

MÁSTER UNIVERSITARIO EN INGENIERÍA

INDUSTRIAL

TRABAJO FIN DE MÁSTER

Accuracy improvement of Deep Neural Networks

through preprocessing and neural structure tuning

techniques. An approach to time-series models.

Author: Mónica López-Tafall Criado

Directors: José Portela González,

 Jaime Pizarroso Gonzalo

Madrid

Agosto de 2020

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Accuracy improvement of Deep Neural Networks through preprocessing and neural structure

tuning techniques. An approach to time-series models.

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2019/20 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido

tomada de otros documentos está debidamente referenciada.

Fdo.: Mónica López-Tafall Criado Fecha: 24 / 08 / 2020

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

Fdo.: José Portela González Fecha: ……/ ……/ ……

Fdo.: Jaime Pizarroso Gonzalo Fecha: ……/ ……/ ……

25 08 2020

25 08 2020

MÁSTER UNIVERSITARIO EN INGENIERÍA

INDUSTRIAL

TRABAJO FIN DE MÁSTER

Accuracy improvement of Deep Neural Networks

through preprocessing and neural structure tuning

techniques. An approach to time-series models.

Author: Mónica López-Tafall Criado

Directors: José Portela González,

 Jaime Pizarroso Gonzalo

Madrid

Agosto de 2020

Acknowledgements

Mom, Dad, Pablo, thank you very much for your support, love and understanding throughout

these years of University. For being there, even when I wasn't.

To my friends and colleagues because we have walked this path together.

To Santiago Rilo and Daniel Elechiguerra for their contributions worth making this work

possible.

To my directors, the chair of Connected Industry and the CIC LAB for the learning

opportunities and for bringing me to broaden my horizons.

Mejora de la precisión de las redes neuronales profundas mediante

técnicas de preprocesamiento y ajuste de la estructura neuronal.

Aplicación a modelos de predicción de series temporales.

Autor: López-Tafall Criado, Mónica

Directores: Portela González, José

Pizarroso Gonzalo, Jaime

Resumen del trabajo

Este proyecto tiene por objeto realizar un amplio examen de las técnicas utilizadas actualmente

para aumentar la precisión de los modelos de aprendizaje profundo, prestando especial atención

a las que se centran en las redes neuronales, como los algoritmos de selección de variables, las

arquitecturas híbridas y las técnicas de optimización de hiperparámetros.

La eficacia de esas técnicas se evalúa posteriormente en una aplicación de caso real

Palabras clave: Redes neuronales, Series temporales, Predicción, Deep Learning

Introducción

La popularización de los modelos de las Redes Neuronales Profundas (Deep Neural

Networks)en los últimos años ha dado lugar a un aumento del número de técnicas para aumentar

la precisión de esos modelos. Sin embargo, es difícil elegir cuál de estos métodos son óptimos

para un problema específico. Este proyecto tiene por objeto realizar una comparación de éstos

aplicándolos en un problema de previsión de series temporales y proporcionar una metodología

inicial que ahorre tiempo y recursos al enfrentarse a un problema nuevo. Otras aplicaciones

están fuera del alcance de este proyecto.

Se ha elegido la previsión de series temporales para realizar la comparación debido a la gran

demanda de este tipo de modelos Algunas aplicaciones de predicción de series temporales son

las tendencias o comportamientos futuros de los mercados bursátiles, las ventas de productos,

la demanda de electricidad, la velocidad del viento y la radiación solar para la generación de

energía, las cuestiones relacionadas con la salud y el Procesamiento del Lenguaje Natural

(PNL), entre muchas otras. Estas aplicaciones han estado, durante muchas décadas (finales del

siglo XX), a la vanguardia del desarrollo de algoritmos de aprendizaje automático y de modelos

matemáticos complejos en constante evolución [1].

El enfoque de la mayoría de estos modelos de predicción consiste en utilizar los algoritmos de

aprendizaje automático para aprender del pasado con el fin de proporcionar una predicción de

un valor futuro. Debido a los entornos dinámicos, caóticos, estocásticos y complejos del propio

problema y a la incertidumbre de los datos del mundo real (por ejemplo, los mercados

bursátiles), esto se convierte en un proceso inherentemente desafiante y no trivial. Esto se

agrava cuando se trata de características dependientes del tiempo o de cadenas de información

multivariantes a largo plazo, en las que es de suma importancia identificar las correlaciones

entre datos temporales distintos [2] o definir qué valores pasados (tanto en tiempo como en

variables) son importantes dentro del proceso de predicción [3], respectivamente.

Metodología

El desarrollo de este proyecto ha seguido 5 etapas diferentes:

1. Revisión del estado del arte. Para ello, se revisa en el capítulo 2 la bibliografía

disponible sobre los diferentes temas tratados, con el fin de comprender la teoría y los

conceptos subyacentes. Esta base teórica ha ayudado a identificar las técnicas más

interesantes para aplicar y profundizar en el desarrollo del modelo de previsión de series

temporales.

2. Definir el alcance del modelo de predicción. Una vez que se han analizado todas las

técnicas potenciales en el estado del arte, se han seleccionado una serie de ellas para

evaluar su eficacia en la mejora de la precisión del modelo. El alcance del modelo es

lograr la mayor precisión prediciendo la generación de energía eólica del día siguiente

en un parque eólico nacional, tomando como entrada datos históricos. Todos los

modelos han sido probados con el modelo de referencia, que supone que la energía

eólica generada en el día t es igual a la del día t – 1.

3. Investigación de modelos y desarrollo de códigos. A fin de probar todas las técnicas

enumeradas, se ha llevado a cabo una investigación exhaustiva de los recursos y

bibliotecas disponibles para construir la estructura necesaria para cada uno de los

diferentes modelos probados.

4. Validación de modelos y seguimiento de las mejoras. Después de implementar todas las

diferentes técnicas de ajuste, se han realizado varias pruebas para ver cómo afecta a la

precisión del modelo. También se analizaron características adicionales, como el tiempo

de ejecución, para ver si el aumento de la precisión explica la necesidad de una mayor

potencia de cálculo, o si con técnicas más sencillas se podría garantizar una solución

más equilibrada del problema. La configuración interna de la red también se ha

analizado para evaluar la diferencia entre los modelos y utilizarla para comprender

mejor la importancia de los hiperparámetros de la red.

5. Resultados y conclusiones. Los capítulos 4 y 5 abordan los resultados y conclusiones

derivados de las pruebas realizadas, proporcionando aquellos métodos o técnicas con

los que sería más beneficioso trabajar de acuerdo con los datos disponibles, los recursos

informáticos y el alcance definido del proyecto.

Resultados

Los resultados obtenidos se pueden dividir por un lado entre las configuraciones que permiten

obtener la mejor precisión en la predicción y los que logran resultados en un menor tiempo.

En cuanto al primer punto, el Grid Search, junto a una arquitectura de red tipo GRU es la

configuración que mejor precisión obtienen, mientras que los mejores tiempos se obtienen al

combinar un Random Search y arquitectura de red tipo RNN.

Técnica de

optimización de

hyperparámetros

Capas
Neuronas

por capa

Función

de

activación

Optimizador Learning rate

Error de

validación

MSE

Tiempo total

de ejecución

(min)
LSTM Grid 2 26 elu adam 0,00158114 175,390069 260,21

LSTM Random 3 31 elu adam 0,00298181 184,265402 45,5

LSTM Bayesian 3 15 elu adam 0,00100075 182,650941 118,01

LSTM Genetic Algorithm 3 30 elu adam 0,00146076 187,247948 100,37

GRU Grid 3 16 elu adam 0,0005 167,600379 217,3

GRU Random 4 26 elu adam 0,00096535 169,507542 48,6

GRU Bayesian 2 30 elu adam 0,00063344 170,248371 100,14

GRU Genetic Algorithm 5 39 elu adam 0,00072304 175,601382 56

RNN Grid 3 6 elu adam 0,0005 179,856083 107,1

RNN Random 1 21 elu adam 0,00195347 191,678969 24,7

RNN Bayesian 6 15 elu adam 0,00073817 185,762487 70,17

RNN Genetic Algorithm 4 86 elu adam 0,00156522 176,363621 42

BILSTM Grid 2 11 elu adam 0,005 187,233101 511,6

BILSTM Random 1 41 elu adam 0,00414321 192,240764 97,3

BILSTM Bayesian 1 45 elu adam 0,00259197 190,741036 164,23

BILSTM Genetic Algorithm 2 69 elu adam 0,00229161 216,845031 144,07

Tabla 1. Comparación de las mejores simulaciones para cada configuración de red probada.

Si bien las configuraciones de red tipo LSTM se posicionaban como las más interesantes en

base a la bibliografía consultada y la cantidad de aplicaciones que se basan en ella, ha quedado

demostrado que, para esta aplicación, sus cualidades quedan muy por detrás de las obtenidas

con configuraciones de red tipo GRU. Del mismo modo, también se descarta el uso de

arquitecturas tipo BiLSTM las cuales no logran mejorar ninguno de los dos principales aspectos

contemplados en este trabajo.

En base a los resultados obtenidos se recomienda en cualquier caso optar por una búsqueda

inicial de la mejor configuración de los hiperparámetros por medio de un Grid Search, aun

cuando el tiempo de ejecución es elevado, y afinar las siguientes búsquedas ya sea usando el

mismo método u otro que permita menores tiempos de ejecución. Se recomienda el Grid Search

ya que permite una mayor transparencia de los resultados obtenidos, al no estar estos expuestos

al riesgo de verse limitados por haber dado con un mínimo local que pueda forzar pruebas de

hiperparámetros subóptimas.

Conclusiones

A falta de otros trabajos que confirmen o desmientan las conclusiones extraídas de la aplicación

presentada en este proyecto, se asumirá que estas conclusiones son al menos parcialmente

aplicables en otro problema de predicción de series temporales. Aun así, se recomienda una

búsqueda inicial utilizando la técnica de Grid Search para encontrar el espacio de

hiperparámetros óptimo para cada aplicación.

En cuanto a los resultados obtenidos, se pueden resumir las ideas principales en los siguientes

puntos:

- Si el tiempo es un factor decisivo en el éxito de la aplicación, se recomienda optar por

optimización bayesiana o Random search justo a configuraciones de red tipo RNN.

También se pueden combinar junto a arquitecturas tipo GRU si se busca una ligera

mejora en la precisión de la predicción del modelo.

- Si el problema se centra en lograr la mejor predicción posible, es decir, el menor error

de validación, la mejor opción observada es el uso de un Grid Search junto a una

arquitectura de red tipo GRU.

- Si se busca lograr un equilibrio entre tiempo de ejecución y calidad del modelo, optar

por optimización Bayesiana en configuración GRU o RNN, siendo preferible la primera.

Referencias

[1] J. Brownlee, ‘How to Choose Loss Functions When Training Deep Learning Neural

Networks’, Machine Learning Mastery, Jan. 29, 2019.

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-

learning-neural-networks/ (accessed Feb. 08, 2020).

[2] G. Drakos, ‘How to select the Right Evaluation Metric for Machine Learning Models: Part

1 Regression Metrics’, Medium, Feb. 05, 2020.

https://medium.com/@george.drakos62/how-to-select-the-right-evaluation-metric-for-

machine-learning-models-part-1-regrression-metrics-3606e25beae0 (accessed Feb. 08,

2020).

[3] P. Grover, ‘5 Regression Loss Functions All Machine Learners Should Know’, Medium,

Feb. 05, 2020. https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-

should-know-4fb140e9d4b0 (accessed Feb. 09, 2020).

Accuracy improvement of deep neural networks through

preprocessing and neural structure tuning techniques. An approach to
time-series models.

Author: López-Tafall Criado, Mónica

Directors: Portela González, José

Pizarroso Gonzalo, Jaime

Abstract

This project is aimed at conducting an extensive review of current used techniques for accuracy

boosting of deep learning models, paying special attention to those focused on Neural

Networks, such as feature selection algorithms, hybrid architectures and hyperparameter

optimization techniques.

The effectiveness of these techniques is later assessed in a real case application measuring

different parameters like the model accuracy and the training time.

Keywords: Neural Networks, Time series, Forecasting, Deep Learning

Introduction

The popularization of Deep Neural Network models in recent years has led to an increase in the

number of techniques to boost the accuracy of these models. However, it's difficult to choose

which of these method are optimal for a specific problem. This project aims to perform a

comparison of these by applying them in a time-series forecasting problem and provide an

initial methodology that saves time and resources when faced with a new problem. Other

applications are out of the scope of this project.

Time-series forecasting has been chosen to perform the comparison due to the high demand of

this type of models. Some applications of time-series forecasting are future trends or behaviors

of stock markets, product sales, electricity demand, wind speed and sun-irradiation for power

generation, health- related issues and Natural Language Processing (NLP), among many more.

These applications have, for many decades (late 20th Century), been at the forefront of

development of machine learning algorithms and ever evolving complex mathematical models

[1].

Most of these prediction models’ approach is to use machine learning algorithms to learn from

the past in order to provide a future time-window forecast. Due to the dynamic, chaotic,

stochastic and complex environments of the problem itself and uncertainty of real-world data

(e.g. stock markets) this becomes an inherently challenging and non-trivial process. This gets

worse when dealing with time-dependent characteristics or long-term multi-variate information

chains, where it is of utmost importance to identify correlations between distinct temporal data

[2] or to define which past values (both in time and variables) will be considered within the

prediction process [3], respectively.

Methodology

The development of this project has followed 5 different stages:

1. State of the art review. To this end, the available bibliography on the different covered

topics is reviewed in CHAPTER 2. in order to gain understanding of the underlaying

theory and concepts. This theoretical basis has helped in identifying the most interesting

techniques to apply and deep dive into while developing the time series forecasting

model.

2. Define the scope of the forecasting model. Once all the potential techniques have been

analyzed in the state of the art, a series of them have been be selected in order to assess

their effectiveness in improving accuracy metrics. The scope of the model is to achieve

greatest forecasting accuracy for next-day wind power generation in a national wind

farm, taking historical data as input. All models have been tested against the benchmark

model, which assumes Wind Power at day t is equal to day t-1.

3. Model research and code development. In order to test all the listed techniques, an

exhaustive research on available resources and libraries to build the required structure

for each different tested model has been conducted primarily.

4. Model validation and improvement tracking. After implementing all the different tuning

techniques, several tests have been performed to see how accuracy is affected. Also,

additional features were analyzed, such as performance time, to see whether the increase

in accuracy accounts for a need of greater computing power, or if simpler techniques

could warrant a better-balanced solution to the problem. Internal net configuration have

also analyzed to assess difference between models and use it to further understand

network hyperparameters importance.

5. Results and conclusions. CHAPTER 4. and CHAPTER 5. address the results and

conclusions driven from the conducted tests, providing those methods or techniques that

would be most beneficial to work with according to the available data, computing

resources, and defined scope of the project.

Results

The results obtained can be divided between the configurations that allow the best accuracy in

prediction and those that achieve results in a shorter time.

Regarding the first point, the Grid Search, together with a GRU type network architecture is the

configuration that obtains the best accuracy, while the best times are obtained by combining a

Random Search and RNN type network architecture.

Tuning technique Layers

Neurons

per

layer

Activation

function
Optimizer Learning rate

Validation

MSE

Total

execution

time (min)
LSTM Grid 2 26 elu adam 0,00158114 175,390069 260,21

LSTM Random 3 31 elu adam 0,00298181 184,265402 45,5

LSTM Bayesian 3 15 elu adam 0,00100075 182,650941 118,01

LSTM Genetic Algorithm 3 30 elu adam 0,00146076 187,247948 100,37

GRU Grid 3 16 elu adam 0,0005 167,600379 217,3

GRU Random 4 26 elu adam 0,00096535 169,507542 48,6

GRU Bayesian 2 30 elu adam 0,00063344 170,248371 100,14

GRU Genetic Algorithm 5 39 elu adam 0,00072304 175,601382 56

RNN Grid 3 6 elu adam 0,0005 179,856083 107,1

RNN Random 1 21 elu adam 0,00195347 191,678969 24,7

RNN Bayesian 6 15 elu adam 0,00073817 185,762487 70,17

RNN Genetic Algorithm 4 86 elu adam 0,00156522 176,363621 42

BILSTM Grid 2 11 elu adam 0,005 187,233101 511,6

BILSTM Random 1 41 elu adam 0,00414321 192,240764 97,3

BILSTM Bayesian 1 45 elu adam 0,00259197 190,741036 164,23

BILSTM Genetic Algorithm 2 69 elu adam 0,00229161 216,845031 144,07

Table 1. Cross comparison for the best performing simulations

Although LSTM type network configurations were positioned as the most interesting ones

based on the consulted bibliography and the amount of applications based on it, it has been

demonstrated that, for this application, its qualities are far behind those obtained with GRU

type network configurations. Likewise, the use of BiLSTM-type architectures is also discarded,

as they do not improve any of the two main aspects contemplated in this work.

Based on the results obtained it is recommended in any case to opt for an initial search of the

best configuration of the hyperparameters by means of a Grid Search, even when the execution

time is high, and to refine the following searches either using the same method or another one

that allows shorter execution times. An initial Grid Search is recommended because it allows a

greater transparency of the results obtained, since they are not exposed to the risk of being

limited by having found a minimum local that can force suboptimal hyperparameter tests.

Conclusions

As a synthesis of this work, it can be concluded that the tests carried out in this work cannot be

considered conclusive in the absence of other studies that can praise or complement what is

observed here, but, although it is understood that not all prediction problems are to behave as

observed in this work, the results are considered to be partially reproducible and applicable to

problems with similar characteristics.

As for the results obtained, the main ideas can be summarized in the following points:

- If time is a decisive factor in the success of the application, it is recommended to opt for

Bayesian optimization or Random search just to RNN type net configurations. They can

also be combined with GRU-type architectures if a slight improvement in the model

prediction accuracy is sought.

- If the problem is focused on achieving the best possible prediction, that is, the lowest

validation error, the best option observed is the use of a Grid Search together with a

GRU-type network architecture.

- If a balance between runtime and model quality is sought, opt for Bayesian optimization

in GRU or RNN configuration, the former being preferable.

References

[1] J. Brownlee, ‘How to Choose Loss Functions When Training Deep Learning Neural

Networks’, Machine Learning Mastery, Jan. 29, 2019.

