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a b s t r a c t 

Although Bermudan options are routinely priced by simulation and least-squares methods using lower 

and dual upper bounds, the latter are hardly optimized. In this paper, we optimize recursive upper 

bounds, which are more tractable than the original/nonrecursive ones, and derive two new results: (1) 

An upper bound based on (a martingale that depends on) stopping times is independent of the next- 

stage exercise decision and hence cannot be optimized. Instead, we optimize the recursive lower bound, 

and use its optimal recursive policy to evaluate the upper bound as well. (2) Less time-intensive upper 

bounds that are based on a continuation-value function only need this function in the continuation re- 

gion, where this continuation value is less nonlinear and easier to fit (than in the entire support). In the 

numerical exercise, both upper bounds improve over state-of-the-art methods (including standard least- 

squares and pathwise optimization). Specifically, the very small gap between the lower and the upper 

bounds derived in (1) implies the recursive policy and the associated martingale are near optimal, so 

that these two specific lower/upper bounds are hard to improve, yet the upper bound is tighter than the 

lower bound. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Pricing Bermudan options in high dimensions requires Monte

arlo methods, and two simulation-based prices have been de-

eloped: lower and dual upper bounds. Specifically, Longstaff and

chwartz (2001) use a standard least-squares Monte Carlo (LSM)

pproach to compute lower bounds. Likewise, upper bounds are

lso based on least squares and simulation ( Andersen & Broadie,

004 ). Although both bounds are widely used, upper bounds are

ardly optimized, which is important because simulation is time

onsuming, demanding a smart approach. 

In this paper, we optimize (the more tractable) recursive upper

ounds and provide two new results. Lower/upper bounds gener-

ted by simulation depend on an exercise policy, whereby the up-

er bound is derived from a martingale based on this policy. First,

e show a recursive upper bound is independent of the next-stage
� A previous version of this paper was titled “Pricing Bermudan Options by 

imulation: When Optimal Exercise Matters.” We thank Peter Carr for comments. 

his paper has been presented at Morgan Stanley (NYC) and Oxford University 

Mathematics department). We are especially grateful to all referees for their con- 

tructive comments that led to a better paper. Research funded by Plan Nacional 

e I+D+i (ECO2017-86009-P, MDM 2014-0431, and PEP-BS-INV/GRF-12002_01) and 

omunidad de Madrid , MadEco-CM ( S2015/HUM-34 4 4 ). 
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xercise decision and hence cannot be optimized. Therefore, we

ptimize the recursive lower bound, following Ibáñez and Velasco

2018) local LSM approach, and use its optimal recursive policy 

o evaluate the upper bound as well. We find these two bounds,

hich have a similar cost to the reciprocal bounds based on a pol-

cy estimated by the standard LSM method, are very tight. Second,

e study separately an upper bound generated from a martingale

ased on continuation-value functions, a bound that is less time

ntensive yet more upper biased, and show how to reduce its bias

s well. 

In our first approach, we consider a given family of exercise

olicies—or stopping times. Ibáñez and Velasco maximize a recur-

ive lower bound—or Bermudan price, L , with regard to this family

t each exercise stage. An open question is which exercise strat-

gy minimizes the upper bound, U . We show the exercise strat-

gy that maximizes a recursive lower bound also minimizes not

he recursive upper bound itself, but rather the gap between them,

 − L . We provide a recursive expression for the gap ( Theorem 1 ),

nd show a recursive upper bound U is independent of the next-

tage exercise policy ( Proposition 1 ). Therefore, minimizing the

ap, U − L, is equivalent to maximizing the Bermudan price, L , re-

ursively. 

In the second approach, we consider a family of continuation-

alue functions. We show (i) a recursive upper bound is inde-

endent of the next-stage continuation-value function as well
 dual upper bounds for Bermudan-style options, European Journal 
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( Proposition 1 ). (ii) By factorizing the two martingales that are

based on either stopping times or continuation values, the latter

martingale includes a third error term, which ensures the process

is actually a martingale yet implies more biased upper bounds. The

other two terms of the martingale are those of the standard factor-

ization of the American option into an early-exercise premium and

the European counterpart ( Carr, Jarrow, & Myneni, 1992 ). This third

term, however, depends only on the option continuation value in

the waiting/continuation region. 

The latter constraint is critical because Bermudan options are

highly nonlinear near the exercise boundary but less so in the

waiting region, and fitting a continuation-value function only in

this region is easier. This new upper bound, based on a contin-

uation value estimated only in the waiting region, is as accurate

as an upper bound based on an exercise policy estimated by the

LSM method ( Andersen & Broadie, 2004 ), but in a fraction of the

time. The new bound is especially accurate for at-/in-the-money

options, which depend mostly on sample paths that cross the exer-

cise region and that do not contribute to the martingale’s third er-

ror term. This dual waiting-region constraint is the reciprocal con-

straint of using in-the-money paths, and hence, the exercise region,

to estimate the continuation value in the LSM/primal method. 

In the numerical exercise, we price up-and-out Bermudan max-

options ( Desai, Farias, & Moallemi, 2012 ). The up-and-out barrier

makes this option very sensitive to suboptimal exercise, provid-

ing a good test. From the local LSM method ( Ibáñez & Velasco,

2018 ), we derive the optimal recursive exercise policy and com-

pute the two bounds associated with this policy: the lower bound

improves upon the reciprocal bounds based on the standard LSM

and pathwise optimization ( Desai et al., 2012 ) by more than 100–

200 cents; the upper bound yields a one-digit gap. This small gap

implies the recursive policy and the associated martingale are near

optimal and the two bounds are close to the true price. The local

policy is so good that reducing the number of subsimulation paths

by 20 (i.e., 5% of the original subsimulations) decreases the time

effort by a factor of 10, yet the upper bound increases only by a

few cents. 

Notably, the upper bound based on the local-LSM policy only

changes marginally with the number of subsimulations and is ro-

bust to all refinements, implying the upper bound is tighter and

closer to the true price than the lower bound. With other meth-

ods (e.g., the standard LSM) that yield a nontrivial gap, this claim

cannot be made. This result agrees with the two-period Bermudan

upper bound, which is independent of the (one-period) exercise

policy. A tighter upper bound implies a mid point between lower

and upper bounds is lower biased. 

The duality approach in option pricing ( Haugh & Kogan, 2004;

Rogers, 2001 ) has been extended in many ways. Chen and

Glasserman (2007) and Rogers (2010) study optimal dual bounds;

Belomestny, Schoenmakers, and Dickmann (2013) use a multilevel

approach; Glasserman (2004) studies dual bounds based on regres-

sion methods; Christensen (2014) and Bhim and Kawai (2018) de-

rive upper bounds using linear and semidefinite programming.

Desai et al. (2012) use a pathwise-optimization approach that is

less time consuming. In a novel extension, Brown, Smith, and

Sun (2010) uses an information relaxation that nests the perfect-

information assumption of the martingale approach, and also ap-

plies to other problems in operations research ( Balseiro & Brown,

2019 ). 

We tailor Haugh–Kogan and Andersen–Broadie results to our

optimal recursive setting, which yields such tight bounds. Specifi-

cally, in the former case based on continuation values, we improve

the upper bound by computing the continuation value only in the

waiting region. In the latter case based on stopping times, the up-

per bound is both tight and efficient if we use fewer subsimulation

paths, but a near-optimal exercise strategy as in the local LSM ap-
Please cite this article as: A. Ibáñez and C. Velasco, Recursive lower and

of Operational Research, https://doi.org/10.1016/j.ejor.2019.07.031 
roach. In both ways, we bring the overall cost of the martingale

pproach in line with pathwise optimization or information relax-

tion. Moreover, the factorization of the dual martingales in terms

f the components of the Bermudan process is mostly new. Our

ight bounds are an useful benchmark for new methods that try to

mprove upper bounds in terms of accuracy or time effort. 

Section 2 reviews the local LSM method and explains the exer-

ise policies and continuation values needed later for dual bound-

ng; Section 3 shows the independence of the recursive upper

ound on the next-stage exercise policy; Section 4 shows an up-

er bound based on a continuation-value function only needs this

unction in the waiting region; Section 5 provides the complexity

nalysis and examples; Section 6 concludes. Proofs are left to the

ppendix. 

. Bermudan options: a local Least-Squares Setting 

In this section, we explain the difference between the standard

nd the local LSM methods. Because the local approach yields an

ptimal recursive exercise policy, it is our method of choice to de-

ive both the lower bound and the martingale associated with the

pper bound. We next discuss precisely how we compute various

xercise policies and continuation-value functions needed later for

ual bounding. Lastly, we define the lower and the upper bound. 

Consider a Bermudan option that can be exercised at t ∈
 1 , 2 , . . . , T } , where t = 0 is today. We denote by I t ≥ 0 the intrinsic

alue (or option payoff) if the Bermudan option is exercised at t .

onsider a vector of N stock prices S t . Interest rates are stochas-

ic, R t > 0 is a bank-account process, R 0 = 1 , and R j,t = R t /R j . If the

nterest rate r is constant, R t = e rt�t , R t ,t +1 = e r�t , and �t is the

ime between t and t + 1 . 

We introduce two binary auxiliary processes, Y and b ; b 0 = 1

nd 

 t ∈ { 0 , 1 } and b t = b t−1 × Y t , t = 1 , 2 , . . . , T . (1)

oth processes are used in the case of barrier options (e.g., secu-

ities subject to default risk). In the numerical exercise, in which

e study an up-and-out max-option, Y t = 1 { max { S t } <B } where B is

he up-and-out barrier (and the no barrier case is equivalent to as-

ume that Y t = 1 for all t or B → ∞ ). In this case, the intrinsic value

s given by I t × b t , t ≤ 1 , 2 , . . . , T . 

