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The growing penetration of renewable energy sources in electricity systems requires
adapting operation models to face the inherent variability and uncertainty of wind or
solar generation. In addition, the volatility of fuel prices (such as natural gas) or the
uncertainty of the hydraulic natural inflows requires to take into account all these
sources of uncertainty within the operation planning of the generation system. Thus,
stochastic optimization techniques have been widely used in this context. From the
point of view of the system operation, the introduction of wind and solar generation
in the mix has forced conventional generators to be subject to more demanding
schedules from the technical point of view, increasing for example the number of
start-up and shutdown decisions during the week, or having to face more pronounced
ramps. From the point of view of the market, all these technical issues are transferred
to the market prices that are subject to greater volatility. This thesis focuses on
the problem of risk management using the Conditional Value at Risk (CVaR) as
a coherent risk measure. The thesis presents a novel iterative method that can be
used by a market agent to optimize its operating decisions in the short term when
the uncertainty is characterized by a set of random variable scenarios. The thesis
analyses how it is possible to decompose the problem of risk management by means
of Lagrangian Relaxation techniques and Benders decomposition, and shows that
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the proposed iterative algorithm (Iterative-CVaR) converges to the same solution
as under the direct optimization setting. The algorithm is applied to two typical
problems faced by agents: 1) optimization of the operation of a combined cycle power
plant (CCGT) that has to cope with the volatility in the spot market price to build
the supply curve for the futures market, and 2) strategic unit-commitment model. In
a second part of the thesis the problem of market equilibrium is studied to model the
interaction between several generating companies with mixed generation portfolios
(thermal, hydraulic and renewable). The thesis analyses how the Nash equilibrium
solution is modified at different risk-aversion level of the risk of the agents. In
particular, the thesis studies how the management of hydroelectric reservoirs is
modified along the annual horizon when agents are risk-averse, and it is compared
with the risk-neutral solution that coincides with a centralized planning when the
objective is the minimization expected operational cost.
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Abstract in Spanish Language (Resumen)

Autor:: Nenad Jovanović

Afiliación:: Universidad Pontificia Comillas, KTH Royal Institute of Technology,
Delft University of Technology

Titulo: Planificación operacional de agentes adversos al riesgo en mercados eléctri-
cos: optimización estocástica y equilibrio

Lengua: Inglés
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La creciente penetración de fuentes de energía renovable en los sistemas eléctricos
obliga a adaptar los modelos de planificación de la operación para hacer frente a la
inherente variabilidad e incertidumbre de la generación eólica o solar. Además, la
volatilidad de los precios de combustibles fósiles (como por ejemplo el gas natural) o
la incertidumbre de las aportaciones hidráulicas obliga a que el proceso de toma de
decisiones para operar las centrales se realice teniendo en cuenta todas estas fuentes
de incertidumbre, de modo que las técnicas de optimización estocástica han sido
ampliamente utilizadas en este contexto. Desde el punto de vista de la operación
del sistema, la introducción de la generación eólica y solar en el mix de generación
ha obligado a que los generadores convencionales estén sujetos a programaciones
más exigentes desde el punto de vista técnico, aumentando por ejemplo el número
de arranques y paradas durante la semana, o teniendo que hacer frente a rampas
de programación más pronunciadas. Desde el punto de vista del mercado, todo ello
se traslada al mecanismo de formación de precios que pueden estar sujetos a una
mayor volatilidad. Esta tesis se centra en el problema de la gestión de riesgos desde
la perspectiva de una empresa de generación utilizando como medida coherente de
riesgos el Conditional Value at Risk (CVaR). La tesis propone un método iterativo
que puede ser utilizado por un agente de mercado para optimizar sus decisiones
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de operación en el corto plazo cuando la incertidumbre está caracterizada por un
conjunto de escenarios de las variables aleatorias. La tesis analiza cómo es posi-
ble descomponer el problema de gestión de riesgos mediante técnicas de Relajación
Lagrangiana y descomposición de Benders, y demuestra que el algoritmo iterativo
propuesto (Iterative-CVaR) converge a la misma solución que la optimización di-
recta. El algoritmo se aplica a dos problemas típicos a los que se enfrentan los
agentes: 1) optimización de la operación de una central de ciclo combinado (CCGT)
ante volatilidad en el precio del mercado spot para construir la curva de oferta para
el mercado de futuros, y 2) modelo de unit-commitment estratégico. En una segunda
parte de la tesis se estudia el problema del equilibrio de mercado para modelar la
interacción entre varias empresas generadoras con portfolios de generación mixtos
(térmicos, hidráulicos y renovables) y se analiza cómo se modifica la solución del
equilibrio de Nash ante distintos niveles de aversión al riesgo de los agentes. En
particular, se estudia cómo se modifica la gestión de los embalses hidroeléctricos a lo
largo del horizonte anual cuando los agentes son aversos al riesgo, y se compara con
la solución neutral al riesgo que coincide con una planificación centralizada donde
el objetivo sea la minimización de la esperanza del coste total de explotación.
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1. Introduction

1.1. Background

The pioneering deregulation process that took place in Chile in the 80s paved the
way for the posterior liberalization of the electric power industry in many coun-
tries during the 90s and later. The implementation of electricity markets based on
marginal pricing principles (Schweppe et al., 1988) changed the way in which hy-
dro and thermal generators were scheduled. Therefore, the centralized optimization
approach was substituted in many systems by a market mechanism where the Mar-
ket Operator (MO) is in charge of clearing the short-term spot market (typically
a day-ahead auction complemented with real-time and balancing markets). In this
context, generation companies (Gencos) are responsible for planning the optimal
operation of their own assents, and for submitting the right offers to the MO that
allow them to put into practice such optimal operation. In addition, the increasing
level of intermittent renewable energy sources (RES), such as wind and solar, repre-
sents an additional challenge from the operation point of view (Rubin & Babcock,
2013). Therefore, the traditional models had to be adjusted taking into account the
market environment.

Modeling of the electric power system is a challenging task due to its technical
complexity, such as: types of generation units, network constraints, demand balance,
etc. Moreover, these technical characteristics of the system have to be embedded
into the market models for a richer representation of agents’ behavior. One of the
main factors in the decision support modeling approach is the time scope.

• In the long-term period (years) the main decision variables are investment in
new generation capacity (Wogrin et al., 2011), transmission network (David &
Wen, 2001) and, in resent years, investment in renewable energy (Couture &
Gagnon, 2010). These decisions can be mostly driven by the market regulation,
capacity markets or feed-in tariffs. In case of a mathematical complexity, an
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Chapter 1 Introduction

alternative to the mentioned approach are simulation models (Day & Bunn,
2001) which allow flexibility in representing agent’s strategies.

• Decisions in the medium-term (months) can be seen as hydro reservoir plan-
ning (Scott & Read, 1996), purchasing minimum fuel amount and involvement
in electricity future markets (Bessembinder & Lemmon, 2002). Estimation of
forward electricity and fuel prices, change in the bid-ask spread on futures
transactions, variation of currency rates in the foreign exchange market, rep-
resent only a few obstacles in decision making process in the time period of
several months. Equilibrium models are used for medium-term planing, es-
pecially approaches such as Cournot competition (Daughety, 2005), where
agents’ strategies are quantities, and supply function equilibrium (Klemperer
& Meyer, 1989) which defines agent’s strategies as curve functions.

• Finally, decisions to be made in the short-term period (days) such as genera-
tion unit scheduling, daily spot and balancing market auctions, are the ones
being made very frequently and are mostly affected by volatility of electricity
price, demand fluctuation, generation unit failure, etc. Models used for the
short-term planing are known as single agent optimization models where the
objective is to maximize agent’s profits (Garcia-Gonzalez et al., 2008).

The above mentioned models are being reviewed constantly in order to adapt to
a changing environment: impact of distributed generation resources (Ackermann
et al., 2001), active role of the demand (Albadi & El-Saadany, 2008), etc.

1.1.1. The role of uncertainty in the decision making process

The process of making decisions in the electricity markets includes a lot of uncer-
tainty in hydro inflow, fuel prices, renewable energy production, etc. To properly
model the type of data uncertainty, stochastic programming provides a good math-
ematical framework in order to get enough information for the decision process.
Decision making under uncertainty is usually addressed to rank different available
choices when the outcomes (e.g. profits or losses) depend on some random variables.
An optimal criteria needs to be introduced. One possibility is to maximize/minimize
the expected value of the outcome. As this could lead to unacceptable outcomes in
case one of the worse scenarios occurs, the practitioners employ mean-risk models in
the decision process (Kahneman & Tversky, 1979; Knight, 1921). So, the volatility
of outcomes is managed by using risk measures. Among several risk measures used

2



1.1 Background

in literature, this thesis focuses on the Conditional Value at Risk (CVaR).

Before measuring the risk, agents have to identify them, determine the degree of
impacts and evaluate the sensitivity on profits. Therefore, risk management has
received a lot of attention in the electric power industry in order to help market
participants to hedge their sources of risk for different time scopes (Denton et al.,
2003): short term (Conejo et al., 2004; García-González et al., 2007; Sheikhahmadi
et al., 2018), medium-term (Cabero et al., 2005; Fleten et al., 2002; Karavas et al.,
2017), and long term (Abada et al., 2017; Baringo & Conejo, 2013). However, in
the liberalized market, risk-averse behavior of agents can have a big influence on the
decision making process (Gérard et al., 2018; Philpott et al., 2016; Rodilla et al.,
2015). Models based on the Nash equilibrium approach (Nash, 1950) have been
developed to tackle the uncertainty of competitors behavior (Ventosa et al., 2005).

1.1.2. Impact of renewable energy sources on electric power systems

With the introduction of renewable energy sources in the electric power system, the
impact on agents’ strategies has additionally increased. Furthermore, a rapid growth
of renewable capacity installations (see Figure 1.1 which presents data from IRENA
(2018)) called for the upgrade of decision support models in order to capture the
effect caused by this energy. Big volatility of renewable energy production has a huge
impact on the generators output, electricity prices and network investment planning.
The main renewable source during the last decade is wind energy, although solar
energy has a strong growth momentum. Knowing that wind energy can be stored
in a very limited amount, the impacts on electric power systems can be seen from:

1. Operational point of view: The intermittent nature of wind generation makes
it the most challenging generation to be incorporated into power system. This
affects scheduling and adjustment of conventional generators’ output (Mac-
Cormack et al., 2010; Ummels et al., 2007).

2. Market point of view: Available wind energy is usually dispatched before con-
ventional generators affecting the real-time prices, because the variable gen-
eration costs are negligible (Klinge Jacobsen & Zvingilaite, 2010; Woo et al.,
2011). In some countries, mainly in Europe, wind energy is supported via
feed-in tariff mechanism implying that negative electricity prices might occur
(Fanone et al., 2013).
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Chapter 1 Introduction

Figure 1.1.: Installed wind and solar power capacity in the world

1.1.3. Modeling challenges

In case of the single-agent approach, modeling data uncertainty via stochastic pro-
gramming usually requires a very large number of scenarios to guarantee a sufficient
outcome of a decision making process. Moreover, by applying a weighted mean-risk
objective function in order to manage such volatile outcomes might cause computa-
tional intractability. In case of the CVaR measure, inclusion of additional coupling
constraints complicates the straightforward application of a stochastic decomposi-
tion technique. Therefore, the intention of this thesis is to provide an alternative
algorithm which would convert the mean-risk problem into an equivalent risk-neutral
stochastic problem. The risk-aversion would be modeled via the risk-adjusted prob-
abilities, instead of additional coupling constraints, ensuring better computational
tractability

On the other side, market equilibrium approach with risk-averse has its additional
complexities in terms of modeling the competitors’ risk preference. Knowing that
the agents’ interaction leads to additional uncertainty affecting the final outcome of
the problem, there is a need for a detailed analysis of the Nash equilibrium solution.
This thesis proposes a multi-stage stochastic non-convex equilibrium problem where
the game of agents with different risk aversion is studied. In this case, there is a
demand for accommodating such complex model in a flexible way. The Extended
Mathematical Programming is employed allowing automatic reformulation of the
problem into a Mixed Complementarity Problem.
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1.2 Motivation

1.2. Motivation

It is clear that the presence of renewable energy sources, in electrical power sys-
tems, is affecting the behavior of the electricity market agents. To respond to this
new challenge, it is usually required to solve complex mathematical models where
tractability needs to be assured from the computational perspective. Therefore, it
is necessary to review the optimization models used by a single agent to make its
decisions under a risk-constrained setting.

Nevertheless, different behavior of agents also affects the uncertainty market func-
tioning. The standard methodology to model the strategic interaction of the agents is
by computing the Nash equilibrium, following a number of different approaches and
techniques depending on the general hypothesis, particular constraints, time scale
considered, etc. Moreover, the inclusion of risk management in market equilibrium
models has been a research topic in the recent years. The impact of risk-aversion
on the behavior of market agents and a possible change of the equilibrium solution
is an on-going research question.

This thesis aims to provide tools and insights regarding the behavior of agents owning
traditional thermal generation assets when risk aversion is considered. The main
objectives are proposed based on identified gaps from the state of the art review
(see Chapter 2).

1.2.1. Objectives of the thesis

This thesis research identifies a inspiring set of research questions:

1. Is it possible to improve the computational tractability of the optimization
problem of a risk-averse agent in the electricity markets?

2. Up to what extend the risk-averse agents in an electricity markets change the
equilibrium solution?

In order to answer both research question, the following objectives are established:

Objective1: Develop an algorithm to solve a risk-constrained optimization problem
for a single agent and prove its convergence and accuracy.

The goal of this objective is to provide an alternative algorithm for the optimization
of the CVaR measure which provides good computational tractability for complex
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Chapter 1 Introduction

optimization problems. The algorithm needs to have a general form so it can be
applied to several different modeling cases.

Objective2: Apply the developed algorithm to two common problems faced by Gen-
eration Companies (single agent): forward contracting and unit-commitment.

The main aim of this objective is to identify the problems of interest to the power
industry and to apply the developed risk-constrained algorithm. The proposed real-
case problems shall highlight the advantages of the algorithm and inspire its appli-
cation to other types of problems.

Objective3: Formulate the Nash Equilibrium in the presence of risk-averse agents
and develop a model (Mixed Complementary Problem) to solve the resulting
problem in a multi-agent setting.

Mathematical formulation and a modeling approach of the Nash Equilibrium are
the key points of this objective, which pave the way for providing an insight of the
resulting equilibrium outcomes with presence of risk-averse agents.

Objective4: Analyze the impact of risk-averse level on the Nash Equilibrium solu-
tion.

This objective shall provide analysis of the Nash Equilibrium solution when the
market agents strategies, among the usual ones, are considered to be their risk-
averse levels.

1.3. Outline of the thesis

The structure of this thesis is organized in a way to address the before-mentioned
objective. It is organized in the two main parts. The first part of the thesis discuses
the current state of the market models and proposes an alternative algorithm for the
CVaR modeling. In the second part defines three different risk-constrained models
which highlight the impact of risk aversion on the decision making process.

• Chapter 2: A state of the art literature review on risk management in elec-
tricity markets is provided in this chapter.

• Chapter 3: This chapter presents the developed Iterative CVaR algorithm
and gives an overview of its advantages for solving risk-constrained optimiza-
tion problems.
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1.3 Outline of the thesis

• Chapter 4: This chapter describes the application of the Iterative CVaR to
single-agent problems: involvement in forward markets and unit-commitment
problem.

• Chapter 5: In this chapter a Nash Equilibrium model with risk-averse agents
is presented and the impact of different risk-averse levels on the equilibrium is
analyzed and applied to a real case study.

• Chapter 6: This chapter provides conclusions and contributions of this thesis
project and suggests a future research lines.
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2. State of the art literature review

2.1. Risk Management

In any decision-making process it is necessary to take into account the existence
of uncertain events that can be considered as “risks” when they have a negative
impact, or “opportunities” in the opposite case. Regardless of the area of study or
the associated business, a proper risk modeling has to follow the next consecutive
stages: 1) risk identification, 2) risk analysis and measurement, 3) risk treatment,
and 4) risk monitoring and review.

The owners of power plants are exposed to a variety of uncertainties in deregulated
electricity markets. These uncertainties are related to the power demand, bidding
strategies of other generation companies, network contingencies, fuel costs, etc. In
recent years, the penetration of renewable energy sources has increased the volatility
of the spot market prices, especially in the short-term. Decision making under
uncertainty requires the development of stochastic programming models (SPMs)
adapted to the needs of the decision maker. Depending on the scale of the problem,
the type of constraints and the number of scenarios, solving the resulting SPMs can
be very challenging (Birge & Louveaux, 1997). As a consequence of such increased
level of uncertainty, risk management has become a common practice in the electric
power industry.

Risk modeling approach is introduced in the electricity market modeling for ana-
lyzing the exposure to a variety of uncertainties and finding the most appropriate
solution for hedging against the risk. Financial instruments specially designed to
manage the risk are implemented (Deng & Oren, 2006) and risk measures are intro-
duced defining the risk preference of the agents (Oliveira et al., 2006). Numerous
researchers have tackled this topic from the single-agent optimization and the market
equilibrium point of view. Agents are exposed to different nature of risks (opera-
tional, financial, regulatory, etc.) in the liberalized electricity markets (Denton et al.,
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Chapter 2 State of the art literature review

2003). Determining the exposure to a risk, that an agent is exposed to, is addressed
to the risk management models (Eydeland & Wolyniec, 2003).

2.1.1. Risk Measures

Risk measures are mainly used to quantify a minimum amount of funds (such as
cash, treasury bonds, etc.), required by the regulators in financial industry, which
would be used to cover possible losses. A variety of risk measures are implemented
in the power sector for risk valuation, such as: utility function, mean-variance,
value-at-risk, conditional value-at-risk, etc. The applicability of those risk measures
depend on the mathematical properties that they hold. For many real applications,
it is desirable that the risk measure is coherent Artzner et al. (1999). The coherent
risk measure ρ is obtained as one satisfying for any portfolios X and Y as follows:

1. Monotonicity: ρ (X) ≥ ρ (Y ) for all X ≤ Y

2. Subaditivity: ρ (X + Y ) ≤ ρ (X) + ρ (Y ) for all X and Y

3. Positive homogeneity: ρ (λX) = λρ (X) for all X and λ > 0

4. Translation invariance: ρ (X + C) = ρ (X)− C for all X and constant C ∈ R

The point 1 indicate that the risk is higher if a portfolio is worse. The subaditivity
axiom defines that a diversification of a portfolio is less risky than having individual
portfolios. In the axiom 3 it is defined that a change in the portfolio by a certain
coefficient changes the risk by the same coefficient. Moreover, the points 2 and 3
imply convexity. Finally, point 4 defines that the risk will be reduced by a certain
amount of capital if a portfolio is increased by the same amount.

For instance, Value at Risk (VaR), which is very common in the financial sector, does
not hold the subaditive property, (Krokhmal et al., 2011), as VaR of a given portfolio
made of several elements can be higher than the sum of VaR values of each one of
them. The utility function is linear but it does not hold the positive homogeneity,
and the mean-variance lacks the monotonicity property. On the contrary, the well-
known Conditional Value at Risk (CVaR) holds all the properties of the coherent
risk measure has become a widely used risk measure.

2.1.2. CVaR definition

Among all the new risk measures proposed in the literature, CVaR has gained a lot of
attention during the last decade because: i) it is a convex and coherent risk measure,
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2.1 Risk Management

Figure 2.1.: Conditional value at risk

and ii) exhibits interesting computational properties that allow to implement it in the
context of linear programming when the uncertainty is represented by a finite number
of discrete scenarios. Therefore, the use of CVaR within decision support models
has increased dramatically during the last years, and it is possible to find many
applications, such as: the financial sector (Andersson et al., 2001; Topaloglou et al.,
2002), the electric power industry (Eydeland & Wolyniec, 2003; García-González
et al., 2007), the gas and oil sector (Carneiro et al., 2010; Dueñas et al., 2015), the
water management problem (Bjorkvoll et al., 2001; Webby et al., 2008), and many
others.

The most common definition of CVaR is that it computes the expected value of the
profits lower than the value of VaR for a given confidence level β. The concept of
CVaR is graphically presented in Fig. 2.1.

Let X be a discrete random variable describing the set of net profits of a given
portfolio and z the profit distribution. The F (z) is its distribution function and
β ∈ (0, 1) a given confidence level. The value at risk ζ for the β is defined as:

ζβ(X) = sup {z ∈ R | FX(z) ≤ β} (2.1)

which, is not a coherent risk measure (Artzner et al., 1999). On the other side, the
alternative known as the CV aR can be defined as:

CVaRβ(X) = EP [X | X ≤ ζβ(X)] (2.2)

However, according to Lüthi & Doege (2005); Ogryczak & Ruszczynski (2002); Rock-
afellar et al. (2002), the expression (2.2) refers to the expected Tail Value at Risk
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Figure 2.2.: Cumulative distribution function - vertical discontinuity gap

(TV aR) which may not hold the coherency. As defined in Rockafellar & Uryasev
(2002), in discrete profit distribution z may contain the probability “atom” at the
value at risk ζ for a given confidence level β. In particular, if there is a vertical
discontinuity gap in F (z), the same value of ζ can be obtained for the interval β− to
β+ (see Figure 2.2) and it can be said that the F (z) is not atomless. This vertical
gap appears very often in the discrete distributions and splitting of the probability
“atom” in a discrete distribution is the way to formulate the coherent CVaR (Sergey
Sarykalin et al., 2008).

By contrast, the section “Risk envelopes and Dualities” from Rockafellar et al. (2002)
provides the coherent CV aR formulation:

CVaRβ(X) = inf
Q∈Q̂
{EQ [X]} (2.3)

where the risk envelope Q̂ is a convex set of probability measures Q ≤ P/β. For
discrete distribution the CVaR can be formulated as:

CVaRβ(X) = min
qsc

∑
sc
qscxsc

s.t.
∑
sc
qsc = 1

0 ≤ qsc ≤
psc

β
,∀sc

(2.4)

where, the qsc are the new scenario probabilities within probability distribution Q.
These new scenario probabilities are equal to zero for a confidence level higher than
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2.1 Risk Management

a given value of β.

Developing an algorithm for computation of this new set of probability measures
was a motivation for the Objective1 of this thesis (see section 1.2.1).

2.1.3. The Mean-Risk-Problem

In the competitive markets a reasonable behavior of a market agent would be to
maximize the expected payoffs and to manage the risk at the same time. Choosing
such an optimal portfolio is known as portfolio selection. From the pioneering work
of Markowitz (1952), the mean-risk models have become widely used where the ob-
jective represents a trade-off between the expected value E(x) and the risk measure
ρ(X).

There are two main formulations of the mean-risk problem formulations used in
literature:

1. max E(X) + µ̂ · ρ(X) , µ̂ ≥ 0

2. max (1− µ)E(X) + µ · ρ(X), µ ∈ (0, 1)

where the main difference is in the upper value of the risk-weight parameters (µ̂
and µ) which sets a trade-off between the expected outcome and the risk measure.
In case of a risk-neutral agent these parameters will take the value of 0. As for
the risk-averse agent, setting a value higher than 0 for the parameter µ̂ in the first
formulation might be challenging and arguable, as theoretically there is no upper
limit. The second formulation of the mean-risk problem is more appealing in this
case, as setting a value of µ = 1 means that a very conservative risk-averse case
is taken into account, where the objective function of the optimization problem
becomes the risk measure itself. The selection of the µ parameter is presented in
the section 4.1.4. Besides setting a proper risk-weight parameter, choosing a risk
measure has a significant impact on obtaining the optimal portfolio. The mean-
variance and the value at risk have been broadly used for the mean-risk problem
formulation (Alexander, 2009). On the other side, CVaR gains more attention as it
allows convex problem optimization.

