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RESUMEN DEL PROYECTO 

Cuando una aerolínea firma un contrato de explotación de un avión con una empresa 
fabricante de aviones, el riesgo de que el avión sufra una avería debe asumirlo la 
empresa fabricante y no la aerolínea, dado que son ellos quienes han fabricado la 
aeronave. Es por ello por lo que las aerolíneas, en lugar de alquilar un avión durante un 
periodo de tiempo, están alquilando horas de vuelo aseguradas por la empresa 
fabricante.  

Alquilar horas de vuelo supone que el responsable de una avería del avión es la propia 
empresa fabricante, y por tanto es ella la que debe trabajar en el mantenimiento de los 
aviones para ahorrar costosas reparaciones, para el fabricante de forma directa, y para la 
aerolínea en términos de vuelos anulados.  

Safran Tech, es una de las empresas fabricantes de aviones que se encarga de optimizar 
el momento en el que se hace la reparación de un componente de avión para asegurar 
que el avión no tenga una avería nunca, pero que no hagan recambios de piezas cuando 
estas no están aún defectuosas.  

Existen dos tipos de operaciones de mantenimiento: el mantenimiento programado y el 
mantenimiento previsto. El primero no es eficiente ya que la pieza que es reemplazada 
puede no estar lo suficientemente dañada como para eliminarla y aumentará los costes 
de mantenimiento. Por lo tanto, el mantenimiento predictivo es la clave para reducir los 
costes de mantenimiento de una aeronave. Se basa en la predicción de cuándo es 
probable que la pieza se rompa para reemplazarla un poco antes. Este método, aunque 
es mucho más difícil de implementar que el anterior, es el más eficiente. 

Este proyecto entra dentro del mantenimiento previsto. Una de las muchas piezas que 
pueden estudiarse para predecir su mantenimiento es el motor del avión. Añadiendo 
sensores que capturen las señales de las vibraciones del motor, es posible intuir cual es 
la salud del motor.  

El problema de esto es que las frecuencias de resonancia del motor son demasiado 
elevadas como para medir un vuelo de muchas horas, muestreado a una frecuencia 
superior a la frecuencia de Nyquist. Es un problema de Big Data. 

El objetivo de este trabajo es la reconstrucción de esta señal del motor, muestreando 
únicamente una porción aleatoria de la señal, y sabiendo que la señal es “sparse” (la 
señal tiene muchos coeficientes despreciables) en una base determinada, que es el 
dominio frecuencial de la señal.  



Para abordar este problema se trabajará con tres modelos: dos modelos deterministas y 
un modelo probabilístico. Los dos primeros son el FISTA (Fast Iterative Shrinkage-
Thresold Algorithm) y el OMP (Orthogonal Maching Pursuit) y el último es el método 
Bayes Lasso.  

El objetivo es conseguir un modelo que reconstruya la señal de la forma más precisa 
posible, de una forma rápida y que no haga relevante ningún coeficiente que sea 
despreciable, pues imposibilitaría el estudio de la salud de la señal. En último lugar, los 
parámetros de la señal no deberían de depender de a salud de la señal, y a ser posible 
tampoco del ratio de compresión de la señal, para poder fijar un parámetro optimo e 
inamovible en el método.  

Los tres algoritmos existen en la literatura, pero su aplicación en señales de un motor de 
avión no es común. La reconstrucción de señales bajo unas hipótesis es muy común en 
la reconstrucción de imágenes. 

El algoritmo FISTA es una forma iterativa del operador gradiente de la formulación de 
Lasso. La formulación de Lasso se define como: 𝑓(𝑥) = ||𝑦 − 𝐴𝑥|| + 𝜆||𝑥|| , siendo 
A la matriz de medición, y la señal medida, x la señal real y 𝜆 un término que ajusta el 
peso de la “sparcity” de la señal con el error cuadrático de la señal reconstruida. 

El algoritmo FISTA, calcula iterativamente valores de la seña reconstruida x con el 
gradiente de esta función. Después, toma en cuenta los valores de 𝑥  y de 𝑥  para 
inferir el término 𝑥, lo que produce una convergencia más rápida que un método más 
básico que el FISTA, el ISTA (Iterative Shrinkage-Thresolding Algorithm). 

 

El algoritmo OMP parte del supuesto de “sparsity” para reconstruir la señal. Reduce el 
problema a la búsqueda de los K coeficientes no despreciables de la señal. Para ello, las 
columnas de la matriz de medida se convierten en vectores (de norma 1) y se selecciona 
la columna cuyo producto escalar con el resto es mayor. El resto es la diferencia entre la 
señal medida y su proyección sobre el subespacio vectorial formado por los vectores ya 
elegidos. Una vez ya se han escogido los K vectores que equivalen a los K coeficientes 
no despreciables de la señal x, se resuelve el sistema a= 𝐴𝑥, siendo a la proyección 
mencionada y x de dimensión K. Reordenando los coeficientes, se obtiene la señal x 
reconstruida.  



 

El método Bayes Lasso comienza con unas hipótesis sobre la ley probabilística con la 
que se comportan ciertos parámetros de la señal, para inferir la ley que define el 
comportamiento de la señal en función dichos parámetros. Dado que esta ley es muy 
complicada, y no es posible trabajar con ella, el Método de Gibbs es una solución para 
conseguir un muestreo de la señal reconstruida, que tiende con cada iteración a la ley 
probabilística de la señal. Finalmente se calcula una esperanza de las n últimas muestras 
para reducir el error aleatorio. El algoritmo iterativo de Gibbs final es: 

 

En el campo frecuencial puede observarse que la reconstrucción de las frecuencias más 
fundamentales se mantiene en todos los casos. No obstante, en el plano temporal, es 
claro que el modelo FISTA es el que mejor reconstruye la señal.  

 



 

 

Este hecho también puede reconocerse en la optimización de los parámetros de cada 
modelo. El error cuadrático de la señal FISTA esta siempre unos órdenes por debajo del 
error de los demás modelos.  

Estudiando la relación de los parámetros con la salud de la señal y con el ratio de 
compresión, se puede comprobar, para un ratio de compresión de 5, que los modelos 
OMP y FISTA tienen un parámetro óptimo casi constante.  