From the Bellman principle, the continuation value V 

∗( t , S t ) of a

ermudan option satisfies 

 

∗(t, S t ) = E Q t 

[
1 

R t ,t +1 

× max { I t+1 × b t+1 , V 

∗(t + 1 , S t+1 ) } 
]
, 

t = 0 , 1 , . . . , T − 1 , (2)

nd V ∗(T , S T ) = 0 . E Q t [ ] is the expectation operator under the risk-

eutral measure Q conditional to the information at time t . We

efer to V 

∗ as the “first-best” Bermudan price. Although the re-

ults below can be derived in terms of a bank account (in which

 t = 1 , t = 0 , 1 , . . . , T ), we work in nominal terms; thus, all equa-

ions carry directly to the computer. 

emark. In Eq. (2) , we assume b t = 1 , and hence V 

∗( t , S t ) is the

ontinuation value seen since t , that is, conditional on no previous

arrier (otherwise, V ∗(t, S t ) = 0 if b t = 0 ). 

.1. The local LSM algorithm 

Let n max ≥ 1 be the number of iterations. We specify the final

eriod t = T , and recursively solve the continuation value for T −
 , T − 2 , until t = 1 , where ˜ V LSM 

T −1 
is a standard LSM estimator of

he continuation value at the initial stage T − 1 . Specifically, y t is

he realized payoff at t stage (of the Bermudan option exercisable
 dual upper bounds for Bermudan-style options, European Journal 
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s  

c  
etween t and T ), ˜ V n t is a local LSM estimator of the continuation

alue at t stage and n iteration, and K ( z , h ) is a Gaussian kernel

which is evaluated at z , and h is the bandwith). The algorithm

rovides ̃  V ∗t , which is the final local LSM estimator of the continu-

tion value at t , and ̃

 V co 
t , which is the estimator of the continuation

alue in the continuation region at t ( t = 1 , 2 , . . . , T − 1 ). 

We assume a specific set of regressors x t , which depend on

rices or state variables S t (or earlier values if necessary), where

 t ( x t ) is an affine function to be estimated by least squares. 

The local LSM algorithm: Consider a set of simulated paths,

∈ �. 

0. At maturity, set t = T . Define y T +1 = 0 , ̃  V ∗
T 

= 0 , and ̃

 V co 
T 

= 0 . 

1. Updating paths, ϖ∈ �

 t = Y t ×
{ 

I t , i f I t ≥ ˜ V 

∗
t 

R 

−1 
t ,t +1 

× y t+1 , otherwise. 

If a barrier exists, Y t = 0 cancels (set to a 0 value) a path that

its the barrier. 

Set t = t − 1 . 

2. The new Continuation value. Set n = 1 and 

˜ V 0 t = ̃

 V ∗t+1 . If t =
 − 1 , set ̃  V 0 

T −1 
= ̃

 V LSM 

T −1 
. 

2.1. Localizing the exercise boundary: a local regression 

 

 

n 
t = arg min 

f t ∈ F 

∑ 

�∈ �

(
f t ( x t ) − R 

−1 
t ,t +1 × y t+1 

)2 × K 

(˜ V 

n −1 
t ( x t ) − I t , h 

)
×1 { I t > 0 } 1 { Y t =1 } , 

 

 

n 
t ← 

˜ V 

n 
t + ̃

 V 

n −1 
t 

2 

(if necessary, to avoid potential loops) (3) 

Set n = n + 1 . Go back to step 2.1 until n = n max . 

Set ̃  V ∗t = ̃

 V n max 
t . 

3. The new Continuation value in the waiting region 

 

 

co 
t = arg min 

f t ∈ F 

∑ 

�∈ �

(
f t ( x t ) − R 

−1 
t ,t +1 × y t+1 

)2 × 1 { ̃  V ∗t ≥I t } . (4) 

Go back to step 1 until t = 1 . 

End of the local LSM algorithm 

At t = 1 , we have estimated all continuation values: ̃  V ∗t and ̃

 V co 
t ,

 = 1 , 2 , . . . , T − 1 . �
Four remarks . First, from the value-matching condition (i.e.,

 

∗(t, S) = I t (S) ), the function K( ̃  V n −1 
t ( x t ) − I t , h ) is a Gaussian ker-

el that underweights paths that are far away from the optimal-

xercise boundary at the t stage and n − 1 iteration. In Eq. (3) , in

he case of a barrier, if 1 { Y t =1 } = 0 , this term excludes the paths

hat hit the barrier from the regression. Second, the standard LSM

ethod is given by no iterations and no kernel ( n max = 1 and

 ( ) = 1 ), where only in-the-money paths are used (i.e., the term

 { I t > 0 } ). Third, ˜ V co 
t is an estimator of the continuation value in the

aiting region. At time t , we compute many samples of the dis-

ounted realized payoff, R −1 
t ,t +1 

× y t+1 . Then, the pa yoffs in the wait-

ng region (i.e., if ˜ V ∗t ≥ I t ) are approximated using standard least-

quares by the family F . (Without the binary function 1 { ̃  V ∗t ≥I t } , ˜ V co
t 

s estimated by a standard regression, only that the exercise policy

s based on a local approach.) 

Finally, fourth, step 2.1 in the local LSM algorithm is a Newton-

ype iteration (in a multi-dimensional setting), which converges in

 few (from one to three) iterations because the intrinsic value—I t 
s a linear function in the in-the-money region and the continua-

ion value—V 

∗ is a smooth and monotonic function, in the case of

tandard put/call payoffs. Howe ver, in the case of a barrier, which

f hit cancels the option, V 

∗ is not monotonic. Because of this lack

f monotonicity, which makes harder to price the Bermudan op-

ion, we include the step 

˜ V n t ← 

˜ V n t + ̃  V n −1 
t 

2 , to avoid potential loops

in the Newton iterations). 
Please cite this article as: A. Ibáñez and C. Velasco, Recursive lower and

of Operational Research, https://doi.org/10.1016/j.ejor.2019.07.031 
The stopping time—or exercise strategy 

Let ˜ τ (t) ∈ { t, t + 1 , . . . , T } , and hence ˜ τ (t) ≥ t, be a stopping

ime indexed in t , for t ∈ { 1 , 2 , . . . , T } , and 

˜ τ ( T ) = T . If ˜ τ is not

ndexed in t , ˜ τ = ̃

 τ (1) . First, from the continuation value obtained

rom the local LSM method ( ̃  V ∗), the stopping time ˜ τ (t) is recur-

ively defined as follows: 

 (t) = t if I t ≥ ˜ V 

∗
t ; ˜ τ (t) = ̃

 τ (t + 1) otherwise. (5)

he stopping time ˜ τ is used to compute both the lower bound

 V low 

0 
) and the martingale ( ̂  M /R ) associated with the upper bound,

hich are defined below. This stopping time ˜ τ provides the exer-

ise strategy that optimizes a recursive lower bound. Second, the

ther continuation-value function 

˜ V co is used to estimate a new

artingale and second upper bound. 

Henceforth, no other least-squares estimators are necessary. In

ddition, for simplicity, in the following lower/upper bounds, the

ntrinsic value is written as I t (instead of I t × b t ). 

.2. Lower and dual upper bounds 

We rewrite Eq. (2) for a Monte-Carlo setting. Let T be the set of

topping-times, τ ∈ { 1 , 2 , . . . , T } . For a given 

˜ τ ∈ T , a lower bound

 

low 

0 
is defined as follows: 

 

low 

0 := E Q 
0 

[ 
I ˜ τ

R ˜ τ

] 
≤ sup 

τ∈T 
E Q 

0 

[ 
I τ

R τ

] 
= E Q 

0 

[ 
I τ

R τ

∣∣∣
τ= τ ∗

] 
:= V 

∗
0 , (6)

here V ∗
0 

= V ∗(0 , S 0 ) is the Bermudan price and τ ∗ is the associ-

ted first-best stopping time. 

A dual upper bound is an estimator of the Bermudan price and

llows us to build a mid point and to assess a lower bound. How-

ver, a dual upper bound depends on a martingale that is not spec-

fied. For a martingale M t 
R t 

, t ∈ { 0 , 1 , . . . , T } , upper bounds V 
up 
0 

are

ased on the following result: 

 

up 
0 

: = M 0 + E Q 
0 

[ 
max 
1 ≤t≤T 

{ 
I t − M t 

R t 

} ] 
≥ M 0 + E Q 

0 

[ 
I τ

R τ
− M τ

R τ

∣∣∣
τ= τ ∗

] 
= V 

∗
0 . (7) 

he last equality follows from the optional sampling theorem and

he inequality follows from 

max 
 ≤t≤T 

{ 
I t − M t 

R t 

} 
≥ I τ − M τ

R τ

∣∣∣
τ= τ ∗

. 

he upper bound is binding (i.e., V 
up 
0 

= V ∗
0 

) for the process as-

ociated with the first-best Bermudan price, M 

∗ ( Andersen &

roadie, 2004; Rogers, 2001 ; our Proposition 1 ). To define M 

∗ (in

ection 3.1 ), we use the standard factorization of the American op-

ion into the early-exercise premium and the European counter-

art. 

V 
up 
0 

is independent of the initial value M 0 (see Appendix A ). In

articular, if the initial value of the process M is set (not to zero

ut) to M 0 = V low 

0 
, it follows, along with 

 

low 

0 = M 0 ≤ V 

∗
0 ≤ V 

up 
0 

, 

hat the following expectation is a proper gap: 

 

Q 
0 

[ 
max 
1 ≤t≤T 

{ 
I t − M t 

R t 

} ] 
= V 

up 
0 

− V 

low 

0 ≥ 0 ;

hat is, the difference between the upper and the lower bound

s nonnegative. Then, conditional on V low 

0 
, we approximate V 

up 
0 

by

imulation in two ways that correspond to two different types of

artingales. 

