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Abstract

An increase in power-grid complexity leads to more sophisticated and computationally
intensive models for grid analysis, operation, and control. Despite computer advances,
traditional power-system methodologies such as power-flow analyses may result in
computationally hard problems. This thesis proposes the introduction of complex-network
techniques for the research into power systems, leading to new models that provide good
approximations with lower computational requirements. The thesis focuses on the generation
of synthetic power grids and power-network vulnerability analyses.

Synthetic power grids are non-real power grids that are statistically similar to real power
networks from a topological and electrical point of view. This work introduces a new algorithm
to generate synthetic transmission power grids. The algorithm considers economic and
technical factors in order to mimic the topology of real power networks. Results are tested on
selected European transmission power networks.

The thesis also introduces a new metric for the analysis of power-network vulnerability. This
is of particular interest in cases such as deliberate attacks. Betweenness centrality, a network-
topological metric, is endowed with electrical parameters. It results in a hybrid metric, the
Electrical Line Centrality, that measures the impact of line failure on the network. This metric
improves prior results while reducing computational times. This is crucial in order to include
the protection against deliberate attacks in the network design problem.

Finally, the analysis of power network topology is a necessary prior step in the generation
of synthetic power grids and the assessment of power-network vulnerability. In this work, the
power-network structure is characterized by global metrics traditionally used in complex-
networks. Furthermore, a new framework is introduced to characterize network structure,
enhancing network description, and classification. This framework will also allow for the
topological validation of synthetic power grids.
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Resumen

Un aumento en la complejidad de las redes eléctricas conduce a la necesidad de modelos
mas sofisticados para el andlisis, operacion y control de estas. Este aumento en la sofisticacion
de los modelos implica un incremento del coste computacional de los mismos. A pesar de los
avances informaticos, las metodologias que tradicionalmente se han aplicado a los sistemas de
energia eléctrica, como los andlisis de flujo de carga, pueden tener tiempos de ejecucion muy
elevados. Esto podria llegar a comprometer la utilidad de estos. Esta tesis propone la
introduccion de técnicas de redes complejas en los problemas relacionados con los sistemas
de energia eléctrica. La introduccion de conceptos propios de la teoria de redes complejas
permitiria desarrollar modelos que dieran soluciones aproximadas con un coste computacional
reducido. Esta tesis se centra en la aplicacion de técnicas redes complejas para la generacién
de redes eléctricas sintéticas y para analizar la vulnerabilidad de la red eléctrica.

Las redes eléctricas sintéticas son redes eléctricas no reales que tienen propiedades
eléctricas y topoldgicas similares a las redes reales. Es decir, son redes ficticias pero cuya
operacion y control es similar al de las redes reales. Esta tesis propone un nuevo modelo para
la generacion de redes eléctricas sintéticas. Este nuevo modelo utiliza consideraciones
econdmicas y eléctricas para generar redes sintéticas con una topologia similar al de las redes
reales. El modelo es validado con la red de transporte eléctrico de Espafia, Portugal y Francia.

Ademas, la tesis introduce una nueva medida para el analisis de la vulnerabilidad de la red
eléctrica. Esto es de especial interés en casos como los ataques deliberados. Una medida propia
de redes complejas, la centralidad de intermediacién es completada con informacion eléctrica.
Esto da como resultado una métrica hibrida, la Centralidad de la Linea Eléctrica, que mide el
impacto del fallo de una linea en la red. Esta nueva medida permite mejorar los resultados
obtenidos con las medidas propuestas anteriormente en la literatura, al tiempo que reduce el
coste computacional. Esto es crucial de cara a la inclusion de la proteccién de la red eléctrica
contra ataques deliberados en el problema de disefio de la red.

Finalmente, el analisis de la topologia de la red eléctrica es un paso previo a la generacién
de redes eléctricas sintéticas y a la evaluacion de la vulnerabilidad de la red eléctrica. En esta
tesis se hace una descripcion pormenorizada sobre la estructura de la red eléctrica con las
medidas tradicionalmente utilizadas en redes complejas. Ademas, se introduce un nuevo
modelo que permite caracterizar la estructura de la red de forma sistematica y detallada,
mejorando la descripcion y comparacion de redes complejas. Este nuevo modelo se utilizara
para la validacién topolégica de redes eléctricas sintéticas.
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Nomenclature

Indices, sets, parameters, and abbreviations used in Chapter 6.

A. Indices and sets:

r(n)
G(n)
D(n)

I(n)

B. Parameters

S

AP
BC(u)
0i,j (w)
Oy

ELC(D)

Electrical nodes

Transmission lines

Subset of nodes without slack bus
Subset of generation nodes
Subset of demand nodes

Subset of interconnection nodes

Vector of power flows

Vector of line reactance

Vector of voltage angle differences

Line incidence matrix

Matrix of network susceptances

Vector of power injections

Matrix of power transfer distribution factors
Vector of changes in power injections
Betweenness centrality of a node or a line u
Number of shortest paths from node i to node j that go through u
Number of shortest paths from node i to node j

Electrical line centrality vector
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ENC(n)

Wq

C. Abbreviations

PNS
DCPF
DCOPF
MAE

PTDF

XX

Electrical node centrality vector
Vector of node generation capacity
Vector of node demand

Total generation capacity installed in the network

Power not supplied

DC Power Flow

DC Optimal Power Flow
Mean absolute error

Power transfer distribution factor



INTRODUCING COMPLEX NETWORKS TO
POWER SYSTEMS

1.1. Increasing power-system complexity

The structure of power networks has experienced substantial changes since their
appearance. From a set of local low-voltage networks, power grids evolved to become large-
scale high-voltage networks that extend over several countries. Moreover, power grids interact
with other networks, such as gas or communication networks [1], [2]. Furthermore, relatively
recent developments in power systems such as the spread of flexible alternating current
transmission systems (FACTS), high voltage DC lines or distributed generation, are shifting the
traditional vision of power systems while increasing system complexity [3].

Anincrease in system complexity calls for more sophisticated and computationally intensive
models for grid analysis, operation, and control. Despite computer advances, traditional power-
system methodologies, such as power-flow analyses, may result in computationally hard
problems, requiring large computational resources and computing times. Moreover, the
interconnection among networks increases power-grid vulnerability: a failure in one system
can propagate to other systems leading to blackouts with severe economic consequences. This
means that systems cannot be studied in isolation, which increases the size of the networks
under study. New challenges such as the integration of renewable energy sources or demand
response further increase the complexity of the problem.

1.2. The lack of power-grid data hinders innovation

The increase in network size, as well as the introduction of innovative solutions, require the
development of new algorithms for network operation, control, and design. Despite a large
number of contributions published every year, power-system research is often hindered by the
lack of public data. Real data, such as network models, are crucial to test and validate
theoretical developments.
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Validation processes may require the comparison of new algorithms with existing ones.
However, when public data are scarce, re-using a minimal set of test cases is problematic, since
the performance of some algorithms, such as heuristics or metaheuristics, might be case
dependent. Another solution is to use private data for the construction of test cases. This
hampers transparency and replicability. Furthermore, the lack of public data might not
encourage interdisciplinary research, since the barriers to entry for experts from other
disciplines, who might be tempted to research into power systems are high. Moreover,
research might be conditioned by the interest of data owners, which might not be aligned with
other stakeholders’ interests. These factors combine to one conclusion: the lack of power-grid
data is a barrier for research and innovation.

Although some TSOs have started to publish data in Europe within the INSPIRE directive [4],
network models are scarce, and information is only partial. Consequently, there is a long haul
before the publication of detailed network models. In the U.S., access to real network models
is almost null because of security concerns. There are cautions against the disclosure of the real
location and the topology of power networks because of terror concerns.

Recent advances in power systems as well as the higher degree of connection with
other networks have increased the complexity of power networks. New models are
needed to operate and control power networks. Public network models are therefore
necessary to enhance research into power systems. However, public data are scarce,
and the disclosure of real information might run into security issues.

1.2.1. Existing test cases

The lack of power-network models conditions the testing and validation of theoretical
algorithms. We usually see algorithm proposals that are applied to small and old-fashioned test
cases such as the IEEE-118-bus standard. This test case stands for a portion of the North
American power network in the year 1961. This network cannot represent the complexity of
current power grids. Forty-eight years later, transmission networks include higher voltage
levels and new types of power generators. After the installation of the first wind farm in 1980,
power generation is shifting from large power plants connected to transmission networks to
small renewable power plants that are distributed along the transmission and distribution
networks. Moreover, these standard cases do not consider recent technologies such as storage
systems that can alter the operation of power networks. Finally, the small size of those systems
cannot replicate the real behavior of real large networks that expand beyond the borders of
each country.

The IEEE-118-buses test case, as well as other IEEE standards, are publicly available in the
Power System Test Archive of Washington University [5]. There, repository owners specified
the drawbacks of those systems concerning the power-network conditions in 1993. A list of
available test cases, network location, date and limitations is shown in Table 1-1. This repository
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also includes three dynamic test cases with similar deficiencies. The University of Edinburgh
also has an open-access repository that includes four power-flow test cases (information is
detailed in Table 1-2) [6]. The unsuitability of test cases is also an issue in distribution networks
[7]. Accordingly, test cases should be updated to reflect the complexity of the current power
network.

Table 1-1. Test cases available in the Power System Test Archive of Washington University
Source: Washington University [4]

IEEE test case Location Date Comments

14 buses The midwestern US February 1962 No line limits.
Low base voltage.
An overabundance of voltage control capability.

30 buses The midwestern US December 1961 No line limits.

Line impedance may be wrong.
57 buses The midwestern US Early 1960’s No line limits.

Line impedance may be wrong.

118 buses The midwestern US December 1962 kV levels defined as a bad guess.
MVA limits were not part of the first data.

300 buses No Info 1993 No comments

Table 1-2. Test cases available in the Power System Test Archive of the University of Edinburgh
Source: University of Edinburgh [5]

Test case Location Date Comments
39 bus test case New England No Info Same cost for all generators
Iceland network Iceland Published 2011 No cost information

Voltage bounds were assumed
Reduced GB network Great Britain Published 2010 No comments

GB network Great Britain No Info Obtained from official publicly available data

All prior cases are also available in Matpower [8]. Matpower is a Matlab-based power-
system simulation package that includes novel realistic systems such as the PEGASE networks
(five instances whose size ranges from 89 to 13,659 nodes) or a few demand-generation
scenarios for the Polish grid. The NESTA archive also adds network operation constraints to a
set of existing test cases to evaluate and validate power-system optimization algorithms [9].
However, those cases continue to be insufficient for research purposes because they are only
used for analyzing power flows in an existing network; additional information should be
provided to complete them. Crucially, they do not provide the location of nodes. This
information is critical in applications such as transmission expansion planning, where the
location of nodes is necessary to calculate the installation cost of new lines. Similarly, those
cases usually give just one demand scenario. An extensive set of demand scenarios may be
required in specific studies that research into demand response.
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Recent manuscripts have published new test cases that are the result of combining several
datasets. This is the case of the European transmission network or the Australian power grid
[10], [11]. Although some TSOs are starting to publish some limited information, several
datasets are usually needed to build a complete test case. For instance, we may combine the
electrical parameters of the European transmission network provided by ENTSO-e with the
geographical coordinates of the French network provided by RTE to build a case for the France
power network [12], [13]. However, this is not a distinct task. Although both networks stand for
the same power grid, the number of nodes is not the same in both of them due to different
model assumptions. Besides, no details about the generation are provided. The development
of those test cases is therefore conditioned by third-party data, and it might not be possible to
update them easily. New test cases need to be functional to have the chance to include further
power-system developments as well as new detailed information.

Traditionally used test cases do not replicate the complexity of existing real power
networks. Although novel network models have been proposed, they continue to be
insufficient. New efforts and approaches are required to generate functional and
accurate network models that include the complexity of real power grids.

1.2.2. New initiatives

There are two main groups of initiatives that aim to develop functional network models. On
the one hand, OpenStreetMap-based algorithms try to create real network models based on
crowdsourced data. On the other hand, the GRID DATA project of ARPA-e encourages the
development of algorithms to generate non-real, albeit realistic network models.

A. Open-Access-Map initiatives

The OpenStreetMap, OSM, is an initiative to create an open-access map of the world [14].
This map is built with crowdsourced data; everybody can contribute to add information about
the real location of roads or transmission lines. Several projects have tried to build network
models extracting the information related to power networks, such as substations, generators
or transmission lines location, from OSM. All those elements need to be connected (the user
must set up the connection of transmission lines within substations). In addition, no electrical
parameters are given, so the data are not directly implementable into a model.

Another initiative is SciGRID. The SciGRID project was started by the Next Energy research
group and funded by the German Federal Ministry of Education [15]. It aims to build a European
transmission-network model. They also have a similar initiative with the gas network. They filter
the power information obtained from OSM and abstract the topological information to add
electrical parameters based on typical cable values. Similarly, the osmTGmod project uses OSM
to build the German transmission network; they complete the information that is missing using
heuristics [16].
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Rivera et al. propose the automation of network model generation from OSM data [17]. The
automation avoids the manual introduction of power relations among elements such as
substations, transmission lines, or generators required by prior works. This model is offered at
the OSM platform [18]. They have tested the accuracy of this algorithm with 14 real networks,
and it ranges from 31% to 94%. The accuracy is the ratio between the line length inferred by
the proposed models and the length officially reported by TSOs. This validation does not include
any electrical parameter testing. They have also developed a mobile app to enhance users to
update the location of power-system components with their smartphone.

The main drawbacks of these initiatives are the lack of electrical information and the errors
and missing data in OSM [19]. Accordingly, the development of realistic network models will
depend on the time users need to complete the information of all power-system-components
location. The accuracy of the models is therefore conditioned by third-party information and
the assumptions made to endow network models with electrical parameters.

Finally, these initiatives imply the disclosure of the real location and the topology of power
networks that might run into additional issues.

B. Generation of synthetic power grids

The Generating Realistic Information for the Development of Distribution and Transmission
Algorithms (GRID DATA) initiative aims to develop novel network models to be used as test
cases [20]. Those new test cases should reproduce the characteristics of North American power
networks. This initiative is funded by the Advanced Research Projects Agency within the U.S.
Department of Energy with $11.3 M. The motivation of this initiative is the development of new
Optimal Power-Flow algorithms that will contribute to the increase in network efficiency and
reliability. They will also support operation-cost reduction and integration of renewable
resources. Furthermore, they highlighted that access to public data would stimulate
optimization competitions, encouraging novel contributions.

To generate new network models, ARPA-E proposes two alternatives. First, the
anonymization of real data provided by utilities. Second, the development of new algorithms
to build realistic network models. In both cases, network models will be published into an open-
access repository. Those projects are already underway, and their contributions are expected
in the next few years.

Although the generation of algorithms to build test cases is a relatively new topic for
transmission networks, they have been used in the analysis of geomagnetic disturbances or to
test communication and control networks for smart grids [21], [22]. Some works are focused
on the generation of synthetic distribution networks (e.g., Reference Network Model
developed at the Institute for Research in Technology) [23].
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1.2.3. Public does not mean real data

The lack of public data slows down research and hinders innovation. However, publishing
real data raises security issues. For instance, real power-system data can be used to develop
new control algorithms, but also to plan an attack to maximize the probabilities of a blackout.
Accordingly, the publication of real information, as proposed in OSM initiatives might be
controversial.

However, research does not need real information. Researchers need truthful, realistic
information: non-real datasets are just as good as real ones, as long as they have the same
properties. By the use of realistic test cases, theoretical models and algorithms can be tested
in networks that replicate the conditions of real power grids.

The two procedures proposed to provide public data by ARPA-E (network anonymization
and network model generation) find a balance between data availability and security issues.
This is a strength that is crucial concerning OSM initiatives. Beyond the limits of OSM
approaches such as the lack of electrical parameters or the missing information, their success
is conditioned by third-party data. This problem is also present in the anonymization of utilities’
information. We, therefore, think that the generation of synthetic power grids is the best
alternative to the lack of network models. Furthermore, synthetic power grids allow for the
introduction of novel developments or data. ARPA-E is the seed of a new research line based
on the generation of synthetic power networks. Although ARPA-E defines the research
question with clarity, the choice of methods to generate the networks is a crucial further step.
The use of traditional power-methods (e.g., optimization problems) may not be an accurate
tool to generate those synthetic networks because of network size. New approaches are
required to generate those synthetic power grids.

The generation of synthetic power grids, non-real albeit realist network models, is a
suitable solution for the lack of publicly available network models. Those systems are
not real and do not disclose information about real power networks. However, they
replicate the complexity of real networks and have their same properties. Operation
and control are similar to the ones of real networks. They can be used in research
projects.

1.3. New threats to power-grid robustness

Not only is the lack of network models a problem that cannot be addressed with traditional
power-system techniques, but the assessment of network vulnerability is also a challenge due
to the large size of power networks and the increasing interconnection among systems.
Vulnerability assessment is a crucial step in the design of robust networks. A failure in power
networks may lead to a blackout with severe consequences. For instance, in 2012, 620 million
people were affected by a power outage in India [24].
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Power systems are designed to have redundant lines and extra generation capacity in order
to be able to meet demand in case of failures. Therefore, TSOs try to analyze the adequacy of
the network to design those redundancies. The adequacy of a power system is defined as “the
ability to supply the aggregate electrical demand and energy requirements of the end-use
customers at all times, taking into account scheduled and reasonably expected unscheduled
outages of system elements” by the National Electric Reliability Council (NERC) [25].

Traditionally, N-1 analysis has been used in electrical engineering to study network
adequacy [3]. This analysis provides detailed results of how power flows through the network
in case of line or generator failure. It also quantifies the energy that would not be supplied in
the system in case of failure. Consequently, TSOs have accurate information to ensure power
supply after component failures. However, the analysis of extensive power grids may consume
large computational resources. Network design usually considers the failure of one or two
components in power networks. Thus, power networks are supposed to be robust against
component failure.

However, if a power network does not respond quickly in case of component failure, it may
suffer a cascade of failures that lead to massive blackouts [26]. Furthermore, the blackout might
also be aggravated by other network failures, such as telecommunication networks.

Furthermore, power networks might be the target of deliberate attacks. These are targeted
attacks that aim to collapse power networks, as the cyber-attack that caused the Ukrainian
blackout in 2015, affecting 225,000 customers [27]. This collapse was caused by a cyber-attack
in which substation breakers were remotely opened. This caused the failure of several
components simultaneously affecting 30 different substations.

Accordingly, the N-1 criterion used to design networks is not an accurate tool in case of
cascade failures or deliberate attacks. Although it is not possible to completely mitigate the risk
of a blackout, network design might contribute to reducing the size and cost of those blackouts.
Novel approaches have tried to evolve from the traditional power-network vulnerability
assessment. Based on N-1 analysis, high-risk N-k analysis proposes the creation of a list with
the most vulnerable elements in the network [28]. Adequacy analysis of power systems can
also be addressed as an optimization problem by formulating the problem of optimal
interdiction of a power grid in order to identify critical elements [29]. This is a max-min
programming problem in which a terrorist tries to attack the system maximizing loss of load.
This problem can also be formulated as a Mixed-Integer Non-Linear (MINLP), Bi-level problem,
or as Mixed-Integer linear problem (MIP) [30], [31]. However, computational requirements
continue limiting the analysis of the power-network vulnerability.
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The N-1 analyses are used to assess power-network adequacy. Those studies support
the design of robust networks against component failures. However, both the large
size of real networks and the high degree of interconnection with other networks limit
results obtained from this approach. Furthermore, it is not a suitable approach for
deliberate attacks. New methodologies are required to protect power networks of
new threats without compromising computational requirements.

1.4. The role of complex-network techniques

Complex networks are systems composed of a large number of connected units that
interact among them [32]. Complex-network techniques arose from graph theory to study
these interactions -graph edges- among system units -graph nodes-. From biology to social
science, complex networks have been applied to different goals, such as the study of protein-
protein interaction or the prediction of the currency market in online gaming [33], [34]. The
analysis of complex-network topology allows us to understand the principles that guide
network evolution and condition its behavior [32].

Power grids can be modeled as complex networks with a set of substations that are
connected through transmission lines. The interaction among those substations is the power
that flows through power lines when power is injected or withdrawn in each node.

Unlike power-system methodologies, complex-network techniques are relatively light in
computational requirements. However, they only consider the topological structure of the
system and, in principle, they disregard their nature (e.g., in power networks they do not
consider power flows or additional electrical information). In the case of power networks, mere
network analysis does not consider the Kirchhoff’s circuit laws that govern power flows. Recent
studies have started to adapt complex-network methodologies to power systems, for instance
by the inclusion of power-flow analyses [35]. Accordingly, by merging complex-network
techniques and tools from the power-system domain, new models may provide good
approximations with lower computational requirements.

The combination of complex networks and power systems is therefore accurate for the
generation of synthetic grids and power-network vulnerability analysis, two problems that
cannot be addressed with traditional power-systems methodologies.

1.4.1. Generating synthetic power grids

The need for new power-network models leads us to take up the problem of generating
synthetic power grids. Synthetic power grids are non-real power grid cases that are similar to
real power networks from a topological and electrical point of view. They are fictitious
networks, so information about the real network is not disclosed, but they are similar in terms
of operation and control.
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In the complex-network field, several algorithms were proposed to generate synthetic
networks with low-computationally intensive models [36]. An example of those algorithms is
the preferential attachment model [37]. Based on the idea “the rich get richer”, the algorithm
proposed by Barabasi and Albert generates networks in which degree distribution follows a
power law. The only information considered when generating the synthetic network is the
number of connections per node. Thus, those algorithms only focus on network topology
disregarding their nature. While those models may be accurate in social networks, they cannot
be used in power networks. We may generate a network in which the transmission capacity of
transmission lines connected to a power plant is lower than the generation capacity of that
generator.

Furthermore, some of those algorithms assumed that networks have specific topological
properties. Although several studies have analyzed the structure of power networks, results
have led to controversial conclusions [38]. It is not clear whether the topology of power
networks fits with the topological features of those synthetic networks or not, and this question
has not been assessed satisfactorily to the best of our knowledge. Consequently, as an earlier
step to the generation of synthetic power grids, a sound topological analysis of power networks
is required.

The analysis of network topology will determine how synthetic networks are generated and,
at the same time, will be a measure of network accuracy (one of the conditions to state that a
synthetic network is realistic is that its topology is similar to a real power network structure).
Topological conclusions may be incorporated in two ways. First, the algorithm may choose
which lines would be installed incorporating only topological considerations. That is, the
algorithm installs those lines that minimize the error concerning the target topological
properties. Second, when lines are added based on an electrical criterion, candidate lines will
be filtered considering the target network properties. Finally, synthetic networks should be
considered valid only if they share their topological properties with real power networks.

Consequently, complex networks may support the generation of synthetic power grids
since they do not require computationally intensive models. New algorithms should combine
complex-network techniques with electrical criteria to build realistic test cases.

1.4.2. Assessing power-network vulnerability

Unlike the generation of synthetic networks, which is a relatively new and promising line of
research, we find several works that approach the assessment of power-network vulnerability
from a complex-network perspective.

The first works try to determine the most critical elements in networks by using exclusively
topological metrics (see Chapter 6). However, the results were not accurate enough. Some
authors question the ability of complex-network metrics to assess power-network vulnerability
since they disregard the electrical nature of power systems. Accordingly, they will never provide
accurate results when analyzing network vulnerability [39].
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Later on, complex-network metrics were adapted to power systems by including electrical
considerations such as transmission lines parameters. Cuadra et al. provide an extensive review
of the analysis of robustness in power networks by applying complex-network concepts [40].
Although those hybrid metrics obtained improved results, new enhancements should be
introduced to be the right approach and substitute for traditional power-system analyses.
Those metrics are promising because of the low computational requirements.

Despite not considering network operation explicitly, vulnerability indices may be effectively
incorporated into network design. Transmission expansion planning, designing the
transmission network with optimization methods [41], may benefit from these indices in two
ways: by introducing them as a partial objective in the optimization function (it penalizes high
values of vulnerability indices) or by including them as constraints (it establishes maximum
values for the indices). These topological metrics can also be used to select those lines that are
potentially promising candidates to be installed in the network [42].

New improvements should be introduced to improve the results provided by complex-
network metrics and to be included in the network design problem. Furthermore, as in the case
of synthetic power networks, a topological analysis is the previous step to analyze the
properties of complex networks. It is also necessary to clearly define how power networks
should be modeled as complex networks.

Complex network techniques can support the analysis of power systems with
computationally light models. Complex-network studies analyze system topologies.
This is a good approach to the generation of synthetic power grids and the assessment
of power-network vulnerability. In both cases, complex network models should be
completed with electrical information that captures the electrical nature of power
grids.

1.5. How can this thesis contribute to research into power systems?

The application of complex-network techniques to the power grid is a line of research that
may support the generation of synthetic grids as well as power network vulnerability studies.
Those techniques contribute to face two of the problems existing in power systems: the lack of
available network models, and the vulnerability assessment in case of cascade failures or
deliberate attacks.

Although a few models have been proposed to generate synthetic power grids, the topology
of the resulting networks is not consistent with real grids (as it will be further discussed in
Chapter 4). This thesis proposes a new algorithm for the generation of synthetic power grids
that combines complex-network techniques with electrical considerations. The resulting
networks are tested against the real transmission grids of Spain, Portugal, and France.
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Furthermore, it proposes a novel framework to validate synthetic power grids. This

framework also allows for the understanding and description of the complex-network

structure, independently of the nature of those networks. This is a great achievement in the

field of complex networks that supports network classification and comparison.

Besides, we analyze complex-network metrics used to asses network vulnerability. As

explained, existing methods cannot capture the electrical nature of power systems and results

are worse than strictly electrical models. We propose a new hybrid metric that reduces

computational requirements while improving results.

To sum up, the thesis objectives are the following:

The development of a comprehensive analysis of transmission-power-network topology.
This will support the understanding of the power-network structure in order to guide the
generation of synthetic power grids and the assessment of power-network vulnerability.

The proposal for a new algorithm to generate synthetic power grids. The novel algorithm
will focus on transmission power networks. Furthermore, the resulting synthetic networks
should be validated from a topological point of view.

The proposal for a new hybrid metric to assess power-network vulnerability. This new
metric should combine complex-network metrics with electrical parameters.

A detailed summary of each chapter is presented in the section below.

Research Questions & Objectives:

This thesis proposes a novel algorithm to generate synthetic power networks by
combining complex network techniques with electrical considerations. This merge is
also the origin of a new complex network metric to assess power network
vulnerability. To provide a foundation for this, the thesis develops an extended analysis
of power-network topology. It also introduces a novel framework to describe complex-
network structure.

1.6. A quick guide to the rest of this document

The content of the chapters is described as follows:

Chapter 2 introduces the topological analysis of power networks. It applies a set of global
statistics: network size, degree distribution, characteristic-path length, network diameter,
betweenness centrality and network average clustering coefficient to fifteen European
transmission networks (400 kV and 220 kV). This analysis tries to find topological patterns
and differences among networks by analyzing metric scalability. The analysis focuses on
voltage level and network location. Finally, this chapter discusses the characterization of the
power network as a scale-free network and a small-world network. This topological analysis
has been published as:

11
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o R.Espejo, S. Lumbreras, and A. Ramos, “Analysis of transmission-power-grid topology
and scalability, the European case study,” Physica A: Statistical Mechanics and its
Applications, vol. 509, pp. 383—395, Nov. 2018.

Chapter 3 presents an innovative approach to describe complex-network topology from
graphlet decomposition, which improves existing approaches for network
characterization. This new framework exploits the local information provided by
graphlets to give a global explanation of network topology. We propose a twelve-
dimensional metric that analyzes how 2- and 3-node graphlets describe the structure of
networks. The twelve dimensions are independent of network size, so they allow for
direct comparisons of different networks regardless of size. It also reduces the complexity
of graphlet counting, since it does not use 4- and 5- node graphlets. The application of
the novel framework to five real networks demonstrates its potential to explain both
global and local network topological properties. We apply the proposed metrics to a
broad set of networks to show that it can classify networks of different nature based on
their topological properties. In order to further simplify the interpretation of our graphlet
analysis, we reduce the twelve dimensions to their main principal components. This
paves the way for a connection between complex-network analyses and diverse real-
world applications. This novel framework and the application to real networks have been
included in a working paper as:

o R.Espejo, G. Mestre, F. Postigo, S. Lumbreras, A. Ramos, T. Huang, and E. Bompard,
“Exploiting graphlet-decomposition to explain the structure of complex networks.”

Chapter 4 applies the novel approach proposed in Chapter 3 to the European
transmission power network. The twelve-dimensional metric supports a better
understanding of power-network topology. It explains the similarities and differences we
find among networks considering network location and voltage level. Furthermore, it is
proven to be an adequate tool to assess the topological consistency of synthetic power
networks. The use of this framework clearly shows if the topology of a synthetic network
is consistent with real power networks or not. We also analyze the topology of existing
synthetic networks. Results show that those networks are not topologically consistent
with the European transmission power networks. The straightforward interpretation of
the twelve dimensions allows for the improvement of synthetic-network-generation
algorithms.

Chapter 5 proposes a new algorithm to generate synthetic spatial power grids. The
proposed algorithm mimics the historical evolution of power systems by taking into
account economic and technical factors. The algorithm is articulated in two steps, the
first step is focused on economic efficiency to meet demand, and the second one is
targeted at increasing network robustness while achieving some topological attributes.
We generate a synthetic network for the Portuguese, Spanish and French 400-kV
transmission networks. Those networks are shown to be topologically consistent,
according to the metrics presented in Chapter 2 and Chapter 3, with real ones. The
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parametrical nature of the proposed model allows for the generation of different
instances of consistent power networks, an exciting feature for grid generation. The
content related to the generation of synthetic power grids has been published as:

o R. Espejo, S. Lumbreras, and A. Ramos, “A Complex-Network Approach to the
Generation of Synthetic Power Transmission Networks,” IEEE Systems Journal, pp. 1—
4,2018.

It has also been presented in the Windfarms 2017 conference:

o R. Espejo, S. Lumbreras, and A. Ramos, “Generating statistically consistent synthetic
power networks for testing renewable integration models,” Windfarms 2017,
Madrid, Spain, Jun 2017.

Chapter 6 introduces to the assessment of power-network vulnerability with complex-
network metrics. Based on prior work, we show that pure topological metrics do not give
conclusive results in vulnerability analyses. However, extended topological metrics,
which endow topological metrics with electrical considerations, provide satisfactory
results with lower computational requirements. This chapter proposes a new extended
metric, the electrical line centrality, that can be applied to ranking lines according to the
impact of line failure in the network. The proposed metric is based on the idea of
betweenness centrality, and it considers parameters related to power demand,
generation, and transmission lines. Simulations confirm the improvement of results
concerning prior works. The proposal of the line electrical centrality has been published
as:

o R. Espejo, S. Lumbreras, A. Ramos, T. Huang, and E. Bompard, “An extended metric
for the analysis of power-network vulnerability: the line electrical centrality”,
PowerTech 2019, Milan, Italy, Jun. 2019.

Chapter 7 extracts conclusions and summarizes the main contributions of this thesis.
Finally, it outlines further research.
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A TRADITIONAL APPROACH TO POWER-
NETWORK TOPOLOGY

2.1. Introduction to power-network topology

The analysis of network topology is the previous step to the generation of synthetic power
grids and the analysis of the power-network vulnerability. In the complex-network field, several
studies have tried to characterize network topology by finding common structures or patterns
in different networks. Albert et al. presented the case of scale-free networks, those networks
in which the distribution of node degree (the number of lines attached to each node) follows a
power law [37]. Scale-free networks are robust against random failures. However, they are
incredibly vulnerable in case of deliberate attacks, since the loss of some prominent nodes or
links has the potential to disrupt the whole network. Erdds et al. examined random graphs,
which are characterized by a low network average clustering coefficient (the probability that
the neighbors of one node are also connected among them) and short distances among nodes.
Random networks are vulnerable under both random -accidental- and deliberate attacks [43].
Small-world networks have low characteristic path length, but their network average global
clustering coefficient is higher than in the case of random networks [44].

The analysis of power-network topology is, therefore, of particular interest in the
application of complex-network technigues in research into power systems. Existent works
have studied whether power-network topology fits the models above or not [38]. Most of these
works have focused on specific national power grids such as the Iranian, South Korean or North
American power grids [45], [46], [39]. However, there is not a homogenous conclusion when
defining power-grid topology, e.g. whether power grids are small-world networks or not, or
what probabilistic function fits degree distribution better. This lack of consensus may lie on the
heterogeneous data used in prior analyses, for instance by comparing networks with different
voltage levels. We find it is necessary to present a consistent topological analysis of different
power grids based on comparable data in order to obtain definite conclusions about power-
network topology. This would allow us to make a comparison among countries, extracting
information about topological metrics and analyzing how complex-network metrics scale with
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network size. Consequently, our work provides information about the metrics that better
describe transmission power grids and their properties.

This chapter introduces the analysis of the power grid as a complex network by presenting
different ways of characterizing and modeling power grids as graphs in Section 2. Section 3
analyzes fifteen European transmission networks from a topological point of view; it focuses
on how complex-network metrics scale with network size. Section 4 discusses the implications
of these results. Section 5 analyzes the impact of the analysis on the generation of synthetic
power grids. Finally, Section 6 presents chapter takeaways.

The analysis of power network topology is the prior step to the generation of synthetic
power grids and the assessment of power-network vulnerability. Although several
studies have been proposed to characterize the topology of power networks, results
are not consistent. Divergent results may be the consequence of using different voltage
levels, with different topological properties, or different model assumptions. This
chapter focuses on transmission power networks.

2.2. Modeling power grids as complex networks

Complex systems are large sets of individual units that are highly interconnected among
them [32]. Power networks are large infrastructure networks composed of power lines that
interconnect demand with power generation plants (both demand nodes and generators can
be understood as nodes or substations). Accordingly, power networks are complex networks,
and they can be modeled as graphs. In this case, graphs, G(N, L), are set of vertices or
substations, N, that are linked through edges or transmission lines, L.

Power networks, like other infrastructure networks such as roads, can be modeled as
weighted graphs. In the case of power networks, edge weight may represent the maximum
power that can flow between vertices (i.e., transmission capacity) or be used to characterize
other electrical properties (such as line impedance) [47]. Pagani and Aiello make a thorough
review of existing papers in which power grids are modeled as weighted or unweighted graphs
[38]. In addition to weight, lines may be endowed with direction. Directed networks can be
used to represent how power flows through the network in a specific scenario of demand and
generation. A directed network is not always an accurate model since power can flow both
ways. Therefore, in order to be general, power grids should be modeled as simple or non-
directed networks.

