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Abstract: Temperature is widely known as one of the most important drivers to forecast electricity
and gas variables, such as the load. Because of that reason, temperature forecasting is and has
been for years of great interest for energy forecasters and several approaches and methods have
been published. However, these methods usually do not consider temperature trend, which causes
important error increases when dealing with medium- or long-term estimations. This paper presents
several temperature forecasting methods based on time series decomposition and analyzes their
results and the trends of 37 different European countries, proving their annual average temperature
increase and their different behaviors regarding trend and seasonal components.

Keywords: temperature forecasting; time series; decomposition methods; generalized additive
models; cross-validation; climate change

1. Introduction

The main goal of large electric and natural gas utility companies is to provide energy to customers,
spread out through large regions such as countries or states. These companies devote great efforts to
optimize all processes required to produce and deliver electricity and natural gas, due to the high costs
of building, maintaining and operating the involved infrastructure. Within this context, short-term
demand forecasting is carried out in order to ensure the reliability of supply in daily operation, whereas
medium- and long-term demand forecasting is the basis for effective operation and planning (see e.g.,
Reference [1]).

It is well-known that meteorological conditions have a significant influence on end-use energy
consumption. Among all the derived factors from weather variables such as solar radiation, humidity,
wind speed, cloudiness, or rainfall, outdoor air temperature is the main weather driver of electricity
and natural gas demand (see e.g., References [2,3]). For example, residential and commercial natural
gas consumption by end use is primarily linked with heating (including hot water) and cooking.
Concerning electricity, it is used not only for heating and cooking, but also for a variety of purposes
including lighting and cooling. Therefore, these energy consumption categories are clearly influenced
by outdoor air temperature. Note that the impact of weather factors could vary depending on its
geographical location, climate and industrial structure of the region.

Focusing on electric load forecasting, non-linear relationship between temperature and electricity
demand has been widely studied, and many papers use temperature as the main driver (see
Reference [4]). In fact, a large amount of examples can be found between the participants of Global
Energy Forecasting Competitions (GEFCom) of 2012, 2014 and 2017 (see References [5–7] respectively).
For that reason, temperature forecasting has been for years of great interest for energy forecasting.
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Furthermore, in the last few years there is a growth of interest in probabilistic load forecasting, and
generating several temperature scenarios to feed a point load forecasting model is a very common
approach. For example, in Reference [8] the authors review several methods for temperature scenario
generation and provide some guidelines, focusing on electric load forecasting.

Decomposition methods are a common and useful approach for time series forecasting (including
temperature forecasting) in order to analyze separately different underlying patterns [9]. As it can
be seen in Figure 1, where 40 years of daily minimum and maximum temperatures (1980–2019) from
weather stations (WS) from four European countries are shown (specifically, Spain (ES), France (FR),
Germany (DE) and Sweden (SE)), these series present strong seasonality within each year. Regarding
temperature trends, observing Figure 1 there is not an evident annual increase, but the effect of
considering it or not will be discussed in this paper. Furthermore, in order to more clearly reflect the
underlying seasonal patterns, Figure 2 shows seasonal plots for each WS.

Figure 1. Minimum and maximum daily temperatures of four weather stations from Europe: (a) Spain
(ES). (b) France (FR). (c) Germany (DE). (d) Sweden (SE).

Time series decomposition methods usually split the time series in three main components or
underlying patterns: trend (or trend-cycle), seasonal and remainder. In the context of climate change,
the scientific consensus regarding human-caused global warming global exceeds 90% according to
Reference [10], and temperature trend analysis has increased in interest. For example, in Reference
[11], the authors analyze monthly European temperatures showing that most of the trend components
in the time series are positive and linear. Regarding temperature forecasting, Reference [12] proposes a
load-based temperature forecasting model tested with and without the trend as input variable, without
finding significant error improvements. However, in that paper the authors use 2 years (2008 and 2009)
as training set, to forecast 2010. What happens if we wanted to forecast a longer period? Would the
inclusion of the trend negligible for our model? Or on the contrary, would the error increase if we did
not consider it? Regarding the seasonal component, several different methods will be tested. Finally,
the remainder, dealing with medium- or long-term forecasting, is usually assumed to be uncorrelated,
normally distributed with zero mean and unknown variance. These residuals of trend and seasonal
components typically model cold and heat temperature waves, such as those described in Reference
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[13]. Here we will make the aforementioned assumption, forecasting the expected value of temperature
based on its trend and seasonal components.

Figure 2. Seasonal plots where the daily data from each year are overlapped: (a) Spain (ES). (b) France
(FR). (c) Germany (DE). (d) Sweden (SE).

This paper, focusing on long-term forecasting (according to Reference [4], more than three years)
and time series decomposition methods, aims to answer three questions. First, does trend inclusion
improve the performance of our models? Our results, based on 6 different temperature forecasting
models, conclude that in most cases the answer is yes. Secondly, which method behaves better
regarding temperature forecasting? Finally, and once answered that two main questions, what do our
models say about the behavior of European minimum and maximum temperatures?

2. Temperature Times Series Decomposition

Time series decomposition involves separating the time series into several distinct components
of interest. As stated in Reference [9], it is often helpful to split time series into several components,
each one representing an underlying pattern category. As the magnitude of the annual fluctuations
does not vary with the level of the temperature time series, the additive decomposition is the most
appropriate for temperature time series:

yt = Dt + Rt = Tt + St + Rt, (1)

where yt is the daily temperature at time t, and Tt, St and Rt are the trend, seasonal and remainder
components, all at time t, respectively. The sum of the trend and the seasonal components Dt represents
the deterministic component of yt, whereas the deviations of yt around the expected value given by
Dt, are represented by the remainder component, that is, those variations not explained by the
deterministic one.

Although decomposition is primarily useful for studying historical changes over time, it can
also be used in forecasting. In this paper, the deterministic component is projected into the future
to estimate the expected daily temperatures. Thus, the trend and seasonal components have to be
modeled to allow not only their accurate estimation, but reliable extrapolation into the future as well.
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Regarding temperature time series decomposition, and as it can be seen in Figure 1, if the trend
exists, it should be very weak. For that reason, a simple linear regression on the input time t has been
used, as a robust and reliable model and in line with Reference [11]. Related to the trend component, we
have ignored the possible cyclic behavior of not fixed frequency. Concerning the seasonal component,
as in classical decomposition, in this paper it is assumed that the seasonal component is constant from
year to year. For daily temperature time series this is a reasonable assumption in long-term forecasting.
Finally, modelling the remainder component is out of the scope of this paper, since our goal is to model
the deterministic component and measuring the impact of the trend when dealing with long-term
forecasts.

Among all possible alternatives for the deterministic component, in this paper we have proposed
a particular set of models. These models are listed in Table 1 and are explained in more detail in
following sections.

Table 1. List of models and main characteristics.

ID Fitting Trend Seasonal

REG OLS Linear with the year Day of the year as categorical
GAM OLS Linear with time Cubic spline of the day of the year
FFT Backfitting Linear with time Sum of weighted sines and cosines
AVG Backfitting Linear with time Weighted moving average

LOESS Backfitting Linear with time Robust LOESS
LHM Backfitting Linear with time Piecewise linear model

2.1. Naïve Linear Regression Model

The naïve model (REG) has the form of a multiple linear regression given by

DREG
t = TREG

t + SREG
t , (2)

where TREG
t and SREG

t are the trend and the seasonal components, respectively. TREG
t is a simple linear

term with the year, whereas SREG
t is a function of the day of the year.

Different alternatives for modeling SREG
t are possible. For example, a three-order polynomial

with the day of the year, considered as a continuous variable, can produce a seasonal component in a
compact-form with a few parameters. However, in our experiments better results are obtained when
the day of the year is considered as categorical, that is, the seasonal component consists of 364 dummy
variables representing the day of the year. Thus, the naïve model of Equation (1) can be rewritten as

DREG
t = β0 + β1yeart +

364

∑
i=1

αidi
t, (3)

where yeart is the year of time t, and di
t is the dummy variable for the i-th day of the year. The

parameters of Equation (3) are estimated by least squares, minimizing the Mean Squared Error (MSE).
Figure 3 shows an example of the seasonal component estimated by REG for the maximum

temperature of Spain, where 30 years of daily data have been used. Compared with the other methods,
it is clear that REG generates a noisy but non-biased seasonal component. In all our experiments with
the minimum and maximum temperatures of the 37 countries this is the typical behavior.
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Figure 3. Seasonal component for the maximum temperature of Spain. (a) Estimated by all the
proposed methods of Table 1. (b) Estimated by REG. (c) Estimated by FFT. (d) Estimated by AVG.
(e) Estimated by LOESS. (f) Estimated by LHM. (g) Estimated by GAM. (b–g) Black lines in background
represent the seasonal components estimated by all the rest of the models of Table 1.

2.2. Discrete-Time Fourier Transform

The Discrete-time Fourier Series decomposition (FFT) proposed for the deterministic term of
Equation (1) has the form

DFFT
t = TFFT

t + SFFT
t , (4)

where TFFT
t is a simple linear trend given by β0 + β1t, and SFFT

t is the seasonal component, represented
by a Discrete-time Fourier series (see e.g., Reference [14])

SFFT
t =

H

∑
h=1

θh sin(ωht) +
H

∑
h=1

φh cos(ωht), (5)

where θh and φh are the coefficients of the Fourier series, H is the number of harmonics, and the angular
frequency has been fixed to ω = 2π/365 in order to model the periodic oscillations of temperature
with the seasons of the year. Note that the frequencies of the sines and cosines are multiples of the
fundamental frequency 1/365, therefore the frequency h/365 is called the hth harmonic. For a given
value of H, the amplitudes of the sines and cosines can be estimated by Ordinary Least Squares (OLS).
The value of H has been selected using repeated cross-validation (see Section 3.2). Both the trend
and the seasonal components of Equation (4) are iteratively refitted using the backfitting algorithm of
Section 3.1.