. Recursive upper bounds based on stopping times 

Because optimizing the dual upper bound is not tractable, we

tudy a recursive version. Ibáñez and Velasco (2018) maximize re-

ursively the Bermudan price with respect to a family of stopping
 dual upper bounds for Bermudan-style options, European Journal 
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1

V  
times at each exercise period; we refer to this price as a recur-

sive Bermudan price, which is the objective function of the pri-

mal problem. The dual problem is to minimize the recursive upper

bound and to determine whether the solution to these two (recur-

sive) primal and dual problems are linked. If we consider a family

of stopping times that are specified in a recursive way, a martin-

gale based on the exercise strategy that maximizes the Bermudan

price also minimizes not the upper bound itself, but rather the gap

between the lower and the upper bound. 

We derive a simple recursive expression for this gap

( Theorem 1 ), from which we prove all results. A recursive

upper bound is independent of the next-stage stopping time

( Proposition 1 ). Therefore, for a martingale based on stopping

times, minimizing the gap is equivalent to maximizing the lower

bound in a recursive way ( Proposition 3 ). In Section 4 , we show

Theorem 1 and Proposition 1 also hold for an upper bound based

on continuation values. 

From Eq. (6) , which is based on stopping times, we build a mar-

tingale by using the exercise policy in Eq. (5) . We define ̂  Z t as fol-

lows: 

 Z t = 1 { t < ̃  τ (t ) } ̂  V t + 1 { t = ̃  τ (t ) } I t , t = 1 , 2 , . . . , T . (8)

The process ̂  Z is similar to the value process of a Bermudan option

(either to wait or to exercise) associated with 

˜ τ , in which 

̂ V T = 0

and 

 

 t−1 = E Q 
t−1 

[ ̂ Z t 

R t−1 ,t 

]
, t = 1 , 2 , . . . , T . (9)

We then define the process ̂ M as follows; that is, ̂ M 0 = ̂

 V 0 and ̂ M t = 

̂ M t−1 R t−1 ,t + ̂

 Z t −̂ V t−1 × R t−1 ,t , t = 1 , 2 , . . . , T , (10)

so that ̂ M t /R t is a martingale (i.e., E Q 
t−1 

[ ̂  M t /R t−1 ,t ] = 

̂ M t−1 ), which

follows from ̂

 V definition. In particular, ̂ M 1 = ̂

 Z 1 . 

In addition, from Eq. (9) for t = 1 , we also define the lower

bound from 

̂ V 0 , namely, V low 

0 
= ̂

 V 0 (given that ̂ V 0 ≤ V ∗0 ). This lower

bound ̂

 V 0 is approximated by simulation. 

3.1. Factorizing the martingale 

Importantly, the process ̂ M in (10) is explicitly defined by ̂ M 0 =
 

 0 and 

̂ M t = 

t−1 ∑ 

j=1 

(
I j −̂ V j 

)
× 1 { j = ̃  τ ( j ) } × R j,t + 

(
1 { t < ̃  τ (t ) } ̂  V t + 1 { t = ̃  τ (t ) } I t 

)
, 

(11)

which is equal to the sum of the early-exercise premium (rein-

vested in a bank account) plus the right to exercise at time t

( Appendix A ). For t = T , because ̂ V T = 0 , the risk-neutral expec-

tation of the discounted value of Eq. (11) ’s right-hand-side (rhs)

implies the classical factorization of an American option into an

early-exercise premium plus the European counterpart (if ˜ τ = τ ∗).

This factorization is related to the Doob-decomposition theorem,

in which the Bermudan-option price process is the Snell envelope

(e.g., Carr et al., 1992 ). 

From Eq. (11) , it follows for t ≤ ˜ τ that ̂ M t = ̂

 V t , if t < ̃

 τ ; and 

̂ M t = I t , if t = ̃

 τ , 

and therefore, 

max 
1 ≤t≤T 

{
I t − ̂ M t 

}
≥ I ˜ τ − ̂ M ˜ τ = 0 . (12)

The martingale associated with the optimal stopping-time fam-

ily, τ ∗, is denoted by M 

∗/ R and is defined in a similar way as in Eq.

(11) , where M 

∗
0 = V ∗0 . The next result complements the literature

( Rogers, 2001 ) on dual upper bounds for the optimal τ ∗. 
Please cite this article as: A. Ibáñez and C. Velasco, Recursive lower and
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roposition 1. (i) An upper bound based on the optimal stopping

ime τ ∗ is binding, V 
up 
0 

= V ∗0 . And (ii), for any path, 

∗ = inf 

(
arg max 

1 ≤t≤T 
{ I t − M 

∗
t } 
)
, 

0 = max 
1 ≤t≤T 

{ I t − M 

∗
t } , 

n which the “inf” is taken in the case of multiple solutions. 

roof. See Appendix A . �

emark. Proposition 1 shows Eq. (12) ’s inequality is binding and

he maximum is equal to 0 path by path for the optimal martin-

ale M 

∗ (associated with τ ∗). It follows that the term max 1 ≤t≤T { I t −̂ 

 t } , as well as the (sample) gap between the lower and the upper

ound, has little variance if the process ̂ M is based on a good ex-

rcise policy ˜ τ (and if, in addition, ̂ V in 

̂ M is estimated with little

imulation error). Next, we define the recursive lower and upper

ounds, and then try to minimize the recursive upper bound and

 recursive gap. 

.2. Recursive lower and upper bounds 

We define a new variable GAP at time s as follows: 

AP s := 

̂ M s 

R s 
−
̂ Z s 

R s 
+ max 

s ≤t≤T 

{
I t − ̂ M t 

R t 

}
, 1 ≤ s ≤ T , (13)

here 
̂ M s 
R s 

− ̂ M t 
R t 

, s ≤ t , are Doob-martingale increments. In particu-

ar, because ̂ M 1 = ̂

 Z 1 , 

AP 1 := max 
1 ≤t≤T 

{
I t − ̂ M t 

R t 

}
, 

nd the upper bound is given by 

 

up 
0 

:= 

̂ M 0 + E Q 
0 

[
max 
1 ≤t≤T 

{
I t − ̂ M t 

R t 

}]
= 

̂ M 0 + E Q 
0 [ GAP 1 ] , 

here ̂ M 0 = ̂

 V 0 . The next result allows us to understand a recursive

ap between lower and upper bounds (see Belomestny et al., 2013 ,

or other recursive statements). 

heorem 1. The process GAP defined in Eq. (13) for 1 ≤ s ≤ T , with

AP T +1 = 0 , satisfies that 

AP s = 

−̂ Z s 

R s 
+ max 

{
I s 

R s 
, ̂

 V s 

R s 
+ GAP s +1 

}
, (14)

here GAP T = 0 . Moreover, in Eq. (14) ’s rhs, only ̂ Z s depends on the

unction ˜ τ (s ) . 

roof. See Appendix A . �

xample. Consider a Bermudan option with three exercise oppor-

unities ( s = 1 and T = 3 ), from Eq. (14) , 

AP 1 + 

̂ Z 1 
R 1 

= max 

{
I 1 
R 1 

, ̂
 V 1 

R 1 

+ GAP 2 

}

= max 

⎧ ⎨ ⎩ 

I 1 
R 1 

, ̂
 V 1 

R 1 

−
̂ Z 2 
R 2 

+ max 

⎧ ⎨ ⎩ 

I 2 
R 2 

, ̂
 V 2 

R 2 

+ GAP 3 ︸ ︷︷ ︸ 
=0 

⎫ ⎬ ⎭ 

⎫ ⎬ ⎭ 

, 

hich, from Eqs. (8) and (9) , is independent of the stopping time
 (1) , as in Theorem 1 . 

For tractability, we analyze the upper bound recursively. We

onsider the following lower and upper bounds, which correspond

o a Bermudan option that can only be exercised from s to T ,

 ≤ s ≤ T − 1 . That is, 

 

low 

s, 0 := E Q 
0 

[̂ V s −1 

R s −1 

]
and V 

up 
s, 0 

:= E Q 
0 

[̂ V s −1 

R s −1 

]
+ E Q 

0 [ GAP s ] . (15)
 dual upper bounds for Bermudan-style options, European Journal 
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onsistent with our notation, we have V low 

0 
= V low 

1 , 0 
, V 

up 
0 

= V 
up 
1 , 0 

, and

 

up 
s, 0 

− V low 

s, 0 
= E Q 

0 [ GAP s ] . 

roposition 2. V 
up 
s, 0 

is independent of ˜ τ (s ) , which is the next-stage

xercise decision. 

roof. From Eq. (15) and Theorem 1 , 

 

up 
s, 0 

: = E Q 
0 

[̂ V s −1 

R s −1 

]
+ E Q 

0 [ GAP s ] 

= E Q 
0 

[̂ V s −1 

R s −1 

]
+ E Q 

0 

[
−̂ Z s 

R s 
+ max 

{
I s 

R s 
, ̂

 V s 

R s 
+ GAP s +1 

}]
= E Q 

0 

[
max 

{
I s 

R s 
, ̂

 V s 

R s 
+ GAP s +1 

}]
. 

�

V 
up 
s, 0 

does not depend on 

˜ τ (s ) because the upper bound di-

ectly compares the intrinsic value and an estimated continuation

alue at time s (i.e., max { I s , ̂  V s } ). In particular, a two-period Bermu-

an upper bound is always binding. 1 For a two-period Bermudan,

 = 2 , 

 

up 
0 

= V 

up 
1 , 0 

= 

̂ M 0 + E Q 
0 [ GAP 1 ] 

= ̂

 V 0 − E Q 
0 

[ ̂ Z 1 × 1 

R 1 

] 
︸ ︷︷ ︸ 

= ̂  V 0 

+ E Q 
0 

⎡ ⎣ max 

⎧ ⎨ ⎩ 

I 1 
R 1 

, ̂
 V 1 

R 1 

+ GAP 2 ︸ ︷︷ ︸ 
=0 

⎫ ⎬ ⎭ 

⎤ ⎦ 

= E Q 
0 

[
max 

{
I 1 , E 

Q 
1 

[
I 2 × 1 

R 1 , 2 

]}
× 1 

R 1 

]
= V 

∗
0 , 

here the last equality follows from V ∗0 definition (i.e., the maxi-

um between exercise and the European option at t = 1 ). 