Based on the previous considerations, power grids can be represented mathematically by
an adjacency matrix, a matrix where non-zero elements reveal the existence of lines linking two
nodes and their impedance if applicable. The adjacency matrix is symmetrical for non-
directional graphs.
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As in the case of lines, nodes can be endowed with weights. Node weight may help to reflect
the importance of a node in the system, leading to more accurate results [48]. In the case of
power systems, weight can represent the amount of energy that is injected or withdrawn. In
addition to weights, colors can be used to differentiate between demand or generation nodes
or to classify generation nodes based on generation technology or cost.

Power grids, as an example of transportation networks, are spatial networks (nodes are
embedded in a geographical space). The location of nodes will directly affect the growth of the
network and system dynamics. Several works have analyzed the implications of spatial
embeddedness: node degree is limited by the physical space to be connected, the distance-
dependent cost of lines limits the probability of linking two distant nodes, and there is no
correlation between clustering coefficient and node degree (based on the power grid of the
Western United States) [49]. Finally, Barthélemy states that power grids are planar (they can
be drawn in a two-dimensional space in such a way that edges do not cross each other) [50].
However, if we consider that power-networks are embedded, we cannot state that they are
planar graphs.

Finally, power grids are a clear example of interdependent systems. Their correct
functioning depends on other networks, e.g., other power networks (higher or lower voltage
networks) or other types of networks such as gas networks or communication networks [1],
[51], [52]. In this case, every single network is represented as a layer of the whole system. If we
model power grids as multilayer networks in which each voltage level is a different layer, the
dependency between networks may be represented by a set of edges that connect different
layers. These edges would represent the transformer impedance. Mathematically, each layer
is represented by independent adjacency matrixes.

A graph G(N, L) is a set of vertices N that are linked through edges L.
Regarding edges, graphs can be classified as:

e Weighted / Unweighted

e Directed / Non-directed (or simple)

Nodes may be endowed with some features:

e Weight

e Color

In spatial graphs nodes are embedded in the geographical space.

2.3. Global statistics and power grids

This section carries out a topological analysis of power grids by applying complex-network
metrics to fifteen European transmission networks. The analyzed transmission networks are
composed of two voltage levels, 400 kV, and 220 kV. This investigation analyzes both networks
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as independent grids and as a single one. When modeling both voltage levels as a whole, the
model does not omit transformers: transmission lines connected to the primary and secondary
windings are connected to different nodes, as shown in Figure 2-1. Therefore, the number of
nodes, in that case, is equal to the number of buses in the 400-kV network plus the number of
buses in the 220-kV network. Multiple lines connecting two buses are modeled as one single
edge to enhance the use of complex-network technigques to describe power-network topology.
This model is unweighted and non-directed. Data are obtained from ENTSO-e [12]. These data
provide information about how nodes are connected irrespective of node location.
Accordingly, it disregards the spatial nature of power networks. One of the critical points of this
work is the use of comparable data that allows us the comparison among countries. As
previously mentioned, prior studies were based on heterogeneous data; voltage levels included
in those studies were not always clear and varied depending on the work. This made
comparisons untrustworthy and made it difficult to draw definite conclusions. This section
analyzes how the metrics scale with network size, intending to generalize power-grid
topological properties.

Generator 1 Generator 2
: Q Node 1 Node 2 Node 1, 400 kV/ Node 2, 400 kV/
-# Bus 1 | Bus 2 . Edges
(400 kV lines)
| Bus4 Node 3 Node 3, 400 kV/
Bus 3
A\ Node 4 Node 4, 400 kV/
400 kv A Transformer Load 1
.................... S S
V (Transformer)
220 kV
Bus 5 Node 5 Node 1, 220 kV
| | Node 6 Node 7 Node 8
Bus 8 .
Bus 6 Bus 7
v v Edges Node 2, Node3,  Node 4,

(220 kV lines) 220 kv 220 kv 220 kv
Load 2,3 Load 4 @

Generator 3

Figure 2-1. Graph models for power networks.
The 400 kV and 220 kV components as a single graph (center) or as independent layers (right)

2.3.1. Network size

Network size is the most basic metric when describing network structure. Network size is
defined by the number of nodes, N, (number of substations) and the total number of edges, L,
(transmission lines, considering only connections between two nodes regardless of the specific
number of circuits). As shown in Table 2-1, the size of the European power grids that have been
analyzed varies significantly among countries. This ranges from power grids with just 50 nodes
as in the case of Hungary to 1,659 substations in France. Conspicuous factors that determine
the number of nodes in each country were not found. Besides this, when considering different
voltage levels, there is no correlation between network size and voltage level (400 kV or 220
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KV).

Table 2-1. Network size of European transmission power networks.

Country N Nyoo Nazo L Lyoo L2z
Hungary 50 28 22 80 38 22
Netherlands 55 35 20 63 40 18
Greece 57 57 0 80 80 0
Bulgaria 63 21 42 82 27 49
Serbia 84 35 49 107 37 61
Belgium 88 58 30 105 67 32
Austria 89 31 58 119 40 69
Romania 117 46 71 160 64 79
Switzerland 158 37 121 221 46 157
Portugal 159 57 102 237 79 148
Poland 163 59 104 247 82 138
Italy 634 262 372 812 321 437
Germany 782 480 302 1090 671 341
Spain 798 201 597 1115 284 731
France 1659 386 1273 2160 477 1479

N is the number of nodes, L is the number of
transmission lines. The indices 400 and 220 show network
voltage level, in case of no index, the network is the
combination of 400 kV and 220 kV.

In the case of transmission lines, the number of lines in each country scales linearly with the
number of nodes, as shown in Figure 2-2. This relation is valid in the three cases that have been
analyzed, L o« 1.32N, (R? = 0.998), L4 o 1.33N,00, (RZ00 = 0.993)and Lyyq % 1.17N55,,
(R%,, = 0.999). As a direct consequence of the linear correlation between the number of
nodes and number of lines, network connectivity (the number of existing connections divided
by all possible combinations of lines in the graph) inversely scales with the number of nodes
(following a power law), NCon. o« 2.48N %985 (R? = 0.996).

o Network size is defined by number of nodes N and the number of edges L. In this
work the number of nodes is equal to the number of substations.

e |nthe European transmission power networks, size highly varies among countries.

e The number of lines installed scales linearly with the number of nodes. The 400-kV
network has a higher number of lines per node than the 220-kV network.

2.3.2. Degree distribution

Not only the total number of lines in a graph but the number of lines attached to each node
also determines the dynamical behavior of networks. Node degree is defined as the number of
lines connected to each node. The local nature of node degree makes it a non-manageable
metric in large networks.
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Figure 2-2. Relation between the number of nodes and the number of edges in the European
transmission power networks.

Degree distribution (that is the probability of a node to have k lines attached to it) provides
a better approach to explain network topology. Barabdsi and Albert firstly pointed out that the
degree distribution of real complex networks often follows a power law (y - x~%, the variable
x is the node degree), with a a of 4 in the case of power grids [37], several studies have
discussed if the degree distribution in power grids follows a power law or an exponential
function.

Networks where degree distribution follows a power law are also called scale-free
networks. One of the main properties of scale-free networks is scale invariance. That is, the
degree distribution is always characterized by the same «, irrespective of sample size. In terms
of vulnerability, scale-free networks are robust against random failure and vulnerable when
suffering deliberate attacks [37]. However, the degree distribution of several real networks,
such as the worldwide transportation network or mail network, was found to follow an

exponential function (a - e#¥) [53].

20



2.3. Global statistics and power grids

Exponential-degree distributions are characterized by having a faster decay to zero than
power laws. Accordingly, the probability of having nodes with a high degree is slightly larger in
scale-free networks. Recent studies show that the degree distribution of power networks is
best approximated by an exponential function [38]. In particular, we observe that when
considering a single grid (200 kV + 400 kV), the exponential fitting provides better results than
the power law. If power grids are analyzed considering voltage layers independently, a power-
law function fits best in some countries. As shown in Table 2-2, fitting empirical data to (« -
eﬁx) results in values of 8, the exponential decay ratio, that range -0.66 and -0.30. That means
that the smaller the 8, the faster the decay and therefore the probability of finding nodes with
high a degree is lower, as Figure 2-3 shows.

Finally, neither a power-law function nor an exponential function is a precise fit for the
unweighted degree distribution of European transmission power networks from a graphical
point of view (Figure 2-3). Representation of the degree distribution in a log-log plot would be
a straight line in case of following a power law. Similarly, in the case of an exponential function,
the degree distribution would be like a straight line in the linear-log plot. However, in the
European transmission power networks, there are some divergences with those two patterns.

There is no mathematical relation between 8 and network size. Furthermore, the mode of
the degree distribution also provides information when comparing different power-network
topologies. The distribution mode varies between 1 or 2 (it is three just in the case of the 220
kV- Portuguese power network) (see Table 2-2).

Table 2-2. Degree properties of European transmission power networks.

Assortativity
Country (k) (koo (kazo) Mo(k) Mo(ksgo) Mo(ksz) -

coefficient
Hungary 222 245 191 1 2 1 -0.521 -0.56
Netherlands 2.10 2.00 1.80 2 2 1 -0.930 -0.61
Greece 2.81 281 - 2 2 0 -0.050 -0.66
Bulgaria 260 257 233 1 2 1 -0.367 -0.31
Serbia 255 211 249 1 1 1 -0.228 -0.49
Belgium 233 220 221 1 1 2 -0.240 -0.37
Austria 267 258 231 2 2 2 -0.208 -0.60
Romania 274 278 2.23 2 2 2 -0.144 -0.50
Switzerland 278 236  2.60 2 2 2 -0.016 -0.66
Portugal 298 277 290 3 1 3 -0.105 -0.30
Poland 299 278 260 2 2 2 -0.118 -0.49
Italy 253 24 235 1 1 1 -0.187 -0.37
Germany 258 257 212 2 2 2 -0.159 -0.62
Spain 2.79 283 245 2 2 2 -0.061 -0.64
France 259 242 2.32 1 1 1 -0.215 -0.44

(k) is average degree, Mo (k) is the mode of degree distribution and  is the coefficient
of the exponential adjustment of degree distribution (« - e#%). The indices 400 and 220
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show network voltage level, in case of no index, the network is the combination of 400 kV

and 220 kV.

Linear-Log plot
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Figure 2-3. Unweighted degree distribution of European transmission power networks.

The average node degree, (k), is reasonably constant among European transmission
networks since the number of lines per node scales linearly with network size. Accordingly, the
average degree of the 400-kV network is higher than the 220-kV network. When analyzing both
networks together the average node degree is higher since they have a higher number of

connections (they include transformers) for the same set of nodes.

Finally, we analyze whether power networks are assortative or disassortative networks by
calculating the network-assortativity coefficient r (it ranges from -1 to 1). The network-
assortativity coefficient is the Pearson correlation coefficient of the degree at either end nodes
of edges. This is calculated by equation (2-1), where j; and k; are the degree of the vertices at
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2.3. Global statistics and power grids

the ends of the i-th edge [54]. Assortative networks (with a positive coefficient) are those in
which nodes with high degree (also called hubs) tend to link to other hubs. Disassortative
networks (with a negative coefficient) may present star-like features [36].

L™t % jik; — [L_l Zi%(ji + ki)]z

LIS GE kD) ~ [ S G|

T (2-1)

European power networks tend to be disassortative: hubs tend to be connected to nodes
with low degrees. However, assortativity coefficients are low, and no definite conclusions can
be obtained about network topology. As in the case of 8, the network-assortativity coefficient
does not scale with the total number of nodes.

e The number of edges attached to each node is the node degree.

e Power-network degree distribution depends on network location. The average
node degree is fairly constant in the European transmission networks.

e European transmission power networks are disassortative.

2.3.3.Shortest-path length

In addition to degree distribution, distances among nodes also condition the dynamic
behavior of transportation and communication networks, since the shortest path among nodes
provides an optimal path for transmitting system units between two nodes [32]. Characteristic
path length (the average shortest path between any two nodes) and network diameter
(maximum shortest path) characterize distances among nodes in a network.

In most analyzed power grids, the distribution of shortest-path lengths follows a quasi-
normal distribution. However, in some cases, distances spread out to larger values, with
positive skewness. This indicates that while some nodes are relatively well-connected (lower
values of shortest path) there is a set of nodes that are far from the core of the network. This
might be explained by the existence of highly meshed cores weakly connected among them. It
might also represent the existence of a big hub, which is the center of peripheral nodes. Results
show topological differences among countries. For instance, while the French network size is
twice the Italian one, the Italian network has a larger diameter for a similar characteristic path
length (as shown in Table 2-3). This might be explained by country geography: in the case of
[taly, two main corridors connect the north and the south of the country, which has a relatively
long and narrow shape.

In terms of scalability, although geographical properties may condition the shortest-path
distribution, both characteristic path length, and diameter scale logarithmically with the total
number of nodes in all our studied cases, {I) « 2.48logn, (R? = 0.891); (D) x 6.24logn,
(R?2 = 0.791); (lygo) o 2.35logn, (R? = 0.951); (D4go) x 5.98logn, (R? = 0.881);
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(l520) % 3.93logn, (R? = 0.788); and (D,,,) o 10.33logn, (R? = 0.850); as shown in
Figure 2-4. This is also the case for random networks, where both metrics also scale with log n.

However, in scale-free networks, characteristic path length and diameter scale with loglogn

[55].
Table 2-3. Distance-based properties in European transmission power networks.

Country ({0 (Ls00) (l320) d d400 da20 141 Y1,400 V1,220
Hungary 3.56 3.58 3.53 8 8 7 0.359 04 0.291
Netherlands 592 4.03 2.32 15 8 4 0.399 0.082 0.181
Greece 457 4.57 - 12 12 - 0.358 0.358 -
Bulgaria 4.65 3 49 10 6 11 0.001 0.071 0.238
Serbia 49 4.41 4.44 11 9 12 0.244 0.144 0.732
Belgium 7.04 532 3.82 20 12 9 0.765 0.348 0.328
Austria 592 44 5.18 14 10 13 0.245 0.319 0.434
Romania 5.82 442 11.16 11 10 30 -0.159 0.215 0.413
Switzerland 6.02 4.76 6.22 15 13 15 0.354 0.731 0.27
Portugal 6.10 5.05 6.27 13 13 15 0.074 0.557 0.201
Poland 6.24 5.13 6.85 15 11 17 0.172 0.132 0.248
Italy 11.98 9.62 10.17 32 27 30 0.437 0.463 0.369
Germany 12.19 11.2 9.58 29 26 26 -0.018 0.032 0.561
Spain 10.45 7.63 13.9 24 18 40 0.001 0.167 0.664
France 12.17 8.86 23.69 30 20 54 0.016 0.13 -0.007

() is the characteristic path length, d is network diameter, y; is skewness of distance distribution. The indices 400
and 220 show network voltage level, in case of no index, the network is the combination of 400 kV and 220 kV.
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Figure 2-4. Characteristic path length and network diameter versus network size.

e The characteristic path length of a network is the average shortest path among
all pairs of nodes. Network diameter is the maximum distance (shortest path)
among all pairs of nodes in a network.

e In the European transmission power networks, characteristic path length and
network diameter scale logarithmically with network size. Distances are slightly
shorter in the 400-kV network.

2.3.4. Betweenness centrality

Betweenness centrality measures the centrality of a node in a network by counting the
number of times a node or a line appears in the shortest path between other two nodes. In this
chapter, betweenness centrality B(u) refers to node betweenness centrality and it is defined
by equation (2-2), where ng+(u) is the number of shortest paths from s to t through node u
and Ny ; is the number of shortest paths from s to t. Since we are modeling power networks
as undirected graphs, shortest paths from s to t and t to s count as one path.

1 ng,e (u)
B(u) == :
(w) 3 Ne,

S,t#u

(2-2)

Betweenness centrality may be used as a vulnerability metric in power networks. However,
aclear relation between the betweenness centrality and dynamical behavior is not easy to infer
since power does not follow the shortest path in terms of links -power flows are determined
by Kirchhoff’s laws-. Several works have modified the definition of betweenness centrality by
the inclusion of electrical information (see Chapter 6).

Prior studies showed that betweenness-centrality distribution follows a power law in
transmission networks [38]. Accordingly, most of the nodes are not in the shortest paths. In the
case of the European networks, we observe that the percentage of nodes with a value of
betweenness centrality that is equal to zero (they might be expected to have a negligible effect
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on overall vulnerability) highly varies among countries and voltage levels. In the 400-kV
network, it ranges from 13% in the case of Romania to 52% in France and the 220-kV network,
68% in Hungary and 23% in Poland. Usually, this percentage is higher in 220 kV networks (38%
of nodes on average) compared to 400 kV networks (30% of nodes), except in the case of
France, Portugal, and Serbia. This is related to how transmission power networks mesh. If the
betweenness centrality of a node in a certain voltage level is zero, the node is connected just
to one line in that voltage level. However, if we analyze both voltage layers together (400 kV
and 220 kV), we observe that most of those nodes are connected to other lines. Therefore, the
variation in the percentage of nodes with a betweenness centrality that is equal to zero shows
differences in network structure; network mesh can be built in the same or at a lower voltage
level.

The percentages above do not scale with network size. However, the mean and maximum
value of betweenness centrality in power networks scale with the total number of nodes (see
Table 2-4). As shown in Figure 2-5, mean betweenness centrality and maximum betweenness
centrality may be characterized by a power law. When considering the 400 kV and 220 kV
voltage levels together, the relationship is the following: (BC) « 0.28 N3 (R? = 0.965) and
max(BC) o 0.20 N6, (R? = 0.979). In this network, the mean betweenness centrality may
be also fitted with a linear regression (BC) « 5.73 N, (R? = 0.995). However, if we compare
with the 400-kV layer and the 220-kV layer a linear regression is not an accurate fitting. The
best regression for the 400 kV and 220 kV layers are the following: (BCyq0)  0.26 N148,
(R? = 0.993), max(BC,q0) o 0.31 N188 (R? =0.989), (BC,p0) o 0.21 N146 (R? =
0.887) and max(BC,y) o 0.27 N185 (R? = 0.937).

e The betweenness centrality of a node is the number of times that node is in the
shortest path between all pairs of nodes in the network.

e The mean and maximum value of betweenness centrality scale with network size in
the European transmission networks. They follow a power law.

Table 2-4. Betweenness centrality in European transmission power networks

Country (BC) (BCa00) (BCy)  max (BC) max(BCho) max (BGyyg
Hungary 3.12x10* 3.48x10t 2.66x10! 1.81x10? 1.81x10? 1.37x10?
Netherlands 1.33x10? 4.08x10* 4.80%x10° 5.58x10? 1.71x10? 1.90x10*
Greece 1.00x10? 1.00x10? - 7.64x10? 7.64x10?

Bulgaria 1.13x10? 2.00x10! 7.99x10! 5.15x10? 9.35x10! 4.51x10?
Serbia 1.62x10? 5.79x10t 8.26x10! 1.33x10° 3.40x10? 7.31x10°
Belgium 2.51x10? 1.23x10? 2.20x10! 1.37x10° 6.27x10? 1.12x10?
Austria 2.02x10? 4.46x10* 6.64x10" 1.62x10° 2.09x10? 3.75x10?
Romania 2.79x10? 7.69x10! 3.26x10? 2.63x10° 2.98x10? 1.12x10°
Switzerland 3.94x10? 6.76x10! 2.67x10? 4.93%x10° 2.53x10? 3.16x10°
Portugal 4.03x10? 1.13x10? 2.66x10? 3.30x10° 7.07x10? 2.55x10°
Poland 4.24x10% 1.20x10? 2.87x10? 4.55x10% 7.96x10? 1.39x10°

26



Italy 3.48x10°
Germany 4.37x10°
Spain 3.76x10°
France 9.23x10°

2.3. Global statistics and power grids

1.12x103 6.57x102 5.00x10% 8.81x103 1.33x10*
2.44x10° 3.26x10? 1.05x10° 4.25x10* 4.70x10°
6.63x10? 1.55x103 1.16x10° 7.14x103 2.19x10*
1.51x103 1.35x10* 3.32x10° 1.99x10* 2.49%x10°

(BC) is the mean value of betweenness centrality, max(BC) is the maximum value of
betweenness centrality. The indices 400 and 220 show network voltage level, in case of no
index, the network is the combination of 400 kV and 220 kV.
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Figure 2-5. Maximum betweenness centrality and mean betweenness centrality versus network size

2.3.5. Network average clustering coefficient

In the previous sections, the analysis of distances and centrality might indicate the existence
of highly clustered hubs. Similarly, the network average clustering coefficient may help to
explain if there is a tendency to make clusters in power networks. The network average
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clustering coefficient (cc) shows the probability that the neighbors of one node are also
connected among them. The network average clustering coefficient (it is the average value of
node clustering coefficient) is calculated using expression (2-3), where T; is the number of
triangles in which node i is a vertex.

1 2T,
(cc) =— (2-3)

N Laki(k;— 1)
=1

This metric may help to understand why France and Germany have similar characteristic
path lengths when the total number of nodes in France is twice larger than Germany. As shown
in Figure 2-6, the network average clustering coefficient in Germany is three times larger than
the one in France. That difference might explain the similarity in terms of distances: there is a
higher tendency in Germany to form local clusters and therefore transmission lines reinforce
those clusters in short distance rather than medium or long distances as in the case of France.

Overall, there is a low tendency to form clusters in power grids. Most nodes have no lines
connecting their neighbors (the node clustering coefficient is zero) and, only in two countries,
the percentage of nodes with all their neighbors connected is above 10%.

Finally, the network average clustering coefficient does not follow any relation with the total
number of nodes, as shown in Figure 2-6. This might be a key indicator when comparing power
grids. The network average clustering coefficient ranges between 0.05 and 0.15 when
considering 400 kV and 220 kV layers together. By comparing node clustering coefficient and
node degree, the node-clustering coefficient decreases with the degree, having a value of one
only in nodes that are linked just to two or three neighbors.
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Figure 2-6. Network average clustering coefficient versus network size.

e The network average clustering coefficient shows the tendency to make clusters
(triangles) in the network.

e In the European transmission power networks, the network average clustering
coefficient highly varies among countries and voltage levels. Although it does not
follow a pattern, the tendency to make clusters is low.

2.3.6.Is the power grid a small-world network?

Small-world networks are networks where most nodes are not neighbors among them, but
they can be reached from other nodes by traversing only a few edges. In these networks, the
characteristic path length grows logarithmically with network size (I) « logn. This property is
similar to random graphs. However, small-world networks are characterized by having a higher
network average clustering coefficient than random graphs. Based on previous considerations,
Watts and Strogatz proposed an algorithm for generating random graphs with small-world
properties [44].

A network can be considered a small-world network if it has a similar characteristic path
length than a random network and its network average clustering coefficient is much higher
than the network average clustering coefficient of a random network, that is {{)~{l,-qnq) and
(cc) » (cCrgna), Where the network average clustering coefficient of a random network is
defined by: (cCrqna) ~ (k)/N and the characteristic path length of a random network by:
(Lrgna) ~In(N) /In ({k}). The small-world index S compares the previous ratios to determine
if networks are small-world (2-4) [56]. If S is bigger than one, the network can be considered a
small-world network. Values of S for the European Transmission Networks are shown in Table
2-5.
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In prior studies, there was not a clear answer when analyzing whether power networks are

small-world networks or not [38].

According to previous research, low and medium-voltage networks do not appear to be

small-world networks [57]. However, most high-voltage networks are small-world networks.
Results obtained in this work show that if we consider the 400 kV and 200 kV levels together,
all networks have a small-world index bigger than one, as shown in Figure 2-7. However, when

analyzing both layers independently, there are some cases in which S is under one, and

therefore those networks cannot be considered small-world networks. Those cases are
Belgium (400 kV), Romania (400 kV), Serbia (400 kV), Hungary (220 kV) and Netherlands (220
kV). In the case of Belgium, Serbia, Hungary, and the Netherlands, their global clustering

coefficient is small in comparison to a random graph.

e Small-world networks are networks where most nodes are not neighbors among

them but can they be reached from other nodes by traversing only a few edges.

e Not all European transmission power networks display the characteristic structure

of small-world networks.
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Figure 2-7. Small-world network index in the European transmission power networks

Table 2-5. Small-world properties of the European transmission power networks.

Country (rana)  laoorana) (lz2orana) (€€} {cCaoo. {cC220) {CCrama) (CCaoorana) (CC220ranad S Saoo  Sazo
Hungary 4.90 3.72 4.77 013 022 002 0.04 0.08 0.08 42 27 03
Netherlands 5.40 5.13 5.1 0.04 0.07 0.00 0.03 0.05 0.09 1.1 16 00
Greece 3.92 3.92 - 013 013 - 0.04 0.04 - 23 23 -
Bulgaria 4.33 3.22 4.41 0.09 0.14 0.06 0.04 0.12 0.05 20 12 15
Serbia 4.74 4.75 427 0.1 0.04 0.15 0.03 0.06 0.05 32 07 28
Belgium 5.28 5.16 43 009 003 024 0.02 0.03 0.07 26 08 37
Austria 4.56 3.62 4.85 015 028 012 0.03 0.08 0.04 39 28 29
Romania 4.73 3.74 533 008 006 01 0.02 0.06 0.03 27 09 16
Switzerland  4.95 421 4.99 009 007 01 0.01 0.06 0.02 44 11 38
Portugal 4.64 3.97 434 013 016 013 0.01 0.04 0.02 55 26 33
Poland 4.65 3.99 4.85 008 01 0.09 0.01 0.04 0.02 35 17 25
[taly 6.94 6.35 6.97 0.04 005 0.05 0.00 0.00 0.00 6.7 35 60
Germany 7.02 6.54 7.61 012 015 011 0.00 0.00 0.00 221 166 134
Spain 6.5 5.11 7.14 0.09 009 0.10 0.00 0.01 0.00 161 46 129
France 7.79 6.75 8.48 0.07 002 0.06 0.00 0.00 0.00 292 31 119

(lrqna) is the characteristic path length of a random network with the same number of nodes, {cc) is the network
average clustering coefficient, (cCrqng) is the global clustering coefficient of a random network with the same
number of nodes, S is the small-world index. The indices 400 and 220 show network voltage level, in case of no index,

the network is the combination of 400 kV and 220 kV.
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2.4. Inferring the topology of power grids
2.4.1. Power networks, a matter of size

Several global statistics traditionally used in complex networks have been applied in Section
3 to fifteen transmission power networks to analyze network topology. Based on this analysis,
we can differentiate two main groups of power networks when considering network size. The
first group: Germany, Spain, France, and ltaly with more than 600 nodes. The rest of the
countries belong to a group in which networks have less than 160 substations. Those countries
with more than 600 nodes are also the most extensive in terms of electricity consumption.
However, the order in both lists is not the same. Besides, these four countries are also in the
group of the biggest European countries in terms of area. However, the area of Poland is slightly
larger than the area of Italy, and the number of substations in Italy is four times the number of
substations in Poland; network size is more related to electrical consumption than geographical
area.

Furthermore, when analyzing the number of nodes in each voltage level, we observe that
the size of the 220-kV layer and the 400-kV layer do not scale with network size. For example,
although Spanish and German power grids are similar in terms of network size, the percentage
of nodes belonging to the 400-kV layer and 200 kV layer is the opposite. In ten out of the fifteen
countries, the 220-kV layer is larger than the 400-kV layer. Therefore, in Europe, we
differentiate two main groups of transmission power networks in terms of network size.
However, several factors such as electrical consumption or country area lead to topological
differences among countries in both groups.

As explained above, there is a linear correlation between the total number of lines and the
total number of nodes in power networks. Results showed that the number of lines per node
in 400-kV networks is around 13% larger than in 220-kV networks. That might be explained in
terms of vulnerability, in power systems, the higher the voltage level, the higher the level of
network reliability since the amount of energy that is transmitted in a power network grows
with voltage level. Therefore, the 400-kV network has more lines per node; this means that
network connectivity is higher in 400-kV networks, and they are more meshed than the 220-
kV networks. Similarly, prior studies that analyzed medium and low voltage networks showed
that the number of lines per node in those voltage levels is much lower, 1.09 and 1.03
respectively [57].

These results are in line with the ones obtained for other transmission-power networks such
as the Iranian power network or North American power networks, where the number of lines
per node is similar to the obtained for European countries [45], [39]. However, they differ from
the results obtained for the South Korean power network. There, we observe three high-
voltage levels: 765 kV, 345 kV and 154 kV in which the ratios between the number of links and
the number of nodes are 3.81, 3.22 and 1.64 [46]. Those ratios are significantly larger than the
previous cases. We should point out that differences among studies may be explained by how
power networks are modeled (model assumptions), for instance, whether several lines
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connecting the same pair of nodes are considered as one edge or not. Furthermore, the
topography may also condition network topology as discussed below.

e Network size does not depend on country area.

o We differentiate two groups of transmission power networks in Europe based on
network size: large networks (> 600 nodes) and small networks (< 150 nodes).

e The proportion of nodes in the 220 kV or in the 400 kV varies with location.
e The 400-kV network has a more meshed structure than the 220-kV network.

2.4.2. The meshed structure of transmission power networks
A. Average node degree

Since the number of lines can be approximated by the expressions given in Section 3.2.1
that linearly scales with total number of nodes, and the average degree is defined as the ratio
between total number of lines and total number of nodes, the expected average degree in a
power network can be approximated in 2.64 for transmission networks (400 kV and 220 kV)
and 2.66 and 2.34 if considered the 400-kV and 220-kV layers independently. However, these
results contrast with some test cases such as the PEGASE-89 in which the average degree is
4.72. The PEGASE-89 case study represents a fraction of the European high-voltage power
network (400 kV, 220 kV, and 150 kV). Although other networks that are shown in reference
[38] present differences concerning this study, those differences are not so significant as in the
case of the South Korean power network that is mentioned above. As previously mentioned,
those differences may be explained by how power networks are modeled as complex
networks. On equal terms, the average degree distribution would be one of the first conditions
to fit when validating a synthetic or test network since there is a clear correlation between the
total number of nodes and the total number of lines.

B. Degree distribution

Although the number of lines correlates linearly with network size, how lines are distributed
(degree distribution) varies among countries. Beyond the discussion, if degree distribution
follows a power-law or an exponential function, we observe that the coefficients that
characterize both functions vary by country. However, in all cases, we find a right-skew
distribution where the maximum degree is lower than ten in most countries. Concerning the
maximum degree, results obtained from this study are far from the maximum degree of the
South Korean power grid, which is 18, or the U.S. Eastern Interconnect, U.S. Western
Interconnect, and U.S. Texas Interconnect presented in which the maximum value of the node
degree is 29 [39]. This might be explained by the inclusion of lower voltage layers.

33



Chapter 2. A Traditional Approach to Power-Network Topology

Similarly, B (i.e., exponential decay ratio) provides information about network structure.
While Spain and Germany have a similar 8, France has a lower one. This means that the decay
of the degree distribution is faster in the case of France, and therefore, the number of nodes
with a high degree is lower. This might have consequences regarding vulnerability: networks
with highly connected hubs might be more vulnerable to specific attacks to these hubs.
Although lines are differently distributed, all power networks are disassortative, nodes with a
high degree tend to be attached to nodes with low degree. Therefore, in power networks, most
nodes have a low degree (one or two connections) and only a few nodes have a higher degree.
This might be explained by the capital-intensive nature of power networks.

C. Network distances

In the case of network distances among nodes, the 220-kV layer has higher values of
network diameter and characteristic path length. This difference is substantial in France, where
characteristic path length and diameter are almost three times larger in the 220-kV network.
As previously mentioned, 220-kV networks are generally more extensive in terms of network
size and less meshed. As explained in Section 2.3, the location does not determine distance
distribution, as can be seen for instance in the cases of France and Italy. Although Italy has a
smaller geographical area and number of nodes, it has a higher diameter (220 kV and 400 kV)
than France does. In this case, the skewness index describes the difference between both
countries: the distance distribution in France is more normally distributed than in Italy. In Italy
we have two main cores (North and South) connected mainly through two corridors.

Consequently, the analysis of network distances supports that the 220-kV network is less
meshed than the 400-kV. Based on power-system considerations, the more critical nature of
the 400-kV network leads to a more meshed structure. Similarly, 220-kV lines are built to
connect lower distances than 400-kV lines. Therefore, this explains that the diameter of 220-
kV networks is larger than the 400-kV network and that the 220-kV network is larger in terms
of size.

Regarding distance analyses, results obtained in this work are consistent with the analyses
of the Iranian and South Korean power networks. However, they are far from the results
obtained in another study about North American power networks (Eastern, Western and Texas
Interconnected power networks) where the values of network diameter are 94, 61, 37
respectively [39]. Once again, it is necessary to clearly define network models in order to
distinguish structural topological differences from differences that are introduced because of
different model assumptions (e.g., voltage levels, corridors vs. circuits, transformers included
or not). This will support the justification of some questions (for instance, the impact of
geography in network topology), that are ambivalently answered in prior works, as shown in
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reference [38].

e Average node degree is similar in the European transmission power networks.
However, we find inconsistencies with prior works.

e Degree distribution is conditioned by network location. Most nodes have a low
number of connections. The presence of hubs is scarce, and they do not tend to
be connected among them. They are disassortative networks.

o Network characteristic path length and network diameter do not depend on
country area. Distances are larger in the 400-kV network.

e The analysis of the European transmission networks differs from prior works
that analyzed the North American power network. Differences may lie on
voltage levels and model assumptions.

2.4.3. About the small-world nature of power networks

Network average clustering coefficient highly varies among countries and voltage level. It
does not scale with network size. However, our study provides a range of values where the
network average clustering coefficient of power networks can be expected to lie. We observe
that the values of the network average clustering coefficient are low, which shows that there
is not a tendency to make clusters in power networks. We also observe that in relatively large
countries such as France, Spain, and Germany, the network average clustering coefficient is 30
times larger than in the case of random networks with the same number of nodes. However,
in small power networks, network average clustering coefficient values are similar to ones in
random networks. This, therefore, conditions the categorization of power networks as small-
world networks. France, Spain, and Germany are small-world networks (S>20). However, in the
rest of the countries, the small-world index is significantly lower. For example, in the
Netherlands, the network average clustering coefficient is quite similar to the theoretical
network average clustering coefficient of a random network. This might reveal differing
dynamics concerning network size: only as a power system grows does it make sense to build
hubs or clusters that ensure the efficient exploitation of the system as a whole, which needs of
shorter distances among any pairs of nodes overall. Smaller networks might have a more local
structure, which much larger distances between nodes — which is less efficient but, on the flip
side, can make them more resistant to attacks or failures. We can conclude that, in terms of
clustering, power networks do not follow a similar pattern. However, this work provides a
realistic range in which the network average clustering coefficient of synthetic power grids
should lie.

Furthermore, the values of the network average clustering coefficient in power networks
are more extensive than in random networks. Prior studies have pointed out to several
different answers when questioning whether power networks are small-world networks or not.
While an analysis based on North American power grids states that power grids are not small-
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world networks [39], other previous works confirm that power networks belong to that group
[46]. However, as was discussed by Pagani and Aiello, the answer to that question is case
dependent and influenced by the voltage level considered [38]. Results provided in this work
show that with a homogenous treatment of data, transmission power networks could be
characterized as small-world networks only if 400-kV and 220-kV layers are considered
together.

e Thereis noconsensusin the literature about the characterization of the power grid
as small-world networks.

e Based on the analysis carried out in this chapter, we cannot state that power grids
are always small-world networks.

