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Abstract: Off-grid systems play a prominent role in rural electrification planning. The problem of
optimizing the generation design of a single off-grid system has received a significant amount
of attention in the literature, and several software tools and algorithms have addressed it.
However, methods and tools designed for individual mini-grids are not directly applicable to regional
planning, where it is necessary to estimate the generation cost of potentially thousands of mini-grids.
Conversely, most regional planning tools estimate the generation cost of mini-grids with rules of
thumb or analytical expressions. These estimations are useful, but they lack the accuracy necessary
to develop a rural electrification plan. This paper presents a method to estimate the generation
cost of any potential off-grid system in a large-scale rural electrification planning problem, which is
currently implemented in the Reference Electrification Model (REM). The method uses a master-slave
decomposition that exploits the structure of the problem and combines continuous and discrete
variables. The algorithm is illustrated with a case study that shows that a direct application of
a discrete model may lead to suboptimal results in large-scale planning.

Keywords: energy access; rural electrification planning; geospatial planning; off-grid electrification;
mini-grid generation; generation sizing; computer model; planning software; heuristic optimization

1. Introduction

Universal access to energy is one of the main challenges of our time. There are approximately
840 million people without access to electricity [1], most of them located in rural areas of Sub-Saharan
Africa. Electricity access is a crucial enabling factor for human development, and the seventh United
Nations Sustainable Development Goal for 2030 acknowledge its relevance. Substantial progress is
necessary to meet this target [2].

Making progress in the electrification of developing countries requires the combined efforts
of financial, technological, regulatory, sociological, and political-economic factors in this complex
problem [3]. A sound electrification plan must start with a quantitative assessment of needs and
the adequate combination of suitable alternatives. The primary purpose of an electrification plan is
twofold: It must establish the least-cost electrification mode for the region that meets some minimum
standards of service, i.e., which zones in the least-cost electrification solution consists of extending
the grid and, conversely, in which areas should mini-grids or standalone systems be built. On the
other hand, any electrification plan should provide a reasonable approximation to the overall cost,
the necessary bill of materials, and cost-comparisons with alternative electrification solutions and
sensitivity analyses to help the planner in the decision-making process.

A comprehensive rural electrification plan needs to be data-driven to achieve the two objectives
of electrification planning. Accurate data are indispensable, although there is generally a scarcity
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of reliable data in the context of developing countries [4]. For instance, it is usually hard to obtain
the demand profiles of consumers. Overestimating their demand could lead to unnecessary extra
investment costs, whereas underestimating it would be translated into weaker reliability levels. It is
also clear that considering a high level of spatial and temporal granularity leads to better results [5],
although it comes at the expense of a more substantial effort when processing the data and performing
the analysis.

Computer software models have been used to support the complex decisions that a comprehensive
electrification plan entails [6]. The calculation of generation designs for off-grid systems is one of
such decisions, and accurate solutions are critical for the soundness of the electrification plan.
However, most regional planning models calculate the generation capacity for off-grid systems with
methods that lack modelling accuracy.

Network Planner [7] calculates its generation designs with analytical expressions based on rules
of thumb. The Open Source Spatial Electrification Tool (OnSSET) [8,9] uses analytical expressions to
obtain the levelized cost of electricity (LCOE) of off-grid systems. These methods provide valuable
first-pass information, but they lack the level of detail required for implementation. For example,
they do not model the operation of the system, which is critical in mini-grids [10]. By doing so, they do
not consider the impact of seasonality in renewable energy generation, which could be translated into
periods where a significant amount of the demand is not supplied.

On the other hand, the optimization of generation designs is a widely-studied problem from
the perspective of an individual off-grid system [11,12]. Some of the methods are based on classical
optimization techniques such as Mixed-Integer Programming (MIP) [13], whereas others apply heuristic
algorithms [14], metaheuristic techniques [15–18], or artificial intelligence methods [19]. Most methods
minimize the cost of the system, although some methods include other criteria such as minimizing
carbon emissions [20].

Several software tools optimize the generation design of a single off-grid system [21], with the
Hybrid Optimization of Multiple Electric Renewables (HOMER) being the most widely used.
HOMER has been thoroughly applied both in developed [22] and developing countries [23–26].
Other relevant tools are the Distributed Energy Resources Customer Adoption Model (DER-CAM) [27]
and the improved Hybrid Optimization by Genetic Algorithms (iHOGA) [28].

