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Resumen del trabajo 

Este proyecto tiene por objeto realizar un amplio examen de las técnicas utilizadas actualmente 

para aumentar la precisión de los modelos de aprendizaje profundo, prestando especial atención 

a las que se centran en las redes neuronales, como los algoritmos de selección de variables, las 

arquitecturas híbridas y las técnicas de optimización de hiperparámetros.  

La eficacia de esas técnicas se evalúa posteriormente en una aplicación de caso real  

Palabras clave: Redes neuronales, Series temporales, Predicción, Deep Learning  

 

Introducción 

La popularización de los modelos de las Redes Neuronales Profundas (Deep Neural 

Networks)en los últimos años ha dado lugar a un aumento del número de técnicas para aumentar 

la precisión de esos modelos. Sin embargo, es difícil elegir cuál de estos métodos son óptimos 

para un problema específico. Este proyecto tiene por objeto realizar una comparación de éstos 

aplicándolos en un problema de previsión de series temporales y proporcionar una metodología 

inicial que ahorre tiempo y recursos al enfrentarse a un problema nuevo. Otras aplicaciones 

están fuera del alcance de este proyecto. 

Se ha elegido la previsión de series temporales para realizar la comparación debido a la gran 

demanda de este tipo de modelos Algunas aplicaciones de predicción de series temporales son 

las tendencias o comportamientos futuros de los mercados bursátiles, las ventas de productos, 

la demanda de electricidad, la velocidad del viento y la radiación solar para la generación de 

energía, las cuestiones relacionadas con la salud y el Procesamiento del Lenguaje Natural 

(PNL), entre muchas otras. Estas aplicaciones han estado, durante muchas décadas (finales del 

siglo XX), a la vanguardia del desarrollo de algoritmos de aprendizaje automático y de modelos 

matemáticos complejos en constante evolución [1]. 

El enfoque de la mayoría de estos modelos de predicción consiste en utilizar los algoritmos de 

aprendizaje automático para aprender del pasado con el fin de proporcionar una predicción de 

un valor futuro. Debido a los entornos dinámicos, caóticos, estocásticos y complejos del propio 

problema y a la incertidumbre de los datos del mundo real (por ejemplo, los mercados 

bursátiles), esto se convierte en un proceso inherentemente desafiante y no trivial. Esto se 



 

agrava cuando se trata de características dependientes del tiempo o de cadenas de información 

multivariantes a largo plazo, en las que es de suma importancia identificar las correlaciones 

entre datos temporales distintos [2] o definir qué valores pasados (tanto en tiempo como en 

variables) son importantes dentro del proceso de predicción [3], respectivamente. 

Metodología 

El desarrollo de este proyecto ha seguido 5 etapas diferentes: 

1. Revisión del estado del arte. Para ello, se revisa en el capítulo 2 la bibliografía 

disponible sobre los diferentes temas tratados, con el fin de comprender la teoría y los 

conceptos subyacentes. Esta base teórica ha ayudado a identificar las técnicas más 

interesantes para aplicar y profundizar en el desarrollo del modelo de previsión de series 

temporales. 

2. Definir el alcance del modelo de predicción. Una vez que se han analizado todas las 

técnicas potenciales en el estado del arte, se han seleccionado una serie de ellas para 

evaluar su eficacia en la mejora de la precisión del modelo. El alcance del modelo es 

lograr la mayor precisión prediciendo la generación de energía eólica del día siguiente 

en un parque eólico nacional, tomando como entrada datos históricos. Todos los 

modelos han sido probados con el modelo de referencia, que supone que la energía 

eólica generada en el día t es igual a la del día t – 1. 

3. Investigación de modelos y desarrollo de códigos. A fin de probar todas las técnicas 

enumeradas, se ha llevado a cabo una investigación exhaustiva de los recursos y 

bibliotecas disponibles para construir la estructura necesaria para cada uno de los 

diferentes modelos probados.  

4. Validación de modelos y seguimiento de las mejoras. Después de implementar todas las 

diferentes técnicas de ajuste, se han realizado varias pruebas para ver cómo afecta a la 

precisión del modelo. También se analizaron características adicionales, como el tiempo 

de ejecución, para ver si el aumento de la precisión explica la necesidad de una mayor 

potencia de cálculo, o si con técnicas más sencillas se podría garantizar una solución 

más equilibrada del problema. La configuración interna de la red también se ha 

analizado para evaluar la diferencia entre los modelos y utilizarla para comprender 

mejor la importancia de los hiperparámetros de la red.  

5. Resultados y conclusiones. Los capítulos 4 y 5 abordan los resultados y conclusiones 

derivados de las pruebas realizadas, proporcionando aquellos métodos o técnicas con 

los que sería más beneficioso trabajar de acuerdo con los datos disponibles, los recursos 

informáticos y el alcance definido del proyecto. 

 

 



 

Resultados 

Los resultados obtenidos se pueden dividir por un lado entre las configuraciones que permiten 

obtener la mejor precisión en la predicción y los que logran resultados en un menor tiempo. 

En cuanto al primer punto, el Grid Search, junto a una arquitectura de red tipo GRU es la 

configuración que mejor precisión obtienen, mientras que los mejores tiempos se obtienen al 

combinar un Random Search y arquitectura de red tipo RNN.  

 
Técnica de 

optimización de 

hyperparámetros 

Capas 
Neuronas 

por capa 

Función 

de 

activación 

Optimizador Learning rate 

Error de 

validación  

MSE 

Tiempo total 

de ejecución 

(min) 
LSTM Grid 2 26 elu adam 0,00158114 175,390069 260,21 

LSTM Random 3 31 elu adam 0,00298181 184,265402 45,5 

LSTM Bayesian  3 15 elu adam 0,00100075 182,650941 118,01 

LSTM Genetic Algorithm 3 30 elu adam 0,00146076 187,247948 100,37 

GRU Grid 3 16 elu adam 0,0005 167,600379 217,3 

GRU Random 4 26 elu adam 0,00096535 169,507542 48,6 

GRU Bayesian  2 30 elu adam 0,00063344 170,248371 100,14 

GRU Genetic Algorithm 5 39 elu adam 0,00072304 175,601382 56 

RNN Grid 3 6 elu adam 0,0005 179,856083 107,1 

RNN Random 1 21 elu adam 0,00195347 191,678969 24,7 

RNN Bayesian  6 15 elu adam 0,00073817 185,762487 70,17 

RNN Genetic Algorithm 4 86 elu adam 0,00156522 176,363621 42 

BILSTM  Grid 2 11 elu adam 0,005 187,233101 511,6 

BILSTM  Random 1 41 elu adam 0,00414321 192,240764 97,3 

BILSTM  Bayesian  1 45 elu adam 0,00259197 190,741036 164,23 

BILSTM  Genetic Algorithm 2 69 elu adam 0,00229161 216,845031 144,07 

Tabla 1. Comparación de las mejores simulaciones para cada configuración de red probada.  

Si bien las configuraciones de red tipo LSTM se posicionaban como las más interesantes en 

base a la bibliografía consultada y la cantidad de aplicaciones que se basan en ella, ha quedado 

demostrado que, para esta aplicación, sus cualidades quedan muy por detrás de las obtenidas 

con configuraciones de red tipo GRU. Del mismo modo, también se descarta el uso de 

arquitecturas tipo BiLSTM las cuales no logran mejorar ninguno de los dos principales aspectos 

contemplados en este trabajo.  

En base a los resultados obtenidos se recomienda en cualquier caso optar por una búsqueda 

inicial de la mejor configuración de los hiperparámetros por medio de un Grid Search, aun 

cuando el tiempo de ejecución es elevado, y afinar las siguientes búsquedas ya sea usando el 

mismo método u otro que permita menores tiempos de ejecución. Se recomienda el Grid Search 

ya que permite una mayor transparencia de los resultados obtenidos, al no estar estos expuestos 

al riesgo de verse limitados por haber dado con un mínimo local que pueda forzar pruebas de 

hiperparámetros subóptimas.  

 



 

 

Conclusiones 

A falta de otros trabajos que confirmen o desmientan las conclusiones extraídas de la aplicación 

presentada en este proyecto, se asumirá que estas conclusiones son al menos parcialmente 

aplicables en otro problema de predicción de series temporales. Aun así, se recomienda una 

búsqueda inicial utilizando la técnica de Grid Search para encontrar el espacio de 

hiperparámetros óptimo para cada aplicación. 

En cuanto a los resultados obtenidos, se pueden resumir las ideas principales en los siguientes 

puntos: 

- Si el tiempo es un factor decisivo en el éxito de la aplicación, se recomienda optar por 

optimización bayesiana o Random search justo a configuraciones de red tipo RNN. 

También se pueden combinar junto a arquitecturas tipo GRU si se busca una ligera 

mejora en la precisión de la predicción del modelo.  

- Si el problema se centra en lograr la mejor predicción posible, es decir, el menor error 

de validación, la mejor opción observada es el uso de un Grid Search junto a una 

arquitectura de red tipo GRU.  

- Si se busca lograr un equilibrio entre tiempo de ejecución y calidad del modelo, optar 

por optimización Bayesiana en configuración GRU o RNN, siendo preferible la primera.  
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Abstract  

This project is aimed at conducting an extensive review of current used techniques for accuracy 

boosting of deep learning models, paying special attention to those focused on Neural 

Networks, such as feature selection algorithms, hybrid architectures and hyperparameter 

optimization techniques.  

The effectiveness of these techniques is later assessed in a real case application measuring 

different parameters like the model accuracy and the training time. 

Keywords: Neural Networks, Time series, Forecasting, Deep Learning  

 

Introduction 

The popularization of Deep Neural Network models in recent years has led to an increase in the 

number of techniques to boost the accuracy of these models. However, it's difficult to choose 

which of these method are optimal for a specific problem. This project aims to perform a 

comparison of these by applying them in a time-series forecasting problem and provide an 

initial methodology that saves time and resources when faced with a new problem. Other 

applications are out of the scope of this project. 

Time-series forecasting has been chosen to perform the comparison due to the high demand of 

this type of models. Some applications of time-series forecasting are future trends or behaviors 

of stock markets, product sales, electricity demand, wind speed and sun-irradiation for power 

generation, health- related issues and Natural Language Processing (NLP), among many more. 

These applications have, for many decades (late 20th Century), been at the forefront of 

development of machine learning algorithms and ever evolving complex mathematical models 

[1]. 

Most of these prediction models’ approach is to use machine learning algorithms to learn from 

the past in order to provide a future time-window forecast. Due to the dynamic, chaotic, 

stochastic and complex environments of the problem itself and uncertainty of real-world data 

(e.g. stock markets) this becomes an inherently challenging and non-trivial process. This gets 

worse when dealing with time-dependent characteristics or long-term multi-variate information 

chains, where it is of utmost importance to identify correlations between distinct temporal data 



 

[2] or to define which past values (both in time and variables) will be considered within the 

prediction process [3], respectively. 

Methodology 

The development of this project has followed 5 different stages: 

1. State of the art review. To this end, the available bibliography on the different covered 

topics is reviewed in CHAPTER 2.  in order to gain understanding of the underlaying 

theory and concepts. This theoretical basis has helped in identifying the most interesting 

techniques to apply and deep dive into while developing the time series forecasting 

model. 

2. Define the scope of the forecasting model. Once all the potential techniques have been 

analyzed in the state of the art, a series of them have been be selected in order to assess 

their effectiveness in improving accuracy metrics. The scope of the model is to achieve 

greatest forecasting accuracy for next-day wind power generation in a national wind 

farm, taking historical data as input. All models have been tested against the benchmark 

model, which assumes Wind Power at day t is equal to day t-1.  

3. Model research and code development. In order to test all the listed techniques, an 

exhaustive research on available resources and libraries to build the required structure 

for each different tested model has been conducted primarily. 

4. Model validation and improvement tracking. After implementing all the different tuning 

techniques, several tests have been performed to see how accuracy is affected. Also, 

additional features were analyzed, such as performance time, to see whether the increase 

in accuracy accounts for a need of greater computing power, or if simpler techniques 

could warrant a better-balanced solution to the problem. Internal net configuration have 

also analyzed to assess difference between models and use it to further understand 

network hyperparameters importance.  

5. Results and conclusions. CHAPTER 4. and CHAPTER 5. address the results and 

conclusions driven from the conducted tests, providing those methods or techniques that 

would be most beneficial to work with according to the available data, computing 

resources, and defined scope of the project. 

Results 

The results obtained can be divided between the configurations that allow the best accuracy in 

prediction and those that achieve results in a shorter time. 

Regarding the first point, the Grid Search, together with a GRU type network architecture is the 

configuration that obtains the best accuracy, while the best times are obtained by combining a 

Random Search and RNN type network architecture.  

 



 

 

Tuning technique Layers 

Neurons 

per 

layer 

Activation 

function 
Optimizer Learning rate 

Validation 

MSE 

Total 

execution 

time (min) 
LSTM Grid 2 26 elu adam 0,00158114 175,390069 260,21 

LSTM Random 3 31 elu adam 0,00298181 184,265402 45,5 

LSTM Bayesian  3 15 elu adam 0,00100075 182,650941 118,01 

LSTM Genetic Algorithm 3 30 elu adam 0,00146076 187,247948 100,37 

GRU Grid 3 16 elu adam 0,0005 167,600379 217,3 

GRU Random 4 26 elu adam 0,00096535 169,507542 48,6 

GRU Bayesian  2 30 elu adam 0,00063344 170,248371 100,14 

GRU Genetic Algorithm 5 39 elu adam 0,00072304 175,601382 56 

RNN Grid 3 6 elu adam 0,0005 179,856083 107,1 

RNN Random 1 21 elu adam 0,00195347 191,678969 24,7 

RNN Bayesian  6 15 elu adam 0,00073817 185,762487 70,17 

RNN Genetic Algorithm 4 86 elu adam 0,00156522 176,363621 42 

BILSTM  Grid 2 11 elu adam 0,005 187,233101 511,6 

BILSTM  Random 1 41 elu adam 0,00414321 192,240764 97,3 

BILSTM  Bayesian  1 45 elu adam 0,00259197 190,741036 164,23 

BILSTM  Genetic Algorithm 2 69 elu adam 0,00229161 216,845031 144,07 

Table 1. Cross comparison for the best performing simulations 

Although LSTM type network configurations were positioned as the most interesting ones 

based on the consulted bibliography and the amount of applications based on it, it has been 

demonstrated that, for this application, its qualities are far behind those obtained with GRU 

type network configurations. Likewise, the use of BiLSTM-type architectures is also discarded, 

as they do not improve any of the two main aspects contemplated in this work.  

Based on the results obtained it is recommended in any case to opt for an initial search of the 

best configuration of the hyperparameters by means of a Grid Search, even when the execution 

time is high, and to refine the following searches either using the same method or another one 

that allows shorter execution times. An initial Grid Search is recommended because it allows a 

greater transparency of the results obtained, since they are not exposed to the risk of being 

limited by having found a minimum local that can force suboptimal hyperparameter tests.  

Conclusions 

As a synthesis of this work, it can be concluded that the tests carried out in this work cannot be 

considered conclusive in the absence of other studies that can praise or complement what is 

observed here, but, although it is understood that not all prediction problems are to behave as 

observed in this work, the results are considered to be partially reproducible and applicable to 

problems with similar characteristics.  

As for the results obtained, the main ideas can be summarized in the following points: 

- If time is a decisive factor in the success of the application, it is recommended to opt for 

Bayesian optimization or Random search just to RNN type net configurations. They can 

also be combined with GRU-type architectures if a slight improvement in the model 

prediction accuracy is sought.  