CVaR can be computed by using Linear Programming (LP), as defined in Rockafellar
& Uryasev (2000). However, CVaR formulation introduces coupling constraints
among the scenarios. With such constraints, computational tractability needs to be
ensured when solving the SPMs with large number of scenarios. Alternative ways
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Chapter 2 State of the art literature review

for CVaR optimization of large-scale scenario problems are defined in Conejo et al.
(2008); García-Bertrand & Mínguez (2014); Pineda & Conejo (2010) by applying
scenario reduction techniques. Scenario reduction techniques are mainly focused on
computing the CVaR itself where the expected profit is totally or partially omitted.
On the other side, a part of the stochastic information might be lost, such as decision
to be made if the neglected scenario occurs.

The focus of the next chapter is on decomposing mean-risk models, without reduc-
tion of the original number of scenarios. These stochastic algorithms usually take
into account two-stage stochastic programming problems based on Benders decom-
position technique (Benders, 1962; Künzi-Bay & Mayer, 2006) and can be formulated
as mono-cut (Ahmed, 2006; Fábián et al., 2015; Fábián, 2008) or multi-cut (Noyan,
2012) algorithms. These methods have shown that the large-scale scenario prob-
lems can be tractable and in some cases they outperform by computational time
the formulation the CVaR direct formulation Rockafellar & Uryasev (2000). An-
other approach, which up to our knowledge is not very common in the literature, is
the application of the risk-adjusted probabilities to modeling the mean-risk problem
(Abad & Iyengar, 2015; Ehrenmann & Smeers, 2011; Miller & Ruszczyński, 2008).
In Miller & Ruszczyński (2008) and Ehrenmann & Smeers (2011) the case of the
atomless discrete distribution of the decision variables is assumed. An algorithm
which is based on the Lagrangian relaxation decomposition technique is presented
in the chapter 3. Given that the algorithm provides an optimal solution by means of
an iterative method, it is refereed as the Iterative CVaR. For modeling the mean-risk
problem with CVaR a new set of probability measures is computed. The fact that
the sub-problem decouples the scenarios of the model, makes the algorithm very
attractive for applying it to the large scale scenario problems.

2.2. Single risk-averse agent models

There is a significant amount of literature that implement hedging strategies from
the single-agent modeling point of view (García-González et al., 2007; Mo et al.,
2001; Oliveira et al., 2006). Among the variety of topics, involvement in future
markets and unit commitment models with ancillary services can be identified as
the two common problems faced by Generation Companies (Gencos), where the
application and performance of the Iterative CVaR can be demonstrated.

Forward contracting has been implemented in the electrical power systems to assist

14



2.2 Single risk-averse agent models

Ta
bl
e
2.
1.
:M

et
ho

ds
fo
r
so
lv
in
g
la
rg
e
sc
al
e
sc
en

ar
io

pr
ob

le
m
s
w
ith

C
Va

R

R
ef

er
en

ce
M

et
ho

d
us

ed
O

bj
ec

ti
ve

fu
nc

ti
on

C
V

aR
co

ns
tr

ai
nt

s

St
oc

ha
st

ic
in

fo
rm

at
io

n

C
on

ej
o

et
al

.(
20

08
)

sc
en

ar
io

re
du

ct
io

n
m

ax
E

(X
)+

µ̂
·C
V
a
R

,µ̂
≥

0
in

cl
ud

ed
in

co
m

pl
et

e

P
in

ed
a

&
C

on
ej

o
(2

01
0)

sc
en

ar
io

re
du

ct
io

n
m

ax
E

(X
)+

C
V
a
R

in
cl

ud
ed

in
co

m
pl

et
e

G
ar

cí
a-

B
er

tr
an

d
&

M
ín

gu
ez

(2
01

4)
sc

en
ar

io
re

du
ct

io
n

m
in
E

(X
)+

µ̂
·C
V
a
R

,µ̂
≥

0
in

cl
ud

ed
co

m
pl

et
e

A
hm

ed
(2

00
6)

tw
o-

st
ag

e
de

co
m

po
si

ti
on

m
ax

(1
−
µ

)E
(X

)+
µ
·C
V
a
R

,µ
∈

(0
,1

)
in

cl
ud

ed
co

m
pl

et
e

Fá
bi

án
(2

00
8)

,(
20

15
)

tw
o-

st
ag

e
de

co
m

po
si

ti
on

m
in
−
E

(X
)+

µ̂
·C
V
a
R

,µ̂
≥

0
in

cl
ud

ed
co

m
pl

et
e

N
oy

an
(2

01
2)

tw
o-

st
ag

e
de

co
m

po
si

ti
on

m
in
−
E

(X
)+

µ̂
·C
V
a
R

,µ̂
≥

0
in

cl
ud

ed
co

m
pl

et
e

pr
op

os
ed

ap
pr

oa
ch

(c
ha

pt
er

3)
tw

o-
st

ag
e

de
co

m
po

si
ti

on
m

ax
(1
−
µ

)E
(X

)+
µ
·C
V
a
R

,µ
∈

(0
,1

)
ex

cl
ud

ed
co

m
pl

et
e

15



Chapter 2 State of the art literature review

agents in hedging the uncertain future of the market (Fleten et al., 2002). Financial
instruments such as futures, put and call options can be traded in the future markets
allowing Gencos to mitigate the risk of undesired scenarios. Taking into account the
technical nature of the electrical power systems, the future physical contracts (FPC)
are the most used instruments where the Gencos are committed to deliver the agreed
amount of energy at a given price and date (Conejo et al., 2008). The main benefit
of the FPC in the short-term is to avoid the price volatility in the spot market and to
facilitate the operation planing. In case of a unit failure, the seller (Genco) needs to
buy the needed energy from the market to be delivered to the costumer, otherwise,
it will be penalized for not providing energy to the system.

Unit commitment (UC) models are used for determining the optimal hourly schedul-
ing and startup/shutdown decisions of generation plants (Padhy, 2004). In regulated
power systems the objective is to minimize the total operational cost. These tra-
ditional cost-based UC models can also be applied in liberalized systems by the
Market Operator in order to determine the cleared quantities (based on the received
generation offers and demand bids), and the system marginal prices. There is a
variety of possible UC formulations in the literature, and the need of reducing the
required computational burden due to the binary variables is one of the current
topics of research. In that respect, the tight and compact formulation presented
in Morales-España et al. (2016) has proven to be very effective. By determining a
precise generation unit states and current loads, the participation in the secondary
and tertiary reserve markets can be defined.

One of the main limitations of the single-agent approach is the absence of agents’
interaction and impact of possible change in the agent’s strategy forced by different
behavior of its competitors.

2.3. Market equilibrium with risk-averse agents

Finding the optimal operation of the generators of a hydro-thermal system is a
classic problem of the electric power industry that has deserved a lot of research
in recent decades (de Queiroz, 2016). In particular, the uncertainty related to the
hydro inflows has been one of the main concerns when planning the operation of
hydroelectric reservoirs in the medium term (typically, one year). In this context,
the application of multi-stage stochastic optimization techniques able to deal with
the curse of dimensionality, such the stochastic dynamic dual programming (SDDP)
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2.3 Market equilibrium with risk-averse agents

(Pereira & Pinto, 1991), has been a common practice in many hydro-dominated
systems such as Brazil, Norway, or New Zealand. In the context of a traditional
vertical integrated system, the central planner (i.e., the Market Operator) is in
charge of obtaining such optimal operation with the aim of maximizing the expected
social welfare. On the other hand, here is a limited number of publications evaluating
the agents’ behavior in terms of their risk preference for the short and medium
term planing. Based on the considered generation portfolio, modeling the risk in
competitive environment can mainly be divided into two groups:

• Modeling risk of agents’ competitive strategies in hydro-thermal generation
portfolio

• Modeling risk of agents’ competitive strategies in renewable-thermal genera-
tion portfolio

2.3.1. Modeling risk of agents’ competitive strategies in hydro -thermal
portfolio

A risk management medium-term equilibrium model for a hydro-thermal generation
company is presented in Cabero et al. (2005). Agents’ competition is computed
in means of Cournot equilibrium and CVaR is introduced as a risk measure for
managing the risk for selling electricity and fuel on the forward and spot market.
As demonstrated, Cournot competition has its own limits where agents’ strategies
are represented as quantities. This publication was later extended in Cabero et al.
(2010) where Cournot approach is implemented and interaction between spot and
forward markets is considered. However, in both mentioned papers it is assumed
that only one agent in the market is risk averse and that other agents are risk
neutral. As different risk factors of agents affect their strategies, obtained results
may be doubtable.

In recent studies, (Rodilla et al., 2015) and (Philpott et al., 2016) take into account
more realistic environment where two agents are risk-averse. It is proved that in a
complete market where agents can trade risk products (for instance in the forward
market), it is possible to achieve the same operation as central planning. However,
the assumption of market completeness might not be realistic, and therefore it is
necessary to assess the impact of risk aversion on the operation of the system in order
to guide regulators to design additional mechanisms (such as demand procurement
contracts), or to help market participants to understand the equilibrium solution for
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incomplete markets.

2.3.2. Modeling risk of agents’ competitive strategies in
renewable-thermal portfolio

A short-term equilibrium model with risk modeling of agents’ strategies including
wind generation in the power system is presented in Xiaoning et al. (2011). Duopoly
is examined in this paper taken into account that all agents are risk-averse. Obtained
results have shown that the increase in agent’s risk aversion decreases its output
causes an increase in the electricity prices and lowers the risk. This study is further
extended in Jing et al. (2012) using Cournot settings and CVaR as a risk measure.
The main contribution is a study of agents’ expected profit and risk reduction in
the equilibrium of three asymmetric generators for 2 different cases: in the first one,
only one agent is risk-averse, and in the second all agents are risk averse. In the first
case, it is pointed out that the risk-averse agent faces the reduction of its expected
profit as risk aversion increases while the profit of its competitors increases. For
the second case, all agents gradually increase their risk factor and the results shows
that they all have a higher growth in profits with a reduction of risk exposure. In
respect to the contribution of Jing et al. (2012); Xiaoning et al. (2011), the obtained
results might be arguable. Proposed approaches have qualitative contribution for the
academic purpose. However, the main drawbacks for implementation of a real case
electricity market environment are: considered time scope of only 1 hour, assumed
fixed parameters of supplied function, approximation of wind generation, capacity
output limits are omitted.

2.3.3. Conclusion

Presented state of the art review allows identifying some gaps in the literature that
would require further research (see Table 2.2). It is clear that the presence of renew-
able energy sources in power systems, is affecting the behavior of the participants
of electricity markets. The standard methodology to model the strategic interaction
of such participants is by computing the Nash equilibrium, following a number of
different approaches and techniques depending on the general hypothesis, particular
constraints, time scale considered, etc. Moreover, the inclusion of risk manage-
ment in market equilibrium models has been a research topic in the recent years.
Given that the effect of renewable energy on market prices and production levels of
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2.3 Market equilibrium with risk-averse agents

conventional generators is being a matter of concern, it is needed to consider this
source of uncertainty in the decision making process. However, the number of pre-
vious works that address the market equilibrium problem, considering risk-averse
strategic agents with renewable energy in their generation portfolio is very limited.
Considering the number of generations, a realistic power system might be modeled
so that the strategic behavior of market competitors can be observed in a real case
study.
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3. Iterative CVaR algorithm (I-CVaR)

3.1. The Mean-Risk-Problem and risk-adjusted probabilities

The general Linear programming (LP) formulation of direct optimization problem
(DOP), which allows modeling of a mean-risk maximization problem with CVaR, is
usually formulated as:

max
xsc,sm ,CVaR,ζ,ηsc

(1− µ)
∑
sc pscxsc + µ · CV aR (3.1a)

s.t.

CV aR = ζ −
1
β

∑
sc
pscηsc (3.1b)

ηsc − ζ + xsc ≥ 0,∀sc (3.1c)

ηsc ≥ 0 ,∀sc (3.1d)

xsc =
∑
m
asc,msm + bsc, ∀sc (3.1e)

where µ ∈ (0, 1) is a risk parameter that weights the expected profit and CV aR in the
objective function (3.1a). Constraints (3.1b)-(3.1d) are typically used expressions in
portfolio optimization which simultaneously represent VaR and CVaR (Rockafellar
& Uryasev, 2000). Constraint (3.1c) ensures that the profits lower or equal than the
VaR are used for the CVaR computation. Variables sm represent a set of decision
variables that risk-averse decision maker can take to manage its risk and they affect
the outcome of each xsc. Equation (3.1e) represents in a generic manner the set of
constraints that link the decision variables and the obtained profits. Problem (3.1)
can be solved as a LP problem. Notice that a linear relationship between sm and
xsc is assumed.

Note that in problem (3.1), the maximization of the expected benefit is coupled with
the management of the risk exposure. The solution of the problem can be compli-
cated because of this connection. Thus the next section explores the possibility of
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Chapter 3 Iterative CVaR algorithm (I-CVaR)

decoupling the (3.1) where the dual CVaR formulation plays a key role.

3.1.1. The concept of risk-adjusted probabilities

This subsection analyzes the possibility of substituting the mean-risk problem with
CVaR (3.1a) with an objective function that can obtain the same optimal values
without the use of the risk constants. Taking into account that the CVaR value can
be obtained with a new set of the probability measures Q as:

CVaRβ(X) = min
qsc

∑
sc
qscxsc

s.t.
∑
sc
qsc = 1

0 ≤ qsc ≤
psc

β
,∀sc

(3.2)

the first step would be to take a look at the optimal conditions of the DOP problem.
Therefore, the (3.1) problem can be formulated as:

max
xsc,sm ,ζ,ηsc

(1− µ)
∑
sc
pscxsc + µ

ζ − 1
β

∑
sc
pscηsc

 (3.3a)

s.t. xsc =
∑
m
asc,msm + bsc,∀sc (3.3b)

ηsc − ζ + xsc ≥ 0 ⊥ λsc ≥ 0,∀sc (3.3c)

ηsc ≥ 0 ,∀sc (3.3d)

where, the λsc is the corresponding Lagrangian multiplier of the equation (3.3c). To
form the optimality conditions, a mixed form is used (for the pure form see Appendix
(A.1)). The Lagrangian formulation of (3.3) is:

L = (1− µ)
∑
sc
pscxsc + µ

ζ − 1
β

∑
sc
pscηsc


+
∑
sc
λsc (ηsc − ζ + xsc)

s.t. xsc =
∑
m
asc,msm + bsc,∀sc

ηsc ≥ 0 ,∀sc

(3.4)

By differentiating the Lagrangian function with respect to ζ and ηsc, the optimal
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3.1 The Mean-Risk-Problem and risk-adjusted probabilities

conditions are obtained providing the information about the Lagrangian multiplier
λsc:

L (λsc)
∂ζ

= µ−
∑
sc

λsc = 0 (3.5)

L (λsc)
∂ηsc

= −
µpsc

β
+ λsc ≤ 0, ∀sc (3.6)

The restricted optimization problem (taking into account (3.5) and (3.6)) can be
written as:

max
xsc,sm

(1− µ)
∑
sc
pscxsc +

∑
sc
λscxsc (3.7a)

s.t. xsc =
∑
m
asc,msm + bsc,∀sc (3.7b)

If λsc is written as µ·qsc, as λsc ≥ 0 and µ ≥ 0, then qsc ≥ 0, the restricted problem
can be defined:

max
xsc,sm

(1− µ)
∑
sc
pscxsc + µ

∑
sc
qscxsc =

∑
sc
rscxsc (3.8a)

s.t. xsc =
∑
m
asc,msm + bsc,∀sc (3.8b)

Assuming that the distribution of profit scenarios xsc can be estimated ex-ante and
the corresponding risk-adjusted probabilities rsc can be assigned, it can be observed
that the (3.3)≡(3.8). However, knowing the distribution function of the outcomes
even without solving an optimization problem, can be a very challenging task. One
of the possible solutions can be to solve a risk-neutral problem and then to set up
the probabilities qsc to the worst-case profit scenarios in an iterative way.

3.1.2. A naïve algorithm

Based on the equivalence defined in the section 3.1.1, an alternative mean-risk for-
mulation with the risk-adjusted probabilities can be defined. The idea behind this
approach is to decouple the CVaR computation. This shall be achieved by iteratively

23



Chapter 3 Iterative CVaR algorithm (I-CVaR)

assigning probabilities to scenarios and to reproduce the objective function in DOP.
First, an optimization problem, equivalent to the DOP with no CVaR constraints,
is solved (3.9). In this stage, probabilities assigned to scenarios are constant and
decision variables are computed. Then, in a second stage, a new optimization prob-
lem is formulated (3.10) which is a dual problem of (3.3). In this second stage, the
objective is to compute a new probability distribution that reproduces the objec-
tive function of DOP. The CVaR information is implicitly taken into account in the
iterative process by updating the probability of the scenarios. This results in an
iterative two-stage algorithm. The naïve iterative algorithm first stage problem is
defined as follows:

I-stage

max
xsc,sm

(1− µ)
∑
sc
pscxsc + µ

∑
sc
qscxsc (3.9a)

s.t. xsc =
∑
m
asc,msm + bsc, ∀sc (3.9b)

where, the risk-adjusted probabilities are defined as (1− µ)
∑
sc
psc + µ

∑
sc
qsc = rsc.

Equation (3.9a) is the expected profit given the probability distribution Q with
probabilities qsc. Although in this stage, qsc is constant which is iteratively updated
after every iteration of the max-min problem. In the second stage (3.10), computed
decision variables from (3.9), are constants and probabilities that define the distri-
bution probability Q are computed such that the objective function (3.10a) matches
the objective function in (3.9a). The second stage of the algorithm assigns the qsc
to the worst case scenarios, and those values are updated in every iteration.

II-stage

min
qsc

(1− µ)
∑
sc
pscxsc + µ

∑
sc
qscxsc (3.10a)

s.t.
∑
sc
qsc = 1 (3.10b)

0 ≤ qsc ≤
psc

β
,∀sc (3.10c)

The iterative process has a stopping criteria when the difference between deci-
sion variable xsc in two consecutive iterations is lower than a specified tolerance
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3.2 Decomposing the Mean-Risk Problem

∣∣∣xi+1
sc −xsc
xsc

∣∣∣ ≤ ε, ε = 10−4.

The presented iterative algorithm (3.9)-(3.10) shall provide the same solution as
(3.1) in the case of the atomless discrete distribution of the decision variables (see
section 2.1.2). However, knowing that the left tail of the distribution usually has
a vertical discontinuity gap in scenario modeling (see Figure 2.2), the second stage
(3.10) would not provide the optimal values for the qsc as it cannot handle the
confidence interval from β− to β+. This imply that the algorithm will not converge
for every given case. Therefore, the problem (3.1) needs to be treated in a way to
overcome this challenge while assuring that the problem is decoupled.

3.2. Decomposing the Mean-Risk Problem

This section emphasize the stochastic programming problem derived from a mean-
risk model. As solving such stochastic optimization problem requires considering
simultaneously all the scenarios, the related computational burden can increase no-
tably as compared with the single-scenario deterministic case. This is why it is
very common to apply decomposition techniques to split the global problem into
smaller ones, and to solve them independently in an iterative way. The application
of decomposition techniques to the mean-risk problem can be seen in Ahmed (2006)
where the Benders decomposition algorithm is modified to deal with two-stage risk
stochastic programming problems. The recourse function is defined as the expec-
tation of the second stage cost function and it is outer-approximated by means of
Benders cuts. At the same time, the convex function that quantifies the risk is eval-
uated and approximated is the same way. Thus, a master problem can be solved,
and it contains two groups of Benders cuts: those that come from the approximation
of the recourse function, and those that come from the approximation of the risk
function.

Despite the reported advantages of CVaR formulation, when its corresponding lin-
ear constraints are introduced in the optimization problem, the resulting model
cannot be decomposed directly into scenario-based sub-problems. Therefore, CVaR
coupling constraints can be a serious barrier when trying to apply scenario-based
decomposition techniques in the context of stochastic programming models. To
overcome this drawback, the Lagrangian relaxation decomposition technique (see
section 3.2.2) can be applied to remove the coupling among the scenarios derived
from the risk constraints. The Lagrangian Relaxation (LR) and the Benders decom-
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Chapter 3 Iterative CVaR algorithm (I-CVaR)

position (section 3.2.1) algorithms are applied to the mean risk problem, establish-
ing the general equivalence between them in terms of their master and sub-problem
mathematical formulations, and comparing their optimal solution with the one that
corresponds to the direct optimization case (section 3.1).

3.2.1. Benders decomposition

In this framework of a mean-risk problem, the master problem coincides with the
problem of expression (3.1):

max
xsc,sm

(1− µ)
∑
sc pscxsc + µ · CV aR (3.11a)

s.t. xsc =
∑
m
asc,msm + bsc, ∀sc (3.11b)

and the first-stage variables are those of the random variable realizations together
with the control variables sm. The recourse function evaluates the risk measure for
that selection of the first-stage variables and is given by the problem:

CVaR (xsc) = max
ζ,ηsc

ζ −
1
β

∑
sc pscηsc (3.12a)

s.t. ηsc − ζ + xsc ≥ 0,∀sc (3.12b)

ηsc ≥ 0 , ∀sc (3.12c)

The already mentioned dual problem, given in (3.2), permits the description of the
recourse function as a minimum of a finite number of linear functions, omitting
the variables ζ and ηsc. Let associate the dual variable qsc with the (3.12b) and
formulate the Benders sub-problem (BSP):

BSP

CVaR (xsc) = min
qsc

∑
sc qscx

i
sc, i ∈ I (3.13a)

s.t.
∑
sc qsc = 1 (3.13b)

0 ≤ qsc ≤
psc

β
, ∀sc (3.13c)
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3.2 Decomposing the Mean-Risk Problem

Thus, the master problem can be reformulated as:

max
xsc,sm,θ

(1− µ)
∑
sc pscxsc + µθ (3.14a)

s.t. xsc =
∑
m asc,msm + bsc, ∀sc (3.14b)

θ ≤ f i +
∑
sc
qisc ·

(
xsc − xisc

)
, i : 1, . . . , I (3.14c)

In the previous problem, known as complete master problem (3.14), the informa-
tion of the recourse function is completely given by the constraints in it. These
constraints are commonly known as Benders’ cuts. As it might not be possible
to obtain the complete set of Benders cuts when the size of the problem is large,
these are iteratively obtained and added. The constraint (3.14c) can be written in
a somewhat simpler way. Variables xisc are just the proposed profits in (3.13) and
as a consequence f i =

∑
sc q

i
scx

i
sc. Therefore, the Benders relaxed master problem

(BRMP) can be defined as :

BRMP

max
xsc,sm,θ

(1− µ)
∑
sc
pscxsc + µθ (3.15a)

s.t. xsc =
∑
m
asc,msm + bsc,∀sc (3.15b)

θ ≤
∑
sc
qiscxsc, i : 1, . . . , I ′ ⊂ I (3.15c)

The Benders algorithm iterates between the relaxed master problem and the Sub-
problem until a first-stage variables set is repeated or a given tolerance is achieved.
The algorithm is now summarized:

• Step 1: Initialize the iteration counter i = 0, the upper and lower bounds
z = −∞, z̄ =∞ and the convergence tolerance ε.

• Step 2: Solve the BRMP (if i = 0, then fix θ = 0) to obtain the solution(
xi+1
sc , θi+1) and update the upper bound z̄ = (1− µ)

∑
sc
pscx

i+1
sc + µθi+1.

• Step 3: Solve the BSP for the first-stage variables of Step 2. Obtain the
test probabilities

(
qi+1
sc

)
and evaluate the lower bound z = (1− µ)

∑
sc
pscx

i+1
sc +

µ
∑
sc
qi+1
sc xi+1

sc .
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Chapter 3 Iterative CVaR algorithm (I-CVaR)

• Step 4: Check the convergence: if |z̄−z||z̄| ≤ ε, then stop the algorithm. Oth-
erwise, add a new Benders’ cut using the test probabilities and augment the
relaxed master problem. Increase the iteration counter i = i + 1 and go to
Step 2.

