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Abstract— Fostered by environmental concerns, technology 

evolution and economic improvements, distributed energy 

resources (DERs) are expected to play a major role in the future 

electric power delivery. Also, the deployment of Energy 

Management Systems (EMS) and Smart Meters is paving the 

way for end-users to adopt a much more active role using  

demand response (DR) programs by hand of retailers and 

aggregators. Since resiliency is taking importance nowadays, 

Microgrids (MGs) are being discussed in the literature. This 

paper focuses on the MG operating on islanded mode and 

proposes a local market based approach to manage the economic 

flows among agents, formulated as a MCP. The paper proposes a 

model for the optimal investment and operation of DER within a 

MG under this scheme. End users obtain their optimal operation 

taking advantage of the existing synergies between electrical and 

thermal loads. Furthermore, and as a relevant contribution of 

this paper, a temperature model for buildings, able to consider its 

thermal inertia, has been developed and included in the 

optimization formulation in order to better identify the DR 

capabilities regarding prosumers’ thermal needs. Effects of 

including DER technologies and DR are presented in a case 

study. 

 

Keywords- Energy Management; Renewable Sources; Energy 

Storage; Microgrid Isolated Operation; Demand Response; 
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I.  INTRODUCTION 

Future electrical distribution systems will experience 

significant changes with respect to current distribution 

networks. They will be closely linked to the concept of Smart 

Grids defined as an automated power delivery network that 

uses information and communication technologies to control it 

in order to obtain a two-way flow of electrical power, high 

renewable penetration and lower CO2 emissions among other 

benefits [1]. 

Aggregation of loads and DERs are going to be a crucial 

part in future distribution systems. Not only DERs can reduce 

thermal or electric consumption in each house independently 

but also some of them can take advantage of the existing 

synergies among gas, air conditioning and electricity. 

Moreover, Energy Storages (ES) and Electric Vehicles (EVs) 

can modify the current electrical systems operation by being 

able to provide new ancillary services.  Therefore, aggregating 

resources have two main advantages: the first one is the 

capability of offering services to the grid from small groups of 

end users and the second one is to obtain advantages from the 

global operation of these resources. Other advantages over 

individual DER operation are described in [2].   

Table 1 offers different types of aggregation such as MGs, 

dispersed aggregation, Virtual Power Plants (VPPs) and EV 

fleets.  
Table 1 Aggregation Summary 

 

Public policies in many countries are trying to mitigate the 

consequences and to avoid future effects of climate change. 

These policies lead to more efficient, less polluting and energy 

self-sufficient systems. In addition, countries are making 

efforts to provide universal access in developing countries 

which will result in new decentralized business models. Thus, 

enhanced efficiency, security and grid resiliency are becoming 

objectives of high priority in recent times. 

However, these goals are very difficult to accomplish.  MG 

seems to be one of the best solutions to address energy 

challenges such as penetration of renewable energy resources 

and resiliency. For sure, resiliency is one of the most 

important contributions that MGs can offer due to their 

capability of operating without connection to the grid. The 

importance of resiliency and the use of MGs are being 

analyzed in Maryland [3]. This solution requires decentralized 

business models and local market approaches to balance 

demand and supply and allocate energy prices. Nevertheless, 

from the point of view of improving system efficiency, 

centralized schemes may take advantage of economies of 

scale. Thus, VPPs, EV fleets and remote aggregations of loads 

would be proper choices. 

In our view, different MGs will form the distribution level 

in future electric systems. If a disturbance happened in any 
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point of the distribution network, an MG can change its 

operation mode to islanded mode. However, an MG will be 

connected to the grid during normal operation conditions and 

it could sell/ buy energy to/from the grid. Separately, buildings 

do not have enough size to affect the system. For this reason, 

the role of an aggregator, like an entity, in charge of the 

operation of the MG would be required.  

In addition, end-users will have EMS in order to execute 

DR programs. DR changes passive buildings to active 

elements in order to obtain the desired energy objectives [4]. 

These programs allow modifying the consumption patterns of 

the end-users in order to obtain the lowest cost in the market. 

Studies related to DR have increased in recent times. For 

example, a DR algorithm for primary frequency regulation 

which minimizes the number of loads modified is presented in 

[5], and [6] studies DR in residential MGs in order to 

minimize energy costs and improve the stabilization of the 

aggregation of residential loads (load-flattening). More 

algorithms for market models where the aggregator decides 

the demand pattern are studied in [7] and [8].  In our model, 

DR can be executed in two different ways: modifying thermal 

consumptions and shifting a percentage of the electrical 

demand related to appliances to other periods. 

Planning of distributed resources and operation 

optimization problems have been studied mainly in systems 

connected to the grid. DG deployment plans (capacities, 

location and time frame of the investments) are studied in [9] 

taking into account distribution network reinforcements. [10] 

obtains the optimal planning and operation of the most 

common DER under different pricing scenarios in Madrid, 

Spain through a linear programming model. Apart from these 

studies, there are tools which investigate the planning and 

operation of MGs. For instance, Berkeley Laboratory has 

created a model called DERCAM which analyzes the 

investments and dispatch of DER that minimize costs or 

emissions using the following inputs: consumption, weather, 

DER technology and tariffs data [11]. Similar tools are 

reviewed in [12]–[14] where they are compared according to 

different factors such as: the energy sector, the time-step, the 

geographical area and the time-frame considered in each 

model. 