According to the illustrative example of Figure 3, the seasonal component estimated by FFT has a
good trade-off between bias and variance. This is the typical behavior observed in all our experiments
with the 37 countries. Figure 4 shows the trend and seasonal components estimated for the maximum
temperature of Spain (ES) and Sweden (SE). The number of harmonics estimated in both cases is 2.
Thus, the seasonal component is the result of combining two sines and two cosines.
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Figure 4. Trend and seasonal components estimated by the FFT model for (a) Spain (ES), and (c) Sweden
(SE). (b) and (d) show the detail of the seasonal component estimated for each country. In order to
facilitate the comparison between both countries, seasonal components of (b) Sweden and (d) Spain
are indicated with red broken lines.

2.3. Weighted Moving Average

In contrast to the proposed FFT method of Section 2.2, where a predefined form of the seasonal
component is assumed, smoothers do not make any assumption about of the form (see e.g., References
[15,16]).

The proposed weighted moving average decomposition (AVG) for the deterministic term of
Equation (1) has the form

DAVG
t = TAVG

t + SAVG
t , (6)

where TAVG
t is a simple linear trend given by β0 + β1t, and the seasonal component SAVG

t is obtained
by fitting a locally weighted linear regression, that is, placing less weight on the points at the edge
of the smoothing window, centered about the current element, according to a Gaussian function (see
Reference [16]). The window length sets the number of weighted neighbouring elements used to fit
the linear regression locally by OLS, and it has been selected using repeated cross-validation (see
Section 3.2). Both components of Equation (6) are refitted using the backfitting algorithm of Section 3.1.

The illustrative example of Figure 3 is representative of the typical behavior observed in all our
experiments with the 37 countries. The seasonal component estimated by AVG selected a window
size of 89 in this particular case. As expected, this window length produces a smooth output with a
reasonable compromise between bias and variance, being the bias concentrated in summer and winter,
the periods of higher curvature.

2.4. Robust Locally Estimated Scatterplot Smoothing

As an alternative to the proposed AVG method, the robust locally estimated scatterplot smoothing
decomposition (LOESS) replaces the locally weighted linear regression used in the seasonal component
of AVG by robust LOESS, a weighted quadratic least squares regression robust to possible outliers,
see References [17,18]. Note that LOESS uses the tri-cube weight function instead of the Gaussian one
used in AVG. As in the proposed AVG method, the window length has been selected using repeated
cross-validation (see Section 3.2).
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According to Figure 3, the seasonal component estimated by LOESS presents a good compromise
between bias and variance, but, as also happened with AVG, bias is concentrated in the periods with
more curvature (i.e. summer and winter). It is noteworthy that these two models are distanced from
all the others in these periods.

2.5. Linear Hinges Model

The linear hinges model decomposition (LHM) for the deterministic term of Equation (1) has
the form

DLHM
t = TLHM

t + SLHM
t , (7)

where TLHM
t is a simple linear trend given by β0 + β1t, and the seasonal component SLHM

t is obtained
by fitting the Linear Hinges Model proposed in References [19,20]. Thus, the seasonal component
SLHM

t is a piecewise linear model defined by K knots, the points specifying the pieces.
The trend and seasonal components of Equation (6) are refitted using the backfitting algorithm

of Section 3.1. In each iteration of this algorithm the trend component is fitted by OLS, whereas
the number and positions of knots in SLHM

t are obtained using the learning algorithm described in
Reference [19], a particular implementation of backfitting that combines a greedy divide-and-conquer
strategy with a computationally efficient pruning approach and special updating formulas.

Figure 3 shows the seasonal component estimated by LHM, having a good trade-off between bias
and variance. Note that SLHM

t is a very simple seasonal model. With only 22 parameters it is able to
represent the underlying seasonal pattern in a compact form. The rest of seasonal models, except FFT,
require hundreds of coefficients.

2.6. Generalized Additive Model

Following Reference [15], the Generalized Additive Model decomposition (GAM) proposed for
the deterministic term of Equation (1) has the form

DGAM
t = TGAM

t + SGAM
t , (8)

where TGAM
t and SGAM

t are the trend and the seasonal component, respectively. The trend TGAM
t is

modeled by a simple linear regression β0 + β1t. Concerning the seasonal component SGAM
t , we have

used a cyclic penalized cubic regression spline with the day of the year dt, with knots at each day of
the year {1, · · · , 365}. This type of cubic spline forces that the beginning and the end of the seasonal
term match up to second derivative, (see Reference [21] for further details). Note that because both
model components have a straightforward representation using basis functions, all the parameters of
this model can be fitted directly using OLS.

It is worth noting that that this model has also been used to test the suitability of linear trend. In
order to do that, we have compared the results of the GAM with linear trend, with a version in which
the trend has been also fitted using regression cubic splines (see, e.g., Reference [22]). Comparing their
results, the first outperforms the out-of-sample error of the second in more than 84% of the cases. That
confirms our initial assumption, and what was stated in Reference [11].

According to the illustrative example in Figure 3, the seasonal component estimated by GAM
has a good trade-off between bias and variance. Note that the GAM’s seasonal term seems to be a
smoothed version of the seasonal obtained with REG. In fact, GAM provides the best results in our
experiments of Section 4.
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3. Estimation and Model Selection

The parameters of the previous models are estimated by minimizing the Mean Squared Error
(MSE), or equivalently, the Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1
N

N

∑
t=1

(yt − Dt)
2, (9)

where N is the number of observations in the data set, yt is the actual temperature and Dt is the
estimated temperature by the deterministic component. We have also used the RMSE for evaluation of
the performance of the different models tested in the following sections.

According to the particular specification of each candidate model, only REG and GAM have
a fixed number of parameters, that can be estimated using ordinal least squares (OLS). The rest of
models require a mechanism to automatically estimate their complexity, as well as an alternative to
standard OLS to fit the parameters. In this paper we have used repeated cross-validation (RCV) for
selecting the complexity of these models, combined with backfitting to estimate their parameters. The
list of models is presented in Table 1, showing those fitted using backfitting and RCV.

Note that to fit the seasonal component of the proposed methods, the February 29 of all the years
are previously discarded in order to work with years of 365 days. Furthermore, all the methods except
REG and FFT require to form a learning set by overlapping years, such as the scatterplots of Figure 2.

3.1. Backfitting

Among all the proposed models, only the parameters of REG and GAM can be estimated in one
shot by OLS. When it is not possible to estimate the full set of parameters of (1) by ordinal least squares
in one shot, an alternative is to estimate each component in a forward stepwise manner. This is the
common approach, for example, in classical additive decomposition time series.

In the forward fitting approach the trend component is first estimated from the original data.
Once the trend has been estimated, the seasonal component is estimated from the detrended series,
that is, the time series resulting from subtracting the estimated trend from the original time series.
The remainder term (Rt) is just the residuals of the deterministic component estimated using this
simple procedure.

However, this forward one-step fitting can be improved using backfitting. This algorithm was
initially proposed by Reference [23] in the context of projection-pursuit regression, being used for
parameter estimation in well-known models such as GAM (see Section 2.6) and LASSO [24]. It is also
the global fitting strategy of the LHM (see Section 2.5), the SNAKE model [25], and the medium-term
forecasting model of Reference [26]. Reference [15] makes intensive use of this general algorithm,
providing justifications for its use. Note that the backfitting algorithm is in fact a kind of coordinate
descent optimization method, see Reference [27]. According to Reference [28], these coordinate descent
algorithms are also used to solve problems that arise in machine learning and data analysis, particularly
in big data settings.

Basically, backfitting is an iterative strategy where the parameters of the model are grouped such
that the solution for those in each group is straightforward given fixed values for those outside the
group. The algorithm iterates through these groups, one by one, making several passes over the groups.
Although this strategy does not guarantee that the solution is the global minimum, this does not mean
that the algorithm is not useful. Moreover, experience tells us that it is very effective in practice.

In this paper we propose a particular implementation of the backfitting algorithm, see Algorithm 1,
designed for fitting the decomposition model of (1) when direct ordinal least squares is not possible.
There are two groups of parameters, those related to the trend component and those that define the
seasonal term. The remainder component is just computed at the end by subtracting the estimated
trend and seasonal terms.
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According to Reference [16], the required number of cycles m of the backfitting algorithm is
usually less than 20, depending on the amount of correlation in the inputs. In this paper we have set
m = 20 in Algorithm 1.

Algorithm 1: The backfitting algorithm for the additive decomposition model

Input: Training data given by the temperature time series {(ti, yi)}N
i=1

Output: Model defined by components Tt, St and Rt

1 initialize St = ∅
2 for i ∈ {1, . . . , m} do
3 Step 1: Fit the trend component
4 Compute the partial residuals rt = yt − St

5 Estimate Tt from the deseasonalized data {(ti, ri)}N
i=1

6 Step 2: Fit the seasonal component
7 Compute the partial residuals rt = yt − Tt

8 Estimate St from the detrended data {(ti, ri)}N
i=1

9 Center St = St −mean(St)

10 Step 3: Compute the remainder component
11 Rt = yt − Tt − St

12 return Tt, St and Rt

3.2. Complexity Selection: Repeated Cross-Validation

Determining the optimal value for the complexity parameter is critical for ensuring that the model
performs well. In this paper, where the complexity of several models had to be determined (specifically,
FFT, AVG and LOESS) before being used for each country, we have used repeated cross-validation
(RCV, also known as leave-group-out or Monte Carlo cross-validation, see Reference [29]) to ensure
a good complexity-accuracy balance. Unlike K-fold cross-validation, where the number of folds
determines the number of equal-sized and mutually-exclusive folds, RCV allows decoupling the
number of partitions and its size. Being N the size of our dataset, first, a randomly selected (without
replacement) fraction of data of size M is taken as training set, and the rest of the points are used
to validate. This sampling is repeated K times, being K and M independent and controlled by the
practitioner. The error for each partition is evaluated over the remaining N–M points.