3.2.2. Lagrangian relaxation

Consider the direct optimization problem (3.1) set in the next form:

max
xsc,sm ,CVaR,ζ,ηsc

(1− µ)
∑
sc
pscxsc + µ · CV aR

s.t. CV aR = ζ −
1
β

∑
sc
pscηsc ⊥ λ0

ηsc − ζ + xsc ≥ 0 ⊥ λsc,∀sc
ηsc ≥ 0 , ∀sc

xsc =
∑
m
asc,msm + bsc,∀sc

(3.16)

For the dual variables λsc ≥ 0, λ0 ≤ 0, let define the dual function ω (λ0, λsc) via
the optimization of the Lagrangian sub-problem given as:

ω (λ0, λsc) = max
xsc,sm,ηsc

CVaR,ζ

(1− µ)
∑
sc
pscxsc + µCVaR

+λ0

CV aR− ζ − 1
β

∑
sc
pscηsc


+
∑
sc
λsc (ηsc − ζ + xsc)

s.t. xsc =
∑
m
asc,msm + bsc, ∀sc

ηsc ≥ 0 , ∀sc

(3.17)

The dual problem consists on minimizing the dual function:

min
λ0,λsc

ω (λ0, λsc)

s.t. λ0 ≤ 0
λsc ≥ 0,∀sc

(3.18)

It is well known from linear programming theory, that the optimum of the dual
problem coincides with that of the primal problem. Among all the techniques to
optimize this dual problem, we focus on an exterior approximation method, that
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3.2 Decomposing the Mean-Risk Problem

resembles the Benders decomposition method and establishes the connection with
it. Prior to the discussion of the method, we observe, that the Lagrangian sub-
problem is simplified when arranging the variables in the objective function:

ω (λ0, λsc) = max
xsc,sm,ηsc

CVaR,ζ

(1− µ)
∑
sc
pscxsc +

∑
sc
λscxsc

+ (µ+ λ0) CVaR −
(
λ0 +

∑
sc
λsc

)
ζ

+
∑
sc

λ0psc

β
+ λsc

 ηsc
s.t. xsc =

∑
m
asc,msm + bsc,∀sc

ηsc ≥ 0 ,∀sc

(3.19)

Due to the fact that the above problem has infinite solutions for many values of the
dual variables, and that our final goal is to minimize the dual function, we restrict
the dual variables to those satisfying:

µ+ λ0 = 0
λ0 +

∑
sc
λsc = 0

λ0psc

β
+ λsc ≤ 0 ∀sc

(3.20)

With these conditions (3.20), the Lagrangian sub-problem adopts the next structure:

ω (λsc) = max
xsc,sm

(1− µ)
∑
sc
pscxsc +

∑
sc
λscxsc

s.t. xsc =
∑
m
asc,msm + bsc, ∀sc

(3.21)

and the dual problem, after substituting λ0 = −µ is now formulated as follows:

min
λsc

ω (λsc)

s.t.
∑
sc
λsc = µ

0 ≤ λsc ≤
µpsc

β
, ∀sc

(3.22)

Once it has been defined the dual function, it can be observed that it is given as the
maximum of a finite number of linear functions. For this reason, the dual function
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is a convex function and the dual problem can be reformulated as the next linear
problem, named master problem of the LR:

min
λsc,ω

ω

s.t. ω ≥ (1− µ)
∑
sc
pscx

i
sc +

∑
sc
λscx

i
sc i : 1, . . . , I∑

sc
λsc = µ

0 ≤ λsc ≤
µpsc

β
, ∀sc

(3.23)

where
(
xisc
)
are the collection of extreme values of problem (3.21). Note the similar-

ity of the Lagrangian sub-problem (3.21) with the Relaxed master problem of the
Benders decomposition (3.15). The similarity is even greater if we redefine qsc = λsc/µ

because the Lagrangian Relaxation sub-problem (LRSP) is now given as:

LRSP

ω (qsc) = max
xsc,sn

(1− µ)
∑
sc
pscxsc + µ

∑
sc
qiscxsc

s.t. xsc =
∑
m
asc,msm + bsc,∀sc

(3.24)

and the master problem of the Lagrangian Relaxation (LRMP) as:

LRMP

min
qsc,ω

ω

s.t. ω ≥ (1− µ)
∑
sc
pscx

i
sc + µ

∑
sc
qscx

i
sc, i : 1, . . . , I∑

sc
qsc = 1

0 ≤ qsc ≤
psc

β
, ∀sc

(3.25)

Note that this reformulation recovers the constraints for the test probabilities of
the conditional value at risk definition. The LR algorithm iterates between the
Lagrangian sub-problem and the Lagrangian master problem until certain tolerance
is achieved. Instead of a complete Lagrangian master problem, a relaxed one is
formulated that is augmented as the algorithm proceeds and more Lagrangian cuts
are computed. This relaxed master problem adopts the same structure as (3.25)
with the exception that not all the extreme points have been computed. This is,
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3.2 Decomposing the Mean-Risk Problem

we consider a reduced set of Lagrangian cuts (I’ < I). The algorithm is now
summarized.

• Step 1: Initialize the iteration counter i = 0, the upper and lower bounds
z = −∞, z̄ =∞ and the convergence tolerance ε.

• Step 2: Solve the LRMP (if i = 0, then fix qsc = 0) to obtain the test
probabilities

(
qi+1
sc

)
and update the lower bound z = ω.

• Step 3: Solve the LRSP for the test probabilities obtained in Step 2. Obtain
the

(
xi+1
sc

)
and evaluate the upper bound z̄ = (1− µ)

∑
sc
pscx

i+1
sc +µ

∑
sc
qi+1
sc xi+1

sc .

• Step 4: Check the convergence: if |z̄−z||z̄| ≤ ε, then stop the algorithm. Other-
wise, add a new Lagrangian cut using the test probabilities and augment the
relaxed master problem. Increase the iteration counter i = i + 1 and go to
Step 2.

3.2.3. Theoretical comparison between Benders and LR

Notice that both algorithms present the similarity of augmenting the master prob-
lems as the algorithms proceed. The master problem of the Benders decomposition
presents a similar structure to the LRSP. Even more, these two problems would be
identical if the BRMP had just one Benders cut. In a parallel manner, the BSP has a
similar structure to the LRMP. Again, notice that these two problems would be also
identical if the LRMP had just one Lagrangian cut. Some differences should also
be outlined. Whether the BRMP proposes random variable realization, the LRMP
proposes test probabilities. On the contrary, the BSP gives back test probabilities,
the LRSP returns a random variable realization. The Benders cuts are formed using
the test probabilities whether the Lagrangian cuts are formed using the variable
realizations. Note that both Benders decomposition and Lagrangian relaxation al-
gorithms must converge to the solution of original problem (3.1) as both algorithms
have been proven generally to solve linear problems.

Figure 3.1 summarizes both algorithms and presents in a simple way the iteration
procedures for each one.

3.2.4. Drawbacks of Benders decomposition

The formulation of the Benders decomposition algorithm permits the optimization
of the mean-risk problem by iterating between two problems of smaller size. How-
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Figure 3.1.: Graphical representation of Benders Decomposition and Lagrangian Re-
laxation algorithms

ever, it does not avoid the coupling of the maximization of the expected profit and
the management of the risk, because the Benders cuts describe in an alternative
manner, all the risk constraints. Another computational burden must be considered
regarding the decoupling of the problem. The Benders decomposition algorithm
does not decouple the profit maximization from the risk management part of the
problem, because its master problem incorporates both the constraints of the profit
computation and the information about the risk constraints in the form of Benders
cuts. Moreover, in case of a complex optimization problem, it is very challenging to
further decompose the BRMP due to its coupling constraints.

As a primal decomposition approach, the Benders algorithm provides the primal
solution values equal to the ones that can be obtained from DOP. However, the
values of the test probabilities qsc would have to be recomputed taking into account
all the active Benders cuts and their dual variables. An insight on the primal optimal
value recovery is given in the section 3.2.6.

3.2.5. Drawbacks of Lagrangian relaxation

The Lagrangian relaxation algorithm does decouple the problem in these two parts,
because the LRMP carries the optimization of the risk exposure while the LRSP
optimizes the expected benefit. Due to this fact, it is expected to be more difficult
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3.2 Decomposing the Mean-Risk Problem

to solve the Benders method than the LR one, as shown with the test case (section
3.2.7). An important aspect of the LR algorithm is the reconstruction of the op-
timal primal variables’ values after the execution of the algorithm. Note that the
Lagrangian sub-problem solves each iteration an optimization problem where the
risk constraints have been relaxed, so that the intermediate primal solutions do not
necessarily satisfy those risk constraints. Therefore, the not so effective solution to
this problem would be to solve of the extended Lagrangian sub-problem.

It is natural to wonder whether the primal solution produced by the Lagrangian
function x∗sc is an optimal solution of the complete problem (3.1). This is the sit-
uation when the pair (x∗sc, λ∗sc) is a saddle point of the Lagrangian sub-problem
(Minoux, 1986). However, being a saddle point implies all the problem constraints
hold, even those that are relaxed in the Lagrangian function. So, it cannot be con-
cluded that the primal values produced by the Lagrangian problem (even when the
optimal dual variable are used), are the optimal solution of the problem. Never-
theless, an extra constraint can be included in the Lagrangian sub-problem that
guarantees that the produced primal solution is an optimal solution of (3.1). Let λ∗sc
be the set of optimal dual values. Those dual variables with positive value indicate
that the corresponding risk constraints are active constraints, so they can be consid-
ered to be ηsc − ζ + xsc = 0 while the rest of constraints can be neglected form the
problem. Additionally, the sense of the optimization of problem (3.19) will draw the
term

(
−µpsc

β + λsc
)
αsc to zero. For those dual values such that −µpsc

β +λsc = 0, no
additional limitation is imposed over the variable ηsc. However, if −µpsc

β + λsc < 0,
the positiveness of αsc implies that this variable has zero value in the optimal solu-
tion. Thus, the constraint ηsc − ζ + xsc = 0 turns to be ζ = xsc for each scenario
whose dual variable is not bidding 0 < λsc <

µpsc
β . Those scenarios are precisely the

scenarios whose profit value coincide with the VaR. That set of scenarios is denoted
as V aR(sc). The above result paths the way to construct a Lagrangian sub-problem
that can be used after the LR algorithm to recover the optimal primal solution. The
constraints that force the scenarios with non-bidding dual variables to have the same
value are introduced in (3.26). This problem is denoted as the extended Lagrangian
sub-problem:

ω (qsc) = max
xsc,sm

(1− µ)
∑
sc
pscxsc + µ

∑
sc
qscxsc

s.t. xsc =
∑
m
asc,msm + bsc,∀sc

xscj = xsck ∀ {scj , sck} ∈ V aR(sc)

(3.26)
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In order to overcome the before mentioned drawbacks, next section presents recov-
ering of the primal variables from Jovanović et al. (2017).

3.2.6. Recovering the primal solution: a DW approach

The challenge of decomposing the mean-risk problem with CVaR is highlighted with
the algorithms presented in the previous sections. Although it can be computed by
using Linear Programming (LP), as defined in Rockafellar & Uryasev (2000), the
computational tractability needs to be ensured when solving the stochastic pro-
gramming models with large number of scenarios. As the dual decomposition (LR
algorithm) of the DOP problem, from section 3.2.2, shows some promising proper-
ties, the rational approach would be to explore the possible benefits of applying the
primal decomposition technique to the mean-risk problem in terms of the Dantzig-
Wolfe (DW) decomposition.

The primal solution recovering is developed in two steps. First, the Dantzig-Wolfe
decomposition technique is applied to the DOP problem (3.1). It results in a
Dantzig-Wolfe master problem (DWMP) and sub-problem (DWSP). It is observed
that constraints (3.1b) and (3.1c) appear in the DWMP but not in the DWSP.
Therefore, a DWMP dual can be derived in order to obtain a LRMP . Second,
Dantzig-Wolfe iterations between DWMP and DWSP are equivalent to iterations
between LRMP and LRSP, and once the convergence is achieved the primal optimal
values can be achieved by a straightforward multiplication.

Specifically, let the pair of {xsc, sm} be the extreme points of the feasible region of
the polyhedron X that defines the feasible region of (3.1e). It can be expressed as
the convex combination of the extreme points of such polyhedron:

xsc =
∑
i

λixisc (3.27)

sm =
∑
i

λisim (3.28)

where λi ≥ 0 and
∑
i
λi = 1. Hence, by substituting (3.1b) in (3.1a), the DWMP can

be formulated as:

DWMP
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max
λi ,ζ,ηsc

(1− µ)
∑
sc
psc
∑
i
λixisc + µ

ζ − 1
β

∑
sc
pscηsc

 (3.29a)

s.t. ∑
i
λixisc − ζ + ηsc ≥ 0 ⊥ λsc, ∀sc (3.29b)∑

i
λi = 1 ⊥ ω (3.29c)

λi ≥ 0, i = 1, . . . , I (3.29d)

ηsc ≥ 0,∀sc (3.29e)

where λsc ≥ 0 and ω are the dual variables of (3.29b) and (3.29c). Note that,
according with DW methodology, only coupling constraints (3.1b) and (3.1c) are
kept in the DWMP, whereas constraint (3.1e) is left out from it. DWSP takes care
of this constraint. It maximizes the objective function keeping constraint (3.1e) and
taking into account (3.1b) and (3.1c) through their multipliers. Specifically:

DWSP

max
xsc,sm

∑
sc

((1− µ) psc + λsc)xsc − ω (3.30a)

s.t.

xsc =
∑
m
asc,msm + bsc, ∀sc (3.30b)

DW algorithm works by iterating between DWSP and DWMP. In each iteration,
DWMP proposes a Lagrangian multiplier value λsc to DWSP. DWMP does not use
the whole set of extreme points that define X, but a subset of them (i = 1, ...I;
possibly just one in the first iteration). DWSP computes a solution (xi+1

sc , si+1
m ).

If this point is not in the previous subset, it is added to it and a new iteration
performed.

DWMP is a simpler problem than DOP. However, its dual (LR algorithm) happens
to be significantly simpler and much more transparent.

Incidentally, Dantzig-Wolf decomposition algorithm is also known to converge to the
solution of linear programs. As a consequence, the proposed algorithm will converge
to the solution of problem (3.1) (see Luenberger et al. (1984)). After the convergence
is achieved and optimal values of x∗sc and s∗m are known from (3.27) and (3.28), the
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value of CV aR can be obtained:

CV aR =
∑
sc

q∗scx
∗
sc (3.31)

In contrast to the optimization problem (3.26), used as an extension to the La-
grangian sub-problem for reconstruction the optimal primal variables in section
3.2.2, the proposed recovery of the primal variables is a straightforward multipli-
cation. From (3.27) it can be concluded that in case of ending up with only one
active Lagrangian cut (3.25) at i = I, then its corresponding dual variable will be
λI∗ = 1 and therefore x∗sc = xI∗sc at the optimum. The real-case application of the
Iterative CVaR (I-CVaR) algorithm is presented in the following chapter.

3.2.7. Illustrative example of Benders and Lagrangian comparison

In order to illustrate the performance of the two decomposition approaches explained
in sections 3.2.1 and 3.2.2, this section presents an example case that can be com-
pletely reproducible and that presents some interesting features. For the sake of
simplicity, it is assumed that the uncertainty can be modeled with just 20 scenarios
sc ∈ {sc1, sc2, . . . , sc20}, and that the profits xsc follow the next expression:

xsc = xA,sc + s· (xB,sc − xA,sc) ∀sc (3.32)

where 0 ≤ s ≤ 1 represents the here and now decision which is unique. The samples
xA,sc and xB,sc have been generated by sampling two normal distributions with the
following mean and standard deviation values:

x̄A = 10 σA = 3
x̄B = 8 σB = 1

The obtained samples have the mean and the standard deviation as in (3.33).

x̄A = 8.499 σA = 2.906
x̄B = 7.782 σB = 0.801

(3.33)

Table 3.1 shows profit samples xA,sc and xB,sc.
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Table 3.1.: Profit samples

sc xA,sc xB,sc sc xA,sc xB,sc

1 12.273 8.292 11 9.239 8.746
2 5.269 7.23 12 7.939 6.866
3 8.421 8.721 13 12.006 9.413
4 6.581 7.537 14 12.74 8.871
5 5.837 6.828 15 6.454 7.905
6 8.376 8.634 16 15.026 8.57
7 9.295 7.154 17 8.987 7.15
8 3.68 6.965 18 7.894 7.188
9 10.509 7.554 19 8.181 7.796
10 4.596 7.232 20 6.69 6.982

Therefore, if s = 0, the obtained profits will be distributed as xAsc, and if s = 1,
the obtained profits will be distributed as xBsc. A risk neutral agent would choose a
mean risk function with µ = 0, so that the value of s would be 0, as this is the choice
that maximizes the expected profits, despite having a higher volatility. A pure risk
averse agent would choose a mean risk function with µ = 1, and the value of its
action would be 1, so her/his benefits would be given by distribution xb despite
having a lower value of the expected benefit. An intermediate risk averse agent
would choose a level of risk exposure by means of parameter µ, and would decide
the optimal value of s by solving the mean risk problem. Notice that increasing the
value of s decreases the expected value of the profits, but increases the CVaR as the
volatility is smaller. Therefore, it is not possible to establish a priori the optimal
mapping between the risk aversion parameter µ and the optimal risk management
decision (i.e., the optimal value of control variable). Figure 3.2 shows the shape
of the objective function with respect to control variable for the particular case of
µ = 0.3 and a risk level of β = 0.3.

Results from DOP are presented in Table 3.2 for different values of the risk weight
parameter µ. It can be observed that the greater the parameter, the lower the
expected benefit and the greater the CVaR value.

Same results are depicted in Figure 3.3 by means of the probability density function
of the profit outcome.

The already described results are also obtained with the Benders and the LR algo-
rithms. Upper and lower bounds for both methods are presented in Table 3.3. The
Benders algorithm converges in the 5th iteration with ε = 0 and LR converges in the
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Figure 3.2.: The shape of objective function vs. the control variable s

Table 3.2.: Results from DOP

µ

0 0.1 0.3 0.5
x̄sc 8.499 8.499 8.019 7.797
σx 2.906 2.906 1.378 0.827
o.f. 8.499 8.189 7.585 7.393

CV aR 0 5.403 6.571 6.989
s 0 0 0.669 0.979

3th iteration with the ε = 0. The Benders method returns after the 5th iteration the
optimal value of s. The LR method does not necessarily provide the correct values
of the primal variables once the convergence has been reached. Thus, after the 3th
iteration of the LR algorithm, the values of the optimal test probabilities are given
and they can be used to solve the extended Lagrangian sub-problem that returns
the optimal primal values. In this example, the test probabilities, given in Table
3.4.

In order to reconstruct the optimal value of the primal variable s, it is necessary to
solve the extended Lagrangian sub-problem given as (3.34).
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Figure 3.3.: Distribution of profits for µ = 0, µ = 0.3 and µ = 0.5

Table 3.3.: Upper and Lower bounds for Benders and Lagrangian

µ = 0.3

i
Benders Lagrangian
z̄ z z̄ z

1 8.949 7.571 8.287 1
2 7.632 7.544 7.632 7.571
3 7.622 7.566 7.585 7.585
4 7.601 7.584 / /
5 7.585 7.585 / /

max
xsc,s

(1− µ)
∑
sc
pscxsc + µ

∑
sc
qLRsc xsc

s.t. xsc = xA,sc + s· (xB,sc − xA,sc) ,∀sc
x4 = x12

(3.34)

with qLRsc being the test probabilities obtained in the last iteration LR algorithm.
On the other hand, a more efficient way to obtain the optimal values is to recompute
them by using (3.27) and (3.28).

The value of CV aR can be computed by the next expression,

CVaR =
∑
sc
qLRsc x

D
sc (3.35)
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Table 3.4.: Test probabilities Lagrangian Relaxation

µ = 0.3
sc qsc qsc qsc sc qsc qsc qsc
1 0 0 0.1667 11 0 0 0.1667
2 0 0.1667 0.1667 12 0 0.0057 0.1667
3 0 0 0.1667 13 0 0 0.1667
4 0 0.1609 0.1667 14 0 0 0.1667
5 0 0.1667 0.1667 15 0 0 0.1667
6 0 0 0.1667 16 0 0 0.1667
7 0 0 0.1667 17 0 0 0.1667
8 0 0.1667 0.1667 18 0 0 0.1667
9 0 0 0.1667 19 0 0 0.1667
10 0 0.1667 0.1667 20 0 0.1667 0.1667

being xDsc the input data obtained as the solution of the problem (3.34).
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4. Application of the I-CVaR to
single-agent problems

4.1. Short-term risk management models

In order to show the performance of the proposed Iterative CVaR algorithm, two
different models are implemented based on Jovanović et al. (2017). The first one
(Model I) addresses the problem faced by a thermal plant that has the opportunity
to sign a future physical contract to reduce its risk exposure due to the volatile
spot market prices during a time horizon of one week (168 hours). The second one
(Model II) is a risk-constrained UC model that can be used by a generation company
owning a portfolio of several thermal plants in order to decide the optimal startup
and shutdown decisions taking into account the uncertain energy spot prices and
secondary reserve prices. This section is devoted to the description and formulation
of these models.

The operation of thermal power producers in a context of high wind generation and
demand reduction can be very challenging. For instance, in the case of the Iberian
electricity market, the combined cycle gas turbines have suffered a substantial re-
duction of their load factors. As defined in the previous chapter, the Iterative CVaR
algorithm is applied to the short-term management problem of thermal plants ex-
posed to volatile electricity prices. The prices have been taken from real historical
data of the Iberian electricity market. Two different problems are taken into account,
where the decision makers are risk-averse price takers, and therefore the influence of
their actions on the resulting market price is beyond the scope of this study. The first
model (denoted as Model I) deals with the hedging problem of one thermal power
producer. In current electricity markets there is a wide range of financial instruments
allowing the producers to hedge their positions. As forward contracts are common,
it is assumed that the decision maker has three possible options: trading on the spot
market, signing a future physical contract (FPC), or both. For hedging the risk, a
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FPC can be signed with a fixed forward price per megawatt hour. The FPC is a
type of contract where the producer is obliged to physically deliver an agreed base-
load production. Results obtained by the Iterative CVaR algorithm are compared
with the standard CVaR formulation from Rockafellar & Uryasev (2000). For the
analyzed study case, a substantial reduction in the computational time is achieved
with the proposed case study. This computational advantage is more remarkable
in the case of building the forward market offering strategy where many problems
need to be solved by changing the possible forward market prices (see section 4.2.2).
The second model (denoted as Model II) presents a very complex formulation of a
risk-constrained unit commitment (UC) scheduling based on Morales-España et al.
(2014), which has been modified in order to introduce the stochasticity (energy and
reserve market prices), and to represent the agent perspective. The applied UC
formulation considers a ramp-based representation of instantaneous power profiles
(including startup and shutdown trajectories) that overcomes the traditional energy
blocks representation. This very detailed modeling of the available reserves and
the real ramping capability of the plants allows to asses in an accurate manner the
incomes from selling both the energy and the secondary regulation reserve. By im-
plementing the Iterative CVaR on the Model II shows the applicability of the the
proposed algorithm on the detailed power system problem.

In addition, while there is a lot of research that includes the CVaR framework in the
optimization portfolio, up to the knowledge of the author, there is a lack of literature
in the electricity sector explaining the selection of the CVaR parameters. That is
to say, to which degree the decision maker should be risk averse. Selecting these
parameters is of a great importance as they influence operational and the financial
decisions. An approach to select a sensible value for these parameters is provided in
section 4.1.4.