 

- If the problem is focused on achieving the best possible prediction, that is, the lowest 

validation error, the best option observed is the use of a Grid Search together with a 

GRU-type network architecture.  

- If a balance between runtime and model quality is sought, opt for Bayesian optimization 

in GRU or RNN configuration, the former being preferable. 
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 INTRODUCTION  

1.1 Motivation  

The realization and context of this project is based on an aim to carry an in-depth review of 

current trends regarding time series forecasting, exploring different architectures of Deep 

Neural Networks (DNNs) based models.  

Future trends or behaviors of stock markets, product sales, electricity demand, wind speed and 

sun-irradiation for power generation, health- related issues and Natural Language Processing 

(NLP), among many more, have, for many decades (late 20th Century), been at the forefront of 

development of machine learning algorithms and ever evolving complex mathematical models 

[1]. 

Most of these prediction models’ approach is to use machine learning algorithms to learn from 

the past in order to provide a future time-window forecast, although this is easier said than done. 

Due to the dynamic, chaotic, stochastic and complex environments of the problem itself and 

uncertainty of real-world data (e.g. stock markets) this becomes an inherently challenging and 

non-trivial process. This gets worse when dealing with time-dependent characteristics or long-

term multi-variate information chains, where it is of utmost importance to identify correlations 

between distinct temporal data [2] or to define which past values (both in time and variables) 

will be considered within the prediction process [3], respectively. 

1.2 Objectives and Scope 

The overall objective of this work is to deep dive into the principles that rule some of the most 

widely spread Deep Learning application techniques and provide useful guidelines that could 

be used when facing a novel prediction problem.  

When faced with a new problem of time series prediction, one of the biggest challenges is to 

choose the most appropriate model to, at least, start iterating and improving the model to make 

it fit as well as possible to the available data.  

This choice is not trivial, and its complexity depends in part on the resources available, 

including time. It may be that the application requires obtaining the best possible prediction 

model, at the expense of execution time. It may be that time is a key factor in the application 

and that the models, therefore, must be able to be executed under strict time requirements. Or 

you may simply want to start an initial search process for the most suitable hyperparameters 

with a fast and simple model that allows you to fine tune them by means of a more complex 

model afterwards, without getting lost in the complex initial search.  

In order to try to answer this question, a selection of deep learning models will be tested under 

the same uncertainty conditions to assess which would produce the best option based on 

whatever requirements the prediction application might withstand.  
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 ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE 

ART 

1.1 Brief introduction to Artificial Neural Networks 

Artificial Neural Networks, also known as Neural Networks (NN), emerged as a means of 

mimicking the biological, complex behavior of the human brain. 

Artificial neurons are modeled to work just as biological neurons, where a series of inputs (with 

respective weights associated to each one, called synaptic weights) are “summarized” 

(Dendrites) and passed on to an activation function that processes the information (Nucleus), 

after which an output is generated (Axon).  

A single neuron (Perceptron) does not perform well enough, but further development lead to 

the wiring of multiple artificial neurons (Synapses), so that the output of one became the input 

of the next one. This technique creates multiple layers that would manage to provide much 

more accurate results and acquire a much higher resemblance to the human brain behavior. This 

is called an Artificial Neural Network. 

 

Figure 1. Correlation between biological neurons and ANN. Source:[4] 

Formally speaking,  the three processes described ahead are commonly known as Input layer -  

the one in charge of receiving and passing on the parameters for the model - , the Hidden 

Layer(s) – A feed forward network where a wide variety of machine learning algorithms can 

be employed to perform multiple operations- and the Output layer – where a single output is 

given as the prediction - [5]. But, of course, over the course of time this process has been 

renewed, optimized and further developed to try to boost the prediction accuracy, leading to a 

vast portfolio of prediction models.  

This portfolio includes examples such as the Multi-Layer Perceptron (MLP), Deep Learning 

NNs, Recurrent NNs, Long-Short Term Memory NNs (LSTM), Convolutional NNs, Recursive 
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NNs, etc. whose application depends mainly on the data provided and expected output, although 

variations of their usage can be found in the available literature.  

A general classification of these models can be found below [6], although this might differ from 

real applications in which, sometimes, multiple architectures are combined with the objective 

of targeting various problems within the same scope (classification problems based on Time 

series forecasting) or boosting accuracy..   

• Unsupervised Learning: Extracts patterns from a set of unlabeled data  

o Restricted Boltzmann Machine 

o Autoencoder 

• Classification 

o Text Processing tasks like sentiment analysis, parsing (grammar analysis 

like identifying substantives, verbs, subjects, …) or named entity 

recognition.  

▪ Recurrent Neural Network (Character Level) 

▪ Recursive Neural Tensor Network  

o Image recognition 

▪ Convolutional Neural Network  

▪ Deep Belief Network  

o Object recognition 

▪ Convolutional Neural Network  

▪ Recursive Neural Tensor Network  

o Speech recognition 

▪ Recurrent Neural Network 

o Other general tasks 

▪ Deep Belief Network  

▪ Multi-Layer perceptron with ReLU activation function 

• Forecasting  

o Recurrent Neural Network 

For each different problem (stocks prediction, Natural Language Processing, Image and Video 

recognition/classification, wind speed forecasting, …), the aim is to provide a specific model 

with meaningful data in order to obtain a meaningful prediction. This is achieved by means of 

training a model, i.e., teach a model what is the proper output for each input data. The model 

should extrapolate the correct output when facing similar data that has not been used in this 

training process. Therefore, we want to create rules associated to each problem that the models 

can use to generate an output accordingly to the provided information, for each given task.  

In the end, the objective is to adjust properly the weights associated to each input variable so 

that the loss function is optimized, that is, the model is able to achieve the minimum value for 

its loss score or distance between the predictions (𝑦̂) and the true target values (y), during the 

training phase. This is done by the optimizer, which typically implements the backpropagation 

algorithm that enables to calculate the gradient descend or, in other words, how much does the 

loss function change given a change in the weights. The discovery of this algorithm is what 

originally boosted the popularity of Neural Networks.  
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2.1.1 Loss Functions 

Some of the most widely used loss functions are detailed as follows: 

MSE 

Mean Square Error (MSE) is the most used loss function for regression problems. It is 

calculated as the average of the squared difference between the predicted values (𝑂𝑖) and the 

actual or expected values (𝐸𝑖). The squaring allows for large differences to make a greater 

impact of the loss score than the smaller ones [7]. This allows the optimizer to focus on the 

values that acquaint for these larger differences and try to modify the corresponding weights in 

order to correct (minimize) the loss score in the following iterations.  

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝐸𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

 

One issue related to this loss function is that a single very bad prediction would cause the loss 

score to escalate, not giving a realistic image on how well the model is performing, had it no 

been for that specific bad prediction. Same can have when a lot of small errors occur. When 

this happens, the loss score will be low due to the small distances, which will cause to 

underestimate the model’s bad performance [8].  

RMSE 

The Root Mean Square Error is, as it name estates, the root of MSE. By computing the square 

root, the scale of the errors can be compared withing the same scale as the target variables, 

which makes it easier to understand at first sight.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝐸𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

 

Although both RMSE and MSE are very similar, there are some differences in the way it affects 

the model performances (if based on gradient descend) that need to be understood or take into 

consideration when using one or the other. Both methods are equally usable with regards to 

models scoring, but not directly interchangeable for gradient-based models [8]. This is due to 

the fact that both functions resemble each other in terms of gradient descend, but with different 

flowing rates and the flowing rate depends on the loss score of each function. As the square 

root affects the loss-score result, the flow rate is also modified and so in order to interchange 

both RMSE and MSE in the same model, it would be necessary to modify accordingly some 

hyperparameters like the learning rate[8].  

MAE 

The Mean Absolute Error (MAE) function is adequate on some cases in which the distribution 

of the endpoint resembles a Gaussian distribution but presents some larger or smaller values far 

for the mean value (outliers).  
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The MAE loss score can be obtained by computing the average of the absolute difference 

between Predicted and Expected values.  

𝑀𝐴𝐸 =
1

𝑛
 ∑|𝑂𝑖 − 𝐸𝑖|

𝑛

𝑖=1

 

Unlike MSE, this loss function is not as sensitive to outliers and, therefore, doesn’t penalize big 

prediction errors so badly, allowing to have a more realistic value on how well the model 

performs in the presence of outliers. However, using this loss function can also limit the model’s 

performance due to its large gradient. The fact that the gradient is not modified, even when 

approaching a minimum value (nearly 0 loss score), makes is difficult to find the solution, 

which might be skipped unless a dynamic learning rate is used, adding complexity to the model. 

MSE, might not perform well in presence of outliers, but its gradient decreases when 

approaching the minima, even with a fixed learning rate, making it more precise when training 

the model.  

 

Figure 2. MAE and MSE gradient descend, Source:[9] 

𝑅2 

The 𝑅2 function is actually a ratio that gives a metric on how good the model is compared to 

the naïve mean model. This is, the model MSE is compared to the baseline model MSE, being 

the baseline model that in which the prediction will always be the mean of all samples[8]. The  

𝑅2 values range from -∞ to 1, where values closer to 0 indicates a model very close to the 

baseline (the model is unable to outperform the baseline) and 1 indicates a model with almost 

no error. 

𝑅2 =
𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
 𝑀𝑆𝐸 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) =

1

𝑛
 ∑(𝑦𝑖 − 𝑦̅𝑖)

2

𝑛

𝑖=1

, 

Being 𝑦𝑖 the real value and 𝑦𝑖 the mean of the observed value.  

Huber Loss 

The Huber loss function, also known as Smooth Mean Absolute Error, is similar to MAE but 

squares it value when the error is small. In order to determine how small must that error be, a δ 

hyperparameter is tuned. When δ is close to 0, the Huber Loss score is very similar to MAE 

and will resemble MSE score when δ takes a large value (∞).[9]  
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𝐿𝛿(𝑦, 𝑓(𝑥)) = {

1

2
 (𝑦, 𝑓(𝑥))

2
, 𝑓𝑜𝑟 |𝑦 − 𝑓(𝑥)| ≤ δ 

δ|𝑦 − 𝑓(𝑥)| −
1

2
δ2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The value given to δ determines what it considered to be an outlier in the problem, therefore 

limiting the sensitiveness of the problem in presence of outliers. When residuals are smaller 

that δ, they will be treated as with MSE, whereas larger values will be minimized according to 

MAE which is less sensitive to these residual values.  

The main advantage of using this loss function is that it combines the advantages of both MAE 

and MSE. It is more robust to outliers than MSE and curves around the minima, decreasing the 

gradient. The one problem of using Huber Loss is that the δ value needs to be adjusted just as 

any other hyperparameter of the model (see section 3.3.3), which takes time and adds some 

difficulty to the training process.  

 

Figure 3. Huber loss plot. Source:[9] 

F1-SCORE 

The F1-Score is mostly used to asses accuracy in classification problems. The F1-Score bases 

its inner operation in the results obtained from the confusion matrix, generated after classifying 

a series of labels.   

 

Figure 4. Confusion matrix. Source:[10] 

Based on these values, it is computed the precision of the model (percentage of actually real 

positive values (TP) among those predicted to be positive (TP+FP)) and the recall (percentage 
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of predicted positive (TP) values among those that really are positive (TP+FN)). The harmonic 

mean of these two values is the F1-Score value[10]. 

𝐹1

2

(𝑅𝑒𝑐𝑎𝑙𝑙)−1(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)−1
=

2

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑁)
−1

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑃)
−1 

Information about alternative loss functions, for both classification and regression problems, 

can be found in [9], [11], [12]. 

 

Figure 5. Weights adjustment using optimizer. Source: [13] 

Once the network has been properly trained, it is expected that the model can behave with such 

diligence when dealing with new data (test/validation phase).  

1.2 Application examples 

In this section, a review of different applications using NNs is provided based on various 

research papers.  

For all of them, information regarding application sector, input and output characteristics, and 

information regarding architecture and any other relevant features of each prediction model 

have been extracted in order to identify the most generally used methods and those tools that 

have proved useful when applied to similar problems to those we are addressing in this work.  

As a brief summary of all the information contained in the tables below, and having conducted 

an intense research in order to identify the most interesting pieces of information, it seems fair 

to claim that LSTM are the most widely used methods when developing prediction models in 

which past observations and trends play an important role in future behaviors.  

Other algorithms, such as those based on Convolutional Neural Networks, also have their place 

when dealing with this issue, although their use and deployment has been mostly limited to 

Natural Language Processing and Image classification. As they were developed for 

classification purposes, their application in time series forecasting has mostly been explored in 

decision models, where a binary output is expected, depending on whether it would be most 

interesting to buy or sell.  
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Moreover, a model combining CNN and bi-directional LSTM claims to achieve a 9% increase 

in prediction accuracy, when compared with single deep learning models, and an over 6 times 

increased accuracy regarding SPM models.  

Additional algorithm features such as Feature selection, Genetic Algorithm and exponential 

smoothing or normalization have been explored in order to reduce model complexity, optimize 

both architecture and input selection aspects and reduce random variations and noise, naturally 

present in time series data. 
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Project Sector Method Input Output Accuracy Metric Batch size Architecture information Additional information 

Sector stock 

Price 

analysis 
[2] 

Finance 
DWNN 

(Deep and 
Wide NN) 

12 stocks with 5 
different features  

60-day historical data 
as input  

Jan 2000 to Aug 
2017  

7 days prediction window for 
all 12 stocks 

0,057443  
30% error 

reduction 
compared to 
general RNN 

model 
(0,0809361) 

MSE 

Random 
sampling 
method to 

extract 
sample with 
the size of 

the batch as 

input 

12 seq2seq models 
GRU as RNN cell 

CNN layer every 5 time steps 
(1 CNN layer= 2x 

Convolution Layers + Pooling 
layer+ 1x Full connection 

Layer) 

Model implemented using 
TensorFlow 

Train: 01/01/2000 to 
30/12/2015 

Test: 01/01/20016 to 
16/08/2017  

Stock 

prediction 

[14] 

Finance 
Paragraph 
vector + 

LSTM 

Text (News) 
+ 

50 company’s 
closing stock prices 

Numerical 
10 company’s closing stock 

prices 

- - 
30 

minibatch 

size 

50 epochs 
1 layer – 20 steps 

50% dropout in non-recurrent 
connections 

No information given about 
past observation period 

considered 

Neural 

Machine 

translation 
[15] 

NLP 

LSTM + 

attention 
module 

Text Text - - - 

DEEP LSTM 
8 encoder and 8 decoder 

layers 
Attention connections from 

decoder to encoder 

- 

Stock 

Markets 

Price 

movement 

prediction 
[16] 

Finance LSTM 
Numerical 

180 features 

Binary 01 – sell/buy  
15 minutes prediction window 

-  
1 stock prediction at a time 

55,9% 
Kruskal 
Wallis to 
compare 
accuracy 

improvements 
between 
models  

𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

 
Tp= true positive 
Tn= true negative 
Fp= false positive 

Fn= false negative  

- - 

Exponential smoothing applied 
through exponentially 

weighted moving average – 
reduce random variation and 

noise 
Training - 10 months 
Validation – 1 week 

Output activation function: 
tanh 

Stock 

returns 

predictions 
[17] 

Finance LTSM 

Multivariate 
Numerical values 

30-days long 

sequences with 10 
features and 3 days 

earning rate labelling  

Numerical 

14,3%-27,2% 
Normalizatio
n very useful 
for improving 

accuracy 

- - See comment (i) 

2013-2015 → 1211361 
sequences 

Training: 900000 seq. 
Validation: 311361 seq. 

