
Comparative Analyses of Mobile Robots
Localization Algorithms based on Particle Filters

Author: Julio Labora Gómez
Universidad Pontificia Comillas

Madrid, Spain
julio.labora.gomez@alu.comillas.edu

Director: Jaime Boal Martı́n-Larrauri
Universidad Pontificia Comillas

Madrid, Spain
jaime.boal@iit.comillas.edu

Abstract—Mobile robot localization is key in multiple appli-
cations across Industry 4.0, as mobile robots need to know
their location to be able to perform almost any task. One
popular algorithm to perform the localization is the particle filter,
which can be modified in several ways to approach different
problems. The goal of this project is to compare and analyze
some of those modifications in a real application in a simulated
environment: global localization of a 2-D mobile robot in a maze.
The modifications that are compared are 4 different strategies
for particle resampling: residual, stratified, systematic and wheel
resampling. However, due to the high computational cost of
the simulations, the parameters of the simulations of these 4
algorithms need to be prefixed. For this purpose, the value for
each parameter is determined performing a prior comparative
analysis of the parameters using another resampling technique,
multinomial resampling, to avoid biasing the comparison. Three
of the four algorithms show very similar results both in success
rate in localization and in the localization accuracy. The fourth
one, the residual resampling, is shown to be considerably worse
for this specific application.

Resumen—La localización de robots móviles es clave en
multitud de apliaciones en la Industria 4.0, puesto que los
robots móviles necesitan conocer su posición para poder realizar
cualquiera de sus tareas. Un algoritmo muy popular para llevar
a cabo la localización es el filtro de partı́culas, que puede ser
modificado de diferentes formas para adaptarse a problemas
especı́ficos. El objetivo de este proyecto es comparar y analizar
algunas de esas modificaciones en una aplicación real en un
entorno simulado: el problema de localización global de un
robot móvil 2-D en un laberinto. Las modificaciones que se van
a comparar son 4 estrategias disintas de remuestreo: residual,
estratificado, sistemático y remuestreo de la rueda. Sin embargo,
debido al elevado coste computacional de las simulaciones, es
necesario prefijar los parámetros de las simulaciones de estos 4
algoritmos. Para ello, el valor de cada parámetro se determina
mediante un análisis comparativo previo en que se emplea otro
algoritmo de remuestreo distinto, el remuestreo multinomial,
para evitar sesgar las comparación. tres de los cuatro algoritmos
comparados muestran resultados muy similares tanto en ı́ndice
de éxito en la localización como en la precisión de localización. El
cuarto, el remuestreo residual, da resultados considerablemente
peores que los demás en esta aplicación especı́fica.

Index Terms—autonomous mobile robots, particle filter, Bayes
filter, robot localization, resampling techniques, state estimator,
Industry 4.0

I. INTRODUCTION

The localization of mobile robots is an essential element for the use
of robots in many industrial applications. In order to perform any task,
one of the firsts questions any mobile robot should answer is Where
am I? Particle filter based algorithms are some of the most common

techniques used across all industries to determine the location of the
robot.

A particle filter is a recursive non-parametric mathematical al-
gorithm that uses a set of samples called particles to represent
the distribution of an stochastic process. This algorithm provides
a continuous representation of the state of the system considering
several hypotheses at the same time. It is, therefore, a state estimator
with a multimodal function.

The state space model can be non-linear in one or several of
its components and noise distributions can be of any kind (not
necessarily Gaussian). This algorithm is therefore very versatile and
can be used in many fields.

In the field of robotics, there are various problems that can be
tackled with this algorithm. The most popular ones are: global
localization, kidnapped robot problem, SLAM (that stands for Si-
multaneous Localization and Mapping) and localization in dynamic
environments.

In global localization a robot is located in a known environment
but its position within the environment is unknown. The kidnapped
robot problem is quite similar but with the difference that the robots
position can be changed at any time without notice [1] [2]. SLAM,
which is one of the most popular ones in the industry, requires
that the robot navigates in the environment and gathers information
regarding not only its position within it, but about the environment
itself [3] [4]. Localization in dynamic environments uses some of the
underlying principles in SLAM, with the downside that areas that
were considered already known in SLAM because they had already
being explored, now can be slightly different.