2.5. Topological consistency of synthetic power grids

The analysis presented in this chapter might be used in the generation of synthetic power
grids from a double perspective. On the one hand, the topology of resulting synthetic power
grids should be validated by the comparison with real topologies. This chapter proposed several
metrics in order to check the accuracy of synthetic power grids regardless of network size. As
shown previously, while some properties scale with network size there are other properties
where it is not possible to estimate those parameters based on the number of substations, as
in the case of network average clustering coefficient. However, this study provides a reasonable
range for those metrics. Synthetic power grids should meet those objectives before being
considered as case studies. This topological validation is something that was missing in most of
the prior work in which several algorithms were described to generate synthetic power grids
[22], [21], [58]. Networks obtained with those algorithms should be therefore tested with the
topological metrics used in this chapter. Those metrics should be used beyond other
considerations related to the minimum spanning tree or the Delaunay triangulation as done in
reference [59]. By using just those last two considerations, we cannot provide an accurate and
complete validation of network topology.

On the other hand, the conclusions obtained in this work show that network properties vary
by country, so flexible algorithms are needed. Although some metrics scale with network size,
we also observe a certain deviation level that depends on the country. Even when generating
synthetic networks with the same number of substations, algorithms should be flexible to
generate different topologies.

Global statistics can be used to validate synthetic power grids. However, we should be
cautious since not all statistics scale with network size.

Models to generate synthetic power grids should be flexible enough to build network
with different topologies.
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2.6. The drawbacks of global statistics

The use of global statistic allows for the characterization of power-network structure.
However, there are questions that those metrics cannot solve. For example, we cannot clearly
explain why the French 220-kV and the German 220-kV networks have similar values of
network diameter if the French network is 4.31 times larger in terms of nodes than the German
one.

Furthermore, to compare network topologies, global statistics use average values (average
node degree, characteristic path length, network average clustering coefficient, average
betweenness centrality) or maximum values (network diameter, maximum betweenness
centrality). Those values may guide to misleading results since they do not consider the shape
of the distribution. Different distribution functions might have similar average values. This is
discussed in Chapter 4.

Although most of the global statistics used in this chapter scale with network size, there is a
certain deviation concerning the regression lines. Sound analysis is necessary to explain that
deviation and to compare networks with different sizes. Although we have found some
patterns in the European transmission power networks, there are inconsistencies regarding
prior works. Furthermore, those patterns might change when including in the analysis of other
power networks such as the North American transmission power network. Accordingly, we
need a new method to compare networks regardless of network size.

Global statistics might be insufficient to describe power network topology and to
compare network structure. The main drawbacks are:

e The use of average or maximum values might be misleading.

e Metrics might not scale with network size. That hinders the comparison among
networks of different size.

2.7. Takeaways

This chapter introduces to the topological analysis of fifteen European transmission power
networks. The two main voltage levels, 400-kV, and 220 kV are included independently and as
a whole (which leads to a total of 45 networks). Our results show that network size (number of
nodes) varies with countries and it is not determined by conspicuous factors. The number of
lines scales linearly with the total number of nodes. Therefore, average degree distribution
might be approximated as a constant in power networks.

Degree distribution varies across countries. However, all networks studied are
disassortative (widely connected hubs tend to connect to poorly connected nodes). This means
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that power grids tend to present star-like features.

In terms of distances, both characteristic path length and network diameter grow
logarithmically with the number of nodes in all cases. The analysis of distances is completed
with the skewness index, which shows whether distances are normally distributed or not. Most
networks show a positive skew. This indicates that while some nodes are relatively well-
connected (lower values of shortest path) there are set of nodes that are far from the core of
the network, which might describe the presence of big hubs that are the center of peripheral
nodes.

Regarding betweenness centrality, most nodes have low values (they do not tend to appear
in shortest paths among nodes), which means the network is not vulnerable to losing them.
Maximum and average values of betweenness centrality follow a power law with respect to
the number of nodes.

Finally, the network average clustering coefficient highly varies across countries and voltage
levels, and it presents larger values in power networks compared to random graphs. When
considering transmission networks as 400-kV and 220-kV voltage levels together, all countries
have a small-world index above one, and they can be therefore considered small-world
networks. This means that the shortest path between nodes is relatively low when compared
to random networks, which points to efficiency in their design. However, not all networks are
small-world networks if voltage levels are considered independently. When analyzing both
layers independently we observe that 400-kV networks have a higher average degree (they
have more lines per node and distances are lower). This points out to a more meshed structure
in 400-kV networks. Although both layers are considered transmission power networks, they
display differences from a topological point of view.
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NETWORK TOPOLOGY

3.1. From global statistics to local descriptors

The analysis of complex-network topology can support the understanding of the principles
that guide network evolution and condition network behavior [32]. Although most works have
described network topology with global statistics, like the ones used in Chapter 2, local statistics
have been also used to explain network structure [36], [60]. While global statistics, such as
characteristic path length or betweenness centrality, considered the topology of the network
as a whole, local properties only consider the connections of each node and its closest
neighbors’ connections. Some global statistics result from local descriptors. For example, the
network average clustering coefficient is the average value of the node clustering coefficient,
which measures the tendency of each node to make clusters.

Both global and local metrics complement each other, since different communities may
coexist in the same network with different topological properties (what is known as structural
subunits) [61]. Global metrics, such as the degree distribution, provide a panoramic view of
networks that may have implications on their dynamics. For instance, the particular degree
distribution of computing networks, they are scale-free networks, makes them relatively
resistant to accidental failures but vulnerable to targeted attacks [62]. However, global metrics
disregard the complexity of local structures that might be crucial to understand the behavior
of networks, as it has been shown for the case of the internet [63]. Furthermore, local processes
condition the development of network topology [64]. Consequently, topological analyses
should include the use of local statistics that focus on the local structure of complex networks.

This chapter improves the characterization and understanding of network topology by
proposing a twelve-dimensional metric, the GHuST framework, that is based on network local
structures. Advantages of this novel framework are:

e Enhanced topological description: the twelve dimensions fully describe the structure of
networks, covering most relevant aspects of local and global topology systematically.
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e Size independence: the proposed framework explains network properties regardless of
network size. This enables comparisons among networks with a different number of
nodes and edges.

e  Computational simplicity: this new statistic only considers 2-node and 3-node graphlets
and they follow easily from the adjacency matrix. It reduces computational complexity
with respect to prior analyses that require counting higher node graphlets.

The application of the novel metric to a set of five real networks demonstrates the accuracy
of the framework to explain network topology. Furthermore, this new framework enhances
network classification, and it can be used as a tool to confirm the topological accuracy of
synthetic networks. This validation is usually missing in the generation of synthetic power grids,
where there is a weak topological validation, or it is done only by a few global statistics [65].
Therefore, this tool can be introduced to compare the topology of both real and synthetic
networks systematically.

The rest of the chapter is organized as follows: Section 2 introduces the use of local
descriptors. Section 3 presents the GHuUST, a novel framework to analyze network topology
from graphlet decomposition. Section 4 applies the proposed framework to explain the
topology of five real networks of different natures, and it compares results with other metrics
traditionally used. Section 5 uses dimensionality reduction methods to evaluate the
performance of the proposed framework when it is applied to a large sample of networks.

e Global statistics analyze network topology as a whole.

e Local descriptors only consider the connections of each node and its closest
neighbors’ connections.

e A novel framework, GHuST, is proposed to analyze the structure of complex
networks. This framework is based on graphlet decomposition, a local
descriptor.

e The main strengths of the framework are: full topological description, size
independence and computational simplicity.

3.2. Anintroduction to local descriptors

An example of a local-topology statistic is the motif distribution. Motifs are recurring
subgraph patterns that appear more often in a given network than in a random one (the base
case against which the network under study is compared to is known as the null model). Motifs
were proposed to understand the evolutionary design principles of complex networks from a
local perspective [66]. They search for critical local structures that determine network behavior.
However, the choice of the null model is often problematic [67]. Furthermore, motifs are partial
subgraphs (they do not necessarily include all the connections between nodes), which leads to
a loss of information that may be compelling to understand network structure [68].
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Unlike motifs, graphlets allow for network decomposition in small subgraphs that preserve
all connections among nodes. Graphlets are small connected induced (they preserve all edges
among the subset of nodes) subgraphs of an extensive network [69]. The presence of graphlets
in a network is not conditioned by a null model; they appear at any frequency. Although
graphlets may be comprised of an arbitrarily large number of nodes, the most commonly
studied graphlets are 2- to 5-node subgraphs, given that higher degrees are more difficult to
calculate and interpret.

The automorphism orbit of a graphlet is defined as the set of nodes that are topologically
symmetric in the graphlet [70]. Orbits, therefore, define the relative position of nodes
concerning the rest of the nodes in the graphlet. A node can appear in more than one orbit in
the network. When a node is in orbit n, it is said that node touches O,,.

In the case of G, (a four-node graphlet in which three nodes are connected to a central one)
the node with three connections (green node) is in (touches) 0. The three nodes (blue nodes)
with only one connection are in (touch) Og, as shown in Figure 3-1. Accordingly, the three nodes
that are in Og have the same relative position in the graphlet (they have the same topological
properties) and they are in the same orbit. However, they are topologically different from the
central node (there is only one node in that orbit). Consequently, nodes that belong to G4 can
bein Og orin O0,. We can only differentiate two different orbits or positions inside that graphlet.

The main drawback of using graphlets to describe networks is that counting them is
computationally intensive; recent works have proposed more efficient algorithms for graphlet
counting though [71]-[75]. Figure 3-1 shows all 2- to 5-node graphlets and their automorphism
orbits. The description of network topology is therefore limited by graphlet size. Although larger
graphlets may complete the description of network topology, this would be unmanageable
from a computational point of view.

2-node Graphlets 3-node Graphlets

2
[ 1 3
GO Gl G2

4-node Graphlets

G3 G4 G5 G6 G7 G8
5-node Graphlets

18 27 36 a1 56
17 2 2 3 34 43
20 26 28
23 33 37 42 a4 48

G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19

57 63 67 (65 7

53 58 61 64 69
62

51 54 56 59 60 66 70 72

49

50
G20 G21 G22 G23 G24 G25 G26 G27 G28 G29

Figure 3-1. All 2- to 5-node graphlets and their automorphism orbits.
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Graph Example

Motif Decomposition
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Figure 3-2. An example of the motif and graphlet decomposition.

Figure 3-2 shows an example of the motif and graphlet analyses. The graph used as an
example is formed by 4 nodes and five edges. In the case of motif decomposition, the graph
can be divided into six different subgraphs. Those subgraphs are not necessarily induced.
Subgraphs a, ¢, and f hold all the connections among the subset of nodes taken (they are
induced). However, subgraphs b, d, and e omit one of the existing connections among nodes
in the original graph. Therefore, they do not preserve all the edges from the real network, and
they are not induced subgraphs.
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In the case of graphlets, they should preserve all edges connecting nodes. Consequently,
we can only find four types of graphlets in the example.

In motif analysis, beyond the decomposition of the graph in smaller structures, we need to
analyze whether those subgraphs are statistically significant or not. For example, to state that
there is an overabundance of triangles, we have to compare the number of triangles
concerning a null model. We may generate a random 4-node graph to compare its structure
with the graph used as an example. There are several algorithms to generate random graphs
(with different model assumptions) that generate different topologies. Accordingly, results will
be conditioned by the algorithm used to generate the null model.

Graphlet analyses only define the frequency of each graphlet in the network. The frequency
of each graphlet is not compared with a null model (a comparison with a null model would be
needed to enhance the understanding of results, as discussed in Section 3.4.1). Accordingly,
the graph used as an example results from the combination of the following graphlets: G, (5),
G4 (2), G, (2), G (1) (as shown in Figure 3-2).

Furthermore, we know the automorphism orbits that each node touches. Nodes that have
two connections touch Oq (2), 04 (2), O3 (1), 01 (1) (they are part of G, Gy, and Gy. Nodes
with three connections touch Oq (3), 0, (1), O3 (2), 013 (1). The frequency of each graphlet in
a network results easily from the frequency of the automorphism orbits. For instance, the
number of triangles in a network is equal to the frequency of O3 in the network divided by
three. In this example, the total frequency of 05 is 6 (2 for nodes with three connections and 1
for nodes with two connections), and the number of triangles, G, is 2.

Graphlet decomposition considers all possible induced topologies for a subset of nodes. This
is a strength with respect to motif decomposition, where the user should define the structure
that should be found. In the prior example, users should define the subgraphs to be identified
in the real network. However, in the case of graphlets decomposition, those subgraphs are
already defined. Users only have to compare the real case with those predefined structures.
The number of non-induced topologies highly increases with the subgraph size. In both motif
analyses and graphlets analyses, the main drawback is the need for computationally intensive
models.

Several models developed for the network alignment problem prove the adequacy of
graphlets as a local topological descriptor [76]-[79]. The network alignment problem aims to
find corresponding nodes between different networks. Nodes that play a similar role in both
networks from a topological point of view. In this field, graphlet decomposition has been
revealed as a crucial tool to solve the problem. The basis of those models is the degree
signature of a graphlet [70]. The degree signature of a graphlet is an extension of the node
degree that quantifies the number of times each node in the network appears (touches) in an
orbit. Consequently, graphlets provide a complete description of local network topology (the
orbits each node touches) that enhances the solution of the network alignment problem.
Similarly, graphlets might support the comparison among networks or the study of the role
played by nodes in the network [80], [81]. Despite being a good descriptor of local properties,
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the use of graphlet distribution (or graphlet degree signature) is not enough to have an insight
into the global topological properties of networks. Yaveroglu et al. propose the analysis of orbit
correlation (whether there are graphlets that tend to appear together) to characterize network
structure and to ease the interpretation and implications of topological properties in real

e Motifs are recurring subgraphs that are statistically relevant in a network. To
determine the presence of motifs in a network is necessary a null model to
compare with.

e Graphlets are small connected induced subgraphs of a large network. A network
may be described by the frequency of graphlets (independently of a null model).

e Motif and graphlet decompositions need of computationally intensive models.

applications [82].

3.3. Understanding network structure from local properties

As explained above, graphlets can be a convenient tool for explaining the local structure of
networks. Unfortunately, graphlet decomposition does not consider any interaction between
graphlets. Besides, in large networks, counting graphlets is computationally intensive. It also
supplies a substantial number of dimensions that are difficult to interpret (30 graphlets and 73
orbits in the case of using from 2- to 5-node graphlets). Motivated by this desire to simplify and
improve topological analyses through graphlet decomposition, this section proposes a novel
method that reduces the topological analysis of networks to a twelve-dimensional metric, the
GHuST framework. This metric can be calculated in any non-directed and unweighted network.

3.3.1.The GHuST framework

The twelve dimensions are obtained from the decomposition of networks in 2-node and 3-
node graphlets, comprising three graphlets (Gy, G; and G,) and four orbits (0, 01, 04, 03).
The adjacency matrix succinctly reveals the number of times a node touches those orbits. In
non-directed networks, the adjacency matrix is symmetric, and the sum of the elements in the
ith row (or ith column) is, therefore, the degree of a node or Oy ; (3-1).

Oo,i = ZAdji,jv vj (3-1)
Jj

The number of times a node i touches Oy is equal to the number of nodes j that are
connected to node i by a two-edge path (through node k) (3-2). If a node j can be reached
from node i through one or two edges simultaneously, nodes i and j are vertices of a triangle,
and they touch 0. Alternatively, the non-zero elements of Adj? show the number of two-
edge paths that connect two nodes. However, this matrix does not consider if those nodes are
vertices of a triangle or not.
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Ol,i = Z (Ad]wAd]]'k)(l - Adji,k ), Vj,k *i (3_2)
j k

0, is the binomial coefficient (721) where n is the number of edges attached to a node that

is not connected among them attached to node i. O, ; can also be obtained from (3-3).
Opi= ) ) (Adjijdjne) (1 - Adjjye ), Vjk # i 53)
ik

As an extension of 04, a node i touches 05 when it is the vertex of a triangle (3-4). In this

. . , . 1.
case, the number of times node i is a vertex of a triangle is also equal to EAd]fi.

O3 = Z (Adj; jAdjjx)(Adjir ), Vi k #1i (3-4)
j k

Besides, for the four orbits, Py ; is a binary variable that is 1 if node i is at least once in orbit
t or 0 otherwise (3-5).

(L, 0,;>0
Pti - {0’ Ot,i =0 (3-5)

To enhance readability, the twelve dimensions are classified into four categories: Global
connectivity, Hubs, Strings, and Triangles. Those categories cover different aspects of network
structure that might condition network behavior. Furthermore, these categories allow for an
intuitive interpretation of topology implications in real-world applications. For instance, in
power networks, the higher presence of strings might mean a lower level of network
robustness (higher probability of having energy not supplied in the network in case of line
failure, given that when there is a failure in a string all the nodes that are downstream will be
affected). Similarly, the presence of large strings in an email graph (nodes stands for community
members and edges connect the people who send an email with the people who receive the
email) will show that the community may follow a clearly defined hierarchical structure.

To enhance network comparison, it is desirable that the twelve dimensions of the metric
range between 0 and 1. In cases where a dimension does not do it, we propose a scaling factor.
The twelve dimensions are defined as follows:

A. Global connectivity

Line-surplus coefficient, p1. It stands for the surplus of lines in the network with respect to
the minimum number of lines needed to build a connected graph (3-6). Given a set of nodes,
N, the minimum number of lines, L, to have a connected graphis Ly = N — 1, in case of large

networks Ly = N. As we only consider connected graphs, N = }}; Py ;. The number of lines

. . Yi00i . S
installed in a network is % . This dimension is therefore related to the average node degree,
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Chapter 3. An Innovative Tool to Describe Network Topology

and it supplies information about line density in a network. In networks with a radial structure
(trees), p; tends to zero. The higher the value of p; the more meshed a network is.

_ 1200

2 %Py &:6)

P1

We define p'; (3-7) to scale p; between 0 and 1. Networks with p’; close to 1 have a highly
meshed structure.

!

p1=1

Cpi+l (3-7)

Leaf rate, p,. This ratio compares the proportion of nodes with just one connection, known
as leaf nodes, to the rest of nodes in the network that are not vertices of a triangle. This ratio
discerns between networks in which edges may form a homogenous mesh that touches most
nodes and networks characterized by the presence of hubs connecting low-degree nodes. This
metric is calculated as the complementary of the ratio between the number of nodes that
touches 04 but does not touch O3 and the number of nodes that touches O, but does not
touch 05 (3-8).

All sets of three-connected nodes are either in graphlets G; or G,. For those nodes that
belong to G, and they are not part of Gz, they may touch Oy, O, or both simultaneously. A
nodeis only in O, if it is the center of an isolated star, that is, the rest of the network nodes are
connected to it. By assuming that networks have a more complex structure, no nodes can touch
exclusively 0,. However, a node can touch exclusively O;. This occurs in cases where nodes
have only one connection, or they are the non-common vertex of two triangles that share one
or two vertices. Accordingly, leaf nodes are defined by: P;; = 1, P,; = 0 and P; ; = 0. Nodes
that are not leaf nodes or vertices of a triangle are defined by: P; ; = 1, P, ; = 1and P3; = 0.
When p, is close to one, the presence of leaf nodes is high. The lower this coefficient, the lower
the number of nodes that have just one connection; this is characteristic of star graphs.

B iPpi(1— Ps))
XiP i (1— P3))

p2=1 (3-8)

Leaf-base strength, p3. This ratio analyses if leaf nodes are connected to either hubs or low-
degree nodes. This is the average number of times leaf nodes touch 04(3-9). The value of 0,4
for leaf nodes is equal to the degree of its neighbor. Thus, the higher the value of 04, the higher
the degree of the node to which they are connected. Large values of p; may signal the presence
of hubs in the network.

Dy = 201 P (11— P)(1— Pg) (3-9)
; 2iPi(1— Py)(1— P3p)

This dimension might be scaled with the maximum value of node degree, max (0 ;), in the

network (3-10). If p3 tends to zero, leaf nodes are connected to low-degree nodes. They may
be the end nodes of node strings.
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P3
M= 3-10
3 max (Og ;) ( )

B. Hubs

Hub coefficient, p4. This dimension studies whether there is a tendency to form hubs in the
network or not. It measures the average number of times nodes touch O, (3-11). All nodes
touch 0, except for leaf nodes and nodes that are only in G, (they are only vertices of triangles).
The larger the number of connections of a node, the larger the value of 0, ;. Large values of p,
therefore shows there is a tendency to make hubs in the network. Unlike p3, the hub coefficient
does not linearly correlate with node degree; 0, ; is given by the binomial coefficient (72’) where
n is the number of non-connected edges attached to node i when the Oy ; is greater than 2. If
two networks have similar values of p;, but different values of p,, there is a higher tendency
to make hubs in one network than in the other.

_ 20y
iPy

Pa (3-11)

To range between 0 and 1, p, can scale with the maximum value of O, ; in the network (3-
12).

, P4

P4 = hax (02) (3-12)

Hub-connectivity coefficient, ps. It analyzes if hubs tend to connect among them. This
dimension is defined by the Spearman’s rank correlation between O;and 0, (3-13) where
cov(rgo,,TJo,) is the covariance of the rank variables of O;and 0, and Orgo, Orgo,are the
standard deviation of both rank variables. This is one of the correlations proposed by Yaveroglu
et al.[82]. If p5 tends to one means that nodes with high O, are also nodes with high values of
0;. The number of times a node touches O, ; increases with the degree of a node and its
neighbors’ degree. However, the value of 0, ; only depends on node degree; the higher the
number of connections of a node, the higher the value of 0, ;. Consequently, nodes with a high
value for 0; and O, have a high node degree, they are hubs, and they are connected to other
hubs. Therefore, a value close to 1 means that hubs tend to connect among them.

cov(rgo,,790,)
ps = ———* (3-13)
9o, 790,

This dimension is also scaled to range from O to 1 (3-14).

p's = % +05 (3-14)
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C. Strings

String coefficient, pg. This coefficient measures the proportion of nodes in the network that
are in the middle of a string. A string is formed by two end nodes (one or both nodes are linked
to the rest of the network and there is no edge connecting them) and a set of intermediate
nodes that are connected consecutively and have no links with the rest of the network.
Consequently, a node is in the middle of a string if it has two connections, it touches 0, ; only
once (U ; = 1) anditis not a vertex of atriangle (U3 ; = 1). Therefore, pg is the ratio between
the number of nodes that are in the middle of a node string and the total number of nodes that
touch 0, (3-15). Not all degree-two nodes touch O, once (triangle vertices do not touch 0,).
In addition, not all nodes that touch O, once are in the middle of a node string. A node might
touch O, only once if it is a shared vertex of a triangle (O3 ; > 0 and U3 ; = 0), so the node is
not part of a string.

2iUz,iUs
=&t 273l (3-15)
Pe il
1, 0,=1
Ui = {0’ 0y, % 1 (3-16)
Uy = {1' 03:=0 (3-17)
30700, 05;%0

Characteristic string length, p-. This dimension is the average length of node strings
(considering only middle nodes and disregarding the end nodes of the string) in the network as
shown in (3-18), where n is the number of node strings in the network. If p; is equal to one, it
means that all node strings have two end nodes and only one middle node.

p, = Zi U2,iU3,i (3-18)
n
To enhance network comparison, p is scaled as its inverse (3-19)

_ n
2iUzUs;

!

p7 (3-19)

D. Triangles

Triangle rate, pg. This coefficient studies whether there is a tendency to make triangles in

the network or not. It measures the proportion of triangles (G,) in a network with respect to

the total three-node graphlets (3-20). The number of G, in the network is equal to % and

the number of G; is equal to };; 0, ;. This ratio is similar to the global clustering coefficient.
However, many works in the literature use the network average clustering coefficient to
analyze network properties. The network average clustering coefficient weights more nodes
with a low degree (as discussed in Section 3.4.2). Thus, it is not a correct measure to analyze
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3.3. Understanding network structure from local properties

network with a non-homogenous degree distribution. The average network clustering
coefficient, therefore, differs from the value of pg which considers the whole topology of the
network.

_ 203
3%i0,;+X;03;

Ps (3-20)

Triangle concentration, pg. This coefficient shows if triangles tend to be concentrated in
networks. Triangles are concentrated when there are nodes that are vertices of two or more
triangles. The dimension pg is complementary to the ratio between the number of nodes that
are vertices of triangles and the number of triangles in the network (3-21). The higher the
number of triangles that share some vertices the lower the value of pg. If triangles have no
shared vertices, the maximum value of O3; is 1, and O3; = P3;. Therefore, the number of
nodes that are in a triangle is three times the number of G, inthe network (3 G, = »;03; =
Y.i P3 ;). However, if triangles share vertices, };; P3 ; < 3 G,. As pg converges to 0, the number
of graphlets of type G-, Gg, G17, G19, G322, G323, Go4, Gos, Gog, G27, G2g and Gog (graphlets
composed of triangles with shared vertices) converges to 0O too.

2iPs;

po=1-— 5.0, (3-21)
iVsi

Triangle pervasiveness, p1¢. This dimension analyzes if triangles tend to cover the whole
network or if they are concentrated around a few nodes. It measures the proportion of nodes
in the network that are vertices of triangles (3-22). If a node is a vertex of a triangle, P3 ; = 1.
As explained, in connected graphs, the number of nodes in a network is };; Py ;. This coefficient
compliments pg and pg, since it sheds light whether triangles form a mesh that comprises most
nodes in a network or not. A high value of pg might be a consequence of networks in which
triangles are connected to hubs and low-degree nodes have a non-meshed structure or
networks in which all nodes are connected by a triangle mesh. Therefore, p, allows for the
discernment between those types of networks, this coefficient would have a low value in the
first case, and it would be close to one in the second network.

_ 2iPs
2iPo,i

P10 (3-22)

Triangle connectivity, p11. [t measures if triangles are isolated in the network or they are
part of a highly meshed structure. A triangle is isolated if one or two of its vertices are not
connected to the rest of the network. Consequently, those vertices have only two connections,
they touch 04 ; and O3 ; and they do not touch O, ;. Thus, p;4 is the ratio between the number
of triangle vertices that are not connected to other nodes (U, ;=1) and the total number of
nodes that are vertices of triangles (3;; P3 ;) (3-23). The lower the value of p;4, the lower the
number of isolated triangles in the network.
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_2iPsi Uy

= (3-23)
P11 2iPs;

Triangle degree, p12. This dimension shows if triangles tend to be connected to hubs or to
low-degree nodes. It is the average degree of triangle vertices (3-24). That is the mean value of
0,,; for those nodes that are in a triangle (P3 ; = 1). High values of p;, mean that triangles are
connected to hubs. The lower the value of p;,, the lower the average node degree of triangle
vertices.

_ 2i0,; Ps;

= (3-24)
Prz 2iPs;

To range between 0 and 1 py, is scaled with the maximum value of node degree (3-25).

, P12

P12 = max—(OO,l-) (3-25)

Table 3-1 summarizes the definition and interpretation of the twelve dimensions of the
GHuST framework. All dimensions, except p;, ps and pg, are new indices proposed in this
thesis. As explained, p; is related to the average node degree, ps was proposed by Yaveroglu
et al.[82], and pg is the global clustering coefficient.

The new metric, the GHuST framework, is defined by twelve dimensions that cover four
aspects of network topology: Global connectivity, Hubs, Strings and Triangles.

To enhance network comparison, we propose a set of scale factors. Accordingly, all
dimensions range between 0 and 1.

3.4. Explaining the topology of real networks

This section applies the twelve-dimensional metric to a set of five real networks to prove
the usefulness of the proposed framework. It aims to prove if the information provided by the
GHuST framework is consistent with the global-topology statistics usually used to describe
network structure.

The set of five networks includes: two infrastructure networks the Minnesota road network
and a power grid that represents the Western States Power Grid of the United States [44], [83],
two social networks: an extract of Facebook and the email interchanges among members of a
Spanish university [83], [84], and a network that represents the metabolic reaction of the E.coli
bacteria [85]. For this analysis, all networks are modeled as unweighted and undirected graphs.
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3.4. Explaining the topology of real networks

Table 3-1. Name, definition, and values of GHuUST dimensions.

Name: Definition: Values:

Line-surplus 1 2 ¥iPoi p1 — 1: highly meshed structure

coefficient P1= %00 p1 = 0:no meshed structure
YiPyi(1— P3y) p, — 1:large presence of leaf nodes

Leaf rate - .

py=1— S22
2 TP (1— Py

p, — 0:low presence of leaf nodes

Leaf-base strength

204, P 1= P))(A = P3y)

3= TSP (1= Py (1— Pyy) max (0p)

ps = 1:leaf nodes connected to high-
degree nodes

p3 — 0:leaf nodes connected to low-
degree nodes

Hub coefficient

_ %0y 1
2P, max (0;)

Pa

ps = 1: presence of hub nodes
ps = 0:no presence of hub nodes

ps — 1:hubs tend to connect to other

N 1 cov(rgo,,790,) 1 hubs
Hub-connectivity pg=5 ———M—=+ =
2 g, 0rgo, 2 ps — 0:hubs do not tend to connect to
other hubs

Stri ficient 2iUzUs; pe — 1:high presence of strings

ring coefficien =——

& Pe XiPa ps — 0: low presence of strings

Characteristic py=1— n p7 — 1:long strings

) , = —
string length 21Uz, Usy; p7 = 0:short strings

Y05, pg — 1: high presence of triangles

Triangle rate Ds .

T 3%0,;+%:0s

pg — 0: low presence of triangles

pg — 1:triangles tend to share vertices

Triangle " Y:Ps;
) = 1= ) — 0: triangles do not tend to share
concentration Po 2i0s; Po . ¢
vertices
. — 1: most nodes are part of a triangle
Triangle YiPs; P10 P ¢
. =55 — 0: most nodes are not part of a
pervasiveness P1o Y Pos P1o p
triangle
p11 — 1:triangle vertices tend to be
Triangle piy = YiPs; Uy, unconnected to the rest of network nodes
connectivity " i Py; P11 — 0:triangle vertices tend to be

connected to the network

Triangle degree

Zi OO,L' P3,i 1

Pz = 2iP;;  max (0,)

P12 — 1:triangle vertices are high-degree
nodes

P12 — 0:triangle vertices are low-degree
nodes
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These five networks have different sizes and display completely different structures, as
shown in Figure 3-3. The two social networks and the metabolic network are in the range of
1,000 to 1,500 nodes, and the two infrastructure networks are two and five times larger,
respectively. However, the number of edges is much higher in the social networks; in the case
of the Facebook network, the number of edges is twenty times larger than in the road
networks. Differences in network size obscure the comparison among networks with global
statistics. In some cases, as in distance-based metrics, it is not always possible to infer if there
is a change in a variable because of network size or network structure.

3.4.1. Graphlets a matter of interaction

Scalability is one of the problems when using graphlets to describe network topology. The
number of graphlets that a node touches depends on its degree and its neighbors’ degree, but
it also depends on the entire structure of the network. Subsequently, two networks with the
same size (same number of nodes and edges) may have a different number of total graphlets.
To make a comparison among networks regarding graphlets, we scale the frequency of a
graphlet concerning the frequency of all same-size graphlets, as shown in Figure 3-4.

Considering 3-node graphlets, the distribution shows that the percentage of triangles G,
looks extremely low in the five networks; in the metabolic and road network, the percentage
of triangles is under 1.5%. Only in the network representing Facebook friendships does it reach
10%. However, a null model is necessary to compare results. Unless a network is formed
exclusively by triangles, that is a network in which all nodes are connected among them, the
frequency of G, in the network is not zero. Therefore, the value of G, has an upper bound.

About 4- and 5-node graphlets, the frequency distribution shows that a few frequencies
prevail over the rest. In the case of 4-node graphlets, G5 to Gg account for 9% of the power-
grid and 2.5% of the road-network distribution. Similarly, in the metabolic network and in the
road networks, Gy, to G,9 account for less than 7.4% of 5-node graphlets. The presence of
more connected graphlets (G5 to G,q) is only relevant to Facebook, where they represent 38%
of 5-node graphlets.

Two graphlets dominate the metabolic network: G, (92% of 4-node graphlets) and Gy
(87% of 5-node graphlets). That distribution of frequencies contrasts with the other networks
in which predominant frequencies are G5 (4-node graphlets) and Gg and Gy (5-node
graphlets). The number of times a node is in G4 and G4 is the binomial coefficient (Z) where
n is the number of non-connected edges attached to node i and k is three or four respectively.
Therefore, those frequencies rapidly increase with the presence of hubs. The largest value of
node degree in the metabolic network is 638 and the average node degree is 9.13, indicating a
network with a few hubs connected to low-degree nodes. The predominance of those
frequencies makes it impossible to infer a sound description of the metabolic network topology
based on graphlet distribution will be limited to relatively low degrees.
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Figure 3-3. Graph representation of five real networks.
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Graphlet distribution: 3-node and 4-node graphlets
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Figure 3-4. 3- to 5-node graphlet distribution of five real networks.

In infrastructure networks, connections are cost-intensive and highly connected subgraphs
are not as frequent as in social networks. If we compare the two infrastructure networks, we
see that there is a lower tendency to make triangles in the road network (3-node graphlets).
However, the number of triangles in the power grid is not necessarily larger than in the road
network, since the total number of graphlets depends on network structure. In the power grid,
the value of Gy is twice larger than the road network. There are nodes with a higher degree
than in the road network. Indeed, the global statistics show that the maximum degree is four
times higher in the power-grid case. When analyzing 5-node graphlets, Gg and G4 explain 95%
and 75% of power-grid and road-network graphlet distribution, respectively. As in the prior
case, the main conclusion is that the average node degree is higher in the power grid and local
structures tend to be more connected than in the road networks (since highly connected
graphlets have a slightly higher frequency). However, this information is not enough to
characterize network topology accurately, and it might be misleading.
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In the case of Facebook, it is not possible to infer if the values of Gq and G4 are because of
the presence of hubs or not. This also requires a more in-depth analysis with a correct null
model. When comparing the two social networks, the email network looks to have a less
connected structure, since the frequency of highly connected graphlets in the email network is
much lower than in the Facebook network. If we compare the mean absolute error (MAE =

Gia_G; - . . .
i |"“n—“b|), the most similar networks in terms of graphlets frequencies are the power grid

and the email network (MAE = 0.008). The MAE between Facebook and email network is
0.021. However, when analyzing the global topological statistics (see Table 3-2), we see that
the power grid and the email networks display entirely different structures.

Based on prior results, the use of graphlet distribution cannot infer the topological
characteristics of complex networks. Other statistics should complete that topological analysis.