In this paper, RCV has been chosen over K-fold cross-validation to better control the variance of
our results, due to the fact that it has been used to determine the complexity of the aforementioned
three methods, and for all the different time series that will be analyzed in the case study of Section 4
(74 time series, minimum and maximum temperatures from 37 European countries). To do that, and
using the values suggested in Reference [29], at each replication we have used a 75% of our training
data for parameter estimation (M), and we have carried out 100 repetitions (K).

Finally, in order better control model complexity not simply selecting the one with lowest RCV
error, and following a similar approach to the one-standard error rule detailed in Reference [16], the
most parsimonious model whose error is inside the confidence interval of 95% of the error of the best
one is finally chosen. Figure 5 shows an example of this final step.
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Figure 5. Detail of the error curve with error bars obtained by repeated cross-validation at each point,
for the method AVG, and the maximum temperature of Spain. The smoothest model (banwidth = 89)
whose error is inside the 95% confidence interval of the best one (banwidth = 61) is chosen, indicated
by the red vertical broken line.

4. Results: The European Case

In this section, the minimum and maximum daily outdoor temperatures from 37 weather stations
(WS) will be used, in order to assess the impact of the trend component in the context of medium-
or long-term estimations, as well as to compare exhaustively all the methods listed in Table 1 and
explained in previous sections. Furthermore, the best performing model will be finally selected,
analysing the estimated temperature trends in Europe according to the selected model.

4.1. Data Description

First, the data used for the case study are described. All the data used in this paper come from the
European Climate Assessment & Dataset project (ECA&D) [30]. The dataset consists of thousands of
weather stations, with quite complete daily temperature observations since 1980 for the main European
cities. It should be noted that in spite of the fact that we have focused on the last forty years of data, the
ECA&D dataset, depending on the weather station, has much more past information. As an example,
the oldest (not-empty) available data point comes from Radcliffe Meteorological Station of Oxford
University (ID 274 in ECA&D), from which there is information from December 1814. In this paper, we
will select one reference time series for each country. A first pre-processing step to select that reference
temperatures, remove outliers and fill their missing values was required before testing the different
models. Regarding missing values, we have applied a hierarchical regression imputation method,
based on neighbouring stations, that is detailed in Appendix A.2. All the information regarding data
pre-processing is detailed in Appendix A, including the list of reference weather stations that have
been selected.

Our dataset consists of the minimum (TMIN) and maximum (TMAX) daily outdoor temperatures
recorded at the 37 weather stations of Table A1, from January 1980 to December 2019. Thus, this case
study consists of 74 daily time series of length 40 years (14,610 days). Furthermore, let us describe the
different data partitions that have been used in this paper. The years 1980–2009 have been used as
training data (in-sample, 10958 points), and years 2010–2019 have been used as test set (out-of-sample,
3652 points). Figure 6 shows the boxplot of the minimum and maximum daily temperatures of the
selected station for each country, once main outliers have been removed (see Table A2). It is noticeable
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the clear differences between the Mediterranean countries, such as Malta (MT), Italy (IT), Greece (GR),
Spain (ES) or Cyprus (CY), and the rest.

Figure 6. Boxplots for the (a) minimum daily temperature and (b) maximum daily temperature of each
European country.

Dendrograms of Figure 7 summarize the complex spatio-temporal correlations of the selected
weather stations based on the minimum and maximum temperatures, respectively. It is remarkable
that, considering a correlation threshold of 0.9, the clusters formed in both dendrograms are different.
For example, according to the dendrogram of TMAX shown in Figure 7 (top), Finland (FI) has similar
maximum temperatures to Norway (NO), Denmark (DK) and Sweden (SE), whereas according to the
one of TMIN (bottom), FI is closer to Russia (RU) and Estonia (EE) in terms of minimum temperature.

Figure 7. Dendrograms of the 37 European weather stations, based on the (a) minimum and (b)
maximum temperatures. The coloured clusters correspond to those formed using a correlation
threshold of 0.9.
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Figure 8 shows the location of the selected weather stations. Each station has been coloured
according to the identified clusters of the dendrogram of the maximum temperature (see Figure 7, top).
Note that both latitude and longitude explain those clusters.

Figure 8. Location of the reference weather stations. The coloured clusters correspond to those formed
using the dendrogram of Figure 7 (Top), based on the maximum temperature.

4.2. Importance of the Trend Component

This section aims to briefly analyze the effect of including the trend in all the methods described
in Section 2. To do that, two versions of each model have been fitted, one using linear trends as
described in Section 3, and other just using seasonal components and the level (i.e., mean value) of
each time series. Table 2 shows the out-of-sample error improvements obtained by including the
trend in each case, calculated as the percentage improvement in RMSE of the model with linear trend,
compared to the one using the mean.

First, it can be seen that results are systematic—the effect of including the trend in a particular
time series (minimum or maximum from any country) provides similar error improvements regardless
the model in use. Secondly, regarding trend significance, we have obtained p-values lower than 0.05
in 73 of the 74 time series: the only exception is the minimum temperature from Romania (RO), with
a p-value of 0.112. Starting from this point, it can be clearly seen that including the trend improves
model performance in nearly all the cases. In terms of minimum temperatures, excluding RO , 92% of
the countries present out-of-sample error improvements, whereas in the case of TMAX, that rate rises
to 97%. Finally, it can be seen that several countries, such as Cyprus (CY), Poland (PL), or Serbia (RS)
present high error improvements. However, in the other side, one of the 74 analyzed time series has a
surprising result: the trend of the minimum temperature from Ireland (IE), whose p-value is 7.41·10−5,
and providing nearly an 1% of in-sample error improvement, causes an out-of-sample error increase
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of 6%. As it will be discussed in Section 4.4, for all the models, the resulting trend in the minimum
temperature of IE has been negative, and it seems not to be the behavior of the time series during the
10 years of test set. Ignoring that case, and as aforementioned, the trend has proved to improve model
out-of-sample performance in most of series and countries.

Table 2. Out-of-sample (TS) error improvements (∆RMSE, %) obtained by including linear trends in
all the methods, for the minimum and maximum temperatures from the 37 European countries.

Country ID TMIN—Error Improvement (∆RMSE TS, %) TMAX—Error Improvement (∆RMSE TS, %)

REG GAM FFT AVG LOESS LHM REG GAM FFT AVG LOESS LHM

AT −4.353 −4.472 −4.507 −4.401 −4.485 −4.327 −3.821 −3.893 −3.923 −3.809 −4.118 −3.895
BA −3.777 −3.881 −3.889 −3.811 −3.645 −3.915 −2.915 −2.955 −2.984 −2.914 −2.810 −2.965
BE −1.530 −1.581 −1.638 −1.543 −1.401 −1.578 −1.537 −1.585 −1.620 −1.551 −1.843 −1.548
BY −1.150 −1.180 −1.204 −1.165 −1.119 −1.176 −2.151 −2.191 −2.208 −2.147 −2.181 −2.278
CH 2.057 2.162 2.044 2.150 2.211 2.174 −1.842 −1.896 −1.911 −1.853 −2.296 −1.847
CY −15.007 −15.300 −15.425 −15.070 −14.854 −15.312 −7.798 −8.005 −8.158 −7.956 −8.179 −7.985
CZ −6.971 −7.185 −7.239 −7.112 −7.249 −6.903 −1.758 −1.809 −1.863 −1.776 −2.132 −1.806
DE −0.439 −0.448 −0.477 −0.431 −0.500 −0.455 −2.051 −2.104 −2.153 −2.083 −2.336 −2.110
DK −1.161 −1.201 −1.247 −1.170 −1.200 −1.204 −4.440 −4.536 −4.604 −4.407 −4.576 −4.502
EE 1.906 1.952 1.899 2.009 2.534 2.586 −1.709 −1.773 −1.790 −1.727 −1.884 −1.759
ES −2.929 −3.020 −3.069 −2.927 −3.133 −2.551 −2.481 −2.560 −2.630 −2.508 −2.772 −2.560
FI −2.929 −3.083 −3.071 −3.030 −2.993 −3.094 −1.937 −2.027 −2.079 −1.892 −2.046 −2.020
FR −0.716 −0.732 −0.748 −0.705 −0.720 −0.726 −1.933 −1.998 −2.026 −1.953 −2.270 −2.061
GB −0.079 −0.097 −0.150 −0.075 −0.074 −0.107 −1.560 −1.627 −1.656 −1.589 −1.824 −1.991
GR −6.680 −6.837 −6.856 −6.878 −6.922 −6.926 −2.559 −2.638 −2.688 −2.620 −2.636 −2.668
HR −5.897 −6.055 −6.087 −5.942 −6.052 −6.771 −4.622 −4.705 −4.730 −4.587 −4.623 −4.756
HU −3.746 −3.880 −3.897 −3.784 −3.812 −3.826 −2.219 −2.277 −2.308 −2.272 −2.321 −2.273
IE −0.448 −0.456 −0.450 −0.452 −0.464 −0.450 5.978 6.086 6.061 6.017 5.985 6.049
IS −8.999 −9.388 −9.497 −9.427 −9.239 −9.297 −0.250 −0.263 −0.290 −0.225 −0.387 −0.298
IT −5.217 −5.370 −5.388 −5.326 −5.274 −5.376 −1.034 −1.076 −1.124 −1.054 −1.282 −1.163
LT −2.666 −2.746 −2.765 −2.686 −2.450 −2.713 −1.629 −1.676 −1.723 −1.600 −1.714 −1.930
LU −1.504 −1.549 −1.608 −1.491 −1.597 −1.409 −1.953 −2.001 −2.037 −1.946 −2.696 −1.992
LV −1.551 −1.615 −1.638 −1.554 −1.613 −1.583 −1.325 −1.361 −1.421 −1.309 −1.407 −1.355
MD −2.888 −3.008 −3.068 −2.896 −2.836 −2.774 −3.225 −3.349 −3.329 −3.235 −3.359 −3.301
MT −2.620 −2.734 −2.847 −2.542 −2.579 −2.635 −1.256 −1.322 −1.344 −1.319 −1.450 −1.297
NL 0.005 −0.007 −0.045 0.015 0.069 −0.030 −1.372 −1.419 −1.480 −1.383 −1.780 −1.419
NO 0.374 0.367 0.300 0.397 0.529 0.328 −0.795 −0.841 −0.933 −0.818 −1.014 −0.527
PL −4.342 −4.459 −4.471 −4.248 −4.291 −4.444 −3.660 −3.728 −3.755 −3.668 −3.760 −3.670
PT −0.647 −0.665 −0.677 −0.666 −0.652 −0.657 −2.766 −2.840 −2.898 −2.802 −3.064 −2.846
RO −0.562 −0.580 −0.596 −0.615 −0.602 −0.583 −2.012 −2.102 −2.156 −2.051 −1.985 −1.997
RS −6.853 −7.056 −7.069 −6.916 −7.021 −6.960 −3.194 −3.277 −3.308 −3.245 −3.362 −3.272
RU −3.413 −3.566 −3.579 −3.534 −3.401 −3.848 −1.424 −1.487 −1.504 −1.436 −1.532 −1.737
SE −0.742 −0.801 −0.840 −0.732 −1.060 −1.004 −1.649 −1.737 −1.786 −1.671 −1.921 −1.893
SI −7.528 −7.749 −7.811 −7.669 −7.484 −7.474 −3.870 −3.956 −4.009 −3.939 −4.111 −3.958
SK −3.432 −3.533 −3.589 −3.461 −3.463 −3.820 −3.213 −3.287 −3.352 −3.251 −3.492 −3.226
TR −4.612 −4.680 −4.749 −4.585 −4.635 −4.677 −3.892 −4.050 −4.111 −4.035 −3.898 −4.498
UA −4.147 −4.297 −4.317 −4.152 −3.970 −4.438 −4.484 −4.620 −4.649 −4.368 −4.497 −4.586