Although some of these methods and tools are based on sophisticated optimization techniques and
detailed models, they are not directly applicable to regional planning. It could be necessary to optimize
the generation designs of potentially thousands of mini-grids in large-scale planning, and applying
a computationally intensive approach for each design is not feasible. Moreover, single-system methods
assume that the best solution is an individual mini-grid that electrifies all the consumers of the village
or settlement, whereas in regional planning the number of off-grid systems and which consumers are
assigned to each off-grid system need to be determined.

This paper describes a method that optimizes the generation designs of off-grid systems,
combining a high level of modelling detail (similar to single-village tools) with the massive
electrification scope of regional planning tools (which calculate a significant amount of generation
designs).

This method is currently implemented in the Reference Electrification Model (REM), developed by
the MIT/Comillas Universal Energy Access Lab. The model provides the least-cost electrification
solution for a region, including detailed generation designs for off-grid systems and network designs
for all mini-grids and grid extensions. REM optimizes generation designs, applying the optimization
method described in this paper, and calculates the network layouts by considering electric constraints
and the topographic features of the region. REM has already been used in the preparation of master
electrification plans in several countries such as Indonesia, Rwanda, and Uganda [29].

REM works at a high-resolution level, both in geographical (individual buildings) and temporal
(hourly) terms. The main feature of REM is its high level of modelling detail, although this comes at
the expense of high computation times and the need for extensive input data. Most regional planning
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tools operate with a lower level of modelling detail, although they provide fast estimations and make
use of Geographical Information Systems (GIS) to provide instant access to input databases.

Reference [30] introduces an early version of REM, and several improvements are presented
in [31]. Reference [32] describes the current state of REM, and reference [33] applies REM to study the
importance of demand in planning. This paper presents the novel approach to optimize generation
designs that was developed for REM. Specifically, the paper discusses the potential problems caused
by modelling all the mini-grid components with discrete variables and introduces two methods to
overcome such problems.

The rest of this paper is structured as follows. Section 2 describes the rural electrification problem
in more detail and provides some context for our method. Section 3 describes our algorithm for
generation sizing and compares it to a straightforward approach. Results and conclusions are provided
in Sections 4 and 5, respectively.

2. The Role of Generation Designs in REM

This section provides a context for generation sizing in the rural electrification problem as
implemented in REM, which is described in detail in reference [32].

The starting data for regional rural electrification planning include the location and demand of
consumers, the location, energy cost, and reliability of the existing power grid as well as the network
and generation catalogues and some techno-economic parameters such as discount rates and hourly
solar irradiance.

REM works at the level of individual buildings, so it needs to group the consumers into mini-grids.
Large mini-grids benefit from economies of scale in generation equipment, but they have higher
network costs. It is crucial to ponder the trade-offs between generation and network costs when
grouping the consumers into mini-grids. Figure 1 shows the projection onto Google Earth Pro of
two groupings of consumers into mini-grids. The minimum-cost grouping depends on the trade-off

between the generation cost and the network cost.
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Figure 1. Consumers grouped in (a) one, and (b) five mini-grids. The network designs of the mini-grids
were calculated with Reference Electrification Model (REM). Map data: Google, CNES/Airbus.

REM groups the consumers into mini-grids (this will be referred to as off-grid clustering) in
a process that starts with every consumer being an isolated cluster, and then joined with nearby clusters
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when it results in a lower cost. Specifically, the model calculates the cost of the two configurations
below (see Figure 2).
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Figure 2. Off-grid clustering configurations. © 2019 IEEE. Reprinted, with permission, from [32].

In configuration 1, the nearby clusters are electrified with separated off-grid systems, with each
system having an independent generation site. In configuration 2, the nearby clusters are electrified
together with the same mini-grid, locating the shared generation site in the cluster with higher peak
demand. Hence, it is necessary to obtain the generation and network costs of three off-grid systems
(two separated systems in configuration 1, and the larger mini-grid in configuration 2) each time REM
performs a cost-comparison.