Therefore particle filters are very useful in Industry 4.0 applica-
tions, in which mobile robots are an increasing trend. One example
is the renowned Seat car factory in Martorell, that has substituted
its loading trucks for AGV’s in the transport of parts. These AGV’s
perform SLAM navigation and are fully electric. They do not follow
marks on the ground and do not run on rails, they are able to
move freely within the factory, which avoids maintenance costs
and civil work [5]. Another similar application, but in the retail
sector, is the use of mobile robots for the transport of packages
in warehouses. Amazon is a pioneer in this application [6]. Other
popular applications include medical and surgical issues, personal
assistance and security, as well as ocean and space exploration. For
example, mobile robots are used in nuclear power plants to reach
areas which are inaccessible for humans. Maintenance is also another
field in which mobile robots are an increasing trend, as they simplify
some of the tasks required for the maintenance of big infrastructures,
such as ships or planes. They are also popular in exploring and
monitoring tasks, whether it is for security and patrolling, thermal
monitoring (which is crucial in server farms) or exploration of mines
[7].

II. STATE OF THE ART

The basic particle filter algorithm has 4 steps:

1



• Particle initialization
• Weight calculation and resampling
• Particles update
• Localization criterion

During initialization N particles are sampled from a uniform
distribution in the feasible state space. Then the weight of each
particle is calculated using a function that is somehow proportional
to the conditioned probability of that particle being an accurate
representation of the system state. Afterwards, particles are resampled
according to their weight. The state of the particles is updated
taking into account the dynamics of the system in the corresponding
sampling time. Steps 2 and 3 are repeated a number of times until
the localization criterion is met and the robot location is considered
known. This algorithm is computationally costly, because it requires
the replication of a process a high number of times (number of
particles used can vary between a few thousands and hundreds of
thousands or even millions) [8].

However, several modifications of the basic algorithm exist, so
that it can better handle specific problems such as those mentioned in
Section I, and can also compensate the downsides of the conventional
algorithm such as particle degeneracy, high variance, high number of
samples required and high computational cost.

Possibly the most well-known variation is the Rao-Blackwellized
particle filter (also known as marginalized particle filter). This algo-
rithm exploits a feature that some dynamic systems have, in which
the state space is non-linear but it contains a linear subspace. In
these cases, the linear subspace can be handled separately using
a Kalman filter, which is an analytical state estimator. Because
it is analytical, the Kalman filter is much more computationally
efficient than the particle filter, so this modification allows a faster
convergence. Additionally, the Kalman filter is an optimal state
estimator (in those cases in which it can be used), so the state
estimation of the marginalized particle filter is better than estimation
of the regular particle filter [9] [10].

One of these modifications consists of changing de number of
samples used in the particle filter across the sampling periods. This is
key to reducing the simulation time as the computation cost increases
linearly with the number of particles. There are several techniques to
achieve this.

One strategy is to use the sum of the weights of the particles to
determine if enough samples had been drawn of more are needed.
To do this, a preset threshold is used, and when the sum of the
weights reaches this threshold, no more particles are drawn. The
correct choice of this threshold is key for the success of the strategy
[11].

Another strategy is to use KLD-sampling (where KLD stands for
Kullback-Leibler divergence, which is a generally accepted technique
to measure the difference between two distributions, despite that
technically it is not a metric, because although its value is non-
negative and is only 0 if both distributions are identical, but it does
not have the symmetric nor the triangular properties). This technique
aims to bound the estimation error caused by the representation of
the particle filter probability density distribution using samples. To
calculate this error, the Kullback-Leibler divergence of the difference
between the sample based probability density function and the believe
of the true probability density function is used (Equation 1). This
technique can be implemented in particle filters in order to ensure
that the number of particles is enough so that the following statement
holds: with a probability of 1− δ, the approximation error between
both distributions is smaller than ε, being δ and ε preset values. To
achieve this, particles are drawn from the probability density function
until the difference between the sample based distribution and the
believed true distribution is smaller than the preset threshold. This
strategy has the same advantage as the previous one, as it enables
to keep just the necessary number of particles so that unnecessary
computation is avoided [11].