4.3. Empirical Comparative Analysis

Having described the dataset to be used, and having confirmed the importance of the trend
component in long-term temperature forecasting, this section aims to compare the performance of the
different candidate models of Table 1 in the selected 37 reference European stations (see Table A1).
As aforementioned, for those methods that require selecting model complexity (i.e., FFT, LOESS and
AVG), their hyper-parameters have been estimated for each country by using repeated cross-validation,
and are detailed in Table A4. The estimated number of knots of the LHM for each country, which is
automatically determined by its learning algorithm, can be also seen in Table A4. The results provided
by the six methods over the 37 reference weather stations, and for their minimum and maximum
temperatures, are detailed below.

First, before presenting the R-squared and the in-sample and out-of-sample errors (RMSE) of all
the methods, Figures 9 and 10 show the relative position of the different methods when estimating the
minimum and maximum temperatures, respectively, and in-sample and out-of-sample. It should be
noted that in both figures, countries have been sorted attending to the clusters of Figure 7 but there is
not a best performing model for each group, and we have not found any relationship between that
ordering and model performance.

The results obtained for the minimum and maximum temperatures are quite similar—the best
performing models are the same in Figures 9 and 10. First, it should be noted that regarding in-sample
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error, the REG method outperforms in all the countries all the other models. However, it can be seen
that REG is never selected as one of the the top-3 models for out-of-sample performance. For that
reason, we can conclude that it is clearly over-fitted. Ignoring REG, it can be seen that in both minimum
and maximum temperatures, the second and third places regarding in-sample error belong to the
GAM, and the LHM (the latter, beaten by the FFT in some countries).

Figure 9. Results for the minimum temperatures and all the tested methods: (a) dendrogram of the
37 weather stations, first three methods with lower (b) in-sample and (d) out-of-sample error, and
percentage of times winner for each method: (c) in-sample and (e) out-of-sample.

Figure 10. Results for the maximum temperatures and all the tested methods: (a) dendrogram of the
37 weather stations, first three methods with lower (b) in-sample and (d) out-of-sample error, and
percentage of times winner for each method: (c) in-sample and (e) out-of-sample.
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On the other hand, in the out-of-sample set, there are three models that clearly outperform the
others—GAM, FFT an LHM. The first one, that also was the second best in-sample performer after the
over-fitted REG, has the lowest out-of-sample RMSE in most of the cases. As it can be seen in Figures 9
and 10, GAM is the out-of-sample winner in almost 60% of the countries, both in the minimum and
maximum temperatures. After the GAM, FFT provides the lowest error in approximately 25% of the
countries, and LHM in the vast majority of remaining cases.

Before presenting the RMSE for all the methods and countries, and in order to check the goodness
of the estimated deterministic (trend plus seasonal) components explaining temperature variance,
Tables 3 and 4 present the Adjusted R-squared (R2

adj) for the minimum and maximum temperatures,
respectively. It can be seen that, in spite of the fact that the remainder has not been modelled and,
therefore, forecasting performance can be improved, the obtained R2

adj are over 0.7 in the vast majority

of cases. The average R2
adj for the minimum temperature and all the models and countries is of 0.731,

for both in-sample and out-of-sample sets. Regarding maximum temperature, the average R2
adj is

0.777 and 0.776 respectively. The only cases where a weak R2
adj has been obtained (lower than 0.5

in average) are Ireland (IE), for its out-of-sample minimum temperature, and Iceland (IS), for its
maximum temperature (both in- and out-of-sample).

Table 3. Summary of the in-sample (TR) and out-of-sample (TS) Adjusted R-squared (R2
adj) for the

minimum temperatures, obtained with all the different methods and for all the countries. The bold
values with * indicate the best method for each country and dataset.

Country ID R2
adj (TMIN–TR) R2

adj (TMIN–TS)

REG GAM FFT AVG LOESS LHM REG GAM FFT AVG LOESS LHM

AT 0.777 * 0.772 0.771 0.768 0.768 0.772 0.779 0.785 0.785 * 0.780 0.781 0.785
BA 0.721 * 0.713 0.711 0.708 0.709 0.712 0.717 0.725 0.724 0.719 0.720 0.728 *
BE 0.660 * 0.650 0.647 0.646 0.646 0.648 0.619 0.630 * 0.628 0.627 0.626 0.624
BY 0.709 * 0.703 0.702 0.697 0.698 0.701 0.683 0.691 * 0.689 0.686 0.687 0.689
CH 0.767 * 0.761 0.758 0.757 0.756 0.761 0.760 0.770 * 0.768 0.762 0.761 0.768
CY 0.850 * 0.845 0.845 0.844 0.844 0.845 0.860 0.863 0.863 * 0.861 0.861 0.863
CZ 0.740 * 0.734 0.732 0.730 0.729 0.734 0.717 0.725 0.726 * 0.721 0.722 0.722
DE 0.709 * 0.702 0.700 0.696 0.697 0.700 0.700 0.706 * 0.704 0.699 0.701 0.705
DK 0.777 * 0.770 0.770 0.766 0.765 0.770 0.763 0.771 0.772 * 0.769 0.770 0.772
EE 0.705 * 0.696 0.693 0.688 0.689 0.698 0.666 0.680 * 0.677 0.674 0.672 0.675
ES 0.812 * 0.807 0.805 0.804 0.805 0.806 0.822 0.828 0.828 * 0.822 0.827 0.825
FI 0.741 * 0.735 0.731 0.729 0.731 0.733 0.741 0.753 * 0.749 0.749 0.750 0.751
FR 0.656 * 0.647 0.647 0.642 0.643 0.643 0.641 0.647 * 0.646 0.641 0.642 0.639
GB 0.660 * 0.651 0.651 0.647 0.647 0.652 0.633 0.643 * 0.642 0.638 0.639 0.640
GR 0.816 * 0.810 0.808 0.807 0.807 0.808 0.785 0.791 0.789 0.790 0.789 0.792 *
HR 0.794 * 0.788 0.786 0.785 0.785 0.789 0.790 0.796 * 0.795 0.792 0.792 0.796
HU 0.779 * 0.773 0.772 0.769 0.770 0.773 0.787 0.795 * 0.794 0.789 0.790 0.792
IE 0.583 * 0.571 0.571 0.567 0.568 0.569 0.491 0.500 * 0.500 0.496 0.497 0.495
IS 0.598 * 0.587 0.585 0.581 0.580 0.585 0.572 0.591 0.594 * 0.593 0.587 0.588
IT 0.824 * 0.818 0.818 0.817 0.816 0.818 0.809 0.815 0.813 0.812 0.811 0.815 *
LT 0.699 * 0.692 0.690 0.685 0.685 0.692 0.686 0.694 * 0.691 0.685 0.686 0.690
LU 0.707 * 0.699 0.697 0.695 0.694 0.699 0.688 0.697 * 0.697 0.692 0.692 0.693
LV 0.710 * 0.703 0.699 0.695 0.695 0.700 0.695 0.707 * 0.704 0.695 0.697 0.701
MD 0.805 * 0.799 0.799 0.795 0.796 0.799 0.792 0.801 0.801 * 0.794 0.796 0.798
MT 0.799 * 0.792 0.792 0.789 0.789 0.791 0.839 0.846 * 0.845 0.838 0.839 0.843
NL 0.615 * 0.603 0.603 0.597 0.597 0.600 0.602 0.614 * 0.613 0.605 0.606 0.608
NO 0.763 * 0.756 0.753 0.752 0.751 0.755 0.746 0.761 * 0.759 0.756 0.756 0.758
PL 0.707 * 0.701 0.700 0.692 0.695 0.701 0.723 0.730 * 0.729 0.714 0.718 0.729
PT 0.685 * 0.677 0.675 0.672 0.671 0.673 0.622 0.632 0.632 0.634 * 0.633 0.626
RO 0.787 * 0.781 0.780 0.777 0.777 0.781 0.766 0.774 * 0.772 0.768 0.768 0.772
RS 0.770 * 0.764 0.762 0.761 0.760 0.764 0.765 0.772 * 0.771 0.767 0.767 0.769
RU 0.760 * 0.754 0.752 0.751 0.750 0.753 0.758 0.768 * 0.766 0.765 0.766 0.766
SE 0.779 * 0.772 0.772 0.767 0.767 0.773 0.767 0.779 * 0.778 0.774 0.775 0.775
SI 0.778 * 0.772 0.771 0.770 0.769 0.772 0.780 0.787 * 0.787 0.785 0.784 0.785
SK 0.746 * 0.739 0.738 0.734 0.735 0.739 0.737 0.745 0.745 * 0.740 0.741 0.745
TR 0.771 * 0.764 0.764 0.762 0.762 0.764 0.769 0.772 0.773 * 0.769 0.769 0.772
UA 0.787 * 0.782 0.780 0.775 0.777 0.782 0.786 0.793 * 0.791 0.784 0.787 0.791

Finally, Tables 5 and 6 present the in-sample and out-of-sample errors (RMSE) of all the models,
for the minimum and maximum temperatures respectively. As aforementioned, the GAM provides
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good in-sample results, is always in the top-3 models in terms of out-of sample performance, and
beating all the others in almost 60% of cases. For that reason, in order to analyze long-term temperature
trends in Europe, and their expected values in the following years Section 4.4, the GAM will be the
only method to use.