 FISTA Model 

 Bayes Model 

 OMP Model 

Finalmente, se introduce el término Crest Factor, que es el ratio entre el pico más alto de 
una señal con el valor efectivo de la señal. Este factor ayuda a intuir cuando la señal 
tiene menos coeficientes no despreciables, pues el error efectivo aumentaría y el Crest 
Factor disminuiría. Puede comprobarse que la señal se reconstruye bien teniendo en 
cuenta el Crest Factor: 

 

  

 

 



A partir del periodo 10 la señal está más dañada. Este resultado se ve en todos los casos, 
aunque debido a la reconstrucción, la función del Crest Factor esta ligeramente 
desplazada en cada caso.  
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PROJECT SUMMARY 

When an airline signs a contract to exploit an aircraft with an aircraft manufacturer, the 
risk of the aircraft suffering a failure should be assumed by the manufacturer and not by 
the airline, since they were who built the aircraft. That is why airlines, instead of renting 
an aircraft for a period of time, are renting flight hours guaranteed by the manufacturer.  

Renting flight hours means that the manufacturer itself is responsible for the failure of 
the aircraft, and therefore it is him that must work on the maintenance of the aircraft to 
save costly reparations, present on the manufacturer itself, and on the airline in terms of 
cancelled flights.  

Safran Tech, is one of the aircraft manufacturers that searches a model that induces the 
moment when an aircraft component has to be repaired, not only to ensure that the 
aircraft does not have a breakdown but also to reduce the amount of reparations done.  

There are two types of maintenance operations: scheduled maintenance and predicted 
maintenance. The first one is not efficient as the part being replaced may not be 
damaged enough to remove it and will increase maintenance costs. Therefore, predictive 
maintenance is the key to reducing the maintenance costs of an aircraft. It is based on 
predicting when the part is likely to break down to replace it a little sooner. This 
method, despite being much more difficult to implement than the previous one, is the 
most efficient. 

This project is part of predictive maintenance. One of the many parts that may be 
studied to predict maintenance is the aircraft’s engine. The objective is to predict the 
health of the engine capturing some of the engine’s vibrations signals by adding some 
sensors to the engine frame. 

The problem with this is that the resonance frequencies of the engine are too high to 
measure a flight of many hours, sampled at a frequency higher than the Nyquist 
frequency. It is a Big Data problem. 

The target of this project is the reconstruction of the engine’s signal, by only sampling a 
random portion of the signal, and knowing that the signal is "sparse" (the signal has 
many negligible coefficients) on a given basis, which is the frequency domain of the 
signal.  

To address this problem, we will work with three models: two deterministic models and 
a probabilistic model. The first two are the FISTA (Fast Iterative Shrinkage-Thresold 
Algorithm) and the OMP (Orthogonal Maching Pursuit) and the last one is the Bayes 
Lasso method.  



The aim is to achieve a model that reconstructs the signal as accurately as possible, in a 
fast way and that does not make any negligible coefficient relevant, as it would make it 
impossible to study the health of the signal. Finally, the parameters of the signal should 
not depend on the health of the signal, and if possible, neither on the compression ratio 
of the signal, to set an optimal and immovable parameter in the method.  

All three algorithms exist in the literature, but their application to aircraft engine signals 
is not common. Signal reconstruction under some hypotheses is very common in image 
reconstruction. 

The FISTA algorithm is an iterative form of the Lasso formulation gradient operator. 
The Lasso formulation is defined as: 𝑓(𝑥) = ||𝑦 − 𝐴𝑥|| + 𝜆||𝑥|| , where A is the 
measurement matrix, y is the measured signal, x is the actual signal and λ is a term that 
adjusts the weight of the signal sparsity with the quadratic error of the reconstructed 
signal. 

The FISTA algorithm iteratively calculates values of the reconstructed signal x with the 
gradient of this function. It then takes into account the values of 𝑥  and 𝑥   to infer 
the term x, resulting in faster convergence than a more basic method than FISTA, the 
ISTA (Iterative Shrinkage-Thresolding Algorithm). 

 

The OMP algorithm assumes sparsity to reconstruct the signal. It reduces the problem to 
searching for the non-negligible K-coefficients of the signal. To do this, the columns of 
the measurement matrix are converted into vectors (of norm 1) and the column with the 
highest scaling product with the residual is selected. The residual is the difference 
between the measured signal and its projection (a) on the subspace formed by the 
already chosen vectors. Once the K vectors have been chosen, the system a=Ax is 
resolved, with x being of dimension K. Rearranging the coefficients, the reconstructed 



signal x is obtained. 

 

The Bayes Lasso method starts with some hypotheses about the probabilistic law with 
which certain parameters of the signal behave, to infer the law that defines the behavior 
of the signal as a function of these parameters. Since this law is very complicated, and it 
is not possible to work with it, the Gibbs Method is a solution to obtain a sample of the 
reconstructed signal, which tends with each iteration to the probabilistic law of the 
signal. Finally, a expectancy of the last n samples is calculated to reduce the random 
error. The final Gibbs iterative algorithm is:

 

In the frequency domain it can be observed that the reconstruction of the fundamental 
frequencies is maintained in all cases. However, on the temporal domain, it is 
undoubtedly the FISTA model the one that best reconstructs the signal. 



 

 

This fact can also be recognized in the optimization of the parameters of each model. 
The quadratic error of the FISTA signal is always a few orders below the error of the 
other models.  



By studying the correlation between the parameters and the health of the signal and the 
compression ratio, it can be shown, for a compression ratio of 5, that the OMP and 
FISTA models have an almost constant optimal parameter.   

FISTA Model 

Bayes Model 

 

 OMP Model 

 

 

 



Finally, the term Crest Factor is introduced, which is the ratio between the highest peak 
of a signal and the effective value of the signal. This factor helps to sense when the 
signal has fewer non-negligible coefficients, as the effective error would increase, and 
the Crest Factor would decrease. The reconstructed signal allows the prediction of the 
health of the signal by considering the Crest Factor: 

 

 

From the 10th period the signal starts being damaged. This result is seen in all cases, 
although due to the reconstruction, the function of the Crest Factor is slightly displaced 
in each case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Contents

1 Introduction and problem statement 1

1.1 Safran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Main objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Description of the technologies 5

2.1 Sparcity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Fourier Transform (FT) . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Discrete Fourier Transform (DFT) . . . . . . . . . . . . . . 6

2.3 Measurement Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Incoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Lasso’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5.1 Soft equation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Description of the developed model 11

3.1 Objectives and specifications . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

xvii



3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 ISTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 FISTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.3 Orthognal Matching Pursuit (OMP) . . . . . . . . . . . . . 14

