
 1

Resumen — La popularización de los modelos de la Red Neural Profunda

en los últimos años ha dado lugar a un aumento del número de técnicas para

aumentar la precisión de esos modelos. Sin embargo, es difícil elegir cuál de

estos métodos son óptimos para un problema específico, así como lograr valores

óptimos de sus hiperparámetros correspondientes para lograr un modelo de

calidad. Este proyecto tiene por objeto proporcionar una comparación de éstos

aplicándolos en un problema de predicción de series temporales.

Se han llevado a cabo una serie de test en los que se han combinado

arquitecturas tipo RNN, GRU, LSTM y BiLSTM con métodos de optimización

entre los que se han destacado el Grid Search, Random Search, Optimización

Bayesiana y Algoritmos Genéticos.

Los resultados muestran que, se debe optar por una configuración tipo Grid

Search + Red tipo GRU, la cual alcanza un valor de MSE de 167,60, frente al

240,44 del modelo benchmark o configuración tipo Random Search + RNN si

se busca rapidez de ejecución, sacrificando precisión.

Abstract -- The popularization of Deep Neural Network models in recent

years has led to an increase in the number of techniques to increase the accuracy

of these models. However, it is difficult to choose which of these methods are

optimal for a specific problem, as well as to achieve optimal values of their

corresponding hyperparameters to achieve a quality model. This project aims to

provide a comparison of these by applying them to a time series prediction

problem.

A series of tests have been carried out in which RNN, GRU, LSTM and

BiLSTM type architectures have been combined with hyperparameter

optimization methods among which Grid Search, Random Search, Bayesian

Optimization and Genetic Algorithms have been highlighted.

The results show that, one should opt for a Grid Search + GRU type

configuration, which reaches an MSE value of 167.60, compared to 240.44 in

the benchmark model or Random Search + RNN type configuration if one seeks

speed of execution, sacrificing precision.

I. INTRODUCTION

uture trends or behaviors of stock markets, product sales,

electricity demand, wind speed and sun-irradiation for

power generation, health- related issues and Natural

Language Processing (NLP), among many more, have, for many

decades (late 20th Century), been at the forefront of
development of machine learning algorithms and ever evolving

complex mathematical models [1].

Most of these prediction models’ approach is to use machine

learning algorithms to learn from the past in order to provide a

future time-window forecast, although this is easier said than

done. Due to the dynamic, chaotic, stochastic, and complex

environments of the problem itself and uncertainty of real-world

data (e.g. stock markets) this becomes an inherently challenging

and non-trivial process. This gets worse when dealing with time-
dependent characteristics or long-term multi-variate information

chains, where it is of utmost importance to identify correlations

between distinct temporal data [2] or to define which past values

(both in time and variables) will be considered within the

prediction process [3], respectively.

This work focuses exclusively on the study of Deep Neural

Networks (DNNs) architectures, emerged as a means of

mimicking the biological, complex behavior of the human brain.

A single neuron (Perceptron) does not perform well enough, but

further development lead to the wiring of multiple artificial

neurons (synapses), so that the output of one became the input
of the next one, creating multiple layers that would manage to

provide much more accurate results, and acquire a much higher

resemblance to the human brain behavior. Over the course of

time this process has been renewed, optimized, and further

developed to try to boost the prediction accuracy, leading to a

vast portfolio of prediction model architectures.

This portfolio includes examples such as the Multi-Layer

Perceptron (MLP), Deep Learning NNs, Recurrent NNs, Long-

Short Term Memory NNs (LSTM), Convolutional NNs,

Recursive NNs, etc. whose application depends mainly on the

data provided and expected output, although variations of their

usage can be found in the available literature.
When facing a new time series forecasting problem, one of

the greatest challenges is how to choose the most convenient

architecture and tuning technique to obtain the best possible

results. This choice is nontrivial, and its complexity depends in

part on the resources available, including time. It may be that

time is a key factor in the application and that the models,

therefore, must be able to be executed under strict time

requirements. Or you may simply want to start an initial search

process for the most suitable hyperparameters with a fast and

simple model and that allows you to fine tune them by means of

more complex models afterwards, without getting lost in the
complex initial search.