The most straightforward approach to calculate the generation costs needed in the off-grid
clustering would be to optimize from scratch the generation designs of the off-grid systems that
appear in configurations 1 and 2 each time REM performs a cost comparison. However, the number
of cost comparisons in a regional planning case is unmanageably large, and this strategy would
require an unaffordable computation time. Instead, REM balances accuracy with computation speed
by calculating generation designs de novo for only a reduced subset of mini-grids (look-up table),
which should be representative of the case study. The generation cost for the remaining mini-grids,
if needed in the off-grid clustering, is approximated using multi-linear interpolation or extrapolation.

Each type of load is assigned a demand profile to develop this procedure. This allows expressing
each mini-grid as a combination of its types of loads, and the representative mini-grids are the
vertices of a rectangular mesh where the interpolation and extrapolation procedures are performed.
Figure 3 shows an example with three types of loads, where the representative mini-grids are
obtained as combinations of 0, 300, 700, and 1000 residential consumers, 0, 1, 5, and 10 hospitals,
and 0, 1, 5, and 10 schools. REM would calculate generation designs for 4 × 4 x 4 = 64 representative
off-grid systems, which correspond to the points in the figure.
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A drawback of this approach is that the number of representative mini-grids increases significantly
with the number of load types as each load type is associated with an axis of the look-up table,
which limits the types of loads that can be included in a case study. A different source of computational
problems derives from modelling the capacities of all generation components with discrete variables,
as discussed in Section 3.

3. Efficient Generation Sizing for a Given Mini-grid

The problem of optimizing the generation design of a single mini-grid has been thoroughly
studied in the literature [12] and available software tools [21]. One of the procedures used to deal
with this problem consists of the application of classical optimization modelling techniques such
as mixed-integer linear programming [34]. However, these methods are computationally intense,
and may require substantial resources to optimize a significant number of generation designs (which
is usually the case when REM’s look-up table has several dimensions). Moreover, a planner would
expect that generation designs that meet similar aggregated demands are similar in terms of generation
elements and capacities, but the operation of mini-grids is non-linear, which implies that solutions
obtained with an optimization method may fail to capture this property. This condition is relevant
regarding project implementation, as it would not be reasonable, for example, to perform substantial
changes repeatedly in the generation design of a village as demand grows (such as adding a diesel
generator when the demand grows slightly only to remove it again when demand grows past a certain
point).

REM applies a direct-search method to size the generation of the representative off-grid systems,
yielding solutions that are more stable when concerned with demand variations. It also presents
a reasonable balance between the accuracy of the design and computation time. The rest of this section
introduces a method that calculates the generation design for each representative mini-grid of the
look-up table, modelling all the generation components as discrete elements. Then, the potential issues
of this approach are discussed, and solutions are proposed to overcome them.

3.1. A Master-Slave Decomposition

Figure 4 shows the architecture that REM considers for off-grid systems. Note that only solar energy
is currently used as a renewable source, but other sources such as wind, mini-hydro, and biomass are
under analysis, and they could be integrated similarly in the optimization process.
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The algorithm presented in this section considers a tridimensional search space where each
axis corresponds to one off-grid technology (solar, diesel, and battery storage), optimizing their
respective capacities. The charge controller and the inverter that better suit the design, if needed,
are selected afterwards.

There is a significant difference between the diesel generator and the other two off-grid technologies
(solar panels and battery). It is possible to combine solar panels on one side and batteries on the other
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in parallel racks to provide (approximately) any desired capacity. The use of diesel generators in
parallel, however, involves a much higher degree of complexity regarding installation and operation,
so REM does not allow this possibility.

Therefore, the capacities of solar panels and batteries take values that are multiples of a small
solar panel or battery, whereas the available capacities of the diesel generator are limited to the ones
provided by the user. REM handles this difference among the off-grid technologies with a master-slave
decomposition where the master level controls the diesel capacity, and the slave level explores
a solar-battery plane with a fixed diesel capacity, from an adequate starting search point provided by
the master level. The strategy of exploiting the structure of an optimization problem with a nested
decomposition has been successfully applied to other problems in the literature [35,36].