The analysis of graphlet distribution shows that in some networks, as in the case of
infrastructure networks, only a few graphlets characterize network structure, so that
calculating higher orders does not bring much additional information. Our method only uses
Gy, G1 and G,. This reduces the complexity of measuring 30 graphlets and 72 orbits.

Graphlet distribution is not an accurate tool to infer the topological characteristics of
complex networks. The use of graphlets provide an incomplete description of network
structure.

3.4.2.Spinning edges to connect nodes

The proposed method overcomes the limitations of graphlet distributions to explain
network topology by a twelve-dimensional metric. To analyze results, Table 3-2 shows a set of
global statistics used to analyze the five real networks, and Table 3-3 shows the value of the
GHuST framework for those networks. In Table 3-3 values are not scaled. Figure 3-5 shows the
scaled values of GHUST dimensions.

Table 3-2. Global topological properties of five real networks.

N L D (k) max (k) Ass. Coeff. (l) d (BC) max (BC)  (cc)
Road 2642 3303 002% 25 5 -0.187 3535 99 4.52x10* 6.95x10°  0.016
Power-grid 4941 6594 003% 2.7 19 0.004 1898 46  4.44x10* 3.51x10°  0.080
Mail 1,133 5451 043% 96 71 0.078 721 8 1.47x10° 2.52x10*  0.220
Social 1,446 59,589 285% 825 375 0.067 222 6 887 1.88x10*  0.323
Metabolic 1,039 4,741 044% 913 638 -0.251 247 6 766 246x10° 0377
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A. Global connectivity

The first dimension, p4, relates the number of nodes and edges. This dimension scales
linearly with network size. This is a strength concerning other metrics such as edge density.
While the number of edges to have a complete graph increases with AN(AN — 1)N,, where
AN is the increase in nodes and Ny the first set of nodes, the minimum number of lines to have
a connected graph increases with AN. In the five real networks used, there is no discrepancy
in the order provided by edge density, D, and p;. However, there would have been
discrepancies in the comparison of the following two networks: a network with 1,000 nodes
and 2,000 edges and another network with 1,100 nodes and 2,200 nodes. The number of edges
per node is the same in both networks. They have twice the number of edges needed by the
minimum spanning tree, and there is no variation in p;. However, the edge density of the
second network is lower than the edge density of the first (0.20% and 0.18% respectively).
Therefore, results provided by p; give a better understanding of the relation between the
number of nodes and edges.

Table 3-3. Values of GHuST dimensions for a set of five real networks

P1 P2 P3 Pa Ps Pe p7 Pg P9 P10 P11 P12
Road 025 004 1.85 218 072 057 155 001 003 005 001 342
Power grid 0.34 031 3.520 4.86 0.78 042 153 0.04 051 0.19 0.23 443
Email 381 051 16.25 8597 09 008 1.04 006 095 074 006 1234
Social 4021 061 9306 396503 098 001 100 010 1.00 098 001 84.02
Metabolic 356 004 321.00 47205 080 006 106 001 09 084 005 1031

p; is the dimension i of the GHuUST framework.

For the infrastructure networks, p, is lower in the power grid than in the road network.
Indeed, the number of leaf nodes is 3.67% in the road network and 24.81% in the power grid.
Therefore, we can infer that the power grid has nodes with a higher degree than the road
network since the number of nodes per line and the percentage of nodes with only one
connection is higher. The global statistic, maximum value of node degree, confirms that
hypothesis.

In the case of the social networks, p, is lower than in the other networks (0.607 in the
Facebook network and 0.515 in the email network). However, the percentages of nodes with
just one connection are 1.17% and 13.23%. The dimensions pg and pg explain this
inconsistency. Both social networks have a significant presence of triangles concerning other
networks (friends of friends tend to be friends themselves). Indeed, only 1.93% of Facebook
nodes are not part of a triangle and 25.86% of nodes in the email network. Therefore, p, only
applies to those nodes that are not vertices of triangles. Accordingly, most nodes that are not
vertices of a triangle are nodes with one connection. Similarly, in the metabolic network, 15%
of nodes are not vertices of triangles, and the number of nodes with only one connection is
scarce (0.5% of total nodes). Consequently, the value of p, is 0.036 in the metabolic network.
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Figure 3-5. Graphical representation of the GHUST framework for a set of five real networks

The value of p3 shows that in the power grid the neighbors of nodes with one connection
have a higher node degree than in the road network. Therefore, we infer that the road network
has a more homogenous mesh, and the range of node-degree distribution is smaller than in
the power grid which tends to create hubs, as shown in Figure 3-3. The presence of hubs is also
a characteristic of the metabolic network, where we see that ps is 321. This value is
considerably larger than the Facebook network with a greater number of edges per node. This
leads to the existence of a small number of hubs that concentrate most connections. The ratio
between maximum node degree and average node degree is 70, a huge value in comparison
with the other four networks.
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B. Hubs

The tendency of a network to make hubs is supported by p,. As in the case of p3, the value
of p, is 5.5 times larger in the metabolic network than in the email network (both networks
have a similar number of nodes and edges). The maximum degree is 638 in the metabolic and
71 in the email network. Both networks have a similar number of edges per node (p;), the
percentage of nodes with only one connection is lower in the metabolic network (p,), and p3
is extremely large, so we may confirm the prior hypothesis that the high value of p, is the
consequence of a few nodes with a high node degree. Accordingly, the third quantile of the
degree distribution is 8 in the metabolic network and 13 in the email network. Therefore,
although the hubs in the metabolic network have more connections on average, the number
of nodes with a high degree is higher in the email network. In the case of the Facebook network,
p'4 is slightly larger than in the metabolic and in the mail network. We infer that in Facebook,
the difference between high-degree nodes and low-degree nodes is not so big as in the other
two networks.

In the case of the two infrastructure networks, the higher the value of p, in the power grid
reinforces our first insight about their network topological properties. Furthermore, p’, shows
that in the road network the mean value of O, is closer to the maximum value. That means
that the road network has a more homogeneous mesh than the power grid where there should
be a few nodes with large values of O, ;.

Finally, ps, shows if hubs tend to connect to other hubs. That correlation is clear in the social
networks. If we choose the 50 nodes with the highest degree in the Facebook network, we see
those nodes have connections to 50% (average value) of those nodes. However, in the
infrastructure networks and in the metabolic network we cannot state whether hubs tend to
connect among them or not, ps are around 0.75 in the range [0,1]. The values of pg diverge
from the network assortativity coefficient, which has values close to zero (as shown in Table
3-2). Therefore, based on the network assortativity coefficient, nodes tend to connect high-
degree nodes and low-degree nodes indifferently. The network assortativity coefficient
measures if the degree of a node is correlated with its neighbors’ degree. A positive correlation
means that high degree nodes have connections with other hubs. Furthermore, low degree
nodes are connected to nodes with a low number of connections. By contrast, in a network
with a negative correlation, low degree nodes are only connected to high degree nodes.
Moreover, hubs are not connected among them. In large networks, this coefficient might be
misleading. We cannot state if hubs tend to connect to other hubs considering the network
assortativity coefficient since it is conditioned to the way in which low degree nodes are also
connected. Because of network size, hubs might be connected to other hubs and low-degree
nodes at the same time. Therefore, the network assortativity coefficient would be close to zero
(there is not a linear correlation between node degree and its neighbors’ degree) and we will
not obtain accurate information about the connection of hubs among them. The dimension pg
overcomes this limitation.
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C. Strings

Based on pg, we may think that in networks in which hubs connect among them, distances
will be smaller. Accordingly, the characteristic path length of the Facebook network is 2, and
the diameter is 6. Here, it is difficult to compare changes in the characteristic path length and
the diameter since it does not scale linearly with network size. We see that the diameter is
lower in networks with hubs (social and metabolic) than in the infrastructure networks. To
reinforce this analysis, pg shows that in the two infrastructure networks there are many nodes
that are part of strings. The presence of those strings on Facebook is almost zero, and the length
of those strings, p, is 1. Similarly, the closer the value of p’; to 0, the shorter the node string.
In the email network and in the metabolic network, there are a few more strings, but their
length is also close to 0. However, in the infrastructure networks, there is a higher presence of
strings. In the case of the road network, the average length of node strings is similar to the case
of the power-grid network.

D. Triangles

The dimensions pg, P9, P10, P11, P12 SUpply detailed information about network clustering.
As previously mentioned, the network average clustering coefficient, (cc), places more weight
on low-degree nodes. In the case of the metabolic network, {cc) is 0.377. That might lead to
the conclusion that nearly 40% of each node’s neighbors form a complete connected subgraph.
However, this contrasts with pg that shows the metabolic network as the one with the lowest
numbers of triangles. As shown in the graphlet distribution, less than 1.4% of three-connected
nodes are triangles. The high value of (cc) concerning pg shows that triangles in the metabolic
network are connections of low-degree nodes. This is something that can be easily checked
with p4. In the metabolic network, the average degree of triangle vertices is 10.3, this value is
close to the average node degree and far from the maximum degree in the network, 638. The
number of edges needed by a node whose degree is 638 to have a value of local clustering
coefficient equal to 1 is 215,644. Furthermore, pg shows that 96% of triangles share vertices,
which reinforces the idea of low-degree nodes whose neighbors tend to form clusters. Those
three dimensions explain network clustering, and they improve the information provided by
the traditionally used network average clustering coefficient {cc).

The road network has a similar value of pg. However, we see that more triangles do not
share vertices; the average vertex degree is 3.41 and based on the first metric dimensions, we
can conclude that the total number of triangles in the road network is lower (159 and 1,998
respectively). The total number of Gy and G, in the road network is lower and therefore pg has
similar values. To support this, we see that in the road network only 5% of nodes are vertices
of a triangle, pg. However, in the metabolic network, 84% of nodes are part of at least one
triangle. Comparing the two infrastructure networks, the power grid has a higher number of
triangles (651) and pg is larger. Unlike the road network, 26% of triangle vertices are not
connected to the rest of the network. However, since in the power grid the maximum node
degree is much higher than in the road network, the value of p’; is higher in the road network.
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In the power grid, 50% of triangles share one of their vertices, there are more lines per node
than in the road network (p;1) and more isolated nodes (p,), this might lead to the conclusion
that in the power grid there are more triangle vertices that are not connected to other nodes,
(that is whose node degree is two). In the power grid, 20% of triangle vertices have degree
equals to 2, in the road network that percentage is 0.6%. This is something that we see in p;1,
23% of nodes that are vertices of triangles have no more connections in the power grid.

Regarding the two social networks, both have a large number of triangles. In the case of
Facebook, 10% of 3-node graphlets are triangles; this is a high value considering the presence
of hubs, p4, which increases the number of total 3-node graphlets. Indeed, 98% of Facebook
nodes are part of a triangle, as shown in p;o. Furthermore, almost all triangles share their
vertices since pg is close 0. In the case of the email network, the presence of triangles in the
network is 6%; this value is high in comparison with the network average clustering coefficient
of another email network [86]. Only 5% of triangle vertices in the email network are not part of
two or more triangles. Finally, if we compare the email network with the metabolic network,
we can observe that in both networks p;, is similar. In the metabolic network, it looks like
triangles are not part of hubs, since p;, is much lower than the maximum node degree (low
value of py,').

Table 3-4. Information provided by the GHUST model for 5 real networks

Global connectivity Hubs Strings Triangles

Road Low number of lines per node Low number of hubs Presence of Low presence of triangles that
strings formed by do not share vertices

Scarce presence of leaf nodes
several nodes

Power grid Low number of lines per node Low number of hubs Presence of Low presence of triangles
strings formed by
several nodes

Presence of leaf nodes

Email High number of lines per node Low presence of hubs Scarce presence  High presence of triangles
with respect to social of strings that tend to share vertices
networks. Hubs are and cover the whole network
connected among them

Presence of leaf nodes

Social Highly meshed structure High presence of hubs ~ Scarce presence  High presence of triangles
Leaf nodes connected to hubs that are connected of strings that tend to share vertices

among them and cover the whole network
Metabolic High number of lines per node High presence of hubs,  Scarce presence  High presence of triangles
Scarce presence of leaf nodes tendency to be of strings that tend to share vertices

connected lower than and cover the whole network

in social networks

The description provided by the GHuUST framework fully describes the topology of real
networks.

Result are consistent with global statistics traditionally used in complex networks.
Furthermore, this framework overcomes the main drawbacks of global statistics.
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3.5. A panoramic view offered by local properties

The previous section has illustrated the application of the proposed metric as a tool for
summarizing the main topological features of complex networks. This section aims at
evaluating the performance of this technique using a large sample, 1404 graphs, of real
networks from different domains: Autonomous Systems, Enzymes, Facebook, Power Network,
Retweet, Roads, and Web.

The autonomous-systems set stands for 733 daily instances of graphs of routers comprising
the internet [87]. The enzymes, Facebook, retweet, roads, web, and some power-network
graphs are obtained from an open-access network repository [83]. The enzyme dataset
includes 476 samples (the analysis only considers graphs with more than 20 nodes). The
Facebook set consists of 108 networks of friendship connections. The power-network graphs
comprise the transmission (220 kV and 400 kV) power networks of fifteen European countries,
and a set of power networks (7 graphs) obtained from the open-access repository (voltages
levels are not specified) [12], [83]. The retweet networks form a set of 32 graphs. The road set
includes 16 instances. Finally, 17 networks are part of the web graphs.

Once we compute the twelve-dimensional metric for each network, a Principal Component
Analysis (PCA) is used to reduce the dimensionality of the proposed statistic. It enables visual
inspection of our data. PCA is a statistical technique that seeks to obtain a linear combination
of the original variables in such a way that the maximum variance is explained. This allows us
to obtain a low-dimensional representation of the data that captures most of the original
information. Varimax rotation was applied to improve the understanding of PCA analysis.
However, results obtained with varimax rotation did not improve the results shown in this
section. Furthermore, any network with unusual topological properties will be highlighted in
our analysis, providing a tool for detecting outliers.
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Figure 3-6. Variance explained and cumulative variance explained by each of the principal components

resulting from the PCA analysis to a set of 1404 networks.
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Figure 3-6 shows the proportion of variance explained by the principal components. By
selecting the first three components, we are able to capture 93.4% of the variance of the
original data, allowing us to obtain a low-dimensional view of the distribution of our data. The
weights of the twelve dimensions of our metric for each component are shown in Figure 3-7,
and they can be used to obtain an interpretation of each component. The first component
(68.7% of variance), accounts for a positive contribution of p'4, p10, p'12 and a negative
contribution of p,, pg and pq1. Therefore, the main topological differences among the
networks analyzed lie on the proportion of leaf-nodes, presence of hubs and strings, as well as
the ftriangle pervasiveness and connectivity coefficients and triangle degree. A similar
interpretation can be obtained for the second component (19.4% of variance) and the third
component (5.3% of variance) based on Figure 3-7.

By projecting the coordinates of our twelve-dimensional data on the space spanned by the
first 3 principal components, we can visualize the distribution of the metric for each network in
this new axis system. As seen in Figure 3-8 and in Figure 3-9, networks from different processes
tend to have similar topological properties, hence showing clear groupings in the principal-
component space.
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Figure 3-7. Contribution of each dimension of GHuST to the three first principal components.
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Figure 3-8. Graphical representation of 1,404 networks in the 3D space defined by the three first
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Figure 3-9. 2D projections of the 1,404 networks in the space defined by the three first principal
components
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Figure 3-10. Range of variation and median value of each metric dimension for the seven sets of
networks analyzed.

The autonomous-system and Facebook networks form two bounded clusters in the three-
first principal-component space. Despite being the category with more instances, all the
autonomous-system instances are close to -0.5 in the first component and to O in the second
and third components. Since in the first principal component, p; have positive and negative
loadings, we cannot state if those values close to zero are the consequence of low values of all
components, or they are the consequence of the balance between positive and negative
loadings. Figure 3-10 shows the range in which the twelve dimensions vary. We see that in the
autonomous systems, the value of the second component is the balance between positive
loadings (p'1, pg and p;1o) and negative loadings (p's, pe and p’;); the other dimensions are
close to zero. Similarly, the analysis of ranges for each type of network allows for the
classification of graphs. In the case of Facebook graphs, most analyzed instances have values of
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p'3,0' 4, Pe, P'7, P, P11, P 12 that are close to zero and the values of p'y, p’s, Py, p1o are close
to one. In Exhibit A, the reader can find a detailed explanation of p; distribution for each type
of network.

Regarding the two infrastructure networks, roads and power networks comprise two
independent clusters. Although some road networks are close to some power grids in the space
defined by the first and second principal components, they are clearly delimited in the other
two projections of the three first principal components.

Both roads and power networks have low values for the second component, that is low
values of p'y, pg and p;o. Accordingly, the number of connections in comparison with the
minimum spanning tree is low, there is a low number of triangles in the network, and they do
not tend to share vertices. The instances of roads and power networks that have similar values
for the second principal component have a similar number of edges per node. They are the
power networks with the lowest number of lines per node concerning other power networks
and the roads with a higher number of lines per node in their category.

Unlike social networks, connections in infrastructure networks are cost-intensive, and they
are conditioned by topological, morphological, technical, economical, permitting,
environmental, managerial and political factors [88]. Consequently, the influence of all those
factors may lead to different topological properties depending on regions. Furthermore, in the
case of power networks, graphs may include different voltage levels, or they may be the result
of different model assumptions [89]. This uncertainty leads to a lack of consensus about some
of the topological properties of power networks [38].

The cluster with the most variation among its members belongs to the enzymes group. This
shows that a network cannot be classified in the enzyme group, such as Facebook networks.
The green area that shows the range in Fig. 6 almost covers all the dodecagon. The topological
properties of enzymes are case dependent.

Finally, we can also see two clusters considering the web and retweet group. In the case of
web networks, there is a significant variation in the third component. It ranges from -0.3 t0 0.7.
This variation is caused by the significant difference in p;; (triangle-connectivity coefficient).
Although the median of the analyzed instances has a low value, this coefficient ranges from 0
to 1. In the web case, we also see that although most instances have a triangle coefficient (pg)
close to zero, there is an instance in which pg tends to 1 (the network is mainly formed by
triangles). This coefficient is coherent with the network average clustering coefficient [83].
Accordingly, this framework also supports the quick detection of potential outliers.

PCA analysis can be used for each set of networks independently. Therefore, the dimensions
with more significant loadings for the first components are the ones that exhibit the most
variance in each original set; hence those dimensions will provide information about the
topological differences between networks of the same set. Dimensions that have similar values
for all networks in the set will have a low contribution to the first components as they are
characteristics of those networks.
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The explained variance for each principal component and the coefficient that shape the first
component are shown in Figure 3-11 and Figure 3-12, respectively. Low-Dimensional
representation of the projections of the metrics in the three first principal components for each
set of networks can be seen in Exhibit B. In the case of the road networks; the first component
explains 88.5% of the variance. This component is mainly defined by pg and p’;. Therefore, the
difference among roads networks lies on the number of nodes that are part of a node string in
the network and the length of those strings.

When analyzing power networks, we observe that the first component only explains 44%
of the variation. Consequently, the number of coefficients to describe and to explain
differences among power networks is larger. The first component is mainly described by p';,
P2,0'3, P4, Po, P'12. It is necessary to include five principal components, to explain 95% of the
variance of the data. This increases the number of metric dimensions required to have a deep
understanding of power-network topology. In the case of Facebook, the first component
explains 72% of the variance. Consequently, the main differences lie in the leaf coefficient, leaf-
connection degree, and triangle degree.
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Figure 3-11. Variance explained and cumulative variance explained by each of the principal components
of the resulting PCA applied independently to each type of network analyzed.
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Figure 3-12. Contributions of each dimension of the GHuUST framework to the first principal component
obtained for each set of networks analyzed.

Results show the strengths of the proposed method to compare networks of different

nature and to find the topological differences among same-nature networks.

The use of PCA to reduce the dimensions of the GHuST framework allows for graphical

representation of networks in the three-dimensional space.
Networks form different processes tend to have similar topological properties, hence

showing clear groupings in the principal-component space.
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3.6. Takeaways

The analysis of network graphlets, a local-topological statistic, gives rise to a new description
of the global topology of complex networks. This thesis introduces an innovative method that
analyzes the interaction among graphlets to explain and characterize network topology. This
method is based on 2- and 3-node graphlets (three graphlets and four orbits) that are easily
derived from the adjacency matrix. Therefore, it overcomes the limitation of counting high
degree graphlets that might be cost-intensive for large networks.

The application of the novel framework to five real networks shows that the proposed
method is consistent with the global statistics traditionally used to characterize network
structure. Furthermore, it overcomes two of their main drawbacks: the use of metrics based
on average values and the application of metrics that do not scale linearly with network size.
Accordingly, the comparison among networks of different sizes does not require any analysis
of metric scalability.

The proposed method has been also validated with a large sample study of networks that
arise in different fields. Results prove that the information provided by this novel metric can be
used to identify the underlying topological features of the networks and even to provide us
with a visual tool to distinguish networks with different properties.

Consequently, this method might explain the evolution in both local and global properties
of networks in which growth affects the whole structure. It can also be used to compare
networks where network growth does not necessarily imply a change in local properties. This
is common in infrastructure networks.

Finally, this work sets up a systematic analysis consisting of a twelve-dimensional metric to
explain the properties of the network structure. Moreover, the proposed method allows for
the translation of topological properties into other scientific dimensional languages. This is
possible because global properties are explained from local structures that are easily
interpretable.
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THE ROLE OF TOPOLOGY IN SYNTHETIC
POWER GRIDS

4.1. Applying the GHuST framework to power networks

The use of global statistics, such as network average clustering coefficient, characteristic
path length, or network diameter, are not enough to provide a sound explanation of power-
network topology, as explained in Chapter 2 and Chapter 3. For instance, based on those global
statistics, we cannot explain why the French 220-kV and the German 220-kV networks have
similar values of network diameter if the French network is 4.3 times bigger than the German
one. Furthermore, the use of global statistics may lead to misleading conclusions, as discussed
in previous chapters with the network average clustering coefficient. Moreover, global statistics
do not always scale with network size. This hinders the correct characterization of power-
network topology and the comparison among networks.

Not only may the use of global statistics give an incomplete description of network topology,
but they can also condition the topological validation of synthetic power grids. As explained
previously, synthetic power networks are non-real, albeit realistic, power networks that are
topologically and electrically consistent with real networks. Accordingly, it is necessary to define
atransparent methodology to validate the structure of synthetic networks. This method should
compare the topology of synthetic and real networks regardless of network size.

This chapter proposes the use of the GHuST framework to complete the topological
description of power networks and to analyze the topological consistency of synthetic power
grids. First, the use of this novel framework will allow us to have a better understanding of
network topology, solving those questions about network topology that cannot be answered
in Chapter 2. Second, the GHuST framework will set up a complete method to analyze the
topological consistency of synthetic networks.

The rest of the chapter is organized as follows; Section 2 compares the European
transmission power networks based on GHUST dimensions. Section 3 proposes the use of the
GHuST framework for the validation of synthetic power grids. Section 4 analyzes the topological
consistency of published synthetic power networks. Finally, Section 5 discusses the results.
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The GHuST framework overcomes the limitations of global statistics traditionally used
in complex networks. The main applications of the GHuST framework in power
networks are:

e Full topology description of power networks.

e Topological validation of synthetic power grids.

4.2. Completing the topological description of power networks

The introduction of the GHuUST framework showed that the topology of power networks is
different from the topology of other networks such as social or road networks. In Chapter 3,
we could observe that those networks were clearly differentiated in the topological space. We
also saw that the variance in the power-network cluster was higher than in the Facebook or
autonomous-system clusters. Accordingly, topological differences among power-network
instances were higher. We stated that the lack of information about voltage level or network
location was leading to that dispersion. We, therefore, assumed that we might find some sub-
clusters inside the power-network region.

The lack of a large set of real power networks makes it impossible to carry out statistical
analysis to verify the existence of sub-clusters based on the power-network structure.
However, a more in-depth analysis of power-network topology with the GHUST framework may
complete the description of power-network topologies given in Chapter 2. We apply the GHuST
framework to the fifteen European transmission power networks presented in Chapter 2 (we
also consider the 400-kV and the 200-kV networks both as a single network and as independent
networks). This allows for a comparative analysis based on location (country) and voltage level.

4.2.1. Relating voltage level and topology

To analyze if voltage level conditions the topology of the European transmission power
networks, we apply the GHuST framework to both voltage levels independently (400 and 220
kV) and to the network that includes both voltage levels linked by transformers. Figure 4-1
shows the range, the first, second, and third quartile for each dimension of GHuUST.

The twelve dimensions show that the 220-kV network has a slightly less meshed structure
than the 400-kV network. Based on the difference between quartiles, in the 220-kV network,
the number of lines installed is lower, there is a higher number of leaf nodes, the average
degree of leaf connections is lower, and there is a lower tendency to make hubs. Regarding
node strings, the number of node strings and the length of those strings is slightly higher in the
220-kV network. Similarly, the presence of triangles is lower in the 220-kV network; they cover
alower number of vertices, and the percentage of shared vertices is also lower. When analyzing
both voltage levels together, the structure has a higher number of lines per node, since it
includes transformers. Beyond that change, there is no remarkable difference that can be
obtained from GHuST concerning the analysis of both voltage levels independently.
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Figure 4-1. Range of variation for each dimension of the GHuUST framework for the European transmission
power networks
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The differences seen between the 220-kV and 400-kV network are in line with the results
showed in Chapter 2. The less meshed structure leads to higher distances among nodes (higher
values of characteristic path length and network diameter) in the 220-kV network. Moreover,
the maximum and mean betweenness centrality are higher in the 220-kV network since the
number of alternative paths to go from one node to another is lower.

Voltage level slightly conditions the topology of transmission power networks. The 400-
kV network has a more meshed structure with a higher presence of hubs and triangles.
The number of strings is lower than in the 220-kV network.

4.2.2. Countries define network structure

Chapter 2 showed that European transmission power networks followed some topological
patterns. We found the number of lines, characteristic path length, network diameter and
betweenness centrality (mean and maximum values) scale with network size. However, most
countries have a certain deviation regarding the regression line. This could not be explained by
global statistics. The topological information provided by the GHUST framework sheds light on
the analysis done in Chapter 2. Values of GHuST for the 220-kV network, the 400-kV network,
and 200-kV and 400-kV network together are shown in Table 4-1 to Table 4-3.

Results show that networks with equivalent size may display completely different
topologies. This is the case of the Portuguese and the Swiss 400-kV and 200-kV networks. Both
have similar size, 159 and 158 nodes respectively. However, the Portuguese network has more
lines installed and a higher presence of leaf nodes, hubs, and triangles. Those triangles share a
higher number of vertices in the Portuguese network. Furthermore, the number of node strings
and their length are larger in the Swiss network. It shows that the Swiss network has a more
homogeneous structure with lower complex local structures. This explains the topological
differences between both countries regarding characteristic path length, network diameter, or
betweenness centrality that are not so intuitive. The mean value of betweenness centrality is
higher in the case of Portugal since the presence of hubs and leaf nodes may lead to the
presence of network components with higher values of centrality in the network. The presence
of hubs may also lead to a lower network diameter. However, a more homogeneous mesh with
a smaller number of leaf nodes may reduce the characteristic path length.

The tendency to form hubs in the Portuguese 400-kV network is exceeded only by France.
While in France p, is twice the mean value for the European countries, the number of lines
installed per node is one of the lowest values in the European networks. We also see that the
percentages of node strings in the French networks are low and the characteristic string lengths
are also the lowest values among the fifteen countries.
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Table 4-1. GHuST values for 400-kV and 220-kV European transmission networks.

Country N p1 P2 P3 Pa Ps Ps p7 Ps Py Pro  Pu1 P12
Hungary (0) 017 060 062 029 051 033 013 004 017 030 033 056
Netherlands (55) 013 033 061 029 067 047 039 003 022 013 014 071
Greece (57 029 013 034 017 067 045 032 005 033 032 017 053
Bulgaria (63) 023 043 061 031 070 028 009 003 006 027 018 064
Serbia (84) 021 049 045 009 072 033 007 003 043 020 035 032
Belgium (88) 016 038 054 025 066 040 023 003 014 020 028 059
Austria (89) 025 023 039 020 072 042 026 005 031 030 033 050
Romania (117) 027 022 050 020 08 040 049 003 013 022 015 053
Switzerland ~ (158) 029 020 022 009 078 043 019 002 014 023 031 040
Portugal (159) 033 037 032 012 074 02 017 005 047 035 016 039
Poland (163) 034 016 040 017 082 038 016 003 025 026 019 054
Italy (634) 022 036 038 010 077 037 027 002 018 015 014 044
Germany (782) 028 026 031 008 072 040 027 004 026 03 025 033
Spain (798) 028 020 032 010 079 044 029 003 013 025 023 041
France (1659) 023 041 023 003 073 041 024 002 022 019 025 023
pi is the dimension i of the GHUST framework.
Table 4-2. GHuST values for 400-kV European transmission networks.
Country N P1 P2 p3 P4 Ps Ps p7 Ps P9 P10 P11 P12
Bulgaria (21) 022 027 08 034 072 033 02 004 000 029 033 063
Hungary (28) 026 038 058 036 062 035 017 006 020 043 042 060
Austria (31) 023 013 042 022 065 043 044 012 046 042 046 053
Serbia (33 005 053 062 029 067 041 029 001 000 009 033 050
Netherlands (35) 013 033 054 028 064 050 033 004 022 020 014 071
Switzerland  (37) 020 025 031 022 088 050 043 003 000 024 022 067
Romania (46) 028 014 060 024 075 043 029 003 017 022 010 063
Greece (57 029 013 034 017 067 045 032 005 033 032 017 053
Portugal (57 028 056 045 032 071 024 013 009 059 037 019 062
Belgium (58) 013 042 056 027 065 043 033 001 000 010 017 067
Poland (59) 028 020 044 028 083 043 033 006 037 032 011 066
Spain (201) 029 019 041 016 078 047 032 003 014 028 021 052
Italy (262) 018 039 039 010 071 038 028 002 011 015 015 039
France (386) 019 059 037 011 072 032 012 001 021 013 008 042
Germany (480) 028 021 034 009 069 045 029 004 029 034 027 036

p; is the dimension i of the GHUST framework.
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Table 4-3. GHuST values for 220-kV European transmission networks.

Country N P1 P2 P3 P4 Ps Ps p7 Ps P9 P10 P11 P12
Greece o) - - - - - - - - - - - -

Netherlands ~ (20) 0.00 044 066 0.40 045 060 083 000 000 000 000 050
Hungary (22) 000 079 067 0.40 031 029 000 002 000 014 000 076
Belgium (30) 0.09 0.47 043 0.32 0.63 0.40 0.17 010 020 041 042 0.62
Bulgaria (42) 014 0.52 0.51 0.29 0.56 0.33 0.13 0.04 0.08 0.26 0.18 0.61
Serbia (49) 0.20 0.54 0.54 0.11 0.71 0.32 0.25 004 048 029 0.36 0.34
Austria (58) 016 032 049 0.31 052 038 029 004 007 025 036 064
Romania (71) 010 031 044 0.19 071 055 056 005 011 023 025 052
Portugal (102) 031 028 036 0.12 070 030 017 004 035 034 017 040
Poland (104) 0.25 0.21 0.48 0.19 078 043 0.26 0.03 011 0.23 0.25 0.55
Switzerland ~ (121) 024 021 0.25 0.10 069 047 019 003 018 023 033 040
Germany (302) 012 039 036 0.11 061 047 031 004 015 023 033 040
Italy (372) 015 038 032 0.09 075 042 031 003 023 016 019 043
Spain (597) 019 024 033 0.09 072 052 039 003 012 023 031 040
France (1273) 014 044 026 0.05 070 043 031 002 018 015 024 027

pi is the dimension i of the GHUST framework.

That may explain why France has a similar characteristic-path length and network diameter
than Germany in the 400 kV and 220 kV network, but the number of nodes in France is more
than twice the number of nodes in the German 400-kV and 220-kV network.

Results also show divergences concerning the network average clustering coefficient
showed in Chapter 2. The ltalian 220-kV network has a lower network average clustering
coefficient than the French 220-kV network. However, the number of triangles is lower in the
French network. Additionally, the average degree of those triangles is also lower in the French
network. Consequently, this leads to a higher value of network average clustering coefficient
as discussed in Chapter 3. The comparison of the twelve dimensions shows that the Portuguese
400-kV network is one of the fifteen countries with large values of lines per node. However, a
large number of lines installed does not necessarily imply a lower number of leaf nodes.
Portugal is one of the countries with a higher number of leaf nodes (p, is 0.56). Therefore, lines
are concentrated in some areas. Indeed, the Portuguese 400-kV network is the second network
with a higher tendency to make hubs. Furthermore, we find a high presence of triangles in the
network, and they tend to share vertices. Consequently, the Portuguese network has highly
complex local structures that cannot be explained with global statistics. We also may find
networks with similar structures. The Spanish and German 400-kV networks have similar values
for global statistics. Those countries also have similar values for GHuUST. The slight differences
between them lie on the percentage of shared vertices and vertices degree.

Network topology displays substantial differences depending on location. We have not
found electrical considerations that explain those differences. Consequently, the generation of
synthetic power grids should be flexible enough to adapt resulting in networks to the
complexity of the country they stand for. Furthermore, the analysis of network topology with
global statistic has been revealed insufficient to give a sound explanation of network topology.
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The GHuST framework shows that the idiosyncrasy of a country highly conditions the
structure of transmission power networks. The twelve dimensions show topological
differences among countries that were not explained by global statistics.

4.3. Topological validation of test cases

Based on the topological description given by the GHUST framework along with results in
Chapter 2, we can conclude that although there are structural similarities among power
networks, each country displays different topologies. Those differences may impact on
network operation or network robustness. Consequently, the topology of synthetic power
networks should be tested to analyze the topological consistency concerning real networks.

Several models have been proposed for the generation of synthetic power grids, both
spatial and non-spatial networks [21], [22], [65], [90]. However, some of those works did not
give enough attention to topological validation [65]. That validation is usually based on global
statistics, that as explained in this chapter, have two main drawbacks: the use of average values
that might be misleading and the use of distance-based metrics that do not scale linearly with
the number of nodes. Accordingly, the use of global statistics may lead to wrong validation.

We propose the use of the GHuUST framework to validate the topology of synthetic power
networks. The twelve dimensions are complementary, and they should not lead to biased
conclusions. Furthermore, they are size-independent, and it is not necessary to analyze metric
scalability.

The twelve dimensions of GHUST in a synthetic network should be similar to the dimensions
of GHuST in the real power network it represents. In case real data are not available, the
synthetic network can be compared with the results obtained for the European transmission
power networks. These data, provided by ENTSO-e, show the real topology of fifteen
transmission networks. However, the topology of other real networks might display different
topologies. Consequently, based on the comparison with those networks, we can only conclude
whether the topology of the synthetic network is consistent (from a statistical point of view)
with the European power network topologies or not. We cannot conclude that a network with
different values of GHuST is incorrect.