 

Electric 

load 

forecasting 
[18] 

Electric 
LSTM + 
GA + FS 

Multivariate 
numerical data 

(Demand, weather 
and time lags) 

Jan 2008-December 

2016 

Various time horizons 
considered 

353.38 RMSE 150 

Activation = relu, weight 
optimization = adam, number 
of epochs = 300, learning rate 

= 0.005 

GA to find optimal time lags 
and number of layers 

Data normalization in range 
[0,1] via feature scaling 

70/30 train-val ratio 

Need for stationary TS 
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Project Sector Method Input Output Accuracy Metric Batch size Architecture information Additional information 

Stock 

prediction 
[19] 

Finance CNN 

Multivariate 
Numerical values 

Five stock features 
from jan 2015 to dec 

2017  

Binary 01 – sell/buy 
10 days prediction window 

60% 
 

F1-score 
Batches of 

1000 
samples  

Conv1D adapts our time 
series information to conv 
networks internal function 

Relu-Lrelu activation 
functions 

Max pooling function 
required to reduce feature 

dimension 
Softmax function for output 

layer 
See comment (ii) 

Noise reduction is needed 
Min-max normalization 

80/20 train-val ratio 

BI-

Directional 

LSTM for 

stock 

market 

prediction 
[20] 

Finance 

Bi-
directional 
LSTM + 

CNN 

Univariate numerical 
values 

10 year S&P 500 
index data segmented 
into sequences of 50 
closing data prices 

Numeric value of predicted 
closing price for seven days 

into the future 

0.000281317 MSE 50 
See comment (iii) 

Adadelta optimizer 
Relative change normalization  

 

Short term 

wind power 

prediction 
[21]  

WPP 

Multi Layer 
Restricted 
Boltzmann 
Machine 

(MRBM) – 
Deep Belief 

Network 

1200 hours of data 
from a wind farm 

with Wind power and 

Wind Speed features 
data 

Wind power values for the 
next 4 hours with a 15 minutes 

time resolution  

0,172 
0,123 

0,698 

RMSE 
MAE 

RC (Relative 
Coefficient) 

- 

3x RBM layers 
With a [350,200, 300] nodes 

structure 
 

Train: 10542 samples 
Test: 2639 samples 

Better error distribution than 
compared to a BPNN model 

Stock price 

movements 

and trading 

strategies 
[22] 

Finance 

Attention 
based 
LSTM 
model 

Stock Prices Data 
from Taiwan Stock 

Exchange (5 
features) and other 

Technical indicators 
are then 

calculated(KD,MA,R
SV,…) 

Multiclass output 

Class 0 -stock price 

increase of more than 3%, 

Class 1 - increase of 2-3% 

 Class 2 - increase of 1-2% 

 Class 3- increase of 0-1% 

Class 4 -flat stock price 
Class 5- stock price 

decrease of 0-1% 

Class 6 - decrease of 1- 2% 

Class 7- decrease of 2- 3% 

 Class 8 - decrease of more 

than 3% 

- 

Accuracy= 
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Precision =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Recall=  
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

F1 Score =  

2
𝑃 ∗ 𝑅

𝑃 + 𝑅
 

- 

Input layer (dimensionality 
features: technical indicators 

and prices data)+ tanh 
act.function 

Attention layer 
Output layer + Softmax 

act..function 

Attention mechanism to avoid 
vanishing gradients when 

dealing with long-term 
dependencies 

Model deployed using 
TensorFlow 
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Project Sector Method Input Output Accuracy Metric Batch size Architecture information Additional information 

Green 

House Gas 

analysis  
[23] 

Health  
& 

Environ
ment 

Adaptative 
NeuroFuzzy 
Interference 

Systems 
(ANFIS)  

RNN  
LSTM  

16x 2921 time series 
of GHG 

concentration (Data 
points in each TS are 

spaced every 6 
hours) 

10th May - 31st July 
2010 

- 

ANFIS 
0.103294 
0.045501 

RNN 
0.101140 
0.048277 

 
LSTM 

0.100480 

0.043279 

RMSE 
MAE 

- 

ANFIS model 
4 regressors, 12 rules, 0,002 
learning rate, 200 epochs, 

Adam learning algorithm, loss 
function: MSE 

RNN & LSTM Models 
4x Input layers, Adam 

optimization algorithm, 20 
iterations max., loss function: 

MSE 
(The difference between 

RNN and LSTM is that the 
corresponding nodes are used 
in the hidden layer (RNN OR 

LSTM cell).) 

Differencing to make data 
stationary and normalization to 

achieve values in a [0,1] 

interval 
Three different models 

deployed using TensorFlow 
and Keras 

C-Reactive 

protein 

concentrati

on 

prediction 
[24] 

Health  
& 

Environ
ment 

LSTM  
10 patient’s data 

recorded over past 

250 days  

Next time step prediction for 
each patient 

5 HL- 2,0678 

50 HL- 1,9952 

100 HL- 1,6876 

200 HL- 1,4303 

300 HL- 1,8667 

RMSE - 

Same architecture with 
variable number of hidden 
layers (5,50, 100, 200 and 

300) 

90/10 train- val ratio 
Standardized data to have zero 

mean and unit variance  

Early 

smoke 

detection 

for forest 

wildfire 

video  
[25] 

Health  
& 

Environ
ment 

Restricted 
Boltzmann 
Machine  + 

MLP 
(Deep 
Belief 

Network) 

Smoke video divided 

into 482 frames 
(resized to 16 16 3) 

Smoke Yes/no 95% 

Detection Rate= 
𝑡𝑝 − 𝑓𝑝

𝑡𝑜𝑡𝑎𝑙 𝑠𝑚𝑜𝑘𝑒𝑑 
𝑓𝑟𝑎𝑚𝑒𝑠

 
Mini-

batches 

RBM used for dimension 

reduction (2 layers – Visible 
+Hidden layers) 

+ 
MLP as output layer 

(Stochastic Gradient Descent  
method) 

Learning rate= 0,0006 
512 nodes 

2 hidden layers 
100 epochs  

100 iterations max  

17/30 train-val ratio 

Data is divided into 100 
subsets 

Eletric load 

forecasting 

in Smart 

Grids 
[26] 

Electric  LSTM 

Electric load data set  

electricity 

consumption every 15 

minutes (10 past days 

→ 904 data samples) 

International Airline 

passengers- monthly 

totals → 144 

observations (12 

years)  

Electric load forecast- 96 time 
steps ahead prediction (next 

day) 

International Airline 
passengers – 12 months time 

window 

Electric load 
forecast 
0,0702 
0,0535 

International 
Airline 

passengers 
0.0435  

0.0345 

RMSE 
MAPE(Mean 

Absolute 
Percentage Error) 

- - - 
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Project Sector Method Input Output Accuracy Metric Batch size Architecture information Additional information 

Multivariat

Time Series 

Prediction 

Framework 
[27] 

-  

Low-High 
Convolution

al Neural 
Network  
(LHCnn) 

 
CNN+Multi

step 
Attention 

mechanisms 

Traffic data set  
Occupancy rates 

measured hourly by 
862 sensors  

Recorded in 2015-

2016 (36 hours input 
window size) 

Solar-Energy dataset 
Data recorded from 
137 PV plants every 
10 minutes during 

2006 (12 input 
window size)  

Traffic data set  
4 different prediction horizons 

(3,6,12 and 24 hours) 
Solar-Energy dataset 

30 to 120 minutes prediction 

window 

Traffic data 
set – 3 hours 

0,4547 
0,3209 

0,8823 
Solar-Energy 
dataset – 30 

minutes 
0,0944 
0,0492 
0,9960 

RMSE 
RAE 

Empirical 
Correlation 

Coefficient(COR

R) 

- - 

Residual connections from the 

input to the output of the block 
to avoid gradient 

explosion/diffusion 
Multi-step Attention used to 
build connections between 
Low-level and High level 

convolution structures. 
Linear mappings used to 

ensure that the output size 
matches the input in 

convolution 
60/20/20 – Train- Val- Test 

ratio 

Stock Price 

forecast  
[28] 

Finance  

Back 
propapagtio

n Feed 
Forward NN 
+ Discrete 
Wavelet 

Transformat
ion (DWT) 

Apple stock prices 
recorded during May 
2008 until may 2018 

– 2520 datapoints in 
total  
2 approaches to input 
data are considered.  

1. Input data set 
contains 8 
business days 

2. Input data 

contains 4 
business days + 
4 weekly 
average values 
of one-month 
resolution 

 

 5 business days prediction 
with weekly shift 

1ST data set  
Model 1- 3,55 
               0,96 
Model 2- 3,29 

               0,95 
2nd data set  

Model 1- 3,60 
               0,97 
Model 2- 4,35 
               0,95 

 

RMSE 
R 

- 

Model 1.  
BPNN with 1 hidden layer  

5x16x5 (number of neurons in 
input, hidden and output 

layers) + ReLU 
Model 2. 

BPNN with 2 hidden layers 
5x16x8x5 (number of neurons 
in input,1st hidden, 2nd hidden 

and output layers) +ReLU 
  

70/30 train-Val ratio 
DWT is used to decompose the 

time-series data into discrete 
wavelets, eliminating the noise 

effect. The Haar function is 
used as the wavelet basis 

function. 
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1.3 Accuracy boosting techniques 

Having spoken about meaningful inputs, activation functions, optimizers, different NNs 

models, application examples and so on in Section CHAPTER 2. , and looking at the 

information provided in Section 1.2, it is easy to perceive the complexity behind the deployment 

of these prediction or classification models, even more when managing the necessity of having 

to fine-tune them in order to boost accuracy for a given problem.  

If it is already difficult to choose a model when a new problem appears, different research 

papers have proven that combining different neural architectures produces a considerable 

increase in the accuracy of the model. This trend has led to the outcome of hybrid models such 

as The Deep Belief Network (Restricted Boltzmann Machine + RNN/LSTM), Seq2seq models 

(a combination of two separate Recurrent Neural Networks), Deep and Wide NNs (CNN+ 

RNN), Bi-directional NNs, Low-High CNNs and many more that researchers keep developing 

over the years.  

In addition to choosing the right architecture, as a combination or not of different models, comes 

the need to adjust the number of hidden layers, number of units, activation functions, optimizer, 

epochs, dropout, batch size, learning rate, number of iterations, and many more 

hyperparameters whose tuning is not trivial nor immediate or dependent on the expected output 

[5]. How do these affect the model’s performance? To which extent are we manipulating the 

output? 

And what about the already mentioned meaningful inputs? How can we be sure that we are 

giving the model the correct information to deal with?  

Variable selection is one of the most critical steps for achieving a high degree of accuracy. 

When dealing with large data sets it is complicated to choose effectively those features that are 

not only uncorrelated among them, but also those that can manage to retain valuable temporal 

information. In recent years, resources such as Genetic Algorithms, Harmony Search, Temporal 

Memory search, attention modules, Paragraph Vector, etc. have emerged to: 

1. Improve feature selection to assess the use of relevant not correlated input data that 

bring value to model operation 

2. Helps with vanishing gradient problem when in need to handle long-terms 

dependencies. 

 In order to explain how any of the mentioned variations over traditional NNs models can 

improve accuracy, we will rely on available bibliography and explain its results based on 

already trained examples.   

1.3.1 Variable selection models 

Variable or feature selection is based on different algorithms that seek to automatically select 

attributes from the available data that are most useful for the predictive problem we might be 

dealing with.  
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This method is similar to dimensionality reduction as it enables to lower the number of inputs 

passed along to the model, although the means of doing so vary between these two methods.  

Whereas dimensionality reduction algorithms achieve attribute reduction by generating new 

combinations of the initial attributes (Principal Component Analysis, for example), feature 

selection algorithms manage to do so by eliminating attributes that are not useful, redundant or 

unwanted. Therefore, the use of Feature Selection (FS) has three main advantages [18], [29], 

[30]: 

1. Improves prediction accuracy by guaranteeing that only useful information will be 

processed in the network. This also helps to reduce overfitting as there will be less 

chance of learning from noise present in the data set.  

2. Reduces computation weigh by leveraging the amount of information given to the 

predictive model 

3. Provides better understanding of the underlying process and enables to achieve more 

simple and explainable models. There is an inverse correlation between the amount of 

data attributes and the explainability of a model. 

Feature selection methods can be classified according to these three categories: 

A. Filter based FS algorithms  

Filter based FS algorithms use statistical metrics or techniques to filter features. This filtering 

is based on the relationship between each input variable and the target variable, according to 

the chosen metric.  

Filter based techniques evaluate each predictor regardless of the forecasting model, giving each 

data column a feature score and ranks them by their predictive importance. The predictive 

model will later on use only those (n) variables that pass the established criteria whereas the 

left over variables are completely discarded. [31].  

The main problem related to filter-based methods is that they are mostly univariate techniques, 

which means that each predictor is only evaluated regarding the output variable, discarding any 

possible interactions with other input variables. This, in turn, may lead to the training of the 

model with redundant, yet relevant, information, causing collinearity problems to appear. Also, 

some of these techniques only consider linear dependence between variables, increasing the 

risk of eliminating important features as their real correlation with the output variable might not 

be identified [3], [31].  

As these methods depends highly on the relationship between variables (input-output), the 

metric should be chosen based on the type of variables with which the prediction model will 

work with later on. The following figure allows a better understanding of the most suitable 

statistics for each case. 
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Figure 6. Filter based FS methods. Source:[31] 

A1. Pearson’s correlation coefficient (Linear) 

Also known as the R value in statistical models, the Pearson’s Coefficient returns a value 

between ±1  (where -1 indicates a strong negative correlation and + 1 a strong positive 

correlation) that grades the level of correlation, or linear degree of relationship, between two 

variables (x and y). This value is computed by dividing the covariance of both variables by the 

product of their standard deviation [32].  

 

Figure 7. Pearson correlation values. Source:[33] 

𝑟 =
∑(𝑥 − 𝑥̅)(𝑦 − 𝑦̅)

√∑(𝑥 − 𝑥̅)2 √∑(𝑦 − 𝑦̅)2 
 

This method requires both variables to be measured in an interval or ratio scale, although it is 

not required that both variables need to be comprised in the same scale or units, and it is not 

affected by changes in the scale of either variables. Other assumptions and requirements for 

computing the Person’s Coefficient are [33]: 

a. Variables must approximate to a normal distribution (data points waver over the 

mean value) 
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b. Data distribution shows homoscedasticity. That is, by looking at the scatter plot, 

the points must lie equally on both sides of the Fitness line. If the scatter plot 

shows a cone-like distribution, homoscedasticity would not be guaranteed.  

c. The two variables must have a linear relationship. If it is known beforehand that 

this requirement is not fulfilled, the Pearson’s Coefficient will not be able to 

capture the dependency of both variables.  

d. The data has been treated for outliers as these can make the correlation 

coefficient inaccurate.  

e. Both variables need to have the same amount of observations.  

f. Both variables must be continuous.   

 

A2. Spearman’s coefficient (Non-linear) 

This is the nonparametric version of the Pearson’s coefficient, also known as the rho (ρ) 

coefficient. This method allows to measure the degree of relationship between two variables, 

as well as their monotonic relationship, and is indicated when dealing with ordinal data or in 

cases in which any of the conditions for using the Pearson’s coefficient are violated. Once 

calculated, it returns a value between ±1 , as in with the Pearson’s coefficient.  

 

Figure 8. Monotonic and non-monotonic relationships. Source:[34] 

The way of calculating the Spearman’s correlation coefficient is done following this 

expression: 

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 

Being 𝑑𝑖 the distance between the ranks of 𝑥𝑖 and 𝑦𝑖 , and 𝑛 the number of observations 

(same one for x and 𝑦).  