The basic algorithm starts with a 100% renewable solution (no diesel), and the slave problem finds
the least-cost design in the no-diesel plane. Then, the master problem increases the diesel capacity
to the next diesel generator available on the catalogue, and the slave problem finds the combination
of solar and battery that better fits the demand for that diesel generator. This procedure continues
until the master problem has considered all diesel generators available in the diesel search space,
which includes all diesel generators between the no-diesel solution and the smallest diesel generator
that can meet all the demand. The starting search point in terms of solar and battery capacity is the
best solution obtained at the previous iteration (for the previous diesel generator). Figure 5 provides
an example with diesel generators of 0, 5, 8, 10, and 15 kW.Energies 2019, 12, x FOR PEER REVIEW 7 of 22 
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Figure 6 shows the flow diagram of the master problem. The master problem performs
an exhaustive search as it goes through all the available diesel generators in the diesel search space,
which may consume a significant amount of time.
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can meet the demand of the system.

The slave problem searches in the neighborhood of an initial point provided by the master
problem, moving towards the point with minimum cost. If no neighboring point improves the current
solution, the algorithm reduces the step size until its value is below a pre-specified threshold. Figure 7
shows an example of the slave problem, which corresponds to the first iterations for the no-diesel
plane shown in Figure 5.
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Figure 8 shows the flow diagram of the slave problem. The slave problem, in practice, behaves as
a gradient-descent method with discrete derivatives since it always moves in the lowest-cost direction.Energies 2019, 12, x FOR PEER REVIEW 9 of 22 
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There is another level of embedded optimization in the process since, for each generation mix
(size of diesel, solar panels, and batteries), the “best” possible dispatch is found. REM allows the
use of alternative dispatch strategies, each one with different trade-offs concerning prediction ability,
control strategy, or technical constraints. This is an interesting aspect of REM, but not the subject of this
paper. In the cases presented in this paper, REM applies a load-following dispatch strategy [37] when
computing the total cost of a generation design. In the load-following strategy, the order of components
used to meet demand is solar panels, batteries, and the diesel generator (in that order). If there is
enough solar power to meet all the demand at a specific hour, then the remaining solar energy is used
to charge the battery (if possible) in that hour. The diesel generator is not used to charge the battery in
the load-following dispatch strategy. REM simulates the hourly operation of the system for the whole
year for each candidate generation design following this strategy, which allows the model to deal with
photovoltaic seasonalities. Since REM penalizes the non-served energy, the optimal generation design
should use either batteries or a diesel generator to ensure that there is not a significant drop in the
amount of demand served in periods of lower solar production.

3.2. A First Approach to Detailed Regional Planning

When operating at a high level of spatial granularity (consumer-by-consumer) in regional planning,
it is necessary to group consumers into mini-grids. The best grouping of consumers depends on
the trade-offs between the costs involved, the generation cost being one of them. If the estimations
of the generation costs used to group consumers into mini-grids fail to capture the economies of
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scale in generation equipment, the resulting combination of consumers into mini-grids may be far
from optimal.

We now provide an illustrative example with one load type (residential) that shows the limitations
of the method presented in Section 3.1 for regional planning. Any tool or method that aims at
optimizing the generation design with discrete generation components, such as those that deal with
a single mini-grid or village, would present the same limitations. The problems found, the solutions
proposed, and the overall conclusions are fully applicable to cases with more types of loads, but they
are not used here for the sake of simplicity.

There are two diesel generators available with capacities of 10 kW and 100 kW, and the
representative mini-grids correspond to 1, 5, 10, 50, 100, 150, 200, 250, 300, and 500 residential consumers.
Although the number of available diesel generators may seem low, it is realistic. The logistics of
dealing with an extensive catalogue of diesel generators in a regional planning project complicates the
implementation phase, and some planners prefer to limit the available diesel options, purchase specific
generators in bulk, and benefit from volume discount pricing.

Figure 9 shows the minimum cost per consumer for these representative combinations of residential
consumers, showing the partial optima obtained for the three diesel options (0, 10, and 100 kW) and
the minimum cost curve (i.e., the minimum-cost design for each point).
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Figure 9. Generation cost per consumer obtained with the discrete algorithm.

This case illustrates the two main undesirable effects of having discrete diesel options. The first
one is the instability of the generation mix concerning the demand. In this case, mini-grids with less
than 50 consumers do not include a diesel generator and mini-grids with a range of consumers that
lay between 50 and 100 consumers include a 10 kW diesel generator. However, mini-grids between
100 and 150 consumers do not include the diesel generator, because the 10 kW diesel generator is too
small, while the 100 kW diesel generator is too big and expensive in this particular range of consumers.
For mini-grids larger than 150 consumers, the generation solution includes the 100 kW diesel generator.