4.1.1. Nomenclature

Indexes and Sets

h: Hours
sc, Ω: Scenarios, sc ∈ Ω
i, I: Iterations i ∈ I
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Parameters

πssc,h: Electricity spot prices
πf : Price of the future physical contract
cv: Variable fuel consumption cost
cnl: None-load cost
csu: Fuel consumption at startup
com: Operation and maintenance cost
psc: Probabilities within probability distribution P
µ: Risk weight factor
β: Confidence interval
gmax: Maximum power output
gmin: Minimum stable load
Emin: Minimum weekly energy production
ε: Maximum weekly energy production
U0: Initial commitment status
g0: Initial output power

Positive variables

gsc,h: Power produced
gnsc,h: Net power dispatched above gmin

gf : Power sold through the future physical contract

Binary variables

Usc,h: Unit commitment variable
SUsc,h: Startup decision

Variables

xsc: Net profit obtained
csc,h: Net profit obtained
gssc,h: Power sold on the spot market
CV aR: Conditional value at risk
ζ: Value at risk
ηsc: Auxiliary variable for CVaR computation
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qsc: Risk-adjusted probability measures within probability distribution Q
SDsc,h: Shut-down decision
ω: Lagrangian optimality cut
z: The value of objective function
zi: Upper bound
zi : Lower bound

4.1.2. Model I: Determining the optimal forward market offer

In the Model I the thermal plant faces the problem of building its optimal offer for the
forward market in the one-week time horizon. Decision making process is influenced
by huge volatility of electricity prices due to the dynamics of electricity spot market.
Therefore, the decision maker is aware of the risk exposure and can hedge against
possible low profits by signing a FPC with fixed quantity of power per hour and
fixed forward price. This action is a here-and-now decision which is made at stage1
(see Fig. 4.1), i.e. before the thermal plant operation on the spot market. In case
the forward price is slightly lower than the average electricity spot price (presented
with dashed line) it would make no sense for a risk-neutral decision maker to sell its
production through the FPC. However, a risk-averse decision maker might prefer to
sell a part of its production at such lower price if this entails being protected against
the lowest price scenarios. Another decision at stage1 is the unit commitment for
the first 24 hours are common for all the scenarios, as the flexibility to change the
startup and shutdown decision for the next day could be limited. The remaining
thermal plant capacity can be traded (bought or sold) on the spot market (wait-
and-see decision). Note that the FPC has a direct impact on the decisions made at
stage2, such as: 1) limited capacity for trading on the spot market and 2) the plant
will decide to sell/buy if the spot price is higher/lower than the forward price. For
the sake of simplicity we neglect transaction costs.

The mean-risk objective function of the problem (4.1a) is formulated as (3.1a).
Following the problem description (see subsection 4.1.2) we can define profits xsc
and decision variables sm by replacing (3.1e) with a set of constraints that include:
incomes, cost and technical characteristics (4.1e)-(4.1p). This set of constraints
belongs to the group of the complicating constraints. The profit (4.1e) of the thermal
plant consists of incomes made from electricity sold/bought in the spot market and
through the FPC subtracted by the generation cost.
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Figure 4.1.: Decision making process

z = max (1− µ)
∑
sc

pscxsc + µ · CV aR (4.1a)

s.t.

ζ −
1
β

∑
sc

pscηsc − CV aR = 0 (4.1b)

ηsc − ζ + xsc ≥ 0, ∀sc (4.1c)

ηsc ≥ 0;∀sc (4.1d)

xsc =
∑
h

(πssc,hgssc,h + πf · gf − csc,h) ,∀sc (4.1e)

csc,h = cnl · Usc,h + csu · SUsc,h
+ (cv + com) gsc,h, ∀sc, h (4.1f)

, hUsc,h = Usc,h−1 + SUsc,h − SDsc,h,∀sc, h (4.1g)

Usc,h = Usc′,h, ∀sc, sc′ ∈ Ω, ∀h ∈ [1, 24] (4.1h)

gsc,h = gssc,h + gf,∀sc, h (4.1i)

gsc,h = Uhg
min + gn,∀sc, h (4.1j)

gsc,h ≤ Uh
(
gmax − gmin

)
,∀sc, h (4.1k)

RU ≥ gnsc,h − gnsc,h−1, ∀sc, h (4.1l)

RD ≥ gnsc,h−1 − gnsc,h, ∀sc, h (4.1m)

Emin ≤
∑
h

gmin,∀sc (4.1n)

Emax ≥
∑
h

gmax,∀sc (4.1o)

− gmax ≤ gssc,h ≤ gmax, ∀sc, h (4.1p)
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Equations (4.1b)-(4.1c) are linear constraints used for CVaR optimization, and they
represent the group of coupling constraints. Cost of electricity production (4.1f)
is a linear function including: no-load cnl, startup csu, variable cv, operation and
maintenance cost com. The logic coherence between commitment status, startup
and shutdown decisions is expressed in (4.1g). Notice that for the first hour it is
assumed that Usc,h−1 = U0, i.e., the initial commitment status which is an input
data. Commitment decisions are unique for the first day of the week, i.e., they are
the same for the first 24 hours for all scenarios (4.1h). Equation (4.1i) expresses
the total generation of the plant which is the sum of the power quantity for the
spot and forward market. Minimum and maximum generation limits are defined
with (4.1j) and (4.1k). Note that gnsc,h is the net power dispatched above minimum
generation. Limits for upward (4.1l) and downward ramp (4.1m) prevent the rapid
change in power production by the plant. For the first period, those ramp constraints
have to take into account the initial conditions of the previous hour. Therefore, it
is assumed that for h = 1, the term gnsc,h−1 would represent the power produced
above the minimum stable load in the previous hour of the scheduling horizon (input
data): g0 − gmin in case U0 = 1, and 0 otherwise . Thermal plant needs to satisfy
the minimum energy production(4.1n) and the maximum energy production (4.1o)
during the whole time horizon. In order to prevent the plant to sell or buy electricity
on the spot market more than its maximum capacity we impose a limit (4.1p).

|In comparison to the mean-risk problem formulation from the section (3.1), ex-
pression (3.1e) as an equality constraint is replaced with equality (4.1e)-(4.1j) and
inequality constraints (4.1k)-(4.1p), which define the polyhedron X (see (3.27)).
Problem formulation (4.1) has the same mathematical structure as (3.1) and appli-
cation of the Iterative CVaR is a straightforward process.

4.1.3. Model II: Risk-constrained unit commitment problem

Increasing penetration of renewable energy sources represents a major challenge
to the UC problem. The impact of the stochasticity and variability of wind and
solar power can be very high for isolated systems. This fact motivated the research
presented in Asensio & Contreras (2016) where a risk-averse UC model is formulated.
The structure of such model resembles the DOP shown in (3.1), but instead of
expressing the risk in terms of profit, it is expressed in terms of total cost. The
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authors show that the UC solution depends notably on the selected risk-aversion
level, and the included analysis of the efficient frontier can be very helpful for the
decision maker.

In this section the UC problem from the perspective of a generation company is
studied (self-UC). Therefore, the demand balance equations, and the constraints
to guarantee the fulfillment of upward and downward reserve requirements for the
whole system, are removed. The objective is to maximize the difference between
market incomes and operational costs, under the assumption of a price-taker agent
that participates both at the day-ahead energy market, and at the secondary reg-
ulation reserve market. As stated in Asensio & Contreras (2016), the flexibility
provided by each unit in one hour depends on its output power during the previ-
ous hour, and on its ramping capabilities. In order to avoid the inaccuracies that
could be derived from the standard representation of hourly energy blocks, Model
II applies the methodology presented in Morales-España et al. (2014) where genera-
tion is modeled as piecewise-linear functions that represent the instantaneous power
trajectories. The main advantage of this approach is that the obtained regulation
reserves are very accurate as their computation takes into account the evolution of
the instantaneous power within the hour, and the ramping capability. In addition,
the formulation takes into account the following issues:

• Minimum up and down times

• Different startup costs depending on the number of hours the unit has been
off.

• Detailed startup and shutdown power trajectories

• Consideration of different types or regulation reserves: up and down secondary
reserve (15 min), up and down tertiary reserve (30 min), and off-line tertiary
up and down reserve.

As including here the complete mathematical formulation of Model II would compro-
mise the readability of this chapter, the reader is referred to Morales-España et al.
(2014) for the detailed formulation of the tech-economical characteristics and con-
straints of the generation units (equations (7)-(14) and (21)-(45) given in Morales-
España et al. (2014)). Thus, Model II has been built on the basis of such UC
formulation, but with the following major improvements:

• The deterministic formulation of Morales-España et al. (2014) is transformed
into a two-stage stochastic model in a similar manner as in Asensio & Contreras

47



Chapter 4 Application of the I-CVaR to single-agent problems

(2016). The first stage variables are the UC decisions that are unique for any
possible scenario realization. The recourse functions are the instantaneous
power of each thermal unit at the end of each hour, and the mentioned three
types of reserves. The model computes the hourly energy generation assuming
a linear power trajectory between the instantaneous power at the beginning
and at the end of each hour.

• The demand balance equation is removed, as the generation company is not
obliged to produce any particular load profile.

• Similarly, the system reserve requirements for each type of reserve are also
removed.

• For each hour and for each scenario, market incomes are computed by sum-
ming: (i) the sales of the aggregated energy produced by all the committed
generators, and (ii) the sales of the aggregated secondary reserve procured by
the units.

• The problem is formulated as a risk-averse model by computing the CVaR.

• The objective function is the weighed sum of the expected profit, and the
CVaR, where the selected weight factor allows to model different risk aversion
levels.

The resulting Model II can be solved both by a direct optimization, or by applying
the Iterative CVaR algorithm presented in section 3.2. This entails to build the
corresponding master and sub-problem of the algorithm adapted to this particular
formulation in an analogous way as it was explained for Model I.

4.1.4. Selection of CVaR parameters

Taking into account the objective function of the of mean-risk problem presented
in section 2.1.3, it can be seen that the level of risk-aversion can be quantified in
terms of µ, i.e. the relative weight that the risk measure ρ(X) has in the objective
function. In case µ = 0, the risk measure would not be considered in the objective
function, leading to the risk-neutral case where the objective is just to maximize
the expected profit E(X). The other extreme (µ = 1) would represent the case of
a decision maker who is a pure risk-averse agent. Any intermediate value µ ∈ [0, 1]
would implicitly represent a certain risk level of the decision maker. In addition, in
case the used risk-measure is the CVaRβ(X), the value of the chosen confidence level
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β also has a direct impact on the solution of the mean-risk problem. For instance,
β = 0.05 means that the risk measure included in the objective function would be
the average value of the profits obtained in all those scenarios whose benefit is lower
than the 5% percentile. In case that β = 0.01, the decision maker would only be
concerned about 1% of the scenarios located in the left tail of the probability density
function. Therefore, the two parameters that must be specified in order to set up
the risk-averse mean-risk problem are the following ones

• The risk weight factor µ ∈ [0, 1]

• The confidence level β

To the best knowledge of the author, there is little research published in determining
the value of these CVaR parameters applied to the electric power industry and in all
the reviewed research works, the value of µ and β are assumed to be known. In this
section we present the approach proposed in this thesis to establish the values of
these parameters. The objective here is not so much to establish an exact algorithmic
procedure to set univocally both parameters, as to open a discussion about what the
interpretation of their values might be, by trying to transfer to the electric power
industry some common practices and concepts widely used in the financial sector,
(Chatterjee, 2014).

The 2007-2008 financial crisis uncovered the vulnerability of the banking system at
global level and gave place to new regulations and supervision procedures in order
to strengthen its resilience to absorb adverse economic shocks. In this sense, the
implementation of the Basel III framework in EU has resulted in the adoption by
Member States of a set norms such as the Capital Requirement Regulation (EU,
2013b) and the Capital Requirement Directive IV (EU, 2013a). As a result of this
regulation, in order to cover unexpected losses, financial institutions are obliged to
set aside an amount of capital which is higher when the assets of the bank are riskier.
This own funds requirement is computed as a percentage of the risk-weighted assets
of the bank. Similarly, banks have to hold a certain level of liquidity to cover stressed
events of outflows, or additional capital buffers to ensure their capability to absorb
the losses related to a crisis episode, to ensure the bank capital, or to guarantee
that during the low economic cycle, the bank is able to continue offering its lending
products.

From the perspective of an electric generation company that sells its production
in the market subject to uncertainty, one could ask to what extent poor market
results could compromise the development of its activity. If there was a scenario
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where market revenues were scarce (for example, because of a high presence of al-
most zero variable cost renewable generation that would lead to a reduction in the
marginal price of the system), the company would see a reduction in the amount
of money available to cover all its payment commitments.The Working Capital of
a company is the difference between its current assets (cash, accounts receivable,
and inventories of finished goods and raw materials), and its current liabilities (ac-
counts payable), (Smith, 1973). Therefore, an insufficient Working Capital reduces
the financial health of the company as the capability to payback its creditors could
be compromised. Let assume that the company has a base fund (FBase) which
represents such available assets (cash or similar) to deal with the payment commit-
ments. The capital yield of FBase is normally very low due to its required very high
liquidity, and therefore its total volume has to be carefully established: on the one
hand, if the fund FBase were too small, the company could not be able to meet its
short-term payment commitments; on the other hand, if the fund were larger than
necessary, the company would be incurring an opportunity cost since the excess of
the fund not strictly necessary could be allocated somewhere else in order to obtain
a higher return. It should also be borne in mind that the company’s activity is
subject to multiple sources of uncertainty and, therefore, the predictability of cash
flows is not absolute. If the company is faced with an unlikely scenario of very bad
market results, that amount of FBase could be insufficient. One possible solution
would be to allocate an additional capital fund FRisk that guaranties liquidity in
such kind of extreme events of very bad market outcomes. Under this setting, the
company’s objective function should be the following one:

max
∑
sc pscxsc −CBase · FBase− Crisk · FRisk (4.2)

where the first term is the sum of the operational profits for all the considered
scenarios weighted by their corresponding probabilities, followed by the financing
cost of the mentioned funds FBase and FRisk, where CBase and CRisk are the
unitary financing costs (expressed in % per unit of time). Without loss of generality,
we can assume that the base fund FBase and its associated cost CBase are known
values, and therefore they can be eliminated from the objective function resulting
in the following expression:

max
∑
sc pscxsc −Crisk · FRisk (4.3)
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The difficulty here lies precisely in determining the value of the amount of money
FRisk that the company must immobilize to be protected against the market risk.
In that respect, risk measures presented in section 2.1.1 are commonly used in the
financial industry to that purpose.

In order to illustrate the underlying rational of the proposed method, let assume
that the company follows a pure risk-neutral criterion when planning the operation
of its generation portfolio to sell the produced energy in the electricity market. The
company hires a new risk manager and the first thing that it does is to measure
the risk associated with the activity of selling energy in the spot market. For this
discussion we can assume that the manager uses a given risk measure ρ() based
on the potential losses (or disbenefits1), and therefore it will take a higher value
when the expected outcomes of the market are riskier. After doing the calculation,
she obtains ρ(Xo), where Xo is a discrete random variable describing the set of net
disbenefits that corresponds to the risk-neutral operation.

Following the reasoning, one might ask what would happen if the company planned
the operation of its power plants by applying a risk aversion criterion. In that case,
the risk-manager would compute the updated risk measure under this setting, i.e.
ρ(Xr). Assuming that the risk management strategy works properly, i.e. that it
reduces the market risk, it must be satisfied that ρ(Xr) ≤ρ(Xo) as the goal is to
push to the left the losses located at the right tail of the loss distribution function,
which is equivalent to the next expression:

ρ(Xr) = ρ(Xo)− a (4.4)

with a > 0. Assuming that ρ() is a coherent risk measure, the translation invariance
property, see section 2.1.3, implies the following relationship:

ρ(Xr) = ρ(Xo)− a = ρ(Xo + a) (4.5)

The expression (4.5) states that when adding a certain amount of capital to a port-
folio, the risk is reduced by the same amount. In this case it can be interpreted
as follows: in terms of risk, introducing the risk-aversion criterion in the operation
planning of the power plants is equivalent to continue operating the plants under a
risk-neutral approach but putting aside an additional very liquid and secure capital

1If X represents the profit, the disbenefit would be −X .
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a. Let FRisko and FRiskr be the amounts to be kept in the fund when the oper-
ation is carried out following a risk-neutral and a risk-averse criterion respectively.
As the risk has been reduced, the amount of money that should be kept in the fund
would be smaller and the reduction in the fund thanks to carry out a risk-averse
operation should be equal to the reduction of the money that is at risk:

FRiskr = FRisko − a = FRisko − (ρ(Xo)− ρ(Xr)) (4.6)

Once that the amount to be deposited in the fund has been obtained, we can sub-
stitute it in (4.3):

max
∑
sc pscxsc − Crisk · (FRisko − (ρ(Xo)− ρ(Xr)))

=
∑
sc pscxsc − Crisk · (FRisko − ρ(Xo)) + Crisk · ρ(Xr)))

=
∑
sc pscxsc −Ko + Crisk · ρ(Xr)))

(4.7)

where Ko = Crisk · (FRisko − ρ(Xo)). One can expect that the quantity deposited
in the fund is equal to the amount that is subject to risk, i.e. FRisko = ρ(Xo) which
yields to Ko = 0. If that is not the case, Ko would be a constant term that could
be removed from the objective function, leading to the following expression:

max
∑
sc pscxsc− Crisk · ρ(Xr) (4.8)

Throughout all this thesis, the risk measure has been defined in terms of profits
instead of losses. Thus, if Xr stands for the discrete random variable describing the
set of net profits that corresponds to the risk-averse operation, the objective would
be to push to the right the profits located at the left tail of the profit distribution
function. Thus, if the risk measure is defined in terms of profits instead of losses, it
must be changed the negative sign of the previous expression, leading to:

max
∑
sc pscxsc+ Crisk · ρ(Xr) (4.9)

Using the CVaR as the coherent risk-measure (defined in terms of profits as in section
2.1.2), it results in the following expression:

max
∑
sc pscxsc+ Crisk · CV aR (4.10)

If (4.10) is multiplied by (1− µ) the objective function is given by:
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max (1− µ)
∑
sc

pscxsc + (1− µ)Crisk · CV aR (4.11)

and in comparison to (3.1a), it is now obvious that (1− µ)Crisk = µ. Solving for
the variable µ, we obtain:

µ = Crisk
Crisk+1 (4.12)

As typical values of the fund cost satisfy that Crisk � 1 , it can be derived the
next expression:

µ ≈ Crisk (4.13)

Notice that the fund amount FRiskr can be reduced if expected bad outcomes are
better, that is, if CV aR is greater.

Regarding to the fund cost Crisk, for the weekly unit-commitment problem, it could
be computed as the company’s weighted average cost of capital (WACC) deducted
by risk-free spread per week. The WACC can differ substantially between different
countries and companies, (Ondraczek et al., 2015). For instance, assuming that
WACC is 18% per year and that the risk-free rate is 2% per year, the weekly fund
cost is:

Crisk =
18%− 2%

52 ≈ 0.003% (4.14)

In conclusion, we have seen that one way to look at CVaR is as a tool for setting
the capital fund that guaranties liquidity in the event of bad market outcomes. The
fund will be used to provide liquidity whenever a bad market outcome occurs. The
cost of setting that fund is the opportunity cost of the allocated capital, that can
be quantified as the spread between the and the risk-free rate. By setting such a
additional fund the company’s risk is reduced to a low level, and it makes sense to
optimize the expected profit.

Regarding to the other parameter to be determined, i.e. the confidence level β, in
the banking sector it is common for the regulator to set the confidence interval for
which the risk measures must be calculated. For instance, the official confidence
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level at which banks are supposed to absorb their annual losses according to The
Basel Committee on Banking Supervision is set at 99.9%, (Zimper, 2014). However,
in the context of this thesis, the generation company is not subject to such kind of
external requirements. Implicit in the previous rational is that the fund is expected
not to be used very frequently. Otherwise, management and additional operational
costs should be added. In order words, by setting the fund something equivalent
to the insurance that has been acquired. Therefore, β should be set in order that
recourse to the fund is infrequent enough as it would not be efficient to have to
replenish the fund continuously. In the case of the unit-commitment problem, a
sensible figure might be, e.g., once per year up to three times per year. In the study
case of Model I the time horizon is one week. Therefore, for a period of one week:

β ∈ [ 1
52 ,

3
52 ] = [0.019, 0.058] (4.15)

The importance of CVaR parameters selection is highlighted in the section 4.2, which
analyzes the impact of the risk weight factor µ = 0.003 on the mean value of profits
and the CV aR value. Taking into account that the value of µ can be very small,
a large number of scenarios might be needed for determining a sensible value of
CV aR. In section 4.3 the same risk weight factor is used.

4.2. Study case: Optimal forward market offer (Model I)

The study case presented in this section is implemented in GAMS (Brooke et al.,
1996), and solved with CPLEX 12 on a personal computer with eight core processor
at 3.6 GHz and 16 GB of RAM. The problem presented in (4.1) has the structure
of (3.1). Therefore, it is referred to it as Direct Optimization Problem (DOP).
The proposed iterative algorithm (denoted as I-CVaR) requires solving sequentially
(3.25) - (3.24) for the particular case of the presented Model I. Given that the duality
gap of linear problems is null, the optimal solution of the I-CVaR will be exactly
the same as the one obtained with a convex and linear DOP. Therefore, in order to
illustrate the performance of the presented I-CVaR algorithm in section 4.2.1 and
4.2.2, the binary variables of the problem have been relaxed to ensure the convexity
of the model. In section 4.2.3 the results are presented of the non-convex case for
different risk weight factor µ.

The stochastic model (4.1) consists of 520 scenarios. For electricity price modeling,
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a simple method chosen based on the 10 year public historical data from the Iberian
electricity market OMIE (2015). Starting from Saturday, 1st of January 2005, every
7 days represent one spot price scenario in our problem. Each scenario consists of
168 hourly spot prices which are exogenous stochastic variables and they all have
the same probability psc = 1/520. Figure (4.2) shows the median of all the scenarios,
together with the percentiles 95%, 75%, 25% and 5% in order to illustrate the
variability of the prices used in the example case. The maximum and minimum
price are also shown.

Figure 4.2.: Spot price variability

Note that there are many events of null prices that mainly correspond to events
of high wind generation and low demand. Regarding the confidence interval, the
selected value is β = 0.05. The values of the thermal plant parameters can be seen
in Table 4.1. The price of the FPC is set to πf = 46.55 e/MWh, which is lower
than the average spot price (πsavgsc,h = 46.578 e/MWh). Minimum and maximum
energy production are Emin = 6300MWh and Emax = 75600MWh, respectively.
The generation cost parameters can be seen in Table 4.2. It is assumed that the
initial state of the thermal unit is ON. The convergence tolerance is set to ε = 10−4.

Table 4.1.: Generator parameter data

gmax [MW ] gmin [MW ] RU [MW/h] RD [MW/h]
500 150 200 200

4.2.1. Results

The results of this study case are presented in the following order: (i) the compu-
tational burden of implementing the CVaR methodology and the importance of the
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Table 4.2.: Cost parameter data

cv [e/MW ] 35
cnl [e/h] 2200
csu [e] 40000
com [e/MWh] 5

CVaR parameter selection, (ii) the efficiency of using the Iterative CVaR over DOP,
and (iii) the primal variables optimal value recovery.

First, the computational challenge of the CVaR constraints (4.1b)-(4.1c) is high-
lighted. In Table 4.3 the optimal solution of the expected profit z, the mean value
of the profits xsc, the value of CV aR, the power sold through the future physical
contract gf , and the CPU time can be seen. Obtained values from DOP are com-
pared for the risk-neutral (µ = 0) and the risk-averse (µ = 0.003) cases. Notice
that for the risk-neutral case, the CVaR constraints are not active, meaning that
the mathematical structure of (3.1) adopts the same form as (3.24) and the compu-
tational burden is decreased. On the other hand, the coupling constraints in DOP
are activated by setting a not-null value of µ and the CPU time increases (see Table
4.3 for µ = 0.003). The CPU time of the risk-averse approach is more than 3 times
grater than the risk-neutral approach. The value of CV aR for µ = 0 is computed
as the sub-product by accounting for the 5% lowest profit scenarios.