Since values in the second and third quartiles are close (see Figure 4-1), the higher the
difference in a dimension, the lower the probability of finding that topology in a real network.
In this thesis, we consider that a synthetic network is topologically consistent if the twelve
dimensions of GHUST are in the range defined by the European transmission networks. Because
of the wide range for some dimensions, we will point out if a dimension is in the first or fourth
quartile. This does not mean that the topology of the synthetic network is inaccurate; it is just
a sign of caution. The use of a higher number of real power-network instances would increase
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the statistical consistency of the ranges defined for each dimension of the GHuUST framework
(the methodology to validate the topology of synthetic power grids would be the same).

This chapter only focuses on the topological validation of synthetic power grids. A complete
validation of synthetic power grids should also include electrical considerations. However, if a
synthetic power grid is not topologically consistent with real networks, we can conclude that
the synthetic network is not an accurate network model. Once synthetic power grids are
validated from a topological point of view, they should be validated considering electrical
considerations such as network operation.

The GHuST framework allows for a sound topological comparison between real and
synthetic network topologies. It compares network structures regardless of network
size. A synthetic network is consistent from a topological point of view if the twelve
dimensions of GHUST are similar to the real network it stands for.

4.4. Analyzing the topology of synthetic networks

This section analyzes the topology of four sets of non-real power networks: ACTIVSg,
Columbia University synthetic network, PEGASE, and SDET. Those network models are available
in the open-access repository DR Power [91].

The ACTIVSg and the Columbia University synthetic networks are spatial networks; their
nodes are geographically distributed. Both sets of networks result from two novel algorithms
proposed to generate spatial synthetic power grids (those algorithms are fully described in
Chapter 5). Consequently, an in-depth topological analysis would also help to understand the
behavior and effectiveness of both algorithms to generate realistic synthetic power networks.
The PEGASE and the SDET networks are non-spatial, and there is no information about the
generation process that has been followed to create them. Accordingly, the GHuUST framework
would highlight exclusively the topological differences or similarities between those networks
and the European transmission networks used as a reference.

4.4.1. ACTIVSg

This set of six synthetic grids stands for some parts of the North American power grid.
Network size ranges from 200 nodes to 70,000 nodes. Those networks have been developed
in the context of the US ARPA-E Grid Data research project [20]. Both topological and electrical
considerations drive the generation process of those networks [59].
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A. ACTIVSg 200

This 200-node network is located in the central part of lllinois (US), and it includes two
voltage levels: 230 kV and 115 kV. The 230-kV network has 17 nodes, and the 115-kV network
has 134 nodes. The rest of the nodes are low-voltage nodes (13.8 kV) connected to the
transmission network through transformers; they are leaf nodes. To analyze the structure of
this network, we compare the ACTIVSg-200 network with the 220-kV European networks. Since
transformers are not included in the reference networks, we also analyze the topology of the
ACTIVSg 200 after removing low-voltage nodes. The values of GHUST are shown in Table 4-4.

We see that in the analysis of the entire network (including low-voltage nodes), the twelve
dimensions are consistent with the reference. Although some dimensions are in the first or
third quartile, all of them are in the reference range. However, after removing low-voltage
nodes, the reduction in the number of leaf nodes leads (p,) out of the range. Moreover, the
tendency of hubs to be connected among them (ps) is also extremely high. This might be
caused by a lower value of maximum node degree in the synthetic network (differences in the
degree distribution of the synthetic and the reference networks).

From the analysis of each voltage level independently, we can conclude that the 230-kV
network has an extraordinarily large number of triangles. The value of pg (0.12) is three times
larger than the mean value for the fifteen European countries. Similarly, the number of nodes
that is part of a triangle, p1g, (47%) is also far from the mean value of the European 220-kV
power networks (26%).

The number of lines per node that is an input of the algorithm is consistent with the
reference in all cases. The 115-kV layer has a lower number of lines per node than the 220-kV
network. The properties of the 115 kV are expected to be slightly different, and we have no
reference to compare them. However, all values are in the range defined by the 220-kV
reference networks.

Although values of GHUST are in the range in most cases, the presented differences may
lead to infer that the algorithm generates a more homogenous structure than the observed in
the European case. With a similar number of lines per node, this mesh has a lower number of
nodes with one connection and a higher number of triangles. This might be caused by the use
of the Delaunay triangulation to build the network, as explained in the next chapter.

Table 4-4. GHuST values for the ACTIVSg 200 network

P1 P2 P3 Pa Ps Pe P7 Ps Po P10 P11 P12

Entire network 018 043 048 009 071 042 045 002 021 016 006 040
Excluding low-volt. Nodes 023 M oss o020 BB o47 o049 003 021 021 006 066
115 kV network 015 025 048 017 077 053 051 003 015 017 009 061

230KV network 019 033 040 035 070 042 040 - 033 - 025 065

p; is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.
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B. ACTIVSg 500

The ACTIVSg-500 network is located in the northwestern part of South Carolina, and it
comprises two voltage levels: 345 kV and 138 kV. As in the prior case, this synthetic network
also includes 13.8 kV nodes. Before applying the GHuUST framework, we focus on network size.
The number of nodes in the 138-kV network is more than twelve times larger than in the 345-
kV network. In the reference networks, the maximum ratio between the number of nodes in
both voltage levels is lower than 4. This difference may lead to misleading results when
analyzing the network as a whole. In this case, GHuUST values for the entire network are
compared with the 400-kV and 220-kV reference networks. We compare the 345-kV synthetic
network with the 400-kV reference networks and the 138-kV synthetic network with the 220-
kV reference networks. The values of GHUST are shown in Table 4-5.

In the case of considering the 345-kV and 138-kV networks together, we find several
inconsistencies. The number of nodes that are part of a string, pg, is low. The average length of
those strings, p7, is shorter than the reference. Moreover, the number of triangles, pg, the
number of nodes that are vertices of a triangle, p1, and the percentage of isolated triangles,
P11, are out of the range. The rest of the dimensions are in the third or fourth quartile in the
case of the entire network.

As in the prior case, in the 138-kV network, we observe that the number of nodes in a string
is low. The rest of the values are in range. For the 345-kV network, the only inconsistency is
related to string length, p-.

According to prior results, the large number of 138-kV nodes with low values of pg, P10, P11
leads to low values of those dimensions in the entire network. As in the ACTIVSg-200 network,
we observe that the algorithm tends to make a large number of triangles for the 345-kV
network (pg and p44 are in the fourth quartile), and the percentage of shared vertices is low.
However, the 135-kV network is featured by an extremely low number of triangles.

Table 4-5. GHuST values for the ACTIVSg 500 network

P1 P2 P3 Pa Ps Pe P7 Ps Po P10 P11 P12

Entire network 0.14 057 030 007 0.68
Excluding low-volt. nodes 0.17 046 030 014 0.68
138 kV network 011 049 029 013 0.67 0.11 001

345 kV network 018 025 048 031 0.84 045

p; is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.

006 008 035 036 064

C. ACTIVSg 2000

This network is located in the State of Texas, and the voltage levels included are 500 kV, 230
kV, 161 kV, and 115 kV. As in prior cases, it also includes low-voltage nodes (24 kV, 22 kV, 20
kV, 28 kV, 13.8 kV, and 13 kV). However, in the real ERCOT system, there is no 500-kV nor 230-
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kV power network. The results of the topological study are shown in Table 4-6.

In the analysis of all voltage levels together (including low-voltage nodes), the tendency of
hubs to be connected among them, ps, is out of the range, and the percentage of triangles in
the network (pg) is almost null. Indeed, the percentage of nodes that are vertices of a triangle
(P10) is 2% (the minimum value of this dimension in the reference networks is 12%). Moreover,
the percentage of shared vertices (pg) and the percentage of isolated vertices (p;1) are out of
the range.

In the case of excluding the low-voltage nodes, p, is close to zero. That means that most
nodes have at least two connections. Consequently, the presence of leaf nodes is scarce after
removing transformers; only 7 nodes out of 1,151 were connected to the network through one
transmission line. This is unusual in the analyzed networks, where the mean value of p, is 0.32.
Additionally, p3 and p, are low (first quartile) and ps is high (fourth quartile). This might reflect
differences in the degree distribution of the synthetic network in comparison with the
reference networks. Furthermore, triangle properties are not consistent with the reference.

When considering the 500-kV network independently, only p3 and p;, are also out of range.
This reinforces the idea about the presence of inconsistencies related to the degree
distribution. High values of p3 and p;, might reflect that the maximum node degree of that
network is low in comparison with the reference. This network has the same problem with
triangles than the prior cases. In the 115-kV and 161-kV networks, the value of p, (leaf nodes)
is 0.11 below the minimum value in the 220-kV reference networks. It is expected that the
lower the voltage level, the lower the mesh and the higher the number of leaf nodes.
Accordingly, the lack of triangles in this subnetwork might not be so relevant.

As in prior synthetic networks, there is a significant difference between the number of
nodes in the 500-kV network (120 nodes) and the 230-kV, 161-kV, 115-kV networks (1,431
nodes). The topology of this network reinforces the idea that the algorithm used may lead to
homogenous structures with a low number of leaf nodes. Thus, it cannot replicate the
clustering (triangulation) of real networks.

Table 4-6. GHuST values for the ACTIVSg 2,000 network

P1 P2 P3 Pa Ps Pe P7 Ps Po P10 P11 P12

Entire network 025 023 046 004
0.09
0.16

039 033
042 035
052 043
0.22 053 043
0.11 049 030
028 087 045 040

Excluding low-volt. nodes 0.30
115 kV network 0.20
161 kV network 0.18
230kV network 0.20 000 002 000 046
500 kV network 0.22

p; is the dimension i of the GHUST framework.

Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.

0.03 005
000 001 017 063
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D. ACTIVSg 10k

This network stands for the US part of the Western Electricity Coordinating Council (WECC)
system. The ACTIVSg-10k network comprises seven voltage levels: 115 kV, 138 kV, 161 kV, 230
kV, 345 kV, 500 kV and 765 kV as well as distribution nodes (1 kV, 13.2 kV, 13.8 kV, 18 kV, 20
kV, 22 kV and 24 kV). However, there is no 765-kV network in the actual WECC transmission
power network. As in prior cases, the GHUST framework is calculated for the entire network,
and for each voltage level independently, results are shown in Table 4-7.

In the case of the entire network, we observe that p3, pg, p19, and p;4 are out of the
reference range. The degree of leaf-node connections, the number of triangles, the percentage
of nodes that are part of a triangle, and the percentage of isolated triangles are not consistent
with the European networks. There is only 6% of nodes that are vertices of triangles, and the
number of isolated triangles is null. Furthermore, the low values of p, (tendency to make hubs)
and the high value of ps (hubs tend to be connected among them) question the degree
distribution of the synthetic network.

In the analysis of each voltage level independently, we see that the number of leaf nodes is
higher in the 138-kV, 161-kV network than in 345-kV, 500-kV, and 765-kV networks. As
mentioned, it is expected that the higher the voltage level, the higher the mesh and the lower
the number of nodes with one connection. In this test case, triangulation in the 765-kV and
500-kV networks is consistent with the reference networks.

As in the case of pq, the number of leaf nodes is lower in the 115-kV, 138-kV, and 161-kV
networks. Those values are in the fourth quartile of the 220-kV reference network.

Although these networks have a lower number of evident inconsistencies (red cells), it
continues showing differences that require a more in-depth analysis before concluding the
accuracy of the network.

Table 4-7. GHuST values for the ACTIVSg 10,000 network

P1 P2 P3 Pa Ps Pe P7 Ps Po P1o P11 P12

Entire network

Excluding low-volt. Nodes
115 kV network

138 kV network

161 kV network

230 kV network

345 kV network

500 kV network

765 kV network

pi is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.
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E. ACTIVSg 25k

This synthetic network has been referred to as the Northeast and Mid-Atlantic regions of
the US. It includes 69-kV, 100-kV, 115-kV, 138- kV, 161-kV, 230-kV, 345-kV, 500-kV and 765-kV
networks. For the topological analysis, we only consider the 230-kV network that is compared
with the 220-kV reference network and the 345-kV, 500-kV and 765-kV networks that are
compared with the 400-kV reference network. We do not include the analysis of the entire
network due toits large size and the inclusion of low voltage levels that might lead to misleading
results. In this case, several components (disconnected graphs) may appear for each voltage
level; for instance, the 100-kV network is formed by 13 components. The 230-kV network has
three components, one of them is formed but a few lines, and it is not considered in the
analysis. Table 4-8 shows the value of GHuST for those networks.

We see that the 230-kV network has a low number of lines per node; its structure is close
to the minimum spanning tree. The number of leaf nodes is consequently high, and the average
length of strings is also low (high value of p). In the case of p5 the value of the first component
(1,444 nodes) is out of range and p, is low. This directly leads to question the degree
distribution. Furthermore, the percentage of triangles and the number of nodes that are part
of a triangle are low. Indeed, only 6% of nodes are vertices of a triangle (in the reference
network the mean value is 22%).

In the first component of the 765-kV network (218 nodes), the number of lines per node is
extremely low (p; = 0.05), this value is similar to the 230-kV network. The number of nodes
with one connection is high (they are in range). As in prior cases, main inconsistencies come
from low values of p3 and p, and high values of pg5 as well as triangle-related dimensions. The
low values of p; may lead to low-connected structures. This contrasts with the topology of prior
synthetic networks with meshed structures in which the number of leaf nodes was low.

Table 4-8. GHuST values for the ACTIVSg 25,000 network

P1 P2

P3 P4 Ps Pe pP7 Pe P9 P1o P11 P12
230kV network Comp.1 [ 0.06 045 - 0.10 041 016 001 013 006 006 047
230kV network Comp.2 [0.06 046 038 024 069 032 000 001 000 007 000 067
019 087 034 - 003 025 015 0.63

345 kV network 0.13 049
500 kV network 0.09 045 010 08 039 013 002 029 008 0.49
765 kV network Comp. 1 - 046 033 020 084 040 002 008 010 018 056

0.19

765 kV network Comp.2 [0.18 0.47

i B v
p; is the dimension i of the GHUST framework.

Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.

F. ACTIVSg 70k

This network has been referred to as the Eastern US. The voltage levels included are the
same that in the ACTIVSg-25k network (69-kV, 100-kV, 115-kV, 138-kV, 161-kV, 230-kV, 345-
kV, 500-kV and 765-kV). In this synthetic network the number of components for each voltage
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level is higher: 4 components in the 230-kV network, 3 components in the 345-kV network, 4
components in the 500-kV networks and 2 components in the 765-kV network. As in the
ACTIVSg 25k network, components with a low number of nodes are not included in the analysis
that is shown in Table 4-9.

The topological inconsistencies found are similar to the inconsistencies displayed by the
ACTIVSg-25k case. The number of lines per node is low in all the subnetworks. This ratio is
higher in the 138-kV and 115-kV subnetworks. This contrasts with the European networks.
Similarly, although values of p3, p, and ps might be in range in some cases, they are close to
the limits. The degree of leaf-node connections is low in most cases, the tendency to make
hubs is high in the 500-kV networks, and the tendency to connect hubs among them is
extremely high. Consequently, degree distribution may differ concerning the reference
networks.

Additionally, triangle properties continue to be incoherent. For instance, in the 230-kV
network, the number of triangles is considerably low. The percentage of nodes that are vertices
of a triangle is just 7% (the mean value in the reference network is 22%). If we compare the
230-kV network with the entire 220-kV European network (including all countries as one
network), the percentage of nodes that are vertices of a triangle is 18%.

The 365-kV, 500-kV, and 765-kV networks have high values of leaf-nodes. Three
components of the 500-kV network have a structure with the minimum number of lines to have
a connected graph. Although those values are in the reference range, they are far from the
median value. In those networks, values of pg are high and p4, is inconsistent. Finally, the
number of triangles is only consistent in the first component of the 765-kV network.

Table 4-9. GHuST values for the ACTIVSg 70,000 network

P1 P2 P3 Pa Ps Pe P7 Ps Po P10 P11 P12

230 kV network Comp. 1
230 kV network Comp. 2
345 kV network

500 kV network Comp. 1
500 kV network Comp. 2
500 kV network Comp. 3
500 kV network Comp. 4
765 kV network Comp. 1
765 kV network Comp. 2

p; is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.

4.4.2. Key points about the topology of ACTIVSg networks

The application of the GHUST framework to the ACTIVSg networks shows that in most cases
there are inconsistencies with respect to the European transmission networks. On the one
hand, those inconsistencies may be a consequence of the model used to generate the
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networks. On the other hand, North American power networks may display different
topologies concerning European networks. Consequently, it would be necessary to apply the
GHuST framework to the real North American power grid to have a better comparison with
synthetic networks. However, data for real North American power grids are not available. With
the information available, we can only compare synthetic North American power grids with real
European power grids.

Regarding results, we observed that some networks display a homogenous structure with
a low number of leaf nodes. This contrasts with the analysis of the European transmission
power networks. Furthermore, we detect inconsistencies regarding the tendency to make hubs
and the tendency to connect hubs among them. This might reflect that the algorithm is not
able to fit a realistic degree distribution. This is crucial because of the impact of node degree
on network vulnerability, as discussed in Chapter 2.

The algorithm is not able to build topologies in which triangles are similar to the reference
networks. This is related to the complexity of local structures that might condition the
operation and robustness of networks.

As previously explained, those inconsistencies do not mean that the topology of those
synthetic networks is inaccurate. However, further studies would be required to use the
proposed model to generate European synthetic power grids.

The ACTIVSg synthetic networks are not topologically consistent with respect to the real
European networks. Number of leaf nodes, tendency to make hubs and to connect
among them as well as triangulation are the main inconsistencies found in most cases.

4.4.3. Columbia University synthetic power grid with geographical coordinates

The Network Imitating Method Based on Learning (NIMBLE) is used to generate a synthetic
network based on the properties of the North American and Mexican power networks (this
algorithm is explained in Chapter 5) [58], [90]. The resulting network stands for the Western
Interconnection (WI) power network that includes the Western Electricity Coordinating Council
in the United States and the Western Electricity Coordinating Council in Canada [92].

Regarding connections, the dataset includes information about the end nodes of
connections and line/transformer impedance. However, it does not differentiate between lines
and transformers, and there is no information about the voltage level. According to the
ACTIVSg-10k network that stands for the US part of the WECC system (it does not include the
Canadian portion), the Columbia University synthetic power grid may include 765-kV, 500-kV,
345-kV, 230-kV, 161-kV, 138-kV, and 115-kV transmission networks.

The lack of voltage information hinders the topological validation of the network since we
cannot compare the topology by voltage level. The values of GHuUST are shown in Table 4-10;
the network is compared with the 400-kV and 220-kV reference network.
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Table 4-10. GHuST values for the Columbia University synthetic network

N P1 P2 P3 Pa Ps Pe P7 Po P10 P11 P12

Ps

pi is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.

Our analysis shows that the number of lines installed, p;, is close to the minimum value in
the European transmission networks. This might be a consequence of the inclusion of low
voltage networks, with a low meshed structure. The value of p, is close to the median.
Consequently, the number of leaf nodes is consistent with the reference. However, we might
expect a higher number of leaf nodes, when considering lower voltage levels. The value of p3
and p, is extremely low. The degree of leaf-node connections is low, and there is no tendency
to make hubs in the networks. Those low values might be a consequence of the maximum value
of node-degree. The highest number of connections in the synthetic network is 16, and the
average maximum node degree in the reference networks is 9.4. Consequently, low values of
p3 and p, show inconsistencies regarding degree distribution. Moreover, the tendency of hubs
to be connected among them, ps, is high (fourth quartile). Regarding strings, pg, p; are
consistent with the reference.

In the paper presenting this synthetic grid, the authors show that the network average
clustering coefficient is similar to the real network one. However, pg is low. We introduced in
Chapter 3 that the use of the network average clustering coefficient might be misleading.
Furthermore, the average degree of triangles is lower than in the ACTIVSg (both networks are
supposed to stand for the same real power grid), we may think that in real network triangles
may be located in higher degree nodes. Thus, this would lead to having similar values of
network average clustering coefficient with a lower number of triangles in the network. We
confirm this hypothesis with the absolute value of p;, (without being scaled). This is 3.9 in the
Columbia Synthetic network and 4.48 in the ACTIVGs case.

The validated network average clustering coefficient for this synthetic network (WI system)
is 0.048. However, Cotilla et al. state that the network average clustering coefficient of the WI
is 0.073 [39]. Characteristic path length also presents divergent values in both works.
Assumptions used to model the networks as a graph or voltage levels included may be the
cause of this difference. The authors should look through it in order to do an accurate validation
of the synthetic network. As in the ACTIVSg-10k case, triangle properties are not consistent
with the European reference. In the Columbia network, only 10% of nodes are vertices of a
triangle (p10), and only 10% of vertices are shared among triangles (pg). Furthermore, the
number of isolated triangles (p41) is high.

The NIMBLE model only uses a topological criterion to generate synthetic networks. Beyond
the electrical features that might be consistent with real networks, the topology is not realistic
in comparison with the European transmission networks. As in the prior case, it would be
necessary to check if those inconsistencies lie on the model itself or in the topology of the North
American Power grid.
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The Columbia-University synthetic network displays topological inconsistencies with
respect to the European transmission networks, and to another synthetic network that
stands for the same real network. It also diverges from other published studies.

4.4.4. PEGASE

A set of networks were designed to represent the European transmission network. In the
context of a European Commission project, the Pan European Grid Advanced Simulation and
State Estimation (PEGASE) aims to work in the field of real-time control and operation planning
of the pan-European network [93]. Five fictitious, albeit realistic, networks form the PEGASE
test cases [94]. The voltage levels included, and the number of components for each voltage
level is the following:

e PEGASE 89: 150 kV (2 components), 220 kV (2 components), 380 kV (1 component).
e  PEGASE 1354: 220 kV (30 components), 380 kV (2 components).

e PEGASE 2869: 110 kV (2 components), 150 kV (17 components), 220 kV (34
components), 380 kV (2 components).

e PEGASE 9241: 110 kV (47 components), 120 kV (7 components), 150 kV (24
components), 154 kV (14 components), 220 kV (53 components), 380 kV (4
components), 400 kV (1 component), 750 kV (1 component).

e PEGASE 13659: 110 kV (47 components), 120 kV (7 components), 150 kV (154
components), 220 kV (53 components), 380 kV (4 components).

Since PEGASE networks stand for the Pan-European network and node location is not given
(we cannot split up the network by country), we compare the PEGASE networks with the values
of GHuST obtained for the network that includes the 220-kV and 400-kV network of the fifteen
countries. The values of GHuUST for the ENTSO-e network are shown in Table 4-11 and for
PEGASE networks in Table 4-12. The ENTSO-e network is compounded of the 24 countries
included in the 2016 TYNDP [12].

Table 4-11. GHuST values for the Continental Europe 220-kV and 400 kV network

N p1 P2 Ps3 P4 Ps Ps p7 Ps Po P10 P11 P12

ENTSO-e 5757 0.28 0.32 0.22 0.03 0.76 041 0.26 0.03 0.25 0.29 0.29 0.21

p; is the dimension i of the GHUST framework
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Table 4-12. GHuST values for the PEGASE networks

P1 P2 P3 P4 Ps Pe pP7 Ps Po P10 P11 P12

PEGASE 89 - 026 042 018 - 032 013 054

PEGASE 1354 021 0.46 0.34 0.08 0.76 0.37 021 0.02 0.17 0.16 0.20 0.34
PEGASE 2869 0.28 034 0.30 0.07 0.79 0.40 0.26 0.04 0.23 0.21 0.30

peGAsE 9241 | EIIN 0.22 080 [CHEHN 037 024 021
PEGASE 13659 | 027 048 076 042 035 016 019

pi is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.

The PEGASE-89 case is an example of network reduction. Accordingly, topology is not
expected to fit the properties of the real network. Indeed, we observe that the number of lines
installed per node (0.57) is much larger than the maximum value of p; for the European
countries (0.34). Furthermore, as PEGASE 89 includes the 110-kV network, we might expect
that the total number of lines per node would be lower than in the 220-kV and 400-kV. In this
test case, we also see the presence of more complex local structures. Indeed, there is a high
tendency to make clusters. The proportion of triangles is seven times larger than in the
reference network. Moreover, those triangles tend to share vertices among them (95% of
triangle vertices are part of two or more triangles).

In the rest of PEGASE networks, the number of lines installed per node is consistent with
the reference. Although we observe some small differences, for example, in the PEGASE-
13,659 network the number of leaf nodes is huge (this might be the consequence of including
110-, 120- and 150-kV network), the main inconsistencies are related to triangles. In the
PEGASE-1,354 network and in the PEGASE-2,869 network, the proportion of triangles is
according to the reference. However, in the PEGASE-9,241 network and PEGASE-13,659
network, where the presence of triangles is expected to be low, pg is really high. This significant
presence of triangles contrasts with the percentages of nodes that are part of a triangle, p10,
which is lower than the reference. So, those networks do not represent the complexity of local
structures.

Finally, there are topological differences concerning the network provided by ENTSO-E.
Although PEGASE networks include lower voltage levels, they display a more complex structure
than the ENTSO-E network. Since location is not provided, we cannot detect if those
inconsistencies are presented in all countries or not. Furthermore, ENTSO-E classifies networks
according to Continental Europe, Baltics, and Great Britain. The networks used as reference are
countries that are part of Continental Europe. PEGASE networks might include other countries.
This might introduce some deviation concerning the reference. Finally, since all PEGASE
networks stand for the same real network, but they have different sizes; they might be the
result of network reduction or clustering techniques.
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There are slight differences between the PEGASE networks and the European
transmission networks. They might be the consequence of network reduction
techniques or the voltage levels and countries included in the analysis.

4.4.5. Sustainable Data Evolution Technology (SDET)

The Sustainable Data Evolutionary Technology project aims to develop: “Evolvable open-
access large-scale datasets to accelerate the development of next-generation power grid
optimization” [95]. They introduce the concept of Data Evolvability in order to “disrupt the
current ad hoc cycles of static dataset generation”. However, there is no explanation about the
implications of this novel concept in the generation of synthetic power networks.

Although four synthetic networks have been published in an open-access repository (SDET
500, SDET 2000, SDET 3000, SDET 4000), there is no information about the methodology
followed in the synthetic network generation. There is only a succinct presentation about the
project, where authors state that the generation of synthetic networks would be based on real-
data anonymization and algorithms that are based on graph theory [96]. We assume that these
networks are preliminary results, since their objective is to generate networks with more than
100,000 nodes, and the size of those four networks ranges from 588 to 4,661 nodes.

The voltage levels and the number of components of each voltage level are the following:

e SDET 500: 500 kV (2 components), 345 kV (4 components), 230 kV (1 component), 161
kV (1 component), 138 kV (9 components), 69 kV (5 components).

e SDET 2000: 500 kV (5 components), 345 kV (11 components), 138 kV (67 components),
69 kV (14 components), 66 kV (13 components).

e SDET 3000: 500 kV (3 components), 345 kV (12 components), 138 kV (40 components),
115 kV (3 components), 110 kV (4 components), 66 kV (2 components).

e  SDET 4000: 500 kV (5 components), 345 (11 components), 138 kV (150 components), 66
kV (14 components).

From the analysis of voltage levels and components, we observe a high number of
components for each voltage level. In the SDET 3000, the number of components of the 345-
kV network is 4 times larger than the 115-kV network. It contrasts with the European network,
where the 220-kV network (around 3400 nodes) has 47 components, and the 400-kV network
(around 2100 nodes) has 5 components. Thus, the assignment of voltage level should be
checked, since a large number of components might have a direct consequence on network
operation.

We have applied the GHuUST framework to the 500-kV, 345-kV, 230-kV components with
more than five nodes. Results are shown in Table 4-13 to Table 4-16.
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Table 4-13. GHuST values for the SDET 500 network

P1 P2 P3 Pa Ps Pe P7 Ps Po P1o P11 P12

Entire network

230 kV network

345 kV network Comp. 1
345 kV network Comp. 2
500 kV network Comp. 1
500 kV network Comp. 2

pi is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.

Table 4-14. GHuST values for the SDET 2,000 network

P1 P2 P3 Pa Ps Pe P7 Ps P9 P1o P11 P12

Entire network

345 kV network Comp. 1
345 kV network Comp. 2
345 kV network Comp. 3
345 kV network Comp. 4
345 kV network Comp. 5
345 kV network Comp. 6
500 kV network Comp. 1
500 kV network Comp. 2
500 kV network Comp. 3
500 kV network Comp. 4

p; is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.

Table 4-15. GHuST values for the SDET 3,000 network

P1 P2 P3 Pa Ps Pe P7 Ps Po P1o P11 P12

Entire network

230 kV network Comp. 1
230 kV network Comp. 2
345 kV network Comp. 1
345 kV network Comp. 2
345 kV network Comp. 3
345 kV network Comp. 4
345 kV network Comp. 5
500 kV network

p; is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.
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Table 4-16. GHuST values for the SDET 5,000 network

P1 P2 P3 Pa Ps Pe pP7 Ps P9 P10 P11 P12

Entire network

345 kV network Comp. 1
345 kV network Comp. 2
345 kV network Comp. 3

345 kV network Comp. 4
345 kV network Comp. 5
345 kV network Comp. 6
345 kV network Comp. 7
500 kV network

pi is the dimension i of the GHUST framework.
Green values are in the second or in the third quartile, orange values are in the first or in the fourth quartile, red
values are out of the range.

The values of GHUST show that SDET networks are not topologically consistent with the
European transmission networks. Indeed, most dimensions are out of the range or in the third
and fourth quartile.

Although the SDET networks do not provide the location, we might assume that they stand
for the North American power network. The values of GHuUST are also far from the values of the
ACTIVSg or the NIMBLE networks. Results might lead to think that these networks have been
published without being tested. Since there is no information about the power networks they
stand for, or the methodology followed to generate those networks, we cannot provide a
sound analysis of topological inconsistencies.

The SDET networks are completely inconsistent with the topology of the European
transmission power network.

4.5. Takeaways

The application of the GHuST framework enhances the topological characterization of
power networks. The analysis of the European transmission networks shows that differences
in the structure of the 400-kV and the 220-kV networks are low. Nevertheless, the network
location clearly conditions the topology of power grids. Those differences are apparent in the
twelve dimensions of the GHuUST framework. Moreover, results are consistent with the global
statistics used in Chapter 2.

Furthermore, the GHuST framework allows for the validation of synthetic power grids. This
chapter has analyzed the topology of four sets of synthetic networks: ACTIVSg, Columbia-
University synthetic network, PEGASE, and SDET. The ACTIVSg and the Columbia-University
synthetic network stand for North American power networks, and they display topological
inconsistencies concerning the European networks. We cannot state if those differences are a
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consequence of the model used to generate the networks or if the real North American power
network has a different structure. However, we observe that both sets of networks have
topological differences among them. Consequently, it is highly likely that the models used to
generate them cannot replicate the topology of real networks accurately. We find that those
algorithms have difficulties to replicate the complexity of local structures, that is, triangles. In
most cases, dimensions related to triangles are out of the reference ranges. Furthermore, the
analysis reveals problems that might be related to the degree distribution of those networks
(e.g., the number of leaf nodes or the tendency to make hubs in the network).

The PEGASE networks also present some differences concerning the European transmission
networks. They have a large number of triangles, and they are not well distributed through the
network. However, since all PEGASE networks stand for the same real network (but they have
different sizes) we may infer that the use of network-reduction techniques may lead to
topological differences concerning the real network. Finally, the SDET networks are entirely
inconsistent with the topology of the European transmission networks. The lack of information
about the real network they represent, or the algorithm used to generate those networks
makes it impossible to determine the cause of those inconsistencies.

The GHuUST framework is a useful tool to analyze the topology of synthetic networks since it
allows for the detection of inconsistencies. Furthermore, those inconsistencies are easily
interpretable, so this analysis may support the introduction of changes in the existing
algorithms to improve results.

90



A NOVEL ALGORITHM TO GENERATE
SYNTHETIC POWER GRIDS

5.1. What are synthetic grids?

The generation of synthetic power grids is a practical alternative to the lack of public
network models. Synthetic networks are non-real, albeit realistic, power grids that are
topologically and electrically consistent with a real network. Accordingly, the operation and
control of synthetic networks are similar to real networks.

Chapter 4 analyzes the topology of existing synthetic power networks. It shows that
published synthetic-network algorithms are not topologically consistent with the European
transmission power networks. Indeed, we found some topological properties of real networks
that were not replicated in synthetic networks (existing algorithms cannot imitate the
complexity of local structures in power networks). Furthermore, some of them lack node
location, which is essential in applications such as Transmission Expansion Problem.

This chapter makes a review of the existing algorithms to generate synthetic networks, and
it proposes a novel algorithm for the generation of synthetic spatial power grids (synthetic
networks in which nodes are endowed with geographical location). The algorithm is articulated
in two steps:

1.  The first step focused on building a basic network to meet generation and demand.

2. The second step targeted at increasing network robustness whilst achieving topological
attributes.

We also showed that different power networks might have different topologies, so any
synthetic generation procedure must be adjustable in order to generate representative grids.
The proposed algorithm has adjustable parameters that enable it to generate synthetic power
grids with different topological properties.

The rest of this chapter is organized as follows. Section 2 reviews existing works. We
introduce a new algorithm to generate synthetic power grids in section 3. Section 4 presents a
case study. Finally, section 5 summarizes results.
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Synthetic power grids are non-real, albeit realistic, power grids that are topologically
and electrically consistent with real power grids. They are a practical alternative to the
lack of public power-network models.

A novel algorithm is proposed to generate spatial synthetic power grids.

The model is flexible enough to adapt results to different topologies.

5.2. State-of-the-art review

The generation of synthetic networks has attracted the attention of several studies in the
complex-network field. Those works focus on the generation of networks (graphs) that fit with
some topological properties. Based on their nature, we differentiate between purely
topological algorithms and hybrid models. The pure topological algorithms connect nodes
disregarding network nature (in this case, the electrical nature of power grids). Those networks
lack electrical parameters. Hybrid models combine complex-network techniques with power-
system methods to generate synthetic networks that are endowed with electrical information.

5.2.1. Purely topological algorithms

Based on the idea “the rich get richer”, Barabasi and Albert presented their preferential
attachment model [37]. In this model, nodes are consecutively added to the network and linked
to existing ones. The probability of being linked to a node is correlated with the degree of
existing nodes so that already well-connected nodes have a higher probability of being selected
for new links. The preferential attachment model generates scale-free networks, networks in
which node degree follows a power-law. As discussed in Chapter 2, the power grid cannot be
considered a scale-free network.

Wats and Strogatz presented a method to generate small-world networks [44]. These
networks are characterized by having a high network average clustering coefficient concerning
random networks and small characteristic path length. As in the case of the scale-free network,
Chapter 2 questions the systematic characterization of transmission power networks as small-
world networks.

