area, given that its application to real size cases
is still an immature area of knowledge.

3.4 Most recent developments

In this section, we introduce the most recent research on co-
planning equilibrium models. This research focuses on modelling
the detailed operation of storage technologies and on representing
renewable uncertainty using novel hierarchical structures.

3.4.1 Representation of storage in GEPTEP co-planning
models: Only [41] is the only study that considers long-term hydro
storage in equilibrium models, but a simplified version that does
not consider reservoir management. To the authors’ knowledge,
two reviewed papers have addressed short-term storage modelling
in GEPTEP co-planning models.

On the one hand, Weibelzahl and Märtz [29] consider storage
expansion and perfect competition in the spot market
simultaneously formulated at the lower level. Weibelzahl and
Märtz [29] show that adequate storage investment can reduce the
line investment cost of the TSO. They also show that investment in
a zonal market can be suboptimal compared to a nodal market.

On the other hand, in [42] investment in merchant storage
resources is considered in the upper level. The authors use a
representative period approach to simulate the time steps in which
the period of study is divided. The authors demonstrate that
merchant storage is economically feasible under the case study
considered.

More recently, authors in [44] propose a co-planning model that
includes Cournot competition in the market and the representation
of short-term (batteries) and long-term (hydro) storage resources
with a representative-period formulation that includes a transition
matrix and cluster indices as proposed in [63]. Additionally,
authors in [44] find counterintuitive results when a proactive
approach is considered with a Cournot competition in the market.

3.4.2 Representation of uncertainty in investment and
operating decisions: Given the complexity of GEPTEP
hierarchical models, most of the papers reviewed do not consider
the modelling of uncertainty (as seen in Table 2) in their
formulations. Accordingly, given that the correct implementation
of renewables depends mainly on the introduction of the uncertain
availability of the resources, renewables are usually not included in
detail in these models (additionally, determining support schemes
is an important field of research that has not been fully assessed by
GEPTEP models but has been assessed separately in bi-level GEP
and network constrained GEP [106, 107].) are usually not included
in detail in these models.

As mentioned in Section 2.5, probabilistic and stochastic
approaches were the most common way to represent uncertainty
For instance, Baringo and Conejo [33] considers a stochastic
approach with scenarios for wind levels and demand. However, it
considers traditional load blocks and therefore it is not suitable for
adequately simulating storage operation. Baringo and Conejo [33]
study how different wind subsidies schemes affect the total welfare
of the system. They conclude that transmission investments highly
condition the investment in wind. They consider different hydro
seasons, limiting the maximum energy produced at each season,
and consider a Weibull distribution to introduce stochasticity in
wind speed that limits the maximum generation capacity of each
winding unit. They also consider a load block approach.

Recent developments in uncertainty representations have
introduced other techniques such as robust optimisation, mainly by
the application of adaptive robust optimisation, which has proved
to be computationally efficient and to represent properly the long-
term uncertainties [46].

In this sense, the most recent work on robust GEPTEP
considers a min–max–min approach in which simultaneous GEP
and TEP decision is taken in the upper level, uncertainty realisation
in the middle level and operation in the lower level [45, 46]. In
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particular, Baringo and Baringo [93] consider stochastic
programming and robust optimisation to deal with both long- and
short-term uncertainties. Finally, some other authors additionally
consider a certain type of reliability criteria [108, 109]. Please note
that the computation efficiency of the algorithms used to solve
robust problems has permitted to consider multistage dynamic
planning approaches, which had been previously of limited
application [45, 46].

A different approach for representing uncertainty is presented in
[37]. The authors introduce uncertainty in generation investment,
by using similar techniques to those used in robust optimisation.
Therefore, Pozo et al. [37] take into account the possible multiple
generation investment equilibria resulting from a hierarchical
model (see Section 9). Therefore, instead of considering the
parameters as the uncertainty set, the authors consider the multiple
investment equilibria (resulting from the middle level) as their
uncertainty set.