Table 4.3.: Optimization results for DOP and I-CVaR

µ = 0 µ = 0.003
DOP DOP I-CVaR

z [ke] 532.528 530.719 530.719
xsc [ke] 532.528 532.287 532.287

CV aR [ke] -127.102 9.625 9.625
gf [MW ] 0 50.965 50.965

CPU time [s] 54.741 171.710 134.753
iterations / / 3

As expected, the risk-averse case leads to a lower mean profit xsc and higher value
of CV aR. It is important to point out the importance of the CVaR parameter
selection from section (4.1.4). In particular, the thermal plant sells 50.965 MW as
base-power on the forward market which significantly increases the obtained value
of the CV aR (by 136.727 ke) with a negligible influence on the xsc (just a small
decrease of 241 e). Obtained profit distributions for µ = 0 and µ = 0.003 can be

56



4.2 Study case: Optimal forward market offer (Model I)

seen on Fig. 4.3-a. As expected, for the risk-averse case, the profit values for the
left tail of the distributions are higher than in the risk-neutral case. Conversely, the
scenarios endowed with higher gains have lower profits in the risk-averse case than
in the neutral case. (see Fig. 4.3-b).

Figure 4.3.: Profit distribution comparison

Second, the results of I-CVaR are compares with the risk-averse approach of DOP
to indicate the efficiency and consistency of the proposed algorithm. The CPU time
of I-CVaR is 134.753 seconds, which is 21.5% faster than the DOP. Table 4.3 shows
that the obtained values of z, xsc, CV aR and gf are equal to the values obtained
with the DOP. In this problem setting, the implementation of I-CVaR overcomes the
DOP in terms of computational time even though it requires 3 iterations to converge
(see Table 4.4). The values of the upper and lower bounds in the third iteration are
equal, meaning that the algorithm converges with ε = 0. Notice that the objective
function of the LRSP can be interpreted as the maximization of the expected profit
under a risk-adjusted probability: (1− µ)psc + µ · qsc. Regarding the LRMP (3.25),
as it is a small linear problem, it does not require too much time to be solved. In
addition, per each new iteration the solver has a better "starting point" which is
closer to the optimal solution. Providing such starting solution makes the LRSP
less time consuming in every following iteration and improves the computational
efficiency of the whole iterative algorithm.
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Table 4.4.: Upper and lower bound convergence

µ = 0.003

iterations z̄i [ke] zi [ke]
| z̄i − zi |
| z̄i |

1 532.052 0 1.002
2 537.472 528.742 0.016
3 530.719 530.719 0

Finally, the recovery of the optimal primal variables is shown. Table 4.5 shows the
values of xi1 and gf i per each iteration and its corresponding multiplier λi. The
optimal values are obtained using the following expressions:

x1 =
∑
i

λixi1

gf =
∑
i

λigf i

which are x∗1 = 242.192 ke and gf∗ = 50.965MW for µ = 0.003. Optimal primal
variable recovery can be used for all the decision variables.

Table 4.5.: Values of gf i and λi per iteration

µ = 0.003
iteration λi [p.u.] xi1 [ke] gf i [MW ]

1 0.102 222.814 500
2 0.898 16.786 0
3 0 16.786 0

4.2.2. Forward market offering strategy

Previous results correspond to a given fixed price of the forward contract and a given
risk-averse case. However, it would be interesting to analyze the impact of both
parameters. In a real setting, the πf might not be known in advance as it depends
on the interaction among all the traders. Therefore, the decision maker needs to
define an optimal offering strategy to sell its power in the forward market. This
strategy adopts the form of a supply function that expresses how much quantity
should be sold for each possible forward market price. For a detailed sensitivity
analysis with respect to the change in πf and µ, the offering strategy for the PFC is
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shown in Fig. 4.4. The risk preference range 0 ≤ µ ≤ 0.1 and the forward price range
46 ≤ µ ≤ 47.1 [e/MWh] is taken into account. As can be seen, with risk-neutral
case (µ = 0) the thermal plant does not sell its capacity through the PFC if the
forward price is lower than the average spot price. On the contrary, the power plant
commits its maximum capacity when the forward price is higher than the average
spot price. For the risk-averse cases (µ > 0) a variety of supply functions can be
observed. Note that all these risk-averse supply functions intersect at the same point
(gf = 367.106MW ) where the future electricity price is equal to the average spot
price (πf = πsavgsc,h). This outcome is also related to the equilibrium position where
the plant does not benefit from a possible deviation of its decision unilaterally. It is
important to notice that building the set of the supply functions for different risk
profiles with the proposed I-CVaR is very efficient in terms of computational time
for this problem.

Figure 4.4.: Forward market offering strategy

4.2.3. Non-convex problem

In case the mentioned model is formulated considering binary variables (commitment
and the startup variables) the resulting problem is non-convex. For the non-convex
problem binary variables are used in (4.1g). Table 4.6 shows the CPU time and the
relative optimality gap (ROG), compared with the DOP. Here the term of the ROG
is included which addresses the relative difference between the objective function of
the DOP and I-CVaR (4.16). Although the CPU time is in favor of the DOP for
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this case, the relative optimality gap is negligible. The I-CVaR converges after three
iterations with ε = 0 and the obtained solution for the physical forward contract
(gf) is the same as in DOP. As the Iterative CVaR sub-problem (3.24) does not
depend on the CVaR measure, it allows one to further decompose the optimization
problem.

ROG = |
z∗DOP − z∗I−CV aR

z∗DOP
| (4.16)

Table 4.6.: Non-convex case results

µ
CPU time [s]

i ROGDOP I-CVaR
0.003 217 417 3 2.72 · 10−6

0.02 202 394 3 2.17 · 10−13

0.04 228 405 3 2.68 · 10−6

0.06 215 395 3 2.65 · 10−6

0.1 218 388 3 2.6 · 10−6

4.3. Study case: Risk-constrained Unit Commitment
(Model II)

Model II is applied for a hypothetical generation company that owns the same
10 thermal plants used in the example case of Morales-España et al. (2014) for a
time horizon of 24 hours. The company faces the price uncertainty that has been
modeled by 520 equally probable scenarios (psc = 1/520). Each one of them contains
a realization of 24 hour energy spot market and secondary reserve market prices. A
sample of one day per each week in the year, based on the 10 year public historical
data OMIE (2015) was used to build the price scenarios.

4.3.1. Results

The used CVaR parameters are µ = 0.003 and β = 0.05. Two different compu-
tational approaches are presented. First, binary variables of Model II are relaxed
and the model is solved as a Relaxed Mixed Integer Problem (RMIP). In this way
the convexity is assured and the obtained values of the DOP and the I-CVaR are
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the same (see RMIP column in Table 4.7). It should be highlighted that the I-
CVaR converges in 2 iterations with ε = 0 and it is 5% faster than the DOP. These
results show the applicability of the Iterative CVaR for a detailed power system
representation.

Table 4.7.: RMIP and MIP optimization results

RMIP MIP
z [ke] 928.001 927.610
xsc [ke] 930.684 930.295

CV aR [ke] 36.476 35.202
iterations 2 2

Second, Model II is solved as Mixed Integer Problem (MIP) taking into account the
nature of the the binary variables. As expected, based on the results from section
4.2.3, the I-CVaR is 54% slower than the DOP and the algorithm converges after
2 iterations. However, note that the ROG is equal to zero, which means that the
results obtained with the I-CVaR are exactly the same as the results obtained with
the DOP in contrast to results from the subsection 4.2.3. The solutions obtained with
RMIP and MIP are compared. Both mean profit xsc and the value of CV aR have
close values, as can be seen from Table 4.7. Table 4.8 represents the commitment of
the plants for the 24 hours. Thermal plants 1 to 7 are the ones that are operating
during the day and the plants 8 to 10 are down due to the high operation cost in
comparison with the price scenarios. Note that plants number 3, 4 and 5 are not
committed in the first 3 hours of the day. There are 2 main reasons that justify
this solution: (i) due to the low demand the hourly prices are very low, and (ii) the
initial down state of the plants are -5, -5 and -6 hours, respectively, which drastically
increases the startup cost of the thermal plants. The UC schedule in the case of
the RMIP defers from the MIP only in the 4th hour for the plants 3, 4 and 5, and
the startup variable takes the value around 0.51 instead of 1. This relaxation of
the binary variable reduces the startup cost of the mentioned plants and therefore
increases the overall mean profit.
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Table 4.8.: MIP UC schedule

plants Hours (1-24)
1 111111111111111111111111
2 111111111111111111111111
3 000111111111111111111111
4 000111111111111111111111
5 000111111111111111111111
6 111111111111111111111111
7 111111111111111111111111
8 000000000000000000000000
9 000000000000000000000000
10 000000000000000000000000
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5. Electricity market Nash Equilibrium
with risk-averse agents

5.1. Medium term market equilibrium model

It is well-known that a perfectly competitive market results in the same operation
as the theoretical social-welfare optimum. However, even in the absence of strategic
behavior, the possible risk-aversion of market participants can lead to a different
solution. Therefore, the fact that risk-aversion can lead to a market inefficiency is
of paramount importance.

This chapter presents a market equilibrium model from Jovanović et al. (2018) where
the players are Gencos that own typical generation portfolios (coal plants, combined
cycle gas turbines, hydro units, and RES) and compete to supply the demand in
the medium term taking into account that they can be endowed with different risk
aversion profiles. The model is formulated as a multi-stage stochastic equilibrium
problem. The presented model is more general than the previous work Rodilla et al.
(2015) as it takes into account a more realistic representation of the generation sys-
tem. Thus, instead of a very stylized representation of the hydro system and a single
thermal generator, this model uses a more detailed representation of the reservoirs
during the whole planning horizon and it includes multiple thermal plants that can
belong to different agents. In addition, instead of using utility functions to model
risk aversion, the model implements the Conditional Value at Risk (CVaR) of Rock-
afellar & Uryasev (2000) due to its suitability to be embedded within optimization
models. Regarding Philpott et al. (2016), the presented model does not require to
build in advance the extreme points of the polyhedron that define the risk set of
each agent, and it takes into account the net-head dependency. In addition, the
implemented model in the example-case section is not just a two-stage scenario tree,
but a multi-stage scenario tree with 12 time periods (months) that can be used to
analyze the impact of the risk aversion on the annual evolution of the main vari-
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ables. Finally, this chapter analyzes how the market equilibrium solution changes
for different risk aversion levels of the involved agents. To do so, the results are
compared with the outcome of the centralized planer model (section 5.3).

5.2. Nomenclature

Sets and indexes

T : Set of time periods t
H: Set of hydro generators h
J : Set of thermal generators j
R: Set of renewable energy sources (RES) generators r
S: Set of scenarios sc
M : Set of generation companies (market participants) m
N : Set of all nodes of the multistage stochastic tree
NT : Set of terminal nodes
NT : Set of all the nodes that are not terminal nodes, i.e.,

NT = N\NT

Nsc: Set of all nodes included in scenario, sc
Jm: Subset of thermal generators that belong to generation

company m ∈M
Hm: Subset of hydro generators that belong to generation

company m ∈M
F (t, i): Father node of node (t, i) in the multistage stochastic tree
D(t, i): Descendant nodes of node (t, i) in the multistage stochastic

tree
Ωt,i: Set of all the scenarios that include the node (t, i) in their

path

Parameters

DEMt,i: Demand at node (t, i)
Lt,i: Duration of the time that corresponds to node (t, i)
Iht,i: Natural inflows at the reservoir of hydro generator h ∈ H

in node (t, i)
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Psc: Probability of scenario sc ∈ S
Pt,i: Probability of node (t, i)
Rrt,i: Power generation of renewable energy sources at node (t, i)
V h: Initial volume of water stored at the reservoir of hydro

generator h ∈ H
V h
f : Target volume of water at the end of the time horizon for

hydro generator h ∈ H
V
h: Maximum reservoir capacity for hydro generator h ∈ H

V h: Minimum reservoir capacity for hydro generator h ∈ H
F ht,i: Minimum water flow for hydro generator h ∈ H at node

(t, i)
F
h: Maximum water flow for hydro generator h ∈ H

G
j : Maximum output power of thermal generator j ∈ J

βm = [0, 1]: Confidence interval of each generation company m ∈M
µm = [0, 1]: Risk aversion level of each generation company m ∈M

Functions

Cjt,i(g
j
t,i): Cost function of thermal generator j ∈ J , at node (t, i)

Eh(vht,i): Energy coefficient to translate water flow into output
power of hydro unit h ∈ H

Variables

xmsc: Profit obtained by generation company m ∈M , in scenario
sc ∈ S

vht,i: Volume of water stored in h ∈ H at the end of the time
period of node (t, i)

fht,i: Flow of water released by the reservoir of hydro generator
h ∈ H, in node (t, i)

sht,i: Water spillage of hydro generator h ∈ H, in node (t, i)
ght,i: Output power generated by hydro generator h ∈ H, in

node (t, i)
gjt,i: Output power of thermal generator j ∈ J , in node (t, i)
πt,i: Spot price in node (t, i)
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CV aRm: Conditional Value at Risk of each generation company
m ∈M

ζm: Value at Risk of each generation company m ∈M
ηmsc: Auxiliary variable used for CVaR computation

5.3. Benchmark Model: Centralized Stochastic
Hydrothermal Coordination Model

This section presents the benchmark model against which the operation of the gen-
eration system in the presence of risk-averse agents is compared. This model is
formulated as a centralized hydrothermal coordination problem where the objective
function is to minimize the expected operation cost subject to satisfy the demand
and all the technical constraints of the generators. The existence of uncertain param-
eters makes it necessary to formulate a multi-stage stochastic problem as explained
hereafter.

5.3.1. Modeling the Uncertainty Using a Stochastic Tree

Many of the parameters used to model the generation system can be considered as
known input data such as the nominal technical characteristics of the generating
units (maximum power, input-output curves, etc.) or the initial value of the hy-
draulic reserves. However, there are many other parameters which are subject to
uncertainty. Among them, the ones linked to the meteorology are crucial. On the
one hand, the amount of rain or snow affects the level of hydroelectric energy stored
in the reservoirs. In fact, the possible scenarios of natural hydraulic inflows consti-
tute one of the most significant concerns when planning the medium term operation
of the system. Other examples are the wind speed that determines the power that
can be produced in wind farms, or solar radiation for electrical production in photo-
voltaic or thermo-solar installations. On the other hand, meteorological factors also
affect the electricity demand, which also depends on the economic activity and work-
ing patterns. Finally, the fuel prices of conventional thermal generators play a key
role when determining the optimal dispatch of the generators, and the fluctuations
in the coal and natural gas markets are also important sources of uncertainty.

A common approach for taking into account this uncertainty within an optimization
model is to adopt a discrete representation of the probability distribution of all the
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random parameters in the form of a multistage scenario tree that considers the non-
anticipative criterion of the decisions, (see Birge & Louveaux (1997)). Figure 5.1
shows an example of a multistage scenario tree that consists of N nodes.

Figure 5.1.: Example of stochastic tree representation used to model the uncertainty

Each one the nodes is denoted by (t, i) where t is the time stage and i is the position
of the node at that time period. Given that every node as a single predecessor,
it is common to use the term ‘father node’ is indicated by F (t, i). For instance
F (t3, i2) = (t2, i1). In addition, the descendants of each node is denoted by D(t, i).
For example D(t2, i2) = {(t3, i3), (t3, i4)}.

Notice that the first node, i.e., the root node denoted as (t1, i1), is unique and
it represents a here and now decision node as the value of the decision variables
corresponding to it are the same for all the scenarios. A typical example of this
kind of decisions is the problem of determining the level of the reservoirs at the end
of the first time-period knowing that the future natural inflows are uncertain. The
posterior decision variables are recourse functions as they can be adapted as far as
the uncertainty is being unveiled. All the branches can be characterized by a certain
probability of occurrence, which leads to a total probability of occurrence of each
scenario Psc that satisfies that

∑
sc∈S Psc = 1. Notice that each scenario sc is made

of a whole set of nodes starting at the root node, and finishing in a terminal node,
i.e., a node without any descendant. The set of nodes that belong to a given scenario
sc is denoted as Nsc. For instance, the nodes that correspond to scenario s2 have
been highlighted in the figure. In addition, every node can also be characterized by
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a probability of occurrence denoted by Pt,i .

5.3.2. Hydroelectric Generation

The power generated by a hydro unit depends on the water flow impacting the
blades of the turbine and the net head, i.e., the difference between the elevation of
the stored water and the elevation of the turbine drain, minus energy losses within
the pipeline. In addition, the output power also depends on the efficiency of the
turbine, the drive system and the generator. In order to model these relationships
it is common to use a family of input–output curves relating the water flow and
the output power for each possible net-head value (Wood & Wollenberg, 1984).
These input–output curves are very common in short-term hydro scheduling models
(Conejo et al., 2002) where the hourly generation of the hydro plants needs to
be carefully modeled. However, in medium-term models it is usual to aggregate
the production of many hours into a representative time period (for instance, all
the peak hours of the working days of a given week). In this case, instead of the
instantaneous relationship between power and flow rate, it is more relevant to model
the ratio between the energy produced during such aggregated time-periods and the
total volume of water released through the hydro turbine. This ratio is named the
energy coefficient, and for a given hydro plant h, it is denoted as Eh. Instead of
assuming a static representation (as in Philpott et al. (2016)), its dependency on the
stored volume of water is considered given that the net head changes with respect
to the volume of water stored accordingly to the shape of the pond.

5.3.3. Mathematical Formulation of the Centralized Model

The objective of a centralized planner is to find the operation of the system that
minimizes the expected cost while satisfying the demand balance equation and all
the technical constraints of the system. The objective function can be formulated
as:

min
∑

(t,i)∈N
(Pt,i · Lt,i ·

∑
j∈J

Cjt,i(g
j
t,i)) (5.1)

Notice that in (5.1), the costs of the thermal generators j ∈ J at each node are
multiplied by the probability Pt,i and the duration Lt,i of the corresponding node.
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In addition, the per-hour cost functions of each generator Cjt,i (·) depend on the
power produced by them gjt,i, and they can be different for each node in order to
allow different fuel-price scenarios.

The optimization problem is subject to the following set of constraints:

∑
j∈J

gjt,i +
∑
h∈H

ght,i +
∑
r∈R

Rrt,i = DEMt,i⊥λt,i , ∀(t, i) ∈ N (5.2a)

vht,i = vhF (t,i) + (Iht,i − fht,i − sht,i) · Lt,i⊥γht,i ,∀h ∈ H,∀(t, i) ∈ N (5.2b)

ght,i = fht,i · Eh(vht,i)⊥θht,i , ∀h ∈ H,∀(t, i) ∈ N (5.2c)

F ht,i ≤ fht,i ≤ F
h⊥ηh

t,i
, η̄ht,i ,∀h ∈ H,∀(t, i) ∈ N (5.2d)

0 ≤ gjt,i ≤ Ḡ
j⊥ηj

t,i
, ηjt,i ,∀j ∈ J, ∀(t, i) ∈ N (5.2e)

V h ≤ vht,i ≤ V
h⊥κht,i, κht,i ,∀h ∈ H,∀(t, i) ∈ NT (5.2f)

0 ≤ sht,i⊥ψht,i , ∀h ∈ Hm,∀(t, i) ∈ N (5.2g)

Equation (5.2a) establishes that the sum of the production of all the thermal gener-
ators (j ∈ J) plus the sum of all hydroelectric units (h ∈ H) plus the generation of
renewable energy sources (r ∈ R) must satisfy the demand DEMt,i at every node.
Notice that for each constraint, its corresponding Lagrange multiplier is shown after
the symbol ⊥ that indicates complementarity. The Lagrange multiplier of (5.2a)
is represented by λt,i and it measures what would be the impact on the objective
function if the demand in this particular node increases one unit.

Equation (5.2b) establishes the water balance equation: the volume vht,i of stored
water at the reservoir of hydro unit h at the end of the time stage that corresponds
to the node (t, i) is equal to the volume of water at the end of the previous period
defined by the father node, vhF (t,i), plus the amount of water that corresponds to
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the natural inflows Iht,i, minus the amount of water due to the water flow released
to generate hydro power, fht,i, minus the possible spillages, sht,i. In the particular
case of the root-node, the volume of the father node is the initial volume, V h, which
is input data. In addition, for the particular case of the terminal nodes, NT , the
volume stored is a variable of the problem but the predefined target value at the
end of the planning horizon, i.e., vht,i = V h

f , ∀h ∈ H,∀(t, i) ∈ NT .

The relationship between the water flow discharged from the hydro turbine, fht,i, and
the output power generated, ght,i, is expressed in (5.2c) where Eh(vht,i) is the energy
coefficient that depends on the volume of water stored at the reservoir. The water
flow limits of hydro units are established in (5.2d) to model the physical limits of
the intake of the turbine or any other water right such as minimum ecological flows.
Notice that the generation limits of the hydro plant are a result of the joint con-
sideration of Constraints (5.2c) and (5.2d). However, in case the electric generator
had a more restrictive power limit, it would be possible to add a new constraint
imposing such limit. The maximum and minimum limits for thermal generators are
taken into account in (5.2e). Notice that, for the sake of simplicity, the existence of
minimum stable loads for thermal generators has not been considered as this would
require the usage of binary variables. As the presented model is intended to illus-
trate the impact of risk aversion levels on the operation of the hydro reservoirs in the
medium term, all the issues related to a detailed modeling of thermal generators and
their intertemporal constraints (such as ramps), have been neglected. The limits of
the reservoirs are included in (5.2f) which are formulated for all the nodes of the
tree except for the terminal nodes, given that as it was mentioned before, at the
last stage the volumes are fixed to the target level which is supposed to be feasible
without any loss of generality. Finally, the non-negativity constraint of spillages is
formulated in (5.2g).

5.4. Market Equilibrium Model with Risk-Averse Agents

5.4.1. Market Equilibrium Concept with Risk Aversion Agents

One of the consequences of the deregulation of the electric power industry in the
late 90s and the implementation of wholesale electricity markets in many coun-
tries around the world is that traditional operation and planning models had to be
adapted to represent the competition of market participants. Among the variety of
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possible techniques, equilibrium models emerged as a solid framework to model the
new situation (Ventosa et al., 2005). The basic idea is to find the Nash Equilibrium
(NE) of rational agents that are competing in a market where their payoff functions
are interdependent. Let um(sm, s−m) be the utility function of market participant
m that depends on its own strategies, sm, and on the ones of its competitors, s−m.
The NE solution (s∗m, s∗−m) satisfies that no one is incentivized to deviate unilater-
ally from that solution, i.e., ∀m um(s∗m, s∗−m) ≥ um(sm, s∗−m)∀sm ∈ Sm , where it
has been taken into account that the selected strategies must belong to the set of
feasible ones, Sm . This is equivalent to formulate the simultaneous maximization
of the utility functions of all the market participants, taking into account the inter-
dependency of their actions. Therefore, the NE has the form of MOPEC (multiple
optimization problems with equilibrium constraints). In the case of a set of M gen-
eration companies that compete to supply the demand, the NE could be formulated
as

s∗m ∈ argmaxum(sm, s−m, π) , ∀m ∈M
0 ≤ H(s1, ...sm, .., sM )⊥π ≥ 0

(5.3)

where H(s1, ...sm, .., sM )⊥π represents the spot market clearing where quantities are
traded at price π (see Ferris et al. (2009)).