Table 4. Summary of the in-sample (TR) and out-of-sample (TS) Adjusted R-squared (R2
adj) for the

maximum temperatures, obtained with all the different methods and for all the countries. The bold
values with * indicate the best method for each country and dataset.

Country ID R2
adj (TMAX–TR) R2

adj (TMAX–TS)

REG GAM FFT AVG LOESS LHM REG GAM FFT AVG LOESS LHM

AT 0.788 * 0.782 0.781 0.778 0.779 0.783 0.776 0.780 * 0.780 0.775 0.777 0.779
BA 0.731 * 0.723 0.722 0.720 0.719 0.722 0.720 0.725 0.725 0.719 0.718 0.727 *
BE 0.718 * 0.711 0.710 0.707 0.707 0.713 0.699 0.707 * 0.707 0.701 0.703 0.705
BY 0.805 * 0.800 0.795 0.797 0.796 0.800 0.796 0.799 0.797 0.795 0.797 0.800 *
CH 0.786 * 0.780 0.780 0.778 0.777 0.781 0.773 0.779 * 0.777 0.775 0.775 0.776
CY 0.874 * 0.871 0.870 0.868 0.869 0.871 0.870 0.873 0.874 0.873 0.873 0.874 *
CZ 0.756 * 0.749 0.746 0.746 0.745 0.748 0.737 0.744 0.744 * 0.739 0.743 0.744
DE 0.767 * 0.761 0.758 0.758 0.756 0.761 0.748 0.754 0.755 * 0.751 0.753 0.754
DK 0.817 * 0.813 0.808 0.810 0.809 0.813 0.820 0.824 0.824 * 0.819 0.822 0.823
EE 0.809 * 0.804 0.800 0.801 0.800 0.803 0.806 0.812 * 0.810 0.808 0.809 0.810
ES 0.829 * 0.824 0.821 0.821 0.820 0.825 0.825 0.831 0.831 * 0.826 0.831 0.829
FI 0.831 * 0.827 0.825 0.821 0.821 0.827 0.830 0.837 * 0.836 0.828 0.830 0.834
FR 0.746 * 0.739 0.739 0.737 0.737 0.740 0.734 0.742 * 0.741 0.737 0.739 0.741
GB 0.746 * 0.740 0.739 0.737 0.737 0.740 0.723 0.732 * 0.731 0.727 0.729 0.730
GR 0.760 * 0.752 0.751 0.749 0.749 0.750 0.752 0.760 0.761 0.759 0.759 0.762 *
HR 0.787 * 0.781 0.781 0.778 0.778 0.781 0.777 0.782 * 0.780 0.776 0.777 0.780
HU 0.788 * 0.781 0.781 0.780 0.778 0.782 0.771 0.777 * 0.777 0.776 0.776 0.776
IE 0.728 * 0.722 0.722 0.718 0.719 0.721 0.665 0.672 * 0.672 0.666 0.670 0.667
IS 0.446 * 0.431 0.430 0.416 0.417 0.422 0.413 0.440 0.443 * 0.439 0.438 0.428
IT 0.828 * 0.823 0.823 0.820 0.820 0.823 0.814 0.821 0.821 0.820 0.820 0.822 *
LT 0.821 * 0.816 0.815 0.812 0.811 0.815 0.815 0.819 * 0.819 0.812 0.816 0.819
LU 0.750 * 0.744 0.743 0.740 0.740 0.744 0.737 0.743 * 0.742 0.737 0.740 0.741
LV 0.793 * 0.787 0.785 0.784 0.782 0.787 0.793 0.798 0.799 * 0.792 0.794 0.797
MD 0.808 * 0.802 0.799 0.800 0.799 0.803 0.803 0.810 * 0.806 0.804 0.805 0.809
MT 0.864 * 0.859 0.858 0.858 0.857 0.857 0.870 0.877 * 0.876 0.875 0.875 0.874
NL 0.732 * 0.725 0.721 0.721 0.719 0.723 0.712 0.720 * 0.720 0.715 0.717 0.715
NO 0.826 * 0.821 0.818 0.818 0.817 0.821 0.812 0.820 0.822 * 0.817 0.819 0.818
PL 0.794 * 0.789 0.785 0.785 0.784 0.788 0.783 0.786 * 0.785 0.782 0.784 0.786
PT 0.763 * 0.756 0.753 0.754 0.752 0.757 0.770 0.776 0.778 * 0.773 0.776 0.775
RO 0.822 * 0.817 0.816 0.814 0.814 0.816 0.811 0.819 0.820 * 0.815 0.815 0.815
RS 0.744 * 0.737 0.736 0.735 0.734 0.737 0.734 0.741 * 0.741 0.738 0.738 0.740
RU 0.818 * 0.814 0.811 0.811 0.810 0.814 0.817 0.824 0.821 0.819 0.819 0.824 *
SE 0.824 * 0.819 0.817 0.816 0.816 0.819 0.827 0.834 * 0.832 0.829 0.831 0.833
SI 0.810 * 0.804 0.804 0.803 0.801 0.804 0.789 0.794 0.794 * 0.793 0.793 0.793
SK 0.813 * 0.808 0.807 0.805 0.806 0.808 0.793 0.798 0.799 * 0.796 0.798 0.797
TR 0.839 * 0.835 0.835 0.833 0.833 0.834 0.836 0.843 0.843 * 0.841 0.841 0.842
UA 0.825 * 0.821 0.818 0.816 0.816 0.821 0.819 0.825 * 0.824 0.814 0.818 0.823

Table 5. Summary of the in-sample (TR) and out-of-sample (TS) errors for the minimum temperatures,
obtained with all the different methods and for all the countries. The bold values with * indicate the
best method for each country and dataset.

Country ID RMSE (TMIN–TR) RMSE (TMIN–TS)

REG GAM FFT AVG LOESS LHM REG GAM FFT AVG LOESS LHM

AT 3.436 * 3.477 3.488 3.507 3.505 3.478 3.428 3.380 3.376 * 3.415 3.406 3.378
BA 3.830 * 3.885 3.895 3.919 3.912 3.889 3.850 3.793 3.806 3.836 3.831 3.779 *
BE 3.429 * 3.476 3.490 3.498 3.496 3.488 3.574 3.524 * 3.535 3.540 3.539 3.551
BY 4.373 * 4.419 4.428 4.465 4.454 4.433 4.553 4.499 * 4.513 4.533 4.526 4.512
CH 3.111 * 3.156 3.173 3.180 3.186 3.155 3.206 3.141 * 3.151 3.194 3.197 3.151
CY 2.329 * 2.362 2.365 2.374 2.376 2.362 2.243 2.221 2.219 * 2.239 2.235 2.220
CZ 3.712 * 3.761 3.775 3.788 3.793 3.761 3.927 3.867 3.860 * 3.894 3.889 3.887
DE 3.608 * 3.651 3.665 3.685 3.679 3.662 3.705 3.669 * 3.679 3.711 3.703 3.676
DK 2.966 * 3.008 3.014 3.037 3.041 3.008 3.022 2.972 2.965 * 2.985 2.980 2.966
EE 4.924 * 4.993 5.020 5.056 5.048 4.981 5.122 5.014 * 5.039 5.062 5.060 5.058
ES 2.801 * 2.836 2.853 2.858 2.856 2.844 2.858 2.813 2.813 * 2.860 2.820 2.836
FI 4.424 * 4.477 4.513 4.524 4.511 4.497 4.342 4.240 * 4.275 4.280 4.267 4.261
FR 3.469 * 3.512 3.514 3.535 3.533 3.532 3.556 3.524 * 3.532 3.555 3.550 3.562
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Table 5. Cont.