On the other hand, planning and operating distribution 

systems in islanded mode is not studied as much as in the grid-

connected case. [15] studies a radial distribution network in 

islanded mode. In this mode of operation, studies are mostly 

focused on voltage and frequency regulation. For instance, 

control strategies in an MG for different cases such as grid-

connected mode, pre-planned islanding, line-to-ground faults 

and line-to-line faults  are shown in [16]. [17] proposes an MG 

emergency energy management algorithm which consists of 

three steps: characterization of the operating state, determining 

the power disturbance in order to define the amount of load to 

be shed and the evaluation of the security of the MG during the 

emergency state.  Another example is found in [18] where the 

islanded system is made up of several loads and three MGs that 

participate in the local “wholesale” electricity market. In 

addition, some projects have investigated this topic. For 

example, the MORE MICROGRIDS project [19] mentions the 

idea of local markets, although it is not clear in the literature 

how the production of each unit is going to be set in the 

islanded mode. [20] operates DERs in an MG as a VPP, but 

they belong to the same owner who uses priorities to set their 

operation. However, all these references only consider MGs 

exchanges and none of them is considering what happens 

inside a residential MG. 

Generally, studies in this topic do not tackle the problem of 

what happens inside a MG and how generators can decide 

how much energy they should produce.  For instance, [20] has 

only one agent who decides the operation of the generators 

and loads; and [18] considers MG like an element which can 

consume or generate. Thus, the objective of this work is to 

design the DG and energy storage systems for the optimal 

operation of a residential MG when it operates in islanded 

mode. In order to balance generation and demand, a market 

equilibrium inside the modeled MG has been developed. Other 

contributions of this work are the temperature model 

presented, the market approach inside a MG where each agent 

tries to obtain its better result and the way DR is considered in 

the model. 

To this end, the paper is structured as follows. First of all, 

Section II describes the operation of our concept of MG and 

the designs of the market and the temperature model utilized. 

Afterwards, Section III describes the formulation of the 

complete optimization model. Later on, Section IV presents 

the data used and the scenarios analyzed. Next, the results 

from each scenario are shown in Section V. Finally, a 

comparison among scenarios is done in Section VI. 

II. PROPOSED APPROACH 

In our concept of a system made up of several MGs, each 

one will have an exclusive MG Operator (MGO), which can 

be selected. This MGO can act as an aggregator of different 

MGs when the MG acts in grid-connected mode. Grid-

connected mode would be the normal operation mode until 

any contingency happens. If this MGO has enough aggregated 

energy to participate in the market, it will sell/buy energy 

to/from it (a1 in Figure 1). However, if the amount of energy 

is not enough, the MGO will negotiate with a retailer (a2 in 

Figure 1).  During the isolated operation mode, the MGO will 

be in charge of guaranteeing the balance among users acting 

as a market operator for them (Figure 1). 

In both operation modes, Energy Boxes (EB) from 

generators and end-users will send their operation parameters 

(electrical and thermal in the case of houses) to the MGO. 

Then, the Management System (MGMS) of the MGO will 

send the commands (prices/power curves) back to the EBs to 

know how they should operate. When the MG is grid-

connected, the price will be the one obtained in the market, 

whereas in the isolated mode the prices should guarantee the 

equilibrium inside the MG. To this end, this paper presents a 

market model for the isolated case where each agent tries to 

minimize its costs. Additionally, a temperature model which 

represents a smart thermostat in the energy consumption of a 
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house is included in order to represent the effects of thermal 

loads in DR. 

 

 

 
Figure 1: Operation schemes of MGs divided in physical elements, 

management systems and business actors 

Investments should be done considering the total time that a 

MG operates in grid-connected and islanded mode. This paper 

focuses on the isolated case as a first approach to combine 

both operation modes. 

A. Market  Model –Problem Description 

As stated earlier, a market model is needed in the isolated 

case. In practice, this model (Figure 2) consists of different 

agents (generator and end users) who will send their 

consumption and supply bids to the MGO, which will check 

the balance and will send back prices per each hour until 

generation and demand were matched. Each agent expresses 

its availability to sell using a cost per kW of energy sold. Each 

end-user can regulate their consumption controlling the output 

of their energy storages and their demand profiles. Finally, the 

final price will be the result of the equilibrium among all the 

agents. 

The previous process could be carried out as a day-ahead 

market in order to send the final prices for the next 24 hours to 

the energy boxes. Moreover, more than 24 hours can be 

executed for long-term investments. 

As mentioned, the isolated MG consists of end users and 

generators of different agents. These generators should be 

designed to provide the necessary power to the end-users 

when they do not have DG or energy storages. The reason for 

that is to be able to supply the energy required in every 

moment. 

 
Figure 2: Market flow between agents 

 

B. Temperature Model 

One step further has been done from [10], [21] where 

heating systems where included inside domestic thermal 

usages. In this paper, thermal loads are related to domestic hot 

water (DHW) and kitchen appliance consumptions. Heating 

consumption is calculated taking into account the outdoor 

temperature, and minimum and maximum temperature 

bounds. 

For this particular approach, indoor temperature needs to 

be represented taking into account variations in outdoor 

temperature, indoor heat sources and its maximum and 

minimum values. Figure 3 has been considered as the model to 

obtain the equations for representing the temperature behavior 

throughout the day. 

In Figure 3, capacitor C represents thermal energy stored 

by the wall in a house and resistances R1 and R2 model the 

existing convention between the air and the wall. Outdoor 

temperature Tout is considered as a voltage source, since 

temperature changes are considered negligible in an hour, and 

heating input Q is symbolized as a current source. Finally, 

indoor temperature Tind is the voltage level at the output of the 

current source. 

 
Figure 3: Equivalent electric circuit to 

 represent indoor temperature behavior. 