In addition to choosing the right architecture, comes the need

to adjust the number of hidden layers, number of units,

activation functions, choosing the correct optimizer, epochs,

dropout, batch size, learning rate, number of iterations, and

Accuracy improvement of Deep neural

Networks through preprocessing and neural

structure tuning techniques. An approach to time

series models

Directors: Portela González, José

 Pizarroso Gonzalo, Jaime

Author: López-Tafall Criado, Mónica

a

F

 2

many more hyperparameters whose tuning is not trivial nor

immediate or dependent on the expected output [4].

In order to try to answer this question, a selection of deep

learning models will be tested under the same uncertainty

conditions to assess which on would produce the best option

based on those requirements the prediction application might

withstand.

II. STATE OF THE ART

A. Input variable selection

Variable or feature selection (FS) is based on different

algorithms that seek to automatically select attributes from the

available data that are most useful for the predictive problem we

might be dealing with. This is one of the most critical steps for

achieving a high degree of accuracy.

In recent years, resources such as Genetic Algorithms,

Harmony Search, Temporal Memory search, attention modules,

Paragraph Vector, etc. have emerged to improve feature

selection to assess the use of relevant not correlated input data

that bring value to model operation, and help with vanishing

gradient problem when in need to handle long-terms

dependencies.
Filter based FS algorithms use statistical metrics or

techniques to filter features giving each data column a feature

score and ranks them by their predictive importance.

As these methods depends highly on the relationship between

variables (input-output), the metric should be chosen based on

the type of variables with which the prediction model will work

with later on. The following figure allows a better understanding

of the most suitable statistics for each case.

Figure 1. Filter based FS methods. Source:[5]

The main problem related to filter-based methods is that they

are mostly univariate techniques, which means that each

predictor is only evaluated regarding the output variable,

discarding any possible interactions with other input variables.
This, in turn, may lead to the training of the model with

redundant, yet relevant, information, causing collinearity

problems to appear.

A solution to test the interaction of several variables at the

same time, Wrapper-based FS algorithms are used to measure

the fitness of certain features based on how good or bad does the

model perform after being trained with them and the level of

generalization it can achieve, rather than obtaining intrinsic

information from each variable in order to classify their

relevance with respect to the output variable.

These methods are based in an iterative process in which

different combinations of variables are prepared, evaluated and
modified to come up with the optimal feature combination that

best fits the prediction problem.

Some of the most widely used Wrapper based FS algorithms

are Genetic Algorithms - The optimization process is done by

allowing a population of individuals to evolve by randomly

subjecting them to actions similar to those that act in biological

evolution (genetic mutations and recombinations) [6]- ,

Harmony search – Inspired by the way in which musicians

improvise a harmony by trying different combinations of pitches

they know from experience (memory) and adjust the pitch of

each instrument until they obtain the harmony they were looking

for [7]- , Temporal Memory Search - Tries to identify the mount
of temporary memory needed to solve the issue, being the

memory the past time values (lags) of the time series [3]- ,.

Recursive Feature Elimination (RFE) - in which an initial set of

variables is trimmed gradually until only the most relevant

variables are left, based on a coefficient or feature importance

attribute, or until the desired number of relevant features is

achieved -, or Sequential Feature Selection - an initial empty

feature set is competed after each iteration with a number of

variables until there is no improve in accuracy for the trained

model-.

 In addition to these, Embedded FS algorithms use algorithms
to penalize features which coefficients are too high in order to

reduce complexity and avoid over-fitting or variance of a model

by adding extra bias. In order to achieve this, regularized

methods, such as L1 regularization (Lasso), L2 regularization

(Ridge Regression) or decision tress, are used to control the size

of features’ weights[8].

B. Hybrid Models

 Neural Networks´ (NNs) different architectures aim to

provide a wide range of options in order to target issues of

multiple natures, such as image/video classification, forecasting,

speech recognition, natural Language Processing (NLP), among

others.