The second effect is that the unitary generation cost is not a monotonically decreasing function of
the number of residential consumers, which is something expected due to the economies of scale in
generation. This second effect causes issues in REM’s bottom-up clustering algorithm. When trying
to join two clusters into a larger one, the algorithm considers the trade-off between the additional
network cost and the generation savings (due to economies of scale). Hence, if the generation cost per
consumer starts increasing at some point, the algorithm would not find the best solution. In the case
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shown in Figure 9, the algorithm would stop at sizes of about 50 households, missing the economies of
scale that happen beyond 150 households.

To overcome this difficulty, we can smooth the generation-cost curve by adjusting the coefficients
of a family of curves that guarantee monotonic behavior, so that the generation cost per consumer
always decreases when the number of consumers increases. Equation (1) defines this family of curves.

Pα,β,γ(x) = α/xγ + β. (1)

where x is the number of residential consumers; α, β, γ are non-negative parameters that REM adjusts,
and Pα,β,γ(x) is the approximated unitary generation cost for x residential consumers. Each curve of
the form Pα,β,γ(x) is a decreasing convex function. Note that the smooth curves must be replaced by
smooth hypersurfaces in cases with more types of loads.

It is important to stress that the model uses the smooth curve only to determine the candidate
mini-grids for a given case, and never to compute the final generation cost of the off-grid systems in
the final electrification solution. REM always calculates the latter in an exact manner.

3.3. The Continuous-Component Implementation

Smoothing the cost values has some limitations. It may be difficult to smooth generation costs if
we are working on a case with several types of loads. For example, it is debatable whether all types of
loads should have equal importance when smoothing their generation costs. Residential loads are
more frequent, but productive loads have a substantial impact on the final electrification solution.

It can be concluded from Section 3.2 that the use of discrete diesel generators in the master
problem is problematic, and the computation time that the master problem needs to go through all the
generators in the diesel space may be excessive for large mini-grids. Hence, we propose a new logic
for the master problem that treats the diesel capacity as a continuous variable. The search is performed
by trisecting an interval (i.e., dividing an interval into three segments of the same length with four
points), which is shortened, discarding the diesel capacity that is further from the current best design
and trisected again. The process continues until the length of the interval is lower than a pre-specified
tolerance. The slave problem presented in Section 3.2 has performed well so far, so it has not been
necessary to modify it.

It is clear that, when the diesel capacity is treated as a continuous variable, the results of the
master problem are not so heavily influenced by the diesel generators available as the algorithm can
interpolate among them to obtain a diesel generator of any desired capacity. Moreover, the number
of diesel generators that the master level considers when calculating a generation design depends
only on the demand of the representative mini-grid and the pre-specified tolerance considered to stop
trisecting intervals on the master level. Therefore, the computation time needed is not conditioned
to the number of diesel generators available, as opposed to the master logic described in Section 3.1,
which requires all the generators in the diesel search space to be gone through.

A similar trisection procedure is applied in [38] to determine the optimal point of the I-V and P-V
characteristics of a solar panel. It is essential to highlight that the continuous diesel generators are only
considered to estimate the generation costs used to group the consumers into mini-grids, but they are
not used to calculate the generation costs included in the final electrification solution.

We present an illustrative example in Figure 10. In this case, we assume that the pre-specified
tolerance is 2 kW and the minimum capacity that meets the aggregated demand is 12 kW, so the
boundaries of the diesel capacity are (0 kW, 12 kW). The first set of points is evaluated by trisecting
this interval, which yields the 4 kW and 8 kW generators, and we assume that the lowest-cost point
corresponds to the 4 kW diesel generator. Hence, the highest-capacity generator (12 kW) is discarded
and the second set of points is obtained trisecting the interval (0 kW, 8 kW), which yields the 2.67 kW
and 5.34 kW generators, and we assume that the lowest-cost solution for the second set of points
corresponds to the 5.34 kW diesel generator. The lowest-capacity generator (0 kW) is therefore
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discarded, and the interval (2.67 kW, 8 kW) is trisected to obtain the third set of points, yielding
the 4.45 kW and 6.22 kW generators. The lowest-cost point of the third set of points is the 4.45 kW
generator, which is the final solution provided by the algorithm since |4.45 - 2.67| < 2.Energies 2019, 12, x FOR PEER REVIEW 12 of 22 
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The slave problem only needs to calculate generation designs for two different diesel capacities
for each iteration, since the first and the last points of the i-th set of points also belong to the (i-1)-th set
of points. Figure 11 shows the flow diagram of the master problem presented in this section.
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4. Case Application