 

Obtaining the indoor temperature Tind from Figure 3, (1), 

and applying a simple discretization method (2), we obtain the 

equation (3) that models the indoor temperature when the 

sample time T is 1 h: 

𝑇𝑖𝑛𝑑 =
𝑇𝑜𝑢𝑡

𝐶𝑅2𝑠 + 1
+ 𝑄 · (𝑅1 +

𝑅2

𝐶𝑅2𝑠 + 1
) (1) 

𝑠 =
𝑧 − 1

𝑇
 (2) 
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𝑇𝑖𝑛𝑑(𝑡) = 𝑇𝑖𝑛𝑑(𝑡 − 1) +
1

𝐶𝑅2

(𝑇𝑖𝑛𝑑(𝑡 − 1) − 𝑇𝑖𝑛𝑑(𝑡 − 1))

+ 𝑄(𝑡) · 𝑅1 + 𝑄(𝑡 − 1) · (
𝑅1 + 𝑅2

𝐶𝑅2

−𝑅1) 
(3) 

Without heating systems, the authors estimate that a house 

can take around 2 days to reach the outdoor temperature. This 

time will be equal to  5 · τ , being τ  the time constant which is 

equal to CR2 in this circuit. [22] studies the  optimal thickness 

for houses in Madrid and it includes a study of the U-values 

where R1 and R2 are estimated as 10ºC/kW. Thus, C takes a 

value of 1kWh/ºC. 

III. COMPLETE MODEL 

This optimization problem is formulated as a mixed 

complementarity problem (MCP) that is used to solve 

equilibrium problems. Although the case study presented here 

considers a perfect competition (θi=0), which is equivalent to a 

NLP problem whose objective function is the total cost, this 

formulation allows considering the effect of imperfect 

competition.  Since the following formulation is convex, 

global optimal solution is guaranteed. 

 

 

The designed model presented below is shown in Figure 4. 

In this scheme, inputs and outputs of the model can be 

observed. In order to obtain the optimal planning and 

operation of DERs and their cost in a year, the model needs as 

inputs the forecast of the geographical characteristics, 

consumption behaviors and the percentage of load that could 

be shifted and DER models.  

As representative for DG technologies for electric and 

thermal energy production, solar photovoltaics (PV) and air-

source heat pumps (HP) have been selected. Nevertheless, 

other energy sources are described in our previous studies 

[10][21] and they can also be included. However, the main 

difference with previous work is the market approach inside 

the MG and the temperature model with allow studying 

thermal loads in detail. 

A. Nomenclature 

1) Sets: 
h  hour  
d  day  
i  agent  
t  type of consumption  
 

2) Parameters: 
MCost Maintenance Cost increment over 

installation cost (%) 

dieselRatio Power per each liter of fuel (kW/L) 

dieselCost Cost per each liter of fuel (USD/L) 

demandShift Percentage of demand that can be shifted in 

a day(%). [23] 

sellCosti End-users’ minimum price per power sold 

that  they want to receive (USD/kW) 

θi Conjectured price- response parameter 

[(USD /kWh)/kW] 

dieselCapacityi Installed capacity of the retailer 

generator(kWh) 

lossesPV  Total electric losses of  PV (%) 

lossesHP Total thermal losses (%) 

DNIh Direct normal irradiance at hour h (W/m2) 

[24]  

costPV Cost per installed kW of PV (USD/kW)  

costHP Cost per installed kW of HP (USD/kW)  

costsES Cost per installed kW of Battery Capacity 

(USD/kW)  

costET Cost per thermal energy bought (USD/kW) 

costENS Cost per energy not served (USD/kWh) 

COP Coefficient of performance of HP 

effBat Battery charge/discharge efficiency ratio 

(%) 

demandCurveh, t 
Normalized electric demand curves (%), 

Figure 6and Figure 7. [25] 

demMensd. 
Normalized demand evolution through the 

year (%), Figure 8 [25] 

demandElecAnnual Total annual electric demand (kWh) 

(lighting + Appliances) 

demandThermAnnuali Total annual thermal demand (kWh) 

(DHW + Kitchen) 

clientTypei Type of client in each house. 

Tout Outdoor Temperature (ºC) [26] 

UA=R1+R2 Heat transfer coefficient (ºC/kW) [22] 

C Capacitor  (kW/ ºC) 

 

Finally the electric demand is calculated with the following 

formula taking into account the type of demand curve per each 

client: 
𝑑𝑒𝑚𝑎𝑛𝑑𝑖,ℎ = 𝑑𝑒𝑚𝑎𝑛𝑑𝐶𝑢𝑟𝑣𝑒ℎ,𝑡 · 𝑑𝑒𝑚𝑀𝑒𝑛𝑠𝑑 · 𝑑𝑒𝑚𝑎𝑛𝑑𝑎𝐸𝑙𝑒𝑐𝐴𝑛𝑢𝑎𝑙/365 

 

3) Positive Variables: 
powerPV i Installed capacity of PV in house i (kW) 

powerHP i Installed capacity of HP in house i (kW) 

batCapacity i Installed capacity of the battery system in house i 

(kWh) 

GESi,h   Electricity sell in house i to the grid at hour h 

(kWh) 

GEBi,h   Electricity bought in house i from the grid to meet 

the demand at hour h (kWh) 

BET i,d  Total thermal energy bought in house c from the 

grid to meet the daily demand in day d (kWh) 

ENSi,h Energy Not Served of house i at hour h (kWh) 

lDieseli,h   Liters of diesel used by a diesel generator of house 

i at  hour h.(L) 

SOCi,h Battery State-of-Charge of house i at hour h 

(kWh) 

Dischargei,h   Energy discharged from battery of house i at hour 

h (kWh) 

Chargei,h Energy charged to the battery of house i at hour h 

(kWh) 

decDemi,h Decrease in the demand of house i at hour h 

(kWh). 