Following the example of a Bermudan option with three exer-

ise opportunities, t ∈ {1, 2, 3}, consider a family of exercise strate-

ies. The first-order conditions associated with maximizing the

ermudan price at t = 0 imply optimal exercise at t ∈ {1, 2}, but

nly for those paths that are alive for the exercise decision at t = 2

 Ibáñez & Velasco, 2018 ). Hence, if we consider all paths at t = 2 ,

e can solve this problem recursively, which is tractable and close

o the optimal one. By contrast, minimizing the upper bound de-

ends only on the exercise decision at t = 2 , not on t = 1 . That is,

roposition 1 implies that we cannot minimize the upper bound

 

up 
s, 0 

but rather the gap, E Q 
0 [ GAP s ] , in a recursive way (where ̃  τ (t) is

iven for t > s ). 

.3. An optimal recursive gap 

Define 

 

∗(s ) := arg max ˜ τ ( s ) ∈T | ̃  τ ( s +1 ) 
V 

low 

s, 0 , (16)

here V low 

s, 0 
is given in Eq. (15) . The stopping time ˜ τ ∗(s ) means

ptimal exercise at time s , conditional on ̃

 τ ( s + 1 ) and subject to a

iven set of stopping times T (in which now τ ∈ { s, s + 1 , . . . , T } ).
amely, if ˜ τ ∗( s ) > s, ˜ τ ∗( s ) = ̃

 τ ( s + 1 ) where ˜ τ ( s + 1 ) is computed

n advance. 

roposition 3. Consider a Bermudan option that can only be exer-

ised from s to T , 1 ≤ s ≤ T − 1 ; that is, s ≤ ˜ τ ( s ) ∈ T . Assume the

topping time ˜ τ ( s + 1 ) is given. Then ˜ τ ∗(s ) , which is defined in Eq.

16) , satisfies 

 

∗(s ) = arg min ˜ τ ( s ) ∈T | ̃  τ ( s +1 ) 
E Q 

0 [ GAP s ] . 
1 Kaniel, Tompaidis, and Zemlianov (2008) , Lemma 1, proved this result for a two- 

eriod Bermudan option, t ∈ {1, 2}; the upper bound does not depend on the t = 1 

xercise decision, implying a two-period Bermudan upper bound is unbiased. 

V

w  

t  
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urther, if ˜ τ ( s + 1 ) = τ ∗( s + 1 ) and τ ∗(s ) ∈ T , then ˜ τ ∗(s ) = τ ∗(s )

nd V low 

s, 0 
= V 

up 
s, 0 

. 

In particular, for s = 1 (where R 0 = 1 , ̂  V 0 = V low 

0 
and ̂ M 0 = ̂

 V 0 ), 

 

∗(1) := arg max ˜ τ ( 1 ) ∈T | ̃  τ ( 2 ) 
V 

low 

0 = arg min ˜ τ ( 1 ) ∈T | ̃  τ ( 2 ) 

{
V 

up 
0 

− V 

low 

0 

}
. 

roof. See Appendix A . �

Minimizing E Q 
0 [ GAP s ] corresponds to optimally exercising at

ime s conditional on 

˜ τ ( s + 1 ) and is solved by the local LSM ap-

roach, which yields a continuation-value function ̃

 V ∗s . 

The lower/upper bound biases 

From E Q 
0 

[ GAP 1 ] = (V ∗
0 

− V low 

0 
) + (V up 

0 
− V ∗

0 
) , we obtain the bias

ssociated with the lower bound, 

 ≤ V 

∗
0 − V 

low 

0 

= E Q 
0 

[ (
1 { 1= τ ∗(1) } I 1 + 1 { 1 <τ ∗(1) } V 

∗
1 

)
× 1 

R 1 

] 
−E Q 

0 

[ (
1 { 1= ̃  τ (1) } I 1 + 1 { 1 < ̃  τ (1) } ̂  V 1 

)
× 1 

R 1 

] 
, 

nd with the upper-bound (from V 
up 
0 

= 

̂ M 0 + E Q 
0 

[ GAP 1 ] and Eq.

14) for GAP 1 ), 

 ≤ V 

up 
0 

− V 

∗
0 

= E Q 
0 

[
max 

{
I 1 , ̂  V 1 + GAP 2 ×

(
1 

R 1 

)−1 
}

× 1 

R 1 

]
−E Q 

0 

[ 
max { I 1 , V 

∗
1 } × 1 

R 1 

] 
. 

For instance, if GAP 2 = 0 , because ̂ V 1 ≤ V ∗
1 

and V ∗
0 

≤ V 
up 
0 

, then
 

 1 = V ∗
1 

(if I 1 < V ∗
1 

) and V 
up 
0 

= V ∗
0 

so that the upper bound is unbi-

sed and independent of the ( t = 1 ) next-period exercise decision,

s in Proposition 1 . Here, we have assumed 

̂ V 1 is computed with-

ut simulation error. 

.4. Computing the martingale paths and the upper bound 

From Eq. (10) , one path of the process ̂ M is approximated as

ollows, ̂ M 0 = ̂

 V 0 and, for t ∈ { 1 , 2 , . . . , T } , ̂ 

 t = 

̂ M t−1 R t−1 ,t + 

(
1 { t < ̃  τ (t ) } 

(̂ V t + ̂

 ξt 

)
+ 1 { t = ̃  τ (t ) } I t 

)
−
(̂ V t−1 + ̂

 ξt−1 

)
×R t−1 ,t , (17) 

here ̂ ξt is a zero-mean approximation error (i.e., E[ ̂  ξt ] = 0 ), and

ence ̂ M t /R t is a martingale. 

Based on Eq. (9) , ̂  V is computed separately from 

˜ τ and 

 

 t−1 = E Q 
t−1 

[
R t−1 ×

I ˜ τ (t) 

R ˜ τ (t) 

]
. 

ecause the latter expectation is not analytical, ̂ V is estimated by

ubsimulation. For every path, and for every t ∈ { 1 , 2 , . . . , T − 1 } ,
he value ̂ V t is approximated by a new subsimulation (from t to
 (t + 1) ), where ̂ ξt is the error, which introduces a second bias in

he upper bound. 

Then, we directly simulate the following gap, 

 

 = E Q 
0 

[
max 
1 ≤t≤T 

{
I t − ̂ M t 

R t 

}]
. 

hat is, we approximate ̂ V 0 and ̂

 g by two independent simulations

nd approximate the two bounds as follows: 

 

low 

0 ≈ ̂ V 0 + ξ low 

0 and V 

up 
0 

≈ ̂ V 0 + ξ low 

0 + ̂

 g + ξ g 
0 
, 

here ξ low 

0 
and ξ g 

0 
are the respective simulation errors. Although

he upper bound is basically as in Andersen and Broadie (2004) ,
 dual upper bounds for Bermudan-style options, European Journal 
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it is based on an optimal recursive exercise policy (i.e., ˜ τ in Eq.

(5) )—and the martingale (17) associated with this optimal recursive

policy. 

In addition, from Eq. (11) , the martingale (i.e., ̂ M /R ) is explicitly

given by 

̂ M t = 

t−1 ∑ 

j=1 

(
I j −

(̂ V j + ̂

 ξ j 

))
× 1 { j = ̃  τ ( j ) } × R j,t + 

(
1 { t < ̃  τ (t ) } 

(̂ V t + ̂

 ξt 

)
+ 1 { t = ̃  τ (t ) } I t 

)
. (18)

In the Appendix, we show how the computational cost of ̂ M could

be reduced. 

4. Upper bounds based on continuation values 

We compute an upper bound based on continuation-value func-

tions. First, we show why an upper bound that is based on a good

exercise strategy is less biased than a bound based on continuation

values. In the latter case, the martingale has an additional third er-

ror term, which implies a larger bias (from Jensen inequality). Sec-

ond, we show fitting the continuation value in the waiting region

is sufficient. In this region, the continuation value is less nonlinear

and easier to fit than in the entire support. We show the second

result in two different ways. 

Consider a new family of continuation-value functions ˜ V t , t =
1 , 2 , . . . , T − 1 , and 

˜ V T = 0 . Extending (the stopping-times based)

Eq. (8) , we define 

 Z t = max { ̃  V t , I t } , (19)

where ̂ V is defined as in Eq. (9) with the new 

̂ Z t (i.e., ̂ V t−1 =
E Q 

t−1 
[ max { ̃  V t ,I t } 

R t−1 ,t 
] , t = 1 , 2 , . . . , T ). 

We define new recursive lower and upper bounds akin to

Eq. (15) , but using the new process ̂ Z . Because Theorem 1 and

Proposition 1 trivially hold for this new process ̂  Z (which depends

on the max function and 

˜ V ), the new recursive upper bound is

given by 

V 

up 
s, 0 

:= E Q 
0 

[̂ V s −1 

R s −1 

]
+ E Q 

0 [ GAP s ] = E Q 
0 

[
max 

{
I s 

R s 
, ̂

 V s 

R s 
+ GAP s +1 

}]
, 

(20)

which does not depend on 

˜ V s at time s (i.e., ̂ V s depends on 

˜ V s +1 ).

Here, minimizing the gap is not well defined, because the lower

bound based on ̃

 V s , 

 

low 

s, 0 := E Q 
0 

[̂ V s −1 

R s −1 

]
= E Q 

0 

[ 
max 

{
I s , ̃  V s 

}
× 1 

R s 

] 
, (21)

is not necessarily lower biased. 

Hence, let us impose the best case E Q 
0 [ GAP s ] = 0 in (the second

equality of) Eq. (20) , and search for the best ˜ V guaranteeing this

zero equality. If we assume GAP s +1 = 0 , 

E Q 
0 

[ 
max 

{
I s , ̃  V s 

}
× 1 

R s 

] 
= E Q 

0 

[ 
max 

{
I s , ̂  V s 

}
× 1 

R s 

] 
, 

and the simple solution associated with the latter equation is that
 

 s = ̂

 V s subject to ̂  V s > I s . This solution implies a fitting of the func-

tion 

˜ V s only in the waiting region, in which 

̂ V s > I s . This same

(waiting-region constraint) result is derived next by factorizing the

process ̂ M . 