K(p, q) =
∑
x

p(x)log
p(x)

q(x)
(1)

Another modification is to introduce new particles in each iteration
of the algorithm. This is a technique that can handle the kidnapped
robot problem on itself, provided that enough particles are added.
Nevertheless, its use in the global localization problem (even if
the robot cannot be arbitrarily moved) is also useful to make the
algorithm more robust. One downside is that the constant initialization
of new particles increases the computation cost of the algorithm [12].

Regarding the second step, weight calculation and resampling,
several techniques can be used. The goal of resampling is to minimize
particle degeneracy, which is the concentration of most of the weight
in a few number of particles, being, therefore, the weights of the rest
of the particles negligible. Some of the most well-known traditional
resampling tecniques are: multinomial, stratified, systematic, residual
and wheel resampling [13] [14] [15]. Popular modern variations
include residual systematic, modified and distributed resampling [16]
[17].

Multinomial resampling is perhaps the most intuitive technique, as
it is completely naive. N independent random numbers are sampled
from a uniform distribution in the range (0, 1]. Then, each of
them is used to draw a particle proportionally to its weight. This
technique has a high variance, with increases particle degeneracy and
is computationally inefficient, thus it is not used in practice.

For the stratified resampling, the set of particles is divided into
several subsets (strata), dividing the (0, 1] range in N disjoint
subranges and generating afterwards a random number in each of
them. Particles are then drawn in the same way as multinomial
resampling. This technique has less variance than the previous one
and is more computationally efficient, though the generation of N
random numbers is still costly. This technique guarantees that all
particles with normalized weight greater than 2/N are drawn, as
those particles necessarily cover one full subrange.

A variation of this technique is systematic resampling, in which
only one random number is generated u1 = (0, 1/N ]. The rest are
calculated by the Equation 2.

un = u1 +
n− 1

N
(2)

For residual resampling, all particles with normalized weight
greater than 1/N are replicated a number of times, this number being
ni = bNwic for the i-th particle, which has a normalized weight of
wi. Then, m = N −

∑
ni particles are resampled from the initial

particles set using the residuals of the weights instead of the original
weights. These residuals are calculated by the Equation 3. For this
selection, any other resampling method can be used.

ŵi = wi −
ni
N

(3)

Several variations of the wheel resampling method exist. In this
section, the pseudocode of the one used in this project is included.

One of the variations of the resampling methods is modified
resampling. This technique resamples particles considering not their
weights but functions of them. Using functions is possible to benefit
smaller or bigger particles. This way, it is possible to adjust the func-
tions to increase the particle diversity by benefiting smaller particles
or to speed up convergence by benefiting bigger particles. This can
be achieved tuning the parameter alpha in the Equation 4, in which
the weight is calculated as a function of the probability associated to
that particle. Non-modified resampling techniques follow the exact
same equation with α = 1.

ωi = (pi)
α (4)

2



Algorithm 1: Wheel resampling algorithm
index = U(1, N)
beta = 0
for i = 1 : N do

beta = beta + U(0, 2 * max(weights))
while weights[index] < beta do

beta = beta - weights[index]
index = index + 1

end
draw(particle[index])

end

III. PROBLEM STATEMENT

In this section, the comparative analysis performed is detailed:
its goals, the algorithms being compared, the methodology and the
environment and means.

The goal of this project is to compare multiple variations of
the particle filter algorithm and determine if some of them are
better, which is the best one for the global localization problem
and to quantify the differences. The variations compared are four
resampling algorithm techniques: stratified, systematic, residual and
wheel resampling. All of them are used in their modified version, as
the value of alpha is different from 1.