3.3.4 Bayesian Lasso . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Numeric Implantation . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Analysis of results 21

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Base case results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 FISTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 OMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.3 Bayesian Lasso . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2.4 Crest factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.1 FISTA:Optimizing λ . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 OMP: Optimizing k . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.3 Bayesien: Optimizing k . . . . . . . . . . . . . . . . . . . . . 27

4.3.4 Dependance of the parameters . . . . . . . . . . . . . . . . . 28

4.3.5 FISTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.6 OMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.7 Bayesian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Conclusions 31



5.1 Conclusions about methodology . . . . . . . . . . . . . . . . . . . . 31

5.2 Conclusions about the results . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 Conclusions about the base case results . . . . . . . . . . . . 31

5.2.2 Crest Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.3 Sensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.4 Dependance of the parameters . . . . . . . . . . . . . . . . . 33

5.2.5 Choice of model . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Recommendation for further studies . . . . . . . . . . . . . . . . . . 34

6 Appendix 35

6.1 Sustainable development Goals of the United Nations . . . . . . . . 35

6.2 Calculus to retrieve the posterior distribution of x, σ2 and γi . . . . 35

6.3 Gran Smith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4.1 Clarifications about the matrix used A(I) . . . . . . . . . . . 38





List of Figures

3.1 Real Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 FISTA base case results for a rate of compression of 5 . . . . . . . . 22

4.2 OMP base case results for a rate of compression of 5 . . . . . . . . 23

4.3 Bayesian base case results for a rate of compression of 5 . . . . . . . 24

4.4 Crest Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Lambda Optimisation for a rate of compression of 5 and period=1 . 26

4.6 OMP optimisation for a rate of compression of 5 and period=1 . . . 27

4.7 Bayes Lasso optimisation for a rate of compression of 5 and period=1 27

4.8 Optimal Lambda for three compression rates in the twelve periods . 28

4.9 Quadratic error for a fixed lambda equal to the average of all the
optimal lambdas, and for the optimal lambda in period 12 . . . . . 28

4.10 Optimal K for three compression rates in the twelve periods . . . . 29

4.11 Quadratic error for a fixed K equal to the average of all the optimal
K, and for the optimal k in period 12 . . . . . . . . . . . . . . . . . 29

4.12 Optimal K for three compression rates in the twelve periods . . . . 30

4.13 Quadratic error for a fixed k equal to the average of all the optimal
k, and for the optimal k in period 12 . . . . . . . . . . . . . . . . . 30

xxi





Chapter 1

Introduction and problem
statement

Nowadays the sector of aerial mobility needs an enormous investment to build an
aircraft. The aircraft, as it has to give benefits to its shareholders, must be planned
to have a long life expectancy so it can complete as much journeys as possible.
Nevertheless airlines are not the builders of the aircraft and they do not want to
assume the risk of an aircraft’s break down. They prefer instead paying for the
hours hours the plane is supposed to work in an acceptable operating mode, rather
than paying the whole plane.

As a result, enterprises which build the transport may come up with ways of
assuring a well maintenance of the airplane, as their role is becoming to maximize
the life expectancy. This project was born following this objective.

There are two types of maintenance: scheduled maintenance checks and pre-
dicted maintenance. The former is not efficient as the part that may be replaced is
not enough damaged to remove it and will rise the maintenance costs. Therefore,
predictive maintenance is the key to reducing the costs of maintenance of an air-
craft. It is based on predicting when the part is likely to break in order to replace
it some time before. This method, even though is far more difficult to implement
than the former one, is the most efficient. Engines are studied with this purpose
since 1962.
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CHAPTER 1. INTRODUCTION AND PROBLEM STATEMENT

1.1 Safran

Safran [Saf19] is an international high-technology group, operating in the aviation
(propulsion, equipment and interiors), defense and space markets. It is a French-
registered company but has a global presence, with more than 95,000 employees
and sales of 24.6 billion euros in 2019.

Safran is involved in a project that searches to optimize the maintenance of its
engines. It has an agreement with an enterprise to undertake a study that predicts
when an aircraft’s engine should be repaired. The company provides the signal
of the vibrations of an engine in their laboratories which models the behaviour of
the engines of an airplane in an stationary state. There are twelve different states
or periods of the life cycle of the engine, from a healthy engine to a damaged one.
This signal follows a certain periodicity as it is related with the frequencies of the
angular velocity of the engine’s gears.

1.2 Main objectives

The big objective of this project is optimizing the life expectancy of an aircraft’s
engine and reducing the costs of maintenance. This means, being able to predict
the exact moment in which the operator should intervene on the motor’s engine
to prevent its failure and not to make expensive and inefficient reparations. In
this project, identifying when the engine is faulty will be presented. Nevertheless,
the objective of this project only concerns the sampling and reconstruction of the
signal.

In order to have a faithful representation of the signal, by the Shannon-Nyquist
criteria, the signal sampling frequency must be at least twice as big as the frequency
of the study. This signal’s resonance frequencies are in the order of the frequency
of rotation of the gears of the engine. Therefore sampling with the Shannon-
Nyquist Criteria over a 4h flight results in a massive amount of data, which is
not handy. The signal has to be quickly sampled, transported and processed to
retrieve a conclusion about the health of the engine. Therefore respecting the
Shannon-Nyquist Criteria is not possible.

2



1.3. Compressive Sensing

1.3 Compressive Sensing

Compressive sensing [Wak08] is a technique that samples a signal under the Shannon-
Nyquist frequency. It efficiently reconstructs a signal, by resolving undetermined
linear systems (m equations, dimension of the sampled signal, and n variables, the
dimension of the real signal, with m¡n). Using the sparcity of the signal as an
prerequisite, it is possible to reconstruct it with far fewer samples than it would
be needed with the Nyquist-Shannon Theorem.

Compress sensing needs additionally incoherence.It will be shown that a ran-
dom sampling matrix Φ is enough to meet it.

Compressive Sensing is a problem introduced by:

y = Φs+ ε

with:

y: Measured Signal, with n Samples

Phi: Measurement Matrix, of dimension m× n

s: Real Signal in the temporal domain, of dimension n

ε: Error, which will be approximated by N(0, σ2)

or:

y = ΦΨ−1x+ ε = Ax+ ε

with Ψ−1 the Inverse Fourier Transform and A the measurement matrix.