As interest in NNs’ grew, so did the number of possible

algorithms to choose from in search of improving performance

accuracy. Most recent developments propose Hybrid

architectures, that is models that combine multiple neural

architectures such as LSTM + attention modules, Convolutional

NNs’ + RNNs’, Deep Belief Networks, etc. Some of the most

interesting hybrid models are:

• Deep and Wide Neural Networks (DWNN) [2] are a

newly developed NN architecture in which a Convolutional

layer is added to the hidden state of a Recurrent Neural Network.

This way, the model not only accounts for the depth provided by

RNNs’ (time dimension, in the form of number of time lags),

but also the width associated to CNNs’ (variable number of data

sets). This CNN layer is formed by convolution layers, a pooling

layer and a full connection one in order to adapt the output into

the required shape of a hidden state.

 3

Figure 2. Simple RNN mode VS DWNN model. Source:[2]

This type of architectures have proven to achieve a good

reduction in MSE obtained values of approximately 30% when

compared to general RNN models [2].

• TreNets are hybrid Neural Networks architectures for

the trend prediction of time series. This hybrid architecture

combines long short-term memory (LSTM), a convolutional

neural network (CNN), and a feature fusion layer. In this case,

the LSTM network contains and passes on the historical trends

that contain the long-term contextual information of the time

series. This historic information is relevant as it may naturally

affect the trend evolution. Alternatively, raw local data serves as

an input for the CNN, which will extract useful information

about the local behavior of the time series in order to determine

the dependency of the current trend and pattern transition point.

This kind of information can be of great relevance when

predicting abruptly changing trends.

Figure 3. Local and historic trend data. Source:[9]

TreNets have shown to outperform simple LSTM-CNN

models, reducing by 30% the achieved error (RMSE) at the

maximum [10].

• Bi-Directional LSTM + CNN layer models [11] seek

to achieve a higher degree of accuracy while reducing the

probability of overfitting. Bi-directional LSTM networks are

very useful when dealing with long spanning time-series data as

they are able to identify key behaviors from both backwards and

forward time dependencies. This provides the network a better

understanding of the context which, in turn, accelerates the

learning process. In order to reduce variance when encoding

properties of input into the network, CNNs can be used prior to

the execution of bi-directional LSTMs in order to facilitate

feature extraction. The pooling layer present in CNNs also helps

in achieving a more accurate relevant feature extraction by

limiting variance due to small local distortions and reducing the

feature space dimensionality.

This model claims to have increased accuracy by 9% with

regards to a single pipeline CNN- Bi LSTM model [11].

• Low-High CNNs are a novel architecture that

combines multi CNNs with multistep Attention modules [12]. In

this case, various sets of CNNs are used for extracting (1) Low

Level features and (2) High level features. Low level features

are made up of local behaviors in different time steps (curves,

onwards or downwards slopes, etc.) whereas High level features

are built on top of these and extract larger shapes in temporal

data.

Figure 4. Low-High Level features in an image. Source: [13]

The attention module matches both outputs by identifying

relevant context, just as it would be used in NLP for sentence

translation. This enables to get better understanding of the

problem context and helps in assessing how different data points

related to each other without losing the temporal component.

C. Hyperparameter tuning

Once a neural architecture has been chosen to be trained, a

variable number of hyperparameters must be tuned in order to

achieve the best possible model with that architecture. These

hyperparameters define how the network functions and are key

to their validity and accuracy. Their values depend ultimately on

the problem that is being addressed, type of available data and

expected output. Moreover, they and are correlated among them,

which means that any modification of a single hyperparameter

might force to modify the rest.

Some of the most common or important hyperparameters to

adjust within a NN are [14]:

• Number of hidden layers: Increasing the number of

hidden layers is usually believed to increase model accuracy.

• Cell units (neurons) per layer: Same as with the

number of hidden layers, a greater number of neurons per layer

might help to optimally identify relevant behavior in data, as

more interactions between variables can be taken into account.

Having a large number of neurons might lead to an increase in

computational weigh and even overfitting.