The algorithms are evaluated in their ability to solve a global
localization problem. A 2-D mobile robot is placed in a known,
simulated environment but it does not know its location. It must
gather information to determine it. The robot will try to localize
itself several times using each of the algorithms to generate the data
for the comparison. Each of this tries, is referred to as expedition.
However, to be able to perform an expedition, the robot needs
more than a particle filter: it requires the ability to process sensor
readings, a navigation algorithm to move within the environment and
other components. As these components are not the subject of this
analysis, they are considered given. The components already have
their required parameters fine-tuned so that the robot behaves in
a fairly smart way. One downside, is that the fine-tuning of those
parameters has been done with the wheel resampling algorithm, so
this may be a source of bias in this comparison.

Prior to the comparison of the resampling algorithms three tasks
have been performed: considerable reduction of the required compu-
tation time of the simulations, automation of the simulations so that
they do not require human intervention and fine-tuning of some of
those given parameters which are believed to have the most impact
in the comparison.

The reduction of the computation time has been crucial for the
analyses, because of the high computation cost of the particle filter. In
fact, this analysis could not have been possible without this reduction,
as the total simulation time that has been required is approximately
ten days just for the generation of the final data (prior simulations
have been necessary to debug the algorithms), and the computation
time reduction achieved is approximately one order of magnitude
(i.e. 10 times less). It would have been necessary over a 100 days
to generate this amount of data. In this matter, the automation of the
simulations has also been paramount to the success of the project, as
the computer has been able to keep running the simulations overnight,
both for debugging and for data generation.

In order to show the resampling algorithms at their best, those of
these parameters which are believed to be more determining in the
performance of the algorithms are furtherly fine-tuned to improve
the results. These parameters are: alpha and the number of particles.
Additionally, multiple strategies to adapt de number of particles have
also been tested. As it is not possible to simulate all the combinations
of the chosen parameters/variations for each of the four resampling

Fig. 1. Robot environment. It is 9 m x 9 m, consisting of 81 1 m x 1 m cells.

algorithms in a reasonable amount of time, a prior comparative
analysis is done to decide which is the most adequate variation to
perform the final comparison. This comparative analysis has been
carried out using the multinomial resampling algorithm to avoid
introducing bias in the analysis.

To compare the algorithms, two key metrics are considered:
success rate (i.e. how many times the robot localizes successfully)
and localization accuracy (i.e. when the robot localizes itself, how
much is the error between the believed pose and the true pose). An
expedition is considered successful if the localization error is lower
than 0.65 meters (in euclidean distance) and lower than 45 degrees in
orientation (0.78 radians approximately). The 0.65 meters threshold
corresponds to an experimental value, equal to a parameter used in
the localization criterion, which is explained below. The 45 degrees
threshold is considered to be approximately the maximum difference
from which the particle filter can recover after the localization. Addi-
tionally, to avoid excessive computation an expedition is considered
invalid (and therefore not taken into account in any way and simply
repeated) if the number of steps of the navigation algorithm of the
robot is higher than 500, which are more than enough for the robot
to localize itself under normal circumstances.

As the computation time of the simulations is an issue in these
analyses, the global localization problem that is being tackled is a
simplified version of the regular problem. As can be seen in Figure
1, all the walls of the environment are either horizontal or vertical.
This allows that the robot’s initial orientation, and therefore the
particles’ initial orientation, can be limited to 4 values: 0, 90, 180
and 270 degrees, as the robot could be able to rotate to one of this
positions anyway just by using a wall as a reference. This reduces
the computation considerably, as one of the variables is now discrete
in the initialization, and only a fraction of the particles is needed.

To perform the simulations the navigation, particle filter and
clustering algorithms are programmed in Python 3.7. This component
interacts through an API with the robot simulator V-REP PRO EDU
3.6.2. The robot being used is the Pioneer 3-DX, which is a two-
wheeled differential-drive robot that has 16 sonar sensors with a range
of 1 meter. This type of robot is quite popular in the research field,
not only on simulated environments but also real ones [18]. All of
this, is run on a Windows 10 operating system. The hardware used
is a laptop, model Lenovo Yoga C930 with 16 GB of RAM and an
8-core i7-8550U @ 1.80 GHz processor.