3
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Chapter 2

Description of the technologies

2.1 Sparcity

Sparsity expresses the idea that the information rate of a continuous time signal
may be much smaller than suggested by its bandwidth, or that a discrete-time sig-
nal depends on a number of degrees of freedom which is comparably much smaller
than its length. More precisely, CS exploits the fact that many natural signals are
sparse or compressible in the sense that they have concise representations when in
the proper basis.

Let {ψ}Ni=1 be an orthonormal basis and its basis matrixN×N , Ψ = [ψ1|ψ2|...|ψN ]
with the vectors as columns, a signal x can be represented as:

x =
N∑
i=1

ψisi = Ψs

x and s are both representations of the same signal in different domains. The
signal is k-Sparse if and only if, for an orthonormal basis, the signal has n-k zero
coefficients. In reality, as the signals have some noise, a coefficient will be asumed
to be zero if it is negligible with respect the others.

This propriety is indispensable for a faithful reconstruction of an under-sampled
signal. For a real signal of length n and k-Sparse, the dimension m of sampling
should verify n >> m >> k.

5



CHAPTER 2. DESCRIPTION OF THE TECHNOLOGIES

In this project s is the real signal in the temporal domain and x is the real
signal in the frequency mode. Therefore s = Ψ−1x

2.2 Fourier Transform (FT)

Given that our signal is sparse in the frequency domain it is relevant to know
how to switch from the temporal domain to the frequency domain. The Fourier
Transform allows us to do so.

The Fourier Transform is a method which decomposes a function into the
frequencies that compose it. Therefore the ”Time Domain” refers to the input
and the ”Frequency Domain” refers to the output of the FT. The FT of a function
results in a function in the complex domain.

The transform function of a function y(t) is defined as

y : < → C;F (y(t)(ω)) =
∫∞
−∞ y(t)e−2πitω

The inverse Fourier Transform converts a signal that belongs to the Frequency
Domain into the Time Domain. It is defined as:

y : C→ C;F (y(ω)(t)) =
∫∞
−∞ y(ω)e2πitω

2.2.1 Discrete Fourier Transform (DFT)

As computers are not able to do continuous calculations,the discretization of the
Fourier Transform allows to compute the transform automatically.

The Discrete Fourier Transform is the method that converts a finite sequence
of equally-spaced samples of a function in the time domain into a sequence of
the same length of equally-spaced samples of the discrete-time Fourier Transform,
which is the continuous transform of the sequence of depart.

The Discrete Fourier Transform is:

Y (k) = DFT [y(n)] =
∑N−1

n=0 y(n)e−j2πkn/N

The principal drawback of the Discrete Fourier Transform is that its complexity

6



2.3. Measurement Matrix

is in O(N2). To resolve this issue, the Fast Fourier Transform(FFT) is used in this
project.

The FFT is an algorithm that computes de DFT or its inverse in order to
reduce the global complexity from O(N2) to O(N logN)

2.3 Measurement Matrix

As the measurement matrix is a selection of m coefficients out of a signal of n
coefficients, all the matrix coefficients must be equal to 0 or 1. Additionally:

Let a1, ..., am be the lines of the matrix Φ, then:

{∀ak ∈ Φ ∃! ak,j ∈ ak s.t. ak,j = 1}

Moreover, for all the n columns of the matrix Φ there must be at most one
element on each column equal to 1.

A representation of a matrix Φ may be:

Φ =


0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 . . . 0
0 0 0 0 1 0 . . . 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 . . . 1

 ∈ {0, 1}m×n

2.4 Incoherence

Mutual coherence of a matrix A is defined as the maximum absolute value of the
scalar product of the different columns of a matrix A, assuming the columns are
normalized.

Let a1, ..., am ∈ Cd be the columns of the matrix A, which are assumed to be
normalized such that a∗i ai = 1 The coherence of a matrix A is defined as:

M = max
1≤i 6=j≤m

|a∗i aj|

7



CHAPTER 2. DESCRIPTION OF THE TECHNOLOGIES

For small enough compression rates, the matrix A = ΦΨ−1 is proved to have a
small coherence.

2.5 Lasso’s equation

Lasso’s formulation [Par19] will be implemented to minimize the error in the signal
reconstructed.

We have the following equation to minimize:

J(x) = ||ΦΨ−1x− y||22︸ ︷︷ ︸
(f1)

+λ||x||1︸ ︷︷ ︸
(f2)

(2.1)

Where:

λ is the regularisation parameter.

The first term is related to minimizing the quadratic error of the reconstructed
signal with respect to the original one. The second term is a consequence of
sparsity: It controls the zeroing of the non-important components.

The minimization problem with the l1-norm constraint does not have a closed
form solution. It is solved in iterative ways. In order to define an iterative proce-
dure, a non-negative term is added to the cost function. α is chosen bigger than
the biggest eigenvalue of the matrix ΨΦTΦΨ−1. This term will not change the
minimization solution as it tends to zero as x̂ converges. New cost function is:

H(x̂) = ||ΦΨ−1x̂− y||22︸ ︷︷ ︸
(f1)

+λ||x̂||1︸ ︷︷ ︸
(f2)

+(x̂− x̂s)(αI −ΨΦTΦΨ−1)(x̂− x̂s)

Where:

f1 = ||ΦΨ−1x − y||22 is is the Data Fidelity Term; ensures the accuracy of the
signal by the quadratic error

f2 = λ||x||1 is the Regularisation Term, ensures the sparcity of the signal

8



2.5. Lasso’s equation

α is bigger than the maximum eigenvalue of ΨΦTΦΨ−1 (α > 1)

Developing f1:

f1 = x∗(Ψ−1)∗ΦTΦΨ−1x− y∗ΦΨ−1x+ (y∗ΦΨ−1x)∗ + ||y||22

f1 = x∗ΨΦTΦΨ−1x− 2Re(y∗ΦΨ−1x) + ||y||22

Computing the gradient of f1:

∇f1 = 2ΨΦTΦΨ−1x− 2ΨΦTy

The gradient of f2 is representable in: {x ∈ C− {0}}:

∇f2(x) =

{
dir(x) if x 6= 0
Doesn′texist if x = 0

(2.2)

Therefore ∇H(x̂) equals:

∇H(x̂) = 2ΨΦTΦΨ−1x̂− 2ΨΦTy + λdir(x̂) + 2(αI + ΨΦTΦΨ−1)(x̂− x̂s)