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-

learning-neural-networks/ (accessed Feb. 08, 2020).

[2] G. Drakos, ‘How to select the Right Evaluation Metric for Machine Learning Models: Part

1 Regression Metrics’, Medium, Feb. 05, 2020.

https://medium.com/@george.drakos62/how-to-select-the-right-evaluation-metric-for-

machine-learning-models-part-1-regrression-metrics-3606e25beae0 (accessed Feb. 08,

2020).

[3] P. Grover, ‘5 Regression Loss Functions All Machine Learners Should Know’, Medium,

Feb. 05, 2020. https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-

should-know-4fb140e9d4b0 (accessed Feb. 09, 2020).

TABLE OF CONTENTS

 INTRODUCTION ...1

1.1 Motivation ..1

1.2 Objectives and Scope ..1

 ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART1

1.1 Brief introduction to Artificial Neural Networks ...1

2.1.1 Loss Functions ..3

1.2 Application examples ..6

1.3 Accuracy boosting techniques ... 12

1.3.1 Variable selection models .. 12

A. Filter based FS algorithms .. 13

A1. Pearson’s correlation coefficient (Linear) .. 14

A2. Spearman’s coefficient (Non-linear) .. 15

A3. Kendall’s rank coefficient .. 16

A4. ANOVA correlation coefficient ... 17

A5. Chi-Squared test .. 18

A6. Mutual Information ... 18

B. Wrapper-based FS algorithms ... 19

B1. Genetic Algorithms ... 19

B2. Harmony search ... 23

B3. Temporal Memory search .. 26

B4. Recursive Feature Elimination ... 26

B5. Sequential Feature Selection .. 27

C. Embedded FS algorithms... 28

3.3.2 Hybrid Models .. 29

3.3.3 Hyperparameter tuning .. 34

A. Hand Tuning ... 35

B. Grid Search ... 36

C. Random Search ... 36

D. Sequential Model-Based Optimization (SMBO) – Bayesian Optimization 37

E. Other methods ... 39

 CASE STUDY ... 41

3.1 Software settings ... 41

3.2 Data Set .. 41

3.3 Model assumptions ... 43

3.4 Benchmark model ... 44

 RESULTS .. 45

4.1 Grid Search tuning technique .. 45

4.2 Random Search tuning technique .. 48

4.3 Bayesian optimization tuning technique .. 50

4.4 Genetic algorithms tuning technique ... 52

4.5 Cross performance comparison ... 54

 CONCLUSIONS .. 57

 REFERENCES .. 59

 ANNEXES... 65

ANNEX I - SUSTAINABLE DEVELOPMENT GOALS ... 65

TABLE INDEX

Table 1. Best Grid Search-LSTM performing model ... 47

Table 2. Accuracy comparison for different network algorithms. Grid Search model. 47

Table 3. Execution time comparison for different network algorithms. Grid Search model. .. 48

Table 4. Top 5 LSTM performing architectures for Random search models. The green

highlighted cell corresponds to the best performing hyperparameter configuration 49

Table 5. Best Random Search-LSTM performing model ... 49

Table 6. Accuracy comparison for different network algorithms. Random Search model. 50

Table 7.. Execution time comparison for different network algorithms. Random Search

model. .. 50

Table 8. Top 5 LSTM performing architectures for Bayesian optimization simulations. The

green highlighted cell corresponds to the best performing hyperparameter configuration 51

Table 9. Best Bayesian Optimization-LSTM performing model .. 51

Table 10.Accuracy comparison for different network algorithms. Bayesian optimization. 52

Table 11. Execution time comparison for different network algorithms. Bayesian optimization

 ... 52

Table 12. Top 5 performing network configurations. Genetic algorithms 53

Table 13. Accuracy comparison for different network algorithms. Genetic Algorithms 53

Table 14. Execution time comparison for different network algorithms. Genetic Algorithms 54

Table 15. Cross comparison for the best performing simulations .. 54

Table 16. Number of adjusted candidates per tuning technique ... 54

TABLE OF FIGURES

Figure 1. Correlation between biological neurons and ANN. Source:[4]1

Figure 2. MAE and MSE gradient descend, Source:[9] ...4

Figure 3. Huber loss plot. Source:[9] ..5

Figure 4. Confusion matrix. Source:[10] ...5

Figure 5. Weights adjustment using optimizer. Source: [13] ...6

Figure 6. Filter based FS methods. Source:[31] ... 14

Figure 7. Pearson correlation values. Source:[33] ... 14

Figure 8. Monotonic and non-monotonic relationships. Source:[34] 15

Figure 9. Mean distribution behaviour. Source:[36] .. 17

Figure 10. GA process. Source:[40] .. 20

Figure 11. Randomly proposed initial solution. Source:[40], [41] ... 20

Figure 12. Pareto frontier. Source:[39] .. 21

Figure 13. New solutions (A5,A6) obtained from initial population parents. Source:[41] 22

Figure 14. Before and after mutation of A5 individual. Source:[41] 22

Figure 15. Harmony Search method. Source:[42].. 23

Figure 16. HM structure matrix. Source:[42] .. 24

Figure 17. HM before and after replacement h3-h4. Source:[3] ... 25

Figure 18. RFE pseudo-code. Source:[44]... 26

Figure 19. Feature selection strategy using cross-validation. Source: [45] 27

Figure 20. Simple RNN mode VS DWNN model. Source:[2] ... 30

Figure 21. DWNN with different periods. Source:[2] .. 30

Figure 22.. Local and historic trend data. Source:[49] ... 31

Figure 23. TreNet schematic representation. Source: [50] ... 31

Figure 24. Proposed hybrid architecture CNN- BI LSTM. Source:[20]: 32

Figure 25. Low-High Level features in an image. Source:[51] .. 33

Figure 26. Attention module for NLP. Source:[52] ... 33

Figure 27. Overview of the proposed model architecture. Source:[27] 34

Figure 28. Comparison of some quasi-random search methods. Source: [58] 37

Figure 29.Surrogate Function for an automobile data set with 2 hyperparameters. Source:[60]

 ... 38

Figure 30. Temperature (ºC) variables. Min. = -18,7 ºC, Max. = 37,5 ºC 42

Figure 31. Ground solar radiation ... 42

Figure 32. Wind speed (m/s) ... 42

Figure 33. Wind direction (º) .. 42

Figure 34. Output variable detail... 43

Figure 35. WG -Real output vs Benchmark model .. 44

Figure 36. Grid model- LSTM average MSE value ... 46

Figure 37. Grid - LSTM average fitting time (s) ... 47

CHAPTER 1. INTRODUCTION

1

 INTRODUCTION

1.1 Motivation

The realization and context of this project is based on an aim to carry an in-depth review of

current trends regarding time series forecasting, exploring different architectures of Deep

Neural Networks (DNNs) based models.

Future trends or behaviors of stock markets, product sales, electricity demand, wind speed and

sun-irradiation for power generation, health- related issues and Natural Language Processing

(NLP), among many more, have, for many decades (late 20th Century), been at the forefront of

development of machine learning algorithms and ever evolving complex mathematical models

[1].

Most of these prediction models’ approach is to use machine learning algorithms to learn from

the past in order to provide a future time-window forecast, although this is easier said than done.

Due to the dynamic, chaotic, stochastic and complex environments of the problem itself and

uncertainty of real-world data (e.g. stock markets) this becomes an inherently challenging and

non-trivial process. This gets worse when dealing with time-dependent characteristics or long-

term multi-variate information chains, where it is of utmost importance to identify correlations

between distinct temporal data [2] or to define which past values (both in time and variables)

will be considered within the prediction process [3], respectively.

1.2 Objectives and Scope

The overall objective of this work is to deep dive into the principles that rule some of the most

widely spread Deep Learning application techniques and provide useful guidelines that could

be used when facing a novel prediction problem.

When faced with a new problem of time series prediction, one of the biggest challenges is to

choose the most appropriate model to, at least, start iterating and improving the model to make

it fit as well as possible to the available data.

This choice is not trivial, and its complexity depends in part on the resources available,

including time. It may be that the application requires obtaining the best possible prediction

model, at the expense of execution time. It may be that time is a key factor in the application

and that the models, therefore, must be able to be executed under strict time requirements. Or

you may simply want to start an initial search process for the most suitable hyperparameters

with a fast and simple model that allows you to fine tune them by means of a more complex

model afterwards, without getting lost in the complex initial search.

In order to try to answer this question, a selection of deep learning models will be tested under

the same uncertainty conditions to assess which would produce the best option based on

whatever requirements the prediction application might withstand.

CHAPTER 1. INTRODUCTION

2

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

1

 ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE

ART

1.1 Brief introduction to Artificial Neural Networks

Artificial Neural Networks, also known as Neural Networks (NN), emerged as a means of

mimicking the biological, complex behavior of the human brain.

Artificial neurons are modeled to work just as biological neurons, where a series of inputs (with

respective weights associated to each one, called synaptic weights) are “summarized”

(Dendrites) and passed on to an activation function that processes the information (Nucleus),

after which an output is generated (Axon).

A single neuron (Perceptron) does not perform well enough, but further development lead to

the wiring of multiple artificial neurons (Synapses), so that the output of one became the input

of the next one. This technique creates multiple layers that would manage to provide much

more accurate results and acquire a much higher resemblance to the human brain behavior. This

is called an Artificial Neural Network.

Figure 1. Correlation between biological neurons and ANN. Source:[4]

Formally speaking, the three processes described ahead are commonly known as Input layer -

the one in charge of receiving and passing on the parameters for the model - , the Hidden

Layer(s) – A feed forward network where a wide variety of machine learning algorithms can

be employed to perform multiple operations- and the Output layer – where a single output is

given as the prediction - [5]. But, of course, over the course of time this process has been

renewed, optimized and further developed to try to boost the prediction accuracy, leading to a

vast portfolio of prediction models.

This portfolio includes examples such as the Multi-Layer Perceptron (MLP), Deep Learning

NNs, Recurrent NNs, Long-Short Term Memory NNs (LSTM), Convolutional NNs, Recursive

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

2

NNs, etc. whose application depends mainly on the data provided and expected output, although

variations of their usage can be found in the available literature.

A general classification of these models can be found below [6], although this might differ from

real applications in which, sometimes, multiple architectures are combined with the objective

of targeting various problems within the same scope (classification problems based on Time

series forecasting) or boosting accuracy..

• Unsupervised Learning: Extracts patterns from a set of unlabeled data

o Restricted Boltzmann Machine

o Autoencoder

• Classification

o Text Processing tasks like sentiment analysis, parsing (grammar analysis

like identifying substantives, verbs, subjects, …) or named entity

recognition.

▪ Recurrent Neural Network (Character Level)

▪ Recursive Neural Tensor Network

o Image recognition

▪ Convolutional Neural Network

▪ Deep Belief Network

o Object recognition

▪ Convolutional Neural Network

▪ Recursive Neural Tensor Network

o Speech recognition

▪ Recurrent Neural Network

o Other general tasks

▪ Deep Belief Network

▪ Multi-Layer perceptron with ReLU activation function

• Forecasting

o Recurrent Neural Network

For each different problem (stocks prediction, Natural Language Processing, Image and Video

recognition/classification, wind speed forecasting, …), the aim is to provide a specific model

with meaningful data in order to obtain a meaningful prediction. This is achieved by means of

training a model, i.e., teach a model what is the proper output for each input data. The model

should extrapolate the correct output when facing similar data that has not been used in this

training process. Therefore, we want to create rules associated to each problem that the models

can use to generate an output accordingly to the provided information, for each given task.

In the end, the objective is to adjust properly the weights associated to each input variable so

that the loss function is optimized, that is, the model is able to achieve the minimum value for

its loss score or distance between the predictions (𝑦̂) and the true target values (y), during the

training phase. This is done by the optimizer, which typically implements the backpropagation

algorithm that enables to calculate the gradient descend or, in other words, how much does the

loss function change given a change in the weights. The discovery of this algorithm is what

originally boosted the popularity of Neural Networks.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

3

2.1.1 Loss Functions

Some of the most widely used loss functions are detailed as follows:

MSE

Mean Square Error (MSE) is the most used loss function for regression problems. It is

calculated as the average of the squared difference between the predicted values (𝑂𝑖) and the

actual or expected values (𝐸𝑖). The squaring allows for large differences to make a greater

impact of the loss score than the smaller ones [7]. This allows the optimizer to focus on the

values that acquaint for these larger differences and try to modify the corresponding weights in

order to correct (minimize) the loss score in the following iterations.

𝑀𝑆𝐸 =
1

𝑛
 ∑(𝐸𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

One issue related to this loss function is that a single very bad prediction would cause the loss

score to escalate, not giving a realistic image on how well the model is performing, had it no

been for that specific bad prediction. Same can have when a lot of small errors occur. When

this happens, the loss score will be low due to the small distances, which will cause to

underestimate the model’s bad performance [8].

RMSE

The Root Mean Square Error is, as it name estates, the root of MSE. By computing the square

root, the scale of the errors can be compared withing the same scale as the target variables,

which makes it easier to understand at first sight.

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑(𝐸𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

Although both RMSE and MSE are very similar, there are some differences in the way it affects

the model performances (if based on gradient descend) that need to be understood or take into

consideration when using one or the other. Both methods are equally usable with regards to

models scoring, but not directly interchangeable for gradient-based models [8]. This is due to

the fact that both functions resemble each other in terms of gradient descend, but with different

flowing rates and the flowing rate depends on the loss score of each function. As the square

root affects the loss-score result, the flow rate is also modified and so in order to interchange

both RMSE and MSE in the same model, it would be necessary to modify accordingly some

hyperparameters like the learning rate[8].

MAE

The Mean Absolute Error (MAE) function is adequate on some cases in which the distribution

of the endpoint resembles a Gaussian distribution but presents some larger or smaller values far

for the mean value (outliers).

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

4

The MAE loss score can be obtained by computing the average of the absolute difference

between Predicted and Expected values.

𝑀𝐴𝐸 =
1

𝑛
 ∑|𝑂𝑖 − 𝐸𝑖|

𝑛

𝑖=1

Unlike MSE, this loss function is not as sensitive to outliers and, therefore, doesn’t penalize big

prediction errors so badly, allowing to have a more realistic value on how well the model

performs in the presence of outliers. However, using this loss function can also limit the model’s

performance due to its large gradient. The fact that the gradient is not modified, even when

approaching a minimum value (nearly 0 loss score), makes is difficult to find the solution,

which might be skipped unless a dynamic learning rate is used, adding complexity to the model.

MSE, might not perform well in presence of outliers, but its gradient decreases when

approaching the minima, even with a fixed learning rate, making it more precise when training

the model.

Figure 2. MAE and MSE gradient descend, Source:[9]

𝑅2

The 𝑅2 function is actually a ratio that gives a metric on how good the model is compared to

the naïve mean model. This is, the model MSE is compared to the baseline model MSE, being

the baseline model that in which the prediction will always be the mean of all samples[8]. The

𝑅2 values range from -∞ to 1, where values closer to 0 indicates a model very close to the

baseline (the model is unable to outperform the baseline) and 1 indicates a model with almost

no error.

𝑅2 =
𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
 𝑀𝑆𝐸 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) =

1

𝑛
 ∑(𝑦𝑖 − 𝑦̅𝑖)

2

𝑛

𝑖=1

,

Being 𝑦𝑖 the real value and 𝑦𝑖 the mean of the observed value.

Huber Loss

The Huber loss function, also known as Smooth Mean Absolute Error, is similar to MAE but

squares it value when the error is small. In order to determine how small must that error be, a δ

hyperparameter is tuned. When δ is close to 0, the Huber Loss score is very similar to MAE

and will resemble MSE score when δ takes a large value (∞).[9]

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

5

𝐿𝛿(𝑦, 𝑓(𝑥)) = {

1

2
 (𝑦, 𝑓(𝑥))

2
, 𝑓𝑜𝑟 |𝑦 − 𝑓(𝑥)| ≤ δ

δ|𝑦 − 𝑓(𝑥)| −
1

2
δ2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The value given to δ determines what it considered to be an outlier in the problem, therefore

limiting the sensitiveness of the problem in presence of outliers. When residuals are smaller

that δ, they will be treated as with MSE, whereas larger values will be minimized according to

MAE which is less sensitive to these residual values.

The main advantage of using this loss function is that it combines the advantages of both MAE

and MSE. It is more robust to outliers than MSE and curves around the minima, decreasing the

gradient. The one problem of using Huber Loss is that the δ value needs to be adjusted just as

any other hyperparameter of the model (see section 3.3.3), which takes time and adds some

difficulty to the training process.

Figure 3. Huber loss plot. Source:[9]

F1-SCORE

The F1-Score is mostly used to asses accuracy in classification problems. The F1-Score bases

its inner operation in the results obtained from the confusion matrix, generated after classifying

a series of labels.

Figure 4. Confusion matrix. Source:[10]

Based on these values, it is computed the precision of the model (percentage of actually real

positive values (TP) among those predicted to be positive (TP+FP)) and the recall (percentage

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

6

of predicted positive (TP) values among those that really are positive (TP+FN)). The harmonic

mean of these two values is the F1-Score value[10].

𝐹1

2

(𝑅𝑒𝑐𝑎𝑙𝑙)−1(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)−1
=

2

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑁)
−1

(
𝑇𝑃

𝑇𝑃 + 𝐹𝑃)
−1

Information about alternative loss functions, for both classification and regression problems,

can be found in [9], [11], [12].

Figure 5. Weights adjustment using optimizer. Source: [13]

Once the network has been properly trained, it is expected that the model can behave with such

diligence when dealing with new data (test/validation phase).

1.2 Application examples

In this section, a review of different applications using NNs is provided based on various

research papers.

For all of them, information regarding application sector, input and output characteristics, and

information regarding architecture and any other relevant features of each prediction model

have been extracted in order to identify the most generally used methods and those tools that

have proved useful when applied to similar problems to those we are addressing in this work.

As a brief summary of all the information contained in the tables below, and having conducted

an intense research in order to identify the most interesting pieces of information, it seems fair

to claim that LSTM are the most widely used methods when developing prediction models in

which past observations and trends play an important role in future behaviors.