  

Figure 4: Inputs and outputs of the optimization problem 

Forecast

Models

PV

HP

ES

Location Characteristics (DNI)

Demand Profiles

Performance

(COP,efficiencies, 

losses... )
Diesel

Demand Response Parameters

Operation Costs

Optimal Installed Capacity per Client

Optimal Electric Profiles per Client

Islanded Microgrid Model

 with Market Approach

(Equilibrium Problem 

solved using MCP)

Setup Costs

Price

Temperature Behavior per Client

Generators

End-users

Local 

Market

Outdoor Temperature



5 

 

incDemi,h  Increase in the demand of house i at hour h 

(kWh). 

newDemi,h  

 

New consumption curve after changing the 

profile. (kWh) 

priceh Price agreed by all the agents at hour h (USD) 

Tindi,h  

 

Indoor temperature of house i at hour h (ºC) 

ACInput i,h Air Conditioning of house i at hour h (kWh). 

HPtempi,h   Electricity for heating in house i at hour h (kWh) 

HPtheri,h   Electricity for thermal demand in house i at hour h 

(kWh) 

Gastempi,h   Thermal energy bought for heating in house i at 

day d, hour h (kWh) 

Gastheri,d   Thermal energy bought for thermal demand in 

house i at day d, hour h (kWh) 

 

B. Mathematical formulation 

This section presents detailed mathematical formulation of 
the model used to find the optimal scaling and operation of the 
DG systems in an isolated MG. 

In order to better understand this problem, it could be 
expressed as the following optimization problem: 

∀𝑖 {

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑃𝑙𝐶𝑜𝑠𝑡(𝑋) + 𝑂𝑝𝐶𝑜𝑠𝑡(𝑋)

𝑠𝑡:     𝐺(𝑋) ≥ 0 ∶  𝜆
          𝐻(𝑋) = 0 ∶  𝜇

𝑋 = {𝐺𝐸𝑆𝑖,𝑚,ℎ , 𝐺𝐸𝐵𝑖,𝑚,ℎ , 𝐵𝐸𝑇𝑖,𝑚 … }

 (4) 

∑ 𝐺𝐸𝑆𝑖,𝑚,ℎ

𝐼

𝑖=1

= ∑ 𝐺𝐸𝐵𝑖,𝑚,ℎ        ∀𝑚, ℎ

𝐼

𝑖=1

 (5) 

where λ and μ  are dual variables of the non-equality and 
equality constraints presented above. This problem seeks to 
minimize the operational costs (OpCost) and installation costs 
(PlCost) which are defined as: 

𝑂𝑝𝐶𝑜𝑠𝑡(𝑋) = ∑ [(𝑠𝑒𝑙𝑙𝐶𝑜𝑠𝑡 − 𝑝𝑟𝑖𝑐𝑒ℎ) · 𝐺𝐸𝑆𝑖,ℎ + 𝑙𝐷𝑖𝑒𝑠𝑒𝑙𝑖,ℎ · 𝑑𝑖𝑒𝑠𝑒𝑙𝐶𝑜𝑠𝑡
ℎ

+ 𝑝𝑟𝑖𝑐𝑒ℎ · 𝐺𝐸𝐵𝑖,ℎ] +  ∑ 𝑐𝑜𝑠𝑡𝐸𝑇 · 𝐵𝐸𝑇𝑖,𝑑
𝑑

 
(6) 

𝑃𝑙𝐶𝑜𝑠𝑡(𝑋) = 𝑐𝑜𝑠𝑡𝑃𝑉 · 𝑝𝑜𝑤𝑒𝑟𝑃𝑉𝑖 + 𝑐𝑜𝑠𝑡𝐻𝑃 · 𝑝𝑜𝑤𝑒𝑟𝐻𝑃𝑖 + 𝑐𝑜𝑠𝑡𝐸𝑆
· 𝑏𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 

(7) 

 

As mentioned, this kind of problem can also be formulated 
using an MCP. MCP problems are used to solve single-level 
investment and operation equilibriums. This process is 
explained in the literature in specific cases such as [27] or in 
deeper theoretical background in [28]. In our case, eq. (8)-(11) 
represents the KKT conditions of the model (4)-(5): 

∇𝑋(𝑃𝑙𝐶𝑜𝑠𝑡(𝑋) + 𝑂𝑝𝐶𝑜𝑠𝑡(𝑋)) + 𝜆𝑇∇𝑋𝐺(𝑋) + 𝜇𝑇∇𝑋𝐻(𝑋) ≥ 0 ⊥  𝑋 ≥ 0 (8) 

𝜆 ≥ 0       𝜇 = 𝑓𝑟𝑒𝑒 (9) 

𝜆 ⊥ 𝐺(𝑋)       𝜇 ⊥ 𝐻(𝑋) (10) 

∑ 𝐺𝐸𝑆𝑖,ℎ

𝐼

𝑖=1
= ∑ 𝐺𝐸𝐵𝑖,ℎ        ∀ℎ

𝐼

𝑖=1
     ⊥     𝑝𝑟𝑖𝑐𝑒ℎ ≥ 0 (11) 

 

Where derivatives of the Lagrangian (8) are: 

𝜕ℒ

𝑑𝐺𝐸𝑆𝑖,ℎ
= 𝑠𝑒𝑙𝑙𝐶𝑜𝑠𝑡𝑖 + 𝜃𝑖 · 𝐺𝐸𝑆𝑖,ℎ − 𝑝𝑟𝑖𝑐𝑒ℎ + 𝜇(43) ≥ 0 ⊥  𝐺𝐸𝑆𝑖,ℎ (12) 

𝜕ℒ

𝑑𝐺𝐸𝐵𝑖,ℎ
= 𝑝𝑟𝑖𝑐𝑒ℎ − 𝜇(43) ≥ 0 ⊥  𝐺𝐸𝐵𝑖,ℎ (13) 