Developing ∇H(x̂) = 0 we get to:

x̂+ λ
2α
dir(x̂) = 1

α
ΨΦT (y − ΦΨ−1x̂s) + x̂s

Getting to the iterative equation:

x̂n+1 + λ
2α
dir(x̂n+1) = 1

α
ΨΦT (y − ΦΨ−1x̂n) + x̂n

2.5.1 Soft equation

We solve this iterative equation to get the xn+1 term:

x̂n+1 = 1
α

ΨΦT (y − ΦΨ−1x̂n) + x̂n − λ
2α
dir(x̂n+1)

Therefore we can define: x̂n+1 = soft(k, µ) = k − µdir(x̂n+1)

With:

µ = λ
2α
∈ <

9
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k = 1
α

ΨΦT (y − ΦΨ−1x̂n) + x̂n ∈ C

We will prove soft(k, µ) = dir(k)max(|k| − µ, 0) by solving

x̂n+1 = k − µdir(x̂n+1)

First of all:

x̂n+1 = dir(x̂n+1)|x̂n+1|

Then:

|x̂n+1|dir(x̂n+1) + µdir(x̂n+1) = k

⇔ dir(x̂n+1) = dir(k) (and with the same sense)

and x̂n+1 = dir(k)(|k| − µ)

Nevertheless as dir(x̂n+1) = dir(k) and |x̂n+1| = |k| − µ, if |k| − µ < 0 |x̂n+1|
has to be null

As a result:

soft(k, µ) = dir(k)max(|k| − µ, 0)

Graphically, the soft function, as it comes from the l1-norm, ensures sparsity
of negligible components of the vector x̂n. Graphically, for the the specific case
where k ∈ <:

10



Chapter 3

Description of the developed
model

3.1 Objectives and specifications

The objectives that will be pursued are the followings:

1. Find the model that reconstructs the signal with the best precision

2. Ensure that the reconstructed signal never has a peak where the real signal
has not as it may cause a failure in the posterior study of its health.

3. Approach the study of the health of the engine with the reconstructed signals
to prove that the reconstruction is acceptable.

4. Study the sensibility of the parameters

5. Study the relation between the parameters and the rate of compression

6. Study the relation between the parameters and the health of the signal

3.2 Data

The signal reconstructed appearance, from a healthy state to a damaged one, only
odd pictures showed, is the following:

11
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(a) Period 1 (b) Period 3

(c) Period 5 (d) Period 7

(e) Period 9 (f) Period 11

Figure 3.1: Real Signal

In all the states of the signal, it is remarkable that most of the coefficients of
the signal are negligible. As the health of the signal deteriorates, the amount of
non-zero elements increases, which means that the gears of the engine have more
and more harmonics in their rotation. At last instance, this vibrations beyond the
operating frequencies produce a breakdown on the engine.

This is the reason why it is essential that the signal does not invent a peak where
there is not, because in that case the signal would appear to be more damaged
than how it actually is.

12



3.3. Algorithms

3.3 Algorithms

3.3.1 ISTA

The ISTA Algorithm (iterative shrinkage-thresholding algorithms) will be pre-
sented to introduce the FISTA. It is used for solving linear inverse problems aris-
ing in signal/image processing. This class of methods, which can be viewed as an
extension of the classical gradient algorithm, is attractive due to its simplicity and
thus is adequate for solving large-scale problems even with dense matrix data.

In order to apply the method, the lasso formulation will be used as the cost
function. Its gradient must be computed inducing an iterative function. Applying
the ISTA Method:

Input: Φ,Ψ, y, λ, α
x0 → 0
for n← 0 max iterations do

x̂n+1 ← soft( 1
α

ΨΦT (y − ΦΨ−1x̂n) + x̂n,
λ

2α
);

r ← y − ΦΨ−1x̂n+1;
end
Output: Reconstructed signal x̂n+1, r

Algorithm 1: ISTA

3.3.2 FISTA

[Teb09] However the ISTA method is also known by its slowly convergence. That
is why the FISTA Algorithm is introduced (fast iterative shrinkage-thresholding
algorithms) which will be faster by several orders of magnitude.

The difference between both algorithms is that the FISTA computes a better
actualisation of the term xn by taking into account the term xn and xn−1

13
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Input: Φ,Ψ, y, λ, α
x0 → 0
t0 → 1
z0 → x0

for n← 0 max iterations do
zn ← zn + 1

α
ΨΦT (y − ΦΨ−1xn)

xn+1 ← soft(zn,
λ

2α
)

tn+1 =
1+
√

1+4t2n
2

zn+1 = xn+1 + tn−1
tn+1

(xn+1 − xn)

r ← y − ΦΨ−1xn+1

end
Output: Reconstructed signal xn+1, r

Algorithm 2: FISTA

3.3.3 Orthognal Matching Pursuit (OMP)

Notations

[YC 93] Let the problem be finding a x of dimension n and k-sparse (k non-
zero coefficients) that resolves best y = Ax + ε where y is given as an input and
n >> m >> k. The OMP Method searches to find the k most relevant coefficients
of x by selecting the k columns of A whose scalar products with y are the biggest.

Let the columns of A be normalized and note Ai,i=1...N as the i-th column of A.
Let I be a vector of selection of the columns of A be of dimension k < n and verify
{k ∈ I : 1 < k < N}. Let A(I) be the matrix of dimension m×k created by the
k columns of A that I selected, and x(I) its related coefficients. For a subspace V
in CN , let PV (y) be the orthogonal projection of y in V . At last, let A(I) be the
span of the columns A(I)

Since x in K-Sparse, y − ε is in the span of k columns of A . Then the idea
is to find the indexes i1, i2...ik ∈ I of the columns of A that maximizes the scalar
product, find the projection a of y into the span A(I) and resolve the equation
A(I)x(I) = ax(I) to get the non-zero coefficients of x(I). At last, put back in order
the coefficients of x.

14
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Finding the I Indexes

In order to find the k Indexes, we will iteratively search k times the biggest column
of A, that has not yet been selected, with the scalar product with r as a norm. r
is the part of y that is beyond the span of the already selected columns of A.

The algorithm is the following:

Input: A, y, k
r ← y;
I ← [];
for i← 0 k do

Rest← [〈Aj, r〉 for j = 1...N, /∈ I];
max Rest = max(Rest);
I ← I + [find Ind(max Rest)];
a = PAI (y);
r = y − a;

end
Output: I, a

Algorithm 3: Finding the first K Indexes

To have the projection of r in the subspace AI , the Gran Smith method is
implemented 6.3

Resolving the equation

Once the k most relevant indexes are selected (and stored in I), and the projection
of y in the span of the columns of I is retrieved, one should resolve the equation
A(I)x(I) = a. This cannot be simply solved by simple numpy methods. Neverthe-
less, using the QR Decomposition 6.4 this can be easily resolved.