Country ID RMSE (TMIN–TR) RMSE (TMIN–TS)

REG GAM FFT AVG LOESS LHM REG GAM FFT AVG LOESS LHM

GB 3.103 * 3.143 3.144 3.162 3.163 3.139 3.188 3.146 * 3.152 3.166 3.162 3.157
GR 2.336 * 2.374 2.383 2.390 2.391 2.383 2.507 2.477 2.484 2.481 2.483 2.467 *
HR 3.376 * 3.420 3.437 3.446 3.446 3.418 3.422 3.372 * 3.380 3.407 3.405 3.375
HU 3.612 * 3.656 3.669 3.687 3.684 3.654 3.560 3.494 * 3.502 3.544 3.535 3.521
IE 2.886 * 2.927 2.927 2.941 2.939 2.934 3.401 3.369 * 3.371 3.382 3.380 3.385
IS 2.697 * 2.736 2.740 2.755 2.757 2.740 2.544 2.486 2.479 * 2.481 2.497 2.497
IT 2.570 * 2.611 2.615 2.621 2.625 2.612 2.707 2.666 2.674 2.683 2.689 2.666 *
LT 4.445 * 4.493 4.507 4.547 4.543 4.498 4.583 4.519 * 4.541 4.586 4.584 4.551
LU 3.471 * 3.516 3.529 3.542 3.548 3.518 3.555 3.504 * 3.509 3.534 3.537 3.532
LV 4.057 * 4.104 4.135 4.161 4.158 4.124 4.284 4.204 * 4.220 4.285 4.274 4.246
MD 3.863 * 3.917 3.923 3.954 3.949 3.917 4.073 3.991 3.991 * 4.053 4.040 4.014
MT 2.347 * 2.386 2.388 2.402 2.406 2.394 2.111 2.066 * 2.070 2.113 2.111 2.084
NL 3.574 * 3.626 3.627 3.654 3.654 3.642 3.635 3.580 * 3.583 3.620 3.616 3.604
NO 3.740 * 3.802 3.820 3.833 3.834 3.807 3.848 3.738 * 3.747 3.772 3.768 3.755
PL 4.170 * 4.214 4.222 4.274 4.257 4.217 4.213 4.159 * 4.168 4.285 4.256 4.171
PT 3.307 * 3.350 3.358 3.372 3.379 3.371 3.563 3.513 3.514 3.506 * 3.509 3.543
RO 3.789 * 3.846 3.853 3.879 3.874 3.842 4.062 3.994 * 4.006 4.046 4.041 4.010
RS 3.716 * 3.765 3.776 3.787 3.789 3.760 3.830 3.771 * 3.782 3.815 3.814 3.797
RU 4.602 * 4.663 4.685 4.695 4.699 4.670 4.567 4.473 * 4.495 4.500 4.498 4.489
SE 3.488 * 3.540 3.546 3.579 3.582 3.536 3.544 3.456 * 3.460 3.495 3.491 3.484
SI 3.495 * 3.539 3.548 3.558 3.567 3.542 3.421 3.366 * 3.368 3.384 3.391 3.381
SK 3.890 * 3.938 3.945 3.978 3.971 3.944 3.934 3.875 3.873 * 3.915 3.905 3.876
TR 3.379 * 3.428 3.430 3.443 3.445 3.428 3.398 3.376 3.373 * 3.401 3.396 3.376
UA 4.189 * 4.239 4.257 4.300 4.285 4.233 4.271 4.194 * 4.219 4.287 4.262 4.219

Table 6. Summary of the in-sample (TR) and out-of-sample (TS) errors for the maximum temperatures,
obtained with all the different methods and for all the countries. The bold values with * indicate the
best method for each country and dataset.

Country ID RMSE (TMAX–TR) RMSE (TMAX–TS)

REG GAM FFT AVG LOESS LHM REG GAM FFT AVG LOESS LHM

AT 4.391 * 4.448 4.461 4.492 4.485 4.445 4.610 4.567 * 4.573 4.624 4.603 4.576
BA 5.163 * 5.240 5.245 5.268 5.277 5.244 5.421 5.376 5.374 5.431 5.440 5.360 *
BE 3.924 * 3.973 3.981 4.001 4.003 3.965 4.152 4.094 * 4.095 4.135 4.125 4.110
BY 4.529 * 4.586 4.638 4.618 4.629 4.584 4.790 4.753 4.780 4.804 4.784 4.744 *
CH 4.065 * 4.122 4.128 4.146 4.151 4.120 4.216 4.151 * 4.174 4.191 4.192 4.182
CY 2.250 * 2.276 2.284 2.301 2.298 2.281 2.224 2.195 2.189 2.196 2.196 2.187 *
CZ 4.729 * 4.797 4.825 4.826 4.833 4.806 5.144 5.077 5.072 * 5.125 5.092 5.073
DE 4.320 * 4.373 4.399 4.400 4.417 4.369 4.593 4.541 4.529 * 4.564 4.551 4.545
DK 3.276 * 3.314 3.351 3.340 3.344 3.311 3.371 3.336 3.335 * 3.384 3.356 3.344
EE 4.415 * 4.472 4.518 4.512 4.518 4.481 4.532 4.459 * 4.484 4.512 4.494 4.485
ES 3.551 * 3.603 3.633 3.627 3.637 3.591 3.814 3.755 3.745 * 3.805 3.745 3.769
FI 3.728 * 3.772 3.794 3.844 3.837 3.782 3.803 3.731 * 3.744 3.831 3.806 3.762
FR 3.920 * 3.972 3.976 3.994 3.993 3.968 4.052 3.988 * 4.001 4.027 4.017 3.995
GB 3.275 * 3.313 3.318 3.334 3.333 3.310 3.497 3.438 * 3.447 3.472 3.459 3.453
GR 2.895 * 2.941 2.946 2.957 2.961 2.954 2.881 2.836 2.828 2.840 2.840 2.821 *
HR 4.299 * 4.357 4.362 4.387 4.390 4.360 4.518 4.472 * 4.487 4.530 4.524 4.491
HU 4.584 * 4.649 4.658 4.669 4.683 4.646 4.742 4.676 * 4.678 4.686 4.689 4.692
IE 2.579 * 2.609 2.610 2.629 2.624 2.614 2.932 2.900 * 2.901 2.927 2.914 2.924
IS 3.425 * 3.471 3.475 3.517 3.513 3.500 3.107 3.034 3.026 * 3.035 3.042 3.067
IT 2.769 * 2.810 2.811 2.835 2.833 2.812 2.814 2.759 2.759 2.767 2.768 2.753 *
LT 4.240 * 4.295 4.311 4.344 4.348 4.305 4.503 4.452 * 4.455 4.543 4.499 4.459
LU 4.164 * 4.218 4.226 4.245 4.249 4.215 4.386 4.332 * 4.339 4.383 4.372 4.350
LV 3.858 * 3.915 3.927 3.943 3.960 3.918 4.015 3.971 3.961 * 4.025 4.006 3.983
MD 4.775 * 4.843 4.887 4.870 4.878 4.837 5.104 5.008 * 5.062 5.095 5.085 5.031
MT 2.351 * 2.392 2.399 2.402 2.406 2.406 2.279 2.216 * 2.224 2.231 2.228 2.235
NL 3.591 * 3.637 3.664 3.666 3.675 3.650 3.766 3.713 * 3.715 3.744 3.742 3.745
NO 3.823 * 3.882 3.911 3.917 3.918 3.879 4.017 3.930 3.907 * 3.965 3.943 3.958
PL 4.448 * 4.507 4.553 4.544 4.557 4.518 4.708 4.668 * 4.677 4.712 4.696 4.669
PT 4.002 * 4.062 4.086 4.080 4.098 4.057 4.117 4.065 4.045 * 4.092 4.061 4.071
RO 4.609 * 4.673 4.676 4.712 4.712 4.680 4.783 4.682 4.672 * 4.732 4.727 4.733
RS 5.100 * 5.174 5.179 5.194 5.197 5.175 5.266 5.194 * 5.197 5.225 5.224 5.206
RU 4.420 * 4.472 4.511 4.504 4.516 4.475 4.528 4.447 4.482 4.504 4.506 4.442 *
SE 3.784 * 3.842 3.864 3.868 3.876 3.844 3.811 3.731 * 3.744 3.778 3.764 3.736
SI 4.163 * 4.228 4.234 4.242 4.262 4.228 4.465 4.409 4.408 * 4.423 4.419 4.416
SK 4.365 * 4.423 4.433 4.451 4.448 4.422 4.639 4.583 4.574 * 4.608 4.590 4.600
TR 3.845 * 3.898 3.901 3.926 3.919 3.906 3.817 3.740 3.734 * 3.756 3.757 3.748
UA 4.533 * 4.593 4.622 4.649 4.657 4.585 4.971 4.898 * 4.911 5.045 4.996 4.915
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4.4. Analysis of the Long-Term Temperature Trends with the Best Performance Model

Once analysed the performance of all the different methods over the 37 European countries, and
confirmed that the GAM is the model, this subsection aims to analyze the results provided by that
model in all the countries to shed some light on potential future changes and better understand the
behavior of European temperature trends. It should be noted that in spite of the fact that we will
only analyze the results provided by the GAM in this section, we could extract the same conclusions,
regarding the trend component, with all the tested methods, since their resulting trends are very
similar. As an example, the average difference between the three best performing models (FFT, LHM
and GAM) in the trends of the minimum temperatures is 9.43·10−4 ◦C/year.

It should be noted that this section presents the resulting trends of the GAM, using the reference
weather stations from the ECA&D dataset presented in Table A1. Although we have performed
a systematic data pre-processing step, removing outliers and filling all the missing points (see
Appendix A), any data inconsistency in the original dataset can affect model results. As an example,
the reference weather station from Estonia, presents a sudden temperature increase of around 1 ◦C
during the last 13 years of our in-sample period for its minimum temperature. For that reason, its
estimated trend may not be reflecting the actual behavior of that temperature.

Figure 11 shows the trends estimated by the GAM for the minimum and maximum temperatures
and all the countries. First, it can be seen that most countries present positive temperature trends in
both series, 0.02 to 0.08 ◦C/year. The only exceptions are Romania (RO), Ireland (IE) and Estonia (EE),
regarding TMIN, and Malta (MT) and Croatia (HR) regarding TMAX. In the case of RO, its minimum
temperature grows at a rate of 0.007 whereas its maximum does so at 0.06 ◦C/year. The case of IE is
more surprising: although its maximum temperature is growing 0.04 ◦C each year, is the only country
in which the GAM (and all the other models) has estimated a negative trend: its minimum temperature
is decreasing 0.013 ◦C/year. At the far end, EE presents a very similar trend of TMAX to that of IE,
but it is the country where the minimum temperature presents a higher growing rate: 0.102 ◦C/year.
However, due to the aforementioned data issue, this result may be not representative.