Other algorithms, such as those based on Convolutional Neural Networks, also have their place

when dealing with this issue, although their use and deployment has been mostly limited to

Natural Language Processing and Image classification. As they were developed for

classification purposes, their application in time series forecasting has mostly been explored in

decision models, where a binary output is expected, depending on whether it would be most

interesting to buy or sell.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

7

Moreover, a model combining CNN and bi-directional LSTM claims to achieve a 9% increase

in prediction accuracy, when compared with single deep learning models, and an over 6 times

increased accuracy regarding SPM models.

Additional algorithm features such as Feature selection, Genetic Algorithm and exponential

smoothing or normalization have been explored in order to reduce model complexity, optimize

both architecture and input selection aspects and reduce random variations and noise, naturally

present in time series data.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

8

Project Sector Method Input Output Accuracy Metric Batch size Architecture information Additional information

Sector stock

Price

analysis
[2]

Finance
DWNN

(Deep and
Wide NN)

12 stocks with 5
different features

60-day historical data
as input

Jan 2000 to Aug
2017

7 days prediction window for
all 12 stocks

0,057443
30% error

reduction
compared to
general RNN

model
(0,0809361)

MSE

Random
sampling
method to

extract
sample with
the size of

the batch as

input

12 seq2seq models
GRU as RNN cell

CNN layer every 5 time steps
(1 CNN layer= 2x

Convolution Layers + Pooling
layer+ 1x Full connection

Layer)

Model implemented using
TensorFlow

Train: 01/01/2000 to
30/12/2015

Test: 01/01/20016 to
16/08/2017

Stock

prediction

[14]

Finance
Paragraph
vector +

LSTM

Text (News)
+

50 company’s
closing stock prices

Numerical
10 company’s closing stock

prices

- -
30

minibatch

size

50 epochs
1 layer – 20 steps

50% dropout in non-recurrent
connections

No information given about
past observation period

considered

Neural

Machine

translation
[15]

NLP

LSTM +

attention
module

Text Text - - -

DEEP LSTM
8 encoder and 8 decoder

layers
Attention connections from

decoder to encoder

-

Stock

Markets

Price

movement

prediction
[16]

Finance LSTM
Numerical

180 features

Binary 01 – sell/buy
15 minutes prediction window

-
1 stock prediction at a time

55,9%
Kruskal
Wallis to
compare
accuracy

improvements
between
models

𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

Tp= true positive
Tn= true negative
Fp= false positive

Fn= false negative

- -

Exponential smoothing applied
through exponentially

weighted moving average –
reduce random variation and

noise
Training - 10 months
Validation – 1 week

Output activation function:
tanh

Stock

returns

predictions
[17]

Finance LTSM

Multivariate
Numerical values

30-days long

sequences with 10
features and 3 days

earning rate labelling

Numerical

14,3%-27,2%
Normalizatio
n very useful
for improving

accuracy

- - See comment (i)

2013-2015 → 1211361
sequences

Training: 900000 seq.
Validation: 311361 seq.

Electric

load

forecasting
[18]

Electric
LSTM +
GA + FS

Multivariate
numerical data

(Demand, weather
and time lags)

Jan 2008-December

2016

Various time horizons
considered

353.38 RMSE 150

Activation = relu, weight
optimization = adam, number
of epochs = 300, learning rate

= 0.005

GA to find optimal time lags
and number of layers

Data normalization in range
[0,1] via feature scaling

70/30 train-val ratio

Need for stationary TS

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

9

Project Sector Method Input Output Accuracy Metric Batch size Architecture information Additional information

Stock

prediction
[19]

Finance CNN

Multivariate
Numerical values

Five stock features
from jan 2015 to dec

2017

Binary 01 – sell/buy
10 days prediction window

60%

F1-score
Batches of

1000
samples

Conv1D adapts our time
series information to conv
networks internal function

Relu-Lrelu activation
functions

Max pooling function
required to reduce feature

dimension
Softmax function for output

layer
See comment (ii)

Noise reduction is needed
Min-max normalization

80/20 train-val ratio

BI-

Directional

LSTM for

stock

market

prediction
[20]

Finance

Bi-
directional
LSTM +

CNN

Univariate numerical
values

10 year S&P 500
index data segmented
into sequences of 50
closing data prices

Numeric value of predicted
closing price for seven days

into the future

0.000281317 MSE 50
See comment (iii)

Adadelta optimizer
Relative change normalization

Short term

wind power

prediction
[21]

WPP

Multi Layer
Restricted
Boltzmann
Machine

(MRBM) –
Deep Belief

Network

1200 hours of data
from a wind farm

with Wind power and

Wind Speed features
data

Wind power values for the
next 4 hours with a 15 minutes

time resolution

0,172
0,123

0,698

RMSE
MAE

RC (Relative
Coefficient)

-

3x RBM layers
With a [350,200, 300] nodes

structure

Train: 10542 samples
Test: 2639 samples

Better error distribution than
compared to a BPNN model

Stock price

movements

and trading

strategies
[22]

Finance

Attention
based
LSTM
model

Stock Prices Data
from Taiwan Stock

Exchange (5
features) and other

Technical indicators
are then

calculated(KD,MA,R
SV,…)

Multiclass output

Class 0 -stock price

increase of more than 3%,

Class 1 - increase of 2-3%

 Class 2 - increase of 1-2%

 Class 3- increase of 0-1%

Class 4 -flat stock price
Class 5- stock price

decrease of 0-1%

Class 6 - decrease of 1- 2%

Class 7- decrease of 2- 3%

 Class 8 - decrease of more

than 3%

-

Accuracy=
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

Precision =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝

Recall=
𝑡𝑝

𝑡𝑝 + 𝑓𝑛

F1 Score =

2
𝑃 ∗ 𝑅

𝑃 + 𝑅

-

Input layer (dimensionality
features: technical indicators

and prices data)+ tanh
act.function

Attention layer
Output layer + Softmax

act..function

Attention mechanism to avoid
vanishing gradients when

dealing with long-term
dependencies

Model deployed using
TensorFlow

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

10

Project Sector Method Input Output Accuracy Metric Batch size Architecture information Additional information

Green

House Gas

analysis
[23]

Health
&

Environ
ment

Adaptative
NeuroFuzzy
Interference

Systems
(ANFIS)

RNN
LSTM

16x 2921 time series
of GHG

concentration (Data
points in each TS are

spaced every 6
hours)

10th May - 31st July
2010

-

ANFIS
0.103294
0.045501

RNN
0.101140
0.048277

LSTM

0.100480

0.043279

RMSE
MAE

-

ANFIS model
4 regressors, 12 rules, 0,002
learning rate, 200 epochs,

Adam learning algorithm, loss
function: MSE

RNN & LSTM Models
4x Input layers, Adam

optimization algorithm, 20
iterations max., loss function:

MSE
(The difference between

RNN and LSTM is that the
corresponding nodes are used
in the hidden layer (RNN OR

LSTM cell).)

Differencing to make data
stationary and normalization to

achieve values in a [0,1]

interval
Three different models

deployed using TensorFlow
and Keras

C-Reactive

protein

concentrati

on

prediction
[24]

Health
&

Environ
ment

LSTM
10 patient’s data

recorded over past

250 days

Next time step prediction for
each patient

5 HL- 2,0678

50 HL- 1,9952

100 HL- 1,6876

200 HL- 1,4303

300 HL- 1,8667

RMSE -

Same architecture with
variable number of hidden
layers (5,50, 100, 200 and

300)

90/10 train- val ratio
Standardized data to have zero

mean and unit variance

Early

smoke

detection

for forest

wildfire

video
[25]

Health
&

Environ
ment

Restricted
Boltzmann
Machine +

MLP
(Deep
Belief

Network)

Smoke video divided

into 482 frames
(resized to 16 16 3)

Smoke Yes/no 95%

Detection Rate=
𝑡𝑝 − 𝑓𝑝

𝑡𝑜𝑡𝑎𝑙 𝑠𝑚𝑜𝑘𝑒𝑑
𝑓𝑟𝑎𝑚𝑒𝑠

Mini-

batches

RBM used for dimension

reduction (2 layers – Visible
+Hidden layers)

+
MLP as output layer

(Stochastic Gradient Descent
method)

Learning rate= 0,0006
512 nodes

2 hidden layers
100 epochs

100 iterations max

17/30 train-val ratio

Data is divided into 100
subsets

Eletric load

forecasting

in Smart

Grids
[26]

Electric LSTM

Electric load data set

electricity

consumption every 15

minutes (10 past days

→ 904 data samples)

International Airline

passengers- monthly

totals → 144

observations (12

years)

Electric load forecast- 96 time
steps ahead prediction (next

day)

International Airline
passengers – 12 months time

window

Electric load
forecast
0,0702
0,0535

International
Airline

passengers
0.0435

0.0345

RMSE
MAPE(Mean

Absolute
Percentage Error)

- - -

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

11

Project Sector Method Input Output Accuracy Metric Batch size Architecture information Additional information

Multivariat

Time Series

Prediction

Framework
[27]

-

Low-High
Convolution

al Neural
Network
(LHCnn)

CNN+Multi

step
Attention

mechanisms

Traffic data set
Occupancy rates

measured hourly by
862 sensors

Recorded in 2015-

2016 (36 hours input
window size)

Solar-Energy dataset
Data recorded from
137 PV plants every
10 minutes during

2006 (12 input
window size)

Traffic data set
4 different prediction horizons

(3,6,12 and 24 hours)
Solar-Energy dataset

30 to 120 minutes prediction

window

Traffic data
set – 3 hours

0,4547
0,3209

0,8823
Solar-Energy
dataset – 30

minutes
0,0944
0,0492
0,9960

RMSE
RAE

Empirical
Correlation

Coefficient(COR

R)

- -

Residual connections from the

input to the output of the block
to avoid gradient

explosion/diffusion
Multi-step Attention used to
build connections between
Low-level and High level

convolution structures.
Linear mappings used to

ensure that the output size
matches the input in

convolution
60/20/20 – Train- Val- Test

ratio

Stock Price

forecast
[28]

Finance

Back
propapagtio

n Feed
Forward NN
+ Discrete
Wavelet

Transformat
ion (DWT)

Apple stock prices
recorded during May
2008 until may 2018

– 2520 datapoints in
total
2 approaches to input
data are considered.

1. Input data set
contains 8
business days

2. Input data

contains 4
business days +
4 weekly
average values
of one-month
resolution

 5 business days prediction
with weekly shift

1ST data set
Model 1- 3,55
 0,96
Model 2- 3,29

 0,95
2nd data set

Model 1- 3,60
 0,97
Model 2- 4,35
 0,95

RMSE
R

-

Model 1.
BPNN with 1 hidden layer

5x16x5 (number of neurons in
input, hidden and output

layers) + ReLU
Model 2.

BPNN with 2 hidden layers
5x16x8x5 (number of neurons
in input,1st hidden, 2nd hidden

and output layers) +ReLU

70/30 train-Val ratio
DWT is used to decompose the

time-series data into discrete
wavelets, eliminating the noise

effect. The Haar function is
used as the wavelet basis

function.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

12

1.3 Accuracy boosting techniques

Having spoken about meaningful inputs, activation functions, optimizers, different NNs

models, application examples and so on in Section CHAPTER 2. , and looking at the

information provided in Section 1.2, it is easy to perceive the complexity behind the deployment

of these prediction or classification models, even more when managing the necessity of having

to fine-tune them in order to boost accuracy for a given problem.

If it is already difficult to choose a model when a new problem appears, different research

papers have proven that combining different neural architectures produces a considerable

increase in the accuracy of the model. This trend has led to the outcome of hybrid models such

as The Deep Belief Network (Restricted Boltzmann Machine + RNN/LSTM), Seq2seq models

(a combination of two separate Recurrent Neural Networks), Deep and Wide NNs (CNN+

RNN), Bi-directional NNs, Low-High CNNs and many more that researchers keep developing

over the years.

In addition to choosing the right architecture, as a combination or not of different models, comes

the need to adjust the number of hidden layers, number of units, activation functions, optimizer,

epochs, dropout, batch size, learning rate, number of iterations, and many more

hyperparameters whose tuning is not trivial nor immediate or dependent on the expected output

[5]. How do these affect the model’s performance? To which extent are we manipulating the

output?

And what about the already mentioned meaningful inputs? How can we be sure that we are

giving the model the correct information to deal with?

Variable selection is one of the most critical steps for achieving a high degree of accuracy.

When dealing with large data sets it is complicated to choose effectively those features that are

not only uncorrelated among them, but also those that can manage to retain valuable temporal

information. In recent years, resources such as Genetic Algorithms, Harmony Search, Temporal

Memory search, attention modules, Paragraph Vector, etc. have emerged to:

1. Improve feature selection to assess the use of relevant not correlated input data that

bring value to model operation

2. Helps with vanishing gradient problem when in need to handle long-terms

dependencies.

 In order to explain how any of the mentioned variations over traditional NNs models can

improve accuracy, we will rely on available bibliography and explain its results based on

already trained examples.

1.3.1 Variable selection models

Variable or feature selection is based on different algorithms that seek to automatically select

attributes from the available data that are most useful for the predictive problem we might be

dealing with.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

13

This method is similar to dimensionality reduction as it enables to lower the number of inputs

passed along to the model, although the means of doing so vary between these two methods.

Whereas dimensionality reduction algorithms achieve attribute reduction by generating new

combinations of the initial attributes (Principal Component Analysis, for example), feature

selection algorithms manage to do so by eliminating attributes that are not useful, redundant or

unwanted. Therefore, the use of Feature Selection (FS) has three main advantages [18], [29],

[30]:

1. Improves prediction accuracy by guaranteeing that only useful information will be

processed in the network. This also helps to reduce overfitting as there will be less

chance of learning from noise present in the data set.

2. Reduces computation weigh by leveraging the amount of information given to the

predictive model

3. Provides better understanding of the underlying process and enables to achieve more

simple and explainable models. There is an inverse correlation between the amount of

data attributes and the explainability of a model.

Feature selection methods can be classified according to these three categories:

A. Filter based FS algorithms

Filter based FS algorithms use statistical metrics or techniques to filter features. This filtering

is based on the relationship between each input variable and the target variable, according to

the chosen metric.

Filter based techniques evaluate each predictor regardless of the forecasting model, giving each

data column a feature score and ranks them by their predictive importance. The predictive

model will later on use only those (n) variables that pass the established criteria whereas the

left over variables are completely discarded. [31].

The main problem related to filter-based methods is that they are mostly univariate techniques,

which means that each predictor is only evaluated regarding the output variable, discarding any

possible interactions with other input variables. This, in turn, may lead to the training of the

model with redundant, yet relevant, information, causing collinearity problems to appear. Also,

some of these techniques only consider linear dependence between variables, increasing the

risk of eliminating important features as their real correlation with the output variable might not

be identified [3], [31].

As these methods depends highly on the relationship between variables (input-output), the

metric should be chosen based on the type of variables with which the prediction model will

work with later on. The following figure allows a better understanding of the most suitable

statistics for each case.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

14

Figure 6. Filter based FS methods. Source:[31]

A1. Pearson’s correlation coefficient (Linear)

Also known as the R value in statistical models, the Pearson’s Coefficient returns a value

between ±1 (where -1 indicates a strong negative correlation and + 1 a strong positive

correlation) that grades the level of correlation, or linear degree of relationship, between two

variables (x and y). This value is computed by dividing the covariance of both variables by the

product of their standard deviation [32].

Figure 7. Pearson correlation values. Source:[33]

𝑟 =
∑(𝑥 − 𝑥̅)(𝑦 − 𝑦̅)

√∑(𝑥 − 𝑥̅)2 √∑(𝑦 − 𝑦̅)2

This method requires both variables to be measured in an interval or ratio scale, although it is

not required that both variables need to be comprised in the same scale or units, and it is not

affected by changes in the scale of either variables. Other assumptions and requirements for

computing the Person’s Coefficient are [33]:

a. Variables must approximate to a normal distribution (data points waver over the

mean value)

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

15

b. Data distribution shows homoscedasticity. That is, by looking at the scatter plot,

the points must lie equally on both sides of the Fitness line. If the scatter plot

shows a cone-like distribution, homoscedasticity would not be guaranteed.

c. The two variables must have a linear relationship. If it is known beforehand that

this requirement is not fulfilled, the Pearson’s Coefficient will not be able to

capture the dependency of both variables.

d. The data has been treated for outliers as these can make the correlation

coefficient inaccurate.

e. Both variables need to have the same amount of observations.

f. Both variables must be continuous.

A2. Spearman’s coefficient (Non-linear)

This is the nonparametric version of the Pearson’s coefficient, also known as the rho (ρ)

coefficient. This method allows to measure the degree of relationship between two variables,

as well as their monotonic relationship, and is indicated when dealing with ordinal data or in

cases in which any of the conditions for using the Pearson’s coefficient are violated. Once

calculated, it returns a value between ±1 , as in with the Pearson’s coefficient.

Figure 8. Monotonic and non-monotonic relationships. Source:[34]

The way of calculating the Spearman’s correlation coefficient is done following this

expression:

𝜌 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)

Being 𝑑𝑖 the distance between the ranks of 𝑥𝑖 and 𝑦𝑖 , and 𝑛 the number of observations

(same one for x and 𝑦).

The distance is calculated according to the following process[34]:

1. Both x and y observations are ordered according to their value from the highest

to the lowest one.

2. Two New columns (Rank 𝑥𝑖 𝑎𝑛𝑑 𝑅𝑎𝑛𝑘 𝑦𝑖) are generated containing values

from 1 to n, depending on the value of each observation.

3. Now every observation 𝑖 for both 𝑥 and y has an assigned rank.

4. The next column will hold the differences between Rank 𝑥𝑖 𝑎𝑛𝑑 𝑅𝑎𝑛𝑘 𝑦𝑖

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

16

𝒙𝒊 𝒚𝒊
Rank

𝒙𝒊

Rank

𝒚𝒊
𝒅𝒊 𝒅𝒊

𝟐

𝜌 = 1 −
6 ∗ 56

6(62 − 1)
= −0,6

60 0 2 6 4 16

43 11 5 3 -2 4

87 9 1 4 3 9

51 5 4 5 1 1

53 13 3 2 -1 1

27 22 6 1 -5 25

 56

A3. Kendall’s rank coefficient

The Kendall’s Tau (τ) or Kendall’s rank coefficient is another way of assessing the distance

between two variables based on the rank of the data, as the Spearman’s coefficient. This

coefficient will have a value in between the rank of ±1.