Then:

A(I)x(I) = QRx(I) = a

and therefore:

x(I) = R−1Q∗a

15
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Global algorithm

As a result from all of the above, this algorithm is retrieved:

Input: A, y, k
r ← y;
I ← [];
for i← 1 k do

Rest← [〈Aj, r〉 for j = 1...N, /∈ I];
max Rest = max(Rest);
I ← I + [find Ind(max Rest)];
a, ui = PAI (y);
r = y − a;

end
Q,R ← QR Decomposition(uj=1..k,A,I) 7;

x(I) ← R−1Q∗a;
for j ← 1 k do

xI[j] ← x
(I)
j ;

end
Output: x

Algorithm 4: Orthogonal Matching Pursuit

3.3.4 Bayesian Lasso

Notations

[Cas08] The object of the study is to solve y = Ax+ε where y is the input signal of
dimension m, x is the output complex vector of length N >> m and A is assumed
to have a small coherence. ε is assumed to follow a Gaussian noise of standard
deviation σ, so:

y|x, σ ∼ N (Ax, σ2Im)

In this section the signal x will be retrieved by inferring some posterior dis-
tributions of the parameters of the signal, in order to use the Gibbs’ Method to
iterate an approximate a solution.
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3.3. Algorithms

Choice of priors distributions

A common way of expressing the sparsity of the signal x is choosing a prior of
parameter k on the variable xi/σ. However this is not possible as x is complex. It
will be then used a Gaussian mixture associated with a Student distribution in the
complex case. Using independent γi,i∈1,N such that γi ∼ InverseGamma(k/2, k/2)
and Re(xi/σ), Im(xi/σ)|γi, σ ∼ N (0, γiI2) or the equivalent Re(xi), Im(xi)|γi, σ ∼
N (0, σ2γiI2)

There is little to know about σ2 therefore it will be used a non-informative
prior σ2 ∼ 1

σ2

Retrieving the posterior distribution

The Bayes Theorem is defined as:

p(x|y) = p(y|x)p(x)
p(y)

Developing p(x):

p(x) =
∏N

i=1 p(xi) = (
∏N

i=1 p(xi|γi, σ)p(γi))p(σ)

Therefore p(x|y) ∼ p(y|x)(
∏N
i=1 p(xi|γiσ)p(γi))p(σ)

p(y)

By the calculations in 6.2 we get to:

p(xi,i∈{1,N}|σ, γi,i∈{1,N}) ∼ N (M(γ), S(γ))

with S = (
AHA+D−1

γi

σ2 )−1

and M = SA∗y

p(γi|xi, σ2)i=1...N ∼ IG(k/2, |xi|
2+kσ2

2σ2 )

p(σ2|xi, γi)i=1...N ∼ IG(m/2 + n+ 1,
||y−Ax||22

2
+
∑N

i=1
|xi|2
2γi

)
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Gibbs Sampling

Gibbs sampling is a Markov Chain Monte Carlo Algorithm for approximating a
complicated joint distribution. As it works with random distribution, it is not a
deterministic algorithm such as the FISTA or the OMP.

Gibbs sampling returns a Markov Chain of samples, each of them correlated
with its neighbours. Nevertheless, the samples from the beginning of the chain
should be discarded as they have not converged yet into the desired distribution.

Input: A, y, k, σ2, xr
x0 → 0
γ0 → 1
for j ← 0 burn+iterations do

(γi|xi, σ2, k)i=1...N ← IG(k/2, |xi|
2+kσ2

2σ2 )
S=σ2(A∗A+D−1

γi
)−1

(xi.real, xi.imag|γi, σ2)i=1...N = N (S[i]A∗y, S[i]I2)

(σ|γi, x2
i )i=1...N = IG(m

2
+ n+ 1,

||y−Ax||22 +
∑N

i=1
|xi|2
2λi

)

r[j] = ||xr − x||2
if j > burn then

x̂s = average(xi)i=burn+1...burn+iterations

else
x̂s = 0

end

end
Output: Reconstructed signal x̂s,error matrix r

Algorithm 5: Bayesian

Numeric implantation of the Bayes Theorem

As the real signal is of dimension 60.000, computing the matrix S = (
A∗A+D−1

γi

σ2 )−1

it is not possible because of the memory to allocate in the computer.

The incoherence of the matrix A allows to make a simplification. It has been
assumed that the matrix A is incoherent and therefore the non-diagonal coefficients
of the matrix A ∗ A have been zeroed.

As a result, S = (
A∗A+D−1

γi

σ2 )−1 ≈ σ2((m/n)I +D−1
γi

)−1, which is diagonal
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3.4. Numeric Implantation

3.4 Numeric Implantation

For the same reason, in all the models, working with the measurement matrix A
has been avoided. Instead of a Φ matrix as shown in 2.3, a vector containing the
m selected coefficients of x improves the efficiency and is less heavy. Instead of the
Ψ matrix, it has always been used the DFT exposed in 2.2.1 which is also more
efficient.
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Chapter 4

Analysis of results

4.1 Introduction

Firstly, the base case results will provide a general idea of the success of the
reconstruction of the signal, for both the time and frequency domain. Then, in
the sensitivity analysis, it will be inferred the optimal parameter for each model.
In the following step, it will be shown the dependence of this optimal parameter
with the other variables: The rate of compression and the health of the signal.

Finally, it will be shown an approach of how the reconstruction of the signals
can predict an irregularity in the engine.

4.2 Base case results

The base case results will only be presented for the days 1, 6 and 12, for a time
and frequency domain, for each model, with a fixed rate of compression (r=5) and
parameter for each model.
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4.2.1 FISTA

Figure 4.1: FISTA base case results for a rate of compression of 5
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4.2. Base case results

4.2.2 OMP

Figure 4.2: OMP base case results for a rate of compression of 5
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4.2.3 Bayesian Lasso

Figure 4.3: Bayesian base case results for a rate of compression of 5
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4.2. Base case results

4.2.4 Crest factor

The crest factor is a parameter that represents the extremity of the peaks of a
waveform. A crest factor equal to 1 means would be a constant function
It is defined as: C = |xmax|

xrms
= |x∞|

x2

Figure 4.4: Crest Factor
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4.3 Sensitivity analysis

4.3.1 FISTA:Optimizing λ

For a rate of compression of 5, it is presented the cuadratic error of the FISTA
algorithm as λ increases, in order to reach a minimum quadratic error and fix an

optimal λ.