Other models to generate pure topological networks include the Erd6s—Rényi model that
generates random networks [43]. However, the topological properties of power grids do not fit
with the structure of random networks. Moreover, several versions or prior algorithms have
been proposed to generate synthetic networks [36]. However, the lack of electrical
considerations makes them an inaccurate tool to build synthetic power networks. All prior
models generate networks without considering their electrical nature. They may lead to
evident inconsistencies such as demand nodes that cannot satisfy demand because of a lack of
transmission capacity.
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5.2. State-of-the-art review

Purely topological algorithms generate synthetic networks disregarding the electrical
nature of power grids. This may lead to inconsistencies regarding network operation or
control.

5.2.2. Hybrid models

Hybrid models combine complex-network theory with power-system principles; they may
be classified concerning the network location. We differentiate between algorithms that
endow nodes with geographical location and algorithms that do not consider the spatial nature
of power grids.

A. Non-spatial models

The RT-nested-Smallworld is an algorithm that generates synthetic power grids based on
purely statistical information [21]. Based on the assumption that power networks are small-
world networks, it generates synthetic networks with electrical features such as line
impedance. The algorithm was improved by the introduction of an electrical classification of
nodes into load, generation, or connection nodes [97], [98]. However, based on prior results,
power networks cannot be always described as small-world networks [38], [89].

The cluster-and-connect model generates synthetic networks based on purely topological
information and can potentially fit any degree distribution [99]. Nevertheless, it takes an
existing network as a starting point and merely reshuffles its connections. Scaling to new sizes
is not possible with this algorithm. Although the resulting networks have the same target
degree distribution, other topological properties are not tested. This may make them
completely different from a topological point of view.

Despite not considering the geographical location of nodes, other approaches have
introduced the distance between pairs of nodes as a design parameter, the probability of
linking two nodes decreases as distances increases [100], [101].

The prior models, as well as most pure topological algorithms, disregard the geographical
location of nodes. Therefore, the resulting synthetic grids do not bear any geographical
significance. Node location is a crucial factor in applications such as Transmission Expansion
Planning.

B. Spatial models

Based on the distance among nodes, Patania et al. and Wang et al. go one step beyond, and
they propose algorithms to effectively generate spatial networks [102], [103]. In the first case,
the Epsilon-disc model connects nodes if the distance between them is below a specific limit.
In the second case, lines are distributed following a length distribution that should be
introduced as an input. As distance is correlated with the cost of installing a line, the decision
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process resorts to a soft economic approach. The Epsilon-disc model also includes the electrical
characterization of resulting synthetic grids. However, as they show in their paper, the
topological properties of resulting networks do not fit well with the properties of real networks.
The idea of considering distance as an economic criterion has been used in other studies such
as in the model proposed by Deka and Vishwanath [104]. The degree distribution of resulting
networks tends to follow an exponential function.

In an attempt to generate a synthetic spatial network similar to the US power network in
properties, a model was proposed to make an in-depth electrical characterization of lines and
nodes [105]. Based on the North American Eastern Interconnect grid, lines are linked using the
Delaunay triangulation. Although the network could fit a realistic degree distribution, the
authors do not check if it fits other topological metrics. A further improvement of this work was
proposed where an iterative process decides which line should be added to the system [22],
[59]. The algorithm chooses the set of lines that better contribute to the performance of the
resulting grid in terms of power flow. The set of candidate lines is also based on the Delaunay
triangulation. Besides, this model only considers the average degree as a topological input. The
ACTIVSg networks showed in Chapter 4 are generated with this algorithm. As shown in that
chapter, the topology of those networks is not consistent with the properties of the European
transmission networks. The use of an average node degree as the unigue topological input is
not sufficient to ensure the topological consistency of resulting networks. Moreover, this model
always generates the same network for the same set of nodes. Consequently, this model
cannot adapt to the heterogeneity of power-network topologies shown in Chapter 4.

Schultz et al. [106] present an algorithm that first generates a minimum spanning tree.
Second, it adds new lines to connect nearby nodes. However, these assumptions are not
consistent with the historical evolution of power networks leading to unrealistic topologies. A
similar approach is the base of the NIMBLE algorithm [90]. First, the algorithm adds nodes and
connect them to their closest nodes to form a connected graph (the resulting network is not
necessarily a minimum spanning tree). Second, new lines are added to the network based on
degree distribution is similar to scale-free networks (there are differences in nodes with one
connection and highly connected nodes), line length is limited and the higher the density of the
area the higher the node degree. This algorithm, therefore, adds line regarding degree
distribution. As a result of the algorithm, a synthetic network is published. The analysis carried
out in Chapter 4 shows that the network is inconsistent with the topological properties of the
European transmission power networks. Furthermore, its structure differs from the topology
of other synthetic power grid that stands for the same real network and from prior works.

Despite the introduction of an electrical characterization, existing models for generating
synthetic power grids do not provide results that are consistent with the topology of real
networks, apart from matching a degree distribution in some particular cases. Considering this,
we propose a new algorithm that mimics the evolution of real power networks to generate
synthetic spatial power networks. Moreover, existing algorithms are not parametrizable, and
they cannot adapt to the structure of the resulting synthetic network to different topologies,
as explained in Chapter 4.
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Hybrid models generate networks combining complex-network techniques and power-
systems theory. Hybrid models may generate spatial or non-spatial networks. This work
focuses on spatial networks.

Synthetic power networks generated with existing spatial algorithms are not
topologically consistent with real networks. Furthermore, those algorithms are not
flexible to adapt network structure to different topologies.

5.3. Algorithm description

This section proposes a new algorithm to generate spatial synthetic power grids. Although
node generation is described, the novelty of the algorithm lies in the wiring process (how nodes
are connected). Furthermore, this section highlights the need for a parametrical algorithm to
generate networks with different topologies.

5.3.1.The need for a parametrical algorithm

The growth of power networks, as a case of infrastructure networks, is conditioned by
topological, morphological, technical, economical, permitting, environmental, managerial or
political factors [88]. These factors are not aligned with the optimal power flow method, and
different network topologies may appear depending on countries or regional areas (as shown
in Chapter 2 and Chapter 4). Besides, because of network evolution, power plants that were
built decades ago may become underused, and new generation investments are allocated.
Accordingly, the generation of synthetic power grids cannot be tackled with optimization
models as performed in transmission expansion planning. Following this, a non-parametrical
algorithm cannot be the solution for generating synthetic power grids. Even when we have the
same set of nodes, we might generate different topologies due to geography, political decisions
or electricity generation mix. We, therefore, propose a parametrical algorithm that is flexible
enough to adopt different topologies depending on economic and technical factors.

This new algorithm considers the economic and technical dimensions as the most relevant
factors that explain the structure of power networks. Those factors guide the construction of a
base network in which demand is supplied. Accordingly, we generate networks that meet with
the design target. However, their structure may differ from real networks since other relevant
factors such as environmental constraints were not considered. Once the algorithm has
provided a network that can meet demand, and it is robust in case of some component failures,
new lines are added to achieve topological consistency.
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The heterogeneous topology of transmission power networks leads to the need for
flexible algorithms to generate synthetic power grids. Accordingly, algorithms should
be able to generate networks with different topologies.

The proposed algorithm considers technological and economic considerations as the
most relevant factors that guide network design.

5.3.2. Node Generation

The algorithm starts with node creation; it distributes substations where power is
demanded, or generators are connected. The algorithm considers two types of nodes: demand
nodes (which include interconnection substations) and generation nodes. If there are demand
and generation connected to a node, this is classified as demand or generation node based on
the balance between power demand and generation capacity.

Since power networks are spatial, the algorithm can assign node location according to a
spatial probability distribution function. Geographical characteristics, the availability of the fuel
or renewable resources, as well as transportation infrastructures (e.g., gas pipelines), might
determine the location of nodes. Probability functions must be introduced as an input.

After locating nodes, the algorithm endows them with electrical properties. In the case of
demand, the algorithm requires the total power demanded by the network and how it is
distributed (for instance, with an exponential distribution function [102]). Demand can also be
distributed based on economic considerations such as GDP per region [59]. It should be noted
that, although magnitudes such as GDP per region or renewable resource availability might be
chosen to represent a specific region, this is not necessary for the algorithm —nodes can be
generated randomly based on any distribution defined by the user.

Once demand is set, the algorithm addresses generation features. Total generation capacity
and electricity generation mix are parameters of the model; it will distribute generators in the
area where the synthetic network is generated under those parameters.

As explained previously, this thesis does not introduce a novel methodology regarding the
random generation of nodes and their characteristics; it assumes the prior work described in
the literature. The novelty of the proposed methodology lies in the creation of the network also
called the wiring process.

5.3.3. Building a connected graph

Once nodes are set, the algorithm links them with a basic network in which demand is met.
In this first step, the algorithm tries to minimize network costs while preserving the physical
principles that govern power networks. Accordingly, the decision to install a line is based on
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installation cost (that is assumed to be proportional to the distance between two nodes) and
line contribution to demand-supply (transmission-line-capacity constraints). If line cost linearly
increases with distance, a minimum spanning tree would be the cheapest solution to have a
connected graph. However, this is only valid if all lines installed have similar properties. In the
case of considering a set of different transmission lines, e.g. different transmission capacity, the
minimum spanning tree neglects cost differences. Furthermore, a minimum spanning tree
does not consider how power flows through lines. This might lead to electrical inconsistencies
such as line overloads. We, therefore, propose the combination of an economic criterion
(installation cost) with electrical considerations.

The inclusion of different transmission line capacities (with different cost), rapidly increases
the complexity (number of variables and constraints) of the minimum spanning tree problem.
Accordingly, it cannot be tackled with classical optimization techniques. We apply the divide-
and-conquer scheme to build a connected graph. The algorithm divides the network into small
subnetworks that are connected afterward. The solution to this might not be the optimal
solution to the problem. Nevertheless, as previously mentioned, we are not trying to build an
optimal network but a reasonable one, one that has properties that are similar to the real
network. The construction of the connected graph is divided into three stages: node clustering,
intra-cluster connection, and inter-cluster connection (as shown in Figure 5-1).

A) Initial nodes B) Clustering nodes C) Intra-cluster wiring
D) Inter-cluster wiring E) Reaching topological

consistency

N /\\

Figure 5-1. Steps followed by the model to build a synthetic power network.

/N

A.  Clustering nodes

To reduce problem size, the model groups demand nodes with the closest generator that is
able to supply its demand. Each generation node is defined as the center of a cluster.
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Consequently, the number of clusters in the network is equal to the number of generation
nodes. The number of generation nodes may differ from the number of generators, since more
than one generator may be connected to the same node.

To define the nodes that belong to each cluster, the algorithm minimizes the sum of
distances D; ; between each demand node (Np) and generators (Ng) (5-1). The variable @; ;

determines whether a demand node i is connected to a cluster (generator) j or not.

min Z Z Di,jai,]- (5_1)

iENp jENg

Each cluster should be able to supply the demand of its nodes. Consequently, the sum of
node demand (PD;) must be lower than the generation capacity of that cluster (G;) (5-2).

Z ai,jPDi < G] V] (5_2)

iENp

Finally, a demand node may be connected to several generators. Accordingly, a; ; is an
integer variable that represents the proportion of demand that is satisfied by each generator

(5-3).
Z ai,j =1 Vi (5_3)

JENg

This local approach tries to mimic the origin of power networks, in which power networks
were built relatively close to demand nodes.

This step clusters demand nodes around generators. Each cluster has enough
generation capacity to supply the demand of its nodes. Demand nodes might be
assigned to more than one cluster.

B. Intra-cluster wiring

The algorithm connects the nodes of each cluster with the minimum-cost network that is
able to supply demand (5-4). Accordingly, the decision (B; ;x) of connecting nodes i and j
(belonging to cluster N.) with a line of transmission capacity k is conditioned by the distance

among nodes D; i, and the cost of the different transmission line considered Cj. To build the

g7
network, the model chooses the type of lines to be installed based on a line catalog introduced
as an input. Different transmission capacities are considered.

min z Z z Bi,jiDi jCr (5-4)

iEN¢ jJENc kEK
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Because of network model assumptions explained in Chapter 2, there is only one line that
can connect nodes i and j (5-5).

Z Bijr <1 Vij (5-5)

To ensure that demand is met, we estimate power flows f; ; . Because of the non-meshed
structure expected as a result of this step, the power flow through a line is calculated
considering only the first Kirchhoff's law (5-6). Accordingly, the effect of the second Kirchhoff’s
law is neglected. This simplifies the problem solution. To estimate the flow through lines, PD;
is the demand of each node and PG; is the power injected by each generator (PG; =
ZjENC PD;j). OL and IL are the set of outgoing lines and incident lines connected to node .

Z Z fiix + PG = Z Z fije +PDy Vi (5-6)

JEOL kEK JEIL keK

Furthermore, the flow through a line has an upper and lower bound fixed by the
transmission line capacity Ly (5-7).

L Biji < fijx < Lic Bijx Vijk (5-7)

To ensure that all clusters are connected subgraphs, interconnection nodes are assigned
with a small demand. Since there is only one generator per cluster and equation (5-6) ensures
that demand is supplied, all nodes are therefore connected.

This process is repeated for all the clusters defined in the prior stage. Finally, the network is
formed by a set of connected subnetworks that are disconnected among them. Since demand
nodes may be connected to more than one generator, the number of connected subnetworks
may differ from the number of initial clusters.

Although several clusters might be connected after this step, there is no guarantee that the
resulting network is a connected graph.

Each cluster is connected with the minimum-cost network that is able to satisfy
demand. The design of that network includes power-flow considerations.

Although some clusters may be linked, the resulting network is in general a
disconnected graph.

C. Inter-cluster wiring

To build a connected graph, the connection of disconnected clusters (those clusters that do
not share any demand node) is the last step. Reliability considerations, as well as economic
criteria, will lead to the installation of new lines.
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After linking demand and generation nodes with a basic network (demand is met under
normal operating conditions), the algorithm tries to increase network robustness. The
algorithm tries to find alternative sources to supply demand in case of generator failures. First,
each cluster tries to find a backup cluster (or generator). Second, if there are no close
generators with enough capacity to supply demand in case of failure, the algorithm installs the
lines that connect clusters at the minimum cost.

The first stage is inspired by the generation N-1 criterion. This reliability principle ensures
that demand will be met in case of generator failure. Consequently, if one of the generators
fails, there should be another available generator to supply demand. This new generator should
be able to inject the same amount of power as it was being injected by the failed generator.
The process to find a backup generator starts with the estimation of cluster reserve margin
CRM (5-8). This is the difference between the generation capacity of each cluster and the total
demand in that cluster. Accordingly, the cluster reserve margin is the ability of each cluster to
supply other clusters in case of failure.

CRML = Z PDl ai,j — Gi (5-8)

iENc

In the case of connected clusters in the prior stage (intra-clustering wiring), that reserve is
first assigned to the cluster to which they are connected. Consequently, clusters that share a
demand node have backup generators that meet the total or partial needs of power in case of
failure. Subsequently, each cluster tries to find the backup cluster iteratively. It starts from the
largest clusters in terms of power demand (sum of node demand of a cluster). It assumes that
the larger the cluster size the larger the bargaining power of that cluster. If no cluster can supply
the total demand, it finds the cluster that can supply the maximum amount of power. The
flowchart for this process is shown in Figure 5-2.

The connection between clusters is limited by cluster distance (maximum length of
transmission lines). The distance among clusters is the distance among their closest nodes.

Once the connection of clusters is fixed, the model installs the line with the lowest
installation cost that links both clusters. In this stage, the connection among clusters disregards
power-flow constraints. The capacity of the new transmission line is fixed based on the
expected power flow from the backup cluster in case of failure.

If there is not a close cluster that can supply demand in case of failure, or the resulting
network is not a connected graph, clusters that remain disconnected C are linked with the
lowest investment option. Consequently, the model minimizes the investment cost of new lines
to have a connected graph (5-9). Since power flows are not considered, cost correlates with
the distance between nodes CD; ;.

min Z Z yi,j CDi,j (5_9)

ieC jEC
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Intra-cluster wiring
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Figure 5-2. Flowchart of the inter-cluster-wiring stage.
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To ensure a connected graph, the problem has a similar constraint as that used in the prior
stage with the first Kirchhoff's law. In a connected graph, the demand of all nodes could be
satisfied with a single node (disregarding capacity constraints). Accordingly, the algorithm
solves the theoretical flow u; ; through the connections among clusters (5-10). It defines a
power withdrawal vector W in which all clusters (except the generation cluster) have a small
demand (for instance one unit of power), and the injection vector I, in which only one node
satisfies all the theoretical demand (this is equal to the number of nodes minus one). Then, the
decision to install a line is conditioned by the maximum length of transmission lines (5-11).

z u]"i + Ii = Z ui,j + Wi Vi (5_10)

jec jec
Yi,j CDi,j <L v l,] (5-11)

Finally, the model allows for the iterative inclusion of generators based on technology. This
attempts to mimic the historical development of power systems. The historical evolution of
generators was articulated around periods characterized by the installation of single dominant
generation technology. First, thermal plants of different technologies (coal, nuclear or natural
gas) were installed followed by renewable plants. Accordingly, this step allows the user to

Disconnected clusters are linked based on reliability considerations. Clusters find a
backup cluster to supply demand in case of generator failure.

If the resulting network is not a connected graph, the model installs lines that make a
connected graph at the minimum cost.

introduce nodes iteratively. In each iteration, new generation nodes are connected.

5.3.4. Adding lines to reach topological consistency

Once the algorithm has provided a basic network where demand is satisfied at low
investment cost, the model focuses on increasing network robustness by adding new lines. The
model adds new connections trying to reach a target in terms of topology. Previously, we have
shown that the multiple factors that guide the real evolution of power networks are not
effectively replicated by existing models. They are based on power-system considerations and
soft topological criteria. We propose the introduction of sophisticated topological criteria as
well as power-flow considerations to guide synthetic-network generation. Accordingly, during
this step, new lines are added with a double objective. On the one hand, they try to improve
network robustness as well as network operation. On the other hand, the installation of a line
is conditioned by the expected topology of the synthetic network defined by the GHuST
framework.

The inputs of the model used to guide the topological evolution of synthetic power
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networks are the expected degree distribution and the expected values of GHuUST dimensions
for the synthetic network. Chapter 2 pointed out the importance of degree distribution due to
its implications in terms of network vulnerability. We also showed that the use of a global
statistic such as degree distribution might result in misleading. However, the twelve dimensions
of the GHuST framework provide a complete description of network topology. Accordingly, by
including the GHUST framework and the degree distribution together, we will be able to reach
a topological consistency of resulting synthetic power networks.

Furthermore, to overcome the drawbacks of pure topological methodologies explained in
section 5-2, power-flow considerations guide the installation of those lines. Accordingly,
resulting networks are expected to be both topologically and electrically consistent with real
networks.

This step is divided into three stages:

1. Preventing islands: the algorithm tries to install lines that reduced network
vulnerability.

2. Guiding node degree: lines are added individually to improve network operation.

3. Reaching GHuST consistency: lines are added to mimic those aspects of network
evolution that cannot be introduced in the algorithm.

A. Preventing islands

Networks resulting from the first step, building a connected graph, are expected to have a
poorly meshed structure. Accordingly, those networks are highly vulnerable in case of line
failure. Indeed, line removal might split the network into two components. Beyond the
consequences in terms of network dynamics, this division is critical if there is a deficit of
generation in one of those components. Therefore, generation and demand will not meet.

As in the inter-cluster wiring, this stage relies on the N-1 criterion. Unlike the inter-cluster
wiring that considers generator failure, this stage only focuses on line failures. The algorithm
tries to build alternative paths to supply demand in case of connections failure. Accordingly,
the installation of new lines will prevent the formation of islands (disconnected components).
Figure 5-3 shows the flowchart of this stage.

The complete fulfillment of the N-1 criterion would lead to a network in which all nodes
have at least two connections. However, as shown in Chapter 4, the number of leaf nodes in
power networks cannot be neglected. Accordingly, the model will try to reach the N-1 approach
while preserving topological consistency. The installation of line reinforcements is therefore
based on power-system considerations, but it is conditioned by the contribution of that line to
network topology. In this stage, the topological contribution is measured through the degree
distribution. A line contributes to the degree distribution if the installation of that line helps to
reduce the difference between the degree distribution of the synthetic network and the target
one. For instance, if the number of leaf nodes in the synthetic network is equal to the number
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of leaf nodes in the target distribution, no more lines will be connected to nodes with only one
connection. If new lines would be linked to nodes connected to only one transmission line, the
number of leaf nodes in the synthetic network will be lower than in the reference network. This
error cannot be corrected with the installation of new lines in a further step, and the topology
of the synthetic network will not be consistent with real power networks. Consequently, the
desired degree distribution conditions the installation of new lines in this stage.

Building a connected graph

Y

A 4

Line criticallity estimation

Generation deficit?

| Ranking Lines |

A 4

Island omission | | Candidate discovery |
y

No

Fitting degree
distribution?

Line installation

v

Guiding node degree

Figure 5-3. Flowchart of the preventing-island stage

Since not all nodes can be connected with two lines, and disconnected components may
appear in case of line failure, it is necessary to define a ranking to prioritize line reinforcements.
This ranking is based on the impact the failure of an existing line has on the network. We
calculate the impact of each line removal in the system with the line criticality index. This index
is based on the Loss of load index (later explained in Chapter 6) [107]. The line criticality index
of aline LC; is the maximum value of Power Not Served in the disconnected components PNS;
that appear after the failure of that line (5-12). Generation deficit is the difference between the
generation capacity G of nodes that belong to component C and the total demand of those
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nodes PD (5-13).

max(PNS;), max(PNS;) = 0
LC; ={ (PNS)) (PNS;) (5-12)

0, max(PNS;) <0

GDi= ) PD = ) Gy (513

kec kec

The algorithm only simulates the failure of one line. Accordingly, the maximum number of
disconnected components is two. Furthermore, as generation capacity in the network should
be higher than total demand, generation deficit may appear in only one of those components.

After ranking existing lines based on their impact on demand-supply, the algorithm looks
for the new lines that can mitigate that deficit of generation in case of line failure. Any line that
connects both components will avoid the formation of islands. However, the algorithm tries to
minimize the impact of new lines in the network. Consequently, a new line should minimize the
number of cases in which line failures lead to a disconnected graph.

To decide what is the line that should be installed, the algorithm finds a set of potential
candidate lines that would contribute to increasing network reliability. Subsequently, it
evaluates those candidates, and it chooses the line that better fits with network requirements.

For each line that leads to a disconnected component with a deficit of generation, the
algorithm first figures out the nodes that belong to that component (the origin of candidate
lines should be one of those nodes). To maximize the number of cases in which the candidate
line mitigates the effect of a disconnected graph, the algorithm chooses as the origin of the
candidate lines all leaf nodes of the subgraph. The leaf node that was connected to the line that
has caused the disconnected graph is excluded. Figure 5-4 illustrates the process followed. In
the case of line failure, a string of four nodes would be disconnected. However, if we connect
the leaf node (red node) with the network, we avoid the formation of a disconnected graph in
case of removing the three lines of the string (blue lines). Accordingly, the best option to be the
origin of candidate lines is the leaf node. However, to meet the constraint related to the
number of leaf nodes in the network, we also consider as the origin of the candidate line the
connection of the leaf node (yellow node).

Once the origin of the candidate lines is fixed, the algorithm looks for the end of those
candidate lines. It is clear that the end would be located in the component where there is not
a generation deficit. All those nodes whose distance to the initial node is lower than the
maximum line length are considered the end nodes of potential candidate lines. Subsequently,
the algorithm analyzes if those lines contribute to the degree distribution or not. This is
repeated every time a line is installed. Furthermore, to avoid the connection with close nodes,
and to encourage the connection with other network areas, the algorithm imposes a constraint
in terms of network distance. This contributes to increase network reliability since the lower
the distances in the network the higher network robustness [108]. The pair of nodes that would
be directly connected in case of installing a candidate line should be separated by a minimum
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distance. That distance is a minimum number of edges regarding the shortest path matrix.
Finally, the model chooses the line that connects the furthest nodes. In the case of two lines
with a similar contribution, the cheapest line is installed.

A) Initial state B) Line removal C) Possible candidates

)
o
o
(@)
o
o
o
O

D) Potential candidate | E) Potential candidates Il

Figure 5-4. An example of the candidate line proposal in the preventing-island stage

New lines are added to increase network reliability. The algorithm builds alternative
paths to supply demand in case of line failure.

This stage focuses on avoiding the formation of disconnected components in which
there would be a deficit of generation and demand cannot be therefore met.

The installation of new lines is conditioned by the contribution of that line to fit with
the desired degree distribution.

B. Guiding node degree

Although the previous step introduced topological considerations, it only analyses the
contribution of new lines to the degree distribution of the synthetic network. As explained in
Chapter 3, two networks with similar degree distribution may still display significant topological
differences. To ensure topological consistency, we propose the introduction of the GHuST
framework to guide network generation. However, we do not have a sound understanding of
the marginal contribution of an individual line to reach a GHuST target (considering the twelve
dimensions). Although the contribution to each dimension looks intuitive, the correlation
among GHuST dimensions needs for further research. Furthermore, unlike degree distribution,
in the GHuUST framework, we do not know how the installation of a line conditions error
mitigation in the future. We have no certainty if the error in the GHuUST dimensions, which is
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introduced by the installation of a new line, can be corrected with further lines. Therefore, the
algorithm can only compare the topological consistency of the synthetic network with the
GHuST framework if all lines are installed. The algorithm, therefore, evaluates sets of candidate
lines to be installed together (instead of a single line).

Chapter 2 showed the average number of lines per node in the European transmission
networks, L = 1.33N. To have a connected graph, the minimum spanning tree installs N — 1
lines. Although this algorithm does not use the minimum spanning tree, we might expect that
the number of lines installed at the building-a-connected-graph step will be similar (or slightly
higher). Consequently, the algorithm should add approximately 0.33N lines. Despite the
number of lines installed in the prior stage (preventing islands), the number of new lines and
the number of candidate lines (nodes that can be connected and that line contributes to the
degree distribution) may result in an extremely large, and an unmanageable number of
potential networks in which evaluate the GHuUST framework.

To reduce the number of candidate lines as well as the total number of lines to be installed,
this stage focuses on installing lines in low-degree nodes. Those lines are installed analyzing its
contribution to the degree distribution and base on power-flow considerations. Consequently,
this stage disregards the GHuST framework, but it reduces the number of candidate lines in
further stages. If the number of leaf nodes in the synthetic network and the target network is
the same, all candidate lines that include a leaf node should be omitted. Accordingly, this step
starts by installing lines considering leaf nodes and nodes with two connections. The higher the
number of lines installed, the lower the number of candidates. However, it also reduces the
possibilities to reach the reference in terms of GHuST.

The process followed is described in Figure 5-5. If the number of nodes with a specific node
degree X is lower in the synthetic network than in the target, new lines should be installed.
Accordingly, all nodes whose node degree is X — 1 are potential nodes to be the origin/end of
candidate lines. Once that candidate lines are found (following the criteria explained in the prior
section, contribution to degree distribution and line length), those candidates are evaluated in
terms of power flow to decide the line to be installed. This is done iteratively until there is no
difference between the synthetic network and the target network.

The algorithm installs the line that makes a reduction in terms of power flow per distance
E, which can be considered as a proxy of the optimal transmission expansion decision. It
estimates the sum of the product between power flow through a line f; and the length of that
line LL; (5-14). This measure analyzes the contribution of the line to network operation. In case
two lines have the same impact, the cheapest line is installed.

E= Zfi LL; (5-14)

i€EL

Transmission line capacities are fixed based on the expected power flow in the optimal
economic dispatch.
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Figure 5-5. Flowchart of the guiding-degree stage

To reduce the number of candidate lines as well as the number of lines to be installed,
this stage focuses on the connection of low-degree nodes. Accordingly, it tries to reduce
the difference between the degree distribution of the synthetic network and the target.

C. Achieving GHuST consistency

As explained in Chapter 4, existing synthetic networks cannot replicate the complexity of
the real power-network structure. Indeed, in most cases, those synthetic networks do not
capture the complexity of local structures. Although this model has conditioned the installation
of new lines to their contribution to the degree distribution, this is not enough to create
networks that are topologically consistent. Accordingly, we have introduced the use of the
GHuST framework to guide network generation.

As previously mentioned, new lines should be evaluated together. Accordingly, we propose
the generation of a large set of candidate networks that are evaluated afterward.

Those sets of networks are generated with a random process. Since the number of
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combinations is not manageable, the algorithm generates a large number of candidate sets to

be evaluated. Then, it filters the networks whose topology is consistent with the target. This

random process is guided based on electrical and topological criteria. The process is illustrated

in Figure 5-6. First, the model determines the number of lines to be installed in the synthetic

network (this is obtained from the target degree distribution). It also finds the candidate lines

that can be installed based on degree distribution and line length. Subsequently, the model

decides randomly the lines that are installed. This is done iteratively until meeting the target

degree distribution. The decision to install a line depends on a probability function. Every time

a line is installed, the list of candidate lines and probabilities are updated.

The probability of installing a line is conditioned by 3 aspects:

Estimated power flow, since running a power flow in each iteration would need large
computational requirements; we estimate the power through a candidate line based on the
state of the synthetic network. Based on the DC power flow definition, power flows through
network lines are defined by equation (5-15), where X is the diagonal matrix of line
reactance, A the incidence matrix (reduced to the slack bus), P the vector of power
injections at each node, and 8 are the system voltage angles.

— Y- T
F=X"1AT0 (5.15)

0=[AX"1AT]"tP (5-16)

If we consider that changes in 8 after the installation of a new line are small, we can estimate
the power through a new line as (5-17).

P =X,;7 (6, = 6) (5-17)

The probability of installing a line based on the estimated power flow Pfft, is proportional

to the maximum power flow estimation for a candidate line (5-18).

est
) E— (5-18)
Pfij max(Pest)
Line length, the probability of installing a line is also conditioned by the length of the line.
The model assumes that the line length is the distance between two nodes. The probability
of installing large lines may differ from the probability of finding a short line in the network.
Those probabilities might vary depending on the country as introduced by Espejo et al. [65].

a, Di,j < ll
B, L <D<,

(5-19)
Y, lz < Di,j < l3

pli; =
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Figure 5-6. Flowchart of the achieving-GHuST-consistency stage

e Graph distances, we pointed out the importance of graph distances (minimum number of
edges to go from one node to another) concerning network vulnerability. Furthermore, we
observe a lack of triangles in existing synthetic networks. Accordingly, the probability of
installing a line based on graph distances differentiates two cases. First, if the distance is two
edges, the addition of that line would create a triangle. The probability of installing a triangle
is fixed by the user with the parameter §. Finally, if the distance is higher than 2, the higher
the distance, the higher the probability of installing that line.

5, di,j = 2
pdi,j = 1 (5-20)

1——-, d;; > 2
di,j 2
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Accordingly, the probability of installing a new line depends on power-flow estimations, the
geographical distance and the graph distance between nodes (5-21).

bij = Pfi,j Pli,j Pdi,j (5-21)

This process is repeated until the degree distribution of the synthetic network meets with
the target. If the degree distribution meets the target, that network is a candidate network to
be evaluated. The algorithm also fixes a time limit since there is no guarantee that the synthetic
network will meet the target. Following this process iteratively, the algorithm is able to
generate a large set of networks with the same degree distribution. However, their topological
properties may differ from the target networks.

The model applies the GHuUST framework and filters all those networks in which the relative
error (concerning the reference network) is below a limit in the twelve dimensions.
Subsequently, it chooses the network that minimizes the mean relative error. Accordingly, this
process ensures that final networks are topologically consistent with real transmission power
networks.

Finally, the algorithm presents enough flexibility to generate synthetic power grids with
different topologies. By introducing an electricity generation mix or a line catalog, different
topologies may appear during the first step of the model. The result of the second step is
conditioned by degree distribution, and the values of GHuUST introduced as input. This flexibility
is crucial to replicate the historical evolution of power grids as shown previously.

The achieving-GHuST-consistency stage follows an iterative process to generate a set of
synthetic networks that have the same degree distribution than the target network.

The GHuST framework is applied to choose the candidate network that better fits with
the target topology.

5.4. A synthetic network for Spain, Portugal, and France

The objective of this section is to test the ability of the proposed algorithm to generate
synthetic power grids that are consistent with the topology of real power networks. We use
three cases: the Spanish 400-kV network, the Portuguese 400-kV network, and the French 400-
kV network. The Spanish network is composed of 235 nodes and 334 lines, the Portuguese
network has 69 nodes and 93 lines, and the French network is formed by 217 nodes and 283
lines. The Spanish and Portuguese networks are obtained from the 2014 TYNDP (2030 scenario)
of ENTSOE-e [12]. The French case is obtained from RTE [13].
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Figure 5-7. Node location in the Spain-Portugal-France synthetic network.

Node location and node attributes are introduced as inputs of the case study. As previously
mentioned, we only focus on testing the ability of the proposed algorithm to link those nodes.
The node location used as input is the real location of nodes for the three countries. Figure 5-7
shows the geographical distribution of nodes for the three countries. The target degree
distribution, as well as the values of GHuUST for each country, are fixed considering the real
degree distribution and the GHuST values of real networks.

The model starts clustering demand nodes around generators. The clusters obtained for
each country are shown in Figure 5-8. The number of clusters is 73 clusters in Spain, 21 clusters
in Portugal and 60 clusters in France. Accordingly, the average cluster size is 3.2, 3.3 and 3.6
nodes, respectively. The number of clusters with no demand nodes (generators that are not
connected to other nodes) is 9 clusters in Spain, 6 clusters in Portugal and 15 clusters in France.
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Spain Portugal

Figure 5-8. Clusters formed in the Spain-Portugal-France synthetic network.
Red points are demand nodes and green points are generators. The green area represents the clusters
formed and the nodes that belong to those clusters.

Since the number of renewable power plants that are directly connected to transmission
networks is small, and we have no detailed information about the year of construction of power
plants, we only consider one iteration. Accordingly, all generators are introduced at the same
time.

To connect clusters, the intra-cluster-wiring stage considers three types of lines. The values
of the transmission capacities are 700 MVA, 1,500 MVA, and 2,000 MVA. Those values are the
most representative frequencies of the thermal-rating distribution for those countries [109].
The number of lines installed in this stage is 411 (191 lines in Spain, 52 lines in Portugal and 168
lines in France). Lines added are shown in Figure 5-9.
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Figure 5-9. Intra-cluster-wiring stage in the Spain-Portugal-France synthetic network.

Regarding those demand nodes that belong to more than one cluster, the system is divided
into 45 disconnected clusters in Spain, 17 disconnected clusters in Portugal, and 48
disconnected clusters in France. To obtain a connected graph, those disconnected clusters are
linked to find a backup cluster. In case no backup cluster is found the algorithm minimizes
network cost to have a connected graph.