Other parameters which are relevant, but are not modified for this

3



experiment are:
• Sensors and actuators sampling time: 0.05 seconds
• Particle filter sampling time, and therefore resampling and

finalization criterion sampling time: 1 second
• Sonar sensors noise: 0.6 m
• v and w measurement noise: 0,15 m/s and 0,2 rad/s respectively
Additionally, the navigation algorithm and the localization crite-

rion are also relevant. The first one is highly complex with many
parameters, but it consists of an state machine that evaluates the
environment (i.e. where are the walls) and a wall follower algorithm
implemented with two PID controls in cascade configuration. The
controlled variables are the relative angle between the wall and the
robot, and the lateral distance to the wall. Regarding the localization
criterion, agglomerative clustering is used [19], with average distance
being used as distance between groups and a threshold of 0.65 m
beyond which, clusters are not merged. The clustering is performed
considering only the euclidean distance and not taking into account
the orientation of the particles. The finalization criterion consists of
double condition: the biggest cluster, which is the best representation
of the robot pose, must contain more than 90% of the existing
particles, where as the second biggest cluster must contain less than
5%. Rigorously, a sensitivity analysis of each of these parameters
should have been carried out, but this would have required an
excessive amount of computation time.

IV. PARAMETER ANALYSIS

To reduce the number of required simulations for the final com-
parison, some parameters have been prefixed. These are: alpha, the
particle number and the particle number adaption strategy. Regarding
the particle number adaption strategy, only two alternatives have been
compared: constant number of particles and a constant 5% decrease
each iteration of the particle filter. Adaption of the number of particles
using a threshold for the sum of the weights has been implemented,
but with very poor results, so it has not been considered for the final
comparison.

As explained above, the alpha parameter takes a default value
of 1 in the conventional algorithm. Therefore, to select the optimal
value, simulations were run in identical conditions varying only this
parameter between 0.7 and 1.3 in steps of 0.1.Values close to 1 are
used because regarding the value of alpha there is a trade-off between
speed of convergence and localization success rate and therefore it
cannot be highly increased or decreased. The number of expeditions
to be performed with each of the alpha values is 25 with a constant
number of particles of 2000, which may seem small numbers, but
the total simulation time required has been approximately 12 hours.

The Figure 2 shows a slightly decreasing trend1. Despite the
reduced size of the sample, it can be observed that the lower values of
alpha 0.7 and 0.8 achieve higher success rates than the rest, almost 10
porcentual points more. This is consistent with the rationale explained
in Section II, that lower values of alpha reduce particle degeneracy,
and compensate for the high variance of multinomial resampling.

The localization error, on the contrary, does not show a clear trend
with respect to alpha, although the overall values are quite good (less
than 0.2 meters error in an environment of over 80 square meters).

Taking into account the results shown in both figures, 0.7 and
0.8 appear to be the best values, being 0.7 slightly better. However,
to compensate for the bias introduced by the fact that multinomial
resampling has a higher variance that the other algorithms, the final
choice is alpha equal to 0.8.

The optimal number of particles and particle number adaption
strategy had been determined using a similar approach, considering
also the trade-off between computation time and successful localiza-
tion. For the sake of brevity, the results are not included and only
the information about the experiments and the final choices are.

1This trend is not monotonous mainly due to the reduced size of the sample.

Fig. 2. Localization success rate grouped by alpha.

Fig. 3. Localization distance error grouped by alpha.

The number of particles that have been analyzed are 1500 to
4000 in steps of 500. For each of them, 60 expeditions have been
performed with a value of alpha equal to 1. These simulations have
taken approximately 42 hours. The chosen value is 2500.

For each of the adaption strategies 120 expeditions have been
simulated, with an initial particle number of 2000 and alpha equal
to 1. The required simulations have taken approximately 16 hours.
The strategy which has proven to be better is periodically decreasing
the number of particles, which also reduces the computation time
considerably.

TABLE I
PARAMETER SUMMARY.