𝜕ℒ

𝑑𝑙𝐷𝑖𝑒𝑠𝑒𝑙𝑖,ℎ
= 𝑑𝑖𝑒𝑠𝑒𝑙𝐶𝑜𝑠𝑡 + (𝜆(34) − 𝜇(43)) · 𝑑𝑖𝑒𝑠𝑒𝑙𝑅𝑎𝑡𝑖𝑜 ≥ 0 ⊥ 𝑙𝐷𝑖𝑒𝑠𝑒𝑙𝑖,ℎ (14) 

𝜕ℒ

𝑑𝐵𝐸𝑇𝑖,𝑑
= 𝑐𝑜𝑠𝑡𝐸𝑇 − 𝜇(44) ≥ 0 ⊥  𝐵𝐸𝑇𝑖,𝑑 (15) 

𝜕ℒ

𝑑𝑐ℎ𝑎𝑟𝑔𝑒𝑖,ℎ
= 𝜇(42) · 𝑒𝑓𝑓𝐵𝑎𝑡 + 𝜇(43) ≥ 0 ⊥  𝑐ℎ𝑎𝑟𝑔𝑒𝑖,ℎ (16) 

𝜕ℒ

𝑑𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑖,ℎ
= 𝜆(33) − 𝜇(42) − 𝜇(43) ≥ 0 ⊥  𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑖,ℎ (17) 

𝜕ℒ

𝑑𝐻𝑃𝑡ℎ𝑒𝑟𝑚𝑖,ℎ
= 𝜇(43) + 𝜆(35) − 𝜇(45) · 𝐶𝑂𝑃 · (1 − 𝑙𝑜𝑠𝑠𝑒𝑠𝐻𝑃){ℎ ∈ 𝑑} ≥ 0 

⊥  𝐻𝑃𝑡ℎ𝑒𝑟𝑚𝑖,ℎ 
(18) 

𝜕ℒ

𝑑𝐻𝑃𝑡𝑒𝑚𝑝𝑖,ℎ
= 𝜇(48) · 𝑈𝐴

2⁄ · 𝐶𝑂𝑃 · (1 − 𝑙𝑜𝑠𝑠𝑒𝑠𝐻𝑃) − 𝜇(48){ℎ + 1}

· (−2
𝐶⁄ + 𝑈𝐴

2⁄ ) · 𝐶𝑂𝑃 · (1 − 𝑙𝑜𝑠𝑠𝑒𝑠𝐻𝑃) + 𝜇(43)

+ 𝜆(35) ≥ 0 ⊥  𝐻𝑃𝑡𝑒𝑚𝑝𝑖,ℎ 

(19) 

𝜕ℒ

𝑑𝐴𝐶𝐼𝑛𝑝𝑢𝑡𝑖,ℎ
= 𝜇(43) − 𝜇(48) · 𝑈𝐴

2⁄ · 𝐶𝑂𝑃
1.12⁄ + 𝜇(48){ℎ + 1}

· (−2
𝐶⁄ + 𝑈𝐴

2⁄ ) · 𝐶𝑂𝑃
1.12⁄ ≥ 0 ⊥  𝐴𝐶𝐼𝑛𝑝𝑢𝑡𝑖,ℎ 

(20) 

𝜕ℒ

𝑑𝐺𝑎𝑠𝑡ℎ𝑒𝑟𝑚𝑖,𝑑
= 𝜇(44) − 𝜇(45) ≥ 0 ⊥  𝐺𝑎𝑠𝑡ℎ𝑒𝑟𝑚𝑖,𝑑 (21) 

𝜕ℒ

𝑑𝐺𝑎𝑠𝑡𝑒𝑚𝑝𝑖,ℎ
= +𝜇(48) · 𝑈𝐴

2⁄ − 𝜇(48){ℎ + 1} · (−2
𝐶⁄ + 𝑈𝐴

2⁄ ) + 𝜇(44){ℎ ∈ 𝑑}

≥ 0 ⊥  𝐺𝑎𝑠𝑡𝑒𝑚𝑝𝑖,ℎ 
(22) 

𝜕ℒ

𝑑𝑇𝑖𝑛𝑑𝑖,ℎ
= −𝜇(48) − (1 − 2

𝐶 · 𝑈𝐴⁄ )𝜇(48){ℎ + 1} + 𝜆(37) − 𝜆(36) ≥ 0 ⊥  𝑇𝑖𝑛𝑑𝑖,ℎ (23) 

𝜕ℒ

𝑑𝑆𝑂𝐶𝑖,ℎ
= 𝜆(32) − 𝜆(33) + 𝜇(42){ℎ + 1} − 𝜇(42) + 𝜇(41)(43){ℎ = 𝑓𝑖𝑛𝑎𝑙 ℎ}

− 𝜇(41){ℎ = 1} ≥ 0 ⊥  𝑆𝑂𝐶𝑖,ℎ 
(24) 

𝜕ℒ

𝑑𝑛𝑒𝑤𝐷𝑒𝑚𝑖,ℎ
= −λ(40) + 𝜇(43) − 𝜇(46) − 𝜇(47) ≥ 0 ⊥  𝑛𝑒𝑤𝐷𝑒𝑚𝑖,ℎ (25) 

𝜕ℒ

𝑑𝑖𝑛𝑐𝐷𝑒𝑚𝑖,ℎ
= 𝜆(38) + 𝜆(39) + 𝜇(47) ≥ 0 ⊥  𝑖𝑛𝑐𝐷𝑒𝑚𝑖,ℎ (26) 

𝜕ℒ

𝑑𝑑𝑒𝑐𝐷𝑒𝑚𝑖,ℎ
= −𝜇(47) ≥ 0 ⊥  𝑑𝑒𝑐𝐷𝑒𝑚𝑖,ℎ (27) 

𝜕ℒ

𝑑𝐸𝑁𝑆𝑖,ℎ
= 𝑐𝑜𝑠𝑡𝐸𝑁𝑆 + 𝜇(43)  ≥ 0 ⊥  𝐸𝑁𝑆𝑖,ℎ (28) 