The method presented in Section 3 was applied to a case study located in the region of Cajamarca,
in Northern Peru. This region has an area of approximately 400 km2, around 6700 buildings, and several
potential connection points to the projected network of 11 kV. The Ministry of Energy and Mines
approved the National Plan for Rural Electrification in Peru, which has the goal of achieving universal
access by the end of 2022.

The location of the buildings was obtained by manual identification using images from Google
Earth (see Figure 12), and the location of the projected network of 11 kV comes from the National Rural
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Electrification Plan of Cajamarca, although we do not consider the possibility of extending the power
grid for this case study. The network catalogue is based on [39], where a similar case was analyzed
using REM. All the consumers have the demand profile shown in Figure 13 (also used in the previous
example in Section 3), which was estimated dividing the aggregated demand profile presented in
reference [40] by the corresponding total number of consumers.

The capacities of diesel generators available are 10 kW, 100 kW (as in the previous example in
Section 3), 200 kW, 600 kW, and 1500 kW (we included more capacities to cover the possibility of
having mini-grids with more than 500 consumers). The generation designs calculated correspond to 1,
5, 10, 50, 100, 150, 200, 250, 300, 500 (as in the previous example in Section 3), 1000, 3000, and 7500
residential consumers.

Tables 1 and 2 show the look-up table obtained with discrete and continuous diesel capacities,
respectively. As shown in Table 1 and Figure 9, using discrete capacities is translated into non-monotonic
behavior in the size of diesel generators in the range from 50 to 200 households. In contrast,
the diesel capacity increases consistently with the number of residential consumers when handled as
a continuous variable.Energies 2019, 12, x FOR PEER REVIEW 13 of 22 
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Table 1. Designs with discrete diesel capacities.

Residential
Consumers

Solar
Capacity

(kWp)

Battery
Capacity

(kWh)

Generator
Capacity

(kW)

Fraction of
Demand
Served
(p.u.)

Fraction of
Demand

Served with
Diesel (p.u.)

Total Cost
Per

Consumer
($/yr)

1 0.29 2.22 0 1 0 273.48
5 1.37 11.10 0 0.99 0 140.07

10 2.73 24.42 0 1 0 124.68
50 5.36 4.44 10 1 0.70 105.14
100 27.30 233.10 0 1 0 109.67
150 40.95 310.80 0 0.99 0 108.39
200 19.50 66.60 100 1 0.60 99.44
250 21.94 53.28 100 1 0.67 88.90
300 28.28 46.62 100 1 0.67 81.53
500 47.78 73.26 100 1 0.68 67.82

1000 94.58 139.86 200 1 0.68 65.99
3000 282.75 419.58 600 1 0.68 64.98
7500 706.88 1052.28 1500 1 0.68 64.83
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Table 2. Designs with continuous diesel capacities.

Residential
Consumers

Solar
Capacity

(kWp)

Battery
Capacity

(kWh)

Generator
Capacity

(kW)

Fraction of
Demand
Served
(p.u.)

Fraction of
Demand

Served with
Diesel (p.u.)

Total Cost
Per

Consumer
($/yr)

1 0.29 2.22 0 1 0 273.48
5 1.37 11.10 0 0.99 0 140.07

10 2.73 24.42 0 1 0 124.68
50 5.36 4.44 8.9 1 0.70 100.97
100 9.75 13.32 18.8 1 0.68 87.76
150 14.63 17.76 26.8 1 0.69 81.87
200 19.50 22.20 35.7 1 0.69 79.08
250 24.38 26.64 44.7 1 0.70 76.97
300 28.28 31.08 53.6 1 0.70 74.96
500 47.78 73.26 99.1 1 0.68 67.84