It is mostly used when any of the assumptions for the Pearson’s coefficient are not met or when

the sample size is too small and has too many tied ranks that could affect the Spearman’s

coefficient result.

The process is very similar to that of the Spearman’s test, as described hereafter [35]:

1. The x variables are ordered in ascendant or descendent order. It doesn’t matter

which one to choose but it will be important to assess the number of discordant

or concordant pairs present.

2. The y variables are ordered matching their corresponding 𝑥𝑖 observation.

3. For each pair of observations their concordance is defined, being concordant

observations those that are consistent with the chosen ordering pattern (𝑥𝑖+1 −

𝑥𝑖 and 𝑦𝑖+1 − 𝑦𝑖 have the same sign) or disconcordant if there is no

consistency with the order of both variables ((𝑥𝑖+1 − 𝑥𝑖 and 𝑦𝑖+1 − 𝑦𝑖 have

different signs).

The following expression is used for computing the Kendall’s Tau value:

𝜏 =
𝑁𝑐 − 𝑁𝑛

𝑁(𝑁 − 1)
2

Being 𝑁𝑐 and 𝑁𝑛 the total number of concordant and disconcordant pairs, respectively, and N

the total number of available observations.

The following example is provided to illustrate this process:

𝒙𝒊 𝒚𝒊
Ranked

𝒙𝒊

Rank

𝒚𝒊
C NC

𝜏 =
4 − 11

6(6 − 1)
2

= −0,467

60 0 87 9 2 3

43 11 60 0 0 4

87 9 53 13 2 1

51 5 51 5 0 2

53 13 43 11 0 1

27 22 27 22 0 0

 4 11

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

17

A4. ANOVA correlation coefficient

The ANOVA (Analysis Of Variance) method gives a metric on the distance between the means

of two or more groups, different from each other[36]. In order to do so, it uses the F-test, a

probability distribution usually present in the analysis of variance. It can be calculated as the

ratio of two Chi-squared distributions divided by their degrees of freedom:

𝐹 =

𝜒1
2

𝑛1 − 1
⁄

𝜒2
2

𝑛2 − 1
⁄

=

(𝑛1 − 1) ∗ 𝑆1
2

𝑉1
2

𝑛1 − 1
⁄

(𝑛2 − 1) ∗ 𝑆2
2

𝑉2
2

𝑛2 − 1
⁄

=

𝑆1
2

𝑉1
2⁄

𝑆2
2

𝑉2
2⁄

= (𝐻𝐹−0 = 𝑡𝑤𝑜 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑙) =
𝑆1

2

𝑆2
2

ANOVA test assesses variation between groups by analysing significant differences between

groups (x and y) and assumes Hypothesis as 𝐻0 – Means of all groups are equal – and 𝐻1 – At least

one mean is different- .

Figure 9. Mean distribution behaviour. Source:[36]

As pointed out in [36], this study of variability between groups is compared to within-group

variability. The F-ratio will return a value close to 0 whenever difference between groups with

equal variance is insignificant.

In order to decide whether a variable should be included or not for the model training, it is

necessary to calculate the F-score, with the variance between groups and the variance within

the groups:

𝐹 − 𝑇𝑒𝑠𝑡 =

𝑆𝑢𝑚𝑂𝑓𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑝𝑠
𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑂𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝐵𝑒𝑡𝑤𝑒𝑒𝑛 𝐺𝑟𝑜𝑢𝑝𝑠

𝑆𝑢𝑚𝑂𝑓𝑆𝑞𝑢𝑎𝑟𝑒𝑠 𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝𝑠
𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑂𝑓 𝐹𝑟𝑒𝑒𝑑𝑜𝑚 𝑊𝑖𝑡ℎ𝑖𝑛 𝐺𝑟𝑜𝑢𝑝𝑠

Once this is done, the computed F-value – F-calc – will be compared with the F-value from the

F- tables – Known as the F-critical- (depends on the significance level α and both degrees of

freedom).

If the F-calc is greater that F-critical, it will fall into the reject region, which means that the Null

Hypothesis (𝐻0) is rejected, and there is variance between means of both groups. In this case,

x has an impact on the behaviour of y, and should, therefore, be used as an input for the model.

https://www.socscistatistics.com/tests/criticalvalues/default.aspx

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

18

A5. Chi-Squared test

The Chi-squared (𝜒2) test is used to indicated how much distributions of categorical values

(summarized in a contingency table) differ respectively to the expected values, and is computed

with the following expression:

𝜒𝑘
2 = ∑

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

Where k notes the degrees of freedom (Sample size -1), 𝑂𝑖 the observed value(s) and 𝐸𝑖 the

expected value(s).

Based on the observed data from the contingency table, the expected values are

(probabilistically) obtained for each group after which the 𝜒2 value is calculated. In order to

assess whether both variables are related, and the independent variable can be used as an input

for the model, the calculated 𝜒2 must be compared to the critical 𝜒2 value, obtained from the

Chi-square statistical tables (having predefined the degrees of freedom and p-value for rejecting

the null Hypothesis) [37].

If the obtained value is lower than the critical value for 𝜒2 , then the null hypothesis (both

expected and observed values are independent) is accepted and the independent variable (x) can

not be used in the model.

An example if this process is provided in [37].

A6. Mutual Information

Mutual information is the given name for the Information Gain method when applied to feature

selection and it is used to measure the level of uncertainty for one variable given a known value

for another variable. It can be used with both numerical or categorical information. In other

words, it measures the Entropy of x with respect to variables y, being the Entropy the amount

of information contained in a random variable or its probability distribution. The more balanced

the probability distribution is, the higher the entropy.[38]

Mutual information between two variables (I(X;Y)) is obtained by subtracting the conditional

entropy for X being Y (H(X|Y)), to the entropy of X (H(X)).

I(x; y) = H(x) − H(x|y) = I(y; x)

The resulting measure is symmetrical, which means that both variables contain the same amount

of information about the other one as this method assess the mutual dependence of two random

variables.

In order to select those variables that are most relevant for our prediction model, we must

choose the ones that result in higher values of Mutual Information with the output variable, as

a null value indicates a total independence of the considered variables.

https://www.socscistatistics.com/tests/criticalvalues/default.aspx

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

19

B. Wrapper-based FS algorithms

Wrapper methods are used to measure the fitness of certain features based on how good or bad

does the model perform after being trained with them and the level of generalization it can

achieve.

Therefore, these methods are focused on solving the real problem from the beginning

(optimizing the loss function), rather than obtaining intrinsic information from each variable in

order to classify their relevance with respect to the output variable.

These methods are based in iterative processes in which different combinations of variables are

prepared, evaluated and modified to come up with the optimal feature combination that best fits

the prediction problem. This requires a higher computational power, especially when dealing

with large datasets, and need to be performed for every different model as the results obtained

for a certain model can not be transferred to the next one, even if they are expected to deal with

the same features (inputs and output).

The following is a brief description of the most widely used wrapper methods, together with

explanatory steps to be followed during their implementation and execution.

B1. Genetic Algorithms

There are multiple applications of Genetic Algorithms (GA) in Machine Learning, being one

of them the ability to select the correct features for the predictive model, allowing the best

solution to be obtained from all the previous best solutions. In addition to this, GA are used to

fine tune Network hyper parameters such as the ideal number of layers, units per layer, etc., as

we will see later on.

GA are mathematical algorithms inspired by Darwin’s theory of Natural Selection and are

included in the so-called Evolutionary Algorithms. This theory is backed up by the idea that

only the fittest individuals of a society will prevail during generations.

The optimization process is done by allowing a population of individuals to evolve by randomly

subjecting them to actions similar to those that act in biological evolution (genetic mutations

and recombinations). This combination is aimed at maximizing the loss function (or any other

predefined fitness function), and the iterative process will go on until either a threshold is

reached or it has surpassed the maximum number of iterations, according to which it is decided

which are the most adapted individuals, who survive, and which are the least adapted, who are

discarded [39].

In order to do so, the process is generally divided into 4 phases:

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

20

Figure 10. GA process. Source:[40]

Phase 1. Definition the initial population – Initialization

To begin with, it is necessary to start the process by choosing a limited set of individuals, called

population, that will contain a random number of possible solutions to the problem we want to

solve. Most of the times, this population will be generated randomly, unless we have confidence

enough to manually do so (prior knowledge required). Each individual will have a number of

attributes (variables), called genes, which are joined together forming a Chromosome or

individual (a solution).

A highly recommendable aspect to keep in mind is that this population is the breeding ground

of our future predictors. This means that it is required to have a large population that can

comprise different solutions as this will enable to explore multiple alternative paths during the

execution of the model.

Figure 11. Randomly proposed initial solution. Source:[40], [41]

Phase 2. Definition of the fitness function

The fitness function gives a metric for each individual, based on how close each one of them is

to the optimum solution of the problem.

There are different fitness functions depending on the problem that needs to be addressed, and

it is the most critical and complex part when deploying GA as there is not a guidebook on which

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

21

specific fitness functions use for each particular problem. In time series forecasting, for

instance, the fitness function is the same as the one that computes the loss score. Some of the

most used loss functions are depicted in the table containing different forecasting applications

in 1.2.

The reason why we need to use this fitness function is because the GA optimization cannot be

done without having previously obtained the results of the training set for the prediction model,

that is, both GA and prediction processes must be done within the same iteration. This ensures

that the individual’s selection will be measured based on the distance between predictions

(𝑦̂) and the true target values (y).

When multiple objectives want to be targeted, it is possible to define different fitness functions

and obtain the fittest individuals for each one of them, returning a series of optimal solutions

equally optimal. This is called the Pareto frontier [39]. A decider is used to reduce the number

of solutions to the required one, doing so by means of analyzing the context or predefined

requests.

Figure 12. Pareto frontier. Source:[39]

Phase 3. Genetic operators

• Selection

After having calculated the fitness of each individual, the evolution process begins by choosing

the fittest individuals from the initial population (usually two individuals are chosen). In Time

Series forecasting, those who achieve a lower loss score in the first iteration are selected for

reproduction.

• Cross-over

Once we are left with the best solutions possible (parents), it is time to create the new

generations of individuals, based on their genes, among which will be chosen again the fittest

ones to move on to the next iteration.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

22

The cross-over point between parents is randomly chosen in between their genes, after what

offsprings are “born” containing a mix of their parents’ genes. The population size of the new

generation (offsprings and parents) should match the dimension of the initial population.

Figure 13. New solutions (A5,A6) obtained from initial population parents. Source:[41]

• Mutation

There is a chance that, due to the low randomness of the cross-over, we might get a limited new

population that will lead to an early convergence of the problem after getting stuck in a local

optimum.

In order to avoid this, a low probability shuffle mutation is allowed, which results in a much

more diverse population as offsprings don’t identically mirror sets of their parent’s genes. This

is an analogous step of biological evolution and enables the GA to try more complex

combinations that wouldn’t emerge from simply crossing-over genes.

Figure 14. Before and after mutation of A5 individual. Source:[41]

Phase 4. Termination

As this iterative process can not go on forever, there are three ways of stopping it.

a. Global minimum has been reached and no further optimization can be done, or a

performance threshold has been reached.

b. The process has reached a maximum number of iterations or runtime.

c. If the population converges, the offsprings genes will not vary significantly from their

parents’. If this point is reached, we must choose a solution from the generated ones.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

23

B2. Harmony search

As it has been mentioned before, wrapper methods tend to have a much higher computational

weight when compared to alternative FS methods. To this end, the Harmony Search (HS)

method enables to reduce the amount of information processed by the model and number of

iterations required as it has two main differences compared to GA [3].

1. Only one solution is generated per iteration. This leverages computational weight as

only one solution (and not a whole population) is evaluated.

2. Initial population is selected probabilistically.

This model was first proposed in 2001 and was inspired by the way in which musicians

improvise a harmony. In order to come up with the best possible combination, musicians try

different combinations of pitches they know from experience (memory) and adjust the pitch of

each instrument until they obtain the harmony they were looking for. This same procedure is

mimicked by the Harmony Search algorithm to try to come up with the optimal solution for a

given problem.

Same as in GA, this method has 4 main steps that structure its inner working:

Figure 15. Harmony Search method. Source:[42]

Phase 1. Initialization of HS parameters and Harmony Memory (HM)

The first thing to do when working with HS as a FS method, is to initialize the problem by

generating a random number of 𝑁 harmonies (solutions to the problem) that will be stored in

the Harmony Memory. These harmonies will contain 𝑑 values, corresponding to the number of

variables that que initially have or that we want to pass on to the model.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

24

A way of generating these harmonies can be done by means of the following expression,

proposed by [42]:

𝑥𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑(𝑢𝑖 − 𝑙𝑗) 𝑖 = 1,2,3, … , 𝑁 𝑗 = 1,2,3, … , 𝑑

Being, 𝑢𝑗 and 𝑙𝑗 the upper and lower bounds for variable 𝑗, and 𝑟𝑎𝑛𝑑 a randomly generated

number with a uniform distribution [0,1].

After doing so, each harmony is evaluated within the predictive model and receives a value for

the loss function (𝑓𝑖). Once again, the loss function that be used to compute the “fitness” of each

harmony will be the optimization function of the predictive algorithm, just like it was explained

in the above section.

All this information will be stored in the HM in the form of a matrix, as shown in Figure 16.

Figure 16. HM structure matrix. Source:[42]

Phase 2. Improvisation of a new harmony. HS operators

Once all the harmonies are stored, together with their corresponding loss function values (loss

score), it is time to begin the iterative process that will engage steps 2 and 3 until an optimum

is reached. In this case, and similar to the Phase 3 of GA, the process of generating a new

harmony has two main steps [42].

• Harmony Memory Considering Rate

This step comprises the improvisation of a new harmony 𝑥𝑛𝑒𝑤 = (𝑥𝑛𝑒𝑤,1,…,𝑥𝑛𝑒𝑤,𝑑) that will be

evaluated within the prediction model and compared to the stored harmonies in the HM. This

new harmony will be obtained using all the stored harmonies generated in Phase 1.

There are two ways of generating a new harmony; if 𝑟𝑎𝑛𝑑 (a randomly generated number [0,1]

following a normal distribution) > HMCR (Harmony Memory Considering Rate, [0,1]), then

𝑥𝑛𝑒𝑤,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑(𝑢𝑖 − 𝑙𝑗) ; else if 𝑟𝑎𝑛𝑑 ≤ HMCR , one of the stored harmonies will be

randomly selected 𝑥𝑛𝑒𝑤,𝑗 = 𝑥𝑘,𝑗, where 1≤ 𝑘 ≤ 𝑁.

HMCR is one of the main operators of Harmony search, just as cross-over and mutation where

in GA, and it is defined as the probability of choosing a component of the Harmony Memory

[43]. Higher values of HMCR imply that the sound will be closely related to those stored in

HM, and lower values mean that there is a small probability of generating a new sound from

the possible range.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

25

• Pitch Adjusting Rate

This step is closely related to the mutation step of GA as it is used to scape local optima that

would cause the algorithm to early converge after becoming stuck.

In this case, Pith Adjusting Rate (PAR) provides a means of mutating the obtained harmony to

a close value, following a low probability distribution, and it represents the probability of a HM

candidate to be modified, acquiring a value in the range of [0,1]. The higher the PAR value, the

higher the chance of pitch adjusting a harmony.

In order to Pitch adjust his new harmony, the PAR value will be compared again to a randomly

generated number from 0 to 1.

If 𝑟𝑎𝑛𝑑 ≤ PAR, the newly generated harmony will be modified according to the following

expression; 𝑥𝑛𝑒𝑤,𝑗 = 𝑥𝑛𝑒𝑤,𝑗 + 𝑏𝑤 ∗ (𝑟𝑎𝑛𝑑 − 0,5) ∗ |𝑢𝑖 − 𝑙𝑗|, being 𝑏𝑤 the bandwidth of

generation or stepsize (distance between the new harmony and HM values). Else if 𝑟𝑎𝑛𝑑 >

PAR, the new harmony will remain the same.

Phase 3. Replacement

 Once the new harmony has been fully acquired, we are left with a new feasible solution to our

problem. Therefore, this new harmony is evaluated in the prediction model and its loss score

computed.

Once this is done, this harmony and its corresponding loss score is compared to the worse

harmony stored in the HM, that is, the one with the worst loss score.

If 𝑓𝑛𝑒𝑤 is better that 𝑓𝑖 , harmony 𝑖 will be removed and replaced by the new one. Otherwise,

the new harmony will be dismissed, and a new harmony will be generated following the process

of Phase 2.

Figure 17. HM before and after replacement h3-h4. Source:[3]

Phase 4. Termination

The stopping criteria oh the HS algorithm closely resembles that of GA as the process can be

stopped whenever a maximum number of iterations is reached, or the global optimum found.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

26

B3. Temporal Memory search

Other authors propose alternative methods to reduce the computational weight that

characterizes wrapper -based methods. One of these methods is the Temporal Memory Search

[3].

This method tries to identify the mount of temporary memory needed to solve the issue, being

the memory the past time values (lags) of the time series.

Although this seems to be a useful tool to optimally select the most relevant time lags of each

series, its deployment is still very limited and few information can be found about it.

B4. Recursive Feature Elimination

Recursive Feature Elimination (RFE), as its name states, is a means of feature selection based

on an iterative process in which an initial set of variables is trimmed gradually until only the

most relevant variables are left, or until the desired number of relevant features is achieved.

In each iteration, each feature is ranked according to a coefficient or feature importance

attribute, after which, those with the lowest importance are eliminated. Then, the model is

trained again, and the left variables are given a new feature importance attribute. The “score”

is given by a supervised learning estimator, for example linear models would be used to estimate

weight coefficients and tree-based algorithms would assess each feature importance within the

model.

Figure 18. RFE pseudo-code. Source:[44]

In order to determine the correct number of optimal features to be left, this number can be either

fixed as a parameter for the RFE algorithm or determined via cross-correlation. In this case,

cross-correlation will enable to evaluate different variables subsets that will help to select the

correct number of features after N iterations.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

27

Figure 19. Feature selection strategy using cross-validation. Source: [45]

Before executing this method, some tuning parameters must be adjusted such as [46]:

a) (Minimum) Number of features to be selected at the end of the process

b) Step: number of features pruned after each iteration

c) The estimator that will be used to evaluate each feature

d) Verbose, in order to control verbosity of output

e) Number of folds (in case of using CV-RFE)

An example of this method is provided in [44].