Figure 5-10 shows the clusters made in each country and how they are connected. Each
point represents a disconnected cluster. The location of the point is the mean value of the
latitude and longitude of all nodes that belong to each cluster. Grey edges stand for the
connection candidates that have been considered. Candidate connections are proposed based
on the shortest geodesic distance among clusters (geographical distance between the closest
nodes of different clusters). Finally, red lines represent the connections installed to have a
connected graph.
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Spain Portugal

France

Figure 5-10. Connection of disconnected clusters in the Spain-Portugal-France synthetic network.

Connections among clusters should be translated into node connections. The algorithm
defines the connection between a pair of nodes of different clusters based on geographical
distance. Furthermore, international connections (Spain — Portugal, and Spain — France) are
introduced manually at this stage. Lines installed (red lines) are shown in Figure 5-11.

The number of lines installed in each country is 236 lines in Spain, 68 lines in Portugal and
216 lines in France. The percentage of the remaining lines to be installed in further stages is
29.4% in Spain, 26.9% in Portugal and 23.67% in France.

To increase network reliability, the model tries to reduce the potential formation of islands.
As we can see in Figure 5-11, the removal of a large number of lines will divide the system into
two components. The algorithm verifies if there is a generation deficit in each of those potential
disconnected components. In the case of deficit, the model analyses if the installation of a new
line would avoid the formation of islands.
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Figure 5-11. Inter-cluster-wiring stage in the Spain-Portugal-France synthetic network.

The preventing-island stage is repeated in two iterations. In both iterations, candidate lines
are chosen based on the transmission-line length and its contribution to degree distribution.
Furthermore, in the first iteration, candidate lines should connect nodes that are separated by
nine or more edges. In the second iteration, that limit is lower, the minimum distance is four
edges. This constraint tries to avoid the formation of really meshed local structures, in which
island formation is avoided with close nodes. Accordingly, the number of lines required to

increase network reliability would be extremely high.

The number of lines installed in the first iteration (node distance for candidate lines higher
than 9 edges) is 11 lines in Spain, 2 lines in Portugal, 9 lines in France. The percentage of new

lines to be installed is 26.1% in Spain, 24.7% in Portugal and 20.5% in France.
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Iteration 1

Iteration 2

Figure 5-12. Preventing-islands stage in the Spain-Portugal-France synthetic network.

In the second iteration (node distance for candidate lines higher than 4 edges), the number
of lines installed is 16 lines in Spain, 4 lines in Portugal, 5 lines in France. Finally, the percentage
of remaining lines is 21.3% in Spain, 20.4% in Portugal and 18.7% in France. Lines installed in
both iterations are shown in Figure 5-12.
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Iteration 1: Spain, Portugal, France
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Figure 5-13. Guiding-node-degree stage in the Spain-Portugal-France synthetic network.

The average percentage of lines to be installed by the algorithm at the end of the

preventing-island stage is 20.13%. This would lead to a high number of combinations to achieve

consistency in terms of GHuST. To reduce the number of line candidates and possible

combinations, the guiding-node-degree stage installs new lines following power-flow

considerations. Those lines are added in order to reduce the error between the degree

distribution of the synthetic network and the target degree distribution. It focuses on nodes

with one and two connections. Because of the small size of Portugal (number of nodes) in

comparison with Spain and France, the algorithm only installs new lines attached to leaf nodes

in that country.
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5.4. A synthetic network for Spain, Portugal, and France

This stage is therefore divided into two iterations, as shown in Figure 5-13. In the first
iteration, only nodes with one connection are considered. The number of lines installed is 15
lines in Spain, 6 lines in Portugal and 4 lines in France. The percentage of lines to be installed is
16.8% in Spain, 13.9% in Portugal and 17.3% in France. In the second iteration (nodes with two
connections), the number of lines installed and the percentage of lines to be installed are 7
lines and 14.7% in Spain and 7 lines and 14.8% in France.

Finally, the average percentage of new lines to be installed is 14.5% of the total lines in each
country. Those lines are added based on a random process in the achieving-GHuST-consistency
stage.

In the achieving-GHuST-consistency stage, the model performs 5,000 iterations for the
Spanish and French networks and 3,500 iterations for the Portuguese network. The time limit
is also lower in the Portuguese network.

In the case of Spain, the number of candidate lines is 935, and the number of lines to be
installed is 56. The algorithm generates 1,295 networks that meet with the target degree
distribution. In 3,705 iterations, the algorithm could not generate a valid network in terms of
degree distribution. For the 1,295 networks that meet the degree distribution, the algorithm
figures out the values of GHUST. Figure 5-14 shows the range of GHUST for each dimension as
well as the relative error concerning the target. Since the number of installed lines is a
consequence of meeting the degree distribution, the error of p; is 0% in all cases. In p,, the
maximum relative error is 15% and the median relative error is 8.7%. The value of the maximum
relative error of p,, ps, and pg are always below 10% and the median relative errors are 1.4%,
4.2%, and 3.1% respectively. In the case of p3, the median of the relative error is higher (26%),
but the minimum error is 7%. Accordingly, most networks meet the distribution of GHuUST
regarding hubs and strings. Although there is a significative difference regarding, the degree of
leaf-node connections (p3), we can find networks in which the dimensions of GHuST regarding
global connectivity are also consistent with the target.

The higher deviation of GHuUST is found in the dimensions related to triangles. We observe
that the maximum value of the relative erroris 1.33 in pg. However, we also observe that there
are instances in which the minimum relative error is 0%, 0%, 4%, 0% and 0% for pg, P9, P10,
P11, and pq, respectively. Accordingly, although all networks have the same degree
distribution, they display completely different topological properties. Indeed, the complexity of
local structures varies. This reinforces the idea that the validation of synthetic power grids
should go beyond global statistics and should use the GHuUST framework proposed in the thesis.

Despite the variance in the values of GHuUST related to triangles, there are networks in which
those values are close to zero. The model will filter the networks with lower errors, as explained
below. If no valid network is found, it is possible to rerun the algorithm increasing the number
of iterations or reducing the number of lines installed in the previous stage.
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Values of the GHuUST framework (right) and relative error (left) for the Spanish synthetic power
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Values of the GHUST framework (right) and relative error (left) for the French synthetic power
network
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Figure 5-14. Values of the GHuST framework and relative error for the networks generated in the
reaching-GHuST-consistency stage in the Spain-Portugal-France synthetic network.
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In the Portuguese network, the number of lines to be installed is 13 lines. In this last stage,
the model considers 167 candidates, and it generates 1,603 out of 3,500 networks that fit the
degree distribution. In most dimensions of GHuST, (2, 3,4, 5, 6, 8, 9, 10, and 12) the median of
the relative error is below 15%. We only find a significative variance in p, (characteristic string
length) and in pg (triangle concentration). There is a higher tendency to share vertices of
triangles and strings tend to be longer in the synthetic networks. However, as in the case of
Spain, we find some instances in which the relative error is close to 0% for those dimensions.

In the French network, although the number of lines to be installed is lower than in the
Spanish case (43 lines), it considers 1,200 candidate lines, and it generates 2,145 networks that
meet with the degree distribution. In those networks, global connectivity (p4, p2, and p3) and
hubs (p4 and pg) are consistent with the target (the median value of the relative error is below
15%). Although there is a higher relative error regarding string length, 25% of instances have a
relative error below 20% considering strings (pg and p-).

Figure 5-15. Reaching-GHuST-consistency stage in the Spain-Portugal-France synthetic network.
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Synthetic transmission power network
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Figure 5-16. Spain-Portugal-France synthetic and real transmission power networks.

As in prior cases, higher variations appear in the dimensions related to triangles. In pg there
are some outliers in which the difference regarding the target is higher than 200%. We can
conclude that there is a higher tendency to share vertices. This might be a consequence of the
degree-distribution constraint. However, in the case of triangles, we find instances in which
GHuST dimensions have a relative error of 0%. This is the case of pg, in which the relative error
ranges from 0% to 57%. Besides, the minimum error is 13%, 7% and 6% for p1q, P11, and p45.

Finally, the instances that minimize the relative error for each country are chosen for the
final synthetic network. The new lines installed (red lines) are shown in Figure 5-15.

122



5.4. A synthetic network for Spain, Portugal, and France

Furthermore, Figure 5-16 illustrates a graphical comparison between the synthetic and the real
networks. Further developments may condition the choice of the final network based on an
electrical criterion, for instance, by comparing the distribution of power flows.

Table 5-1 summarizes the steps followed in the generation process of the synthetic power
network. Table 5-2 shows the values of the GHUST framework for the three networks after the
building-a-connected-graph step, the preventing-islands stage, and the guiding-node-degree
stage.

Table 5-1. Steps followed and the percentage of lines installed in the generation process of the Spain-
Portugal-France synthetic power network.

Step Criterion Percentage of lines installed Result

0% in Spain, 0% in Portugal,
0% in France

57.2% in Spain, 55.9% in

Nodes are grouped in clusters in

Minimum distance which demand can be satisfied.

Clustering nodes

Meeting demand at minimum

Intra-cluster wiring

Inter-cluster wiring

Preventing islands

Guiding node degree

cost

Cluster connection based on

generation N-1 reliability
criterion

New lines installed based on
line N-1 reliability criterion.

Degree-distribution
consistency

Portugal, 59.4% in France

70.6% in Spain, 73.1%in

Portugal, 76.37% in France

78.7% in Spain, 79.6% in
Portugal, 82.3% in France

85.3% in Spain, 85.2% in
Portugal, 82.7% in France

Demand is connected to generation.

Clusters are connected (connected
graph).

Network reliability is improved.

The frequency of nodes with one or
two connections is the same in the
synthetic and in the real network.

The synthetic network is topologically
consistent with the target.

100% in Spain, 100% in

Achieving consistency Portugal, 100% in France

GHUST consistency

Table 5-2. GHuST values for real and synthetic power networks.

P1 P2 P3 Pa Ps Pe p7 Ps Py P1o P11 P12

Generating  Spain 000 028 037 018 065 065 050 000 000 000 000 040
a Portugal 000 049 044 013 048 046 031 000 000 000 000 025
Co;?aepdhed France 000 035 047 023 056 061 044 000 000 000 000 040
~ Spain 011 015 041 020 068 059 044 000 000 000 000 040
Prilv::;':g Portugal 007 038 052 012 054 053 035 000 000 000 000 025
France 006 029 050 023 054 058 037 000 000 000 000 040

Guiding 5P 018 015 035 013 079 052 041 002 019 009 032 049
node  Portugal 0.4 046 053 012 059 041 025 003 013 019 031 037
degree  France 010 031 044 017 060 048 031 001 007 006 000 052

The values of GHUST for the final synthetic and real transmission power networks are shown
in Table 5-3. We observe that values for the synthetic and real networks are close in all the
dimensions. In the Spanish synthetic network, the mean relative error is 6.0%. The highest
difference is found in p3 (17%) and in pg (11.3%). The relative error of the rest of the
dimensions is below 10%. The mean relative error in the case of Portugal is 6.9% and the
maximum relative errors are 10.9% in p3 and 10% in pg and pge. On the contrary, the error in
P2 isonly 2%. In the third synthetic network, France, the mean relative error is 12%. This mean
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Chapter 5. A Novel Algorithm to Generate Synthetic Power Grids

error is higher because of the maximum error that is 23% in p1¢. In France, triangulation has
ha igher relative error than in other countries. However, the relative error of p3 is only 5%.

Table 5-3. GHuST values for real and synthetic power networks.

P1 P2 P3 Pa Ps Pe P7 Ps Po P10 P11 P12

Real Spain 030 019 040 013 081 049 029 003 0.19 0.29 024 047
Synthetic Spain 030 018 047 013 079 050 031 0.03 020 025 021 047
Real Portugal 026 054 051 019 08 026 030 006 056 029 020 049
Synthetic Portugal 026 054 056 018 076 028 027 006 050 030 019 047
Real France 0.23 041 041 016 072 039 019 004 020 030 035 043
Synthetic France 0.23 037 043 015 074 044 020 0.03 0.23 0.23 030 044

Based on prior results, the algorithm generates networks with really similar topology to the
real networks used as a reference. Furthermore, we cannot conclude that there is a dimension
that the algorithm fails to replicate systematically. Although in Spain and Portugal p; has a
higher deviation, the relative error is low in the case of France. All stages look to be significant.
There is not a stage in which a low number of lines is installed.

As we pointed out in previous chapters, other authors have used some global statistics to
prove the topological consistency of synthetic networks. Although we have shown the
topological consistency of the synthetic network with the GHuST framework, we also compare
the characteristic path length and network diameter. There is no error considering degree
distribution and detailed validation of triangulation is provided with pg to p1,. Accordingly, the
network average clustering coefficient is not compared.

The values of characteristic path length and network diameter for the synthetic and real
networks are shown in Table 5-4. The relative error in the case of network diameter is 5%
(Spain), 9% (Portugal), and 0% (France). The error is only one edge in both the Spanish and
Portugal synthetic network. The relative error of the characteristic path length is 7% (Spain),
3.2% (Portugal), 5.9% (France).

Table 5-4. Characteristic path length and network diameter for the real and synthetic power networks

Real Synthetic Real Synthetic Real Synthetic
Spain Spain Portugal Portugal France France
Network 19 20 1 12 21 21
Diameter
Characteristic 8.06 8.63 498 514 827 8.76
path length

Finally, we compare the synthetic networks that would have been generated for this set of
nodes by the model proposed by Birchfield et al. [22]. Before running the referenced model,
we modified the number of lines to be installed in the synthetic networks to be equal to the
number of lines in the corresponding real networks, as opposed to considering the installation
of 1.22 lines per node as done originally in their paper. This way, the mean node degree is equal
in both the real and synthetic networks. However, the respective degree distributions obtained
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from the synthetic and real networks were not in agreement. For instance, the maximum
degree is 6 in the Spanish synthetic network, while in the real case, it is 9 connections per node.
Regarding distance, the synthetic-network diameter is 35 edges, 15 edges, 33 edges in the case
of Spain, Portugal and France respectively. The associated errors are 84.2%, 36.4% and 57.1%
concerning the real networks. Similarly, the characteristic path lengths are 13.8 edges, 5.9
edges and 13.9 edges (relative error are 70.6%, 18.5% and 59.0%). Those values are also far
from the real ones. Besides, we compare the GHUST framework. The mean relative errors are
44.6%, 27.7% and 28.0% for Spain, Portugal, and France respectively. Furthermore, in the
Spanish synthetic network, the maximum relative errors are 161% for pg, 68% for pg and 55%
for p1g- In the case of Portugal highest relative errors are for pg, p19, and p;1 (52.8%, 55.0%
and 51.6%). The proposed model cannot replicate the local complexity (triangles) of the real
networks. In the Portuguese synthetic network, there is also a significant error associated with
strings, the relative error of pg is 46.8% and in the case of p, the relative error is 44.4%. In the
French network, the number of leaf nodes (p,) highly diverges with respect to the reference,
the relative error is 49%. Highest relative errors are 86% (p;) and 72% (p41). This model has
significant problems to replicate the topological aspects covered by the GHuUST framework.
Moreover, those results are in line with the conclusions obtained in Chapter 4 for the ACTIVSg
networks generated with the same model.

Those errors are considerably larger than the obtained with the proposed algorithm.
Therefore, while the referenced algorithm provides synthetic power networks in which AC
power flow converges, these results show divergence between the synthetic networks and
their corresponding real networks from a topological point of view. This divergence is
insignificant when comparing the synthetic networks generated with the model proposed in
this chapter.

These results show that the proposed algorithm is not only able to generate networks with
the same degree distribution. Furthermore, results are also highly consistent with other
topological metrics such as characteristic path length or network diameter. Furthermore, they
are consistent with the GHuST framework.

The proposed algorithm is able to generate synthetic transmission power networks that
are topologically consistent with real networks. It has been tested with the Spanish,
Portuguese, and French 400-kV transmission power networks.

5.5. Takeaways

This chapter presents a new algorithm to generate synthetic power grids. Several models
for this are proposed in the literature; however, they do not fit well with the properties of real
power networks and they lack the flexibility necessary to generate different topologies
according to the different factors that condition the evolution of power networks in different
regions.
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The proposed model considers economic and technical factors in order to mimic the
topology of real power networks. The generation process is divided into two steps: building a
connected graph and adding lines to reach topological consistency.

The objective of the first step is to design the simplest network that is able to supply demand
at the lowest cost. The first power networks were non-meshed networks that supplied local
areas. Once the demand is met, the planning process focuses on improving the quality of supply
and network reliability, something that is achieved by adding new lines. Since this is a
parametrical model, it can generate different network topologies for the same set of nodes.
This is crucial in order to replicate the historical evolution of power systems, which depends on
regional factors such as geography or the electricity generation mix, which has been widely
discussed in prior chapters.

The wiring process was tested on the Spanish, Portuguese, and French 400-kV transmission
network. In the three cases, we use the same set of nodes in the real grids (with the same
electrical and geographical properties) in order to make network comparisons transparent. The
resulting synthetic networks are consistent with the topology of their corresponding real
networks. In the validation process, we have considered the GHuST framework and some
global statistics. The algorithm is, therefore, able to generate networks that are topologically
consistent with the real network. This is something that was missing in the literature as
explained in Chapter 4.

The algorithm can, therefore, be used to generate case studies for power-network studies
(such as the expansion of transmission power networks), where publicly available cases are
scarce.
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ASSESSING POWER-NETWORK
VULNERABILITY

6.1. New challenges in network design

Power networks are interdependent infrastructures highly connected to other systems such
as communication networks. Not only may a failure in power-networks lead to electric
blackouts but a failure in other networks may also lead to power-network collapse. Power
networks are therefore critical infrastructures that should be robust against failures. These
failures may be the consequence of component breakdown or deliberate attacks. Deliberate
attacks are targeted attacks that aim to collapse power networks, as the cyber-attack that
caused the Ukraine blackout in 2015, affecting to 225,000 customers [27].

As introduced in Chapter 1, the power-network design usually includes N-1 or N-2 analyses.
Accordingly, transmission networks are robust in the case of component failures. When a line
fails, there are alternative routes to supply demand. Similarly, there are backup generators to
avoid Power Not Supplied (PNS) in case of a committed-generator failure. However, those
analyses are insufficient in the case of deliberate attacks.

Network design, therefore, rises to new challenges to build more robust networks.
Consequently, it should include new criteria to protect networks against deliberate attacks.
Prior work focuses on the detection of most vulnerable network components through an
optimization problem [30], [31], [111]. Under the perspective of terrorists, the problem is to
maximize the damage in the network with the lowest possible number of attacks. The detection
of the most vulnerable element allows for the introduction of new measures to protect them.
Although these formulations give an optimal solution, they involve computationally intensive
models. This limits their use in the network design process since the large size of the network
makes it impossible to run those algorithms. Alternative methods, such as the use of complex-
network techniques, are needed to analyze the vulnerability of power networks including their
interconnection with other types of networks. Thus, new methodologies should find a balance
between computational requirements and result accuracy.
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This chapter introduces a new metric, the Electrical Line Centrality, for the analysis of power-
network vulnerability against deliberate attacks. Based on complex-network metrics, the
electrical line centrality endows the betweenness centrality (presented in Chapter 2) with
electrical parameters with a view to better resembling the physical principles that govern
power networks. By applying this metric to power networks, we try to find the most critical
lines in the network (line failure would have the highest impact on the network). This will
support the development of new models to protect power networks in case of deliberate
attacks.

The rest of this chapter is organized as follows. In Section 2, we introduce several
vulnerability indices proposed in the literature. Section 3 presents the Electrical Line Centrality.
Section 4 provides numerical analyses to prove the accuracy of the proposed metric. Finally,
Section 5 extracts chapter conclusions.

This chapter introduces a hybrid metric to assess power network vulnerability: Electrical
Line Centrality. Hybrid metrics combine topological metrics used in complex networks
with the electrical features that characterize power networks.

6.2. Using complex networks to assess vulnerability

Recent work proposed to model power grids as complex networks to reduce the
computational complexity in vulnerability analyses. As previously explained, complex-network
methods focus on topology, which has been proved to play a crucial role in the propagation of
cascade failures [112], [113].

Most of those works propose the analysis of power-network vulnerability through
vulnerability indices. Those indices try to quantify the level of power-network vulnerability
based on network topology. Existing indices have evolved from pure topological metrics to
extended or hybrid metrics, i.e., topological metrics endowed with electrical information.
Cuadra et al. did a comprehensive review of how complex-network concepts adapt to power-
network-vulnerability analyses [40]. The main advantage of vulnerability indexes is the
requirement of low computational resources. Accordingly, they may be effectively introduced
in the network design problem.

6.2.1. Topological metrics

Topological indices, metrics that only consider the connection among nodes have been
widely used to analyze power-network vulnerability. The characteristic path length and the
network average clustering coefficient (explained in Chapter 2), were proposed to analyze the
U.S. Western Systems Coordinating Council (WSCC) [108]. This work found that the power
network is a small-world network. It concludes that power-network vulnerability increases
when line removal leads to an increase of characteristic path length and a decrease in the small-
world index (2-4). Accordingly, we can rank network components based on the impact they
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would have on distance distribution.

Holmgren applied the average node degree, characteristic path length, and network
average clustering coefficient in order to try to relate changes in network topology with
network vulnerability by analyzing the Nordic power network and the power network of the
western states of the U.S. [114]. The objective was to find if a change in a topological index
(after component failure) may reveal an increase of network vulnerability. However, the author
states that graph metrics are imprecise to study structural vulnerability.

Latora et al. introduce the global efficiency metric to measure the performance of networks
[110]. This metric relates network efficiency with the distribution of distances among nodes (C-
1). We can analyze the criticality of a network component, damage, by comparing the
properties of the graph before and after the failure or attack (C-2) [115]. The application of this
method to power networks allows for the identification of the most critical lines as well as the
detection of the lines that should be installed to reduce network vulnerability. The application
of this topological analysis to the Spanish, French, and Italian transmission networks shows that
the removal (or failure) of only three edges would have severe consequences in those
networks. Furthermore, the installation of just one line would lead to a remarkable increase in
network efficiency [116]. Consequently, this should be taken into account when designing
network expansion. The definition of global efficiency is adapted to power networks by
considering only the paths that connect generators and demand nodes, which is modified
global efficiency (C-3). This was applied to the analysis of North American in the Italian power
grid [117], [118].

Rosas-Casals et al. find a correlation between the cumulative degree distribution parameter
y (a parameter that characterizes the degree probability distribution) and reliability indices
(energy not supplied, total loss of power, restoration time and equivalent time of interruption)
[119]. Accordingly, this parameter allows for the assessment of network vulnerability as a
whole. This parameter cannot analyze the impact of each component in network vulnerability.

In order to analyze the goodness of characteristic path length and connectivity loss, those
metrics were compared with the blackout size model [120]. The blackout size model uses
electrical information to analyze adequacy by modeling cascading failures in power systems
due to overloaded lines. The authors conclude that those metrics might mislead the evaluation
of network vulnerability. Therefore, pure topological metrics are not an accurate tool to assess
network vulnerability. Furthermore, they may lead to ambiguous results. Indeed, while Albert
et al. state that the power network is highly vulnerable to the attack of high-load nodes or hubs;
Wang and Rong conclude that attacks to low-load nodes may result is worse failures [121],
[122]. Both prior analyses are based on pure topological methods.

Finally, Ouyang et al. also pointed out the lack of accuracy of purely topological metrics
[123]. That conclusion results from the analysis of the correlations between topological metrics
(characteristic path length, network efficiency, source-demand considered efficiency, network
average clustering coefficient, connectivity level and size of the largest component) with energy
not supplied in the network.
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6.2.2. Hybrid metrics

To overcome the limitations of topological metrics, hybrid indices endow topological
metrics with electrical parameters. Electrical features might be added into node description.
For example, node information might include node demand or the power that can be injected
in each substation by generators. This is the case of loss of load and connectivity loss.

Loss of load tries to estimate the ability of the network to meet demand after a node or
edge failure [107]. If the removal of a line (or a node) splits up the system in two or more
components, loss of load estimates the deficit of generation concerning demand in each
component. Accordingly, the criticality of an element correlates with the total deficit of
generation in the network after a failure (C-4).

Connectivity loss quantifies the decrease in the ability of a substation to receive power from
generators. It is the average decrease in the number of generators that are connected to a
node (directly or through a path) (C-6) [122]. The application of this metric to the North
American power network reveals that power networks are very vulnerable to a failure in highly
connected nodes (hubs). Furthermore, the authors state that power-network vulnerability is
inherent to the structure of the grid.

Hybrid metrics endow edges with electrical properties. Node degree and betweenness
centrality are modified by the inclusion of the value of power flow through lines [124]—-[129],
the resulting metrics are the electrical degree centrality (C-7) and the electrical betweenness
centrality (C-8). The electrical degree centrality measures the importance of a node in the
network regarding the power flows through the lines that are connected to it. Similarly, the
electrical betweenness centrality assesses the centrality of a node based on the power that is
injected or withdrawn in a node when lines operate at full capacity.

Further improvements try to introduce the physical principles that govern power networks.
In power networks, power units flow based on Kirchhoff’s’ circuit laws. Consequently, they do
not follow the shortest path. Accordingly, distances among nodes are measured by line
impedance.

The structural vulnerability index (C-9) measures the ability of the network to supply
demand [130]. It assumes that the contribution of a generator to a demand node decreases
exponentially with electric distance.

Directed global efficiency modifies the global efficiency index to limit the exchange of power
between generators and demand nodes and to include the electric distance instead of the
shortest-path distance (C-10) [131]. Similarly, net ability (C-11) introduces line impedance as
well as the maximum interchange of power between nodes to complete the definition of global
efficiency [132], [133]. To assess the vulnerability of power networks, Wang et al. propose the
analysis of changes in the effective graph resistance (A-12) [134], [135]. The electrical resistance
between two nodes is the potential difference that appears when a unit of current flows from
one node to another.
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The electrical centrality (A-13) measures the importance of a node based on the electrical
distance among nodes [136], [137]. The larger the electrical distance of a node with the rest of
the nodes in the network, the lower the impact it has on network vulnerability. The centrality
index considers that the criticality of a line is proportional to the sum of the maximum power
flows that might be exchanged between all pairs of nodes in the network (C-15) [138], [139].
This is therefore conditioned by the power-transfer-distribution-factor PTDF matrix since the
maximum power flow is limited by Kirchhoff’s laws. The inclusion of line impedance is also
included in other adaptations of the betweenness centrality such as the hybrid flow
betweenness, or the electrical betweenness [107], [131].

Finally, the extended betweenness (C-16) proposes an adaptation of the betweenness
centrality by including the PTDF matrix and transmission-line capacity [140]—-[143]. This index is
compared to the topological betweenness centrality and the assessment of network
vulnerability with pure power-system techniques. While it improves results given by the
topological index, results are worse than the ones provided by a pure electrical framework.

6.2.3. Other approaches

References [144]—-[146] discuss the accuracy of vulnerability indices. They propose a novel
method, which is based on the fault chain theory, to combine topological features and power-
network operational characteristics. This method is based on the construction of a correlation
graph that includes the structural features of the network as well as the operation status. The
nodes of the correlation graph stand for the transmission lines of a network and edges
represent the relationship between two transmission lines during fault propagation. The
ranking of critical lines is done based on the topology of the correlation graph. Fault-Chain
Theory is also used in a steady-state model to identify critical events that contribute to
cascading-failure propagation [147].

Since the correlation graph considers network operation, it needs to run several DCOPF to
build it. The number of power flows required might be unmanageable to introduce this method
in the design of large interconnected power networks (because of computational
requirements). Despite not considering network operation implicitly, we consider that
vulnerability indices may be effectively incorporated in network design. As mentioned in
Chapter 1, transmission expansion planning may benefit from these indices in two ways: by
introducing them as a partial objective in the optimization function (it penalizes high values of
vulnerability indices) or by including them as constraints (it establishes maximum values for the
indices). Consequently, this is a strength of vulnerability indices concerning those methods
based on Fault-Chain Theory.

Although hybrid metrics improve results given by topological metrics, new improvements
should be introduced to reduce the gap between pure electrical considerations and complex
network-based metrics. Furthermore, in order to introduce these metrics in the network design
problem and to enhance the resolution of an optimization problem, vulnerability indices should
be linear functions
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Purely topological metrics, such as global statistics, are not suitable tools to assess
network vulnerability.

Hybrid metrics improve results given by topological metrics. However, results are not
good enough to replace electrical methods.

6.3. Electrical Line Centrality

This section proposes a hybrid metric to analyze power-network vulnerability. As previously
explained, a hybrid or extended metric refers to the endowment of topological-based metrics
with electrical considerations to replicate the physical behavior of power networks. The
proposed metric, the Electrical Line Centrality ELC endows betweenness centrality with
electrical properties. Betweenness centrality BC (u) is defined as the number of times a node
or a line is in the shortest path among all pair of nodes in a network (6-1), where o () is the
number of the shortest path from s to t through node or line u and gy is the number of
shortest paths from s to t. In the case of modeling power networks as undirected graphs,
shortest paths from s to t and t to s counts as one path. Therefore, in undirected networks,
the earlier equation omits the coefficient 1/2.

1 O'ij(u)

by =1 3 W

( ) 2 A O-i,j (6-1)
I,j#u

Unlike other networks in which network flow or information may move from node s to node

t through the shortest path, Kirchhoff’s laws govern power networks. Therefore, betweenness

centrality cannot infer the dynamic behavior of power networks.

We propose the adaptation of betweenness centrality with the inclusion of electrical
information about lines and nodes. ELC considers line reactance, the power demanded in each
node and node generation capacity. ELC is the sum of power through a line for power
interchanges among all pairs of generators and demand nodes in a network (6-2). ELC
considers that power flows always go from generators to demand nodes, and the amount of
power is proportional to the generation capacity and power demanded in each node.

ELC() = Z AF;;(AP,AP;) (6-2)

AF;; (APr,APS,) is the incremental power that flows through a line that connects nodes i
and j when there is a change in demand or generation capacity in nodes r and s.

In power networks, the DC Power Flow (DCPF) equations model power flow through lines
(6-3). This model sets node voltages to 1 per unit and assumes that voltage angles differences
among nodes are small. That means that cos 6;; ~ 1 and sin6;; = 6; — ;.
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1
Fij= X—U(9i - 6;) (6-3)

Considering that (Gi - Gj) =6 and P = BO (where P is the vector of injected or
withdrawal power and B the system susceptance matrix), power flows in a network can be
written as (6-4), where A is the incidence matrix, X is the reactance matrix (diagonal matrix),
and r is the subset of nodes without the slack bus.

F=X"4"B"YP (6-4)

The expression (Xr_lArTBr_l) stands for the power-transfer-distribution-factor matrix S.
It shows how power through lines changes when there is a new injection or withdrawal of
power in one or more nodes of the system (6-5).

AF = S AP, (6-5)

In power networks, we can classify nodes as demand nodes, generator nodes, and
interconnection nodes (nodes in which there is no demand or generator connected). By
applying matrix block multiplication, we can rewrite (6-5) as (6-6):

AP,
AP,
AP,

AF =[S Sp Si] (6-6)

where S¢, Sp and S; are the blocks of the sensitivity matrix that shows how power through
lines change when there is a change in generation, demand or interconnection nodes
respectively. AP is the change of power in the generation (G), demand (D) or interconnection
nodes (I).

By assuming that AP; is always positive (generation nodes always inject power in the
system), APy, is always negative (demand nodes always withdraw power) and AP; is equals to
zero (there is no demand or generation connected to those nodes) (6-6) becomes:

AF=SG APG_SD APD (6_7)

As previously mentioned, ELC considers that power flows always go from generator nodes
to demand nodes. By considering all combinations among generators and demand nodes, we
can express (6-2) as follows:

j=Ng j=Np
ELC(l) = Z Sey o —C Z Spy j W 69
j=1 j=1

where wy is the vector of generation capacity of each generation node, wy the vector of the
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power demand of each demand node and C is the generation capacity of the entire system,
C=Xwy.
When calculating electrical line centrality of all lines of the system, (6-8) can be expressed
as a product of matrices:
ELC = SG Wg - C SD Wd (6_9)
As is the case of betweenness centrality, we can extend the concept of electrical node

centrality to nodes. Electrical node centrality ENC is the sum of the ELC that are incident in
that node (6-10).

ENC(n) = Z ELC;; 6.10)

ENC = |[A| ELC(]) (6-11)

In (6-11), |A| is the incidence matrix in which all elements are positive. On the contrary to
ELC, flow direction does not directly condition ENC since it does not matter whether the flow
is incident or outgoing.

This formulation bridges the gap between purely topological measures (fast and easy to
calculate, but with limited use in power systems) and power-flow estimations. It complements
betweenness centrality, with node and line information. It has the considerable advantage of
having a compact matrix expression that can be efficiently calculated.

Finally, this new metric can be easily adapted to different operation scenarios by simply
changing the vector of power demand wy or the vector of nodal generation capacity wy.
Moreover, different scenarios might be considered by figuring out a weighted average ELC
where weights represent the probability of each scenario.

Electrical Line Centrality endows topological betweenness centrality with electrical
features.

ELC is the sum of power through a line for power interchanges among all pair of
generators and demand nodes in a network.

It can be applied to assess the centrality of transmission lines and substations in the
network.
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6.4. Numerical Studies

In order to confirm the usefulness of ELC, we apply it to the IEEE 9-bust test system and to
the IEEE 118-bus test system [148]. We will try to determine the sequence of line attacks that
will maximize network damage. Accordingly, the higher the values of PNS in the network
obtained with the vulnerability metric, the better the performance of the metric. As explained
in Section 1, an optimization problem may give the exact solution to the analysis of power-
network vulnerability against deliberate attacks. However, problem size leads to a
computationally intensive analysis, which hinders problem resolution. We try to approach the
optimal solution with an iterative method. We propose to select the most vulnerable lines in
each iteration or attack. Accordingly, the method will choose the line whose removal leads to
the largest PNS. Subsequently, it updates network topology and repeats the process to get a
sequence of attacks. This is not the optimal solution since it ranks line impact regardless of the
attack sequence. Unlike this procedure, the optimization problem would try to maximize the
damage in the network by coordinating the order of attacks. However, given computational
complexity, we use the iterative method as an approach to the maximum damage problem.
We use it to provide a reference in terms of PNS that will be used as the target the proposed
metric should reach. The estimation of PNS after a line attack is calculated with the DCOPF
(implicitly, it assumes that the system is able to correctly respond to abrupt changes in demand
and it will, therefore, be a lower bound to the real result).

6.4.1. IEEE 9-bus test system

The |IEEE 9-bus test system includes 9 nodes, 6 lines, 3 transformers, 3 generators and 3
demand nodes (see Figure 6-1). Despite the small size of the case, there are 720 different
sequences of line attacks or rankings. Eight of those rankings lead to the worst scenario under
the PNS perspective (best attacks), and thirty rankings lead to the lowest values of PNS (worst
attacks). Table 6-1 shows an example of both sequences of failure and the PNS obtained. This
analysis allows us to confirm the accuracy of vulnerability indices. As shown in Table 6-1, values
of PNS obtained with the iterative approach (target) are close to the optimal sequences.