Remark. In the case of stopping times (i.e., ̂ Z t = 1 { t < ̃  τ (t ) } ̂  V t +
1 { t = ̃  τ (t ) } I t ), the last equation is given by 

E Q 
0 

[ (
1 { s< ̃  τ (s ) } ̂  V s + 1 { s = ̃  τ (s ) } I s 

)
× 1 

R s 

] 
= E Q 

0 

[ 
max 

{
I s , ̂  V s 

}
× 1 

R s 

] 
, 
c  
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nd the same ̂ V s appears on both sides of the equality, where

he only possible difference is because of ˜ τ (s ) . 

.1. Computing a martingale based on the continuation value 

Extending Eq. (17) , we define a martingale based on the con-

inuation value ( ̃  V ) in Eq. (19) ; that is, ̂ M 0 = ̂

 V 0 , and for t ∈
 1 , 2 , . . . , T } , ̂ 

 t = 

̂ M t−1 R t−1 ,t + max 
{˜ V t , I t 

}
−
(̂ V t−1 + ̂

 ξt−1 

)
× R t−1 ,t , (22)

nd 

 

 t−1 = E Q 
t−1 

[
R 

−1 
t−1 ,t max 

{˜ V t , I t 
}]

. 

ow, for every path, the process ̂ V t is computed for t ∈
 1 , 2 , . . . , T − 1 } by a one-period subsimulation (from t to t + 1 ),

here ̂ ξ is the one-period subsimulation error, E[ ̂  ξt ] = 0 . 

Then (see Appendix A ) 

̂ 

 t = 

t−1 ∑ 

j=1 

{
I j −˜ V j 

}+ × R j,t + 

t−1 ∑ 

j=1 

(˜ V j −
(̂ V j + ̂

 ξ j 

))
× R j,t + max 

{˜ V t , I t 
}
, (23)

here the second sum is a martingale error-correcting term (i.e.,
 

 j −̂ V j ). However, ˜ V j cancels if { I j −˜ V j } + > 0 , from the first and

econd sums, implying the error ̃  V j −̂ V j only matters in the waiting

egion, in which I j ≤ ˜ V j . Hence, we define ˜ V = ̃

 V co , where ˜ V co is

iven in the local LSM algorithm (see Eq. (4) ). 

Two remarks . First, from the factorizations in Eqs. (18) and (23) ,

he former implies a martingale that is close to the optimal mar-

ingale M 

∗/ R , if ˜ τ is close to τ ∗. The latter factorization includes

 second sum that depends on the error between 

˜ V co and the im-

licit ̂  V in the waiting region, implying a more biased upper bound.

Second, in the examples below, we show a standard-LSM stop-

ing time produces only slightly worse upper bounds than the

ocal-LSM stopping time, assuming in both cases ̃  V = ̃

 V co . This find-

ng implies estimating the continuation value in the waiting re-

ion (i.e., ˜ V = ̃

 V co ) is the key insight for upper bounds based on

 continuation-value function. That is, instead of localizing the es-

imation (of a continuation value) in the exercise boundary as in

he local LSM method, we localize this estimation in the waiting

egion. 

In addition, we can build a third martingale based on both ̃

 τ (t)

nd 

˜ V t . However, this martingale yields a less tight upper bound

han a martingale based exclusively on 

˜ V t , and hence is relegated

o the Appendix. 

. Complexity analysis and numerical example 

For N state variables, T exercise dates, and M paths, the stan-

ard LSM method requires simulating O( NTM ) sample points and

omputing T regressions. For n max iterations, the local LSM re-

uires O( NTM ) sample points, O( TM × n max ) kernel evaluations, and

 max × T regressions. In practice, a few ( n max = 1 to 3) local regres-

ions are sufficient, if the solution of stage t is used as the initial

tep at t − 1 . The local approach increases the computational effort

n a linear way, which is given by the number of iterations above

ne ( n max > 1). In addition, the lower bound, which is independent

f the specific LSM method, requires up to M low 

T intrinsic values

where M low 

is the number of simulated paths). 

The upper bound is costly; it requires computing the Bermudan

alue ( ̂  V ) in every exercise stage and in every path, which implies

 up T subsimulations, where M up is the number of simulated paths.

n the case of an upper bound based on stopping times (continu-

tion values), the subsimulation is launched until a path is exer-

ised and is bounded by T stages (is a one-period subsimulation).
 dual upper bounds for Bermudan-style options, European Journal 

https://doi.org/10.1016/j.ejor.2019.07.031


A. Ibáñez and C. Velasco / European Journal of Operational Research xxx (xxxx) xxx 7 

ARTICLE IN PRESS 

JID: EOR [m5G; August 1, 2019;13:22 ] 

Table 1 

Lower and upper bounds. 

Lower bound, V low 
0 Upper bound, V up 

0 

S 0 binomial price LSM local LSM iterations τ -based V co -based 

V ∗0 1st 2nd 3rd 3rd LSM 3rd LSM 

N = 2 assets (kernel = 0 . 5% ) 

100 31.074 28 . 799 
( . 006 ) 

30 . 869 
( . 008 ) 

30 . 988 
( . 006 ) 

31 . 016 
( . 006 ) 

31 . 083 
( . 001 ) 

31 . 278 
( . 028 ) 

31 . 347 
( . 006 ) 

31 . 331 
( . 007 ) 

[ V low 
0 , DFM ,V 

up 
0 , DFM 

] N = 4 assets (kernel = 1% ) 

90 [33.011, 34.989] 32 . 706 
( . 008 ) 

34 . 612 
( . 004 ) 

34 . 656 
( . 004 ) 

34 . 667 
( . 004 ) 

34 . 749 
( . 005 ) 

34 . 934 
( . 015 ) 

34 . 976 
( . 013 ) 

34 . 962 
( . 010 ) 

100 [41.541, 43.587] 40 . 328 
( . 008 ) 

43 . 117 
( . 003 ) 

43 . 138 
( . 004 ) 

43 . 161 
( . 004 ) 

43 . 251 
( . 004 ) 

43 . 630 
( . 024 ) 

43 . 558 
( . 011 ) 

43 . 557 
( . 010 ) 

110 [48.169, 49.909] 47 . 197 
( . 007 ) 

49 . 398 
( . 004 ) 

49 . 429 
( . 004 ) 

49 . 430 
( . 004 ) 

4 9 . 4 82 
( . 004 ) 

49 . 998 
( . 028 ) 

49 . 780 
( . 007 ) 

49 . 851 
( . 007 ) 

N = 8 assets (kernel = 5% ) 

90 [44.113, 45.847] 43 . 321 
( . 006 ) 

45 . 460 
( . 004 ) 

45 . 460 
( . 004 ) 

45 . 460 
( . 004 ) 

45 . 580 
( . 003 ) 

46 . 743 
( . 015 ) 

45 . 847 
( . 007 ) 

45 . 830 
( . 008 ) 

100 [50.252, 51.814] 49 . 523 
( . 007 ) 

51 . 357 
( . 003 ) 

51 . 360 
( . 003 ) 

51 . 360 
( . 003 ) 

51 . 433 
( . 003 ) 

51 . 646 
( . 015 ) 

51 . 668 
( . 003 ) 

51 . 667 
( . 005 ) 

110 [53.488, 54.890] 52 . 319 
( . 006 ) 

54 . 525 
( . 002 ) 

54 . 527 
( . 002 ) 

54 . 527 
( . 002 ) 

54 . 564 
( . 001 ) 

54 . 898 
( . 018 ) 

54 . 697 
( . 004 ) 

54 . 744 
( . 003 ) 

N = 16 assets (kernel = 5% ) 

90 [50.885, 52.316] 49 . 779 
( . 005 ) 

51 . 916 
( . 003 ) 

51 . 923 
( . 002 ) 

51 . 925 
( . 002 ) 

51 . 981 
( . 002 ) 

52 . 252 
( . 015 ) 

52 . 158 
( . 005 ) 

52 . 184 
( . 006 ) 

100 [53.638, 54.883] 52 . 574 
( . 002 ) 

54 . 601 
( . 002 ) 

54 . 603 
( . 002 ) 

54 . 603 
( . 002 ) 

54 . 633 
( . 002 ) 

53 . 806 
( . 017 ) 

54 . 718 
( . 002 ) 

54 . 800 
( . 003 ) 

110 [55.146, 56.201] 54 . 968 
( . 005 ) 

55 . 994 
( . 003 ) 

55 . 995 
( . 003 ) 

55 . 995 
( . 003 ) 

56 . 025 
( . 002 ) 

56 . 200 
( . 018 ) 

56 . 070 
( . 002 ) 

56 . 125 
( . 003 ) 
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ence, in addition to M up T intrinsic values, the upper bound re-

uires up to M up−st T 
2 K st ( M up−cv T K cv ) evaluations due to the mar-

ingale, where K st and K cv are the subsimulation paths. Because of

he quadratic effort ( T 2 ), M up−st and K st are kept small in the for-

er case. 

In the case of stopping times, the upper bound is equal to the

ower bound plus the gap. Hence, we directly estimate the gap

 ̂

 g ), which is less volatile (see Proposition 1 ) and requires a much

maller number of paths, M up−st 
 M low 

. 

.1. Numerical example: pricing up-and-out Bermudan max-options 

We price up-and-out max-call Bermudan options. The up-and-

ut barrier feature makes call payoffs sensitive to suboptimal ex-

rcise. We define I t = { max { S t } − K } + , S are lognormal-distributed

rices, K is the strike price, and B > K is the barrier. 2 We define

 t = 1 { max { S t } <B } , t = 1 , 2 , . . . , T , in Eq. (1) . Hence, b t = 0 indicates

he up-and-out barrier ( B ) has been hit ( b j = 0 , j = t, t + 1 , . . . , T ).

he Bermudan payoff is given by I t × b t . 