Figure 11. Scatterplot of the trends of the minimum and maximum temperatures. Each point represents
a country, and colors indicate the cluster to which each point belongs according to Figure 7 (bottom).
The black broken line represents the values of equal trend for minimum and maximum temperatures.

On the other hand, in terms of maximum temperatures, Malta (MT) is growing slower than all the
other countries (0.013 ◦C/year), and Croatia (HR), just in the other side, has the largest increases with
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0.089 ◦C/year. In summary, the average temperature increase of the minimum temperatures of the
37 European countries is 0.0485 ◦C/year, whereas the average trend for the maximum temperatures
is 0.0554 ◦C/year. To observe all the detail, Table 7 shows the results of the GAM in all the different
countries and for the minimum and maximum temperatures.

Table 7. Trends (◦C/year) for the minimum and maximum temperatures and all the countries,
estimated by the GAM model.

Country ID Trend (◦C/Year) Country ID Trend (◦C/Year)

TMIN TMAX TMIN TMAX

AT 0.039 0.053 IT 0.031 0.030
BA 0.045 0.046 LT 0.046 0.059
BE 0.065 0.054 LU 0.067 0.079
BY 0.035 0.050 LV 0.042 0.054
CH 0.064 0.056 MD 0.069 0.073
CY 0.065 0.055 MT 0.054 0.013
CZ 0.061 0.076 NL 0.046 0.059
DE 0.029 0.062 NO 0.062 0.069
DK 0.037 0.057 PL 0.041 0.056
EE 0.102 0.047 PT 0.021 0.037
ES 0.033 0.024 RO 0.007 0.061
FI 0.052 0.063 RS 0.061 0.064
FR 0.039 0.061 RU 0.055 0.055
GB 0.056 0.051 SE 0.064 0.072
GR 0.027 0.037 SI 0.071 0.069
HR 0.058 0.089 SK 0.057 0.074
HU 0.042 0.050 TR 0.076 0.042
IE -0.013 0.041 UA 0.047 0.069
IS 0.046 0.044 - - -

In order to find possible similar behaviors between countries, Figure 12 presents the trends of
Table 7, separated in minimum and maximum, and coloured according to the clusters formed shown
in Figure 7. First, it can be seen that, once the countries have been sorted by cluster, several trend
patterns can be appreciated.

Let us analyze several examples. Cluster number 5 of of maximum temperatures, formed by
Baltic countries, Nordic countries (except Iceland), Belarus (BY), Poland (PL) and Russia (RU) presents
trend values between 0.047 and 0.072 ◦C/year. Spain (ES) and Portugal (PT) form, for both minimum
and maximum temperatures, the Iberian cluster with positive but low values of trend. Ireland (IE)
is in the same cluster than the UK for the maximum temperatures and with similar values; however,
they are in two separated clusters for TMIN (IE is the only country with negative trend for that
variable). France (FR), Belgium (BE), Switzerland (CH) and the Netherlands (NL) have similar results
in terms of maximum temperature, but regarding TMIN FR presents lower increases than all the other
neighbours. Italy (IT) and Malta (MT) behaves similarly in TMAX (flat trends), but in TMIN, MT
presents a higher value.

In order to check the geographical distribution of these trends, Figure 13 shows the European
map of minimum and maximum temperature trends. First, it can be seen that, in general terms,
the minimum temperatures are increasing at a slower rhythm than maximum temperatures: 68%
of countries present higher growing rates in its maximum temperature. Regarding maximum
temperatures, fourteen countries present annual increases higher than 0.06 ◦C/year, leaded by Croatia
(HR) with 0.089 ◦C/year. Only seven countries grow in minimum and maximum temperatures at a
rate higher than 0.06 ◦C/year—the Czech Republic (CZ), Luxembourg (LU), Moldova (MD), Norway
(NO), Serbia (RS), Sweden (SE) and Slovenia (SI). It should be noted that, Finland (FI) with trends of
0.052 and 0.063 ◦C/year for its minimum and maximum temperatures respectively, is not very far
from that group, so Scandinavian countries present quite high grow rates for both variables.
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Figure 12. Trend determined by the GAM for the (a) minimum and (b) maximum temperatures of the
37 countries. The colors indicate the cluster to which each country belongs according to Figure 7.

Figure 13. Annual increase of temperatures obtained from the trend component of the GAM for the
(a) minimum and (b) maximum temperatures of the 37 countries.

5. Conclusions

Temperature forecasting is a common step for most energy forecasting methods and several
techniques for temperature scenario generation can be found in literature. Furthermore, and also
related to electric load forecasting, recent papers have discussed the use of temperature trend,
concluding that the effect of that component, dealing with two years of training data and one year to
test, is negligible in terms of temperature forecasting accuracy.

However, dealing with long-term estimations (i.e., more than three years, and ten years in this
paper), and training also with longer time series (40 years), our results have shown that we can make
more accurate predictions in the long-term of the daily minimum and maximum temperatures by
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including a linear trend in the model. Using time series decomposition, and dealing also with the
seasonal component, six different methods have been analyzed, concluding that Generalized Additive
Models (GAM) outperforms all the others, providing the lowest out-of-sample error in almost 60% of
the 74 time series analyzed (minimum and maximum temperatures from reference weather stations
from 37 European countries).

In addition, a brief analysis of GAM results for temperatures of those 37 countries has been carried
out, showing that both maximum and minimum temperatures present linear increasing trends, (with
p-value = 0), and rates between 0.02 and 0.08 ◦C/year in most cases. As next steps, including the
remainder in this kind of temperature decomposition methods will allow us to model the effect of
cold and heating waves, and to better understand the behavior and possible correlation, between that
component in different countries.
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Abbreviations

The following main abbreviations are used in this manuscript:

ECA&D European Climate Assessment Dataset
FFT Fast Fourier Transform
GAM Generalized Additive Models
LHM Linear Hinges Model
LOESS Locally Estimated Scatterplot Smoothing
OLS Ordinal Least Squares
RMSE Root Mean Squared Error
TMAX Maximum temperature
TMIN Minimum temperature
TR Training set
TS Test set
WS Weather Station

Appendix A. Data Cleansing and Hierarchical Regression Imputation

This section aims to describe the complete data pre-processing process that has been carried out
from ECA&D original datasets [30] (specifically, blended daily minimum and maximum temperatures)
to the dataset that has been finally used in the paper. The two following subsections describe the
most critical part of this pre-process: outlier detection and data imputation, but first, let us briefly
describe how we have selected the reference weather stations to use. As our case study focus on the
European case, 9 countries and a collective grouping of two remote jurisdictions of Norway: Svalbard
and Jan Mayen were removed from our original dataset. Specifically, the not considered countries
were: Algeria, Egypt, Greenland, Israel, Libya, Morocco, Syria, Turkmenistan, and Tunisia. Secondly, in
order to select a reference weather station to analyse for each of the remaining 37 European countries,
a simple data quality assessment was carried out. We have selected stations located at the country
capitals, whenever the amount of available data and the existing missing data in the period of interest
for our case study (January 1980 to December 2019) are reasonable. It should be noted that in order to
better select the reference temperature for electric load forecasting, methods such as those described
in Reference [31] or Reference [32] would provide better results in terms of error. However, since

https://www.ECAD.eu
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this paper aims to model the deterministic component of a temperature time series regardless its
subsequent use, WS selection is out of the scope of this paper.

Table A1 lists the weather stations that have been finally selected. For each country, it includes
its ISO 3116 code (Country ID), the ECA&D station identifier (Station ID), the station name (Station),
the latitude and longitude in degrees of the WS (Lat and Lon), as well as the station elevation in
meters (Hgth).

Table A1. Detail of the European weather stations used for each country.

Country ID Country Station ID Station Lat. Lon. Hgth.

AT Austria 16 Wien 48.2331 16.35 198
BA Bosnia and Herzegovina 276 Sarajevo 43.8678 18.4228 630
BE Belgium 17 Uccle 50.8 4.3664 100
BY Belarus 653 Brest 52.1167 23.6831 146
CH Switzerland 240 Genevecointring 46.25 6.1331 420
CY Cyprus 23 Larnaca 34.8831 33.6331 1
CZ Czech Republic 510 Milesovka 50.555 13.9306 830
DE Germany 41 Berlin-Dahlem 52.4639 13.3017 51
DK Denmark 116 Koebenhavn:Landbohojskolen-1 55.6831 12.5331 9
EE Estonia 11357 Narva 59.3892 28.1128 28
ES Spain 230 Madrid-Retiro 40.4117 −3.6781 667
FI Finland 28 Helsinkikaisaniemi 60.175 24.9478 4
FR France 11249 Orly 48.7167 2.3842 89
GB United Kingdom 1860 Heathrow 51.4789 −0.44889 25
GR Greece 61 Heraklion 35.3331 25.1831 39
HR Croatia 21 Zagreb-Gric 45.8167 15.9781 156
HU Hungary 849 Pecspogany 46.0056 18.2328 202
IE Ireland 1718 Dublinairport 53.4281 −6.2408 71
IS Iceland 65 Dalatangi 65.2681 −13.5756 9
IT Italy 174 Brindisi 40.6331 17.9331 10
LT Lithuania 200 Kaunas 54.8831 23.8331 77
LU Luxembourg 203 Luxembourgairport 49.6258 6.2033 376
LV Latvia 2951 Liyepayaamsg 56.55 21.02 4
MD Moldova 394 Kisinev 47.02 28.87 173
MT Malta 447 Luqa 35.85 14.4831 91
NL Netherlands 598 Rotterdam 51.9606 4.4467 −4
NO Norway 193 Osloblindern 59.9428 10.7206 94
PL Poland 209 Warszawa-Okecie 52.1628 20.9608 107
PT Portugal 212 Braganca 41.8 −6.7331 690
RO Romania 219 Bucuresti-Baneasa 44.5167 26.0831 90
RS Serbia 263 Belgrade (Observatory) 44.8 20.4667 132
RU Russia 85 St.Petersburg 59.9667 30.3 3
SE Sweden 10 Stockholm 59.35 18.05 44
SI Slovenia 228 Ljubljanabezigrad 46.0656 14.5169 299
SK Slovakia 227 Hurbanovo 47.8667 18.1831 115
TR Turkey 346 Isparta 37.75 30.55 997
UA Ukraine 252 Kiev 50.4 30.5331 166

Appendix A.1. Outlier Detection

As stated in Reference [12], where authors propose a temperature anomaly detection method
based on electricity demand, raw data collected by local weather stations are usually full of missing
values and outliers, and they must be corrected in order to preserve model accuracy. Our dataset is not
an exception, and even the finally selected temperatures of each country, which were chosen after an
initial data quality assessment, have missing values and several outilers. In order to modify as less as
possible the original set of time series and do it in a controlled way, we established an upper and lower
threshold for outlier detection and set to missing value all the days outside the interval. Specifically,
all the temperatures above 50 ◦C and below −60 ◦C has been detected as outliers.