The distance is calculated according to the following process[34]: 

1. Both x and y observations are ordered according to their value from the highest 

to the lowest one.  

2. Two New columns (Rank 𝑥𝑖  𝑎𝑛𝑑 𝑅𝑎𝑛𝑘 𝑦𝑖 ) are generated containing values 

from 1 to n, depending on the value of each observation.   

3. Now every observation 𝑖 for both 𝑥 and y has an assigned rank.  

4. The next column will hold the differences between Rank 𝑥𝑖  𝑎𝑛𝑑 𝑅𝑎𝑛𝑘 𝑦𝑖  
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𝒙𝒊 𝒚𝒊 
Rank 

𝒙𝒊 

Rank 

𝒚𝒊 
𝒅𝒊 𝒅𝒊

𝟐 

𝜌 = 1 −
6 ∗ 56

6(62 − 1)
= −0,6 

60 0 2 6 4 16 

43 11 5 3 -2 4 

87 9 1 4 3 9 

51 5 4 5 1 1 

53 13 3 2 -1 1 

27 22 6 1 -5 25 

 56 

A3. Kendall’s rank coefficient 

The Kendall’s Tau (τ) or Kendall’s rank coefficient is another way of assessing the distance 

between two variables based on the rank of the data, as the Spearman’s coefficient. This 

coefficient will have a value in between the rank of ±1.  

It is mostly used when any of the assumptions for the Pearson’s coefficient are not met or when 

the sample size is too small and has too many tied ranks that could affect the Spearman’s 

coefficient result. 

The process is very similar to that of the Spearman’s test, as described hereafter [35]: 

1. The x variables are ordered in ascendant or descendent order. It doesn’t matter 

which one to choose but it will be important to assess the number of discordant 

or concordant pairs present.  

2. The y variables are ordered matching their corresponding 𝑥𝑖 observation. 

3. For each pair of observations their concordance is defined, being concordant 

observations those that are consistent with the chosen ordering pattern (𝑥𝑖+1 −

𝑥𝑖 and 𝑦𝑖+1 − 𝑦𝑖  have the same sign) or disconcordant if there is no 

consistency with the order of both variables ((𝑥𝑖+1 − 𝑥𝑖 and 𝑦𝑖+1 − 𝑦𝑖  have 

different signs).  

The following expression is used for computing the Kendall’s Tau value: 

𝜏 =
𝑁𝑐 − 𝑁𝑛

𝑁(𝑁 − 1)
2

 

Being 𝑁𝑐 and 𝑁𝑛 the total number of concordant and disconcordant pairs, respectively, and N 

the total number of available observations.  

The following example is provided to illustrate this process: 

𝒙𝒊 𝒚𝒊 
Ranked 

𝒙𝒊 

Rank 

𝒚𝒊 
C NC 

𝜏 =
4 − 11

6(6 − 1)
2

= −0,467 

60 0 87 9 2 3 

43 11 60 0 0 4 

87 9 53 13 2 1 

51 5 51 5 0 2 

53 13 43 11 0 1 

27 22 27 22 0 0 

 4 11 
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A4. ANOVA correlation coefficient  

The ANOVA (Analysis Of Variance) method gives a metric on the distance between the means 

of two or more groups, different from each other[36]. In order to do so, it uses the F-test, a 

probability distribution usually present in the analysis of variance. It can be calculated as the 

ratio of two Chi-squared distributions divided by their degrees of freedom: 

𝐹 =

𝜒1
2

𝑛1 − 1
⁄

𝜒2
2

𝑛2 − 1
⁄

=

(𝑛1 − 1) ∗ 𝑆1
2

𝑉1
2

𝑛1 − 1
⁄

(𝑛2 − 1) ∗ 𝑆2
2

𝑉2
2

𝑛2 − 1
⁄

=

𝑆1
2

𝑉1
2⁄

𝑆2
2

𝑉2
2⁄

= (𝐻𝐹−0 = 𝑡𝑤𝑜 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙) =
𝑆1

2

𝑆2
2 

ANOVA test assesses variation between groups by analysing significant differences between 

groups (x and y) and assumes Hypothesis as 𝐻0 – Means of all groups are equal – and 𝐻1 – At least 

one mean is different- . 

  

Figure 9. Mean distribution behaviour. Source:[36] 

As pointed out in [36], this study of variability between groups is compared to within-group 

variability. The F-ratio will return a value close to 0 whenever difference between groups with 

equal variance is insignificant.  

In order to decide whether a variable should be included or not for the model training, it is 

necessary to calculate the F-score, with the variance between groups and the variance within 

the groups: 

𝐹 − 𝑇𝑒𝑠𝑡 =  

𝑆𝑢𝑚𝑂𝑓𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑝𝑠
𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑂𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑝𝑠

𝑆𝑢𝑚𝑂𝑓𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝𝑠
𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑂𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝𝑠

 

Once this is done, the computed F-value – F-calc –  will be compared with the F-value from the 

F- tables – Known as the F-critical- (depends on the significance level α and both degrees of 

freedom).  

If the F-calc is greater that F-critical, it will fall into the reject region, which means that the Null 

Hypothesis (𝐻0) is rejected, and there is variance between means of both groups. In this case, 

x has an impact on the behaviour of y, and should, therefore, be used as an input for the model.  

https://www.socscistatistics.com/tests/criticalvalues/default.aspx
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A5. Chi-Squared test 

The Chi-squared (𝜒2) test is used to indicated how much distributions of categorical values 

(summarized in a contingency table) differ respectively to the expected values, and is computed 

with the following expression: 

𝜒𝑘
2 = ∑

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖
 

Where k notes the degrees of freedom (Sample size -1), 𝑂𝑖 the observed value(s) and 𝐸𝑖 the 

expected value(s). 

Based on the observed data from the contingency table, the expected values are 

(probabilistically) obtained for each group after which the 𝜒2 value is calculated. In order to 

assess whether both variables are related, and the independent variable can be used as an input 

for the model, the calculated  𝜒2 must be compared to the critical 𝜒2 value, obtained from the 

Chi-square statistical tables (having predefined the degrees of freedom and p-value for rejecting 

the null Hypothesis) [37].  

If the obtained value is lower than the critical value for 𝜒2 , then the null hypothesis (both 

expected and observed values are independent) is accepted and the independent variable (x) can 

not be used in the model.  

An example if this process is provided in [37]. 

A6. Mutual Information 

Mutual information is the given name for the Information Gain method when applied to feature 

selection and it is used to measure the level of uncertainty for one variable given a known value 

for another variable. It can be used with both numerical or categorical information. In other 

words, it measures the Entropy of x with respect to variables y, being the Entropy the amount 

of information contained in a random variable or its probability distribution. The more balanced 

the probability distribution is, the higher the entropy.[38] 

Mutual information between two variables (I(X;Y)) is obtained by subtracting the conditional 

entropy for X being Y (H(X|Y)), to the entropy of X (H(X)). 

I(x; y) =  H(x) −  H(x|y) =  I(y; x) 

The resulting measure is symmetrical, which means that both variables contain the same amount 

of information about the other one as this method assess the mutual dependence of two random 

variables.  

In order to select those variables that are most relevant for our prediction model, we must 

choose the ones that result in higher values of Mutual Information with the output variable, as 

a null value indicates a total independence of the considered variables.  

 

 

https://www.socscistatistics.com/tests/criticalvalues/default.aspx
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B. Wrapper-based FS algorithms  

Wrapper methods are used to measure the fitness of certain features based on how good or bad 

does the model perform after being trained with them and the level of generalization it can 

achieve.  

Therefore, these methods are focused on solving the real problem from the beginning 

(optimizing the loss function), rather than obtaining intrinsic information from each variable in 

order to classify their relevance with respect to the output variable. 

These methods are based in iterative processes in which different combinations of variables are 

prepared, evaluated and modified to come up with the optimal feature combination that best fits 

the prediction problem. This requires a higher computational power, especially when dealing 

with large datasets, and need to be performed for every different model as the results obtained 

for a certain model can not be transferred to the next one, even if they are expected to deal with 

the same features (inputs and output).   

The following is a brief description of the most widely used wrapper methods, together with 

explanatory steps to be followed during their implementation and execution. 

B1. Genetic Algorithms 

There are multiple applications of Genetic Algorithms (GA) in Machine Learning, being one 

of them the ability to select the correct features for the predictive model, allowing the best 

solution to be obtained from all the previous best solutions. In addition to this, GA are used to 

fine tune Network hyper parameters such as the ideal number of layers, units per layer, etc., as 

we will see later on.  

GA are mathematical algorithms inspired by Darwin’s theory of Natural Selection and are 

included in the so-called Evolutionary Algorithms. This theory is backed up by the idea that 

only the fittest individuals of a society will prevail during generations.  

The optimization process is done by allowing a population of individuals to evolve by randomly 

subjecting them to actions similar to those that act in biological evolution (genetic mutations 

and recombinations). This combination is aimed at maximizing the loss function (or any other 

predefined fitness function), and the iterative process will go on until either a threshold is 

reached or it has surpassed the maximum number of iterations, according to which it is decided 

which are the most adapted individuals, who survive, and which are the least adapted, who are 

discarded [39]. 

In order to do so, the process is generally divided into 4 phases:  
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Figure 10. GA process. Source:[40] 

Phase 1. Definition the initial population – Initialization 

To begin with, it is necessary to start the process by choosing a limited set of individuals, called 

population, that will contain a random number of possible solutions to the problem we want to 

solve. Most of the times, this population will be generated randomly, unless we have confidence 

enough to manually do so (prior knowledge required). Each individual will have a number of 

attributes (variables), called genes, which are joined together forming a Chromosome or 

individual (a solution). 

A highly recommendable aspect to keep in mind is that this population is the breeding ground 

of our future predictors. This means that it is required to have a large population that can 

comprise different solutions as this will enable to explore multiple alternative paths during the 

execution of the model. 

 

Figure 11. Randomly proposed initial solution. Source:[40], [41] 

 

Phase 2. Definition of the fitness function  

The fitness function gives a metric for each individual, based on how close each one of them is 

to the optimum solution of the problem. 

There are different fitness functions depending on the problem that needs to be addressed, and 

it is the most critical and complex part when deploying GA as there is not a guidebook on which 
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specific fitness functions use for each particular problem. In time series forecasting, for 

instance, the fitness function is the same as the one that computes the loss score. Some of the 

most used loss functions are depicted in the table containing different forecasting applications 

in 1.2. 

The reason why we need to use this fitness function is because the GA optimization cannot be 

done without having previously obtained the results of the training set for the prediction model, 

that is, both GA and prediction processes must be done within the same iteration. This ensures 

that the individual’s selection will be measured based on the distance between predictions 

(𝑦̂) and the true target values (y).  

When multiple objectives want to be targeted, it is possible to define different fitness functions 

and obtain the fittest individuals for each one of them, returning a series of optimal solutions 

equally optimal. This is called the Pareto frontier [39]. A decider is used to reduce the number 

of solutions to the required one, doing so by means of analyzing the context or predefined 

requests.  

 

Figure 12. Pareto frontier. Source:[39] 

Phase 3. Genetic operators 

• Selection 

After having calculated the fitness of each individual, the evolution process begins by choosing 

the fittest individuals from the initial population (usually two individuals are chosen). In Time 

Series forecasting, those who achieve a lower loss score in the first iteration are selected for 

reproduction.  

• Cross-over 

Once we are left with the best solutions possible (parents), it is time to create the new 

generations of individuals, based on their genes, among which will be chosen again the fittest 

ones to move on to the next iteration.  
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The cross-over point between parents is randomly chosen in between their genes, after what 

offsprings are “born” containing a mix of their parents’ genes. The population size of the new 

generation (offsprings and parents) should match the dimension of the initial population. 

 

Figure 13. New solutions (A5,A6) obtained from initial population parents. Source:[41] 

• Mutation 

There is a chance that, due to the low randomness of the cross-over, we might get a limited new 

population that will lead to an early convergence of the problem after getting stuck in a local 

optimum.  

In order to avoid this, a low probability shuffle mutation is allowed, which results in a much 

more diverse population as offsprings don’t identically mirror sets of their parent’s genes. This 

is an analogous step of biological evolution and enables the GA to try more complex 

combinations that wouldn’t emerge from simply crossing-over genes.  

 

Figure 14. Before and after mutation of A5 individual. Source:[41] 

Phase 4. Termination 

As this iterative process can not go on forever, there are three ways of stopping it.  

a. Global minimum has been reached and no further optimization can be done, or a 

performance threshold has been reached. 

b. The process has reached a maximum number of iterations or runtime.  

c. If the population converges, the offsprings genes will not vary significantly from their 

parents’. If this point is reached, we must choose a solution from the generated ones.  
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B2. Harmony search 

As it has been mentioned before, wrapper methods tend to have a much higher computational 

weight when compared to alternative FS methods. To this end, the Harmony Search (HS)  

method enables to reduce the amount of information processed by the model and number of 

iterations required as it has two main differences compared to GA [3].  

1. Only one solution is generated per iteration. This leverages computational weight as 

only one solution (and not a whole population) is evaluated. 

2. Initial population is selected probabilistically. 

This model was first proposed in 2001 and was inspired by the way in which musicians 

improvise a harmony. In order to come up with the best possible combination, musicians try 

different combinations of pitches they know from experience (memory) and adjust the pitch of 

each instrument until they obtain the harmony they were looking for. This same procedure is 

mimicked by the Harmony Search algorithm to try to come up with the optimal solution for a 

given problem.  

Same as in GA, this method has 4 main steps that structure its inner working: 

 

Figure 15. Harmony Search method. Source:[42] 

Phase 1. Initialization of HS parameters and Harmony Memory (HM) 

The first thing to do when working with HS as a FS method, is to initialize the problem by 

generating a random number of 𝑁 harmonies (solutions to the problem) that will be stored in 

the Harmony Memory. These harmonies will contain 𝑑 values, corresponding to the number of 

variables that que initially have or that we want to pass on to the model.  
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A way of generating these harmonies can be done by means of the following expression, 

proposed by [42]: 

𝑥𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑(𝑢𝑖 − 𝑙𝑗) 𝑖 = 1,2,3, … , 𝑁 𝑗 = 1,2,3, … , 𝑑 

 

Being, 𝑢𝑗 and 𝑙𝑗 the upper and lower bounds for variable 𝑗, and 𝑟𝑎𝑛𝑑 a randomly generated 

number with a uniform distribution [0,1]. 

After doing so, each harmony is evaluated within the predictive model and receives a value for 

the loss function (𝑓𝑖). Once again, the loss function that be used to compute the “fitness” of each 

harmony will be the optimization function of the predictive algorithm, just like it was explained 

in the above section. 

All this information will be stored in the HM in the form of a matrix, as shown in Figure 16.  

 

Figure 16. HM structure matrix. Source:[42] 

Phase 2. Improvisation of a new harmony. HS operators 

Once all the harmonies are stored, together with their corresponding loss function values (loss 

score), it is time to begin the iterative process that will engage steps 2 and 3 until an optimum 

is reached. In this case, and similar to the Phase 3 of GA, the process of generating a new 

harmony has two main steps [42]. 

• Harmony Memory Considering Rate 

This step comprises the improvisation of a new harmony 𝑥𝑛𝑒𝑤 = (𝑥𝑛𝑒𝑤,1,…,𝑥𝑛𝑒𝑤,𝑑) that will be 

evaluated within the prediction model and compared to the stored harmonies in the HM. This 

new harmony will be obtained using all the stored harmonies generated in Phase 1. 