In an electricity market it is common to assume that the utility function of gener-
ation companies is the obtained profit, i.e., the difference between market incomes
and the generation costs. However, given the inherent uncertainties of the power
system, it is necessary to define such utility taking into account that market profits
depend on a stochastic process. Let us assume that all market participants share
the same information about such stochastic process, where P is the probability dis-
tribution that is common knowledge. Let xm be a vector whose components are the
profits obtained by agent m for all the finite scenarios used in the stochastic tree
representation. One possible way to define the utility function of the market partic-
ipant is to compute the expected value of the obtained profits, EP(xm). However,
for a risk-averse agent, it is possible to define its utility in terms of a coherent risk
measure such as the CV aR. The linear combination of the expected profit and the
CV aR is also a coherent risk measure, and therefore the objective function of a risk
averse agent can be defined in general terms as:

(1− µm)EP(xm) + µm · CV aRm (5.4)

Notice that in (5.4), the parameter µm satisfies 0 ≤ µm ≤ 1 and it represents the
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risk-aversion level of the agent. The particular case of µm = 0 is equivalent to the
risk-neutral setting. In the following section, the change of the market equilibrium
solution is analyzed with respect to the values of µm.

5.4.2. Mathematical Formulation of the Market Equilibrium Model

The market equilibrium solution can be obtained by formulating the simultaneous
optimization of the utility function of all the market participants, subject to the
market clearing constraints where sellers and buyers agree to trade electricity at
a given price. According to what has been explained in section 5.4.1, the market
equilibrium can be formulated by (5.5a)–(5.5k) (which are replicated for every agent)
plus the market clearing formulated in (5.6):

For all agents m ∈M

max(1− µm)
∑
sc∈S

Psc · xmsc + µm · CV aRm (5.5a)

s.t.

xmsc =
∑

(t,i)∈Nsc
Lt,i · (πt,i · (

∑
j∈Jm

gjt,i +
∑

h∈Hm
ght,i +

∑
r∈Rm

Rrt,i)

−
∑
j∈Jm

Cjt,i(g
j
t,i)))⊥χmsc ,∀sc ∈ S

(5.5b)

vht,i = vhF (t,i) + (Iht,i − fht,i − sht,i) · Lt,i⊥γht,i , ∀h ∈ Hm,∀(t, i) ∈ N (5.5c)

ght,i = fht,i · Eh(vht,i)⊥θht,i , ∀h ∈ Hm,∀(t, i) ∈ N (5.5d)

F ht,i ≤ fht,i ≤ F
h⊥ηh

t,i
, ηht,i ,∀h ∈ Hm, ∀(t, i) ∈ N (5.5e)

0 ≤ gjt,i ≤ G
j⊥ηj

t,i
, ηjt,i ,∀j ∈ Jm,∀(t, i) ∈ N (5.5f)

V h ≤ vht,i ≤ V
h⊥κht,i, κht,i , ∀h ∈ Hm,∀(t, i) ∈ NT (5.5g)
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0 ≤ sht,i⊥ψht,i , ∀h ∈ Hm,∀(t, i) ∈ N (5.5h)

ζm − xmsc ≤ ηmsc⊥νmsc ,∀sc ∈ S (5.5i)

CV aRm = ζm −

∑
∀sc∈S

Psc · ηmsc

βm
⊥om (5.5j)

− ηmsc ≤ 0⊥δmsc , ∀sc ∈ S (5.5k)

Equation (5.5a) establishes the objective function of each agent. Notice that in
order to compute the expected profit, all the market participants share the same
probability functions. The profit of market participant m in scenario sc as the sum
of the market incomes minus the generation costs is defined in (5.5b) (only thermal).
Market incomes are computed by adding all the thermal, hydro, and RES generation
that belong to such market agents, remunerated at the market price πt,i for all the
nodes that comprise the scenario and taking into account the probability and the
duration of each node. Equations (5.5c)–(5.5h) are analogous to the (5.2b)–(5.2g)
as explained in section 5.3.3, with the only difference that they are applied only to
the generation units that belong to their corresponding market participant m. The
set of linear constraints (5.5i)–(5.5k) that allow to compute the CV aR where ζm

represents the Value at Risk for agent m, and ηmsc is an auxiliary variable to account
only for the positive values of the difference between the ζm and the profit of each
scenario, xmsc.

The previous equations must be replicated for all market participants and comple-
mented with the spot-market clearing where all the market participants participate
selling the production of their thermal, hydro, and renewable generators at price πt,i
:

∑
m∈M

(
∑
j∈Jm

gjt,i +
∑
h∈Hm

ght,i +
∑
r∈Rm

Rrt,i) = DEMt,i⊥πt,i , ∀(t, i) ∈ N (5.6)
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5.5. Relationship between the Centralized and the Market
Equilibrium Models

The objective of a centralized planner in charge of planning the operation of the
electric power system is to maximize the total welfare of producers and consumers.
For the case of an inelastic demand, this welfare maximization is equivalent to
minimizing the total operational cost while satisfying the demand at every time stage
as presented in section 5.3.3. The idea that the same solution can be obtained by a
market mechanism relies on Adam Smith’s “invisible hand” hypothesis that states
that an efficient allocation of resources can be achieved by competitive markets,
supported by the welfare theorems of microeconomics. In this sense, regulatory
bodies in charge of designing the electricity market mechanisms aim to ensure that
market functioning maximizes the total welfare of producers and consumers in the
same manner as in an hypothetical perfect centralized planning. However, there are
several reasons why market results can deviate from the theoretical social optimum.
The most obvious one is the possible exercise of market power due to a strategic
behavior of generation companies that might not reflect the true generation costs in
their offers. However, even in the absence of such strategic behavior, the existence
of uncertainty can lead also to a market inefficiency as demonstrated in Philpott
et al. (2016); Rodilla et al. (2015). In both works, it is proved that risk trading (for
instance, by signing forward markets with risk-neutral agents such as the aggregated
demand), can lead again to the optimum centralized solution even in case of risk-
averse agents.

To study the possible equivalence between the centralized optimum planning and
the market equilibrium in the context of the multi-stage stochastic framework pre-
sented previously, the Karush–Kuhn–Tucker (KKT) for both settings is derived and
compared in the following section.

5.5.1. Optimality Conditions of the Centralized Model

The first step to derive the KKT conditions of the centralized problem (5.1)–(5.2g)
is to build the Lagrangian function as shown in (5.7):
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L =
∑

(t,i)∈N
(Pt,i · Lt,i ·

∑
j∈J

Cjt,i(g
j
t,i))

+
∑

(t,i)∈N
λt,i · (DEMt,i −

∑
j∈J

gjt,i −
∑
h∈H

ght,i −
∑
r∈R

Rrt,i)

+
∑
h∈H

(
∑

(t,i)∈N
γht,i · (vht,i − vhF (t,i) − (Iht,i − fht,i − sht,i) · Lt,i))

+
∑
h∈H

(
∑

(t,i)∈N
θht,i · (ght,i − fht,i · Eh(vht,i)))

+
∑
h∈H

(
∑

(t,i)∈N
ηh
t,i
· (F ht,i − fht,i) + η̄ht,i(fht,i − F̄ h)))

+
∑
j∈J

(
∑

(t,i)∈N
ηj
t,i
· (−gjt,i) + η̄jt,i(g

j
t,i − Ḡj)))

+
∑

h∈Hm
(
∑

(t,i)∈N̄T
κht,i(V h − vht,i)) +

∑
h∈Hm

(
∑

(t,i)∈N̄T
κ̄ht,i(vht,i − V̄ h))

+
∑
h∈H

(
∑

(t,i)∈N
ψht,i · (−sht,i)

(5.7)

Equaling to zero the first derivative of the Lagrangian with respect to the primal
variables allows us to write the first set of the KKT optimality conditions:

∂L(·)
∂gjt,i

= Pt,i · Lt,i
dCjt,i(g

j
t,i)

dgjt,i
− λt,i − ηjt,i + η̄jt,i = 0 ,∀j ∈ J, ∀(t, i) ∈ N (5.8a)

∂L(·)
∂ght,i

= −λt,i + θht,i = 0 ,∀h ∈ H,∀(t, i) ∈ N (5.8b)

∂L(·)
∂fht,i

= γht,i · Lt,i − θht,i · Eh(vht,i)− ηht,i + η̄ht,i = 0 , ∀h ∈ H,∀(t, i) ∈ N (5.8c)

∂L(·)
∂vht,i

= γht,i −
∑

n∈D(t,i)
γhn − θht,i · fht,i

dEh(vht,i)
dvht,i

− κht,i + κ̄ht,i = 0 , ∀h ∈ H,∀(t, i) ∈ N̄T

(5.8d)

∂L(·)
∂sht,i

= γht,i · Lt,i − ψht,i = 0 , ∀h ∈ H,∀(t, i) ∈ N (5.8e)

The rest of KKT have been omitted for the sake of simplicity (equality constraints,
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inequality constraints, and slackness complementarity conditions).

A well-known result, which is in the core of the marginalist theory, is that in case
the thermal generator is operating within its limits (i.e., ηj

t,i
= ηjt,i = 0, by (5.8a) if

follows that the dual variable of the demand balance constraint is the marginal cost
of that generator (affected in this case by the duration and the probability due to
the stochastic formulation with not-hourly time periods)

λt,i = Pt,i · Lt,i
dCjt,i(g

j
t,i)

dgjt,i
(5.9)

Another interesting remark is related to the interpretation of the Lagrange multiplier
γht,i, that represents the marginal water value as it measures the savings in the
objective function if one extra unit of natural inflows, Iht,i, were available in that
period. In case of a deterministic formulation (a single scenario where every node
has a single descendant), if the reservoir is being operated within its limits, i.e.,
κht,i = κht,i = 0, and if the net head effect could be neglected, i.e., dEh(vht,i)/dvht,i = 0,
then the marginal water value in both time periods (the node and its descendant)
would be the same.

5.5.2. Optimality Conditions of the Market Equilibrium Model

The Lagrangian function of the optimization problem (5.5a)–(5.5k) solved by a par-
ticular agent m is:
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Lm = −(1− µm)
∑
sc∈S

Psc · xmsc − µm · CV aRm

+
∑
sc∈S

χmsc · (xmsc −
∑

(t,i)∈Nsc
Lt,i

·(πt,i · (
∑
j∈Jm

gjt,i +
∑

h∈Hm
ght,i +

∑
r∈Rm

Rrt,i)−
∑
j∈Jm

Cjt,i(g
j
t,i)))

+
∑

h∈Hm
(
∑

(t,i)∈N
γht,i · (vht,i − vhF (t,i) − (Iht,i − fht,i − sht,i) · Lt,i))

+
∑

h∈Hm
(
∑

(t,i)∈N
θht,i · (ght,i − fht,i · Eh(vht,i)))

+
∑

h∈Hm
(
∑

(t,i)∈N
ηh
t,i
· (F ht,i − fht,i) + η̄ht,i(fht,i − F̄ h)))

+
∑
j∈Jm

(
∑

(t,i)∈N
ηj
t,i
· (−gjt,i) + η̄jt,i(g

j
t,i − Ḡj)))

+
∑

h∈Hm
(
∑

(t,i)∈N̄T
κht,i(V h − vht,i)) +

∑
h∈Hm

(
∑

(t,i)∈N̄T
κ̄ht,i(vht,i − V̄ h))

+
∑

h∈Hm
(
∑

(t,i)∈N
ψht,i · (−sht,i)

+
∑
sc∈S

νmsc · (ζm − xmsc − ηmsc)

+om · (CV aRm − ζm + 1
βm

∑
∀sc∈S

Psc · ηmsc )

+
∑
sc∈S

δmsc · (−ηmsc)

(5.10)

The first order conditions for market participant m, can be formulated as:

∂Lm(·)
∂gjt,i

= −(
∑

sc∈Ωt,i
χmsc) · Lt,i · πt,i

+ (
∑

sc∈Ωt,i
χmsc) · Lt,i

dCjt,i(g
j
t,i)

dgjt,i
− ηj

t,i
+ η̄jt,i = 0 ,∀j ∈ Jm,∀(t, i) ∈ N

(5.11a)

∂Lm(·)
∂ght,i

= −(
∑

sc∈Ωt,i
χmsc) · Lt,i · πt,i + θht,i = 0 ,∀h ∈ Hm, ∀(t, i) ∈ N (5.11b)

∂Lm(·)
∂fht,i

= γht,i ·Lt,i− θht,i ·Eh(vht,i)− ηht,i + η̄ht,i = 0 , ∀h ∈ Hm, ∀(t, i) ∈ N (5.11c)

77



Chapter 5 Electricity market Nash Equilibrium with risk-averse agents

∂Lm(·)
∂vht,i

= γht,i −
∑

n∈D(t,i)
γhn

− θht,i · fht,i
dEh(vht,i)
dvht,i

− κht,i + κht,i = 0 ,∀h ∈ Hm, ∀(t, i) ∈ NT

(5.11d)

∂Lm(·)
∂sht,i

= γht,i · Lt,i − ψht,i = 0 ,∀h ∈ Hm, ∀(t, i) ∈ N (5.11e)

∂Lm(·)
∂xmsc

= −(1− µm) · Psc + χmsc − νmsc = 0 ,∀s ∈ S (5.11f)

∂Lm(·)
∂CV aRm

= −µm + om = 0 (5.11g)

∂L(·)
∂ζm

=
∑
sc∈S

νmsc − om = 0 (5.11h)

∂L(·)
∂ηmsc

= −νmsc + om
Psc

βm
− δmsc = 0 (5.11i)

5.5.3. Impact of Risk Aversion Level

This subsection analyses the impact on the equilibrium solution of the risk-aversion
level of market participants.

To start with, let assume that all market participants are risk-neutral. In this case,
µm = 0, ∀m ∈ M . By, it follows that om = 0, ∀m ∈ M , and by (5.11h) it can
be written that

∑
sc∈S ν

m
sc = 0. As νmsc are non-negative multipliers, it follows that

νmsc = 0,∀sc ∈ S. In this case, (5.11f) can be rewritten as:

χmsc = Psc , ∀s ∈ S (5.12)

The interpretation of (5.12) is that in the risk-neutral equilibrium, the Lagrange
multipliers of (5.5b), formulated for all the market participants for every scenario,
must coincide with the probability of that scenario. Then, (5.11a) and (5.11b)
become:
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∂Lm(·)
∂gjt,i

= −(
∑

sc∈Ωt,i
Psc) · Lt,i · πt,i

+ (
∑

sc∈Ωt,i
Psc) · Lt,i

dCjt,i(g
j
t,i)

dgjt,i
− ηj

t,i
+ η̄jt,i = 0 ,∀j ∈ Jm,∀(t, i) ∈ N

(5.13)

Given that the probability of one node can be computed as the sum of the probabil-
ities of all the scenarios that cross that node in their paths from the root node until
the terminal nodes, it can be written:

∑
sc∈Ωt,i

Psc = Pt,i (5.14)

In addition, if the following relationship is defined as:

λt,i = Lt,i · πt,i · Pt,i (5.15)

then replication of (5.11a) for all the market participants leads to the same ones as
the defined by (5.11a). Applying the same idea to all the remaining equations, the
same set of equations as the optimality conditions of the centralized problem would
be obtained. Therefore, it can be concluded that the operation of the generation
system that corresponds to the risk-neutral market equilibrium is exactly the same
one as in the centralized optimal operation.

However, in case there is at least one risk-averse agent, i.e., µm 6= 0, then the
operation of the system could differ from the centralized one given that (5.11a)
would not be satisfied. In this case, from (5.11f) it follows that:

χmsc = (1− µm) · Psc + νmsc ,∀m ∈M, ∀s ∈ S (5.16)

The Lagrange multipliers χmsc can be interpreted as the risk-adjusted probabilities
Qm which are different for each agent. These risk-adjusted probabilities are the
ones that market agents should assign to the scenarios so that the maximization of
their expected profits according to them, would result in the same solution as the
risk-averse operation. However, this interpretation requires a demonstration that
χmsc satisfies the requirements of a probability measure. Equation (5.16) forces χmsc
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to be positive, given the non-negativity constraint of νmsc . In addition, summing for
all scenarios both sides of (5.16), it results in the following expression:

∑
sc∈S

χmsc =
∑
sc∈S

(1− µm) · Psc +
∑
sc∈S

νmsc , ∀m ∈M

= (1− µm)
∑
sc∈S

Psc +
∑
sc∈S

νmsc , ∀m ∈M
(5.17)

By (5.11g) and (5.11h), it follows that
∑
s∈S

νmsc = om = µm, and therefore it leads to

the next result:

∑
sc∈S

χmsc = 1− µm +µm = 1, ∀m ∈M (5.18)

Once that it has been proven that χmsc can be interpreted as the risk-adjusted proba-
bilities, it is interesting to provide some additional insights. Taking the (5.11g) and
(5.11i) into account, it follows that:

χmsc = (1− µm) · Psc + µm
Psc

βm
+ δmsc , ∀m ∈M,∀s ∈ S (5.19)

Assume that the profit for a given scenario xmsc is strictly lower than the value at
risk ζm,constraints (5.5i) and (5.5k) would be active and not-active respectively.
Therefore, for that scenario, it would be satisfied that νmsc 6= 0 and δmsc = 0. Then
(5.19) for this particular case would be:

χmsc = (1− µm) · Psc + µm
Psc

βm
,∀m ∈M,∀sc ∈ S /xmsc < ζm (5.20)

On the other hand, for a scenario where the profit exceeds ζm it would be satisfied
that νmsc = 0. Then, by (5.16), it can be derived:

χmsc = (1− µm) · Psc , ∀m ∈M, ∀s ∈ S /xmsc > ζm (5.21)

Both expressions cannot be computed ex-ante, unless a reasonable estimation of
which scenarios give place to the worst profits is available.

Finally, for a given node, the risk-adjusted probabilities of each node can be com-
puted as:
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Qmt,i =
∑

sc∈Ωt,i
χmsc

5.6. Results

This sections presents the obtained results of the centralized model (CEN), market
equilibrium risk-neutral (RN) and the risk-averse model (RA). The main aim is
to identify the impact of risk aversion on the operation of hydro reservoirs in the
presence of renewable energy sources. Moreover, the mutual influence of agents’
different risk aversion levels on the results is also studied.

The models presented in sections 5.3 and 5.4 are implemented in GAMS (Brooke
et al., 1996). Model CEN is solved via the CONOPT solver due to the nonlinearity
introduced by the net-head dependency (see section 5.6.1). Models RN and RA
are coded using the Extended Mathematical Programming (EMP) feature of GAMS
(Ferris et al., 2009), and the resulting mixed-complementary problems are solved
with PATH. Regarding the input data, the power system presented in the case study
is derived from the Spanish mainland electricity market. To simplify the system, the
data of demand, RES, and hydro and thermal capacity is scaled down in the same
proportion. Nuclear energy is excluded from the generation mix. Four years of data
from the Spanish Transmission System Operator “Red Eléctrica de España” (REE,
2018) is used to replicate the real system as accurate as possible from year 2013 to
2016.

5.6.1. System Description

The power system presented in this case study is a scaled-down version of the Spanish
mainland electricity market (see section 5.6). In order to represent the uncertainty,
a stochastic tree has been implemented where after period t1 (the ‘here and now’
decision) there are 3 new nodes in t2, followed by 9 nodes in t5, and finally 27
nodes from t6 to t12. Therefore, the uncertainty is modeled with 27 scenarios of
the following input data: demand, RES, water inflow and the fuel cost. The time
horizon is considered to be 12 months, where the first period (t1) starts in October
as in Spain the hydrological year goes from October until September. Each month
has its corresponding duration (Lt,i) in hours depending on the number of days. In
Figure 5.2, the maximum and minimum values of the RES and demand are presented
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per each time period. Notice that the highest share of the RES in the demand per
month is 28% (t2) and the lowest one is 12% (t12).

Figure 5.2.: Demand and renewable energy sources (RES) forecast.

Regarding the power generation, the system consists of four thermal units (see Table
5.1) and two hydro plants (see Table 5.2), which belong to two Gencos. The first
agent Genco1 owns two thermal units (J1 and J2), and the hydro unit H1. The
second agent Genco2 owns the other two thermal units (J3 and J4) and the second
hydro unit H1. Both agents share a half capacity of the RES production and a
half of the water inflow forecast. The thermal generation represents coal units (J1
and J3) and combined cycle gas turbines (J2 and J4). These thermal generators
do not behave strategically, and their cost functions have been tuned to cover a
representative range of real marginal costs. In particular, the cost function of a given
thermal generator j is a quadratic polynomial which results in a linear marginal cost
function:

Cjt,i(g
j
t,i) =

[
C1g

j
t,i + C2

(
gjt,i

)2
]
FCt,i ⇒

∂Cjt,i(g
j
t,i)

∂gjt,i
=
(
C1 + 2C2g

j
t,i

)
FCt,i

For example, the marginal cost of the generator J1 at its maximum production is 42
€/MWh. The factor fuel cost coefficient allows to increase or reduce the total cost
by assigning different values to FCt,i at each time period. Taking into account the
uncertainty of the fuel prices in the time horizon of 12 months, different scenarios
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in Figure 5.3 represent the price volatility that agents can face. Notice that some
of the 27 scenarios share the same values of FCt,i and this is why in the figure one
can only see 13 final leaves (each scenario considers a different combination of all
the uncertain parameters).

Table 5.1.: Parameter data of thermal units

Thermal
Units

G
(GW)

C1
(k€/(GW·h))

C2
(k€/(GW2·h))

J1 0.2 30 30
J2 0.5 45 15
J3 0.2 35 30
J4 0.5 40 15

Figure 5.3.: Fuel cost coefficient scenarios, FCt,i.

Table 5.2 shows the parameter data of the hydro units. Note that the hydro unit
H1 has a maximum water flow two times larger than H2, and the hydro inflows are
considered to be the same for hydro reservoirs. The uncertainty of the hydro inflows
is modeled with 27 different scenarios and the maximum and the minimum ranges
can be seen in Figure 5.4.
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Table 5.2.: Parameter data of hydro units

Hydro
Units

F
(m3/s)

V0 = Vf
(hm3)

V
(hm3)

V
(hm3)

Ehmax
(MW/m3/s)

Ehmin
(MW/m3/s)

H1 400 1000 500 4000 1.3 1.00
H2 200 800 400 3000 1.56 1.20

The energy coefficient to translate water flow into output power of the hydro unit
is expressed as:

Eh(vht,i) = Ehmin +
Ehmax − Ehmin

V
h − V h

(
vht,i − V h

)
where it can be seen that when the volume of the reservoir is at the minimum
level, the energy coefficient corresponds to the minimum one, Ehmin, as the net head
is going to be the lowest. When the reservoir is at its maximum capacity, the
energy coefficient is the maximum one, Ehmax. Any intermediate volume stored at
the reservoir results in the linear interpolation between those extreme values. It is
important to notice that this representation allows to take into account that with the
same amount of released water, the obtained energy (and therefore market incomes)
can be different.

Figure 5.4.: Hydro inflow range
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5.6.2. CVaR parameters

Taking into account what is stated in section 4.1.4, the characterization of the level
of risk of each of the market participant m requires determining the following two
parameters:

• The risk weight factor µm ∈ [0, 1]

• The confidence level βm

As the WACC might be different for each company, the financing cost of the risk
fund could also be different for each market participant, i.e. Criskm. For the sake of
simplicity, assume that all the companies share the same WACC value (for instance
18% per year) and that the risk-free rate is 2% per year. In this case, the annual
fund costs would be:

Criskm = 18%− 2% = 16% (5.22)

As shown in section 4.1.4, the risk weight factor should satisfy:

µ = Crisk
Crisk+1 (5.23)

Therefore, for the annual hydrothermal coordination problem a sensible value for
the risk weight factor would be the following one:

µm = Criskm

Criskm+1 = 0.16
0.16 + 1 ' 0.138 (5.24)

As in this chapter one of the objectives is to analyze the impact of µm on the
equilibrium solution, a wider range of this parameter will be used in the simulations.

Regarding to the confidence level, as the total number of discrete scenarios that can
be considered might be limited due to computational constraints, the minimum value
of βm is also related to the cardinal of total scenarios. In addition, if the companies
do not want to access the fund more than once or twice for each period of ten years,
it should be satisfied that βm ∈ [0.1, 0.2]. In the practical implementation of the
model, the selected value has been βm = 0.2, ∀m .
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5.6.3. Numerical Solution of the Models

In this section, the following results are presented: comparison of the centralized and
risk-averse models, the impact of risk aversion on the hydro reservoir operation, and
finally the expected profit and the CV aR value of two market agents for different
risk profiles.