𝜕ℒ

𝑑𝑝𝑜𝑤𝑒𝑟𝑃𝑉𝑖
= 𝑐𝑜𝑠𝑡𝑃𝑉 · (1 + 𝑀𝐶𝑜𝑠𝑡)

− ∑ 𝜇(43) · 𝐷𝑁𝐼ℎ · 0.001 · (1 − 𝑙𝑜𝑠𝑠𝑒𝑠𝑃𝑉)
ℎ

≥ 0 ⊥  𝑝𝑜𝑤𝑒𝑟𝑃𝑉𝑖 
(29) 

𝜕ℒ

𝑑𝑝𝑜𝑤𝑒𝑟𝐻𝑃𝑖
= 𝑐𝑜𝑠𝑡𝐻𝑃 · (1 + 𝑀𝐶𝑜𝑠𝑡) − ∑ 𝜆(35)

ℎ=1
≥ 0 ⊥  𝑝𝑜𝑤𝑒𝑟𝐻𝑃𝑖 (30) 

𝜕ℒ

𝑑𝑏𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖
= 𝑐𝑜𝑠𝑡𝐸𝑆 − ∑ 𝜆(32)

ℎ
≥ 0 ⊥  𝑏𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 (31) 

Non-equality constraints, 𝐺(𝑋), are: 

𝑏𝑎𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 ≥ 𝑆𝑂𝐶𝑖,ℎ    ∀𝑖, ℎ (32) 

𝑆𝑂𝐶𝑖,ℎ−1 ≥ 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑖,ℎ    ∀𝑖, ℎ (33) 

𝑑𝑖𝑒𝑠𝑒𝑙𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 ≥ 𝑙𝐷𝑖𝑒𝑠𝑒𝑙𝑖,ℎ · 𝑑𝑖𝑒𝑠𝑒𝑙𝑅𝑎𝑡𝑖𝑜   ∀𝑖, ℎ (34) 

𝑝𝑜𝑤𝑒𝑟𝐻𝑃𝑖 ≥ 𝐻𝑃𝑡ℎ𝑒𝑟𝑖,ℎ + 𝐻𝑃𝑡𝑒𝑚𝑝𝑖,ℎ   ∀𝑖, ℎ (35) 

𝑇𝑖𝑛𝑑𝑖,ℎ ≥ 15   ∀𝑖 ∉ 4, ℎ (36) 

25 ≥ 𝑇𝑖𝑛𝑑𝑖,ℎ  ∀𝑖 ∉ 4, ℎ (37) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑆ℎ𝑖𝑓𝑡 · ∑ 𝑑𝑒𝑚𝑎𝑛𝑑𝑖,ℎ
ℎ∈𝑑

≥ ∑ 𝑖𝑛𝑐𝐷𝑒𝑚𝑖,ℎ
ℎ∈𝑑

   ∀𝑖, 𝑑 (38) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖,ℎ ≥ 𝑖𝑛𝑐𝐷𝑒𝑚𝑖,ℎ   ∀𝑖, ℎ (39) 

 
𝑛𝑒𝑤𝐷𝑒𝑚𝑖,ℎ ≥ 0.01 𝑑𝑒𝑚𝑎𝑛𝑑𝑖,ℎ ·    ∀𝑖, ℎ 

(40) 

 

And equality constraints, 𝐻(𝑋), are: 

𝑆𝑂𝐶𝑖,1 = 𝑆𝑂𝐶𝑖,228    ∀𝑖 (41) 

𝑆𝑂𝐶𝑖,ℎ = 𝑆𝑂𝐶𝑖,ℎ−1 + 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,ℎ · 𝑒𝑓𝑓𝐵𝑎𝑡 − 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑖,ℎ  ∀𝑖, ℎ (42) 
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𝐺𝐸𝐵𝑖,ℎ − 𝐺𝐸𝑆𝑖,ℎ = 𝑛𝑒𝑤𝐷𝑒𝑚𝑖,ℎ − 𝐷𝑁𝐼ℎ · 𝑝𝑜𝑤𝑒𝑟𝑃𝑉𝑖 · 0.001 · (1 − 𝑙𝑜𝑠𝑠𝑒𝑠𝑃𝑉)
+ 𝑐ℎ𝑎𝑟𝑔𝑒𝑖,ℎ − 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒𝑖,ℎ + 𝐸𝑁𝑆𝑖,ℎ + 𝐻𝑃𝑡ℎ𝑒𝑟𝑖,ℎ

+ 𝐻𝑃𝑡𝑒𝑚𝑝𝑖,ℎ + 𝐴𝐶𝐼𝑛𝑝𝑢𝑡𝑖,ℎ − 𝑙𝐷𝑖𝑒𝑠𝑒𝑙𝑖,ℎ

· 𝑑𝑖𝑒𝑠𝑒𝑙𝑅𝑎𝑡𝑖𝑜  ∀𝑖, ℎ 

(43) 

𝐵𝐸𝑇𝑖,𝑑 = 𝐺𝑎𝑠𝑡ℎ𝑒𝑟𝑚𝑖,𝑑 + ∑ 𝐺𝑎𝑠𝑡𝑒𝑚𝑝𝑖,ℎ
ℎ∈𝑑

  ∀𝑖, 𝑑 (44) 

𝐺𝑎𝑠𝑡ℎ𝑒𝑟𝑚𝑖,𝑑 =
𝑑𝑒𝑚𝑎𝑛𝑑𝑇ℎ𝑒𝑟𝑚𝐴𝑛𝑛𝑢𝑎𝑙𝑖

365
⁄ · 𝑑𝑒𝑚𝑀𝑒𝑛𝑠𝑑  

+ ∑ 𝐻𝑃𝑡ℎ𝑒𝑟𝑖,ℎ · 𝐶𝑂𝑃 · (1 − 𝑙𝑜𝑠𝑠𝑒𝑠𝐻𝑃)/0.8

ℎ∈𝑑

   ∀𝑖, 𝑑 
(45) 