Parameter Final value

Alpha 0.8

Particle number 2500

Adaption strategy Decreasing 5%

V. COMPARATIVE ANALYSIS

In this section, the aforementioned resampling algorithms are
compared: residual, stratified, systematic and wheel resampling. To
generate the data, 500 expeditions have been simulated for each of
them. These 500 expeditions consist of 5 expeditions repeated for
100 different starting points, chosen at random within the feasible
locations of the robot in the map (considering only 4 orientation
values as explained in Section III). The total simulation time has
been approximately 36 hours per resampling algorithm, about 6 days
in total.

4



Fig. 4. Success rate grouped by resampling technique.

Fig. 5. Number of steps before localization grouped by resampling technique.

Observing the Figure 4, it is quite noticeable that whereas three of
the algorithms look quite similar, the fourth one, is much worse.
Residual resampling shows a success rate similar to the one of
multinomial resampling, close to 65%, and far from the over 80% of
the other three.

Figure 5 shows that residual resampling converges the fastest, and
once again, the other three are quite similar (almost identical in
fact). The fast convergence of the residual algorithm is theoretically
a positive feature, showing the trade-off between convergence speed
and success rate. However, because the average is so close to the
others, it seems that in many cases the residual algorithm converges
prematurely and despite there being two or more possible locations
for the robot it choses one of them at random, and are those cases
in which that choice is wrong that lead to the lower success rate.

That being said, the difference in speed of convergence is not
that high, so considering the data is hard to think of an industrial
application in which a 15% increase in speed convergence is preferred
over a difference of 15 porcentual points in success rate.

Figures 6 and 7 show also very little difference between the three
best techniques regarding the localization accuracy. Considering all
these data, it is not possible to assure that one of the algorithms
is the best. It seems it might be systematic resampling, as it has
a slightly higher success rate than the others, specially taking into
account that some of the preset parameters are biased in favor of the
wheel resampling algorithm.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

After the comparison, there is no clear winner. Residual resampling
is worse than the other three, but those are quite close to each other
in all the metrics considered. The systematic is possibly the best by
a small difference, but further analysis is required to determine it.
In fact, the three techniques show quite similar results. They are so

Fig. 6. Localization distance error grouped by resampling technique.

Fig. 7. Localization orientation error grouped by resampling technique.

close, that it seems like the reason the success rates are not higher
has nothing to do with resampling, but with the other components of
the robot algorithm. So when tackling this problem, if one of these
three resampling techniques are used, it is most likely that resampling
is not an issue.

All of this is a reminder that, when dealing with real problems,
there are a lot of things that play a significant role in the results, and
not all of them can be controlled. Because of this, conclusions derived
from this kind of analyses should always be carefully considered.

Also, it is quite noticeable the impact on the results that small
adjustments in some parameters like alpha can make. This suggests
that, given enough time and computational capacity to fine-tune all
the parameters present in this problem, the overall improvement might
be huge.

A future development regarding these analyses might be the
successful implementation of a sophisticated particle number adaption
technique. This feature is quite promising, because it might be able
to reduce on average the number of particles and therefore the
computation time, without sacrificing success rate. An algorithm that
reduces the particles only when they are strictly unnecessary would

TABLE II
SUCCESS RATE OF EACH RESAMPLING ALGORITHM.

Resampling Success Rate (%)

Residual 64.0

Stratified 80.0

Systematic 82.4

Wheel 81.6

5



most definitely make a difference.
Another source of improvement is the sophistication of the final-

ization criterion. Although, the one explained previously has proven
to be reasonably good, a criterion that takes into account more
information, regardless if it is information on the environment, the
resampling technique or any other, can also make a significant
difference in the localization results.

A promising development, aligned with the trends in the indus-
try, would be transforming this algorithm into a SLAM algorithm
and replicating the comparative analysis. This analysis may show
completely different results and conclusions, just because of the
characteristics of the problem.