• Parameter initialization: It is necessary to initialize

the weights in the first pass. These values can be set to zero or

obtained with a random function. This can lead to vanishing or

exploding gradients, which reinforces the need to find a way of

easily initializing them without compromising its training.

• Learning rate: It represents the amount weights are

increased during training. It usually has a positive value from 0

 4

to 1. This value is one of the most relevant ones, as it can lead

to heavy and long training process after which the process could

get stuck (low values) or too fast and cause the training process

to become unstable and achieve sub-optimal sets of weights

(large values)[15]

• Loss function: it is the function designed to calculate

the distance between the predicted output and the expected

output. After computing the loss score, a learning algorithm

(usually Gradient Descent) is then used to update the weights in

a way that might achieve a better loss score in the next iteration.

• Epochs, iterations and batch size: These three

hyperparameters define the way in which data is fed to the

model. As explained in [16]:

o An epoch is a forward pass and a backward pass
of all the data samples in the training dataset.

o The batch size is the number of data samples in

each forward or backward pass. This value is set

when the number of variables is too large to be

run in one single epoch, or when the complexity

of the model makes it necessary.

o The number of iterations is the number of

backward and forward passes using the

information contained in each batch.

• Dropout regularization: Defines the number of

neurons not trained in each epoch in order to avoid overfitting

of the model during training.

• Optimizer algorithm and momentum: The neural

network optimizer is in charge of running gradient descend in

order to actualize the weights of each variable. The way to do so

varies from one optimizer to another which can impact the

model performance.

Although there is no straight-forward way to fine tune them,

there are some methods that can facilitate this task and make it

less complex, among which four stand out [14], [17], [18]:

• Hand tuning is the simplest and most straightforward

of them all. This method can be used whenever knowledge and

previous experience supports it, but it is not a scientific method

and does not account for under optimized hyperparameters

• Grid Search is based in an iterative process that tries

multiple values for each hyperparameter. These values can be

either predefined or sorted out from an interval with a fixed step
size and the model will train the model for each possible value

and return its associated loss score. This method provides a

means of mapping the problem space and more optimization

capability.

• Random Search Random Search methods are strictly

linked to Grid Search methods but only try randomized values

of hyperparameters [17]. These values are gathered from the

entire problem space, rather than form just promising areas that

could hide a local optimum.

One of the main issues with this method is that it can sometimes

leave some space points uncovered and it evaluates points that
are too close to each other to really make a significant

improvement. In order to avoid this, quasi-random sequences

(also known low-discrepancy sequences) help to spread more

evenly the data points. Some of these quasi-random sequences

are the Sobol, Harmmersley, Halton, Kronecker and

Niederrelter sequences [18], [19]

Figure 5. Comparison of some quasi-random search methods. Source:[19]

• Sequential model-based optimization methods

represent a substantial improvement compared to Grid and

Random search methods as they base their operation in trying to

improve past evaluations through a probabilistic model, making

assumptions about unobserved values through an Acquisition

Function. The Acquisition Function is a surrogate of the original

loss function of the model, making evaluations much simpler

and faster. It can be built using either Gaussian Process, Random

Forest or Tree Parzen Estimators (TPE).

 These 4 methods retrieve most of the attention, but there

are also alternative resources that may be used for

hyperparameter optimization. Gradient-based optimization,

Evolutionary Algorithms and Population-Based Algorithms are

some of these alternative methods.

• Gradient-based optimization methods apply reverse

stochastic descend methods with momentum to evaluate

gradient descend related to each hyperparameter. Then, just as it

is done with the weight’s modifications, values for each

hyperparameter are upgraded in order to obtain a better loss

score for the model.

• Evolutionary Algorithms for hyperparameter tuning

work just as described for Genetic Algorithms in section 1.3.

These methods are widely used specifically for neural networks

optimizations as they are easy to compute and perform well with

various architectures [20]

• Population-Based Algorithms are a combination of

both parallel search methods (Grid and Random Search) with

Sequential Search methods (Hand and Bayesian optimization).