As demonstrated in the section 5.5.1, both CEN and RN models lead to the same op-
timal results: identical operation of the thermal units, identical operation of the hy-
dro reservoirs, identical generation costs, identical prices taking into account (5.8a),
etc. Given that the amount of output variables is too large to be presented here,
Figure 5.5 shows two illustrative examples: the coverage of the demand through the
whole year for the two scenarios with the more extreme inflows (Scenario 1 for high
water inflows, and Scenario 27 for very low ones). It is noticeable how the system
utilizes differently the available hydro energy, where, for example, the hydro reser-
voir of the H1 has a level of 4000 hm3 in Scenario 1 and a level of 2543.356 hm3 in
Scenario 27 at the end of the period t3. However, the operation for the time period
t1 is exactly the same due to the non-anticipative criterion at the first stage.

(a) (b)

Figure 5.5.: Demand balance for Scenario 1 (a) and Scenario 27 (b) for the central-
ized case

Another interesting result is related with the social welfare. Summing the expected
profit of the two agents from the RN model (Genco1 99,148.51 k€ and Genco2
103,892.21 k€) and adding the total cost of the operation (190,141.82 k€) provides
the same ‘demand payment’ that would be obtained in the CEN case if the marginal
cost were used to charge the consumption (393,182.54 k€).

In order to decrease the risk of the uncertain parameters, the agents may devi-
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ate from the centralized hydro management planning. This is illustrated in Table
5.3 that shows the relative difference between the hydro reservoir levels ((vRA −
vRN )/vRN ) at the end of each time period for each Genco and assuming that both
agents are pure risk averse agents (µ = 1 for both).

Table 5.3.: Relative change of the hydro reservoir levels between the risk neutral and
risk averse cases

t1 t2 t3 t4
vH1 vH2 vH1 vH2 vH1 vH2 vH1 vH2

0% 0%
-15.31% 0% -6.34% 0% 0% 0%

0% 0%
0% 0.61%

-26.23% 0% -16.60% 0% -8.44% 0.64% 0% 0%
0% 0%

-18.72% 0%
-39.57% -12.72% -56.14% -24.94% -23.58% 0%

-20.34% 0%

The following results emphasize the agents’ risk aversion influence on the hydro
reservoir levels, particularly in the period t3 when the RES decreases by 16% and
the demand increases by 6% in average, compared to the period t2 (see Figure 5.2).
Figure 5.6 shows the relative difference between the average reservoir level in period
t3 for the RN and the RA case of the hydro reservoirs belonging to Genco1 (a) and
Genco2 (b) for different risk-aversion levels.

In the equilibrium based models, the risk aversion of the one agent affects the payoff
outcome of the other agent. As an example, the case where both agents have extreme
risk aversion (µ1 = µ2 = 1) is compared with the risk neutral case in Table 5.4 that
shows the expected profit and the CV aR value. The RN value of CV aR is computed
as the simple average of the β worse profit scenarios. Notice that Genco1 increases
its CV aR value while the expected profit decreases. At the same time, Genco2 has
a higher CV aR value and a higher expected profit.
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(a) (b)

Figure 5.6.: Hydro reservoir relative change in t3 for Genco1 (a) and Genco2 (b).

Table 5.4.: Expected profit and CV aR values (µ1 = µ2 = 1)

Model Genco1 Genco2
EP(x1)(k €) CV aR1(k €) EP(x2)(k €) CV aR2(k €)

RN 99,148.51 56,208.25 103,892.21 58,705.98
RA 99,025.92 56,355.53 103,974.62 58,755.82

Figure 5.7 shows the change of the CV aR value for both agents when they change
their risk aversion from 0 to 1. The z-axis shows the relative change of the CV aR
value in comparison to the RN case ((CV aRRA −CV aRRN )/CV aRRN ). Although
the changes in percentages have a low magnitude, in real terms the impact is not so
negligible (for instance, a percentage of 0.05% corresponds, in this setting, to 30,000
€). Note that the Genco1 risk aversion has an interesting impact on the CV aR
value of the Genco2 (see Figure 5.7b).

To better understand the impact of risk-averse agents in the equilibrium, the graph-
ical data from Figure 5.7a,b are shown in Tables 5.5 and 5.6, respectively.
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(a) (b)

Figure 5.7.: CV aR value relative change for Genco1 (a) and Genco2 (b)

Table 5.5.: Relative change of CV aR values for Genco1

µ1\ µ2 0 0.2 0.4 0.6 0.8 1
0 0% -0.021% -0.031% -0.036% -0.039% -0.041%
0.2 0.125% 0.106% 0.099% 0.095% 0.093% 0.092%
0.4 0.168% 0.152% 0.146% 0.143% 0.141% 0.140%
0.6 0.203% 0.188% 0.182% 0.179% 0.179% 0.179%
0.8 0.223% 0.208% 0.202% 0.202% 0.203% 0.202%
1 0.291% 0.275% 0.268% 0.264% 0.262% 0.262%

5.7. Discussion

Given the previous results, it can be pointed out that in the equilibrium setting, risk-
aversion can have a significant impact on the hydro reservoirs’ operation that can
deviate from the centralized planning. Notice that the relative change between the
reservoir levels corresponding to the ideal centralized operation (which are the same
ones as in the risk-neutral case), and the market equilibrium case where both agents
are pure risk-averse players, take place since the first period. This is more relevant
for the reservoir of unit H1 which has the highest decrease in the third branch of
the stochastic tree in t3. It is interesting to highlight that the operation of the first
month for the reservoir of H1 (which is a here and now decision), leaves the reservoir
more empty (-26.23%) than in the centralized operation. The interpretation of this
fact is clear: the Genco1 prefers to use the available water in the first month where
the uncertainty of market prices is null in order to reduce the future risk of more
volatile incomes in posterior months. Moreover, a similar analysis could be carried
out to analyze the impact on the other here and now variables: the power generated
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Table 5.6.: Relative change of CV aR values for Genco2

µ1\ µ2 0 0.2 0.4 0.6 0.8 1
0 0% 0.057% 0.077% 0.084% 0.087% 0.087%
0.2 -0.023% 0.038% 0.059% 0.067% 0.070% 0.070%
0.4 -0.029% 0.033% 0.055% 0.063% 0.066% 0.067%
0.6 -0.022% 0.041% 0.063% 0.071% 0.076% 0.078%
0.8 -0.013% 0.050% 0.072% 0.084% 0.090% 0.092%
1 -0.006% 0.053% 0.073% 0.081% 0.083% 0.085%

by all the thermal and hydro units, and the water released or spilled by hydro plants
in the first stage, t1.

Regarding the analysis of how the risk-aversion level of each agent affects the hydro
operation, Figure 5.6 shows that higher risk aversion leads to a higher deviation
in relative terms of the reservoir levels of both agents. In the case of Genco1, the
relative difference is almost -20% and it can be noted that the risk aversion of the
other agent does not have any significant impact (see Figure 5.6a). On the other
side, the hydro reservoir of the Genco2 is mostly influenced by its own risk preference
(decreasing by 12%), but also by the risk aversion of the Genco1 (see Figure 5.6b).
The results are mainly driven by the maximum output of H1. Therefore, for the
particular structural conditions of each electricity market, the impact for each agent
can be different and a specific assessment is necessary. The methodology presented
can help to carry out this kind of analysis. In any case, it is necessary to clarify
that the fact that the operation of reservoirs in the case of risk-averse agents leads
to greater water discharges at the reservoirs during the first periods is something
that can not be generalized since these results depend on the particular data of this
example case. The data used to construct the fuel price scenarios have a volatility
that is growing substantially throughout the year. The objective here is not so much
to reproduce real scenarios of this volatility (which is certainly not so pronounced),
but to configure an example case that allows observing the effect of risk aversion in
the solution of the equilibrium. Other values of the parameters subject to uncertainty
would lead to a different operation of the reservoirs, and it could theoretically occur
that instead of producing more hydroelectric generation in the early stages, the
hydro production were delayed to final stages. The important conclusion is that
the introduction of risk aversion modifies the equilibrium solution to a greater or
lesser extent depending on the level of uncertainty. Despite this finding is not new
as other authors have reached a similar conclusion with a more stylized model, the
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equilibrium model developed in this thesis has a more realistic representation of the
hydro-thermal generation system that allows to study the impact of the risk-averse
level of the market participants on the annual operation (twelve monthly periods) of
their assets. In addition, the usage of the CVaR brings to the model all the benefits
related to the use of a coherent risk measure.

Finally, it is common to assume that the risk-aversion level of each participant is
something that depends only on its own characteristics. Therefore, the parameters
µ1 and µ2 should be considered as input data and reflect the genuine values according
to the individual risk attitude of each Genco. However, the results shown in Table
5.5 and Table 5.6, where the market equilibrium has been obtained for multiple
combinations of µ1 and µ2, can motivate an alternative interpretation. If Genco1
chooses a risk-aversion level of µ1 = 0.4, taking into account that the Genco2 is
risk neutral (µ1 = 0), it achieves an increase of its CV aR value of +0.168% with
respect to the risk neutral case. However, as Genco2 can also choose the same µ, it
decreases the predicted CV aR value of the Genco1 down to 0.146%. This numerical
example raises the question of what would be the most expected risk-attitude of
market participants in case the risk level were the strategies to be followed by the
agents. In other words, if playing in the market with different risk-aversion levels
than the genuine ones provides market participants with better equilibrium payoffs,
one could expect that Gencos will behave accordingly to this solution. This is one
of the findings of this chapter that opens the question of whether agents could hide
behind alleging that they have a certain level of risk (different from what could be
considered reasonable) if they obtained a better result. For instance, in the example
case, the best strategy for the Genco1 would be to select a higher risk-aversion level
than the Genco2. Given the values from Table 5.5 and Table 5.6, the best strategy
would be µ = 1 for both Gencos but based on (5.3), only when µ1 = µ2 = 1 Genco1
is not going to deviate unilaterally from its strategy and neither Genco2. Therefore,
in case the payoff is defined as the maximum relative increment of the CV aR value
with respect to the centralized operation, the Nash equilibrium would correspond
to the pure risk aversion profile of both agents.
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6.1. Thesis summary and main conclusions

This thesis tackles a problem of agents’ strategies and behavior in power electrical
systems under the risk constrained setting by: (i) providing an algorithm to solve
a risk-constrained optimization problem, (ii) application of the developed algorithm
to two relevant short-term problems, (iii) formulating the Nash Equilibrium model
in the presence of risk-averse agents, and (iv) analyzing the impact of risk-averse
level on the equilibrium solution.

First, a new algorithm (Iterative CVaR) is proposed (Chapter 3). The main advan-
tage is that it transforms the mean-risk problem in a successive of simpler optimiza-
tion problems, where the original probabilities are substituted by new risk-adjusted
ones. Practical convergence is proved by resulting to the Dantzig-Wolfe decomposi-
tion of the original problem. At each iteration of the algorithm, the values of such
risk-adjusted probabilities are re-computed until the convergence is reached. The
convergence of the algorithm can be ensured under the hypothesis of linearity. A
small and completely reproducible example has been used to present the new CVaR
formulation.

Second, the Iterative CVaR algorithm has been applied successfully to two short-
term risk management problems: a single thermal plant that has to find its hedging
strategy subject to a high volatility of spot prices and a company owning ten thermal
plants that wants to find the optimal hourly scheduling taking into account the risk
of volatile market prices (Chapter 4). These applications show that the proposed
Iterative CVaR can deal with real problems. In addition, it provides the risk-adjusted
probabilities practical use to solve a mean-risk problem formed in a risk-neutral
manner. Real data taken from the Iberian electricity market has been used leading
to the same results than the direct optimization case, but in a more efficient way in
terms of computation time. Moreover, a systematic way of selecting the risk-weight
parameter and confidence interval has been discussed. This allows to balance the
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improvement of the worst case scenario outcomes with a minor reduction of the
expected mean value. Although, solving a non-convex case with the Iterative CVaR
for both problems is not beneficial in terms of computational time, for this specific
case the sub-problem of the algorithm allows a further decomposition of the main
problem constraints.

Third, the hydro-thermal operation planning with risk-averse generation compa-
nies in the presence of RES analyzed by a multi-stage stochastic equilibrium model
(Chapter 5). The impact on the hydro reservoir levels can be noticeable even in the
early stages of the decision making process, such as the first stage of the scenario
tree. Different uncertainties in the medium term (demand forecast, RES, fuel prices
and hydro inflows) induce the market risk-averse agents to hedge the risk of worst
scenarios.

And fourth, the market equilibrium solution is analyzed for different risk preference
levels of the involved market agents (Chapter 5). It is highlighted that the strategic
behavior of the risk-averse generation companies can diverge from the centralized
planner optimum due to the lack of market mechanisms. The agents’ payoffs are
very dependent on their own behavior, but also on the action of the other agents.
In order to define their own risk preference for achieving a certain payoff outcome,
the agents need to make an estimation of the competitors’ risk-averse level as a part
of their strategies. This suggest to define the risk level as the strategic decision in
a game theory framework, where agents choose risk level that corresponds to the
Nash Equilibrium.

The main conclusions that can be drown from the research above are the following
ones

• It is possible to apply an Iterative CVaR algorithm where risk constraints
that model the CVaR can be eliminated, solving at each stage a “risk-neutral”
type optimization where the true scenario probabilities are substituted by the
risk-adjusted ones. For the linear setting, this thesis provides the practical
proof that the iterative algorithm converges and that both the primal and
dual variables of the problem can be obtained.

• The application of the Iterative CVaR can be beneficial in comparison to the
direct optimization. In fact, during the elaboration of this thesis it has been
found problems where the Iterative CVaR outperforms the direct optimization,
while in other examples this was not the case. Therefore a specific analysis
has to be carried out for each specific problem.
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• As the risk constraints that tangle all scenarios are removed at each iteration,
it would be possible to apply standard decomposition techniques in the sub-
problem.

• This thesis provide a guidance to select the parameters that define the mean-
risk problem: the relative weight in the optimization problem of the expected
profit (or loss) and the CVaR, and the confidence interval that defines the
worst scenarios.

• Despite that convergence has only been proved for the linear case, the practical
application to non-convex problem has been positive.

• The presence of risk-averse agents changes the Nash equilibrium solution even
in the case the market prices represent the thermal marginal cost. Therefore,
it is necessary to assure a liquid risk market in order to help the agent to hedge
their risk.

• As the risk level is a subjective decision of each agent, the analysis of how
the outcomes of each agent changes for different coefficients of risk, makes it
possible to define the game in terms of these strategies.

6.2. Contributions

The main contributions of this thesis are the following:

1. Decomposition of the mean-risk problem - The mean-risk problem has been
successfully decomposed by implementing the Lagrangian Relaxation (LR) and
Benders decomposition algorithms and a general equivalence between them is
established in terms of their Master and Sub-problem mathematical formula-
tions. Both algorithms provide the same solution as the direct optimization.
It has been shown that the LR decomposition allows to decouple the problem
scenarios being an advantage in comparison to the Benders decomposition.

2. New algorithm for CVaR modeling - The two stage algorithm, called Iterative
CVaR, based on the LR and Dantzig-Wolfe decomposition techniques is de-
veloped providing a good computational tractability for solving the mean-risk
problems. It has been numerically proven that the algorithm converges in a
linear setting. Two methods to compute the primal variables are proposed
once the convergence has been reached in the LR algorithm.
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3. The application of Iterative CVaR on the real example cases in the electricity
market - Two most common problems in a short-term are identified and the
proposed Iterative CVaR algorithm is successfully applied. It is shown that
the improved computational efficiency for large-scale scenario stochastic opti-
mization problems can be achieved. These results have been published in the
paper Jovanović et al. (2017).

4. The guidance to select the risk associated with the CVaR formulation. This
discussion is one of the contributions of this thesis, and it makes the CVaR
consistent with the general rational of risk measures as used by the financial
industry when setting the amount of liquids funds (e.g. Treasury bonds or
other very low-risk/high liquidity assets) to be protected against very bad
market outcomes. This way, the value of the risk measure can be thought
as a quantity of money that is under risk, and therefore the company could
be hedged by depositing that quantity in a very liquid fund. This way, if
market results are good, the company does not need to make use of that fund,
incurring just the corresponding opportunity cost. However, if market results
are very bad, company could make use of the available fund, which should be
replenished as soon as possible. A brief description of this approach has been
also published in the Jovanović et al. (2017).

5. The risk averse equilibrium model which allows to consider a more realistic
representation of the generation system than previous research works - The
Extended Mathematical Programming approach is used to formulate the equi-
librium problem. Instead of a very stylized representation of the hydro system
and a single thermal generator, this model uses a more detailed representation
of the reservoirs during the whole planning horizon and it allows to consider
multiple thermal plants that can belong to different agents. In addition, in-
stead of using utility functions to model risk aversion, the model implements
the CVaR measure due to its suitability to be embedded within optimization
models. The proposed model does not require to build in advance the ex-
treme points of the polyhedron that define the risk set of each agent, and
it takes into account the net-head dependency. Moreover, the implemented
model is a multi-stage scenario tree with 12 time periods (months) that can be
used to analyze the impact of the risk aversion on the annual evolution of the
main variables. Finally, this thesis shows how the market equilibrium solution
changes for different risk-aversion levels of the involved agents, and uses an
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example case to quantify those differences. These results have been published
in the paper Jovanović et al. (2018).

6.3. Future work

The findings of this thesis can be further extended and improved in new lines of
future work. A study on implementation of the Iterative CVaR algorithm on a
complex optimization problem which requires an additional decomposition of the
algorithm’s sub-problem. Given the satisfactory results are showed by means of
numerical examples with the non-convex cases, a future line of research might be to
prove the mathematical convergence of non-convex problems. Moreover, Iterative
CVaR application to other non-convex problems could provide an in-depth analysis
of the results tractability for the risk constrained complex problem solving.

Following the current trends of the network and market development, the proposed
models in Chapter (4) can be further improved. For example, the energy storage
problem is a century old burden of the power electricity systems. However, with the
rise of all-electric vehicles and the reduction in the battery production cost, it is very
likely that the energy storage will have an affect on the day-ahead markets, ancillary
services, but also reduce the influence of the RES intermittent power generation.

To reach the best strategy in terms of the risk-aversion level, the possible existence
of the Nash equilibrium has been identified and it is subject to the future line of
research. Implementation of the Iterative CVaR in the equilibrium problems would
give an opportunity to study the risk-adjusted probabilities for each of the market
agents. The thesis findings can be further extended and improved in an approach
where the future markets, demand response, and detailed RES representation are
taken into account.
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A. Appendix

The objective of this annex is to provide some mathematical background material
that is relevant to this thesis. In particular it includes:

1. Constrained optimization

2. Benders decomposition

3. Dantzig-Wolfe decomposition

A.1. Constrained optimization

The material presented hereafter is based on Bertsekas (1999), where only the most
relevant issues for the thesis have been included. Mathematical proofs have been
omitted as they can be checked in the reference.

Consider the following constrained optimization problem:

min f(x)
s.t.

hi(x) = 0, i = 1, . . . ,m
gj(x) ≤ 0, j = 1, . . . , r

(A.1)

where f : Rn → R, hi : Rn → R, i = 1, ...,m, gj : Rn → R, j = 1, ..., r are
continuously differentiable functions. For convenience, it is possible to define the
following constraint functions h : Rn → Rm , and g : Rn → Rr :

h = (hi, . . . , hm), g = (gi, . . . , gr),

so it can be expressed as
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min f(x)
s.t.

h(x) = 0
g(x) ≤ 0

(A.2)

Any feasible point x of problem (A.2) has to satisfy all the equality and inequality
constraints. For the inequality constraints, it can happen that only a subset of them
is active at that point. This set of active inequality constraints can be denoted as
A(x) = {j | gj(x) = 0}.

The corresponding Lagrangian function of problem (A.1) can be defined as follows:

L(x, λ, µ) = f(x) +
m∑
i=1

λihi(x) +
r∑
j=1

µjgj(x) (A.3)

where the scalars λi, . . . , λm and µi, . . . , µr are the so called Lagrange multipliers for
equality and inequality constraints respectively.

A feasible vector x is called regular if the constraint gradients of equality constraints
∇hi(x), . . . ,∇hm(x), and the constraint gradients of the active inequality constraints
∇gj(x), j ∈ A(x), are linearly independent.

A.1.0.1. Karush-Kuhn-Tucker Necessary Conditions (KKT)

Let x∗ be a local optimum of problem (A.1) which is regular. Then there exist
unique values of the multipliers λ∗i , . . . , λ∗m and µ∗i , . . . , µ∗r that satisfy:

∇xL(x∗, λ∗, µ∗) = 0 (A.4)

µ∗j ≥ 0, j = 1, . . . , r (A.5)

µj = 0, ∀j /∈ A(x) (A.6)

The meaning of (A.6) is that the Lagrange multipliers of the non-active inequality
constraints are null, i.e. there would be no change in the objective function by
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relaxing them. An alternative way of expressing this idea is by means of the so
called complementary slackness condition µ∗j · gj(x∗) = 0.

The necessary KKT optimality conditions can therefore be summarized as follows:

∇xL(x, λ, µ) = ∇f(x) +
m∑
i=1

λi∇hi(x) +
r∑
j=1

µj∇gj(x) = 0 (stationarity) (A.7)

hi(x) = 0, i = 1, . . . ,m
gj(x) ≤ 0, j = 1, . . . , r

(primal feasibility) (A.8)

µ∗j ≥ 0, j = 1, . . . , r (dual feasibility) (A.9)

µj · gj(x) = 0, j = 1, . . . , r (complementary slackness) (A.10)

It is common to use the symbol ⊥ to indicate complementarity. Therefore, it would
be simpler to write the KKT necessary conditions as:

∇xL(x, λ, µ) = 0
∇λL(x, λ, µ) = 0
0 ≤ µ⊥g(x) ≤ 0

(A.11)

where ∇λL(x, λ, µ) = 0 is equivalent to write the equality constraints.

One possible way to obtain local optima of (A.2) is to find the solution of the
necessary KKT conditions in (A.11) and to check additional second order conditions.
In case f is a convex function, and the feasible region defined by all the constraints
is a convex set, then the previous KKT conditions are also sufficient.

A.2. Benders decomposition review

Let consider a two-stage linear programming problem PL-2 (Taşkin, 2011), which
has the following generic formulation:
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min
x,y

cTx+ gT y

s.t. Ax = b

Tx+Wy = h

x, y > 0

(A.12)

where x and y represent the set of variables of the first and second stage respectively.
The problem (A.12) can be expressed also as follows:

max
x,y

cTx+ θ(x)

s.t. Ax = b

x > 0

(A.13)

where the recourse function θ(x) represents the value of the objective function of
the second stage in terms of the decisions made in the first stage, i.e.:

θ(x) = min
y
gT y

s.t. Wy = h− Tx, : π
y > 0

(A.14)

In the literature, (A.13) is known as the master problem, and (A.14) is known as sub-
problem of the Benders decomposition. Notice that the sub-problem (A.14) assess
the recourse function for a given decision x of the first stage. The dual variables π
“measure” the sensibility of the recourse function with respect the considered values
of x.