 

∑ 𝑛𝑒𝑤𝐷𝑒𝑚𝑖,ℎ
ℎ∈𝑑

= ∑ 𝑑𝑒𝑚𝑎𝑛𝑑𝑖,ℎ
ℎ∈𝑑

  ∀𝑖, 𝑑 
(46) 

𝑛𝑒𝑤𝐷𝑒𝑚𝑖,ℎ = 𝑑𝑒𝑚𝑎𝑛𝑑𝑖,ℎ + 𝑖𝑛𝑐𝐷𝑒𝑚𝑖,ℎ − 𝑑𝑒𝑚𝐷𝑒𝑚𝑖,ℎ    ∀𝑖, ℎ (47) 

𝑇𝑖𝑛𝑑𝑖,ℎ = 𝑇𝑜𝑢𝑡𝑖,ℎ − 2
𝐶 · 𝑈𝐴⁄ · (𝑇𝑖𝑛𝑑𝑖,ℎ−1 − 𝑇𝑜𝑢𝑡𝑖,ℎ)

+ (𝐺𝑎𝑠𝑡𝑒𝑚𝑝𝑖,ℎ − 𝐴𝐶𝐼𝑛𝑝𝑢𝑡𝑖,ℎ · 𝐶𝑂𝑃
1.12⁄

+ 𝐻𝑃𝑡𝑒𝑚𝑝𝑖,ℎ · 𝐶𝑂𝑃 ·
1 − 𝑙𝑜𝑠𝑠𝑒𝑠𝐻𝑃

0.8
) · 𝑈𝐴

2⁄

+ (𝐺𝑎𝑠𝑡𝑒𝑚𝑝𝑖,ℎ−1 − 𝐴𝐶𝐼𝑛𝑝𝑢𝑡𝑖,ℎ−1 · 𝐶𝑂𝑃
1.12⁄

+ 𝐻𝑃𝑡𝑒𝑚𝑝𝑖,ℎ−1 · 𝐶𝑂𝑃 ·
1 − 𝑙𝑜𝑠𝑠𝑒𝑠𝐻𝑃

0.8
)

· (−2
𝐶⁄ + 𝑈𝐴

2⁄ ) 

(48) 

IV. SCENARIOS AND CASE STUDIES 

In this first approach, a small district has been modeled, 

including the geographical characteristics of Madrid, Spain. 

Conventional battery systems have been considered as energy 

storage.   

The case developed considers 12 days (each one represents 

a month) to simulate the behavior of a year. In addition, this 

case takes into account an MG which consists of eight end-

users and a generator. This generator was modeled as a diesel 

generator.  

As mentioned above, there are several profiles required as 

input for the model: DNIh, demandCurveh,t , demMensd and Tout. 

The data considered is shown in Figure 5 - Figure 9. 

 
Figure 5: DNI profiles per month in Madrid obtained from [24]. 

 
Figure 6: Normalized summer electric 

profiles applied for months ∈ [4,9] from [25]. 

 
Figure 7: Normalized winter electric profiles  

applied for months ∉ [4,9] from [25]. 

 

 
Figure 8: Monthly demand evolution along the year [25] 

 

 
Figure 9: Average outdoor temperatures profiles in Madrid obtained from [26] 

 
Table 2 Scalar Values 

Parameter Value 

lossesPV (%)  24 

lossesHP (%) 15 

MCost (%) 7 

costPV* (USD/kW) 5.7534 

costHP* (USD/kW) 4.9315 

costsES** (USD/kW) 2.054 

costET (USD/kWh) 0.44 

costENS(USD/kWh) 0 

WACC(%) 3 

Cost Increment rate(%) 5 

COP (-) 2.5 

effBat(%) 0.9 

demandElecAnnual (kWh) 3698.1315 

dieselRatio (kW/Liters) 3.5  

dieselCost (USD/Liters) 1.048  

demandShift (%) 0.15 

UA(ºC/kW) 20 

C(kW/ ºC) 1 

θi [(USD /kWh)/kW]  ∀𝑖 0 

*Cost in 20 years(USD/kW)·12/(20·365) 

**Cost in 8 years(USD/kW)·12/(8·365) 

 

As previously stated, perfect competition is considered in 
this model, in other words, the conjecture price-response 
parameter, θi , is 0 for all the agents i. Table 2, Table 3 and 
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Table 4 shows the value of the other parameters used in the 
scenarios presented below. Installation costs have been 
obtained using the cost of their lifespan (20 years or 8 years in 
the case of the batteries) divided by the number of days and 
then multiplied by the number of days considered (12 days, one 
per month).   

Table 3 Parameters Values I [23], [25] 
Agent demandThermAnnuali(kWh) dieselCapacityi (kWh) 

1 2018.3249 - 

2 2018.3249 - 

3 2290.5682 - 

4 0 300 

5 2290.5682 - 

6 1724.79873 - 

7 1724.79873 - 

8 2290.5682 - 

9 2290.5682 - 
 

Table 4 Parameters Values II 
Agent sellCosti(USD /kWh) clientTypei 

1 0.01 1 

2 0.03 1 

3 0.02 2 

4 0.01 - 

5 0.02 2 

6 0.05 3 

7 0.04 3 

8 0.06 1 

9 0.06 3 

 
A base case which considers the current situation is 

developed. Then, four planning scenarios have been studied as 
shown in Table 5. Firstly, a scenario without DR, solar panels 
and storage is developed. Secondly, solar panels and storage 
are introduced. Then, scenario III introduces DR that allows 
shifting 15% of the electrical demand. Finally, houses 2 and 9 
are not allowed to install PV and ES in scenario IV in order to 
demonstrate that order houses can sell their extra power 
production. 