1000 85.12 139.86 178.2 1 0.69 64.70
3000 254.48 419.58 534.6 1 0.69 63.83
7500 636.19 1052.28 1336.2 1 0.69 63.63

Figure 14 shows the minimum cost design curve (obtained with the algorithm described in
Section 3.1 and performing linear interpolation), the smoothed curve (obtained applying the procedure
described in Section 3.2 to the minimum cost design curve), and the continuous results (obtained
with the method presented in Section 3.3 and performing linear interpolation). The continuous
implementation better captures the trend of economies of scale in generation.
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Figures 15 and 16 show the cost breakdown of the generation designs obtained with discrete
and continuous diesel capacities, respectively. As expected, designs that included a diesel generator
had an OPEX that accounted for a much more significant amount of the generation cost. This effect
especially stands out in Figure 15 as the design for 50 consumers includes a 10 kW diesel generator but
designs for 100 and 150 residential consumers do not include a diesel generator.
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Figure 16. Generation costs obtained with the continuous algorithm.

Figure 17 shows the sizes of candidate mini-grids obtained with discrete diesel capacities,
the corresponding smooth curve, and continuous diesel capacities. The candidate mini-grids obtained
with the smooth curve and continuous generators are similar, but they are significantly different when
generation costs are estimated directly from a look-up table calculated with discrete diesel capacities.
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Figure 17. Histogram that shows the number of clusters for each cluster size obtained with the different
generation algorithms. There are also 14 clusters with more than 100 consumers in the smoothed case
(the biggest one has 965 consumers) and 12 clusters with more than 100 consumers in the continuous
case (the biggest one has 813 consumers), which are not shown for the sake of clarity.

All candidate mini-grids had less than 100 consumers when generation designs obtained with
discrete diesel capacities. In the discrete-diesel-capacities case, the generation design for 100 residential
consumers had a higher cost per consumer than the generation design for 50 consumers, which caused
the clustering algorithm to reach a local optimum and larger mini-grids with lower unitary generation
costs were never created. This issue, however, did not happen when the smoothed curve or continuous
diesel capacities were used. Indeed, there were a few candidate mini-grids with almost 1000 residential
consumers in those cases (beyond this point, the economies of scale in generation are negligible).

The candidate mini-grids that the clustering algorithm provides heavily influence results. Figure 18
shows the electrification solutions obtained when the generation costs considered in the calculation
of candidate mini-grids were obtained with discrete capacities, the smoothed curve, and continuous
capacities. All the solutions used mini-grids to electrify the vast majority of the consumers, but their
sizes were significantly smaller when discrete diesel capacities were considered to group the consumers
into mini-grids.

Table 3 shows the electrification costs obtained with the methods described in Section 3.
The generation costs used to compute the final cost of the mini-grids that appear in Figure 18
always correspond to the discrete diesel capacities shown in Table 1 (linear interpolations is used
among these designs if needed), and the smoothed curve and continuous diesel capacities are used
only to group consumers into mini-grids.
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Table 3. Electrification solution summary for the three different generation algorithms. Capital Expenditures (CAPEX) account for the investment costs, and
Operational Expenditures (OPEX) account for the operation and maintenance costs.

Consumers Grouped Considering Discrete
Diesel Capacities

Consumers Grouped Considering the
Smoothed Curve

Consumers Grouped Considering Continuous
Diesel Capacities

Mini-Grids Isolated All Mini-Grids Isolated All Mini-Grids Isolated All

Number of customers 6629 59 6688 6674 14 6688 6644 44 6688
Fraction of customers 0.99 0.01 1 1 0 1 0.99 0.01 1

CAPEX per customer ($/yr) 76.28 108.24 76.56 77.35 108.24 77.41 74.26 108.24 74.48
OPEX per customer ($/yr) 54.89 167.46 55.89 47.72 167.46 47.97 48.78 167.46 49.56

Non-served energy cost per
customer ($/yr) 0.97 0.85 0.97 0.63 0.85 0.63 0.57 0.85 0.57

Final Cost per customer ($/yr) 132.15 273.48 133.39 125.70 273.48 126.01 123.61 273.48 124.60
Total CAPEX ($/yr) 505,677 6386 512,063 516,232 1515 517,747 493,385 4762 498,147
Total OPEX ($/yr) 363,886 9880 373,766 318,479 2344 320,823 324,096 7368 331,465