There are two ways of generating a new harmony; if 𝑟𝑎𝑛𝑑 (a randomly generated number [0,1] 

following a normal distribution) > HMCR (Harmony Memory Considering Rate, [0,1]), then  

𝑥𝑛𝑒𝑤,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑(𝑢𝑖 − 𝑙𝑗) ; else if 𝑟𝑎𝑛𝑑 ≤ HMCR , one of the stored harmonies will be 

randomly selected 𝑥𝑛𝑒𝑤,𝑗 = 𝑥𝑘,𝑗, where 1≤  𝑘 ≤ 𝑁. 

HMCR is one of the main operators of Harmony search, just as cross-over and mutation where 

in GA, and it is defined as the probability of choosing a component of the Harmony Memory 

[43]. Higher values of HMCR imply that the sound will be closely related to those stored in 

HM, and lower values mean that there is a small probability of generating a new sound from 

the possible range. 
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• Pitch Adjusting Rate 

This step is closely related to the mutation step of GA as it is used to scape local optima that 

would cause the algorithm to early converge after becoming stuck. 

In this case, Pith Adjusting Rate (PAR) provides a means of mutating the obtained harmony to 

a close value, following a low probability distribution, and it represents the probability of a HM 

candidate to be modified, acquiring a value in the range of [0,1]. The higher the PAR value, the 

higher the chance of pitch adjusting a harmony. 

In order to Pitch adjust his new harmony, the PAR value will be compared again to a randomly 

generated number from 0 to 1.  

If 𝑟𝑎𝑛𝑑 ≤ PAR, the newly generated harmony will be modified according to the following 

expression; 𝑥𝑛𝑒𝑤,𝑗 = 𝑥𝑛𝑒𝑤,𝑗 + 𝑏𝑤 ∗ (𝑟𝑎𝑛𝑑 − 0,5) ∗ |𝑢𝑖 − 𝑙𝑗|, being 𝑏𝑤 the bandwidth of 

generation or stepsize (distance between the new harmony and HM values). Else if 𝑟𝑎𝑛𝑑 > 

PAR, the new harmony will remain the same. 

Phase 3. Replacement 

 Once the new harmony has been fully acquired, we are left with a new feasible solution to our 

problem. Therefore, this new harmony is evaluated in the prediction model and its loss score 

computed.  

Once this is done, this harmony and its corresponding loss score is compared to the worse 

harmony stored in the HM, that is, the one with the worst loss score.  

If  𝑓𝑛𝑒𝑤  is better that 𝑓𝑖 , harmony 𝑖 will be removed and replaced by the new one. Otherwise, 

the new harmony will be dismissed, and a new harmony will be generated following the process 

of Phase 2. 

 

Figure 17. HM before and after replacement h3-h4. Source:[3] 

Phase 4. Termination 

The stopping criteria oh the HS algorithm closely resembles that of GA as the process can be 

stopped whenever a maximum number of iterations is reached, or the global optimum found. 
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B3. Temporal Memory search   

Other authors propose alternative methods to reduce the computational weight that 

characterizes wrapper -based methods. One of these methods is the Temporal Memory Search  

[3].  

This method tries to identify the mount of temporary memory needed to solve the issue, being 

the memory the past time values (lags) of the time series.  

Although this seems to be a useful tool to optimally select the most relevant time lags of each 

series, its deployment is still very limited and few information can be found about it.   

 

B4. Recursive Feature Elimination 

Recursive Feature Elimination (RFE), as its name states, is a means of feature selection based 

on an iterative process in which an initial set of variables is trimmed gradually until only the 

most relevant variables are left, or until the desired number of relevant features is achieved.  

In each iteration, each feature is ranked according to a coefficient or feature importance 

attribute, after which, those with the lowest importance are eliminated. Then, the model is 

trained again, and the left variables are given a new feature importance attribute. The “score” 

is given by a supervised learning estimator, for example linear models would be used to estimate 

weight coefficients and tree-based algorithms would assess each feature importance within the 

model.  

 

Figure 18. RFE pseudo-code. Source:[44] 

In order to determine the correct number of optimal features to be left, this number can be either 

fixed as a parameter for the RFE algorithm or determined via cross-correlation. In this case, 

cross-correlation will enable to evaluate different variables subsets that will help to select the 

correct number of features after N iterations.  
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Figure 19. Feature selection strategy using cross-validation. Source: [45] 

Before executing this method, some tuning parameters must be adjusted such as [46]: 

a) (Minimum) Number of features to be selected at the end of the process 

b) Step: number of features pruned after each iteration 

c) The estimator that will be used to evaluate each feature 

d) Verbose, in order to control verbosity of output 

e) Number of folds (in case of using CV-RFE)  

An example of this method is provided in [44].  

 

B5. Sequential Feature Selection 

This Feature selection algorithm works in the opposite way compared to RFE.  

In this case, an initial empty feature set is competed after each iteration with a number of 

variables until there is no improve in accuracy for the trained model.  

There are 2 main types of Sequential Feature Selection (SFS) algorithms[47], floating or non-

floating. The main difference between these two models is that floating algorithms include an 

additional step to include or exclude variables once excluded or included, respectively, which 

allows to analyze a higher amount of subset combinations. This is an optional step that only 

succeeds if the removal or addition of a particular feature proves to improve accuracy, 

otherwise, this step will be skipped.   

Also, there are 2 types of feature search, depending if the feature selection is done backwards 

or forward. This means we can distinguish 4 types of algorithms within SFS: 

• Sequential Forward Selection – SFFS 

• Sequential Backward Selection – SBFS 

• Sequential Forward Floating Selection – SFFFS 

• Sequential Backward Floating Selection – SBFFS 

All this algorithms follow a similar process in order to perform an optimal feature selection, as 

described in [47]:  
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Phase 1. Initialization  

- SFFS & SFFFS 

o The algorithm is initialized with an empty set of variables 𝑋𝑘=∅ and 𝑘 = 0 

- SBFS & SBFFS 

o The algorithm is initialized with all the available features 𝑋𝑘 = 𝑌 =

{𝑦1, 𝑦2, … , 𝑑 } and 𝑘 = 𝑑 

Phase 2. Inclusion/exclusion of variables 

- SFFS & SFFFS -Inclusion 

o An additional feature 𝑥+is transferred from the original set 𝑌 into 𝑋𝑘 , being 𝑥+ 

a feature that achieves the best performance for the prediction model when 

trained with 𝑋𝑘+1 

𝑋𝑘+1 = 𝑋𝑘 + 𝑥+        𝑘 = 𝑘 + 1 

- SBFS & SBFFS -Exclusion 

o In backward selection models, a 𝑥− feature is removed from the initialization set 

𝑋𝑘 , being 𝑥− the feature that improves model accuracy when trained with 𝑋𝑘−1 

𝑋𝑘−1 = 𝑋𝑘 − 𝑥−        𝑘 = 𝑘 − 1 

Phase 3. Conditional Inclusion/exclusion. Only for SFFFS and SBFFS 

- SFFFS – Conditional Exclusion 

o After having added a variable into 𝑋𝑘 , we evaluate again the complete set of 𝑋𝑘  

and exclude any variable (𝑥−) that would lead to an improvement of the model.  

- SBFFS – Conditional Inclusion 

o In this case, we look for any other variable 𝑥+ that could be added back (in case 

it was removed previously) in order to achieve better accuracy when training the 

model. 

Phase 4. Termination 

After several iterations, this process would return a final feature subset 𝑋𝑘 , being 𝑘 < 𝑑, of 

optimal solutions with which achieve the best possible results with the predictive model.  

The stopping criteria can be either done manually by predefining de desired number of features 

to be stored in 𝑋𝑘 , or automatically whenever the improvement ratio remains constant.  

C. Embedded FS algorithms  

Embedded FS algorithms use algorithms to penalize features with coefficients too high in order 

to reduce complexity and avoid over-fitting or variance of a model by adding extra bias. These 

algorithms try to take advantage of the benefits of both filter and wrapper methods.  

The idea behind embedded FS methods is that, if a model is evaluated with a very large number 

of variables, the coefficients associated to each variable will increase, which makes it 

complicated to choose those that are really important for the model to behave correctly. 
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Therefore, regularized methods, such as L1 regularization (LASSO), L2 regularization (Ridge 

Regression) or decision tress, are used to control the size of features’ weights [48].  

Given that these methods used their own models, it is complicated to adapt their use in the NN’s 

domain.  

3.3.2 Hybrid Models 

NNs’ different architectures aim to provide a wide range of options in order to target issues of 

multiple natures, such as image/video classification, forecasting, speech recognition, natural 

Language Processing (NLP), and many more (see Section CHAPTER 2. ). 

As interest in NNs’ grew, so did the number of possible algorithms to choose from in search of 

improving performance accuracy. Most recent developments propose Hybrid architectures, that 

is models that combine multiple algorithms such as LSTM + attention modules, Convolutional 

NNs’ + RNNs’, Deep Belief Networks, etc.  

Some of these models will be listed and explained hereafter, paying special attention to their 

advantages compared to simple architectures.  

Deep and Wide Neural Networks (DWNN)  

DWNNs’ are a new model proposed in [2], where a Convolutional layer is added to the hidden 

state of a Recurrent Neural Network. This way, the model not only accounts for the depth 

provided by RNNs’ (time dimension, in the form of number of time lags), but also the width 

associated to CNNs’ (variable number of data sets).  

What this combination does in the end, is provide NN models with an additional tool to identify 

and locate relevant relationships between temporal input data sets. This is very useful as 𝑚 

independent RNN models would be required to deal with problems involving 𝑚 sets of related 

temporal data, and even by doing this, the model would neglect correlation between each 

sequence. By adding a CNN layer between 𝑡 − 1 and 𝑡 in the hidden state, being the input of 

this layer the concatenated hidden states of all 𝑚 RNN models at time 𝑡 − 1, and its output the 

state input for the RNN at 𝑡, we are able to merge all RNN models and retain the memory of 

the previous lags of the RNN.  

This CNN layer is formed by convolution layers, a pooling layer and a full connection one in 

order to adapt the output into the required shape of a hidden state. 
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Figure 20. Simple RNN mode VS DWNN model. Source:[2] 

Another variation to this would be to add CNN layers at every k-th time step. This would reduce 

the risk of overfitting of the training model, as well as simplify the processed information, while 

maintaining the ability to extract correlation. These models would also be advantageous when 

dealing with sequences with different periods. This is, in case we had Seq1 with periodicity 

equal to 1, Seq2 equal to 3 and Seq3 equal to 6, we would place the CNN layer at the 6-th time 

step, or any multiple of 6 to ensure that all these behaviors are captured. 

 

Figure 21. DWNN with different periods. Source:[2] 

This type of architectures have proven to achieve a good reduction in MSE obtained values of 

approximately 30% when compared to general RNN models [2]. 

CNN + LSTM – TreNets 

Introduced in [49], TreNets are hybrid Neural Networks architectures for the trend prediction 

of time series. This hybrid architecture combines long short-term memory (LSTM), a 

convolutional neural network (CNN), and a feature fusion layer.  

In this case, the LSTM network contains and passes on the historical trends that contain the 

long-term contextual information of the time series. This historic information is relevant as it 
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may naturally affect the trend evolution. Alternatively, raw local data serves as an input for the 

CNN, which will extract useful information about the local behavior of the time series in order 

to determine the dependency of the current trend and pattern transition point. This kind of 

information can be of great relevance when predicting abruptly changing trends. The following 

image, extracted from [49], might help to understand the need for such local data. 

 

Figure 22.. Local and historic trend data. Source:[49] 

As it can be observed, the historical trend data (Trends 1- 3) would, most likely, indicate an 

increasing trend as well for the following period. However, Local data, shown in (a), indicates 

a deceleration of this behavior or even a change in the pattern, as it is confirmed by the time 

series vales from t=100 onwards.  

The information extracted from both networks (LSTM (-L) and CNN-( T)) is then fed to a 

feature fusion layer that will join both output representations into a single joint feature. This 

joint feature will then be used by the output layer to forecast the following trend. The 

mathematical expression corresponding to this prediction can be found in [49].  

 

Figure 23. TreNet schematic representation. Source: [50] 

TreNets have shown to outperform simple LSTM-CNN models, reducing by 30% the achieved 

error (RMSE) at the maximum. 

Bi-Directional LSTM + CNN layer 

Modelled in [20], a model combining both bi-directional LSTM networks and CNN layers, 

seeks to achieve a higher degree of accuracy while reducing the probability of overfitting.  

Bi-directional LSTM networks are very useful when dealing with long spanning time-series 

data as they are able to identify key behaviors from both backwards and forward time 
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dependencies. This provides the network a better understanding of the context which, in turn, 

accelerates the learning process. In order to reduce variance when encoding properties of input 

into the network, CNNs can be used prior to the execution of bi-directional LSTMs in order to 

facilitate feature extraction. The pooling layer present in CNNs also helps in achieving a more 

accurate relevant feature extraction by limiting variance due to small local distortions and 

reducing the feature space dimensionality.  

 

Figure 24. Proposed hybrid architecture CNN- BI LSTM. Source:[20]: 

Figure 24 shows that the proposed model consists of three separate layers, each one taking the 

entire data sequence as input and is made up of 3 separated groups. 

The first group composing each pipeline contains three 1-D CNN with ReLU as activation 

function and a Max pooling layer.  

The next group is made up of two bi directional LSTM layers (one for each forward and 

backward passes) whose output is concatenated in order to obtain a single output that can be 

fed into the next group. In this case, a 50% dropout layer is used in order to prevent problems 

derived from vanishing gradients. Output from this group is then fed into a dense layer with one 

unit and Linear activation function, returning the output of each pipeline. 

Finally, all three outputs are concatenated and passed through a dense layer that generates the 

final numeric value for the predictions.  

This model claims to have increased accuracy by 9% with regards to a single pipeline CNN- Bi 

LSTM model [20].  

Low-High CNN 

Described in [27], Low-High CNNs are a novel architecture that combines multi CNNs with 

multistep Attention modules. 
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As it has been previously explained, CNNs provide and advantageous feature selection 

mechanism when dealing with long span data series, as are able to extract information without 

being corrupted by local variations.  

In this case, various sets of CNNs are used for extracting (1) Low Level features and (2) High 

level features. Low level features are made up of local behaviors in different time steps (curves, 

onwards or downwards slopes, etc.) whereas High level features are built on top of these and 

extract larger shapes in temporal data.  

 

Figure 25. Low-High Level features in an image. Source:[51] 

In order to combine these, a multistep attention module is used. The attention module matches 

both outputs by identifying relevant context, just as it would be used in NLP for sentence 

translation. This enables to get better understanding of the problem context and helps in 

assessing how different data points related to each other without losing the temporal component. 

In order to ensure that both Low and High level feature convolutions have a matching output, 

linear mapping is applied to all the high level convolution layers, to the first layer of the low-

level, and to all layers before computing attention scores.  

 

Figure 26. Attention module for NLP. Source:[52] 

 

In addition to this, residual mapping is added to every convolution (Low and High) calculation 

in order to prevent vanishing or exploding gradients as the networks acquires a higher degree 

of abstraction after each iteration.  
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Figure 27. Overview of the proposed model architecture. Source:[27] 

The above figure shows and schematic approach to the proposed model architecture. Time 

series data in convoluted – Triangle icons – (Bottom, Low Level Features, Top, High level 

features) and their outputs are consolidated by the attention module (central matrix). 

Conditional inputs computed by the attention (center right) are added to the high-level features 

which then predict the target sequence (top right). The sigmoid and multiplicative boxes 

illustrate Gated Linear Units. 