We follow the MC exercise in Table 1 in Desai et al. (DFM). This

able has nine examples, corresponding to three numbers of stocks

 N = { 4 , 8 , 16 } ) and three initial stock prices ( S 0 = { 90 , 100 , 110 } ).
he strike price K = 100 is common across all scenarios. The up-

nd-out barrier is B = 170 . To derive the two exercise strategies

ssociated with the local and standard LSM methods, we exclude

hose points that are out of the money or hit the barrier (i.e., if

ax { S t } ≤ K or if max { S t } ≥ B ). In the Appendix, we emphasize a

ew points regarding the implementation of local LSM for this bar-

ier problem. 

We use the same basis of N + 2 variables as DFM,

amely, a constant, every component of the price vector

 = (S (1) , S (2) , . . . , S (N) ) , and { max { S t } − K} + ; that is, 

 t = 

(
1 , S t , { max { S t } − K } + ), 

nd the same linear function, namely, f t ( x t ) = β ′ 
t × x t , where βt ∈

 

N+2 are the parameters. For both bounds, we report the mean

nd standard error over 10 independent trials. 

.1.1. Lower and upper bounds based on stopping times 

In our Table 1 , we provide the lower bound produced by two

egression methods: the standard and the local LSM method (first
2 See Ballotta and Bonfiglioli (2016) or Zeng and Kwok (2014) for European op- 

ions in a rich jump setting. 

b  

t  

e

Please cite this article as: A. Ibáñez and C. Velasco, Recursive lower and
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o third iterations). From the exercise strategies associated with the

tandard LSM and the local third iteration, we also generate upper

ounds. 

Table 1 . Prices of Bermudan up-and-out max-call options for

 = { 4 , 8 , 16 } uncorrelated stocks in a lognormal setting (where

 = 0 . 05 is the riskfree rate, δ = 0 is the dividend yield, and σ =
 . 20 is volatility). K = 100 is the strike price, B = 170 is the bar-

ier, T = 3 is maturity, and 54 exercise opportunities exist. The

rst column is the stock price and the second is the best lower

nd upper bound, [ V low 

0 , DFM 

, V 
up 
0 , DFM 

], reported by DFM ( Desai et al.,

012 ). The third to sixth and seventh to tenth are the lower and

pper bounds, respectively. The third column is the standard LSM

ethod, and the fourth to sixth columns are the first three it-

rations of the local LSM method. The seventh and eighth are

pper-bounds based on a stopping time ˜ τ , which are associated

ith the standard LSM (as Andersen–Broadie) and local LSM third-

teration exercise strategies, respectively. The last two columns are

pper bounds based on a continuation value V 

co , which is rees-

imated in the continuation region, which is associated with the

SM and third-iteration local LSM exercise strategies, respectively.

s in DSM, for both LSM methods, we use 20 0,0 0 0 paths to recur-

ively compute the continuation values and then 2 million paths

o compute the Bermudan price. We report the mean and standard

rror (over 10 independent trials). For the gap of the upper bound

ased on ̃

 τ , we use 3,0 0 0 external paths and 10,0 0 0 subsimulation

aths. For the upper bound based on V 

co , we use 10,0 0 0 external

aths and 500 subsimulation paths. We also report the two-asset

ase, in which the true price is derived from the binomial method

nd linear extrapolation (to correct the erratic binomial prices). 

The local-LSM lower bounds improve upon the reciprocal

tandard-LSM lower bounds by 100–280 cents (upon DFM by 85

o 160 cents). In the nine examples, the first iteration of the local

ethod yields the most significant improvement. For four assets,

his bound increases only by a couple of cents after the third iter-

tion; for eight and 16 assets, the price converges in one iteration.

n all cases, the local upper bound yields a one-digit gap. 

In Table 2 , we increase the number of paths that are used in

he local regression to improve Table 1 numbers. We consider the

ardest problem, N = 4 stocks. Improving the lower bound is diffi-

ult. We reduce the standard error and get smoother prices, which

s intuitive in a least-squares setting. In Fig. 1 , we show the lower

ound’s robustness to the kernel. More (less) than 1% of the paths

hat are used in the Table 1 kernel imply lower (slightly larger but

rratic) prices. This 1% is our optimal kernel choice. 
 dual upper bounds for Bermudan-style options, European Journal 
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Table 2 

Increasing the number of paths in the regression. 

Lower bound, V low 
0 Upper bound, V up 

0 

paths LSM local LSM iterations τ -based V co -based 

M 1st 2nd 3rd 4th 5th 10th 3rd 3rd 

5*10 4 40 . 327 
( . 010 ) 

43 . 106 
( . 004 ) 

43 . 128 
( . 005 ) 

43 . 147 
( . 004 ) 

43 . 153 
( . 004 ) 

43 . 160 
( . 004 ) 

43 . 178 
( . 004 ) 

43 . 251 
( . 004 ) 

43 . 558 
( . 011 ) 

10 5 40 . 329 
( . 008 ) 

43 . 112 
( . 005 ) 

43 . 135 
( . 004 ) 

43 . 154 
( . 005 ) 

43 . 161 
( . 005 ) 

43 . 167 
( . 005 ) 

43 . 183 
( . 004 ) 

43 . 250 
( . 005 ) 

43 . 558 
( . 011 ) 

2*10 5 40 . 328 
( . 008 ) 

43 . 117 
( . 003 ) 

43 . 138 
( . 004 ) 

43 . 161 
( . 004 ) 

43 . 168 
( . 004 ) 

43 . 175 
( . 004 ) 

43 . 191 
( . 004 ) 

43 . 251 
( . 004 ) 

43 . 558 
( . 011 ) 

4*10 5 40 . 325 
( . 006 ) 

43 . 119 
( . 003 ) 

43 . 143 
( . 003 ) 

43 . 164 
( . 002 ) 

43 . 172 
( . 002 ) 

43 . 179 
( . 002 ) 

43 . 193 
( . 002 ) 

43 . 250 
( . 002 ) 

43 . 559 
( . 011 ) 

10 6 40 . 328 
( . 002 ) 

43 . 118 
( . 002 ) 

43 . 143 
( . 002 ) 

43 . 163 
( . 002 ) 

43 . 170 
( . 002 ) 

43 . 177 
( . 002 ) 

43 . 193 
( . 002 ) 

43 . 250 
( . 003 ) 

43 . 558 
( . 011 ) 

2*10 6 40 . 322 
( . 003 ) 

43 . 120 
( . 003 ) 

43 . 144 
( . 002 ) 

43 . 165 
( . 002 ) 

43 . 172 
( . 002 ) 

43 . 179 
( . 002 ) 

43 . 194 
( . 002 ) 

43 . 250 
( . 003 ) 

43 . 559 
( . 011 ) 

Fig. 1. Values of lower and upper bounds for different kernels and numbers of iterations in the local LSM method. For the kernels, the proportion p indicates the effective 

number of points used in the local regression ( p = 0 . 5% in the dark blue line, p = 1% in the red line, and p = 5% in the light blue line). For example, Local LSM1 (LLSM3) 

indicates one (three) local regressions. We also show the lower-bound value of the standard LSM method and two upper bounds based on stopping times and a continuation 

value estimated in the waiting region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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3 In addition (not reported here for brevity), for four assets, we can reduce this 

upper bound by another 10 bps if we use a quadratic (instead of a linear) function 

V co , and by another few points if V co is estimated from paths simulated exactly from 

S 0 (to compute ̃  V ∗ for the ̃  τ stopping-time, it is convenient to simulate paths not 

from S 0 and t = 0 but from in-the-money values and t < 0). 
Table 2 . Prices of Bermudan up-and-out max-call options for

N = 4 stocks and S 0 = 100 , in the setup of Table 1 . The first col-

umn ( M ) is the number of paths in the backward regressions to

estimate the continuation values. The second column is the LSM

method, and the third to eighth columns are the first five and the

tenth iteration of the local-LSM lower bounds. The ninth and tenth

are the upper bounds. We report the mean and standard error over

10 trials. Lower and upper bounds are as in Table 1 . 

Table 2 and Fig. 1 show the robustness of both upper bounds to

the estimation of the continuation value by local least squares (i.e.,

number of simulation paths and kernel). Because the upper bound

based on stopping times is also robust to the number of iterations,

this upper bound is tighter (closer to the true price) than the lower

bound. 

5.1.2. Upper bounds 

Table 3 shows the upper bound deteriorates little with the

number of subsimulated paths. We can reduce the upper-bound

cost without losing accuracy: By reducing the number of subsimu-

lated paths from 10,0 0 0 to 50 0—a 5% (to 10 0—a 1%) of the original

subsimulations, the gap rises by only 3 (15) cents. 
Please cite this article as: A. Ibáñez and C. Velasco, Recursive lower and

of Operational Research, https://doi.org/10.1016/j.ejor.2019.07.031 
Table 3 . Gaps of lower and τ -based upper bounds for up-and-

ut Bermudan max-call options for N = 4 stocks, in the setup

f Table 1 . We directly compute the gap for different numbers

f subsimulation paths (sub-paths): 10 0, 50 0, and 10,0 0 0. The

pper bound is defined as the lower bound plus the gap (i.e.,

 

up 
0 

= V low 

0 
+ Gap). We report the mean and standard error over

0 trials. Table 1 represents the case using 10,0 0 0 subsimulation

aths. 

From Table 1 , an upper bound based on continuation values is

ore biased. Yet fitting a continuation value ( V 

co ) in the waiting

egion yields upper bounds that, especially if the option is at-/in-

he-money, are as accurate as those based on stopping times and

he standard LSM but in a fraction of the time. The improvement

n this dual bound is mostly due to the waiting-region constraint

nd not the subsequent policy (e.g., if alternatively based on the

tandard LSM method); see Table 1 , last two columns. 3 
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Table 3 

Gaps between lower and τ -based upper bounds. 