Figure 4.5: Lambda Optimisation for a rate of compression of 5 and period=1
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4.2. Base case results

4.3.2 OMP: Optimizing k

For a rate of compression of 5, it is presented the cuadratic error of the OMP
algorithm as k increases, in order to reach a minimum quadratic error and fix an

optimal k.

Figure 4.6: OMP optimisation for a rate of compression of 5 and period=1

4.3.3 Bayesien: Optimizing k

For a rate of compression of 5, it is presented the cuadratic error of the Bayesian
algorithm as k increases, in order to reach a minimum quadratic error and fix an

optimal k.

Figure 4.7: Bayes Lasso optimisation for a rate of compression of 5 and period=1
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4.3.4 Dependance of the parameters

4.3.5 FISTA

In the figure below, for three different ratios of compression, and the twelve
periods of the signal, it is retrieved the optimal λ parameter for the FISTA

algorithm in order to study its dependence with the ratio of compression and the

health

Figure 4.8: Optimal Lambda for three compression rates in the twelve periods

As there is some difference between the optimal λ parameters, there are two
figures below evaluating the quadratic error in two cases: Choosing a parameter
average of the 12 optimal cases, and choosing the parameter of the 12th period

Figure 4.9: Quadratic error for a fixed lambda equal to the average of all the
optimal lambdas, and for the optimal lambda in period 12
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4.2. Base case results

4.3.6 OMP

In the figure below, for three different ratios of compression, and the twelve
periods of the signal, it is retrieved the optimal k parameter for the OMP

algorithm in order to study its dependence with the ratio of compression and the

health

Figure 4.10: Optimal K for three compression rates in the twelve periods

As there is some difference between the optimal k parameters, there are two
figures below evaluating the quadratic error in two cases: Choosing a parameter
average of the 12 optimal cases, and choosing the parameter of the 12th period

Figure 4.11: Quadratic error for a fixed K equal to the average of all the optimal
K, and for the optimal k in period 12
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4.3.7 Bayesian

In the figure below, for three different ratios of compression, and the twelve
periods of the signal, it is retrieved the optimal k parameter for the Bayesian

algorithm in order to study its dependence with the ratio of compression and the

health

Figure 4.12: Optimal K for three compression rates in the twelve periods

As there is some difference between the optimal k parameters, there are two
figures below evaluating the quadratic error in two cases: Choosing a parameter
average of the 12 optimal cases, and choosing the parameter of the 12th period

Figure 4.13: Quadratic error for a fixed k equal to the average of all the optimal
k, and for the optimal k in period 12
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Chapter 5

Conclusions

5.1 Conclusions about methodology

Without any doubt this report is interesting, as it shows how to efficiently recon-
struct a signal that is up to 8 times is real value. Even though the study has
focused in the engines of the aircrafts, lots of improvements could be done in other
ways of mobility, or even in domestic machines or machines of a factory. Any
machine that follows a periodicity.

Regarding how the project has been approached, it is clear that the simplifi-
cation of the computation has been crucial for the project. Avoiding matrices of
60k × 60k is necessary to undertake the project successfully.

Even in this case, final computations to tackle the sensitivity of all the param-
eters as a function of all the constraints take an enormous amount of time.

5.2 Conclusions about the results

5.2.1 Conclusions about the base case results

Even though observing the temporal domain one would say that the reconstruction
of the signal is not accurate enough, the frequency domain is the relevant one, as
the matter of the project is identifying the signal with lots of non-zero components,
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thus the damaged engines.

In the frequency mode it is noticeable that the quality of reconstruction seems
acceptable as the differences between a healthy engine and a damaged engine are
clear. (That is the signals on period 1 or 6 and the period 12).

5.2.2 Crest Factor

The issue mentioned before is present in the crest factor, which represents the
extremity of the peaks of a signal. This is related with the amount of non-negligible
components in a signal.

After the period 10 the crest factor decreases drastically, which means that the
maximum value of the signal is getting lower in relation with the norm 2 of the
signal. This is explained as the signal has more non-zero components and therefore
the norm 2 is bigger even though the peak value is similar.

5.2.3 Sensibility

As the FISTA method follows a gradient descend, it is understandable that the
cost function is the smoothest. For the case represented ?? the λ optimal is clearly
is around 0.15.

The Bayesian Method 4.7 has also a minimum in the boundaries even though
the curve is not as smooth as the previous one. In fact, the model is probabilistic
and therefore the results have a component of random error, even though the
reconstructed signal is an average of the last iterations.

The factor k in the OMP Method reflects the amount of coefficients that the
program should consider non-zero. It reaches a minimum around 230, even though
the curve is less precise as k increases, as the resolution of the last equation start
giving errors.

In conclusion, observing the error given for the optimal parameters in each
case, it is clear that the model in which the quadratic error is minimal is the
FISTA. The OMP has almost twice the error of FISTA and the Bayesian almost
three times.
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5.2.4 Dependance of the parameters

Ideally, the optimal model would be a model in which its parameter would not
change with the rate of compression nor the health of the engine. If this was
the case, the same parameter would be used no matter what situation and the
quadratic error of the signal would be always minimal.

Observing the results 4.8 4.12 4.10, it is acceptable to find an average parameter
that reconstructs the signal within an acceptable error in each case.

For the model FISTA, and a ratio of 5, the relative distance between the biggest
and lowest parameter is 0.3, which may seem huge. Nevertheless, computing the
error with an average λ and the maximum λ in figure 4.9, it is observable that the
difference between the errors is not huge. The error increases always as the period
increases, so it will be advisable to choose the λ optimal in period 12, λ = 0.2 For
the OMP model and the Bayesian model it occurs the same. It would be advisable
to choose k = 17 in the Bayesian and k = 176 in the OMP.

5.2.5 Choice of model

Undoubtedly, the model which suits the best is the FISTA. Firstly, the quadratic
error of the reconstructed signal is lower than in the other models. This is remark-
able comparing the error in figure 4.5 with the corrresponding figures of the other
models: 4.7 and 4.6, but also looking at the base case results, 4.1, where even the
temporal domain gives good approximations.

The convergence of its parameter λ is clear, as the curve is smooth, which
helps optimising the quadratic error.In the rest of the models, there is a conver-
gence, but both figures have some noise which difficulties searching for the optimal
parameters.