It is important to highlight the recent prolific research in robust
optimisation. The theoretical background to solve robust
optimisation problems is close to the dual theory and the
techniques used to solve hierarchical models. However, in
hierarchical models, the levels considered represent either different
agents or decisions. Conversely, in robust optimisation, the levels
considered typically represent different instances of uncertainty
realisation. For instance, in [93], both the GEP and TEP expansion
decisions are made in the second level where the worst operational
case is simulated and in the third level corrective measures are
taken to minimise operational costs. This robust optimisation
framework can be an important field of research that, together with
stochastic programming, is able to couple long and short-term
uncertainties in capacity expansion planning.

3.4.3 Gaps in storage and uncertainty modelling
approaches: Renewable uncertainty and storage operation are still
wide fields of research in co-planning equilibrium models. Given
the properties of equilibrium models, there is an interesting field of
research to study and compare extreme competition cases, where
the uncertainty can come not only from the fuel and sources
availability but also on the multiple equilibria that can arise from
imperfect competition. Additionally, detailed time representation
and novel solution techniques can permit us to model more
complex markets.

4 Concluding remarks
In this study, we addressed the GEPTEP problem. First, we
considered the GEPTEP co-optimisation problem in a centralised
environment in which a vertically integrated utility takes
investment and operation decisions. Then, we focused on the
GEPTEP co-planning problem in a market environment, where
strategic behaviour and sequential decisions of decentralised agents
was studied.

The main findings of this literature review are two-fold:

(i) Given the usual tractability trade-off in planning problems, it is
difficult to determine the best modelling options to represent
GEPTEP problems, however, we found that: (a) in general,
considering lumpy transmission investments might be more
important than representing a detailed network. (b) In contrast,
given that the economies of scale in generation investment are
much lower than in transmission investment, lumpy generation
investment can be sometimes disregarded. (c) Finally, as shown by
Xu and Hobbs [110], a thorough uncertainty representation can be
more important than representing generation operating constraints
in a detailed manner.
(ii) For the case of GEPTEP co-planning problems in a market
environment, we found that it is a very useful framework to model
more realistic market structures. In general, the most studied
proactive approach, which renders higher welfare, is still not
spread around countries. We found that even if there is perfect
competition in the operation, considering the strategic sequential
investment decisions between transmission and generation can
highly change the planning results. Additionally, the consideration

of merchant investors helps to give insights on how to define
optimal support schemes. Finally, some counterintuitive results
arise when considering imperfect competition in the MO, i.e. under
Cournot competition, allowing trade between areas (by building
more lines) can decrease total welfare [26, 43, 44].

We found the following gaps in the literature:
(i) Modelling approaches: there is an active field of research on

spatial and temporal resolution, resource adequacy and economics
of energy production. (ii) Equilibrium structure: most of the
equilibrium structures studied considers a two-, three- or even four-
level traditional proactive approach, however, some proactive
structures and most reactive structures remain unexplored. (iii)
Regulatory structure: in spite of the fact that proactive planning has
been proven to lead to the most efficient investment and operation
results, in practice, few jurisdictions have strictly applied this
approach. Therefore, it is important to compare different regulatory
contexts in order to understand the optimal operation and
investment strategies in imperfect markets. (iv) Solution technique:
in the case of MPEC problems, there is still an active field of
research for finding efficient and standard methods to solve these
equilibrium problems. Additionally, even though some progress
has been achieved in the resolution of EPECs, there is even more
space for research in this area, given that its application to real-size
cases is still an immature area of knowledge. (v) Most recent
developments: renewable uncertainty and storage operation are still
wide fields of research in co-planning equilibrium models. On the
one hand, more studies on the complementarity between
transmission and storage investment are necessary, as well as the
joint consideration of both short-term and long-term storage. On
the other hand, given the properties of equilibrium models, there is
an interesting field of research to study and compare extreme
competition cases, where the uncertainty can come not only from
the fuel prices and the availability of generating units but also from
the multiple equilibria that can arise from imperfect competition.
Finally, given that perfect information is a strong assumption,
including imperfect information theory in the GEPTEP problems,
can make these models more useful for real applications.
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