Lower bound, V low 
0 Gap τ -based Upper bound, V up 

0 

local LSM 100 sub-paths 500 sub-paths 10,0 0 0 sub-paths 10,0 0 0 sub-paths 

S 0 LSM 3rd iter LSM 3rd iter LSM 3rd iter LSM 3rd iter LSM 3rd iter 

90 32 . 706 
( . 008 ) 

34 . 647 
( . 005 ) 

2 . 405 
( . 015 ) 

0 . 306 
( . 007 ) 

2 . 257 
( . 015 ) 

0 . 133 
( . 006 ) 

2 . 228 
( . 015 ) 

0 . 082 
( . 005 ) 

34 . 934 
( . 015 ) 

34 . 752 
( . 005 ) 

100 40 . 328 
( . 008 ) 

43 . 159 
( . 002 ) 

3 . 483 
( . 025 ) 

0 . 284 
( . 004 ) 

3 . 329 
( . 026 ) 

0 . 120 
( . 004 ) 

3 . 302 
( . 024 ) 

0 . 090 
( . 005 ) 

43 . 630 
( . 024 ) 

43 . 249 
( . 004 ) 

110 46 . 197 
( . 007 ) 

49 . 429 
( . 003 ) 

3 . 965 
( . 029 ) 

0 . 234 
( . 004 ) 

3 . 833 
( . 027 ) 

0 . 082 
( . 003 ) 

3 . 801 
( . 028 ) 

0 . 052 
( . 004 ) 

49 . 998 
( . 028 ) 

4 9 . 4 80 
( . 003 ) 

Table 4a 

Relative computing times for continuation-value parameters. 

Method Bandwidth N 

4 8 16 

LSM – 1 1 1 

Local LSM 1st iter Fixed 2.29 2.27 2.31 

Optimal 10.75 12.34 14.43 

Local LSM 3rd iter Fixed 4.87 4.89 4.98 

Optimal 13.34 14.96 16.59 

LSM + LSM V co – 3.58 3.66 3.41 

Local LSM 1st iter + LSM V co Fixed 4.87 4.93 4.73 

Optimal 13.33 15.00 16.84 

Local LSM 3rd iter + LSM V co Fixed 7.45 7.55 7.39 

Optimal 15.92 17.62 19.00 

Table 4b 

Relative computing times for lower and upper bounds. 

Bound Method Sub-paths N 

4 8 16 

Lower V low 
0 LSM – 1 1 1 

Local LSM 3rd iter – 1.42 1.53 1.64 

Upper V up 
0 

V co -based Local LSM 3rd iter 500 3.77 2.85 2.88 

Upper V up 
0 

τ -based Local LSM 3rd iter 10,000 113.40 125.40 197.39 

500 10.83 9.75 9.20 

100 6.73 5.69 4.77 
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In Tables 4a and 4b , we report the effort required to compute

he optimal-recursive exercise policy along with V 

co and the asso-

iated lower and upper bounds. We use a fixed and an optimized

ernel, and use one and three local regressions. All times are rela-

ive to the standard LSM. First, to estimate the exercise policy and

 

co , the cost increases between 1 and 19 times in the 30 entries

f Table 4a . Second, to compute the lower bound, the total cost in-

reases only between 42% and 64% (because the lower bound uses

 million paths) in Table 4b . In the case of the upper bound based

n a continuation value (stopping times), the cost increases by one

rder of magnitude (between 100 and 200 times). Yet, in the lat-

er case of stopping times, reducing the number of subsimulation

aths to 500, the increase is just 10 times. 

Table 4a . Relative computing times for parameter estimation

imes normalized by column in the setup of Table 1 . The LSM, local

SM, and LSM V 

co methods use 20 0,0 0 0 paths to recursively com-

ute the parameters associated with continuation values to define

˜ or V 

co (Matlab R2017a 64-bit, HP Z620 Workstation, and Intel

eon CPU E5-2620 0 @2.00 gigahertz). 

Table 4b . Relative computing times for lower and upper bounds

n the setup of Table 1 . Lower V low 

0 
bounds (LSM and local LSM)

se 20 0,0 0 0 paths to recursively compute the continuation values

o define ˜ τ and another 2 million paths to compute the Bermudan

rice. Upper V 
up 
0 

V 

co -based and Upper V 
up 
0 

τ -based use 30,0 0 0 and

0 0 0 outer paths, respectively. 
Please cite this article as: A. Ibáñez and C. Velasco, Recursive lower and
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DSM report (see their Table 2 ) the cost of the upper bound

s similar in these two methods, in their pathwise optimization

nd in the martingale-based continuation values. Pricing Ameri-

an options with stochastic parameters, Brown et al. (2010) also

eport both martingale-based upper bounds are time consum-

ng compared to upper bounds based on information relaxation.

ence, our paper provides two extensions of martingale-based

pper bounds. First, when using continuation values, we get a

ighter upper bound by computing the continuation value only in

he waiting region. Second, when using stopping times, the upper

ound is both tight and efficient if we use fewer subsimulation

aths, but a near-optimal exercise strategy as in the local LSM ap-

roach. With both methods, we bring the overall cost of the mar-

ingale approach in line with pathwise optimization or information

elaxation. 

. Concluding remarks 

In this paper, we show the exercise strategy that maximizes

he Bermudan price/lower bound also minimizes the gap between

he lower and the dual upper bound. We assume both bounds are

pecified recursively, and show the upper bound is independent

f the next-stage policy. Upper bounds based on this optimal re-

ursive exercise policy are very tight, as we show for up-and-out

ermudan max-options, and require few nested simulations. Up-

er bounds are tighter but more time intensive than lower bounds.

n addition, a better upper bound based on continuation values,

hich is not as accurate but is more efficient than one based on

topping times, requires reestimating the continuation value only

n the waiting region. From these results emerges the fact that al-

hough a tradeoff between tighter bounds and time effort is not

traightforward in other methods, this tradeoff exists for optimal

ecursive lower/upper bounds. 

Securities that provide flexibility of early exercise are ubiq-

itous in financial markets: from single-name American-equity

ptions and Bermudan options to enter/cancel an interest-rate

wap, to credit-risk models ( Ayadi, Ben-Ameurb, & Fakhfakh,

016 ). Specifically, for applications of lower/dual bounds in eq-

ity models with stochastic volatility, see Ibáñez and Velasco

2016) and Fabozzi, Paletta, and Tunaru (2017) ; for the ap-

raisal of Bermudan swaptions prices, see Andersen and Andreasen

2001) and Svenstrup (2005) ; for term-structure applications, see

oshi and Tang (2014) ; and see Kogan and Mitra (2017) and

ender, Schweizer, and Zhuo (2017) for extensions to other eco-

omic problems. Lower/dual bounds applications are also com-

on in operations research ( Trigeorgis & Tsekrekos, 2018 ), such as

hen to launch a new product or halt a failing project, delayed-

urchase options ( Aydin, Birbil, & Topalo ̆glu, 2017 ), inventory prob-

ems ( Brown et al., 2010 ), or energy real options ( Nadarajaha, Mar-

ot, & Secomandi, 2017 ), which includes more references to the lit-

rature. 
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Ẑ  

4 Broadie and Cao (2008) and Joshi (2007) introduce a similar idea to reduce the 

cost of dual upper bounds. 
Appendix A. Proofs 

V 
up 
0 

does not depend on the martingale initial value ̂ M 0 . 

Consider a different initial value ̂  x 0 � = ̂

 V 0 . From Eq. (7) , 

 

up 
0 

: = ̂

 V 0 + E Q 
0 

[
max 
1 ≤t≤T 

{
I t − ̂ M t 

R t 

}]
= ̂

 x 0 + E Q 
0 

[ 

max 
1 ≤t≤T 

{ 

I t −
( ̂ M s,t −

(̂ V 0 −̂ x 0 
)

× R t 

)
R t 

} ] 

, 

and a more general martingale ̂ m t /R t is given by ̂ m 0 = ̂

 x 0 and 

̂ m t =̂ M t − ( ̂  V 0 −̂ x 0 ) × R t for t ≥ 1. And 

̂ m t = 

̂ M t if ̂  x 0 = ̂

 V 0 . �

Proof of Eq. (11). From the same Eq. (11) , ̂ M t − ̂ M t−1 R t−1 ,t = 

(
I t−1 −̂ V t−1 

)
× 1 { t −1= ̃  τ (t −1) } 

×R t−1 ,t + 

(
1 { t < ̃  τ (t ) } ̂  V t + 1 { t = ̃  τ (t ) } I t 

)
−
(
1 { t −1 < ̃  τ (t −1) } ̂  V t−1 + 1 { t −1= ̃  τ (t −1) } I t−1 

)
× R t−1 ,t 

= 

(
1 { t < ̃  τ (t ) } ̂  V t + 1 { t = ̃  τ (t ) } I t 

)
−̂ V t−1 × R t−1 ,t , 

which is Eq. (10) . �

Proof of Proposition 1. M 

∗ is explicitly defined as ̂ M in Eq. (11) for
 τ = τ ∗. The definition of τ ∗ (i.e., τ ∗(t) = t if I t ≥ V ∗t ; τ

∗( t ) > t oth-

erwise) implies 

( I t − V 

∗
t ) × 1 { t = τ ∗(t ) } = { I t − V 

∗
t } + ≥ 0 . 

From Eq. (11) for ˜ τ = τ ∗ and from the last equation, it follows

that 

M 

∗
t > I t , if t � = τ ∗; and M 

∗
t = I t , if t = τ ∗, 

where τ ∗ means τ ∗(1), and therefore, 

max 
1 ≤t≤T 

{ I t − M 

∗
t } = I τ ∗ − M 

∗
τ ∗ = 0 , and 

V 

up 
0 

:= M 

∗
0 + E Q 

0 

[ 
max 
1 ≤t≤T 

{ 
I t − M 

∗
t 

R t 

} ] 
= V 

∗
0 + E Q 

0 [ 0 ] = V 

∗
0 . 