4

O

-]

125 MW

Figure 6-1. IEEE 9-buses test case
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In the case of the proposed vulnerability index, ELC proposes the following ranking of lines:
8-9, 4-9, 5-6, 7-8, 6-7, 4-5. Corresponding values of PNS are: 0, 125, 125, 125, 225, 315. Those
values are similar to the obtained for the best case. ELC improves results given by the target
in the second and third attack.

We also analyze the ranking provided by the topological betweenness centrality. In this test
case, all lines have the same value of betweenness centrality. This means that from a
topological point of view, all lines would have the same impact on the network in case of failure.
This clearly shows the limitations of purely topological indices. Regarding the extended
betweenness centrality, values of PNS are: 0, 0, 125, 125, 225, 315. Therefore, the ELC
provides a better solution than the obtained with prior metrics. It needs a lower number of
attacks to have PNS in the network.

Table 6-1. Order of line failure and PNS in the IEEE 9-bus
test system in the best case, the worst case, and the target.

Best Attack Worst Attack Target
Order
Line  PNS(MW) | Line PNS(MW) | Line PNS(MW)
1 89 0 4-5 0 6-7 0
2 49 125 6-7 0 7-8 100
3 7-8 125 89 0 4-9 100
4 6-7 225 5-6 90 89 225
5 5-6 225 7-8 190 4-5 225
6 4-5 315 4-9 315 5-6 315

In the IEEE 9-bus test system, the Electrical Line Centrality improves the results given by
the Betweenness Centrality and by the Extended Betweenness Centrality.

Furthermore, results are very close to the optimal solution.

6.4.2.IEEE 118-bus test system

This system consists of 118 nodes, 177 lines, 9 transformers, and 56 generators. This
chapter considers the model assumptions presented in Chapter 2. If there are two more
electrical connections between two nodes, the model assumes them to be one single edge.
The resulting graph has 118 nodes and 170 lines. Therefore, it considers that the largest
number of attacks is 170.

We apply a similar procedure to assess metric performance in the IEEE 118-bus test system
than in the IEEE 9-bus test system. The values of PNS reached by ELC are quite close to the
target in first iterations, from attack number 0 to 21 (as shown in Figure 6-2). Both betweenness
centrality and extended betweenness centrality are far from those values. Indeed, the number
of attacks needed to cause PNS in the system with the ranking given by betweenness centrality
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and by the electrical betweenness centrality is much larger than with ELC or the electrical
procedure.

In the case of ELC, values of PNS highly diverge from the target values in the gap between
25 and 100, where extended betweenness gives better results (as shown in Figure 6-2). The
sequence given is far from the approach used as a target. However, while that approach
calculates the most vulnerable line in each iteration, the model only computes the three indices
once. Accordingly, it does not consider changes in topology. After removing a line, network
topology and system dynamic change and therefore line vulnerability changes too.
Consequently, the model may improve results by updating metrics to changes in network
topology because of prior failures.

Percetage of power not supplied

0 20 40 60 80 100 120 140 160 180
Number of removed edges

Figure 6-2. Percentage of PNS in the IEEE 118-bus test system after removing lines according to
electrical considerations (target), electrical line centrality (ELC), extended betweenness centrality (EBC)
and betweenness centrality (BC).

By updating rankings in each iteration, ELC continues to be a better approach to the target
as shown in Figure 6-3. The difference between ELC and the target is smaller in the gap
between 25 and 100 than in the first case. Furthermore, ELC also gives larger values of PNS
than the target for a high number of attacks. This is possible since the procedure described
above does not give the optimal solution.

To compare results, we use the mean absolute error MAE, both in MW and in percentage.
In (6-12) x; and y; are the values of PNS obtained with different metrics and n the number of
iterations or attacks.
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Figure 6-3. Percentage of PNS in the IEEE 118-bus test system after removing lines according to
electrical considerations (target), iterative electrical line centrality (iELC), iterative extended
betweenness centrality (iEBC) and iterative betweenness centrality (iBC).

MAE = lei_yil (6-12)
n

First, we compare the error of the topological and hybrid metrics concerning the target.
Second, we define the error as the difference between values of PNS for each ranking and the
largest value of PNS each attack (ELC provides higher values of PNS than the target in some
iterations). Results show the accuracy of ELC over betweenness and extended betweenness
centrality, as shown in Table 6-2. The error of betweenness centrality is more than twice the
error given by the ELC. The proposed metric also reduces drastically the error of the extended
betweenness centrality. Furthermore, when updating rankings iteratively, rankings are
improved leading to a more vulnerable sequence of attacks. The reduction of error is above
50% in the case of ELC. The final error with respect to the electrical procedure is 10.89%.

While the improvement is also essential in the case of betweenness centrality, the error
reduction is only around 4% in the case of the extended betweenness centrality. When
considering the largest values of PNS, the error of ELC is 8.23%, this is much lower than the
error obtained with the extended betweenness centrality and the topological betweenness
centrality.
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Table 6-2. Mean absolute errors of vulnerability indices with respect
to electrical considerations and the larger values of PNS

MAE with respect to ELE | MAE with respect to the largest value of PNS
Metric

(MWw) (%) (MWw) (%)

Target - - 23.69 2.59
ELC 129.14 23.33 149.24 25.24
iELC 47.19 10.89 25.23 8.23
EBC 118.49 30.66 138.66 32.30
iEBC 165.32 26.32 189.01 2832
BC 292.16 54.07 315.47 55.44
iBC 100.32 36.98 122.34 38.95

Furthermore, the ELC is computationally simpler than the extended betweenness
centrality. ELC and EBC are compared in terms of execution time. While ELC takes 0.018
seconds and iELC 0.108 seconds in the IEEE 118-bus test case, the EBC and iEBC take 0.170
seconds and 0.991 seconds respectively. Consequently, the new metric is almost ten times
faster thanthe EBC. This time reduction is crucial in applications that require to assess network
vulnerability a large number of times.

The accuracy of the Electrical Line Centrality is also proved in the |IEEE 118-bus test
case, where the ranking given by ELC is more vulnerable (critical) than the EBC.

To get results that are closer to electrical procedures, it is necessary to calculate ELC
iteratively.

Moreover, it drastically reduces computational complexity with respect to the
extended betweenness centrality.

6.5. Chapter takeaways

A new extended metric, the Electrical Line Centrality, is proposed in this chapter to assess
power-network vulnerability against deliberate attack. This metric endows betweenness
centrality with electrical information related to generation, demand, and transmission-line
parameters. This allows us to overcome the limitations of purely topological metrics that do
not consider the electrical nature of power networks. It also has the considerable advantage of
having a compact matrix expression that can be efficiently calculated and it can be integrated
into other models. The accuracy of the metric is tested with the IEEE 9-bus and IEEE 118-bus
test systems. The Electrical Line Centrality supplies better results than existing hybrid metrics
such as extended betweenness centrality with lower computational requirements.
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7.1. Conclusions

The increase of power-network complexity, as well as the interconnection with other
networks, lead to the need for new models to effectively operate and control power networks.
However, the lack of publicly available network models hinders research into power systems.
Information about real power networks is scarce, and most of the existing test cases are old
and do not reflect the current structure of the network.

We find two groups of initiatives that try to overcome the lack of public power-network
models. On the one hand, OpenStreetMap-based initiatives proposed the construction of
network models based on the real location of infrastructure components. However, those
models do not include electrical information. Moreover, those initiatives mean the disclosure
of the real location of power-network components. This might run into security issues. On the
other hand, recent initiatives in the US propose the generation of synthetic power grids: non-
real, albeit realistic power networks that are topologically and electrically consistent with real
networks. This would allow for the publication of accurate network models in which network
operation and control are similar to real power networks while preserving network security.
Although the target is clear, the generation of synthetic power grids, it is necessary to develop
new algorithms to generate these synthetic networks. The models traditionally used in power
systems are not a suitable solution because of computational complexity.

The publication of network location is a risk that may increase network vulnerability.
Besides, the interdependency connection with other networks also makes power networks
more vulnerable. Traditionally, N-1 analyses have been used to design networks that are robust
in the case of component failures. However, the large size of power networks, the higher
degree of interconnection with other networks, and the risk of deliberate attacks require new
methodologies to design more robust networks with manageable computational
requirements.

The use of complex-network techniques may find a balance between the complexity of
power systems and computational requirements. This thesis proposes a novel algorithm to
generate synthetic power grids and a new metric to assess power-network vulnerability. In
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both cases, complex-network analyses (that are based on network topology) are
complemented with electrical information to capture the principles that govern power
networks. As a previous step to the generation of synthetic power grids, and to the assessment
of power-network vulnerability, the thesis focuses on the analysis of power-network topology.
Global statistics traditionally used in complex-network are applied to a set of real high-voltage
transmission power networks. Furthermore, a new framework is proposed to analyze the
structure of complex networks.

7.1.1. Power-network topology

An in-depth description of power-network topology is crucial to generate synthetic power
grids or to assess network vulnerability. Although several studies have tried to analyze and
describe the topology of power networks, results were not consistent. They reached divergent
conclusions. We pointed out that the use of heterogeneous data (inclusion of different voltage
levels) and the use of different model assumptions (e.g., inclusion or not of transformers) are
some of the causes of those inconsistencies. This work focuses on the analysis of high-voltage
transmission power networks (400 kV and 220 kV).

A. Using global statistics

We study the transmission-power-network structure with a set of global statistics
traditionally used in complex networks: network size, degree distribution, characteristic path
length, network diameter, betweenness centrality, and network average clustering coefficient.
We apply these metrics to fifteen European transmission power networks. The analysis focuses
on the 400 kV and the 220 kV networks together as well as independent networks. We observe
that there are topological differences among networks. In general, the 220-kV network has a
less meshed structure than the 400-kV network. Furthermore, in the 400-kV network distances
are lower, and the centrality of nodes is higher. Finally, the proportion of nodes that belong to
the 400-kV or the 200-kV networks depends on the country.

We also analyze how the global statistics scale with network size. We observe that the
number of lines correlates linearly with the number of nodes. Consequently, the average node
degree of power networks can be approximated as a constant. However, the degree
distribution varies among countries. Despite differences in the node degree distribution, all
networks are disassortative -hubs tend to connect to poorly connected nodes- and they are
not scale-free networks. The degree distribution fits better with an exponential function than
with power law.

Characteristic path length and network diameter tend to grow logarithmically with the
number of nodes in the European transmission power networks. Moreover, the skewness
index shows that while some nodes are relatively well-connected, there is a set of nodes that
are far from the core of the network. This might describe the presence of hubs, which are the
center of peripherical nodes. Besides, the mean and maximum values of betweenness
centrality follow a power-law concerning the number of nodes.
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The network average clustering coefficient, also called the global clustering coefficient in
the literature, highly varies with country and voltage level, and it does not scale with network
size. The values of the network average clustering coefficient in power networks are higher
than in random networks. Nevertheless, not all networks analyzed display a small-world
network structure.

Although global statistics provide the first insight of power-network topology, they do not
give a comprehensive characterization of the power-network structure. There are questions
about network topology that are unsolved after this analysis (using global statistics).
Furthermore, some of those metrics are based on average values, and they might be
misleading. Moreover, the inclusion of new voltage levels or new network locations may vary
metric scalability. Accordingly, this hinders the comparison among networks. Network
comparison is a crucial step in order to validate the topological consistency of synthetic power
grids.

B. A novel framework

To avoid the main drawbacks of global statistics, we propose an innovative tool, the GHuST
framework, to analyze network topology systematically. This framework is based on graphlet
decomposition (2- and 3- node graphlets). The main strengths are full topology description, size
independence, and computational simplicity. Accordingly, this framework fully describes the
structure of networks by covering the most relevant aspects of local and global properties.
Furthermore, the framework explains network topology regardless of network size, and its
characterized by its computational simplicity (it is calculated directly from the adjacency
matrix).

The GHuST framework is defined by twelve dimensions that are grouped into four
categories based on the topological aspects they cover: global connectivity, hubs, strings, and
triangles. Finally, to enhance network comparison, the twelve metrics range between 0 and 1.

The application of the GHuUST framework to five real networks (road, power-grid, email,
social and metabolic) demonstrates that the information provided by the twelve dimensions is
consistent with the global statistics traditionally used in complex networks. Furthermore, this
method improves the results provided by graphlet decomposition that have been revealed
insufficient. Finally, it allows for the comparison of the five networks disregarding network size.

Once the accuracy of the method is proved, we analyze a large set (1,404) of real networks
of different nature (7 categories). The use of PCA to reduce the twelve dimensions allows for a
graphical representation of the networks in a three-dimensional topological space defined by
GHuST. There, we differentiate clusters of networks based on their topological properties.
Those clusters can be identified with the seven types of networks used. Accordingly, the seven
groups of networks analyzed (autonomous systems, enzymes, Facebook, power networks,
retweets, roads, and webs) have different topologies. Consequently, this method enhances
network classification and comparison. The twelve dimensions describe specific and intuitive
aspects of network topology. That eases the interpretation of network topology and the
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introduction of structural consideration in real-world applications.

Finally, the GHuST framework is applied to European transmission power networks. It
completes the topological description of power networks given by global statistics.
Furthermore, it allows for a straight comparison among network topologies regarding location
and voltage level. As mentioned, differences are easy to understand and can be translated into
the generation of synthetic power grids.

C. Contributions

The analysis of power network topology with global statistics has been published as:

e R.Espejo, S. Lumbreras, and A. Ramos, “Analysis of transmission-power-grid topology and
scalability, the European case study,” Physica A: Statistical Mechanics and its Applications,
vol. 509, pp. 383—395, Nov. 2018.

The p framework has been presented in a working paper:

e R. Espejo, G. Mestre, F. Postigo, S. Lumbreras, A. Ramos, T. Huang, and E. Bompard
“Exploiting graphlet-decomposition to explain the structure of complex networks.”

7.1.2. Synthetic power grids
A. Topological analysis of existing synthetic power grids

Although several models were proposed in the literature to generate synthetic power grids,
existing synthetic cases were not validated correctly from a topological point of view. In most
cases, only a few global statistics, such as average node degree, were used. However, the use
of global statistics may be insufficient to state that a synthetic power grid is topologically
consistent with real power networks.

We propose the use of the GHuUST framework to validate synthetic networks. We consider
that synthetic networks are topologically consistent with real networks if they have similar
values of GHuST for the twelve dimensions. In case there are no reference networks to
compare with, we might use the range of GHuUST dimensions given by the analysis of the
European transmission power networks.

We applied the GHuST framework to a set of published network models: ACTIVSg,
Columbia-University Synthetic Power Grid, PEGASE, and SDET networks. All those cases display
topological inconsistencies concerning the European transmission power grids. The degree of
those synthetic networks looks to be inconsistent with the reference network. Furthermore,
those algorithms cannot replicate the local complexity of the real networks used as a reference.
Since ACTIVSg, Columbia University synthetic network, and SDET stand for portions of the
North American power grids, we only can conclude that there are topological inconsistencies
regarding the reference. It is necessary to apply the GHuST framework to the North American
power grid to discern if those differences are a consequence of the generation algorithms used
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or if the North American power grid has different topology.

Beyond the inconsistencies found in the existing synthetic networks, the algorithms
proposed in the literature are not flexible enough to adapt the topology of resulting synthetic
networks to the structural differences found in the European transmission power networks.

B. A new model to generate synthetic power grids

This thesis proposes a novel algorithm to generate synthetic spatial power grids.
Accordingly, nodes are endowed with geographical location. The algorithm uses technical and
economic considerations as the most relevant factors that guide network design.

The algorithm tries to mimic the historical evolution of power networks in two steps:
building a connected graph and adding lines to reach topological consistency.

The first step builds a connected graph to meet demand and generation at a minimum cost.
This step is also divided into three stages to reduce the complexity of the problem: clustering
nodes, intra-cluster connection, and inter-cluster connection. First, the algorithm clusters
demand nodes around generators to connect them with the cheapest network that is able to
supply demand (electrical considerations are included). Subsequently, clusters are connected
based on reliability considerations.

The second step increases network robustness while achieving topological consistency.
Consequently, the model adds new lines to ensure demand supply in case of line failure. This
step is also divided into three stages: preventing islands, guiding node degree and achieving
GHuST consistency. In the three stages, the installation of new lines is conditioned by electrical
considerations and topological criteria. New lines are added only if they contribute to achieving
a target degree distribution. Since networks with the same degree distribution may display
different topological properties, the GHuUST framework is used in the last stage to guide the
generation process. Accordingly, the algorithm ensures that the resulting synthetic networks
are topologically consistent with real ones.

The algorithm is tested on the Spanish, Portuguese, and French 400-kV transmission
networks. The topology of the three networks (both global statistics and GHUST dimensions) is
pretty similar to the topology of the real networks. Accordingly, this case proves the accuracy
of the proposed algorithm to generate synthetic networks. Furthermore, the algorithm
improves results given by existing algorithms.

Finally, the algorithm is flexible enough to generate networks with different topologies. This
is crucial to adapt the structure of synthetic power networks to the heterogeneous topology
found in the analysis of the European transmission power networks.

C. Contributions

Regarding the generation of synthetic power grids, two versions of the proposed algorithm
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have been published as:

e R.Espejo, S. Lumbreras, and A. Ramos, “A Complex-Network Approach to the Generation
of Synthetic Power Transmission Networks,” IEEE Systems Journal, pp. 1-9, 2018.

e R.Espejo, S. Lumbreras, and A. Ramos, “Generating statistically consistent synthetic power
networks for testing renewable integration models”, Windfarms 2017, Madrid, Spain, Jun
2017.

7.1.3. Vulnerability assessment
A. A new hybrid metric

The use of complex networks in power systems can also support the assessment of power-
network vulnerability. Several complex-network-based indices were proposed to rank the
impact a line failure would have on a power network.

Although purely topological metrics were proved to provide non-accurate results because
of their lack of electrical considerations, hybrid metrics find a balance between result accuracy
and computational requirements.

We find several indices in the literature that combine global statistics traditionally used in
complex networks with electrical considerations. However, in most cases, results were not
tested, and some of them also need for computationally intensive models. We propose a new
metric to assess power-network vulnerability: Electrical Line Centrality.

This hybrid metrics endows betweenness centrality with electrical information related to
nodes (generation capacity and power demand) and transmission lines (line impedance).

The application of the new metric to the IEEE 9-bus test case and the IEEE118-bus test case
shows that the Electrical Line Centrality supplies better results than pure topological metrics
and prior hybrid metrics such as the extended betweenness centrality.

Furthermore, it drastically reduces computational requirements. In contrast with most of
the prior metrics, the Electrical-Line-Centrality index is a linear function. The linearity of
vulnerability indices is crucial to include them in the network design problem.

Finally, the ELC may also contribute to the increase of power-network resilience. It might
support the design of power networks that are robust against deliberate attacks or cascade
failures. Although the probability of those events might be low, they might cause network
failures with severe consequences.

B. Contributions

The proposal of the line electrical centrality has been published as:

e R.Espejo, S. Lumbreras, A. Ramos, T. Huang, and E. Bompard, “An extended metric for the
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analysis of power-network vulnerability: the line electrical centrality”, PowerTech 2019,
Milan, Italy, Jun. 2019.

7.2. Further research

This thesis proves the advantages of applying complex-network technigues to power
systems and the insights that can be gained by using these techniques. Although the thesis
contributes to the generation of synthetic power grids as well as in the assessment of power-
network vulnerability; there are questions that require further research, which we summarize
in the following lines.

7.2.1. Network topology

The GHuUST framework might be the seed for the development of a novel method to classify
complex networks based on topology. Furthermore, it would be the base of a new algorithm
to generate graphs with predefined topological properties.

A. Network description and classification

The twelve dimensions of the GHuUST framework allow for an in-depth description and
classification of complex-network topology. The inclusion of new network instances may lead
to the definition of topological standards or benchmarks (typical values of the twelve
dimensions of GHuUST for different types of networks). This would support network clustering
and classification. The main drawback of this task is the lack of large network datasets that may
condition the statistical significance of results. Further analyzes may also imply the definition of
new GHUST dimensions or the modification of current dimensions to better capture other real
networks properties.

The use of the GHuUST framework to compare networks (as it is done in the synthetic
network validation procedure) might be used to detect anomalies in the topology of complex
networks. For instance, in social networks, the definition of typical values for each GHuST
dimension might help to support the detection of “bots” used to increase the impact of news
or marketing campaigns. The topology of bots” connections may differ from other accounts
with a “normal” pattern of connections. Accordingly, bots might be located in a different place
in the topological space defined by the GHuST framework. It would be necessary to define the
ranges of expected values for different types of networks. As previously mentioned, this
requires a broad set of networks to extract significant conclusions.

Furthermore, the GHUST framework provides a full description of network topology. This
description needs to be effectively connected to network operational behavior and network
design. Further research should determine how topology conditions network operation. For
example, this might help to answer questions such as Do triangles increase network
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robustness? It would help to discover the role of some structures in network operation.
However, the main challenge is the bridge between global and local properties. Are nodal prices
(local property) conditioned by the number of triangles is the network (global property)?
However, there are other features that might be addressed with the GHuUST framework, such
as the risk of cascading failure in case of line failure.

In the case of power systems, topology would help to operate, design, and control power
grids. New challenges such as the protection against deliberate attacks (N-X contingencies) or
distributed generation (the same node might inject or withdraw power) may be faced with
topology-based methods. As explained in this thesis, methodologies traditionally used in power
systems may result in unmanageable tools for these problems. It, therefore, requires a sound
analysis of the relation between network topology and electrical behavior.

B. Graph generation

As explained in Chapter 5, synthetic-network generation algorithms may disregard the
specific nature of the networks under study. They may generate graphs defined by an
adjacency matrix (only ones and zeros) with predefined topological properties. Accordingly,
those models only consider the distribution of connections among nodes (e.g. the Preferential
Attachment model). In the Preferential Attachment model, nodes are connected following a
power law. Users can, therefore, predefine the degree distribution of the synthetic network.
Similarly, a new model might allow for the generation of synthetic networks in which the users
would define the topology of the resulting network (with the GHUST dimensions) in advance.

This might be useful to generate a broad set of networks that will support an empirical
analysis of the relation among GHuST dimensions. In Chapter 5, we pointed out that the lack of
understanding about the correlation of GHUST dimensions hinders the generation of synthetic
power grids (the model could not analyze the contribution of an individual line to reach a target
GHuST). Furthermore, it would help to determine if GHUST dimensions have lower or upper
bounds. In Chapter 3, we explained that the number of triangles in a network might have an
upper limit since an increase in Gz (number of triangles) would also lead to an increase in G,.
Accordingly, a model to generate networks with specific topological properties would help to
answer those questions.

7.2.2. Road to more realistic synthetic power grids

This thesis proposed an algorithm to generate synthetic power grids that are topologically
consistent with real networks. However, to meet the complexity of real power networks, new
research and improvements should be introduced.

A. Increasing the complexity of synthetic power grids

The proposed algorithm was tested with a single voltage layer, 400-kV networks. The
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addition of new voltage levels (e.g., 200-kV) should be considered in further improvements.
Although the algorithm is flexible to adapt the resulting topology to the properties of other
voltage levels, it is necessary to determine other aspects such as the location of transformers.
Furthermore, new improvements should consider the inclusion in the wiring process of a wide
range of connections, for instance, double circuits.

More in-depth analyses are also needed to endow nodes with more realistic properties.
Although this model focuses on the wiring process, and it assumes the hypothesis done by prior
work regarding nodes, new improvements would lead to an accurate characterization of nodes
(location and demand/generation properties). Furthermore, it would allow for the generation
of multiple scenarios of generation and demand.

Finally, the integration of geographical information would also increase the realism of
resulting networks. Geographical information might condition line installation by varying
investment cost (e.g., it would increase line cost if the line goes through a natural park).
Furthermore, it would give a better estimation of line length or geographical path.

B. Muiltilayer networks

We propose the inclusion of new transmission voltage levels to improve the accuracy of
network models. However, as explained before, the higher degree of interconnection with
other networks need to be captured in network models.

The inclusion of distribution networks (low-voltage and medium-voltage power networks)
is crucial since they were proved to play a crucial role in the propagation of cascading failure.
In this case, the main challenge is the connection of both networks since the large size of the
resulting network may hamper the inclusion of electrical considerations such as power flows.
The connection with other network models, such as gas or communication networks, would
also be worthy. Those models would help to understand failure propagation among
interdependent networks. Furthermore, it might support the increase of power network
robustness by investments in other cheaper infrastructures, such as telecommunication
networks. To reach that goal, the antecedent, and crucial step is the research into other
network models.

7.2.3. Network vulnerability

Although the Electrical Line Centrality improves results given by prior works, new
improvements are necessary to effectively introduced vulnerability indices in network design.

The objective of assessing power-network vulnerability is the designing of more robust
networks. Consequently, vulnerability metrics should be included in the network design
process. In Chapter 6 we pointed out that it might be considered by introducing vulnerability
indices as a partial objective in the optimization function (it penalizes high values of vulnerability
indices) or by including them as constraints (it establishes maximum values for the indices).
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Consequently, it would be necessary to define a vulnerability cost or a maximum value of
topological vulnerability to be included in the optimization problem. Furthermore, topological
indices allow for the assessment of the impact component failures have on network
vulnerability. Similarly, we can also assess the impact that new lines would have on the
network. Accordingly, vulnerability indices might be used to propose candidates to be installed
in the transmission expansion problem.

Complex-network techniques are a key tool in the generation of synthetic power
grids and in the assessment of power network vulnerability. The inclusion of
electrical considerations in complex-network theory find a balance between
result accuracy and computational requirements.

This thesis proposes a novel algorithm to generate synthetic spatial power grids
that generates networks that are topologically consistent with real power
networks. Furthermore, it introduces a novel metric to assess power-network
vulnerability. It improves results given by prior metrics and reduces
computational complexity. Finally, in the analysis of network topology, this thesis
contributes with a novel framework that allows for the description of network
topology as well as the comparison among networks

Despite those advances, further research is needed to build more complex
synthetic power grids or to introduce vulnerability indices in the network design
problem.
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Exibit A

Table A-1. GHuST values for autonomous-system graphs.

’ ’ ’ ’ ’ ’

P1 P2 P3 P4 Ps Pe pP7 Ps Po P10 P11 P12
Minimum 0409 0397 0172 0001 068 038 0044 0003 0842 0272 0228 0.005

Quantilel 0459 0577 0191 0001 0699 0456 0144 0004 0917 0318 049  0.007
Quantile2 0477 0597 0217 0001 0703 0463 0076 0004 0881 0340 0.527 0.009
Quantile3 0510 0619 0257 0002 0762 0431 0087 0010 0884 0369 0430 0016

Maximum 0569 0668 0573 0041 0867 0486 0333 0077 0953 0476 0558 0.162

Table A-2. GHuST values for Enzymes.

’ ’ ' ' ’ ’

P1 P2 P3 Pa Ps Pe p7 Ps P9 P1o P11 P12
Minimum 0.113 0.000 0.111 0101 0342 0000 0000 0000 0000 0.00 0.000 0.400
Quantile 1 0.447 0000 0.143 0301 0777 0.000 0.000 0109 0551 0.735 0027 0.607
Quantile 2 0487 0.000 0.167 0361 0831 0.000 0.000 0175 0647 0969 0.085 0.660
Quantile 3 0.524 0.000 0.200 0428 0873 0052 0000 0274 0709 1000 0.156 0.720
Maximum 0.604 0308 0.833 0693 0946 0800 0848 0417 0829 1000 0.556 0.900

Table A-3. GHuST values for Facebook graphs.

’ ’ ' ' ’ ’

P1 P2 p3 Pa Ps Ps p7 Pg P P10 P11 P12
Minimum 0.949 0548 0016 0000 0934 0000 0000 0035 0997 0927 0004 0.009
Quantile 1 0970 0623 0051 0002 0982 0006 0000 0050 0998 0955 0010 0.039
Quantile 2 0974 0648 0076 0.007 098 0.008 0.013 0.058 0999 0964 0013 0.066
Quantile 3 0977 0681 0122 0017 0987 0010 0027 0071 0999 0972 0016 0.110
Maximum 0983 0.838 0269 0069 0992 0018 0080 0120 1000 0988 0044 0.224

Table A-4. GHuST values for power-network graphs.

1 1 ’ ’ ’ ’

P1 P2 P3 P4 Ps Ps p7 Pe P9 P10 P11 P12
Minimum 0.127 0.060 0.18 0030 0512 0190 0067 0017 0056 0.117 0097 0.233
Quantile 1 0219 0198 0271 0.078 0719 0345 0172 0027 0143 0192 0154 0320
Quantile 2 0260 0303 0340 0104 0767 0401 0263 0030 0251 0225 0209 0428
Quantile 3 0285 0382 0446 019% 0799 0426 0339 0037 038 0297 0252 0532
Maximum 0466 0600 0.619 0310 0853 0564 0486 0083 0688 0451 0353 0.714
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Table A-5 GHuST values for retweet graphs.

’

1

’

P1 P2 P3 Pa Ps Pe p7 Ps P9 P10 P11 P12
Minimum 0.014 0609 0.132 0.001 0.244 0293 0.000 0.000 0.000 0.001 0.057 0.004
Quantile 1 0.065 0.730 0209 0.002 0408 0439 0050 0.000 0463 0.015 0.161 0.019
Quantile 2 0.127 0810 0.327 0.003 0506 0483 0.084 0.000 0538 0027 0237 0041
Quantile 3 0.182 0902 0575 0.004 0.621 0618 0.118 0.001 0.678 0.048 0476 0.069
Maximum 0.616 0968 0926 0.086 0.838 0795 0.194 0.026 0959 0202 0.722 0.347

Table A-6. GHuST values for road graphs.

p1’ P2 ps’ P4 ps’' Ps p7’ Ps P9 P10 P11 P12’
Minimum 0.042 0019 0119 0.018 0.723 0.098 018 0.000 0.000 0.002 0006 0242
Quantile 1 0.065 0035 0182 0.048 0766 0121 0224 0001 0026 0003 0018 0311
Quantile 2 0.185 0.058 0.207 0.066 0.801 0570 0405 0.009 0041 0055 0021 0378
Quantile 3 0.284 0.196 0.246 0.102 0.842 0816 0770 0.021 0.102 0.162 0044 0464
Maximum 0294 0217 0371 0.218 0846 0889 0882 0021 0121 0.165 009 0683

Table A-7. GHuST values for web graphs.

P’ P2 ps’ pa’ ps’ Ps ps’ Pg P9 P10 P11 P12
Minimum 0.369 0497 0.012 0.000 0555 0.029 0.000 0.000 068 0218 0069 0.001
Quantile 1 0532 0608 0.022 0.000 0672 0075 0032 0017 0916 0380 0172 0.003
Quantile 2 0.701 0687 0.146 0.001 0.735 0185 0.059 0.060 0984 0591 0229 0045
Quantile 3 0.872 0802 0.247 0.007 0.800 0.243 0116 0.275 0995 0.739 0554 0.066
Maximum 0989 0910 0481 0.023 0938 0352 0413 0999 1000 0989 0984 0216
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Exhibit B
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Figure B-1. Contribution of each dimension of the GHuUST framework to the first 3 principal

components obtained for the autonomous-system set of networks analyzed.
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Figure B-2. Contribution of each dimension of the GHuST framework to the first 3 principal
components obtained for the enzyme set of networks analyzed.
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Figure B-3. Contribution of each dimension of the GHuST framework to the first 3 principal

components obtained for the Facebook set of networks analyzed.
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Figure B-4 Contribution of each dimension of the GHuUST framework to the first 3 principal
components obtained for the power-network set of networks analyzed.
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Figure B-5. Contribution of each dimension of the GHuUST framework to the first 3 principal
components obtained for the retweet set of networks analyzed.
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Figure B-6. Contribution of each dimension of the GHuUST framework to the first 3 principal
components obtained for the road set of networks analyzed.
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Figure B-7. Contribution of each dimension of the GHuUST framework to the first 3 principal

components obtained for the web set of networks analyzed.
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Exhibit C

A. Global efficiency:

1 1
E=yw= 1);@ (C-1)

N is the total number of nodes in the network and d;; is the shortest path between nodes
iandj

B. Damage

_ E(Gy) —E(Gp)
T EGy (©2)

E(Gy) is the value of a vulnerability index before a failure and E(Gy) is the value of the
vulnerability index after a failure.

C. Modified Global Efficiency

Eo Z
NpNg icG

Np is the number of demand nodes in the network, N is the number of generators in the
network, d;; is the shortest path between nodes i and j

1
Lid; (C-3)

D. Loss of load

1
LOL= =) AL )
N
_(Di=Cy, D>
AL = { 0, D;<C (C5)

D is the total demand of the network before component failure, s is the number of islands
in the system after a component failure, D; total power demanded in an island, and C; total
generation capacity on an island.
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E. Connectivity loss

Ni
CL=1- (N—Z)i (C-6)

Né is the number of generators connected to node i and Ngthe number of generators in
the network.

F.  Electrical degree centrality

D; = J (C-7)

N is the number of nodes in the network and F; ; is the power flow through the lines that
are connected to node i.

G. Electrical betweenness centrality

Pst,i
Pg; (C-8)

Bi =
P is the maximum amount of power that can flow through line st, and Py ; is the power
that is injected in node i when the power through line st is equal to the transmission line
capacity.
H. Structural vulnerability index

1 P,
SVI = >
NpN Py €% (C-9)

i€G jED

Np is the number of demand nodes, N the number of generators nodes, P;; maximum
generation capacity of generator i, and Pp; is the maximum power demanded by node

J

I.  Directed global efficiency

1 1
Directed Global Ef ficiency = Z z 7.

NpNe icc jep Y (C-10)

Np is the number of demand nodes, N; the number of generators nodes, and Zjj is the
electrical distance between nodes i and j.
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J.  Net ability

Net Abilit ! zzc""
e ility = —

NpNg = jeDZU (C-11)
Np is the number of demand nodes, Ng is the number of generation nodes, ¢;; is the
maximum power that can be injected in node i to be withdrawn in node j.

K. Effective graph resistance

Graph resistance = Z Z R;

NTT (€12)
R; j is the effective resistance between nodes i and.

L. Electrical centrality

1
“= (C-13)
_ €ab
ba = n i 1
b=1 (C-14)
b+a

eqp 1S the electrical distance between nodes a and b and n is the number of nodes in the
network.

M. Centrality index

Cly = szilfv (C-15)

is the maximum power that can be injected in node i to be withdrawn in node j.

N. Extended betweenness

uv
Y

Extended betweenness (1) = max (TP (1), T? (1)) (C-16)
TP(D) = Yiec Xjep Cij fzij iffzij >0 (C-17)
TP() = Tiee Ljen i /i £ <0

(C-18)
¢ij is the maximum power that can be injected in node i to be withdrawn in node j, and

flij is the change of power through line [ when there is an injection of power in node i and
it is withdrawn in node j.
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