It jointly learns both hyperparameters and networks weights,

conducting a wholesome optimization of the prediction model

[21].

III. CASE STUDY

Whereas Section II has served as an introduction to different

prediction models and techniques that could be used to forecast

time series values, it still remains unclear which would be most

ideal to work with.

In order to face this, some of the described techniques will be

tested under the same circumstances and for the same prediction

objective to assess their overall performance and try to obtain

valuable insights that could help when facing a new prediction

problem

 5

Certain assumptions have been made under which the

development of this work is encompassed. The first one is that

this work does not pretend to achieve a network configuration

as optimal as possible, but to test how the network prediction

responds to changes in the observed hyperparameters. It is

expected that this will allow to derive conclusions about how the

modification of each hyperparameter affects the response of the

models with the aim of extracting relevant conclusions that can

be applied to similar prediction problems, as well as identifying

the most interesting algorithms according to the needs of the

problem.

The other hypothesis of this work is that it is assumed that

most of the results extracted can be reproduced in similar

prediction problems. While it is understood that the answer

cannot be 100% reproducible, it is expected that a high degree

of similarity in the answer will be achieved to support the use of

the conclusions derived from this work.

A. Software settings

All models have been developed in Python using Google

Collab as the development environment. The choice of using

Google Colab was made based on the computing requirements

to run these models and usage simplicity, as no local install is

required.

Google Colab allows to develop code on Jupyter notebooks

and run it on Google's cloud servers using VPCs. It also provides

access to additional computing resources dedicated to hardware

acceleration, such as GPUs, including Nvidia K80s, T4s, P4s

and P100s.

All models have been implemented using Tensorflow and

Keras, the two most widely used frameworks nowadays for

Machine Learning oriented applications.

B. Data set

The dataset used for testing the different techniques was

obtained from a national wind mill park. It consists of 122

different variables and 35136 total hourly records that can be

divided into 4 main separate type of inputs:

• T – Temperature in Celsius Degrees.

• GSR – Ground Solar Radiation

• WS – Wind Speed in m/s

• WD – Wind direction, in degrees to north

In order to train and validate the models, a 70:30 split ratio

has been defined.

Figure 6. Temperature (ºC) variables. Min. = -18,7 ºC, Max. = 37,5 ºC

Figure 7. Ground solar radiation

Figure 8.Wind speed (m/s)

Figure 9.Wind direction (º)

The 5th variable, Wind Power Generation (WG), is the objective

output of the model. The model should forecast its value in the

next hour.

Figure 10.Output variable detail

C. Model assumptions

This workstream has been focused on assessing the impact of
4 of them (algorithm, numbers of layers, number of neurons per

layer, and leaning rate) and fixing the values of some additional

ones based on their overall acceptance according to the

consulted bibliography or execution simplicity, given the

computing resources used for the development of the models.

• Models: ['lstm', 'gru', 'rnn', 'bilstm']

• activation : ['elu']

• layers : (1,6,1), min_layers, max_layers (not included),

step_size

• neurons_per_layer :(1, 45, 5), min_neurons,

max_neurons (not included), step_size
• learning_rate: (0.0005, 0.005,5), min_lr, max_lr

(included), number_of_elements

• optimizer: ['adam']

• batch_size: [20]

• epochs: [20]

The rank of values to be tested in the variable

hyperparameters have been randomly chosen and do not

correspond to any previous conducted tests.

 6

D. Benchmark Model

In this work, the benchmark model has been defined under the

assumption that WG at 𝑡 + 1 will be equal to the previous

recorded value (WG value at time step 𝑡).

𝑦𝑝𝑟𝑒𝑑(𝑡) = 𝑦 (𝑡 − 1) (1)

Validation MSE will be, in this case, the metric used to

identify those models that beat the benchmark model

assumption for the same prediction problem.

The Validation MSE for the benchmark model stands at

240.44. Any model achieving a lower validation MSE will be

classified as valid for our forecasting problem, at least accuracy

wise.