Total non-served energy cost
($/yr) 6444 50 6494 4210 12 4222 3799 37 3837

Final cost ($/yr) 876,006 16,135 892,141 838,920 3829 842,749 821,281 12,033 833,313
Fraction of demand served (p.u.) 0.998 0.998 0.998 0.999 0.998 0.999 0.999 0.998 0.999
Cost per kWh of demand served

($/kWh) 0.387 0.804 0.391 0.369 0.804 0.37 0.363 0.804 0.366
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As expected, the final electrification cost was higher when REM grouped consumers into mini-grids,
considering discrete diesel capacities, and it was lower when REM grouped consumers into mini-grids,
considering continuous diesel capacities. Although the exact numbers depend on the network or
generation catalogue, the crucial point is to notice that grouping the consumers into mini-grids using
generation costs based on a model with only discrete generation components may be problematic.

5. Conclusions

Access to electricity is one of the most significant challenges of our time, and the consideration of
off-grid systems as an alternative to the traditional grid extensions is crucial in rural electrification
planning. Several methodologies and software tools deal with the problem of optimizing the generation
design of a single off-grid system, but they cannot be easily applied to regional planning as opposed
to the smaller scopes for which they were developed (i.e., village-based). On the other hand,
most regional planning tools estimate the generation cost of off-grid systems with rules of thumb or
analytic expressions that lack the accuracy needed for in-the-field implementation.

Closing the gap between the first-pass estimations that the majority of regional planning tools
provide and an implementable rural electrification plan requires working at a higher level of temporal
and spatial granularity. When a model operates at the consumer level, it needs to group the consumers
into mini-grids. Larger mini-grids usually benefit from economies of scale in generation components
at the expense of having a more substantial network cost, so the best way of grouping consumers into
mini-grids emerges from the trade-offs between these two costs.

As the range of feasible sizes (understanding size as a combination consumer numbers and
aggregated load) for off-grid systems can be enormous in a large-scale project (i.e., we could have
isolated consumers but also mini-grids of thousands of consumers), it could be necessary to estimate
the generation cost of many off-grid systems to properly group consumers into candidate mini-grids.

This paper presented a method that calculated the generation cost of any potential off-grid
system in a large-scale rural electrification planning case, balancing accuracy with computation speed.
The method optimized the generation design of a reduced set of representative off-grid systems, and the
generation cost of the remaining ones was obtained by performing interpolation. The generation costs
that the method estimated were later used to group the consumers into mini-grids, so it was essential
to capture the savings resulting from the economies of scale in generation equipment.

Some mini-grids components such as solar panels and batteries behave in a quasi-continuous
manner, and any desired capacity can be approximated with a parallel rack of elements available in
the catalogue. Other components such as diesel generators have a more discrete behavior since their
parallel operation involves a high degree of complexity, which implies that some capacities may not
be approximated with the elements available in the catalogue. It is critical to apply a master-slave
decomposition that deals with the different nature of components. It can be concluded that components
with discrete behavior could distort economies of scale in generation, which hinders grouping the
consumers into mini-grids.

The paper introduced two procedures that mitigated the impact of components with discrete
behavior on economies of scale. The first one approximated the generation costs with a smooth curve,
and the second one modelled the capacity of elements that could alter the economies of scale with
continuous variables. Both methods ensured that larger mini-grids benefited from economies of scale
in generation when grouping the consumers into mini-grids, but the method based on continuous
variables was directly applicable to cases with several types of loads.

The case study shows that a straightforward application of any model based only on discrete
components (such as single-system methods or tools) could lead to suboptimal solutions when the
consumers are grouped into mini-grids. It could be concluded that the two procedures introduced in
this paper led to the better grouping of consumers into mini-grids.

Regarding future research, the method presented in the paper has two significant limitations.
Firstly, the number of generation technologies was limited to solar panels and diesel generators,
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and renewable energies such as wind or hydro should be included in future developments.
However, the addition of generation technologies involves dealing with more dimensions when
optimizing the generation design of an off-grid system from scratch, which would increase the
computation time. Secondly, demand profiles are considered deterministic input parameters, whereas
there is much uncertainty about demand in developing countries. Hence, future research should aim
at developing a more robust method that can deal with uncertainties.
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