Figure A1 shows two of those outliers, removed afterwards from the maximum temperature of
Malta, where several missing values can also be seen. It should be noted that in order to carry out
the regression imputation method described in Appendix A.2, which uses neighbouring WS to fill
missing values of the selected reference temperatures, the oultiers of our complete input dataset have
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been removed. For simplicity, Table A2 presents the points that have been removed from the original
reference stations. As it can be seen, there is a limited number of outliers. In the worst case, they
represent a 0.027% of a time series: the minimum temperature from Malta, with 4 outliers. Overall,
only 11 outliers have been detected. Furthermore, all these points have been filled using the method
described below.

Figure A1. Example of outliers that have been detected in the reference maximum temperature from
Malta (MT) on 28 January and 7 December 1990, and removed form the original dataset.

Table A2. Detail of the outliers removed from the reference weather stations, and TMAX and TMIN
time series in the studied interval (January 1980 to December 2019).

Country Variable Outliers

Date Value (◦C)

LV TMIN 13 March 1997 81.70
TMAX 29 December 1994 87.20

12 March 1997 85.70

MD TMAX 27 January 1995 66.60

MT TMIN 2 October 1983 78.90
23 February 1989 71.10

18 June 1989 78.10
5 February 1995 89.10

TMAX 20 February 1988 77.60
28 January 1990 67.50

7 December 1990 63.10

Appendix A.2. Hierarchical Regression Imputation

After deleting all the outliers of the dataset, the goal of this last step in our pre-processing is
to fill all the missing points of the reference time series. Considering the great correlation between
temperature time series (specially between those WS that are very close geographically), and the
large amount of stations available (together with their location and height), we propose a hierarchical
regression imputation method. Assuming that neighbouring weather stations have strong correlations,
provided they are not at a very different height, and given a particular reference temperature to fill, in
this example a maximum temperature, the remaining stations are sorted by distance. In order to avoid
selecting temperatures at a very different height, all the stations with more than 200 meters height
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difference are deleted from the initial list of stations. To begin to with the set of candidate variables
to fill the gaps, the opposite variable of the same station is chosen. In our aforementioned example,
the minimum temperature of the reference station. After that, the nearest stations are added one by
one, until there are no gaps left to fill. Note that, if the nearest stations share the gaps of the reference
temperature, they are not added to the candidate set. This can cause that, in some cases, we have to
select variables that can be farther away than what we could have initially assumed. Once determined
how many and which variables are enough to complete the reference time series, a linear regression
model with all that set as input is fitted, and all the gaps are replaced by the estimated value of the
model at those missing points.

Table A3 shows all the missing points (after removing the outliers detailed in Table A2) that have
been filled, and the WS that have been used for each country. It can be seen that, in general, there
is not a large amount of missing values in our reference time series. Only 4 variables of the 74 that
have been used (TMAX and TMIN from 37 countries) contained more than a 1% of empty points.
Specifically, all except the two series from Malta (MT) and Latvia (LV), which had between a 3.65%
and 7.21% of missing values. To fill the empty points of MT, 2 additional time series from Italy have
been required, and for LV, 5 neighbouring WS have been used: one from Latvia, two from Sweden,
and one from Estonia.

Table A3. Detail of the missing points of the reference WS of each country.The first two columns show
the Country ID (C-ID) and Station ID (WS-ID). The last two columns show the neighbouring WS than
have been used to fill all the empty points of each time series.

C-ID WS-ID Empty Points % Empty Selected WS to Fill

TMIN TMAX TMIN TMAX TMIN TMAX

AT 16 0 0 0 0 - -
BA 276 0 0 0 0 - -
BE 17 313 366 2.14% 2.51% TMAX+NL-2571 TMIN+NL-2571
BY 653 0 0 0 0 - -
CH 240 0 0 0 0 - -
CY 23 6 6 0.04% 0.04% CY-24 CY-24
CZ 510 7 5 0.05% 0.03% TMAX TMIN
DE 41 0 0 0 0 - -
DK 116 0 6 0 0.04% - TMIN
EE 11,357 0 0 0 0 - -
ES 230 0 0 0 0 - -
FI 28 0 0 0 0 - -
FR 11,249 0 0 0 0 - -
GB 1860 0 0 0 0 - -
GR 61 56 47 0.38% 0.32% GR-63+TR-347 GR-63+TR-347
HR 21 1 0 0.01% 0 TMAX -
HU 849 0 0 0 0 - -
IE 1718 0 0 0 0 - -
IS 65 1 1 0.01% 0.01% IS-2943 IS-2943
IT 174 62 64 0.42% 0.44% TMAX+HR-10963+HR-1682 TMIN+HR-10963+HR-1682
LT 200 6 3 0.04% 0.02% TMAX TMIN
LU 203 0 0 0 0 - -

LV 2951 649 533 4.44% 3.65% TMAX+LV-199+SE-5282
+SE-5283+SE-5281+EE-11364

TMIN+LV-199+SE-5282
+SE-5281+EE-11364+SE-5283

MD 394 118 97 0.81% 0.66% TMAX+RO-951 TMIN+RO-951
MT 447 1054 896 7.21% 6.13% TMAX+IT-175+IT-174 TMIN+IT-175+IT-174
NL 598 2 0 0.01% 0 TMAX -
NO 193 0 0 0 0 - -
PL 209 0 0 0 0 - -
PT 212 136 113 0.93% 0.77% TMAX+ES-1396 TMIN+ES-1396
RO 219 0 0 0 0 - -
RS 263 0 1 0 0.01% - TMIN
RU 85 2 0 0.01% 0 TMAX -
SE 10 0 0 0 0 - -
SI 228 3 0 0.02% 0 TMAX -
SK 227 2 2 0.01% 0.01% TMAX TMIN
TR 346 7 3 0.05% 0.02% TMAX TMIN
UA 252 12 5 0.08% 0.03% TMAX+UA-1482 TMIN+UA-1482
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Appendix B. Estimated Model’s Complexity in the European Case

This section presents the complexity of the models presented in Section 3.1. As aforementioned,
the hyper-parameters of three of them (FFT, AVG, and LOESS) were chosen by repeated
cross-validation. The complexity (i.e., number of knots) of the LHM is automatically selected by
the fitting algorithm. Table A4 shows the results of that four models. It can be seen that the obtained
results are coherent between them, that is, the smoothness of their results is similar in the different
countries. For example, for the maximum temperature of Spain (ES), FFT use 2 harmonics, AVG a
window size of 89 days (the second lowest after Malta, 87), LOESS its lowest window size (223 days)
and LHM its maximum number of knots (K = 11).

Table A4. Complexity selected for each country and method, and for minimum and maximum
temperatures. From left to right: number of harmonics for the FFT, window size for AVG and LOESS,
and number of knots for the LHM.

Country ID FFT AVG LOESS LHM

TMIN TMAX TMIN TMAX TMIN TMAX TMIN TMAX

AT 1 2 117 115 319 283 7 7
BA 1 2 127 109 325 295 5 7
BE 1 2 125 117 323 303 5 7
BY 1 1 133 101 331 261 6 7
CH 1 2 113 103 325 275 7 8
CY 2 2 91 103 279 283 8 9
CZ 1 2 117 105 323 255 7 6
DE 1 2 129 103 327 287 5 7
DK 2 1 117 101 317 251 7 8
EE 1 1 137 105 333 275 8 7
ES 2 2 97 89 231 223 7 11
FI 1 2 125 125 301 309 6 7
FR 2 2 125 107 319 269 5 7
GB 2 2 121 109 313 277 8 7
GR 2 1 99 107 263 321 8 6
HR 1 2 111 107 307 295 7 7
HU 1 2 117 95 317 277 7 8
IE 2 2 121 117 293 289 6 6
IS 2 2 123 169 289 343 6 5
IT 2 2 91 107 259 291 7 8
LT 1 2 139 109 347 261 6 7
LU 1 2 123 111 337 291 7 7
LV 1 2 141 101 347 265 6 6
MD 1 1 115 99 311 281 7 9
MT 2 2 105 87 303 241 6 6
NL 2 1 137 119 343 323 5 6
NO 1 1 117 107 319 291 5 8
PL 1 1 145 107 351 283 7 7
PT 2 2 115 87 301 237 6 10
RO 1 2 115 105 311 287 7 9
RS 1 2 109 99 311 273 7 8
RU 1 1 109 99 295 285 7 8
SE 2 2 121 99 317 265 7 6
SI 1 2 105 91 321 275 7 7
SK 1 2 127 99 329 249 6 8
TR 3 2 95 99 241 271 8 8
UA 1 2 129 111 315 279 8 9

Appendix C. European Case: Detailed Trend and Seasonal Components

This last section presents the trend (Figure A2) and seasonal (Figure A3) components obtained
using the GAM model in all the different European countries of our case study.
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Figure A2. Trend component obtained with the GAM model for the 37 reference European weather
stations and the minimum and maximum temperatures.

Figure A3. Seasonal component obtained with the GAM model for the 37 reference European weather
stations and the minimum and maximum temperatures.
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