B5. Sequential Feature Selection

This Feature selection algorithm works in the opposite way compared to RFE.

In this case, an initial empty feature set is competed after each iteration with a number of

variables until there is no improve in accuracy for the trained model.

There are 2 main types of Sequential Feature Selection (SFS) algorithms[47], floating or non-

floating. The main difference between these two models is that floating algorithms include an

additional step to include or exclude variables once excluded or included, respectively, which

allows to analyze a higher amount of subset combinations. This is an optional step that only

succeeds if the removal or addition of a particular feature proves to improve accuracy,

otherwise, this step will be skipped.

Also, there are 2 types of feature search, depending if the feature selection is done backwards

or forward. This means we can distinguish 4 types of algorithms within SFS:

• Sequential Forward Selection – SFFS

• Sequential Backward Selection – SBFS

• Sequential Forward Floating Selection – SFFFS

• Sequential Backward Floating Selection – SBFFS

All this algorithms follow a similar process in order to perform an optimal feature selection, as

described in [47]:

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

28

Phase 1. Initialization

- SFFS & SFFFS

o The algorithm is initialized with an empty set of variables 𝑋𝑘=∅ and 𝑘 = 0

- SBFS & SBFFS

o The algorithm is initialized with all the available features 𝑋𝑘 = 𝑌 =

{𝑦1, 𝑦2, … , 𝑑 } and 𝑘 = 𝑑

Phase 2. Inclusion/exclusion of variables

- SFFS & SFFFS -Inclusion

o An additional feature 𝑥+is transferred from the original set 𝑌 into 𝑋𝑘 , being 𝑥+

a feature that achieves the best performance for the prediction model when

trained with 𝑋𝑘+1

𝑋𝑘+1 = 𝑋𝑘 + 𝑥+ 𝑘 = 𝑘 + 1

- SBFS & SBFFS -Exclusion

o In backward selection models, a 𝑥− feature is removed from the initialization set

𝑋𝑘 , being 𝑥− the feature that improves model accuracy when trained with 𝑋𝑘−1

𝑋𝑘−1 = 𝑋𝑘 − 𝑥− 𝑘 = 𝑘 − 1

Phase 3. Conditional Inclusion/exclusion. Only for SFFFS and SBFFS

- SFFFS – Conditional Exclusion

o After having added a variable into 𝑋𝑘 , we evaluate again the complete set of 𝑋𝑘

and exclude any variable (𝑥−) that would lead to an improvement of the model.

- SBFFS – Conditional Inclusion

o In this case, we look for any other variable 𝑥+ that could be added back (in case

it was removed previously) in order to achieve better accuracy when training the

model.

Phase 4. Termination

After several iterations, this process would return a final feature subset 𝑋𝑘 , being 𝑘 < 𝑑, of

optimal solutions with which achieve the best possible results with the predictive model.

The stopping criteria can be either done manually by predefining de desired number of features

to be stored in 𝑋𝑘 , or automatically whenever the improvement ratio remains constant.

C. Embedded FS algorithms

Embedded FS algorithms use algorithms to penalize features with coefficients too high in order

to reduce complexity and avoid over-fitting or variance of a model by adding extra bias. These

algorithms try to take advantage of the benefits of both filter and wrapper methods.

The idea behind embedded FS methods is that, if a model is evaluated with a very large number

of variables, the coefficients associated to each variable will increase, which makes it

complicated to choose those that are really important for the model to behave correctly.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

29

Therefore, regularized methods, such as L1 regularization (LASSO), L2 regularization (Ridge

Regression) or decision tress, are used to control the size of features’ weights [48].

Given that these methods used their own models, it is complicated to adapt their use in the NN’s

domain.

3.3.2 Hybrid Models

NNs’ different architectures aim to provide a wide range of options in order to target issues of

multiple natures, such as image/video classification, forecasting, speech recognition, natural

Language Processing (NLP), and many more (see Section CHAPTER 2.).

As interest in NNs’ grew, so did the number of possible algorithms to choose from in search of

improving performance accuracy. Most recent developments propose Hybrid architectures, that

is models that combine multiple algorithms such as LSTM + attention modules, Convolutional

NNs’ + RNNs’, Deep Belief Networks, etc.

Some of these models will be listed and explained hereafter, paying special attention to their

advantages compared to simple architectures.

Deep and Wide Neural Networks (DWNN)

DWNNs’ are a new model proposed in [2], where a Convolutional layer is added to the hidden

state of a Recurrent Neural Network. This way, the model not only accounts for the depth

provided by RNNs’ (time dimension, in the form of number of time lags), but also the width

associated to CNNs’ (variable number of data sets).

What this combination does in the end, is provide NN models with an additional tool to identify

and locate relevant relationships between temporal input data sets. This is very useful as 𝑚

independent RNN models would be required to deal with problems involving 𝑚 sets of related

temporal data, and even by doing this, the model would neglect correlation between each

sequence. By adding a CNN layer between 𝑡 − 1 and 𝑡 in the hidden state, being the input of

this layer the concatenated hidden states of all 𝑚 RNN models at time 𝑡 − 1, and its output the

state input for the RNN at 𝑡, we are able to merge all RNN models and retain the memory of

the previous lags of the RNN.

This CNN layer is formed by convolution layers, a pooling layer and a full connection one in

order to adapt the output into the required shape of a hidden state.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

30

Figure 20. Simple RNN mode VS DWNN model. Source:[2]

Another variation to this would be to add CNN layers at every k-th time step. This would reduce

the risk of overfitting of the training model, as well as simplify the processed information, while

maintaining the ability to extract correlation. These models would also be advantageous when

dealing with sequences with different periods. This is, in case we had Seq1 with periodicity

equal to 1, Seq2 equal to 3 and Seq3 equal to 6, we would place the CNN layer at the 6-th time

step, or any multiple of 6 to ensure that all these behaviors are captured.

Figure 21. DWNN with different periods. Source:[2]

This type of architectures have proven to achieve a good reduction in MSE obtained values of

approximately 30% when compared to general RNN models [2].

CNN + LSTM – TreNets

Introduced in [49], TreNets are hybrid Neural Networks architectures for the trend prediction

of time series. This hybrid architecture combines long short-term memory (LSTM), a

convolutional neural network (CNN), and a feature fusion layer.

In this case, the LSTM network contains and passes on the historical trends that contain the

long-term contextual information of the time series. This historic information is relevant as it

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

31

may naturally affect the trend evolution. Alternatively, raw local data serves as an input for the

CNN, which will extract useful information about the local behavior of the time series in order

to determine the dependency of the current trend and pattern transition point. This kind of

information can be of great relevance when predicting abruptly changing trends. The following

image, extracted from [49], might help to understand the need for such local data.

Figure 22.. Local and historic trend data. Source:[49]

As it can be observed, the historical trend data (Trends 1- 3) would, most likely, indicate an

increasing trend as well for the following period. However, Local data, shown in (a), indicates

a deceleration of this behavior or even a change in the pattern, as it is confirmed by the time

series vales from t=100 onwards.

The information extracted from both networks (LSTM (-L) and CNN-(T)) is then fed to a

feature fusion layer that will join both output representations into a single joint feature. This

joint feature will then be used by the output layer to forecast the following trend. The

mathematical expression corresponding to this prediction can be found in [49].

Figure 23. TreNet schematic representation. Source: [50]

TreNets have shown to outperform simple LSTM-CNN models, reducing by 30% the achieved

error (RMSE) at the maximum.

Bi-Directional LSTM + CNN layer

Modelled in [20], a model combining both bi-directional LSTM networks and CNN layers,

seeks to achieve a higher degree of accuracy while reducing the probability of overfitting.

Bi-directional LSTM networks are very useful when dealing with long spanning time-series

data as they are able to identify key behaviors from both backwards and forward time

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

32

dependencies. This provides the network a better understanding of the context which, in turn,

accelerates the learning process. In order to reduce variance when encoding properties of input

into the network, CNNs can be used prior to the execution of bi-directional LSTMs in order to

facilitate feature extraction. The pooling layer present in CNNs also helps in achieving a more

accurate relevant feature extraction by limiting variance due to small local distortions and

reducing the feature space dimensionality.

Figure 24. Proposed hybrid architecture CNN- BI LSTM. Source:[20]:

Figure 24 shows that the proposed model consists of three separate layers, each one taking the

entire data sequence as input and is made up of 3 separated groups.

The first group composing each pipeline contains three 1-D CNN with ReLU as activation

function and a Max pooling layer.

The next group is made up of two bi directional LSTM layers (one for each forward and

backward passes) whose output is concatenated in order to obtain a single output that can be

fed into the next group. In this case, a 50% dropout layer is used in order to prevent problems

derived from vanishing gradients. Output from this group is then fed into a dense layer with one

unit and Linear activation function, returning the output of each pipeline.

Finally, all three outputs are concatenated and passed through a dense layer that generates the

final numeric value for the predictions.

This model claims to have increased accuracy by 9% with regards to a single pipeline CNN- Bi

LSTM model [20].

Low-High CNN

Described in [27], Low-High CNNs are a novel architecture that combines multi CNNs with

multistep Attention modules.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

33

As it has been previously explained, CNNs provide and advantageous feature selection

mechanism when dealing with long span data series, as are able to extract information without

being corrupted by local variations.

In this case, various sets of CNNs are used for extracting (1) Low Level features and (2) High

level features. Low level features are made up of local behaviors in different time steps (curves,

onwards or downwards slopes, etc.) whereas High level features are built on top of these and

extract larger shapes in temporal data.

Figure 25. Low-High Level features in an image. Source:[51]

In order to combine these, a multistep attention module is used. The attention module matches

both outputs by identifying relevant context, just as it would be used in NLP for sentence

translation. This enables to get better understanding of the problem context and helps in

assessing how different data points related to each other without losing the temporal component.

In order to ensure that both Low and High level feature convolutions have a matching output,

linear mapping is applied to all the high level convolution layers, to the first layer of the low-

level, and to all layers before computing attention scores.

Figure 26. Attention module for NLP. Source:[52]

In addition to this, residual mapping is added to every convolution (Low and High) calculation

in order to prevent vanishing or exploding gradients as the networks acquires a higher degree

of abstraction after each iteration.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

34

Figure 27. Overview of the proposed model architecture. Source:[27]

The above figure shows and schematic approach to the proposed model architecture. Time

series data in convoluted – Triangle icons – (Bottom, Low Level Features, Top, High level

features) and their outputs are consolidated by the attention module (central matrix).

Conditional inputs computed by the attention (center right) are added to the high-level features

which then predict the target sequence (top right). The sigmoid and multiplicative boxes

illustrate Gated Linear Units.

3.3.3 Hyperparameter tuning

Creating a Neural Network architecture from scratch is a complex task. Once a neural

architecture has been chosen to be trained, a variable number of hyperparameters must be tuned

in order to achieve the best possible model with that architecture. These hyperparameters define

how the network functions and are key to their validity and accuracy. Their values depend

ultimately on the problem that is being addressed, type of available data and expected output.

Moreover, they and are correlated among them, which means that any modification of a single

hyperparameter might force to modify the rest.

Some of the most common or important hyperparameters to adjust within a NN are [53]:

- Number of hidden layers: Increasing the number of hidden layers is usually believed to

increase model accuracy.

- Cell units (neurons) per layer: Same as with the number of hidden layers, a greater

number of neurons per layer might help to optimally identify relevant behavior in data,

as more interactions between variables can be taken into account. Having a large number

of neurons might lead to an increase in computational weigh and even overfitting.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

35

- Parameter initialization: It is necessary to initialize the weights in the first pass. These

values can be set to zero or obtained with a random function. This can lead to vanishing

or exploding gradients, which reinforces the need to find a way of easily initializing

them without compromising its training.

- Learning rate: It represents the amount weights are increased during training. It usually

has a positive value from 0 to 1. This value is one of the most relevant ones, as it can

lead to heavy and long training process after which the process could get stuck (low

values) or too fast and cause the training process to become unstable and achieve sub-

optimal sets of weights (large values)[54]

- Loss function: Seen in section 2.1.1, it is the function designed to calculate the distance

between the predicted output and the expected output. After computing the loss score,

a learning algorithm (usually Gradient Descent) is then used to update the weights in a

way that might achieve a better loss score in the next iteration.

- Epochs, iterations and batch size: These three hyperparameters define the way in which

data is fed to the model. As explained in [55]:

o An epoch is a forward pass and a backward pass of all the data samples in the

training dataset.

o The batch size is the number of data samples in each forward or backward pass.

This value is set when the number of variables is too large to be run in one single

epoch, or when the complexity of the model makes it necessary.

o The number of iterations is the number of backward and forward passes using

the information contained in each batch.

For example, if we had 200 variables with a batch size of 100, it would take 2 iterations

(200/100) to complete 1 epoch.

These values (specially the batch size) can significantly impact the model

- Dropout regularization: Defines the number of neurons not trained in each epoch in

order to avoid overfitting of the model during training.

- Optimizer algorithm and momentum: The neural network optimizer is in charge of

running gradient descend in order to actualize the weights of each variable. The way to

do so varies from one optimizer to another which can impact the model performance.

In order to select the right values for each hyperparameter a lot of experience is required, and

not even experience can guarantee optimal results. Although there is no straight-forward way

to fine tune them, there are some methods that can facilitate this task and make it less complex,

among which four stand out [53], [56], [57] .

A. Hand Tuning

Although this method might seem obvious and too simple, hand tuning might lead to better

results when tuning a hyperparameter that other methods that will be reviewed in this section.

The reason for this is that we can easily learn from our previous mistakes, which helps to

quickly adapt the model when the results improve or get worse after modifying the value of a

certain hyperparameter. Nevertheless, a great inconvenient of this model is that it doesn’t work

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

36

when needing to optimize several hyperparameters because, as it was explained before, a

change in one hyperparameter might force to change the rest and start the process again.

Another issue is that it can easily force the problem to converge in a local optimum, without

providing any tools to escape from it.

In the end, this method can be used whenever knowledge and previous experience supports it,

but it is not a scientific method and does not account for under optimized hyperparameters.

B. Grid Search

Grid search methods stand as the simplest way to automatically select the optimal value for a

number of hyperparameters.

This method is based in an iterative process that tries multiple values for each hyperparameter.

These values can be either predefined or sorted out from an interval with a fixed step size and

the model will train the model for each possible value and return its associated loss score. In

the end, this method turns out to be an in-depth search based on some hand tuned spectrum of

numbers within the hyperparameters space of the algorithm.

When compared to hand tuning, this method allows to tune a number of hyperparameters all

together but again requires some expertise to select the range of options for each

hyperparameter. On the good side, Grid search methods provide a means of mapping the

problem space and more optimization capability.

This method can be used with simple NN models but has a limited deployment among complex

deep models. This is due to the fact that it can lead to a really reduced speed training process,

depending on the number of hyperparameters to be tuned and the possible alternatives for each

one, turning out to be a very inefficient method.

C. Random Search

If we were to use a grid search method to optimize the 6 abovementioned hyperparameters,

trying for each one of them 10 possible values, we would need to run the model

1000000 (106) times. If each training process was to take up to 5 minutes to complete, the

model would be able to try all the possible values in 9.5 years, without considering any further

tuning in case the predefined are unable to yield any optimal results.

In order to avoid this, Random Search methods are strictly linked to Grid Search methods but

only try randomized values of hyperparameters[53]. These values are gathered from the entire

problem space, rather than form just promising areas that could hide a local optimum. If we

were able to reduce the number of options for each hyperparameter to 5, the time required to

train the model would be reduced to 0.17 years, which is a huge decrease compared to the 9,5

years required with a regular Grid Search method.

One of the main issues with this method is that it can sometimes leave some space points

uncovered and it evaluates points that are too close to each other to really make a significant

improvement. In order to avoid this, quasi-random sequences (also known low-discrepancy

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

37

sequences) help to spread more evenly the data points. Some of these quasi-random sequences

are the Sobol, Harmmersley, Halton, Kronecker and Niederrelter sequences.[56], [58]

Figure 28. Comparison of some quasi-random search methods. Source: [58]

The main issue with this method is that there is still a need for expertise in order to choose the

correct method or distribution based on the data observations we have and even once the

results have been obtained, these might not be intuitive or difficult to improve on due to their

lack of explanation.

Together with Grid Search methods, Random Search methods does not retain information about

past evaluations. This means that they do not learn from past mistakes which means that a lot

of time can be invested in evaluating values that will not make any improvement. As it was

mentioned before, this is the reason why hand-tuning might be a better solution to these methods

when the problem dimensions allow so.

D. Sequential Model-Based Optimization (SMBO) – Bayesian Optimization

Sequential model-based optimization methods represent a substantial improvement compared

to Grid and Random search methods as they base their operation in trying to improve past

evaluations through a probabilistic model, making assumptions about unobserved values

through an Acquisition Function.

Bayesian methods have a very similar skeleton that allows some modifications depending on

the used model [59]:

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

38

Step 1. Create a model that maps the hyperparameters to a score of the prediction model’s loss

function. This is called a surrogate for the loss function – 𝑝(𝑠𝑐𝑜𝑟𝑒|ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) =

𝑝(𝑦|𝑥)– and it is used because it provides a much simpler way of optimizing the

hyperparameters than by directly evaluating the loss function.

Figure 29.Surrogate Function for an automobile data set with 2 hyperparameters. Source:[60]

Among the available choices for construction of the surrogate model, Gaussian Process,

Random Forest and Tree Parzen Estimators (TPE) have had the most popularity in recent

developments. Further Information about these methods can be found in [56], [57], [59], [61].

Step 2. The model identifies those hyperparameters’ values that perform best on the surrogate

function.

Step 3. Values identified in the previous step are applied to the prediction model and evaluated

with the real loss function.

Step 4. Loss score results obtained in Step 3 are updated in the surrogate that looks for the next

values to evaluate. In this Step it is required to have a Selection/Acquisition Function, or criteria

method, to disclose which values are more interesting to evaluate in the next iteration, being

Expected Improvement the most used one as it has proven to obtain good results in different

environments. Other functions are Probability of Improvement, minimizing the Conditional

Entropy of the Minimizer and bandit-based criterions [61].