Figure 11. WG -Real output vs Benchmark model

IV. RESULTS

TABLE I

Cross comparison for the best performing simulations

 Tuning

technique
Layers

Neurons

per

layer

Learning

rate

Validation

MSE

Total

execution

time

(min)

LSTM Grid 2 26 0,00158114 175,390069 260,21

LSTM Random 3 31 0,00298181 184,265402 45,5

LSTM Bayesian 3 15 0,00100075 182,650941 118,01

LSTM
Genetic

Algorithm
3 30 0,00146076 187,247948 100,37

GRU Grid 3 16 0,0005 167,600379 217,3

GRU Random 4 26 0,00096535 169,507542 48,6

GRU Bayesian 2 30 0,00063344 170,248371 100,14

GRU
Genetic

Algorithm
5 39 0,00072304 175,601382 56

RNN Grid 3 6 0,0005 179,856083 107,1

RNN Random 1 21 0,00195347 191,678969 24,7

RNN Bayesian 6 15 0,00073817 185,762487 70,17

RNN
Genetic

Algorithm
4 86 0,00156522 176,363621 42

BILSTM Grid 2 11 0,005 187,233101 511,6

BILSTM Random 1 41 0,00414321 192,240764 97,3

BILSTM Bayesian 1 45 0,00259197 190,741036 164,23

BILSTM
Genetic

Algorithm
2 69 0,00229161 216,845031 144,07

TABLE II

Number of adjusted candidates per tuning technique

Tuning technique Number of adjusted candidates

Grid Search 150

Random Search 50

Bayesian optimization 100

Genetic Algorithm 80

It can be seen how the best models are concentrated as a result

of using GRU type network architectures as opposed to LSTM,

as would have been expected based on the conclusions derived

from the literature consulted, and how RNNs are positioned as

the best architectures in terms of execution time, both results

already presented in the previous sections.

LSTM architectures achieve acceptable results, although far

from the best obtained with GRUs and without substantial

improvements in terms of total execution time that could justify
their choice when faced with a prediction problem similar to the

one discussed. BILSTM architectures would be initially

discarded for not being able to prove whether their low

performance could be improved by means of other

hyperparameters whose optimization is not contemplated in this

work.

Regardless of the type of network architecture employed, it is

clear how Grid Search techniques are the most interesting to use

in a first approach to the problem. Not only are these techniques

the ones that achieve, in a general way, the best results, but they

also allow exploring the whole map of hyperparameters defined
without being influenced by local minimums

As far as the speed of execution is concerned, - and in the

same way for any network architecture - Random Search is the

one that allows to obtain reasonable results in the shortest time

possible, but, as it has been explained before, it is necessary to

evaluate the need of greater resources to evaluate more complex

configurations or to increase the number of iterations, which

entails a great limitation to have in consideration for its

implementation.

Bayesian optimization is an alternative solution if you are

looking for an intermediate point between accuracy and
execution time. Unlike genetic algorithms, which do not stand

out in the field of accuracy or runtime improvement, the tests

performed by Bayesian optimization are usually closer to the

optimal that can be achieved through grid search, without the

complexity of random and more feasible than tests performed by

genetic algorithms that, after each new mutation, risk ending up

selecting sub-optimal configurations.

V. CONCLUSIONS

Although it cannot be presumed that all prediction problems

have the same behavior, nor that the models tested will respond

in the same way to what has been seen in this work in other

situations, it can be expected, and this has been assumed in this

work, that it is possible to generalize some of the results obtained

here, as long as one is aware of this fact and the limitations it

may entail.

Another important aspect to take into account, and which has

partly defined the results obtained, is that this work has only

contemplated the optimization of the 4 hyperparameters that are

most sought after in a general way when undertaking any work
in this area, allowing a certain degree of freedom in the

initialization of other more complex hyperparameters, whose

theoretical basis does not allow direct conclusions to be

extrapolated from the values obtained due to their complexity.

Assumptions have also been made regarding the values of some

hyperparameters that may be far from optimal, but which have

greatly facilitated the development of this work.