In terms of fixing a parameter for a given rate of compression, it has been
shown in figure 4.8 that for a fixed rate of compression, the optimal parameter
does not change as the engine ages. Additionally, for a rate of compression of 5,
it is shown in 4.9, that the quadratic error as a function of the aging of the engine
for some fixed lambdas, is lower at any case that the best cases in the rest of the
models.

Regarding the crest factor, the three models seem to follow approximately the
same tendency, which means that the posterior study of the health of the engine
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is possible.

Nevertheless, the Fista Method also has som drawbacks. It is by far the model
which takes the most time to compute one iteration. Its input parameter, lambda,
balances the importance between sparcity and the quadratic error, but it does not
represent any physical feature of the signal.

To conclude, it may be deceptive that what it seems to be the most obvious
proposition, is in fact, the most optimal.

5.3 Recommendation for further studies

As it has been just mentioned, it is surprising that the model which seem more
obvious is in fact the most optimal. More models could be implemented in order to
find an original idea that induces the convergence faster than the FISTA method
and whose final solution is more precise.

However, the clear path to follow after this project is the study of the diagnosis
of the health of the engine, which is a subject briefly covered here.

To do so, some additional studies could be implemented in addition to the
crest factor, even some much more naive. For instance, it could be measured the
amount of samples that are bigger than the biggest peak divided by a fixed rate.
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Chapter 6

Appendix

6.1 Sustainable development Goals of the United

Nations

In addition of reducing the costs of the maintenance of the aircraft, predictive
maintenance meets some of the Sustainable Development Goals presented by the
United Nations in September 2015. [Nat15]

In the domain 12, responsible consumption and production, complains about
the present consumption of resources, which will be impossible to meet if the
humanity follows the actual rates of growth.

Specifically, the project meets the goal 12.5, which is: ”By 2030, substantially
reduce waste generation through prevention, reduction, recycling and reuse”.

6.2 Calculus to retrieve the posterior distribu-

tion of x, σ2 and γi

p(x|y) = N (Ax, σ2Im)
∏N

i=1(p(Re(xi), Im(xi)|γi, σ)IG(k/2, k/2))p(σ)

= 1

(
√

2πσ2)m
exp(−1

2
(y − Ax)T (σ2Im)−1(y − Ax))

∏N
i=1

1√
2πσ2γi

exp(−1
2
|xi|2
σ2γi

)
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(k/2)k/2

Γ(k/2)
(1/γi)

k/2+1+1/2exp(− k
2γi

)

Reorganising the terms and deleting terms not related with σ, x or γ:

p(x|y) = 1
(σ2)m/2+N/2

exp(− 1
2σ2 [(y − Ax)T (Im)−1(y − Ax) +

∑N
i=1 x

∗
i

1
γi
xi])∏N

i=1(1/γi)
k/2+3/2 exp(− k

2γi
)

Working with the exponential term (parameters affected by x) :
− 1

2σ2 [(y − Ax)T (Im)−1(y − Ax) +
∑N

i=1 x
∗
i

1
γi
xi]

= − 1
2σ2 [yTy − 2yTAx+ x∗A∗Ax+ x∗D−1

γi
x] ∼ −1

2
[(x−M)∗S−1(x−M)]

with S = (
A∗A+D−1

γi

σ2 )−1 and M = SA∗y

Therefore:

p(xi,i∈{1,N}|σ, γi,i∈{1,N}) ∼ N (M(γ), S(γ))

Working with the terms related with γi:

∼ 1
γi

k
2

+2
e−(xTi xi/σ

2+k/2)/γi ∼ IG(k
2

+ 1, |xi|
2+kσ2

2σ2 )

p(γi|xi, σ2)i=1...N ∼ IG(k/2,
|xi|2 + kσ2

2σ2
)

Working with the terms related with σ2:

∼ 1
σ2

m/2+n+2
e
− 1

2σ2
[||y−Ax||22+

∑N
i=1

|xi|
2

2γi
]

p(σ2|xi, γi)i=1...N ∼ IG(m/2 + n+ 1,
||y−Ax||22

2
+
∑N

i=1
|xi|2
2γi

)

6.3 Gran Smith

In other words:
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6.4. QR Decomposition

Input: k linearly independent vectors, vi=1..k

u1 ← v
〈v,v〉

for i← 2 k do

en = vn −
∑n−1

j=1 〈vn, uj〉uj
uj ← ej

〈ej ,ej〉
end
Output: k orthonormal vectors, ui=1..k

Algorithm 6: Gran Smith

e1 = v1 u1 = e1
|e1|

e2 = v2 − 〈v2, u1〉u1 u2 = e2
|e2|

...
...

en = vn −
∑n−1

i=1 〈vn, ui〉ui un = en
|en|

6.4 QR Decomposition

The QR Decomposition is the decomposition of a matrix A into a product of
matrices Q and R, where Q is an orthogonal matrix (columns and rows are unitary
vectors orthogonal between each other) and R and upper triangular matrix. This
method is supported by the Gran Smith Method. 6.3

Let vi=1...n be the n columns of the matrix A. Then, using the Gran Smith
Method 6.3, n orthonormal vectors are retrieved ui=1...n

Then, Q and R are the following:

Q =

u1 u2 · · · un



R=


〈u1, v1〉 〈u1, v2〉 · · · 〈u1, vn〉

0 〈u2, v1〉 · · · 〈u2, vn〉
...

...
. . .

...
0 0 · · · 〈un, vn〉
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6.4.1 Clarifications about the matrix used A(I)

The matrix decomposed is A(I). Therefore, there is some issues to be clarified:

1. As A(I) is a matrix of complex numbers, Q∗Q = I

2. As the matrix A(I) is a m× k matrix, with m > k, we have:

Q=
[
Q1, Q2

]
with Q1 of dimensions m× k and Q2 = 0

and R=

[
R1

R2

]
with R1 of dimensions k × k and R2 = 0

So that A(I) = Q1R1

As a result, the following algorithm is used:

Input: ui=1..k orthonormal vectors of length m, vi=1..k linearly
independent vectors of length m

Q← [0] ∗ (m× k);
R← [0] ∗ (k × k);
for i← 1 k do

Q:,i ← ui for j ← 1 k do
Ri,j ← 〈ui, vj〉;

end

end
Output: Q,R

Algorithm 7: QR Decomposition

38



Bibliography
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