Expected Improvement tries to find the best hyperparameters under the surrogate function, that

is, maximizing the Expected Improvement with respect to x, and is expressed as follows:

𝐸𝐼𝑦∗ = ∫ (𝑦∗ − 𝑦)𝑝(𝑦|𝑥) 𝑑𝑦
𝑦∗

−∞

Being 𝑦∗the expected value of the loss function, 𝑦 the actual value of the loss function, 𝑥 the

set of hyperparameters and 𝑝(𝑦|𝑥) the surrogate function.

Step 5. Steps 1-4 are repeated through an iterative process running until the maximum number

of iterations is reached.

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

39

Therefore, the basis of these methods is information. The more information the model has from

previous observations, the better choice of hyperparameters’ values will make in further

iterations, achieving better results than the previous explained Search methods in less iterations.

E. Other methods

Although these 4 methods retrieve most of the attention, there are also alternative resources that

may be used for hyperparameter optimization.

Gradient-based optimization, Evolutionary Algorithms and Population-Based Algorithms are

some of these alternative methods.

Gradient-based optimization methods apply reverse stochastic descend methods with

momentum to evaluate gradient descend related to each hyperparameter. Then, just as it is done

with the weights modifications, values for each hyperparameter are upgraded in order to obtain

a better loss score for the model.

Evolutionary Algorithms for hyperparameter tuning work just as described for Genetic

Algorithms in section 1.3. These methods are widely used specifically for neural networks

optimizations as they are easy to compute and perform well with various architectures [62].

Population-Based Algorithms are a combination of both parallel search methods (Grid and

Random Search) with Sequential Search methods (Hand and Bayesian optimization). It jointly

learns both hyperparameters and networks weights, conducting a wholesome optimization of

the prediction model. It also reflects the inner workings of Evolutionary Algorithms as it

mutates periodically the hyperparameter values. These mutations are based on previous non-

converged observations. Hyperparameters evolve, eliminating poorly performing

hyperparameters’ values and replacing them by previously obtained better ones. The initial set

of values must be given beforehand, but the modifications on the hyperparameters’ values

removes the need for further hand tuning. More information on this topic can be found in [63]

CHAPTER 2. ABOUT ARTIFICIAL NEURAL NETWORKS. STATE OF THE ART

40

CHAPTER 3. CASE STUDY

41

 CASE STUDY

Whereas chapter number 2 has served as an introduction to different prediction models and

techniques that could be used to forecast time series values, it still remains unclear which would

be most ideal to work with.

In order to face this, some of the described techniques will be tested under the same

circumstances and for the same prediction objective to assess their overall performance and try

to obtain valuable insights that could help when facing a new prediction problem.

Certain assumptions have been made under which the development of this work is

encompassed. The first one is that this work does not pretend to achieve a network configuration

as optimal as possible, but to test how the network prediction responds to changes in the

observed hyperparameters. It is expected that this will allow to derive conclusions about how

the modification of each hyperparameter affects the response of the models with the aim of

extracting relevant conclusions that can be applied to similar prediction problems, as well as

identifying the most interesting algorithms according to the needs of the problem.

The other hypothesis of this work is that it is assumed that most of the results extracted can be

reproduced in similar prediction problems. While it is understood that the answer cannot be

100% reproducible, it is expected that a high degree of similarity in the answer will be achieved

to support the use of the conclusions derived from this work.

3.1 Software settings

All models have been developed in Python using Google Collab as the development

environment. The choice of using Google Colab was made based on the computing

requirements to run these models and usage simplicity, as no local install is required.

Google Colab allows to develop code on Jupyter notebooks and run it on Google's cloud servers

using VPCs. It also provides access to additional computing resources dedicated to hardware

acceleration, such as GPUs, including Nvidia K80s, T4s, P4s and P100s.

All models have been implemented using Tensorflow and Keras, the two most widely used

frameworks nowadays for Machine Learning oriented applications.

3.2 Data Set

The dataset used for testing the different techniques was obtained from a national wind mill. It

consists of 122 different variables and 35136 total hourly records that can be divided into 4

main separate type of inputs:

• T – Temperature in Celsius Degrees.

• GSR – Ground Solar Radiation

• WS – Wind Speed in m/s

• WD – Wind direction, in degrees to north

In order to train and validate the models, a 70:30 split ratio has been defined.

CHAPTER 3. CASE STUDY

42

Figure 30. Temperature (ºC) variables. Min. = -18,7 ºC, Max. = 37,5 ºC

Figure 31. Ground solar radiation

Figure 32. Wind speed (m/s)

Figure 33. Wind direction (º)

CHAPTER 3. CASE STUDY

43

The 5th variable, Wind Power Generation (WG), is the objective output of the model. The

model should forecast its value in the next hour.

Figure 34. Output variable detail

3.3 Model assumptions

One of the main priorities of this piece of work is that of being able to provide guidelines for

choosing the most optimal model from the available ones for each new forecasting problem.

Given the vast number of hyperparameters that may be modified within each model, this

workstream has been focused on assessing the impact of 4 of them (algorithm, numbers of

layers, number of neurons per layer, and leaning rate) and fixing the values of some additional

ones based on their overall acceptance according to the consulted bibliography or execution

simplicity, given the computing resources used for the development of the models. The

following list of hyperparameters has been used equally in all tested models (Grid search,

Random search, Bayesian optimization and Genetic Algorithms)

• Models: ['lstm', 'gru', 'rnn', 'bilstm']

• activation : ['elu']

• layers : (1,6,1), min_layers, max_layers (not included), step_size

• neurons_per_layer :(1, 45, 5), min_neurons, max_neurons (not included), step_size

• learning_rate: (0.0005, 0.005,5), min_lr, max_lr (included), number_of_elements

• optimizer: ['adam']

• batch_size: [20]

• epochs: [20]

The rank of values to be tested in the variable hyperparameters have been randomly chosen and

do not correspond to any previous conducted tests. This is done in such way in order to prevent

the finals results from being biased and not reflect the real behavior to be expected in the first

steps of any prediction problem. Furthermore, in order to try to reproduce the results from one

model evaluation to the next one, a random seed has been set.

CHAPTER 3. CASE STUDY

44

3.4 Benchmark model

The benchmark model is one of the references that will be used to evaluate final results, together

with total execution times (seconds) and sensibility to the models´ hyperparameters

initialization (random behavior).

In this work, the benchmark model has been defined under the assumption that 𝑡 + 1 will be

equal to the previous recorded value (WG value at time step 𝑡).

𝑦𝑝𝑟𝑒𝑑(𝑡) = 𝑦 (𝑡 − 1)

Validation MSE will be, in this case, the metric used to identify those models that beat the

benchmark model assumption for the same prediction problem.

The Validation MSE for the benchmark model stands at 240.44. Any model achieving a lower

validation MSE will be classified as valid for our forecasting problem, at least accuracy wise.

Figure 35. WG -Real output vs Benchmark model

CHAPTER 4. RESULTS

45

 RESULTS

In this chapter, the results obtained from the tested forecasting models are presented and

discussed.

4.1 Grid Search tuning technique

Testing LSTM networks

Grid models are the simplest ones from the list of hyperparameter-tuning techniques that this

piece of work will test. The first approach, as with the rest of techniques, was to assess its

performance using an LSTM algorithm.

5 different simulations were performed to measure how sensitive the model was to its

initialization. Even though this random behavior is usually controlled by setting a random seed

to be used equally in all iterations, it was not possible to obtain perfectly reproductible results

across all 5 simulations, which adds complexity to the problem by itself. The fact that results

vary from one simulation to the next one makes it difficult to recognize when the model might

have gotten stuck in a local optima or whether it has achieved the minimum achievable error

for the available data.

Even though this happens across all tuning techniques, grid search models shed some light over

this behavior as the model will, in all cases, try all the listed configurations. Due to this, it is

possible to compare results from all 5 simulations, even when the final results do not match to

perfection.

The following figures show the evolution of the average MSE, computed as the average from

all 5 simulations, depending on the number of layers and number of neurons per layer of the

network and grouped by the different tested learning rates.

CHAPTER 4. RESULTS

46

Figure 36. Grid model- LSTM average MSE value

It can be observed there is a certain degree of direct correlation between all 3 hyperparameters

and the resulting MSE. As a general behavior, higher learning rate values yield overall higher

MSE values, and so this behavior extends to a when a higher number of layers and neurons per

layer apply.

These results are consistent since the logic behind these hyperparameters forces this pattern. As

previously explained, the learning rate controls the variation of the model weights in each

iteration based on the error obtained. If these leaps are increased, there is a risk of "skipping"

the optimal minimum and therefore reaching a higher error even using the same

hyperparameters. The number of layers and neurons per layer can also have a negative effect

when both are increased simultaneously, due to the over-adjustment of the model during

training, in what is known as overfitting. Although the model behaves well in the training phase,

an overlearning of the temporal function of the data leads to a later increase in error in the

validation phase, which is what has been observed in these cases.

But not only is MSE affected by this. Fitting time can also benefit from simpler networks, as

depicted in the following figures, in which the same behavior is observed as with regards to

MSE, paying special attention to the results obtained with a learning rate of 0,005.

CHAPTER 4. RESULTS

47

Figure 37. Grid - LSTM average fitting time (s)

On average, all 5 evaluations fitted 225 candidates and took a total 260,21 min to run.

The best performing model was obtained with the following configuration:

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Validation

MSE

Training

time (s)

lstm 2 26 elu adam 0,00158114 175,390069 101,375545

Table 1. Best Grid Search-LSTM performing model

Comparing LSTM to GRU, RNN and BiLSTM networks

Although LSTM networks are the most used today, as observed in the research about the state

of the art carried out in chapter 2, it is also interesting to see the behavior of the same model

under different prediction algorithms.

For this, the Grid Search model was executed for a Gru, RNN and BiLSTM network with the

objective of identifying if the use of LSTMs is totally justified over the rest of the algorithms,

or if any of the alternatives allows to obtain better results, either in terms of time or accuracy.

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Validation

MSE

lstm 2 26 elu adam 0,00158114 175,390069 -

gru 3 16 elu adam 0,0005 167,600379 -4,44%

rnn 3 6 elu adam 0,0005 179,856083 2,55%

bilstm 2 11 elu adam 0,005 187,233101 6,75%

Table 2. Accuracy comparison for different network algorithms. Grid Search model.

CHAPTER 4. RESULTS

48

Algorithm Layers

Neurons

per

layer

Activation Optimizer
Learning

rate

Training

time (s)

 Total

execution

time

(min)

lstm 2 26 elu adam 0,00158114 101,375545 - 260,21 -

gru 3 16 elu adam 0,0005 114,932046 13,37% 217,3 -16,49%

rnn 3 6 elu adam 0,0005 46,9500928 -53,69% 107,1 -58,84%

bilstm 2 11 elu adam 0,005 290,645908 186,70% 511,6 96,61%

Table 3. Execution time comparison for different network algorithms. Grid Search model.

Tables 2 and 3 show how GRU networks have an overall better performance over LSTM

networks, both in accuracy and total execution time. RNN networks are simpler and faster to

execute but have in exchange a slight decrease in accuracy, though it may be overseen in case

time was a hard constrain of the model.

4.2 Random Search tuning technique

The following are the results derived from the execution of the random search for LSTM

network algorithms.

Contrary to the experienced with the Grid search, the execution of random models is highly

sensitive to the initialization of the parameters and, as its name indicates, its execution is based

on a stochastic behavior that is difficult to reproduce. That is why one of the biggest challenges

when using these models is to be able to identify if the model has become stagnant around a

local minimum. The randomness to which these models are subject does not simplify the search

for the most optimal architecture either. As seen from various simulations, the optimal network

configuration differs greatly from one simulation to another and it is utterly complex to assess

how much do two simulations differ as the networks configurations tested in each one of them

may not coincide across all 50 possible candidates.

The following table shows the top 5 performing architectures across the 5 performed

simulations, allowing to observe the beforementioned random performance.

Simulation Algorithm Layers Neurons

per layer

Activation Optimizer Learning

rate

Validation

MSE

Training

time (s)

1

lstm 5 41 elu adam 0,000763 184,5923 264,0119

lstm 3 6 elu adam 0,00128 188,7829 122,0483

lstm 4 16 elu adam 0,003598 188,8014 167,0225

lstm 4 36 elu adam 0,001406 189,8118 200,869

lstm 2 36 elu adam 0,001406 189,9404 98,38093

2

lstm 3 26 elu adam 0,0005757 177,381793 128,509002

lstm 3 41 elu adam 0,0006034 179,374294 131,992889

lstm 5 36 elu adam 0,00359843 181,87616 246,175346

lstm 4 21 elu adam 0,00127977 183,830301 170,114023

lstm 3 16 elu adam 0,00140588 184,331674 112,866894

3

lstm 3 31 elu adam 0,00298181 184,265402 133,618373

lstm 3 16 elu adam 0,0018638 186,332919 116,835761

lstm 4 36 elu adam 0,00204746 187,699712 192,452965

lstm 1 26 elu adam 0,00359843 187,989413 46,0481453

CHAPTER 4. RESULTS

49

lstm 3 26 elu adam 0,005 188,207802 128,392598

4

lstm 4 36 elu adam 0,0011115 180,838919 191,564501

lstm 3 11 elu adam 0,00214597 182,219927 127,661104

lstm 1 21 elu adam 0,00101179 182,25622 46,9287081

lstm 5 11 elu adam 0,0018638 182,895485 193,387224

lstm 3 11 elu adam 0,005 185,966645 114,897116

5

lstm 5 26 elu adam 0,00092103 179,705409 232,834292

lstm 3 11 elu adam 0,00066286 180,991821 123,591654

lstm 4 11 elu adam 0,00161873 182,341127 145,697482

lstm 2 26 elu adam 0,00134135 185,592467 97,9971871

lstm 1 31 elu adam 0,00224922 186,046671 52,3809333

Table 4. Top 5 LSTM performing architectures for Random search models. The green highlighted cell corresponds to the best
performing hyperparameter configuration

Out of all of them, simulation 2 stands out as the best performing one and the one showing the

highest resemblance to the best architecture to the Grid Search model (Table 1). Even though

it could be discussed whether this simulation can be taken as a good performing one, meaning

that it has managed to escape any local minimum, its similarity to the best performing Grid

Search model can be used to dismiss this idea. Since the grid search is forced to test all

configurations, the risk of getting stuck in a local minimum is much lower and therefore a model

that converges in grid-like conditions can be assumed to have been able to optimize out of local

conjectures.

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Validation

MSE

Training

time (s)

lstm 3 26 elu adam 0,0005757 177,381793 128,509002

Table 5. Best Random Search-LSTM performing model

Execution time wise, each simulation took on average 45.5 mins to fit all 50 possible candidates,

which represents an 82,5% reduction compared to Grid Search model. Even though this seems

as a huge reduction, it must be kept in mind that the number of candidates per simulation had

to be limited to 50 as this model is much more computationally demanding than Grid Search,

where 250 candidates where fitted per simulation. Several trials have been conducted with up

to 100 iterations, but Google Collab has proved to be unable to perform them successfully,

limiting the tests in this work to a maximum allowance of 50 iterations.

As a rough estimation, even if the execution time remained constant at 0.91 min/candidate, if

250 candidates could have been executed, the total time per simulation would have been around

227.5 minutes, below Grid Search average total execution time, but with the consequent need

for greater computing resources and without a clear method for recognizing the best performing

samples.

Comparing LSTM to Gru, RNN and BiLSTM networks

The following table contains a comparison between the best performing architectures for

Random Search models, using the best performing LSTM architecture results as baseline.

CHAPTER 4. RESULTS

50

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Validation

MSE

lstm 3 31 elu adam 0,00298181 184,265402 -

gru 4 26 elu adam 0,00096535 169,507542 -8,01%

rnn 1 21 elu adam 0,00195347 191,678969 4,02%

bilstm 1 45 elu adam 0,00259197 190,741036 3,51%

Table 6. Accuracy comparison for different network algorithms. Random Search model.

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Training

time (s)

 Total

execution

time

(min)

lstm 3 31 elu adam 0,00298181 133,618373 45,5

gru 4 26 elu adam 0,00096535 159,869971 19,65% 48,6 6,81%

rnn 1 21 elu adam 0,00195347 20,7571943 -84,47% 24,7 -45,71%

bilstm 1 45 elu adam 0,00259197 39,0776045 -70,75% 97,3 113,85%

Table 7.. Execution time comparison for different network algorithms. Random Search model.

As it happened with Grid Search, GRU networks are able to improve model performance, in

this case by a greater percentage, although its total execution time proves to be higher than

baseline LSTM architecture.

RNN networks show again a tradeoff between accuracy and execution time. Where the first one

shows a 4,02% reduction, total execution time is reduced by almost 50% showing that these

kinds of networks could be a good alternative in those applications with fast performing

requirements and minimal accuracy loss. BiLSTM networks neither does improve accuracy,

nor execution time and this might be intrinsically related to its complex architecture which does

not allow to properly generalize for this problem statement and requires further computing

resources to evaluate all possible candidates. This result has already been observed in the

simulations carried out by means of grid search and is opposite to what is expected, at least as

far as accuracy is concerned. The ability to look into the future of bilstm networks should help

generate a better understanding of the problem and extract the most important variables to

ensure improved results, especially working with data from which some periodic behavior can

be expected. In order to improve this outcome, it has been tested to enhance the number of

epochs, but the computational load involved has not allowed valid results to be derived.

4.3 Bayesian optimization tuning technique

In the same manner as in the preceding sections, the results obtained from the execution of

LSTM-type network models together with Bayesian optimization are detailed below.

The selected method to recreate the surrogate model has been the Gaussian method due to its

implementational simplicity compared to the TPE or RF, presented in CHAPTER 2.

As with random search, the Bayesian optimization method is highly constrained by the

initialization of the weights. The mapping of the hyperparameters that manage to minimize the

objective function can be highly influenced by the area initially explored, as well as the

consequent tests, risking the possibility of falling into local stagnation.

CHAPTER 4. RESULTS

51

Likewise, the manner in which the acquisition function is generated is of special importance

given that the probabilistic function of hyperparameter testing is intrinsically linked to it, but

we do not have at present a metric that allows us to measure how optimal this function is for

modeling the problem.