Table 5 Scenarios’ definition 

Scenario DR PV ES HP 
Base     

I     

II     

III     

IV  
* 

*  
*except house 2 and 9 

V. RESULTS 

The current situation, where none of devices is deployed 

and where there is no DR, is taken as base case. The 

installation of PV and ES  is not allowed in scenario I, 

therefore, the final price will be fixed by the marginal cost of 

the generator. This can be seen in Figure 10 and Figure 11 

which represent the behavior of house 1.  Cost comparison 

between Scenarios I and the Base case shows the effect of 

including the synergies between thermal and electric energy 

since HP consumes electric energy to supply thermal 

requirements. 

In scenarios II and III solar panels are introduced in the 

model and their behaviors are shown in Figure 12 and Figure 

13. The main difference between both scenarios is that in the 

last one, the consumption is moved to the hours where there is 

solar production, obtaining a better profit. In both cases, solar 

panels are oversized in summer months in order to obtain the 

best result during winter months, where the solar irradiance is 

lower. This fact can be seen in Figure 14 which corresponds to 

January in scenario III and where the ENS is null. 

Installation and operation costs per scenario are presented 

in Table 6. The price in scenario I is not a surprise since it is 

fixed by the marginal cost of the diesel generator. Solar panels 

and batteries cause an important decrease in costs because 

prices are fixed among the agents whose costs are zero for 

their produced energy. However, they introduce a cost in order 

to express their willingness to sell energy among them. 

 

Figure 10 Consumption profile of house 1 in month 7 at scenario I 

 
Figure 11 Consumption profile of house 1 in month 2 at scenario I 

 
Figure 12 Consumption profile of house 6 in month 7 at scenario II 
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Figure 13 Consumption profile of house 6 in month 7 at scenario III 

 
Table 6 Costs per Agent (USD in 20 years) 

Scenario Base I II III IV 

1 49524.04 30242.88 22321.05 21452.52 20844.88 

2 49524.04 30242.88 22468.83 21527.68 22615.72 

3 54919.720 33916.94 25646.35 24427.31 24449.62 

4 0 0.00 0.00 0.00 0.00 

5 54919.72 33916.94 25646.35 24427.33 24449.62 

6 43701.70 26276.75 19668.42 18794.40 18782.49 

7 43701.70 26276.75 19667.97 18782.33 18780.07 

8 51919.78 30917.00 22842.43 21774.58 21761.64 

9 48680.47 27677.69 20257.39 19452.82 20493.93 

Total 396891.17 240045 178894 171032 172670 

 
Figure 14 Consumption profile of house 6 in month 2 at scenario III 

 
Figure 15 Consumption profile of house 1 in month 7 at scenario IV 

In fact, when a home is not able to install solar panels, 

scenario IV, the rest of end users install higher capacities. 

End-users whose selling price is lower will install more in 

order to take advantage of it. In this case, house 1, which is the 

most willing to sell, taking into account Table 4, obtains the 

higher decrement in cost with respect to scenario III since it 

sells almost all the energy produced as shown in Figure 15. 

Other interesting results are the benefits of the retailer’s 

generator. In all scenarios, its profit is null since there are no 

other generators or agents whose production costs are greater. 

This fact means that a fixed cost should be paid to this agent in 

order to guarantee its services in the case that only a generator 

was available.  
Finally, a temperature model has been developed in this 

paper in order to simulate the behavior of a smart thermostat. 
Indoor temperature has been limited to the interval [15º,25º] 
throughout the day. An example of the behavior of the 
temperature is shown in Figure 16. 

Table 7 Installed capacity (kW) 

Scenario Base & I II III IV 

 PV ES PV ES PV ES PV ES 

1 0 0 1.74 1.04 1.86 0.16 4.36 0.00 

2 0 0 1.67 0.87 1.81 0.08 0.00 0.00 

3 0 0 1.74 0.89 1.96 0.18 2.31 0.00 

4 0 0 0.00 0.00 0.00 0.00 0.00 0.00 

5 0 0 1.74 0.89 1.96 0.18 2.31 0.00 

6 0 0 1.42 0.57 1.55 0.00 1.57 0.01 

7 0 0 1.42 0.57 1.57 0.01 1.57 0.01 

8 0 0 1.70 0.87 1.89 0.23 1.89 0.25 

9 0 0 1.56 0.78 1.67 0.12 0.00 0.00 

 
 

 
Figure 16 Temperatures House 1 Scenario I 

 

VI. CONCLUSION 

This paper presents a Market approach for the operation of 

an MG in islanded mode. Common distributed generation and 

storage systems are taken into account in planning and 

operating the system. The market equilibrium inside the MG 

has been solved using an MCP, considering solar and 

energetic demand characteristics in Madrid, Spain. This case 

study has been validated using a business model, a market 
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approach and an indoor temperature behavior model presented 

above. 

As a result, optimal scaling and operation scheduling were 

found under different scenarios. When there is no DER, 

consumers accept prices imposed by the generators in the MG, 

in this case, the marginal cost of the diesel generator. HP can 

take advantage of the energy synergies and save around 40% 

of the total cost. In the second scenario, where all the end 

users can install PV and ES systems, they can reduce their cost 

by around 25% regarding the first scenario and achieve around 

30% if DR is added. In the case where some of the end-users 

cannot install PV and ES, those who are more willing to sell 

energy can increase these percentages. 

In a future step, more energy resources such as combined 

heat and power will be introduced. Further work regarding 

combining isolated and connected mode of operation should 

be done in order to discover under which circumstances MGs 

are profitable. 
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