 7

In order to improve the results obtained in this work, it would

be of great interest to carry out tests along the same lines of this

work, testing other ranges of values for the hyperparameters

tested here, with the aim of observing whether the behavior

remains in accordance with what has been observed in this work,

or whether conclusions can be drawn that could complement

those presented here.

As for the results, the following points can be concluded:

• Regardless of the optimization technique employed,

GRU architectures far exceed the expectations placed on

LSTMs that were initially positioned as those from which to

expect the best results, while biLSTMs are relegated to last

position by failing to achieve good results in any of the fields

tested.

• As far as possible, start the search for

hyperparameters in limited environments and opt for

intermediate values, avoiding any extreme values. As can be

seen from the final table of results (Table 15), most of the results

oscillate around 2-3 layers, a number of neurons per layer not

exceeding 30 (with some exceptions) and with downward values

as far as learning rate is concerned.

• The number of layers and neurons per layer should be

adapted to each application, being aware that for more complex

applications a greater number of layers and neurons would be

required to model the output behavior. It is recommended to

perform a more comprehensive initial search, and limit

subsequent trials in a limited rank around those values within the

optimal configuration appears to be located.

In order to choose the best hyperparameter optimization

method, the following approach can be followed:

• Is time a decisive factor?

Opt for Bayesian optimization or random search, if you have

sufficient computational resources to achieve a sufficient

number of iterations, along GRU or RNN-type network

structures, depending on whether you want better accuracy or

just speed of execution, respectively. As for the number of

iterations, it is necessary to at least execute a number of them

that allows the algorithm to converge in a hyperparamenter

subspace, ensuring a small variance from one iteration to the

next one.

• Is the best possible accuracy being sought?

If, above all, the aim is to minimize the model's error, opt for

Grid search optimization methods together with GRU-type

network architectures.

• The objective is to achieve a time-performance ratio?

Opt for a Bayesian optimization method using GRU or RNN-

type network architectures

REFERENCES

[1] H. Wan, ‘Deep Learning:Neural Network, Optimizing Method and

Libraries Review’, in 2019 International Conference on Robots &

Intelligent System (ICRIS), Haikou, China, Jun. 2019, pp. 497–500, doi:

10.1109/ICRIS.2019.00128.

[2] R. Zhang, Z. Yuan, and X. Shao, ‘A New Combined CNN-RNN Model

for Sector Stock Price Analysis’, in 2018 IEEE 42nd Annual Computer

Software and Applications Conference (COMPSAC), Tokyo, Japan, Jul.

2018, pp. 546–551, doi: 10.1109/COMPSAC.2018.10292.

[3] I. Valenca, T. Ludermir, and M. Valenca, ‘Hybrid Systems to Select

Variables for Time Series Forecasting Using MLP and Search

Algorithms’, in 2010 Eleventh Brazilian Symposium on Neural Networks,

Sao Paulo, Oct. 2010, pp. 247–252, doi: 10.1109/SBRN.2010.50.

[4] A. Menon, S. Singh, and H. Parekh, ‘A Review of Stock Market Prediction

Using Neural Networks’, in 2019 IEEE International Conference on

System, Computation, Automation and Networking (ICSCAN),

Pondicherry, India, Mar. 2019, pp. 1–6, doi:

10.1109/ICSCAN.2019.8878682.

[5] J. Brownlee, ‘How to Choose a Feature Selection Method For Machine

Learning’, Machine Learning Mastery, Nov. 26, 2019.

https://machinelearningmastery.com/feature-selection-with-real-and-

categorical-data/ (accessed Jan. 26, 2020).

[6] D. Soni, ‘Introduction to Evolutionary Algorithms’, Medium, Jul. 16,

2019. https://towardsdatascience.com/introduction-to-evolutionary-

algorithms-a8594b484ac (accessed Jan. 21, 2020).

[7] S. Patnaik, Ed., Recent Developments in Intelligent Nature-Inspired

Computing: IGI Global, 2017.

[8] DataVedas, ‘EMBEDDED METHODS | Data Vedas’.

https://www.datavedas.com/embedded-methods/ (accessed Jan. 28,

2020).