Simulation Algorithm Layers Neurons

per layer

Activation Optimizer Learning rate Validation

MSE

Training time

(s)

1

lstm 3 15 elu adam 0,00123 187,403 80,9715

lstm 3 45 elu adam 0,00216 188,563 98,3572

lstm 5 30 elu adam 0,00115 189,628 139,07

lstm 5 35 elu adam 0,00415 190,263 146,094

lstm 4 15 elu adam 0,0037 190,988 108,445

2

lstm 1 10 elu adam 0,002793641 185,6270732 24,10919285

lstm 1 15 elu adam 0,004857473 189,5508934 25,50009561

lstm 2 25 elu adam 0,002610418 189,9400619 49,74845505

lstm 2 15 elu adam 0,001872107 190,8041131 47,91214442

lstm 6 40 elu adam 0,000661062 193,2397536 166,5127091

3

lstm 3 30 elu adam 0,000974701 181,8056578 64,82969666

lstm 5 45 elu adam 0,000415332 184,8565897 131,4268107

lstm 6 45 elu adam 0,000813781 185,8635256 154,1208332

lstm 6 45 elu adam 0,000670833 187,1209127 147,5872531

lstm 5 30 elu adam 0,000405628 187,5727841 107,7409339

4

lstm 6 10 elu adam 0,001384426 185,7949288 135,8981235

lstm 4 15 elu adam 0,000986948 187,2645519 90,36797476

lstm 2 15 elu adam 0,002517593 194,0898802 49,18882966

lstm 5 20 elu adam 0,001818079 195,3456652 115,2993312

lstm 5 30 elu adam 0,002546102 196,2784461 123,172493

5

lstm 3 15 elu adam 0,001 182,651 53,0911

lstm 2 15 elu adam 0,00117 184,091 36,5889

lstm 4 15 elu adam 0,00083 191,413 72,19

lstm 3 30 elu adam 0,00234 193,684 57,0136

lstm 2 15 elu adam 0,00206 193,833 36,59

Table 8. Top 5 LSTM performing architectures for Bayesian optimization simulations. The green highlighted cell
corresponds to the best performing hyperparameter configuration

In this particular case, although simulation 3 is the one that achieves the lowest validation error,

the rest of the tests are substantially far from what is expected, based on the results obtained

with Grid Search and the best simulation of random search, although the behaviour of this

simulation is the most logical one since the iterations, focused on the improvement of the

validation error, are performed in a more limited environment that reflects a less stochastic

behavior.

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Validation

MSE

Training

time (s)

lstm 3 30 elu adam 0,000974701 181,8056578 64,82969666

Table 9. Best Bayesian Optimization-LSTM performing model

The rest of the simulations present greater variability in the tests performed, which suggests

that the model could benefit from a greater number of iterations. In this aspect, the Bayesian

CHAPTER 4. RESULTS

52

method improves notably against the random search since it allows to execute 100 iterations

per simulation, against the 50 of the random one without experiencing complications due to

high complexity, albeit a slight increase in the time required (120 minutes on average). This

confirms what was expressed in chapter 2, in which the idea of how a Bayesian method

managed to simplify the optimization of hyperparameters by allowing work with a subordinate

model was discussed.

Comparing LSTM to Gru, RNN and BiLSTM networks

The following is also a comparison of the best results obtained for the different network

architectures tested.

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Validation

MSE

lstm 3 30 elu adam 0,0009747 181,805658 -

gru 2 30 elu adam 0,00063344 170,248371 -6,36%

rnn 6 15 elu adam 0,00073817 185,762487 2,18%

bilstm 1 45 elu adam 0,00259197 190,741036 4,91%

Table 10.Accuracy comparison for different network algorithms. Bayesian optimization.

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Training

time (s)

 Total

execution

time

(min)

lstm 3 30 elu adam 0,0009747 64,8296967 - 118,01 -

gru 2 30 elu adam 0,00063344 45,0948706 -30,44% 100,12 -15,16%

rnn 6 15 elu adam 0,00073817 56,2693636 -13,20% 128,17 8,61%

bilstm 1 45 elu adam 0,00259197 39,0776045 -39,72% 164,23 39,17%

Table 11. Execution time comparison for different network algorithms. Bayesian optimization

In this scenario, GRU architecture is the only one that manages to surpass the LSTM, achieving

better results in both accuracy and total execution time.

On the other hand, RNN architecture results in longer execution times, contrary to the random

and grid search, which is surprising, since it could be expected to achieve shorter execution

times since it is a simpler network configuration. The bilstm architecture is once again relegated

to the last position as it does not achieve any notable improvement . Once again, a modification

of the epochs is linked to an exponential increase in the resources required to address the

problem, making it difficult to draw conclusions as to why this architecture does not achieve

the expected results.

4.4 Genetic algorithms tuning technique

The conditions defined for the execution of the genetic algorithms in this work are detailed

below:

• Number of individuals: 20

• Number of generations: 4

• Mutation allowance for number of layers in generation i+1:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 𝑔𝑒𝑛 𝑖+1 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑎𝑦𝑒𝑟𝑠 𝑔𝑒𝑛 𝑖 +𝑟𝑎𝑛𝑑[0,1,2]

CHAPTER 4. RESULTS

53

As for the number of layers, it has been defined that its number from one generation to

the next one could only be increased by one or two units, or remain constant, to be

chosen randomly

• Mutation allowance for number of neurons per layer in generation i+1:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 𝑔𝑒𝑛 𝑖+1

= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑎𝑦𝑒𝑟 𝑔𝑒𝑛 𝑖 + 𝑟𝑎𝑛𝑑[0,9]

In order to allow mutation in the number of neurons per layer, a random increase in the

next generation of up to 9 units has been defined, without allowing its decrease.

• Mutation allowance for the learning rate:

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑔𝑒𝑛 𝑖+1 = 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 𝑔𝑒𝑛 𝑖 ∗ (0.8 + 0.4 ∗ 𝑟𝑎𝑛𝑑[0,1))

Algorithm Layers Neurons

per layer

Activation Optimizer Learning rate Validation

MSE

Training time

(s)

lstm 3 15 elu adam 0,00123 187,403 80,9715

lstm 3 45 elu adam 0,00216 188,563 98,3572

lstm 5 30 elu adam 0,00115 189,628 139,07

lstm 5 35 elu adam 0,00415 190,263 146,094

lstm 4 15 elu adam 0,0037 190,988 108,445

Table 12. Top 5 performing network configurations. Genetic algorithms

In the case of genetic algorithms, it is really complicated to conclude how positive the results

are. If there were already problems in the random search or Bayesian optimization, being a

technique that depends on random mutations for the sampling of the optimal hyperparameters,

this complexity is magnified and greatly reduces the ability to derive logical conclusions from

these results.

Although it seems that the tests have remained in the environment of the expected

configurations, it is possible to observe how the learning rate is an order of magnitude higher

than that obtained with the previously tested techniques and how, in general, the tests tend

towards less optimal configurations.

This can be observed in more detail throughout the tests performed with the genetic algorithms

in which a considerable increase in the number of neurons per layer is observed, reaching values

up to 86 neurons in GRU type network configuration, which is completely contrary to the

configurations obtained through the techniques already tested.

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Validation

MSE

lstm 3 30 elu adam 0,001460758 187,2479481 -

gru 5 39 elu adam 0,000723036 175,6013818 -6,22%

rnn 4 86 elu adam 0,001565222 176,3636213 -5,81%

bilstm 2 69 elu adam 0,002291607 216,8450307 15,81%

Table 13. Accuracy comparison for different network algorithms. Genetic Algorithms

CHAPTER 4. RESULTS

54

Algorithm Layers
Neurons

per layer
Activation Optimizer

Learning

rate

Traning

time (s)

 Total

execution

time

(min)

lstm 3 30 elu adam 0,001460758 135,3101137 - 100,37 -

gru 5 39 elu adam 0,000723036 238,6682661 76,39% 56 -44,21%

rnn 4 86 elu adam 0,001565222 127,3048062 -5,92% 42 -58,15%

bilstm 2 69 elu adam 0,002291607 290,6459081 114,80% 142,07 41,55%

Table 14. Execution time comparison for different network algorithms. Genetic Algorithms

4.5 Cross performance comparison

Tuning technique Layers

Neurons

per

layer

Activation

function
Optimizer Learning rate

Validation

MSE

Total

execution

time (min)
LSTM Grid 2 26 elu adam 0,00158114 175,390069 260,21

LSTM Random 3 31 elu adam 0,00298181 184,265402 45,5

LSTM Bayesian 3 15 elu adam 0,00100075 182,650941 118,01

LSTM Genetic Algorithm 3 30 elu adam 0,00146076 187,247948 100,37

GRU Grid 3 16 elu adam 0,0005 167,600379 217,3

GRU Random 4 26 elu adam 0,00096535 169,507542 48,6

GRU Bayesian 2 30 elu adam 0,00063344 170,248371 100,14

GRU Genetic Algorithm 5 39 elu adam 0,00072304 175,601382 56

RNN Grid 3 6 elu adam 0,0005 179,856083 107,1

RNN Random 1 21 elu adam 0,00195347 191,678969 24,7

RNN Bayesian 6 15 elu adam 0,00073817 185,762487 70,17

RNN Genetic Algorithm 4 86 elu adam 0,00156522 176,363621 42

BILSTM Grid 2 11 elu adam 0,005 187,233101 511,6

BILSTM Random 1 41 elu adam 0,00414321 192,240764 97,3

BILSTM Bayesian 1 45 elu adam 0,00259197 190,741036 164,23

BILSTM Genetic Algorithm 2 69 elu adam 0,00229161 216,845031 144,07

Table 15. Cross comparison for the best performing simulations

Tuning technique Number of adjusted candidates

Grid Search 150

Random Search 50

Bayesian optimization 100

Genetic Algorithm 80

Table 16. Number of adjusted candidates per tuning technique

Table 15 shows a more generic comparison of the best results obtained for each configuration

and technique tested.

It can be seen how the best models are concentrated as a result of using GRU type network

architectures as opposed to LSTM, as would have been expected based on the conclusions

derived from the literature consulted, and how RNNs are positioned as the best architectures in

terms of execution time, both results already presented in the previous sections.

LSTM architectures achieve acceptable results, although far from the best obtained with GRUs

and without substantial improvements in terms of total execution time that could justify their

choice when faced with a prediction problem similar to the one discussed. BILSTM

CHAPTER 4. RESULTS

55

architectures would be initially discarded for not being able to prove whether their low

performance could be improved by means of other hyperparameters whose optimization is not

contemplated in this work.

Regardless of the type of network architecture employed, it is clear how GRID Search

techniques are the most interesting to use in a first approach to the problem. Not only are these

techniques the ones that achieve, in a general way, the best results, but they also allow exploring

the whole map of hyperparameters defined without being influenced by local minimums.

Despite the fact that these models take longer to perform all the iterations, they can be a good

first preference for the following reasons:

1. If time is a determinant, they may be used as a means of identifying sub-optimal model

simulations that are faster to run, but risk fluctuating around a local minimum

2. They can be used to identify, from a wide initial spectrum, those configurations that will

improve the validation error, discarding the less interesting ones.

3. They allow, in a single simulation, to obtain a network configuration that, without being

optimal, achieves acceptable error, avoiding local stagnation and that can later be

improved, either in a more limited range using grid search again or with any of the other

techniques studied

4. It allows us to observe with greater transparency the behaviour of the model when faced

with changes in the values of the hyperparameters, unlike other methods whose

stochastic nature makes it difficult to understand the results obtained.

As far as the speed of execution is concerned, - and in the same way for any network architecture

- Random Search is the one that allows to obtain reasonable results in the shortest time possible,

but, as it has been explained before, it is necessary to evaluate the need of greater resources to

evaluate more complex configurations or to increase the number of iterations, which entails a

great limitation to have in consideration for its implementation.

Bayesian optimization is an alternative solution if you are looking for an intermediate point

between accuracy and execution time. Unlike genetic algorithms, which do not stand out in the

field of accuracy or runtime improvement, the tests performed by Bayesian optimization are

usually closer to the optimal that can be achieved through grid search, without the complexity

of random and more feasible than tests performed by genetic algorithms that, after each new

mutation, risk ending up selecting sub-optimal configurations.

CHAPTER 4. RESULTS

56

CHAPTER 5. CONCLUSIONS

57

 CONCLUSIONS

The objective of this work was to perform an extensive research on deep learning models and

its application to time series forecasting. The state of the art showed a significant number of

models and techniques available to improve the performance of these models. Hence, a case

study was performed to explore these techniques in a real-world dataset. The goal was not to

achieve the best possible network model, but to test various hyperparameter optimization

techniques in a real example of application in order to derive a series of guidelines that could

be useful when facing a new problem of time series prediction.

Although it cannot be presumed that all prediction problems have the same behavior, nor that

the models tested will respond in the same way to what has been seen in this work in other

situations, it can be expected, and this has been assumed in this work, that it is possible to

generalize some of the results obtained here, as long as one is aware of this fact and the

limitations it may entail.

Another important aspect to take into account, and which has partly defined the results obtained,

is that this work has only contemplated the optimization of the 4 hyperparameters that are most

sought after in a general way when undertaking any work in this area, allowing a certain degree

of freedom in the initialization of other more complex hyperparameters, whose theoretical basis

does not allow direct conclusions to be extrapolated from the values obtained due to their

complexity. Assumptions have also been made regarding the values of some hyperparameters

that may be far from optimal, but which have greatly facilitated the development of this work.

In order to improve the results obtained in this work, it would be of great interest to carry out

tests along the same lines of this work, testing other ranges of values for the hyperparameters

tested here, with the aim of observing whether the behavior remains in accordance with what

has been observed in this work, or whether conclusions can be drawn that could complement

those presented here.

As for the results, the following points can be concluded:

• Regardless of the optimization technique employed, GRU architectures far exceed the

expectations placed on LSTMs that were initially positioned as those from which to

expect the best results, while biLSTMs are relegated to last position by failing to achieve

good results in any of the fields tested.

• As far as possible, start the search for hyperparameters in limited environments and opt

for intermediate values, avoiding any extreme values. As can be seen from the final

table of results (Table 15), most of the results oscillate around 2-3 layers, a number of

neurons per layer not exceeding 30 (with some exceptions) and with downward values

as far as learning rate is concerned.

The number of layers and neurons per layer should be adapted to each application, being

aware that for more complex applications a greater number of layers and neurons would

be required to model the output behavior. It is recommended to perform a more

comprehensive initial search, and limit subsequent trials in a limited rank around those

values within the optimal configuration appears to be located.

• In order to choose the best hyperparameter optimization method, the following approach

can be followed:

o Is time a decisive factor?

CHAPTER 5. CONCLUSIONS

58

Opt for Bayesian optimization or random search, if you have sufficient

computational resources to achieve a sufficient number of iterations, along GRU

or RNN-type network structures, depending on whether you want better

accuracy or just speed of execution, respectively. As for the number of iterations,

it is necessary to at least execute a number of the that allows the algorithm to

converge in a hyperparamenter subspace, ensuring a small variance from one

iteration to the next one.

o Is the best possible accuracy being sought?

If, above all, the aim is to minimize the model's error, opt for Grid search

optimization methods together with GRU-type network architectures.

o The objective is to achieve a time-performance ratio?

Opt for a Bayesian optimization method using GRU or RNN-type network

architectures

CHAPTER 6. REFERENCES

59

 REFERENCES

[1] H. Wan, ‘Deep Learning:Neural Network, Optimizing Method and Libraries Review’, in

2019 International Conference on Robots & Intelligent System (ICRIS), Haikou, China,

Jun. 2019, pp. 497–500, doi: 10.1109/ICRIS.2019.00128.

[2] R. Zhang, Z. Yuan, and X. Shao, ‘A New Combined CNN-RNN Model for Sector Stock

Price Analysis’, in 2018 IEEE 42nd Annual Computer Software and Applications

Conference (COMPSAC), Tokyo, Japan, Jul. 2018, pp. 546–551, doi:

10.1109/COMPSAC.2018.10292.

[3] I. Valenca, T. Ludermir, and M. Valenca, ‘Hybrid Systems to Select Variables for Time

Series Forecasting Using MLP and Search Algorithms’, in 2010 Eleventh Brazilian

Symposium on Neural Networks, Sao Paulo, Oct. 2010, pp. 247–252, doi:

10.1109/SBRN.2010.50.

[4] T. life Editorial, ‘How artificial neural networks copy the brain so AI can think faster than

you’, Medium, Feb. 14, 2017. https://toa.life/how-artificial-neural-networks-copy-the-

brain-and-power-ai-to-think-faster-than-you-218929fa5dd3 (accessed Jan. 19, 2020).

[5] A. Menon, S. Singh, and H. Parekh, ‘A Review of Stock Market Prediction Using Neural

Networks’, in 2019 IEEE International Conference on System, Computation, Automation

and Networking (ICSCAN), Pondicherry, India, Mar. 2019, pp. 1–6, doi:

10.1109/ICSCAN.2019.8878682.

[6] ‘Deep Learning Fundamentals - Cognitive Class’.

https://cognitiveclass.ai/courses/introduction-deep-learning (accessed Feb. 08, 2020).

[7] J. Brownlee, ‘How to Choose Loss Functions When Training Deep Learning Neural

Networks’, Machine Learning Mastery, Jan. 29, 2019.

https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-

learning-neural-networks/ (accessed Feb. 08, 2020).

[8] G. Drakos, ‘How to select the Right Evaluation Metric for Machine Learning Models: Part

1 Regression Metrics’, Medium, Feb. 05, 2020.

https://medium.com/@george.drakos62/how-to-select-the-right-evaluation-metric-for-

machine-learning-models-part-1-regrression-metrics-3606e25beae0 (accessed Feb. 08,

2020).

[9] P. Grover, ‘5 Regression Loss Functions All Machine Learners Should Know’, Medium,

Feb. 05, 2020. https://heartbeat.fritz.ai/5-regression-loss-functions-all-machine-learners-

should-know-4fb140e9d4b0 (accessed Feb. 09, 2020).

[10] M.-A. Maiza, ‘The Unknown Benefits of using a Soft-F1 Loss in Classification Systems’,

Medium, Dec. 05, 2019. https://towardsdatascience.com/the-unknown-benefits-of-using-

a-soft-f1-loss-in-classification-systems-753902c0105d (accessed Feb. 09, 2020).

[11] ‘Losses - Keras Documentation’. https://keras.io/losses/ (accessed Feb. 09, 2020).