3.3.3 Hyperparameter tuning 

Creating a Neural Network architecture from scratch is a complex task. Once a neural 

architecture has been chosen to be trained, a variable number of hyperparameters must be tuned 

in order to achieve the best possible model with that architecture. These hyperparameters define 

how the network functions and are key to their validity and accuracy. Their values depend 

ultimately on the problem that is being addressed, type of available data and expected output. 

Moreover, they and are correlated among them, which means that any modification of a single 

hyperparameter might force to modify the rest.  

Some of the most common or important hyperparameters to adjust within a NN are [53]: 

- Number of hidden layers: Increasing the number of hidden layers is usually believed to 

increase model accuracy.  

- Cell units (neurons) per layer: Same as with the number of hidden layers, a greater 

number of neurons per layer might help to optimally identify relevant behavior in data, 

as more interactions between variables can be taken into account. Having a large number 

of neurons might lead to an increase in computational weigh and even overfitting.  
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- Parameter initialization: It is necessary to initialize the weights in the first pass. These 

values can be set to zero or obtained with a random function. This can lead to vanishing 

or exploding gradients, which reinforces the need to find a way of easily initializing 

them without compromising its training.  

- Learning rate:  It represents the amount weights are increased during training. It usually 

has a positive value from 0 to 1. This value is one of the most relevant ones, as it can 

lead to heavy and long training process after which the process could get stuck (low 

values) or too fast and cause the training process to become unstable and achieve sub-

optimal sets of weights (large values)[54] 

- Loss function: Seen in section 2.1.1, it is the function designed to calculate the distance 

between the predicted output and the expected output. After computing the loss score, 

a learning algorithm (usually Gradient Descent) is then used to update the weights in a 

way that might achieve a better loss score in the next iteration.  

- Epochs, iterations and batch size: These three hyperparameters define the way in which 

data is fed to the model. As explained in [55]: 

o An epoch is a forward pass and a backward pass of all the data samples in the 

training dataset.  

o The batch size is the number of data samples in each forward or backward pass. 

This value is set when the number of variables is too large to be run in one single 

epoch, or when the complexity of the model makes it necessary.  

o The number of iterations is the number of backward and forward passes using 

the information contained in each batch.  

For example, if we had 200 variables with a batch size of 100, it would take 2 iterations 

(200/100) to complete 1 epoch. 

These values (specially the batch size) can significantly impact the model 

- Dropout regularization: Defines the number of neurons not trained in each epoch in 

order to avoid overfitting of the model during training.  

- Optimizer algorithm and momentum: The neural network optimizer is in charge of 

running gradient descend in order to actualize the weights of each variable. The way to 

do so varies from one optimizer to another which can impact the model performance.  

In order to select the right values for each hyperparameter a lot of experience is required, and 

not even experience can guarantee optimal results. Although there is no straight-forward way 

to fine tune them, there are some methods that can facilitate this task and make it less complex, 

among which four stand out [53], [56], [57] .   

A. Hand Tuning  

Although this method might seem obvious and too simple, hand tuning might lead to better 

results when tuning a hyperparameter that other methods that will be reviewed in this section.  

The reason for this is that we can easily learn from our previous mistakes, which helps to 

quickly adapt the model when the results improve or get worse after modifying the value of a 

certain hyperparameter. Nevertheless, a great inconvenient of this model is that it doesn’t work 



CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART 

36 

 

when needing to optimize several hyperparameters because, as it was explained before, a 

change in one hyperparameter might force to change the rest and start the process again. 

Another issue is that it can easily force the problem to converge in a local optimum, without 

providing any tools to escape from it.  

In the end, this method can be used whenever knowledge and previous experience supports it, 

but it is not a scientific method and does not account for under optimized hyperparameters. 

B. Grid Search  

Grid search methods stand as the simplest way to automatically select the optimal value for a 

number of hyperparameters.  

This method is based in an iterative process that tries multiple values for each hyperparameter. 

These values can be either predefined or sorted out from an interval with a fixed step size and 

the model will train the model for each possible value and return its associated loss score. In 

the end, this method turns out to be an in-depth search based on some hand tuned spectrum of 

numbers within the hyperparameters space of the algorithm.  

When compared to hand tuning, this method allows to tune a number of hyperparameters all 

together but again requires some expertise to select the range of options for each 

hyperparameter. On the good side, Grid search methods provide a means of mapping the 

problem space and more optimization capability.  

This method can be used with simple NN models but has a limited deployment among complex 

deep models. This is due to the fact that it can lead to a really reduced speed training process, 

depending on the number of hyperparameters to be tuned and the possible alternatives for each 

one, turning out to be a very inefficient method.  

C. Random Search  

If we were to use a grid search method to optimize the 6 abovementioned hyperparameters, 

trying for each one of them 10 possible values, we would need to run the model 

1000000 (106) times. If each training process was to take up to 5 minutes to complete, the 

model would be able to try all the possible values in 9.5 years, without considering any further 

tuning in case the predefined are unable to yield any optimal results.  

In order to avoid this, Random Search methods are strictly linked to Grid Search methods but 

only try randomized values of hyperparameters[53]. These values are gathered from the entire 

problem space, rather than form just promising areas that could hide a local optimum. If we 

were able to reduce the number of options for each hyperparameter to 5, the time required to 

train the model would be reduced to 0.17 years, which is a huge decrease compared to the 9,5 

years required with a regular Grid Search method.  

One of the main issues with this method is that it can sometimes leave some space points 

uncovered and it evaluates points that are too close to each other to really make a significant 

improvement. In order to avoid this, quasi-random sequences (also known low-discrepancy 
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sequences) help to spread more evenly the data points. Some of these quasi-random sequences 

are the Sobol, Harmmersley, Halton, Kronecker and Niederrelter sequences.[56], [58] 

 

Figure 28. Comparison of some quasi-random search methods. Source: [58] 

The main issue with this method is that there is still a need for expertise in order to choose the 

correct method or distribution based on the data observations we have and even once the 

results have been obtained, these might not be intuitive or difficult to improve on due to their 

lack of explanation.  

Together with Grid Search methods, Random Search methods does not retain information about 

past evaluations. This means that they do not learn from past mistakes which means that a lot 

of time can be invested in evaluating values that will not make any improvement. As it was 

mentioned before, this is the reason why hand-tuning might be a better solution to these methods 

when the problem dimensions allow so.  

D. Sequential Model-Based Optimization (SMBO) – Bayesian Optimization 

Sequential model-based optimization methods represent a substantial improvement compared 

to Grid and Random search methods as they base their operation in trying to improve past 

evaluations through a probabilistic model, making assumptions about unobserved values 

through an Acquisition Function.  

Bayesian methods have a very similar skeleton that allows some modifications depending on 

the used model [59]:  
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Step 1.  Create a model that maps the hyperparameters to a score of the prediction model’s loss 

function. This is called a surrogate for the loss function – 𝑝(𝑠𝑐𝑜𝑟𝑒|ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) =

𝑝(𝑦|𝑥)– and it is used because it provides a much simpler way of optimizing the 

hyperparameters than by directly evaluating the loss function.  

 

Figure 29.Surrogate Function for an automobile data set with 2 hyperparameters. Source:[60] 

Among the available choices for construction of the surrogate model, Gaussian Process, 

Random Forest and Tree Parzen Estimators (TPE) have had the most popularity in recent 

developments. Further Information about these methods can be found in [56], [57], [59], [61].    

Step 2. The model identifies those hyperparameters’ values that perform best on the surrogate 

function.  

Step 3. Values identified in the previous step are applied to the prediction model and evaluated 

with the real loss function.  

Step 4. Loss score results obtained in Step 3 are updated in the surrogate that looks for the next 

values to evaluate. In this Step it is required to have a Selection/Acquisition Function, or criteria 

method, to disclose which values are more interesting to evaluate in the next iteration, being 

Expected Improvement the most used one as it has proven to obtain good results in different 

environments. Other functions are Probability of Improvement, minimizing the Conditional 

Entropy of the Minimizer and bandit-based criterions [61]. 

Expected Improvement tries to find the best hyperparameters under the surrogate function, that 

is, maximizing the Expected Improvement with respect to x, and is expressed as follows: 

𝐸𝐼𝑦∗ = ∫ (𝑦∗ − 𝑦)𝑝(𝑦|𝑥) 𝑑𝑦
𝑦∗

−∞

 

Being 𝑦∗the expected value of the loss function, 𝑦 the actual value of the loss function, 𝑥 the 

set of hyperparameters and 𝑝(𝑦|𝑥) the surrogate function.  

Step 5. Steps 1-4 are repeated through an iterative process running until the maximum number 

of iterations is reached.  
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Therefore, the basis of these methods is information. The more information the model has from 

previous observations, the better choice of hyperparameters’ values will make in further 

iterations, achieving better results than the previous explained Search methods in less iterations. 

E. Other methods 

Although these 4 methods retrieve most of the attention, there are also alternative resources that 

may be used for hyperparameter optimization.   

Gradient-based optimization, Evolutionary Algorithms and Population-Based Algorithms are 

some of these alternative methods.  

Gradient-based optimization methods apply reverse stochastic descend methods with 

momentum to evaluate gradient descend related to each hyperparameter. Then, just as it is done 

with the weights modifications, values for each hyperparameter are upgraded in order to obtain 

a better loss score for the model.  

 

Evolutionary Algorithms for hyperparameter tuning work just as described for Genetic 

Algorithms in section 1.3. These methods are widely used specifically for neural networks 

optimizations as they are easy to compute and perform well with various architectures [62].  

 

Population-Based Algorithms are a combination of both parallel search methods (Grid and 

Random Search) with Sequential Search methods (Hand and Bayesian optimization). It jointly 

learns both hyperparameters and networks weights, conducting a wholesome optimization of 

the prediction model. It also reflects the inner workings of Evolutionary Algorithms as it 

mutates periodically the hyperparameter values. These mutations are based on previous non-

converged observations. Hyperparameters evolve, eliminating poorly performing 

hyperparameters’ values and replacing them by previously obtained better ones. The initial set 

of values must be given beforehand, but the modifications on the hyperparameters’ values 

removes the need for further hand tuning. More information on this topic can be found in [63]  
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 CASE STUDY 

Whereas chapter number 2 has served as an introduction to different prediction models and 

techniques that could be used to forecast time series values, it still remains unclear which would 

be most ideal to work with.  

In order to face this, some of the described techniques will be tested under the same 

circumstances and for the same prediction objective to assess their overall performance and try 

to obtain valuable insights that could help when facing a new prediction problem.  

Certain assumptions have been made under which the development of this work is 

encompassed. The first one is that this work does not pretend to achieve a network configuration 

as optimal as possible, but to test how the network prediction responds to changes in the 

observed hyperparameters. It is expected that this will allow to derive conclusions about how 

the modification of each hyperparameter affects the response of the models with the aim of 

extracting relevant conclusions that can be applied to similar prediction problems, as well as 

identifying the most interesting algorithms according to the needs of the problem.  

The other hypothesis of this work is that it is assumed that most of the results extracted can be 

reproduced in similar prediction problems. While it is understood that the answer cannot be 

100% reproducible, it is expected that a high degree of similarity in the answer will be achieved 

to support the use of the conclusions derived from this work. 

3.1 Software settings 

All models have been developed in Python using Google Collab as the development 

environment. The choice of using Google Colab was made based on the computing 

requirements to run these models and usage simplicity, as no local install is required.  

Google Colab allows to develop code on Jupyter notebooks and run it on Google's cloud servers 

using VPCs. It also provides access to additional computing resources dedicated to hardware 

acceleration, such as GPUs, including Nvidia K80s, T4s, P4s and P100s. 

All models have been implemented using Tensorflow and Keras, the two most widely used 

frameworks nowadays for Machine Learning oriented applications. 

3.2 Data Set  

The dataset used for testing the different techniques was obtained from a national wind mill. It 

consists of 122 different variables and 35136 total hourly records that can be divided into 4 

main separate type of inputs: 

• T – Temperature in Celsius Degrees.  

• GSR – Ground Solar Radiation  

• WS – Wind Speed in m/s 

• WD – Wind direction, in degrees to north 

In order to train and validate the models, a 70:30 split ratio has been defined.  
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Figure 30. Temperature (ºC) variables. Min. = -18,7 ºC, Max. = 37,5 ºC 

 

Figure 31. Ground solar radiation 

 

Figure 32. Wind speed (m/s) 

 

Figure 33. Wind direction (º) 
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The 5th variable, Wind Power Generation (WG), is the objective output of the model. The 

model should forecast its value in the next hour. 

 

Figure 34. Output variable detail 

3.3 Model assumptions 

One of the main priorities of this piece of work is that of being able to provide guidelines for 

choosing the most optimal model from the available ones for each new forecasting problem. 

Given the vast number of hyperparameters that may be modified within each model, this 

workstream has been focused on assessing the impact of 4 of them (algorithm, numbers of 

layers, number of neurons per layer, and leaning rate) and fixing the values of some additional 

ones based on their overall acceptance according to the consulted bibliography or execution 

simplicity, given the computing resources used for the development of the models. The 

following list of hyperparameters has been used equally in all tested models (Grid search, 

Random search, Bayesian optimization and Genetic Algorithms) 

• Models: ['lstm', 'gru', 'rnn', 'bilstm'] 

• activation : ['elu']  

• layers : (1,6,1), min_layers, max_layers (not included), step_size 

• neurons_per_layer :(1, 45, 5), min_neurons, max_neurons (not included), step_size 

• learning_rate: (0.0005, 0.005,5), min_lr, max_lr (included), number_of_elements 

• optimizer: ['adam'] 

• batch_size: [20] 

• epochs: [20] 

The rank of values to be tested in the variable hyperparameters have been randomly chosen and 

do not correspond to any previous conducted tests. This is done in such way in order to prevent 

the finals results from being biased and not reflect the real behavior to be expected in the first 

steps of any prediction problem. Furthermore, in order to try to reproduce the results from one 

model evaluation to the next one, a random seed has been set.  
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3.4 Benchmark model 

The benchmark model is one of the references that will be used to evaluate final results, together 

with total execution times (seconds) and sensibility to the models´ hyperparameters 

initialization (random behavior). 

In this work, the benchmark model has been defined under the assumption that 𝑡 + 1 will be 

equal to the previous recorded value (WG value at time step 𝑡).  

𝑦𝑝𝑟𝑒𝑑(𝑡) = 𝑦 (𝑡 − 1) 

Validation MSE will be, in this case, the metric used to identify those models that beat the 

benchmark model assumption for the same prediction problem.  

The Validation MSE for the benchmark model stands at 240.44. Any model achieving a lower 

validation MSE will be classified as valid for our forecasting problem, at least accuracy wise.  

 

Figure 35. WG -Real output vs Benchmark model 

  



CHAPTER 4. RESULTS 

45 

 

 RESULTS  

In this chapter, the results obtained from the tested forecasting models are presented and 

discussed.  

4.1 Grid Search tuning technique  

Testing LSTM networks 

Grid models are the simplest ones from the list of hyperparameter-tuning techniques that this 

piece of work will test. The first approach, as with the rest of techniques, was to assess its 

performance using an LSTM algorithm. 

5 different simulations were performed to measure how sensitive the model was to its 

initialization. Even though this random behavior is usually controlled by setting a random seed 

to be used equally in all iterations, it was not possible to obtain perfectly reproductible results 

across all 5 simulations, which adds complexity to the problem by itself. The fact that results 

vary from one simulation to the next one makes it difficult to recognize when the model might 

have gotten stuck in a local optima or whether it has achieved the minimum achievable error 

for the available data.  