[9] T. Lin, T. Guo, and K. Aberer, ‘Hybrid Neural Networks for Learning the

Trend in Time Series’, in Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, Melbourne, Australia, Aug.

2017, pp. 2273–2279, doi: 10.24963/ijcai.2017/316.

[10] ‘(1) (PDF) An Adaptive Offloading Method for an IoT-Cloud Converged

Virtual Machine System Using a Hybrid Deep Neural Network’,

ResearchGate.

https://www.researchgate.net/publication/328636008_An_Adaptive_Offl

oading_Method_for_an_IoT-

Cloud_Converged_Virtual_Machine_System_Using_a_Hybrid_Deep_N

eural_Network (accessed Mar. 01, 2020).

[11] J. Eapen, D. Bein, and A. Verma, ‘Novel Deep Learning Model with CNN

and Bi-Directional LSTM for Improved Stock Market Index Prediction’,

in 2019 IEEE 9th Annual Computing and Communication Workshop and

Conference (CCWC), Las Vegas, NV, USA, Jan. 2019, pp. 0264–0270,

doi: 10.1109/CCWC.2019.8666592.

[12] C. Liu, K. Li, J. Liu, and C. Chen, ‘LHCnn: A Novel Efficient Multivariate

Time Series Prediction Framework Utilizing Convolutional Neural

Networks’, in 2019 IEEE 21st International Conference on High

Performance Computing and Communications; IEEE 17th International

Conference on Smart City; IEEE 5th International Conference on Data

Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, Aug.

2019, pp. 2324–2332, doi: 10.1109/HPCC/SmartCity/DSS.2019.00323.

[13] ‘images (Imagen PNG, 270 × 187 píxeles)’. https://encrypted-

tbn0.gstatic.com/images?q=tbn%3AANd9GcS6o-

bFFynY9S_urprOHPLGPf_MWzRWR8dTohZujIhl9gdRKuKm&usqp=

CAU (accessed Apr. 23, 2020).

[14] A. Bissuel, ‘Hyper-parameter optimization algorithms: a short review’,

Medium, Apr. 24, 2019. https://medium.com/criteo-labs/hyper-parameter-

optimization-algorithms-2fe447525903 (accessed Feb. 05, 2020).

[15] J. Brownlee, ‘Understand the Impact of Learning Rate on Neural Network

Performance’, Machine Learning Mastery, Jan. 24, 2019.

https://machinelearningmastery.com/understand-the-dynamics-of-

learning-rate-on-deep-learning-neural-networks/ (accessed Feb. 04,

2020).

[16] ‘machine learning - Epoch vs Iteration when training neural networks’,

Stack Overflow. https://stackoverflow.com/questions/4752626/epoch-vs-

iteration-when-training-neural-networks (accessed Feb. 04, 2020).

[17] ‘Hyperparameters: Optimization Methods and Real World Model

Management’, MissingLink.ai. https://missinglink.ai/guides/neural-

network-concepts/hyperparameters-optimization-methods-and-real-

world-model-management/ (accessed Feb. 03, 2020).

[18] ‘Hyperparameter optimization for Neural Networks — NeuPy’.

http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_n

etworks.html#hand-tuning (accessed Feb. 05, 2020).

[19] ‘The Unreasonable Effectiveness of Quasirandom Sequences | Extreme

Learning’. http://extremelearning.com.au/unreasonable-effectiveness-of-

quasirandom-sequences/ (accessed Feb. 05, 2020).

[20] A. Osipenko, ‘Genetic algorithms and hyperparameters — Weekend of a

Data Scientist’, Medium, May 30, 2019.

 8

https://medium.com/cindicator/genetic-algorithms-and-hyperparameters-

weekend-of-a-data-scientist-8f069669015e (accessed Feb. 06, 2020).

[21] A. Li et al., ‘A Generalized Framework for Population Based Training’,

in Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining - KDD ’19, Anchorage, AK, USA,

2019, pp. 1791–1799, doi: 10.1145/3292500.3330649.