[12] J. Brownlee, ‘Loss and Loss Functions for Training Deep Learning Neural Networks’,

Machine Learning Mastery, Jan. 27, 2019. https://machinelearningmastery.com/loss-and-

loss-functions-for-training-deep-learning-neural-networks/ (accessed Feb. 09, 2020).

[13] ‘François Chollet, J.J. Allaire - Deep Learning with R-Manning Publications (2017).pdf’.

.

[14] R. Akita, A. Yoshihara, T. Matsubara, and K. Uehara, ‘Deep learning for stock prediction

using numerical and textual information’, in 2016 IEEE/ACIS 15th International

Conference on Computer and Information Science (ICIS), Okayama, Japan, Jun. 2016, pp.

1–6, doi: 10.1109/ICIS.2016.7550882.

[15] Y. Wu et al., ‘Google’s Neural Machine Translation System: Bridging the Gap between

Human and Machine Translation’, arXiv:1609.08144 [cs], Oct. 2016, Accessed: Jan. 06,

2020. [Online]. Available: http://arxiv.org/abs/1609.08144.

CHAPTER 6. REFERENCES

60

[16] D. M. Q. Nelson, A. C. M. Pereira, and R. A. de Oliveira, ‘Stock market’s price movement

prediction with LSTM neural networks’, in 2017 International Joint Conference on

Neural Networks (IJCNN), Anchorage, AK, USA, May 2017, pp. 1419–1426, doi:

10.1109/IJCNN.2017.7966019.

[17] K. Chen, Y. Zhou, and F. Dai, ‘A LSTM-based method for stock returns prediction: A

case study of China stock market’, in 2015 IEEE International Conference on Big Data

(Big Data), Santa Clara, CA, USA, Oct. 2015, pp. 2823–2824, doi:

10.1109/BigData.2015.7364089.

[18] S. Bouktif, A. Fiaz, A. Ouni, and M. Serhani, ‘Optimal Deep Learning LSTM Model for

Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison

with Machine Learning Approaches †’, Energies, vol. 11, no. 7, p. 1636, Jun. 2018, doi:

10.3390/en11071636.

[19] S. Chen and H. He, ‘Stock Prediction Using Convolutional Neural Network’, IOP Conf.

Ser.: Mater. Sci. Eng., vol. 435, p. 012026, Nov. 2018, doi: 10.1088/1757-

899X/435/1/012026.

[20] J. Eapen, D. Bein, and A. Verma, ‘Novel Deep Learning Model with CNN and Bi-

Directional LSTM for Improved Stock Market Index Prediction’, in 2019 IEEE 9th

Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas,

NV, USA, Jan. 2019, pp. 0264–0270, doi: 10.1109/CCWC.2019.8666592.

[21] Xiaosheng Peng et al., ‘A very short term wind power prediction approach based on

Multilayer Restricted Boltzmann Machine’, in 2016 IEEE PES Asia-Pacific Power and

Energy Engineering Conference (APPEEC), Xi’an, China, Oct. 2016, pp. 2409–2413, doi:

10.1109/APPEEC.2016.7779917.

[22] L.-C. Cheng, Y.-H. Huang, and M.-E. Wu, ‘Applied attention-based LSTM neural

networks in stock prediction’, in 2018 IEEE International Conference on Big Data (Big

Data), Seattle, WA, USA, Dec. 2018, pp. 4716–4718, doi:

10.1109/BigData.2018.8622541.

[23] S. A. Ludwig, ‘Comparison of Time Series Approaches applied to Greenhouse Gas

Analysis: ANFIS, RNN, and LSTM’, in 2019 IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE), New Orleans, LA, USA, Jun. 2019, pp. 1–6, doi: 10.1109/FUZZ-

IEEE.2019.8859013.

[24] M. Dorraki, A. Fouladzadeh, A. Allison, B. Coventry, and D. Abbott, ‘Deep Learning for

C-Reactive Protein Prediction’, in 2018 2nd European Conference on Electrical

Engineering and Computer Science (EECS), Bern, Switzerland, Dec. 2018, pp. 160–164,

doi: 10.1109/EECS.2018.00037.

[25] R. Kaabi, M. Sayadi, M. Bouchouicha, F. Fnaiech, E. Moreau, and J. M. Ginoux, ‘Early

smoke detection of forest wildfire video using deep belief network’, in 2018 4th

International Conference on Advanced Technologies for Signal and Image Processing

(ATSIP), Sousse, Mar. 2018, pp. 1–6, doi: 10.1109/ATSIP.2018.8364446.

[26] Jian Zheng, Cencen Xu, Ziang Zhang, and Xiaohua Li, ‘Electric load forecasting in smart

grids using Long-Short-Term-Memory based Recurrent Neural Network’, in 2017 51st

Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD, USA,

Mar. 2017, pp. 1–6, doi: 10.1109/CISS.2017.7926112.

[27] C. Liu, K. Li, J. Liu, and C. Chen, ‘LHCnn: A Novel Efficient Multivariate Time Series

Prediction Framework Utilizing Convolutional Neural Networks’, in 2019 IEEE 21st

International Conference on High Performance Computing and Communications; IEEE

17th International Conference on Smart City; IEEE 5th International Conference on Data

Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, Aug. 2019, pp. 2324–

2332, doi: 10.1109/HPCC/SmartCity/DSS.2019.00323.

[28] A. Kulaglic and B. Berk Üstüngag, ‘Stock price forecast using Wavelet Transformations

in Multiple time Windows and Neural Networks’. IEEE, 2018.

CHAPTER 6. REFERENCES

61

[29] J. Brownlee, ‘An Introduction to Feature Selection’, Machine Learning Mastery, Oct. 05,

2014. https://machinelearningmastery.com/an-introduction-to-feature-selection/

(accessed Jan. 20, 2020).

[30] R. Agarwal, ‘The 5 Feature Selection Algorithms every Data Scientist should know’,

Medium, Jul. 28, 2019. https://towardsdatascience.com/the-5-feature-selection-

algorithms-every-data-scientist-need-to-know-3a6b566efd2 (accessed Jan. 26, 2020).

[31] J. Brownlee, ‘How to Choose a Feature Selection Method For Machine Learning’,

Machine Learning Mastery, Nov. 26, 2019. https://machinelearningmastery.com/feature-

selection-with-real-and-categorical-data/ (accessed Jan. 26, 2020).

[32] xiaoharper, ‘Filter Based Feature Selection - ML Studio (classic) - Azure’.

https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/filter-

based-feature-selection (accessed Jan. 26, 2020).

[33] ‘Pearson Product-Moment Correlation - When you should run this test, the range of values

the coefficient can take and how to measure strength of association.’

https://statistics.laerd.com/statistical-guides/pearson-correlation-coefficient-statistical-

guide.php (accessed Jan. 26, 2020).

[34] ‘Spearman’s Rank-Order Correlation - A guide to when to use it, what it does and what

the assumptions are.’ https://statistics.laerd.com/statistical-guides/spearmans-rank-order-

correlation-statistical-guide.php (accessed Jan. 26, 2020).

[35] J. Magiya, ‘Kendall Rank Correlation Explained.’, Medium, Nov. 23, 2019.

https://towardsdatascience.com/kendall-rank-correlation-explained-dee01d99c535

(accessed Jan. 26, 2020).

[36] sampath kumar gajawada, ‘ANOVA for Feature Selection in Machine Learning’,

Medium, Oct. 20, 2019. https://towardsdatascience.com/anova-for-feature-selection-in-

machine-learning-d9305e228476 (accessed Feb. 06, 2020).

[37] sampath kumar gajawada, ‘Chi-Square Test for Feature Selection in Machine learning’,

Medium, Oct. 20, 2019. https://towardsdatascience.com/chi-square-test-for-feature-

selection-in-machine-learning-206b1f0b8223 (accessed Jan. 26, 2020).

[38] J. Brownlee, ‘Information Gain and Mutual Information for Machine Learning’, Machine

Learning Mastery, Oct. 15, 2019. https://machinelearningmastery.com/information-gain-

and-mutual-information/ (accessed Jan. 27, 2020).

[39] D. Soni, ‘Introduction to Evolutionary Algorithms’, Medium, Jul. 16, 2019.

https://towardsdatascience.com/introduction-to-evolutionary-algorithms-a8594b484ac

(accessed Jan. 21, 2020).

[40] P. Casas, ‘Feature Selection using Genetic Algorithms in R’, Medium, Apr. 08, 2019.

https://towardsdatascience.com/feature-selection-using-genetic-algorithms-in-r-

3d9252f1aa66 (accessed Jan. 21, 2020).

[41] V. Mallawaarachchi, ‘Introduction to Genetic Algorithms — Including Example Code’,

Medium, Nov. 20, 2019. https://towardsdatascience.com/introduction-to-genetic-

algorithms-including-example-code-e396e98d8bf3 (accessed Jan. 21, 2020).

[42] S. Patnaik, Ed., Recent Developments in Intelligent Nature-Inspired Computing: IGI

Global, 2017.

[43] X. Z. Gao, V. Govindasamy, H. Xu, X. Wang, and K. Zenger, ‘Harmony Search Method:

Theory and Applications’, Computational Intelligence and Neuroscience, 2015.

https://www.hindawi.com/journals/cin/2015/258491/ (accessed Jan. 27, 2020).

[44] M. Kuhn, 20 Recursive Feature Elimination | The caret Package. .

[45] Q. Chen, Z. Meng, X. Liu, Q. Jin, and R. Su, ‘Decision Variants for the Automatic

Determination of Optimal Feature Subset in RF-RFE’, Genes, vol. 9, no. 6, p. 301, Jun.

2018, doi: 10.3390/genes9060301.

CHAPTER 6. REFERENCES

62

[46] ‘sklearn.feature_selection.RFECV — scikit-learn 0.22.1 documentation’. https://scikit-

learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html#sklearn.featu

re_selection.RFECV (accessed Jan. 28, 2020).

[47] ‘Sequential Feature Selector - mlxtend’.

http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/

(accessed Jan. 28, 2020).

[48] DataVedas, ‘EMBEDDED METHODS | Data Vedas’.

https://www.datavedas.com/embedded-methods/ (accessed Jan. 28, 2020).

[49] T. Lin, T. Guo, and K. Aberer, ‘Hybrid Neural Networks for Learning the Trend in Time

Series’, in Proceedings of the Twenty-Sixth International Joint Conference on Artificial

Intelligence, Melbourne, Australia, Aug. 2017, pp. 2273–2279, doi:

10.24963/ijcai.2017/316.

[50] ‘(1) (PDF) An Adaptive Offloading Method for an IoT-Cloud Converged Virtual Machine

System Using a Hybrid Deep Neural Network’, ResearchGate.

https://www.researchgate.net/publication/328636008_An_Adaptive_Offloading_Method

_for_an_IoT-

Cloud_Converged_Virtual_Machine_System_Using_a_Hybrid_Deep_Neural_Network

(accessed Mar. 01, 2020).

[51] ‘images (Imagen PNG, 270 × 187 píxeles)’. https://encrypted-

tbn0.gstatic.com/images?q=tbn%3AANd9GcS6o-

bFFynY9S_urprOHPLGPf_MWzRWR8dTohZujIhl9gdRKuKm&usqp=CAU (accessed

Apr. 23, 2020).

[52] ‘A Beginner’s Guide to Attention Mechanisms and Memory Networks’, Pathmind.

http://pathmind.com/wiki/attention-mechanism-memory-network (accessed Apr. 23,

2020).

[53] ‘Hyperparameters: Optimization Methods and Real World Model Management’,

MissingLink.ai. https://missinglink.ai/guides/neural-network-concepts/hyperparameters-

optimization-methods-and-real-world-model-management/ (accessed Feb. 03, 2020).

[54] J. Brownlee, ‘Understand the Impact of Learning Rate on Neural Network Performance’,

Machine Learning Mastery, Jan. 24, 2019.

https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-

learning-neural-networks/ (accessed Feb. 04, 2020).

[55] ‘machine learning - Epoch vs Iteration when training neural networks’, Stack Overflow.

https://stackoverflow.com/questions/4752626/epoch-vs-iteration-when-training-neural-

networks (accessed Feb. 04, 2020).

[56] ‘Hyperparameter optimization for Neural Networks — NeuPy’.

http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html#h

and-tuning (accessed Feb. 05, 2020).

[57] A. Bissuel, ‘Hyper-parameter optimization algorithms: a short review’, Medium, Apr. 24,

2019. https://medium.com/criteo-labs/hyper-parameter-optimization-algorithms-

2fe447525903 (accessed Feb. 05, 2020).

[58] ‘The Unreasonable Effectiveness of Quasirandom Sequences | Extreme Learning’.

http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/

(accessed Feb. 05, 2020).

[59] W. Koehrsen, ‘A Conceptual Explanation of Bayesian Hyperparameter Optimization for

Machine Learning’, Medium, Jul. 02, 2018. https://towardsdatascience.com/a-conceptual-

explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-

learning-b8172278050f (accessed Feb. 05, 2020).

[60] ‘HyLAP - Meta-Data’. http://www.hylap.org/meta_data/adaboost/ (accessed Feb. 05,

2020).

CHAPTER 6. REFERENCES

63

[61] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘Algorithms for Hyper-Parameter

Optimization’, p. 9.

[62] A. Osipenko, ‘Genetic algorithms and hyperparameters — Weekend of a Data Scientist’,

Medium, May 30, 2019. https://medium.com/cindicator/genetic-algorithms-and-

hyperparameters-weekend-of-a-data-scientist-8f069669015e (accessed Feb. 06, 2020).

[63] A. Li et al., ‘A Generalized Framework for Population Based Training’, in Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining - KDD ’19, Anchorage, AK, USA, 2019, pp. 1791–1799, doi:

10.1145/3292500.3330649.

[64] dpicampaigns, ‘About the Sustainable Development Goals’, United Nations Sustainable

Development. https://www.un.org/sustainabledevelopment/sustainable-development-

goals/ (accessed Aug. 22, 2020).

CHAPTER 6. REFERENCES

64

CHAPTER 7. ANNEXES

65

 ANNEXES

ANNEX I - SUSTAINABLE DEVELOPMENT GOALS

The sustainable development goals, defined in 2015 by the UN and approved by 193 countries,

are 17 interconnected goals that encompass a total of 169 targets valid until 2030, which

recognize the need to address both the fight against poverty, care for the planet and the reduction

of inequalities [64].

These objectives require the collaboration of not only civil society, but also the public and

private sectors to achieve them, thus making the world more diverse and egalitarian.

This work mainly supports the following sustainable development objectives and their

corresponding targets [64]:

7 Affordable and clean energy

7.1 By 2030, ensure universal access to affordable, reliable and modern energy services

7.2 By 2030, increase substantially the share of renewable energy in the global energy mix

7.3 By 2030, double the global rate of improvement in energy efficiency

7.4 By 2030, enhance international cooperation to facilitate access to clean energy research

and technology, including renewable energy, energy efficiency and advanced and cleaner

fossil-fuel technology, and promote investment in energy infrastructure and clean energy

technology

7.5 By 2030, expand infrastructure and upgrade technology for supplying modern and

sustainable energy services for all in developing countries, in particular least developed

countries, small island developing States, and land-locked developing countries, in

accordance with their respective programs of support

9 Industries innovation and infrastructure

9.1 Develop quality, reliable, sustainable and resilient infrastructure, including regional and

transborder infrastructure, to support economic development and human well-being, with

a focus on affordable and equitable access for all

9.2 Promote inclusive and sustainable industrialization and, by 2030, significantly raise

industry’s share of employment and gross domestic product, in line with national

circumstances, and double its share in least developed countries

9.3 Increase the access of small-scale industrial and other enterprises, in particular in

developing countries, to financial services, including affordable credit, and their

integration into value chains and markets

9.4 By 2030, upgrade infrastructure and retrofit industries to make them sustainable, with

increased resource-use efficiency and greater adoption of clean and environmentally

sound technologies and industrial processes, with all countries taking action in

accordance with their respective capabilities

9.5 Enhance scientific research, upgrade the technological capabilities of industrial sectors in

all countries, in particular developing countries, including, by 2030, encouraging

innovation and substantially increasing the number of research and development workers

per 1 million people and public and private research and development spending

9.6 Facilitate sustainable and resilient infrastructure development in developing countries

through enhanced financial, technological and technical support to African countries,

CHAPTER 7. ANNEXES

66

least developed countries, landlocked developing countries and small island developing

States 18

9.7 Support domestic technology development, research and innovation in developing

countries, including by ensuring a conducive policy environment for, inter alia, industrial

diversification and value addition to commodities

9.8 Significantly increase access to information and communications technology and strive

to provide universal and affordable access to the Internet in least developed countries by

2020

13 Climate action

13.1 Strengthen resilience and adaptive capacity to climate-related hazards and natural

disasters in all countries

13.2 Integrate climate change measures into national policies, strategies and planning

13.3 Improve education, awareness-raising and human and institutional capacity on climate

change mitigation, adaptation, impact reduction and early warning

13.4 Implement the commitment undertaken by developed-country parties to the United

Nations Framework Convention on Climate Change to a goal of mobilizing jointly $100

billion annually by 2020 from all sources to address the needs of developing countries in

the context of meaningful mitigation actions and transparency on implementation and

fully operationalize the Green Climate Fund through its capitalization as soon as possible

13.5 Promote mechanisms for raising capacity for effective climate change-related planning

and management in least developed countries and small island developing States,

including focusing on women, youth and local and marginalized communities

This work supports these objectives by providing a research framework to enhance and improve

the robustness of forecasting techniques, the application of which can assist in the adoption of

renewable generation methods as unique sources of electricity.

The use of reliable forecasting techniques for the short to medium term is essential both for

entering the electricity markets and for undertaking maintenance work in plants or power

stations.

The market factor is highly relevant, since the variability in power generation from renewable

plants is much greater than that of traditional competitors. This may imply penalties in the event

of not being able to generate the offered energy. The fact that the generation capacity of each

park can be predicted with a greater degree of precision means that the various renewable

generation technologies can be regarded as strong competitors in the electricity market.

Operation and maintenance of the farms is an equally important economic aspect. Achieving

optimal maintenance of the infrastructure is key to ensuring a quality service, fast and reliable

and with a broad useful life, ensuring a high degree of amortization, leading to a call effect for

future investments.