Even though this happens across all tuning techniques, grid search models shed some light over 

this behavior as the model will, in all cases, try all the listed configurations. Due to this, it is 

possible to compare results from all 5 simulations, even when the final results do not match to 

perfection.  

The following figures show the evolution of the average MSE, computed as the average from 

all 5 simulations, depending on the number of layers and number of neurons per layer of the 

network and grouped by the different tested learning rates.  
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Figure 36. Grid model- LSTM average MSE value 

 

It can be observed there is a certain degree of direct correlation between all 3 hyperparameters 

and the resulting MSE. As a general behavior, higher learning rate values yield overall higher 

MSE values, and so this behavior extends to a when a higher number of layers and neurons per 

layer apply.  

These results are consistent since the logic behind these hyperparameters forces this pattern. As 

previously explained, the learning rate controls the variation of the model weights in each 

iteration based on the error obtained. If these leaps are increased, there is a risk of "skipping" 

the optimal minimum and therefore reaching a higher error even using the same 

hyperparameters. The number of layers and neurons per layer can also have a negative effect 

when both are increased simultaneously, due to the over-adjustment of the model during 

training, in what is known as overfitting. Although the model behaves well in the training phase, 

an overlearning of the temporal function of the data leads to a later increase in error in the 

validation phase, which is what has been observed in these cases.  

But not only is MSE affected by this. Fitting time can also benefit from simpler networks, as 

depicted in the following figures, in which the same behavior is observed as with regards to 

MSE, paying special attention to the results obtained with a learning rate of 0,005.   
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Figure 37. Grid - LSTM average fitting time (s) 

 

On average, all 5 evaluations fitted 225 candidates and took a total 260,21 min to run.  

The best performing model was obtained with the following configuration: 

Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Validation 

MSE 

Training 

time (s) 

lstm 2 26 elu adam 0,00158114 175,390069 101,375545 

Table 1. Best Grid Search-LSTM performing model 

Comparing LSTM to GRU, RNN and BiLSTM networks 

Although LSTM networks are the most used today, as observed in the research about the state 

of the art carried out in chapter 2, it is also interesting to see the behavior of the same model 

under different prediction algorithms. 

For this, the Grid Search model was executed for a Gru, RNN and BiLSTM network with the 

objective of identifying if the use of LSTMs is totally justified over the rest of the algorithms, 

or if any of the alternatives allows to obtain better results, either in terms of time or accuracy. 

Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Validation 

MSE 
 

lstm 2 26 elu adam 0,00158114 175,390069 - 

gru 3 16 elu adam 0,0005 167,600379 -4,44% 

rnn 3 6 elu adam 0,0005 179,856083 2,55% 

bilstm 2 11 elu adam 0,005 187,233101 6,75%  

Table 2. Accuracy comparison for different network algorithms. Grid Search model. 
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Algorithm Layers 

Neurons 

per 

layer 

Activation Optimizer 
Learning 

rate 

Training 

time (s) 

  Total 

execution 

time 

(min)  

lstm 2 26 elu adam 0,00158114 101,375545 - 260,21 - 

gru 3 16 elu adam 0,0005 114,932046 13,37% 217,3 -16,49% 

rnn 3 6 elu adam 0,0005 46,9500928 -53,69% 107,1 -58,84% 

bilstm 2 11 elu adam 0,005 290,645908 186,70% 511,6 96,61% 

Table 3. Execution time comparison for different network algorithms. Grid Search model. 

Tables 2 and 3 show how GRU networks have an overall better performance over LSTM 

networks, both in accuracy and total execution time. RNN networks are simpler and faster to 

execute but have in exchange a slight decrease in accuracy, though it may be overseen in case 

time was a hard constrain of the model.  

4.2 Random Search tuning technique 

The following are the results derived from the execution of the random search for LSTM 

network algorithms.  

Contrary to the experienced with the Grid search, the execution of random models is highly 

sensitive to the initialization of the parameters and, as its name indicates, its execution is based 

on a stochastic behavior that is difficult to reproduce. That is why one of the biggest challenges 

when using these models is to be able to identify if the model has become stagnant around a 

local minimum. The randomness to which these models are subject does not simplify the search 

for the most optimal architecture either. As seen from various simulations, the optimal network 

configuration differs greatly from one simulation to another and it is utterly complex to assess 

how much do two simulations differ as the networks configurations tested in each one of them 

may not coincide across all 50 possible candidates.  

The following table shows the top 5 performing architectures across the 5 performed 

simulations, allowing to observe the beforementioned random performance.  

Simulation Algorithm Layers Neurons 

per layer 

Activation Optimizer Learning 

rate 

Validation 

MSE 

Training 

time (s) 

1 

lstm 5 41 elu adam 0,000763 184,5923 264,0119 

lstm 3 6 elu adam 0,00128 188,7829 122,0483 

lstm 4 16 elu adam 0,003598 188,8014 167,0225 

lstm 4 36 elu adam 0,001406 189,8118 200,869 

lstm 2 36 elu adam 0,001406 189,9404 98,38093 

2 

lstm 3 26 elu adam 0,0005757 177,381793 128,509002 

lstm 3 41 elu adam 0,0006034 179,374294 131,992889 

lstm 5 36 elu adam 0,00359843 181,87616 246,175346 

lstm 4 21 elu adam 0,00127977 183,830301 170,114023 

lstm 3 16 elu adam 0,00140588 184,331674 112,866894 

3 

lstm 3 31 elu adam 0,00298181 184,265402 133,618373 

lstm 3 16 elu adam 0,0018638 186,332919 116,835761 

lstm 4 36 elu adam 0,00204746 187,699712 192,452965 

lstm 1 26 elu adam 0,00359843 187,989413 46,0481453 
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lstm 3 26 elu adam 0,005 188,207802 128,392598 

4 

lstm 4 36 elu adam 0,0011115 180,838919 191,564501 

lstm 3 11 elu adam 0,00214597 182,219927 127,661104 

lstm 1 21 elu adam 0,00101179 182,25622 46,9287081 

lstm 5 11 elu adam 0,0018638 182,895485 193,387224 

lstm 3 11 elu adam 0,005 185,966645 114,897116 

5 

lstm 5 26 elu adam 0,00092103 179,705409 232,834292 

lstm 3 11 elu adam 0,00066286 180,991821 123,591654 

lstm 4 11 elu adam 0,00161873 182,341127 145,697482 

lstm 2 26 elu adam 0,00134135 185,592467 97,9971871 

lstm 1 31 elu adam 0,00224922 186,046671 52,3809333 

Table 4. Top 5 LSTM performing architectures for Random search models. The green highlighted cell corresponds to the best 
performing hyperparameter configuration 

Out of all of them, simulation 2 stands out as the best performing one and the one showing the 

highest resemblance to the best architecture to the Grid Search model (Table 1). Even though 

it could be discussed whether this simulation can be taken as a good performing one, meaning 

that it has managed to escape any local minimum, its similarity to the best performing Grid 

Search model can be used to dismiss this idea. Since the grid search is forced to test all 

configurations, the risk of getting stuck in a local minimum is much lower and therefore a model 

that converges in grid-like conditions can be assumed to have been able to optimize out of local 

conjectures. 

Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Validation 

MSE 

Training 

time (s) 

lstm 3 26 elu adam 0,0005757 177,381793 128,509002 

Table 5. Best Random Search-LSTM performing model 

Execution time wise, each simulation took on average 45.5 mins to fit all 50 possible candidates, 

which represents an 82,5% reduction compared to Grid Search model. Even though this seems 

as a huge reduction, it must be kept in mind that the number of candidates per simulation had 

to be limited to 50 as this model is much more computationally demanding than Grid Search, 

where 250 candidates where fitted per simulation. Several trials have been conducted with up 

to 100 iterations, but Google Collab has proved to be unable to perform them successfully, 

limiting the tests in this work to a maximum allowance of 50 iterations.  

As a rough estimation, even if the execution time remained constant at 0.91 min/candidate, if 

250 candidates could have been executed, the total time per simulation would have been around 

227.5 minutes, below Grid Search average total execution time, but with the consequent need 

for greater computing resources and without a clear method for recognizing the best performing 

samples. 

Comparing LSTM to Gru, RNN and BiLSTM networks 

The following table contains a comparison between the best performing architectures for 

Random Search models, using the best performing LSTM architecture results as baseline.  
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Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Validation 

MSE 
 

lstm 3 31 elu adam 0,00298181 184,265402 - 

gru 4 26 elu adam 0,00096535 169,507542 -8,01% 

rnn 1 21 elu adam 0,00195347 191,678969 4,02% 

bilstm 1 45 elu adam 0,00259197 190,741036 3,51% 

Table 6. Accuracy comparison for different network algorithms. Random Search model. 

Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Training 

time (s) 

  Total 

execution 

time 

(min)  

lstm 3 31 elu adam 0,00298181 133,618373  45,5  

gru 4 26 elu adam 0,00096535 159,869971 19,65% 48,6 6,81% 

rnn 1 21 elu adam 0,00195347 20,7571943 -84,47% 24,7 -45,71% 

bilstm 1 45 elu adam 0,00259197 39,0776045 -70,75% 97,3 113,85% 

Table 7.. Execution time comparison for different network algorithms. Random Search model. 

As it happened with Grid Search, GRU networks are able to improve model performance, in 

this case by a greater percentage, although its total execution time proves to be higher than 

baseline LSTM architecture.  

RNN networks show again a tradeoff between accuracy and execution time. Where the first one 

shows a 4,02% reduction, total execution time is reduced by almost 50% showing that these 

kinds of networks could be a good alternative in those applications with fast performing 

requirements and minimal accuracy loss. BiLSTM networks neither does improve accuracy, 

nor execution time and this might be intrinsically related to its complex architecture which does 

not allow to properly generalize for this problem statement and requires further computing 

resources to evaluate all possible candidates. This result has already been observed in the 

simulations carried out by means of grid search and is opposite to what is expected, at least as 

far as accuracy is concerned. The ability to look into the future of bilstm networks should help 

generate a better understanding of the problem and extract the most important variables to 

ensure improved results, especially working with data from which some periodic behavior can 

be expected. In order to improve this outcome, it has been tested to enhance the number of 

epochs, but the computational load involved has not allowed valid results to be derived.  

4.3 Bayesian optimization tuning technique 

In the same manner as in the preceding sections, the results obtained from the execution of 

LSTM-type network models together with Bayesian optimization are detailed below. 

The selected method to recreate the surrogate model has been the Gaussian method due to its 

implementational simplicity compared to the TPE or RF, presented in CHAPTER 2.  

As with random search, the Bayesian optimization method is highly constrained by the 

initialization of the weights. The mapping of the hyperparameters that manage to minimize the 

objective function can be highly influenced by the area initially explored, as well as the 

consequent tests, risking the possibility of falling into local stagnation. 
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Likewise, the manner in which the acquisition function is generated is of special importance 

given that the probabilistic function of hyperparameter testing is intrinsically linked to it, but 

we do not have at present a metric that allows us to measure how optimal this function is for 

modeling the problem. 

Simulation Algorithm Layers Neurons 

per layer 

Activation Optimizer Learning rate Validation 

MSE 

Training time 

(s) 

1 

lstm 3 15 elu adam 0,00123 187,403 80,9715 

lstm 3 45 elu adam 0,00216 188,563 98,3572 

lstm 5 30 elu adam 0,00115 189,628 139,07 

lstm 5 35 elu adam 0,00415 190,263 146,094 

lstm 4 15 elu adam 0,0037 190,988 108,445 

2 

lstm 1 10 elu adam 0,002793641 185,6270732 24,10919285 

lstm 1 15 elu adam 0,004857473 189,5508934 25,50009561 

lstm 2 25 elu adam 0,002610418 189,9400619 49,74845505 

lstm 2 15 elu adam 0,001872107 190,8041131 47,91214442 

lstm 6 40 elu adam 0,000661062 193,2397536 166,5127091 

3 

lstm 3 30 elu adam 0,000974701 181,8056578 64,82969666 

lstm 5 45 elu adam 0,000415332 184,8565897 131,4268107 

lstm 6 45 elu adam 0,000813781 185,8635256 154,1208332 

lstm 6 45 elu adam 0,000670833 187,1209127 147,5872531 

lstm 5 30 elu adam 0,000405628 187,5727841 107,7409339 

4 

lstm 6 10 elu adam 0,001384426 185,7949288 135,8981235 

lstm 4 15 elu adam 0,000986948 187,2645519 90,36797476 

lstm 2 15 elu adam 0,002517593 194,0898802 49,18882966 

lstm 5 20 elu adam 0,001818079 195,3456652 115,2993312 

lstm 5 30 elu adam 0,002546102 196,2784461 123,172493 

5 

lstm 3 15 elu adam 0,001 182,651 53,0911 

lstm 2 15 elu adam 0,00117 184,091 36,5889 

lstm 4 15 elu adam 0,00083 191,413 72,19 

lstm 3 30 elu adam 0,00234 193,684 57,0136 

lstm 2 15 elu adam 0,00206 193,833 36,59 

Table 8.  Top 5 LSTM performing architectures for Bayesian optimization simulations. The green highlighted cell 
corresponds to the best performing hyperparameter configuration 

In this particular case, although simulation 3 is the one that achieves the lowest validation error, 

the rest of the tests are substantially far from what is expected, based on the results obtained 

with Grid Search and the best simulation of random search, although the behaviour of this 

simulation is the most logical one since the iterations, focused on the improvement of the 

validation error, are performed in a more limited environment that reflects a less stochastic 

behavior.  

Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Validation 

MSE 

Training 

time (s) 

lstm 3 30 elu adam 0,000974701 181,8056578 64,82969666 

Table 9. Best Bayesian Optimization-LSTM performing model 

The rest of the simulations present greater variability in the tests performed, which suggests 

that the model could benefit from a greater number of iterations. In this aspect, the Bayesian 
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method improves notably against the random search since it allows to execute 100 iterations 

per simulation, against the 50 of the random one without experiencing complications due to 

high complexity, albeit a slight increase in the time required (120 minutes on average). This 

confirms what was expressed in chapter 2, in which the idea of how a Bayesian method 

managed to simplify the optimization of hyperparameters by allowing work with a subordinate 

model was discussed. 

Comparing LSTM to Gru, RNN and BiLSTM networks 

The following is also a comparison of the best results obtained for the different network 

architectures tested. 

Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Validation 

MSE 
 

lstm 3 30 elu adam 0,0009747 181,805658 - 

gru 2 30 elu adam 0,00063344 170,248371 -6,36% 

rnn 6 15 elu adam 0,00073817 185,762487 2,18% 

bilstm 1 45 elu adam 0,00259197 190,741036 4,91% 

Table 10.Accuracy comparison for different network algorithms. Bayesian optimization. 

Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Training 

time (s) 

  Total 

execution 

time 

(min)  

lstm 3 30 elu adam 0,0009747 64,8296967 - 118,01 - 

gru 2 30 elu adam 0,00063344 45,0948706 -30,44% 100,12 -15,16% 

rnn 6 15 elu adam 0,00073817 56,2693636 -13,20% 128,17 8,61% 

bilstm 1 45 elu adam 0,00259197 39,0776045 -39,72% 164,23 39,17% 

Table 11. Execution time comparison for different network algorithms. Bayesian optimization 

In this scenario, GRU architecture is the only one that manages to surpass the LSTM, achieving 

better results in both accuracy and total execution time.  