REFERENCES

[1] I. Bukhori and Z. H. Ismail, “Detection of kidnapped robot problem in
monte carlo localization based on the natural displacement of the robot,”
International Journal of Advanced Robotic Systems, vol. 14, no. 4, p.
17298814-1771746, 2017.

[2] I. Bukhori, Z. H. Ismail, and T. Namerikawa, “Detection strategy for
kidnapped robot problem in landmark-based map monte carlo localiza-
tion,” in 2015 IEEE International Symposium on Robotics and Intelligent
Sensors (IRIS), pp. 75–80, IEEE, 18/10/2015 - 20/10/2015

[3] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[4] M. Lin, C. Yang, D. Li, and G. Zhou, “Intelligent filter-based slam for
mobile robots with improved localization performance,” IEEE Access,
vol. 7, pp. 113284–113297, 2019.

[5] David Galán “Ası́ son los robots eléctricos y autónomos de SEAT
Martorell que han jubilado a los camiones para el transporte de piezas”
https://www.motorpasion.com/seat/asi-robots-electricos-autonomos-
seat-martorell-que-han-jubilado-a-camiones-para-transporte-piezas

[6] Matt Simon “Inside the Amazon warehouse there humas and machines
become one” https://www.wired.com/story/amazon-warehouse-robots/

[7] Bennett Brumson “New applications for mobile robots”
https://www.robotics.org/content-detail.cfm/Industrial-Robotics-
Industry-Insights/New-Applications-for-Mobile-Robots/content id/3362

[8] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Intelligent
robotics and autonomous agents, Cambridge Mass.: MIT Press, 2005.

[9] T. B. Schon, R. Karlsson, and F. Gustafsson, “The marginalized particle
filter in practice,” in 2006 IEEE Aerospace Conference, pp. 1–11, IEEE,
04-11 March 2006.

[10] T. Schon, F. Gustafsson, and P.-J. Nordlund, “Marginalized particle
filters for mixed linear/nonlinear state-space models,” IEEE Transactions
on Signal Processing, vol. 53, no. 7, pp. 2279–2289, 2005.

[11] D. Fox, “Adapting the sample size in particle filters through kld-
sampling,” The International Journal of Robotics Research, vol. 22, no.
12, pp. 985–1003, 2003.

[12] S. Lenser and M. Veloso, “Sensor resetting localization for poorly
modelled mobile robots,” in Proceedings 2000 ICRA. Millennium Con-
ference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), pp. 1225–1232, IEEE, 24-
28 April 2000.

[13] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle
filtering: Classification, implementation, and strategies,” IEEE Signal
Processing Magazine, vol. 32, no. 3, pp. 70–86, 2015.

[14] J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling algorithms
for particle filters,” in 2006 IEEE Nonlinear Statistical Signal Processing
Workshop, pp. 79–82, IEEE, 13/09/2006 - 15/09/2006.

[15] W. Adiprawita, A. Suwandi Ahmad, J. Sembiring, and B. R. Trilaksono,
“A novel resampling method for particle filter for mobile robot localiza-
tion,” International Journal on Electrical Engineering and Informatics,
vol. 3, no. 2, pp. 165–177, 2011.

[16] M. Bolic, P. M. Djuric, and S. Hong, “Resampling algorithms and
architectures for distributed particle filters,” IEEE Transactions on Signal
Processing, vol. 53, no. 7, pp. 2442– 2450, 2005.

[17] B. Balasingam, M. Bolic, P. M. Djuric, and J. Miguez, “Efficient
distributed resampling for particle filters,” in Efficient distributed resam-
pling for particle filters, pp. 3772–3775, IEEE, 22/05/2011 - 27/05/2011.

[18] S. I. Martı́nez, J. A. C. Rocha, J. L. Menchaca, M. G. T. Berrones, J.
G. Obando, J. P. Cobos, and E. C. Rocha, “An autonomous navigation
methodology for a pioneer 3dx robot,” Computer Technology and
Application, vol. 5, no. 2, 2014.

[19] K. Sasirekha, Prassanna Baby, “Agglomerative Hierarchical Clustering
Algorithm- A Review,” 2013

6