�

Proof of Theorem 1. From Eq. (13) , 

GAP s = 

−̂ Z s 

R s 
+ max 

{
I s 

R s 
, 
̂ M s 

R s 
+ max 

s +1 ≤t≤T 

{
I t − ̂ M t 

R t 

}}
= 

−̂ Z s 

R s 
+ max 

{
I s 

R s 
, ̂

 V s 

R s 
+ 

̂ M s R s,s +1 + ̂

 Z s +1 −̂ V s R s,s +1 

R s +1 

−
̂ Z s +1 

R s +1 

+ max 
s +1 ≤t≤T 

{
I t − ̂ M t 

R t 

}}

= 

−̂ Z s 

R s 
+ max 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

I s 

R s 
, ̂

 V s 

R s 
+ 

̂ M s +1 

R s +1 

−
̂ Z s +1 

R s +1 

+ max 
s +1 ≤t≤T 

{
I t − ̂ M t 

R t 

}
︸ ︷︷ ︸ 

= GAP s +1 

⎫ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎭ 

, 

(24)

the last equality follows from the definition of ̂ M in Eq. (10) . Then,

it is easy to show by induction that GAP s + 

̂ Z s 
R s 

does not depend on

 τ (s ) or ̃  V s , because GAP s +1 does not either. 

Next, we prove GAP T = 0 . From Eq. (13) , 

GAP T = 

I T −̂ Z T 
R T 

. 

And from Eq. (14) (because ̂ V T = 0 , GAP T +1 = 0 , and I ≥ 0), it fol-

lows that GAP T = (−̂ Z T + I T ) 
1 

R T 
as well. Then, GAP T = 0 if ̂ Z T = I T ,

which is the case because ̂  V = 0 . �
T 
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roof of Proposition 3. V 
up 
s, 0 

does not depend on ˜ τ ( s ) , and hence,

rom Eq. (15) , 

rg min ˜ τ ( s ) ∈T | ̃  τ ( s +1 ) 
E Q 

0 [ GAP s ] = arg min ˜ τ ( s ) ∈T | ̃  τ ( s +1 ) 

{
V 

up 
s, 0 

− V 

low 

s, 0 

}
= arg min ˜ τ ( s ) ∈T | ̃  τ ( s +1 ) 

{
−V 

low 

s, 0 

}
= arg max ˜ τ ( s ) ∈T | ̃  τ ( s +1 ) 

V 

low 

s, 0 = ̃

 τ ∗(s ) . 

�

roof of Eq. 23. We assume ̂ ξ = 0 for simplicity. From the same

q. (23) , 

̂ 

 t − ̂ M t−1 R t−1 ,t = 

({
I t−1 −˜ V t−1 

}+ + ̃

 V t−1 −̂ V t−1 

)
×R t−1 ,t + max 

{˜ V t , I t 
}

− max 
{˜ V t−1 , I t−1 

}
× R t−1 ,t 

= max 
{˜ V t , I t 

}
−̂ V t−1 × R t−1 ,t , 

hich is Eq. (22) , because { I t−1 −˜ V t−1 } + + ̃

 V t−1 =
ax { ̃  V t−1 , I t−1 } . �

Reducing the upper-bound computational cost 

Consider a path “ω” such that the stopping time satisfies that

 < ̃

 τ (t) and 

˜ τ (t + 1) = t + 1 (and let ̂ ξt = 0 ). From Eq. (18) and

 j,t /R t = R −1 
j 

, 

̂ M t − I t 

R t 
= 

t−1 ∑ 

j=1 

(
I j −̂ V j 

)
× 1 { j = ̃  τ ( j ) } ×

1 

R j 

+ 

̂ V t − I t 

R t 
. 

ikewise, noting the “ j = t” term of the sum in 

̂ M t+1 is zero be-

ause t < ̃

 τ (t) , ̂ M t+1 − I t+1 

R t+1 

= 

t−1 ∑ 

j=1 

(
I j −̂ V j 

)
× 1 { j = ̃  τ ( j ) } ×

1 

R j 

. 

Note that t < ̃

 τ (t) does not necessarily imply ̂ V t > I t (i.e., ̂ V t is

ndependent of the stopping time at time t ); if it did, ˜ τ (t) = ̃

 τ (t +
) would be the optimal time – t recursive exercise policy. Hence,

e have no guarantee that 

−( ̂  M t − I t ) 

R t 
< 

−( ̂  M t+1 − I t+1 ) 

R t+1 

, 

hich would imply computing ̂  V t is not necessary if t < ̃

 τ (t) . Sim-

larly, given τ (t + 1) = t + 1 , computing ̂ V t− j is also not necessary

or any previous period t − j ( j ≥ 0) such that the path is in the

ontinuation region, namely, t − j < ̃

 τ ( t − j ) . 

Hence, for any path ω, it does not necessarily follow that 

max 
 ≤t ≤T : t = ̃  τ ( t ) 

{
I t − ̂ M t 

R t 

}
= max 

1 ≤t≤T 

{
I t − ̂ M t 

R t 

}
. 

sing the lhs, however, reduces the number of periods in which

o launch a subsimulation (especially for at-the-money/out-of-the-

oney options, as paths start in the waiting region), but introduces

 negative bias that lowers the upper bound. If ̃  τ is a good exercise

olicy, this bias may be negligible, especially compared to the time

aved in subsimulations. 4 

A martingale based on both stopping times and continuation val-

es, ˜ τ (t) and ̃  V t 
Extending Eqs. (8) and (19) , we define, 

 

 

( cv st ) 
t = 1 { t < ̃  τ (t ) } ̃  V t + 1 { t = ̃  τ (t ) } I t , (25)
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hich also asks for setting ˜ V s = ̂

 V s only in the waiting region

where ̂ V s > I s or s < ̃

 τ (s ) ). Then 

̂ M is given by ̂ M 0 = ̂

 V 0 , and for

 = { 1 , 2 , . . . , T } , ̂ 

 t = 

̂ M t−1 R t−1 ,t + 

(
1 { t < ̃  τ (t ) } ̃  V t + 1 { t = ̃  τ (t ) } I t 

)
−
(̂ V t−1 + ̂

 ξt−1 

)
× R t−1 ,t , 

nd 

 

 t−1 = E Q 
t−1 

[
R 

−1 
t−1 ,t ×

(
1 { t < ̃  τ (t ) } ̃  V t + 1 { t = ̃  τ (t ) } I t 

)]
. 

e combine, in a one-period subsimulation, ˜ τ from the local re-

ression and ̃

 V from least-squares (in the waiting region). This ap-

roach is intuitive if ˜ τ is close to τ ∗. It follows that 

˜ 

 t = 

t−1 ∑ 

j=1 

(
I j −˜ V j 

)
× 1 { t = ̃  τ (t ) } × R j,t + 

t−1 ∑ 

j=1 

(˜ V j −
(̂ V j + ̂

 ξ j 

))
× R j.t 

+ 

(
1 { t < ̃  τ (t ) } ̃  V t + 1 { t = ̃  τ (t ) } I t 

)
. (26) 

However, a low-biased ̃

 V t implies a process based on max { ̃  V t , I t }
s closer to the optimal Z ∗t = max { V ∗t , I t } (where V ∗t is defined in

q. (2) ) than the one based on (1 { t < ̃  τ (t ) } ̃  V t + 1 { t = ̃  τ (t ) } I t ) . That is, for

ny stopping time ˜ τ (t) (including ˜ τ (t) = τ ∗(t) ), 

f ˜ V t ≤ V 

∗
t , max { V 

∗
t , I t } ≥ max { ̃  V t , I t } ≥ 1 { t < ̃  τ (t ) } ̃  V t + 1 { t = ̃  τ (t ) } I t . 

e indeed find the latter martingale yields the most biased upper

ound of the three. 

Additional details on the local-regression example 

First, for a local regression, having paths close to the unknown

xercise boundary is critical; otherwise, we have no information to

ely on. We start to simulate paths three months before the ini-

ial period t = 0 , so rich price dispersion is present at the first

xercise dates. For N = { 4 , 8 } , we simulate paths from an in-the-

oney point (i.e., 120 for all assets). If the boundary is well above

 = 100 , and we simulate paths from 90 or 100 (and from t = 0 ),

ew paths overshoot the boundary at the first exercise dates. For

 = 16 assets, we simulate from 100 because many paths will

ventually hit the barrier. The simulated paths are the same for

he standard LSM method. These changes improve the robustness

f the local method. The local exercise strategy does not depend

n moneyness. 

Second, by using the continuation value estimated in the previ-

us stage to define the kernel, one local regression produces very

ood prices. We iterate this local regression a couple of times to in-

rease this price a few cents. Third, the up-and-out barrier implies

he Bermudan price is not monotonic near the exercise boundary.

o avoid potential cycles, we define the new continuation value as

ne half the local regressions of the present and previous periods

the last two iterations, in the case of more than one iteration). 

Lastly, the optimal kernel uses approximately 1%–5% of the

0 0,0 0 0 simulated points that are closer to the exercise boundary.

his percentage determines the value of the kernel bandwidth h in

he local estimation of the continuation value for each period by

n iterative procedure starting from a grid search to adapt to the

ispersion of the exercise boundary. The effective number of local

to the exercise-boundary) points used in the local estimation is

btained as in (Fan & Gijbels, 1995, p. 374) , so that a larger (lower)

umber of paths implies more biased (more erratic) prices due to

 wider (narrower) kernel, that is, a larger (smaller) h . Fixing a

nique h for all exercise periods after some limited number of tri-

ls can speed up the procedure at a limited cost in terms of price

ccuracy (e.g., h ∈ [0.5, 1.5] produces lower bounds similar to the
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ptimal kernel). For eight and 16 stocks, many of those 20 0,0 0 0

aths eventually hit the barrier near expiry, which implies fewer

vailable points for the local regression, requiring a less localized

ernel of 5%. 
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