On the other hand, RNN architecture results in longer execution times, contrary to the random 

and grid search, which is surprising, since it could be expected to achieve shorter execution 

times since it is a simpler network configuration. The bilstm architecture is once again relegated 

to the last position as it does not achieve any notable improvement . Once again, a modification 

of the epochs is linked to an exponential increase in the resources required to address the 

problem, making it difficult to draw conclusions as to why this architecture does not achieve 

the expected results. 

4.4 Genetic algorithms tuning technique 

The conditions defined for the execution of the genetic algorithms in this work are detailed 

below: 

• Number of individuals: 20  

• Number of generations: 4 

• Mutation allowance for number of layers in generation i+1:  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 𝑔𝑒𝑛 𝑖+1 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 𝑔𝑒𝑛 𝑖  +𝑟𝑎𝑛𝑑[0,1,2] 
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As for the number of layers, it has been defined that its number from one generation to 

the next one could only be increased by one or two units, or remain constant, to be 

chosen randomly 

• Mutation allowance for number of neurons per layer in generation i+1:  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 𝑔𝑒𝑛 𝑖+1 

= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 𝑔𝑒𝑛 𝑖 + 𝑟𝑎𝑛𝑑[0,9] 

In order to allow mutation in the number of neurons per layer, a random increase in the 

next generation of up to 9 units has been defined, without allowing its decrease. 

• Mutation allowance for the learning rate:  

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑔𝑒𝑛 𝑖+1 =  𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑔𝑒𝑛 𝑖 ∗  (0.8 +  0.4 ∗  𝑟𝑎𝑛𝑑[0,1)) 

Algorithm Layers Neurons 

per layer 

Activation Optimizer Learning rate Validation 

MSE 

Training time 

(s) 

lstm 3 15 elu adam 0,00123 187,403 80,9715 

lstm 3 45 elu adam 0,00216 188,563 98,3572 

lstm 5 30 elu adam 0,00115 189,628 139,07 

lstm 5 35 elu adam 0,00415 190,263 146,094 

lstm 4 15 elu adam 0,0037 190,988 108,445 

Table 12. Top 5 performing network configurations. Genetic algorithms 

In the case of genetic algorithms, it is really complicated to conclude how positive the results 

are. If there were already problems in the random search or Bayesian optimization, being a 

technique that depends on random mutations for the sampling of the optimal hyperparameters, 

this complexity is magnified and greatly reduces the ability to derive logical conclusions from 

these results.  

Although it seems that the tests have remained in the environment of the expected 

configurations, it is possible to observe how the learning rate is an order of magnitude higher 

than that obtained with the previously tested techniques and how, in general, the tests tend 

towards less optimal configurations.  

This can be observed in more detail throughout the tests performed with the genetic algorithms 

in which a considerable increase in the number of neurons per layer is observed, reaching values 

up to 86 neurons in GRU type network configuration, which is completely contrary to the 

configurations obtained through the techniques already tested. 

Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Validation 

MSE 
 

lstm 3 30 elu adam 0,001460758 187,2479481 - 

gru 5 39 elu adam 0,000723036 175,6013818 -6,22% 

rnn 4 86 elu adam 0,001565222 176,3636213 -5,81% 

bilstm 2 69 elu adam 0,002291607 216,8450307 15,81% 

Table 13. Accuracy comparison for different network algorithms. Genetic Algorithms 
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Algorithm Layers 
Neurons 

per layer 
Activation Optimizer 

Learning 

rate 

Traning 

time (s) 

  Total 

execution 

time 

(min)  

lstm 3 30 elu adam 0,001460758 135,3101137 - 100,37 - 

gru 5 39 elu adam 0,000723036 238,6682661 76,39% 56 -44,21% 

rnn 4 86 elu adam 0,001565222 127,3048062 -5,92% 42 -58,15% 

bilstm 2 69 elu adam 0,002291607 290,6459081 114,80% 142,07 41,55% 

Table 14. Execution time comparison for different network algorithms. Genetic Algorithms 

4.5  Cross performance comparison  

 

Tuning technique Layers 

Neurons 

per 

layer 

Activation 

function 
Optimizer Learning rate 

Validation 

MSE 

Total 

execution 

time (min) 
LSTM Grid 2 26 elu adam 0,00158114 175,390069 260,21 

LSTM Random 3 31 elu adam 0,00298181 184,265402 45,5 

LSTM Bayesian  3 15 elu adam 0,00100075 182,650941 118,01 

LSTM Genetic Algorithm 3 30 elu adam 0,00146076 187,247948 100,37 

GRU Grid 3 16 elu adam 0,0005 167,600379 217,3 

GRU Random 4 26 elu adam 0,00096535 169,507542 48,6 

GRU Bayesian  2 30 elu adam 0,00063344 170,248371 100,14 

GRU Genetic Algorithm 5 39 elu adam 0,00072304 175,601382 56 

RNN Grid 3 6 elu adam 0,0005 179,856083 107,1 

RNN Random 1 21 elu adam 0,00195347 191,678969 24,7 

RNN Bayesian  6 15 elu adam 0,00073817 185,762487 70,17 

RNN Genetic Algorithm 4 86 elu adam 0,00156522 176,363621 42 

BILSTM  Grid 2 11 elu adam 0,005 187,233101 511,6 

BILSTM  Random 1 41 elu adam 0,00414321 192,240764 97,3 

BILSTM  Bayesian  1 45 elu adam 0,00259197 190,741036 164,23 

BILSTM  Genetic Algorithm 2 69 elu adam 0,00229161 216,845031 144,07 

Table 15. Cross comparison for the best performing simulations 

Tuning technique  Number of adjusted candidates  

Grid Search  150 

Random Search  50 

Bayesian optimization 100 

Genetic Algorithm 80 

Table 16. Number of adjusted candidates per tuning technique 

Table 15 shows a more generic comparison of the best results obtained for each configuration 

and technique tested.  

It can be seen how the best models are concentrated as a result of using GRU type network 

architectures as opposed to LSTM, as would have been expected based on the conclusions 

derived from the literature consulted, and how RNNs are positioned as the best architectures in 

terms of execution time, both results already presented in the previous sections.  

LSTM architectures achieve acceptable results, although far from the best obtained with GRUs 

and without substantial improvements in terms of total execution time that could justify their 

choice when faced with a prediction problem similar to the one discussed. BILSTM 
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architectures would be initially discarded for not being able to prove whether their low 

performance could be improved by means of other hyperparameters whose optimization is not 

contemplated in this work.  

Regardless of the type of network architecture employed, it is clear how GRID Search 

techniques are the most interesting to use in a first approach to the problem. Not only are these 

techniques the ones that achieve, in a general way, the best results, but they also allow exploring 

the whole map of hyperparameters defined without being influenced by local minimums. 

Despite the fact that these models take longer to perform all the iterations, they can be a good 

first preference for the following reasons: 

1. If time is a determinant, they may be used as a means of identifying sub-optimal model 

simulations that are faster to run, but risk fluctuating around a local minimum 

2. They can be used to identify, from a wide initial spectrum, those configurations that will 

improve the validation error, discarding the less interesting ones.  

3. They allow, in a single simulation, to obtain a network configuration that, without being 

optimal, achieves acceptable error, avoiding local stagnation and that can later be 

improved, either in a more limited range using grid search again or with any of the other 

techniques studied 

4. It allows us to observe with greater transparency the behaviour of the model when faced 

with changes in the values of the hyperparameters, unlike other methods whose 

stochastic nature makes it difficult to understand the results obtained. 

As far as the speed of execution is concerned, - and in the same way for any network architecture 

- Random Search is the one that allows to obtain reasonable results in the shortest time possible, 

but, as it has been explained before, it is necessary to evaluate the need of greater resources to 

evaluate more complex configurations or to increase the number of iterations, which entails a 

great limitation to have in consideration for its implementation.  

Bayesian optimization is an alternative solution if you are looking for an intermediate point 

between accuracy and execution time. Unlike genetic algorithms, which do not stand out in the 

field of accuracy or runtime improvement, the tests performed by Bayesian optimization are 

usually closer to the optimal that can be achieved through grid search, without the complexity 

of random and more feasible than tests performed by genetic algorithms that, after each new 

mutation, risk ending up selecting sub-optimal configurations. 
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 CONCLUSIONS 

The objective of this work was to perform an extensive research on deep learning models and 

its application to time series forecasting. The state of the art showed a significant number of 

models and techniques available to improve the performance of these models. Hence, a case 

study was performed to explore these techniques in a real-world dataset. The goal was not to 

achieve the best possible network model, but to test various hyperparameter optimization 

techniques in a real example of application in order to derive a series of guidelines that could 

be useful when facing a new problem of time series prediction.  

Although it cannot be presumed that all prediction problems have the same behavior, nor that 

the models tested will respond in the same way to what has been seen in this work in other 

situations, it can be expected, and this has been assumed in this work, that it is possible to 

generalize some of the results obtained here, as long as one is aware of this fact and the 

limitations it may entail.  

Another important aspect to take into account, and which has partly defined the results obtained, 

is that this work has only contemplated the optimization of the 4 hyperparameters that are most 

sought after in a general way when undertaking any work in this area, allowing a certain degree 

of freedom in the initialization of other more complex hyperparameters, whose theoretical basis 

does not allow direct conclusions to be extrapolated from the values obtained due to their 

complexity. Assumptions have also been made regarding the values of some hyperparameters 

that may be far from optimal, but which have greatly facilitated the development of this work. 

In order to improve the results obtained in this work, it would be of great interest to carry out 

tests along the same lines of this work, testing other ranges of values for the hyperparameters 

tested here, with the aim of observing whether the behavior remains in accordance with what 

has been observed in this work, or whether conclusions can be drawn that could complement 

those presented here. 

As for the results, the following points can be concluded: 

• Regardless of the optimization technique employed, GRU architectures far exceed the 

expectations placed on LSTMs that were initially positioned as those from which to 

expect the best results, while biLSTMs are relegated to last position by failing to achieve 

good results in any of the fields tested. 

• As far as possible, start the search for hyperparameters in limited environments and opt 

for intermediate values, avoiding any extreme values. As can be seen from the final 

table of results (Table 15), most of the results oscillate around 2-3 layers, a number of 

neurons per layer not exceeding 30 (with some exceptions) and with downward values 

as far as learning rate is concerned. 

The number of layers and neurons per layer should be adapted to each application, being 

aware that for more complex applications a greater number of layers and neurons would 

be required to model the output behavior. It is recommended to perform a more 

comprehensive initial search, and limit subsequent trials in a limited rank around those 

values within the optimal configuration appears to be located.  

• In order to choose the best hyperparameter optimization method, the following approach 

can be followed: 

o Is time a decisive factor? 
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Opt for Bayesian optimization or random search, if you have sufficient 

computational resources to achieve a sufficient number of iterations, along GRU 

or RNN-type network structures, depending on whether you want better 

accuracy or just speed of execution, respectively. As for the number of iterations, 

it is necessary to at least execute a number of the that allows the algorithm to 

converge in a hyperparamenter subspace, ensuring a small variance from one 

iteration to the next one. 

o Is the best possible accuracy being sought? 

If, above all, the aim is to minimize the model's error, opt for Grid search 

optimization methods together with GRU-type network architectures. 

o The objective is to achieve a time-performance ratio? 

Opt for a Bayesian optimization method using GRU or RNN-type network 

architectures  
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 ANNEXES 

ANNEX I -  SUSTAINABLE DEVELOPMENT GOALS 

The sustainable development goals, defined in 2015 by the UN and approved by 193 countries, 

are 17 interconnected goals that encompass a total of 169 targets valid until 2030, which 

recognize the need to address both the fight against poverty, care for the planet and the reduction 

of inequalities [64].   

These objectives require the collaboration of not only civil society, but also the public and 

private sectors to achieve them, thus making the world more diverse and egalitarian.  

This work mainly supports the following sustainable development objectives and their 

corresponding targets [64]: 

7 Affordable and clean energy 

7.1 By 2030, ensure universal access to affordable, reliable and modern energy services 

7.2 By 2030, increase substantially the share of renewable energy in the global energy mix 

7.3 By 2030, double the global rate of improvement in energy efficiency 

7.4 By 2030, enhance international cooperation to facilitate access to clean energy research 

and technology, including renewable energy, energy efficiency and advanced and cleaner 

fossil-fuel technology, and promote investment in energy infrastructure and clean energy 

technology 

7.5 By 2030, expand infrastructure and upgrade technology for supplying modern and 

sustainable energy services for all in developing countries, in particular least developed 

countries, small island developing States, and land-locked developing countries, in 

accordance with their respective programs of support 

9 Industries innovation and infrastructure 

9.1 Develop quality, reliable, sustainable and resilient infrastructure, including regional and 

transborder infrastructure, to support economic development and human well-being, with 

a focus on affordable and equitable access for all 

9.2 Promote inclusive and sustainable industrialization and, by 2030, significantly raise 

industry’s share of employment and gross domestic product, in line with national 

circumstances, and double its share in least developed countries 

9.3 Increase the access of small-scale industrial and other enterprises, in particular in 

developing countries, to financial services, including affordable credit, and their 

integration into value chains and markets 

9.4 By 2030, upgrade infrastructure and retrofit industries to make them sustainable, with 

increased resource-use efficiency and greater adoption of clean and environmentally 

sound technologies and industrial processes, with all countries taking action in 

accordance with their respective capabilities 

9.5 Enhance scientific research, upgrade the technological capabilities of industrial sectors in 

all countries, in particular developing countries, including, by 2030, encouraging 

innovation and substantially increasing the number of research and development workers 

per 1 million people and public and private research and development spending 

9.6 Facilitate sustainable and resilient infrastructure development in developing countries 

through enhanced financial, technological and technical support to African countries, 
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least developed countries, landlocked developing countries and small island developing 

States 18 

9.7 Support domestic technology development, research and innovation in developing 

countries, including by ensuring a conducive policy environment for, inter alia, industrial 

diversification and value addition to commodities 

9.8 Significantly increase access to information and communications technology and strive 

to provide universal and affordable access to the Internet in least developed countries by 

2020 

13 Climate action 

13.1 Strengthen resilience and adaptive capacity to climate-related hazards and natural 

disasters in all countries 

13.2 Integrate climate change measures into national policies, strategies and planning 

13.3 Improve education, awareness-raising and human and institutional capacity on climate 

change mitigation, adaptation, impact reduction and early warning 

13.4 Implement the commitment undertaken by developed-country parties to the United 

Nations Framework Convention on Climate Change to a goal of mobilizing jointly $100 

billion annually by 2020 from all sources to address the needs of developing countries in 

the context of meaningful mitigation actions and transparency on implementation and 

fully operationalize the Green Climate Fund through its capitalization as soon as possible 

13.5 Promote mechanisms for raising capacity for effective climate change-related planning 

and management in least developed countries and small island developing States, 

including focusing on women, youth and local and marginalized communities 

This work supports these objectives by providing a research framework to enhance and improve 

the robustness of forecasting techniques, the application of which can assist in the adoption of 

renewable generation methods as unique sources of electricity.  

The use of reliable forecasting techniques for the short to medium term is essential both for 

entering the electricity markets and for undertaking maintenance work in plants or power 

stations. 

The market factor is highly relevant, since the variability in power generation from renewable 

plants is much greater than that of traditional competitors. This may imply penalties in the event 

of not being able to generate the offered energy. The fact that the generation capacity of each 

park can be predicted with a greater degree of precision means that the various renewable 

generation technologies can be regarded as strong competitors in the electricity market.  

Operation and maintenance of the farms is an equally important economic aspect. Achieving 

optimal maintenance of the infrastructure is key to ensuring a quality service, fast and reliable 

and with a broad useful life, ensuring a high degree of amortization, leading to a call effect for 

future investments. 

 