The dual representation of the sub-problem is the next one:

θ(x) = max
π

(h− Tx)T π
s.t. W Tπ ≤ g

(A.15)

Defining Π =
{
π1, π2, . . . , πI

}
as the finite set of all the vertices of the convex

polyhedron defined by W Tπ ≤ g, and taking into account that the optimal solution
of a linear programming problem is one of the vertices of the convex polyhedron that
defines the feasibility region, the recourse function could be found by enumerating all
the possible vertices: θ(x) = maxµ

{
(h− Tx)T πi

}
, i = 1, . . . , I. So the sub-problem

can be expressed as:

102



A.2 Benders decomposition review

θ(x) = min
θ
θ

s.t. θ ≥ (h− Tx)T π1

...
θ ≥ (h− Tx)T πI

(A.16)

The constraints in (A.16) are called Benders cuts and they represent an outer ap-
proximation of the recourse function. Notice that θ is a free variable. Taking into
account (A.16), an equivalent formulation of the original problem (A.12) is the next
one, which is known as complete master problem because it contains the entire set
of cuts that define perfectly the recourse function:

min
x,θ

cTx+ θ

s.t. Ax = b

θ ≥ (h− Tx)T π1

...
θ ≥ (h− Tx)T πI

x ≥ 0

(A.17)

The formulation of (A.17) requires to compute ex ante the complete set of Benders
cuts. As this might be not possible when the size of the problem is large, the Benders
decomposition algorithm is based on the idea of adding these cuts in an iterative
way. Thus, in an intermediate stage of the algorithm after j iterations, the problem
would be the so called relaxed master problem:

min
x,θ

cTx+ θ

s.t. Ax = b

θ ≥ (h− Tx)T πi, i = 1, . . . , I
x ≥ 0

(A.18)

In order to ease the practical implementation of the algorithm, the cuts can be
arranged as follows, which is the standard formulation of the relaxed master problem:
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min
x,θ

cTx+ θ

s.t. Ax = b

θ ≥ f i + πiTT
(
xi − x

)
, i = 1, . . . , I

x ≥ 0

(A.19)

The cuts in this formulation can be interpreted as a linear approximation around an
exact value of the recourse function (note that if x = xi then θ = f i). Notice that
xi and f i store the solution values of first stage variables and the recourse function
in iteration i.

In general, given a proposal xi of the master problem in iteration i, the value of f i

can be obtained by solving the so called Benders sub-problem, which also provides
the dual variables πi necessary to build the mentioned linear approximation of the
Benders cuts.

f i = min
y
gT y

s.t. Wy = h− Txi, : πi

y ≥ 0

(A.20)

The previous formulation assumes that the Benders sub-problem is feasible and
bounded for any proposal of the master problem. In case it is not bounded, the
general problem is neither bounded, so it has no practical interest. In case it is
not feasible, the optimality cut is replaced by a infeasibility cut that eliminate such
unfeasible proposal from the feasibility region of the master problem. In this paper
we will assume that the sub-problem is always feasible given. In this case, the
Benders algorithm can be summarized as follows:

• Step 1: Initialize the iteration counter i = 0, the upper and lower bounds
z̄ =∞, z = −∞, and the convergence tolerance ε.

• Step 2: Solve the relaxed master problem (A.19) (if i = 0, then fix θ = 0) to
obtain the solution xi+1, θi+1, and evaluate the lower bound z = cTxi+1 +θi+1.

• Step 3: Solve the sub-problem (A.20) considering the proposal of the first
stage variables obtained in Step 2 (xi+1) and obtain yi+1to update the upper
bound as z̄ = cTxi+1 + gT yi+1.

• Step 4: Check the convergence: if |z̄−z|/|z̄| ≤ ε, then stop the algorithm;
otherwise, add a new Benders cut using the data contained in the solution o
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the sub-problem of Step 3 ( f i+1 and πi+1), increase the iteration counter
i = i+ 1 and go to Step 2.

A.3. Dantzig-Wolfe decomposition principle

Let consider a two-stage linear programming problem:

min
x

cTx

s.t. Ax = b

x > 0
(A.21)

where the Ax = b represents the coupling constraint. The aim of the Dantzig-Wolfe
approach George B. Dantzig & Philip Wolfe (1960) is to decouple this constraint in
such a way that it never solves all the possible sub-problems Ax = b. An alternative
is to solve a series of smaller sub-problems individually, in which the master problem
focuses on the coupling constraint. Defining a bounded region of the problem (A.21)
as X = {x|Ax = b, x ≥ 0}, a convex combination of the extreme points xi can be
defined as:

x =
∑
i
λixi∑

i
λi = 1

λi > 0, i = 1, . . . , I

(A.22)

Now the Dantzig-Wolfe master problem, also known as the restricted master problem
is as follows:

min
λi

∑
i
λi
(
cTxi

)
∑
i
λi
(
Aixi

)
= bi, : πi∑

i
λi = 1, : ωi

λi > 0, i = 1, . . . , I

(A.23)

where the πi and ωi represent the dual multipliers. The corresponding sub-problem
can be formulated as:
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min
x

[
c−

(
Ai
)T
πi
]T
x− ωi

s.t. Ax = b

x > 0

(A.24)

Convergence of the algorithm is achieved when
[
c−

(
Ai
)T
πi
]T
x− ωi ≤ ε., where ε

is a very small positive number. The dual problem of the (A.23) - (A.24) represents
the Lagrangian relaxation algorithm, which provides the exact solution.
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B. Appendix - GAMS EMP code

This appendix provides a GAMS code for modeling the problems, using Extended
Mathematical Programming, which results are presented in Chapter 5.

$Title "Electricity Market Equilibrium with Hydro-Thermal and RES generation"

$ontext
Instituto de Investigación Tecnológica (IIT)
Universidad Pontificia Comillas
$offtext
;
* global options: allow empty and multiple definition of sets
$OnEmpty OnMulti
$Phantom null
* options
option QCP = cplex;
option solprint=on
option Limrow=24;

;

* ========================

* Definition of SETS

SETS

m market agents

gt thermal generators

gh hydro generators

res renewable energy sources (RES) generators

d demand aggregators

t time periods

s scenarios

i index of nodes for each time t
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stoch index of stochastic parameters

am attributes of the market agents

mod equilibrium models

acom attributes in the reports

mact (m) market agents active in the market equilibrium formulation

mg (m) market agents that are generation companies GENCOs

md (m) market agents that are demand agents ESCOs

ma (m) market agents that are arbitrageurs

mg_gt (m,gt) ownership of each thermal generator by each GENCO

mg_gh (m,gh) ownership of each hydro generator by each GENCO

mg_res (m,res) ownership of each hydro generator by each GENCO

md_d (m,d) ownership of each demand aggregator by each ESCO

agt attributes of thermal units

agh attributes of hydro units

aghti attributes of the hydro plant that depend on the node

aresti attributes of RES generators that depend on the node

adti attributes of demand aggregators that depend on the node

at attributes of each time stage

iter iterations

;

* ========================

* Definition of alias

alias (s,ss), (t,tt), (gt,ggt), (gh,ggh), (i,ii), (d,dd), (res,rres)

;

* ========================

* Definition of dynamic SETS

SETS
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tf(t) time periods where forwards can be signed (except the last)

tf(t) time periods where forwards can be signed (except the last)

tlast(t) last period

sa(s) active scenarios

n (t,i) nodes of the stochastic tree

nt (tt,t,i) nodes (t i) that belong to stage tt

ns (t,i,s) nodes (t i) that belong to scenario s

father(t,i,tt,ii) father node of node (t i)

;

* ========================

* Definition of parameters

PARAMETERS

factor factor to change easily the cost functions

flagCen option to run the Cen model

flagMrNe option to run the MrNe model

flagMrAv_CVaR option to run the MrAv_CVaR model

flagMrAvCVaR option to run the MrAv_CVaR model

nsce number of scenarios

niter number of iterations that will be run

ProbS(s) probability of each scenario

ProbN(t,i) probability of each node

ProbS_RISK(s,mod,m) risk modified probability of each scenario seen by

agent m

ProbN_RISK(t,i,mod,m) risk Modified Probability of each node seen by agent m

DM(m,am) data of each market agent

TREE(s,t) stochastic tree clustering of scenarios for each time

stage

DT(t,at) data of each time stage

DGT(gt,agt) data of thermal generators
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DGH(gh,agh) data of hydro generators

DGHTI(gh,t,i,aghti) data of hydro generators that depend on the node

DRESTI(res,t,i,aresti) data of RES generators that depend on the node

RESti(t,i) total renewables per node

INFLti(t,i) total hydro inflow per node

DEMti(t,i) total nominal demand per node

FCti(t,i) factor to multiply the generation costs

A(s) auxiliary parameter used to sort the profits for each

scenario when initializing the CVaR model

AIndex(s) auxiliary parameter used to sort the profits for each

scenario when initializing the CVaR model

ASorted(s) auxiliary parameter used to sort the profits for each

scenario when initializing the CVaR model

sol_gent (mod,gt,s,t) solution data for thermal generators

sol_genh (mod,gh,s,t) solution data for hydro generators

sol_genres(mod,res,s,t) solution data for RES

sol_volh(mod,gh,s,t) solution data for volume of water

sol_outflowh(mod,gh,s,t) solution data for hydro outflows

sol_pricespot(mod,s,t) solution data for spot prices

sol_dem (mod,s,t) solution data for demand

sol_profit(mod,s,m) solution data for profits

;

* ========================

* Definition of scalars

SCALARS

aux0 auxiliary scalar

epsilon small number /1e-6/

from_m3_per_s_to_hm3_per_h conversion factor (to multiply) /0.036/

mumin minimum value of mu /0.001/

;
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* ========================

* Definition of variables

VARIABLES

v_fobj_market_agent(m) objective function of market participant [kEur]

v_profit (m, s) profit of market participant [kEur]

v_pi (t, i) price of the spot market [kEur per GWh]

v_cost(gt,t,i) generation cost of thermal unit gt [kEur]

v_CVaR(m) conditional value at risk [kEur]

v_VaR(m) value at risk [kEur]

POSITIVE VARIABLES

v_gent (gt, t,i) power generation of thermal unit [GW]

v_genh (gh, t,i) power generation of hydro unit [GW]

v_genres(res,t,i) power generation of res unit [GW]

v_dem (d,t ,i) power consumed by demand [GW]

v_qh(gh,t,i) water outflow of hydro unit gh [hm3 per h]

v_volume(gh,t,i) volume of water at the reservoir of gh at the

beginning t [hm3]

v_qspillage(gh,t,i) spillage outflow of hydro unit gh [hm3 per h]

v_profit_aux(m,s) auxiliary variable for CVaR computation [kEur]

;

* ========================

* Declaration of equations

EQUATIONS

e_FobjCen objective function of the centralized operation [kEur]

e_DemBala(t,i) demand balance [GW]

e_ThermCost(gt,t,i) definition of thermal cost [kEur]

e_WaterBala (gh,t,i) water balance at the reservoir [hm3]
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e_FobjCen objective function of the centralized operation [kEur]

e_DemBala(t,i) demand balance [GW]

e_ThermCost(gt,t,i) definition of thermal cost [kEur]

e_WaterBala(gh,t,i) water balance at the reservoir [hm3]

e_HydroGen(gh,t,i) hydro input-output generation function [GW]

e_fobj_market_agent(m) objective function for market risk neutral [kEur]

e_def_profit_nof(m,s) profit equation without forward [kEur]

e_fobj_market_agent_mean

_risk(m)

objective function for market models risk averse

[kEur]

e_def_profit_aux(m,s) equation to model the auxiliary variable for CVaR

[kEur]

e_def_CVaR(m) equation to model the CVaR [kEur]

;

* Begin *************INCLUDE OF DATA FROM EXCEL*************

;

$setglobal namemodel RESEQ

$onecho > tmp_%namemodel%_%gams.user1%.txt

r1 = sets
o1 = sets_%namemodel%_"%gams.user1%".txt
r2 = parameters

o2 = parameters_%namemodel%_"%gams.user1%".txt

r3 = time
o3 = time_%namemodel%_"%gams.user1%".txt
r4 = thermal

o4 = thermal_%namemodel%_"%gams.user1%".txt

r5 = hydro
o5 = hydro_%namemodel%_"%gams.user1%".txt
r6 = agents

o6 = agents_%namemodel%_"%gams.user1%".txt
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r7 = tree
o7 = tree_%namemodel%_"%gams.user1%".txt
r8 = stoch

o8 = stoch_%namemodel%_"%gams.user1%".txt

$offecho

$call xls2gms m i="%gams.user1%".xlsm @"tmp_%namemodel%_%gams.user1%.txt"

sets

$include sets_%namemodel%_%gams.user1%.txt

table DT(t,at)

$include time_%namemodel%_%gams.user1%.txt

table DGT(gt,agt)

$include thermal_%namemodel%_%gams.user1%.txt

table DGH(gh,agh)

$include hydro_%namemodel%_%gams.user1%.txt

table DM(m,am)

$include agents_%namemodel%_%gams.user1%.txt

table TREE(s,t)

$include tree_%namemodel%_%gams.user1%.txt

table DSTOCH(stoch,s,t)

$include stoch_%namemodel%_%gams.user1%.txt

;

$include parameters_%namemodel%_%gams.user1%.txt

;

* End *************INCLUDE OF DATA FROM EXCEL*************

* ========================

* Centralized planning (Cen)

113



Appendix B Appendix - GAMS EMP code

e_FobjCen .. v_fobj_cen =E= SUM[(t,i)$n(t,i), ProbN(t,i)

*DT(t,’dur’) * [-sum(gt,v_cost(gt,t,i))]] ;

e_DemBala(t,i)$n(t,i) .. sum(gt,v_gent(gt,t,i)) + sum(gh,v_genh(gh,t,i))

+ sum(res,v_genres(res,t,i)) =E= DEMti (t,i) ;

e_ThermCost(gt,t,i)$n(t,i) .. v_cost(gt,t,i) =E= (DGT(gt,’c1’)*v_gent(gt,t,i)

+ DGT(gt,’c2’)*power(v_gent(gt,t,i),2) +

DGT(gt,’c3’)*power(v_gent(gt,t,i),3))*FCti(t,i);

e_WaterBala(gh,t,i)$n(t,i) .. v_volume(gh,t,i) =E=

sum((tt,ii)$(father(t,i,tt,ii)),

v_volume(gh,tt,ii))$[ord(t)>1] +

DGH(gh,’Vo’)$[ord(t)=1]

+DT(t,’dur’)*(- v_qh(gh,t,i) -

v_qspillage(gh,t,i) +DGHTI(gh,t,i,’inflows’) ) ;

e_HydroGen(gh,t,i)$n(t,i) .. v_genh(gh,t,i) =E= v_qh(gh,t,i) * (

DGH(gh,’coefmin’) +

(DGH(gh,’coefmax’)-DGH(gh,’coefmin’))/(DGH(gh,’Vmax’)-

DGH(gh,’Vmin’)) *

(v_volume(gh,t,i)-DGH(gh,’Vmin’)) );

* ========================

* Market with risk neutral agents (MrNe)

e_fobj_market_agent(m)$mact(m) .. v_fobj_market_agent(m) =E= SUM[s$sa(s),

ProbS(s)* v_profit(m,s)] ;

e_def_profit_nof(m,s)$(mact(m)

and sa(s)) ..

v_profit(m,s) =E= SUM[(t,i)$ns(t,i,s),

DT(t,’dur’)*(

SUM[gt$mg_gt(m,gt), v_gent(gt,t,i) * v_pi

(t,i)-v_cost(gt,t,i) ]

+ SUM[gh$mg_gh(m,gh), v_genh(gh,t,i) * v_pi

(t,i)]

+ SUM[res$mg_res(m,res), v_genres(res,t,i) *

v_pi (t,i) ] ) ];
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* e_DemBala same as in Cen)
* e_ThermCost same as in (Cen)
* e_WaterBala same as in (Cen)

* e_HydroGen same as in (Cen)

* ========================

* Market with risk averse agents (CVaR) and only spot market (MrAv_CVaR)

e_fobj_market_agent_mean_risk(m)

$mact(m) ..

v_fobj_market_agent(m) =E= (1-DM(m,’muiter’))

* SUM[s$sa(s), ProbS(s)* v_profit(m,s)] +

DM(m,’muiter’) * v_CVaR(m) ;

* e_def_profit_nof(m,s) same as in MrNe
* e_DemBala same as in Cen)
* e_ThermCost same as in (Cen)
* e_WaterBala same as in (Cen)

* e_HydroGen same as in (Cen)

e_def_profit_aux(m,s)$(mact(m) and sa(s) and DM(m,’mu’) <> 0 and DM(m,’beta’)<>0)..

v_profit_aux(m,s) =G= v_VaR(m)-v_profit(m,s) ;

e_def_CVaR(m)$( mact(m) and DM(m,’mu’) <> 0 and DM(m,’beta’)<>0 ) ..

v_CVaR(m)-[v_VaR(m)-SUM[s,ProbS(s)*v_profit_aux(m,s)]/DM(m,’beta’)]=E=0;

* ========================

* Definition of Models

model

Model_Cen
/
e_FobjCen
e_DemBala
e_ThermCost
e_WaterBala
e_HydroGen

/
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Model_MrNe

/

e_fobj_market_agent

e_def_profit_nof

e_ThermCost

e_DemBala

e_WaterBala

e_HydroGen

/

MrAv_CVaR

/

e_fobj_market_agent_mean_risk

e_def_profit_nof

e_DemBala

e_ThermCost

e_WaterBala

e_HydroGen

e_def_profit_aux

e_def_CVaR

/

*****************************************************************************

* ========================

* Management of Input Data

;

set g all (thermal and hydro) generation units / set.gt, set.gh, set.res / ;

* ========================

* Configuration of the stochastic tree

tf(t) = yes$(ord(t) < card (t));
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tlast(t) = yes$(ord(t) = card (t));

sa(s) = yes$(ord(s)<= nsce);

* Identification of nodes based on the information provided in the tree

n(t,i) = yes$sum(sa,TREE(sa,t)=ord(i));

* Identification of the father of each node based on the information provided in the

tree

loop(t$(ord(t)> 1),

loop(s$sa(s),

father(t,i,t-1,ii)$ ( TREE(s,t) =ord(i) and TREE (s,t-1)=ord(ii)) = yes ;

);

);

nt(tt,t,i) = yes$(ord(tt)=ord(t) and n(t,i));

ns(t ,i,s) = yes$(tree(s,t)=ord(i));

* We assume that equiprobable scenarios.

* The probabilities of each node are computed accordingly

ProbS(sa) = 1/nsce;

ProbN(t,i) = sum(s$(ns(t,i,s) and sa(s)),ProbS(s));

* Mapping between the general stochastic parameters that depend on scenario and time

* with the defined data that depend on nodes:
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RESti (t,i)$(sum(sa$(TREE(sa,t)=ord(i)), 1)) = sum(sa$(TREE(sa,t)=ord(i)),

DSTOCH(’stoch01’,sa,t))/sum(sa$(TREE(sa,t)=ord(i)), 1) ;

DEMti (t,i)$(sum(sa$(TREE(sa,t)=ord(i)), 1)) = sum(sa$(TREE(sa,t)=ord(i)),

DSTOCH(’stoch02’,sa,t))/sum(sa$(TREE(sa,t)=ord(i)), 1) ;

INFLti(t,i)$(sum(sa$(TREE(sa,t)=ord(i)), 1)) = sum(sa$(TREE(sa,t)=ord(i)),

DSTOCH(’stoch03’,sa,t))/sum(sa$(TREE(sa,t)=ord(i)), 1) ;

FCti (t,i)$(sum(sa$(TREE(sa,t)=ord(i)), 1)) = sum(sa$(TREE(sa,t)=ord(i)),

DSTOCH(’stoch04’,sa,t))/sum(sa$(TREE(sa,t)=ord(i)), 1) ;

* Splitting the total stochastic parameters among the items according to

proportional criteria

DRESTI (res,t,i,’forecast’ ) = (RESti (t,i)/sum(rres,1))$sum(rres,1);

DGHTI (gh ,t,i,’inflows’ ) =

(INFLti(t,i)*DGH(gh,’Vmax’)/sum(ggh,DGH(gh,’Vmax’)))$sum(ggh,DGH(gh,’Vmax’));

* Scaling the input parameters

* [MW/(m3/s)] -> [GW/(Hm3/h)]

DGH(gh, ’coefmin’) = DGH(gh, ’coefmin’)*1e-3/from_m3_per_s_to_hm3_per_h;

DGH(gh, ’coefmax’) = DGH(gh, ’coefmax’)*1e-3/from_m3_per_s_to_hm3_per_h;

* (m3/s)] -> (Hm3/h)

DGH (gh, ’qmax’ ) = DGH(gh, ’qmax’ )*from_m3_per_s_to_hm3_per_h;

* Inflows are directly in hm3/h

* Bounds of decision variables
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v_volume.up(gh,t,i)$n(t,i) = DGH(gh,’Vmax’);

v_volume.lo(gh,t,i)$n(t,i) = DGH(gh,’Vmin’);

v_qh.up (gh,t,i)$n(t,i) = DGH(gh,’qmax’);

v_gent.up (gt,t,i)$n(t,i) = DGT(gt,’pmax’);

v_volume.fx(gh,t,i)$(n(t,i) and tlast(t)) = DGH(gh,’Vf’);

* Fix the renewables to avoid curtailments of RES

v_genres.fx (res, t,i)$n(t,i) = DRESTI (res,t, i,’forecast’);

v_qh.lo (gh,t,i)$n(t,i) = DGHTI(gh,t,i,’inflows’)*.5;

****************************************************************

* Solving the Models

*==============================(1)==============================

* Solve the centralized problem (Cen)

if( flagCen = 1,

solve Model_Cen using NLP maximizing v_fobj_cen ;

sol_gent (’Cen’, gt , s, t ) = SUM[i$ns(t,i,s), v_gent.l(gt,t,i) ] ;

sol_genh (’Cen’, gh , s, t ) = SUM[i$ns(t,i,s), v_genh.l(gh,t,i) ] ;

sol_genres (’Cen’, res, s, t ) = SUM[i$ns(t,i,s), v_genres.l(res,t,i) ] ;

sol_volh (’Cen’, gh , s, t ) = SUM[i$ns(t,i,s), v_volume.l(gh,t,i) ] ;
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sol_outflowh (’Cen’, gh , s, t ) = SUM[i$ns(t,i,s), v_qh.l(gh,t,i) ] ;

sol_dem (’Cen’, s , t ) = SUM[i$ns(t,i,s), DEMti(t,i) ] ;

sol_pricespot(’Cen’, s , t ) = SUM[i$ns(t,i,s),

-e_DemBala.m(t,i)/ProbN(t,i)/DT(t,’dur’) ] ;

);

*==============================(2)==============================

* Solve the Risk Neutral Market Equilibrium problem (MrNe)

file info / ’%emp.info%’ /;

if( flagMrNe = 1,

* Initialization of the variables of the MCP problem with the ones

* corresponding to Cen to help finding the solution

v_pi.l (t,i)$n(t,i) = -e_DemBala.m(t,i)/ProbN(t,i)/DT(t,’dur’);

v_cost.l(gt,t,i) = (DGT(gt,’c1’)*v_gent.l(gt,t,i) +

DGT(gt,’c2’)*power(v_gent.l(gt,t,i),2) +

DGT(gt,’c3’)*power(v_gent.l(gt,t,i),3))*FCti(t,i);

v_profit.l(m,s)$(mact(m) and sa(s)) = SUM[(t,i)$ns(t,i,s), DT(t,’dur’)*(

SUM[gt$mg_gt(m,gt), v_gent.l(gt,t,i) * v_pi.l (t,i)-v_cost.l(gt,t,i) ]

+ SUM[gh$mg_gh(m,gh), v_genh.l(gh,t,i) * v_pi.l (t,i) ]

+ SUM[res$mg_res(m,res), v_genres.l(res,t,i) * v_pi.l (t,i) ] )];

v_fobj_market_agent.l(m)$mact(m) = SUM[s$sa(s), ProbS(s)* v_profit.l(m,s)] ;
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* . . . . . . . . . . . . . . . . . . . . . . . . . .

put info;

put / ’equilibrium’;

loop(m$mact(m), put / ’max ’ v_fobj_market_agent(m);

loop(s$sa(s), put / v_profit.tn(m,s));

loop((gt,t,i)$(n(t,i) and mg_gt(m,gt)) , put / v_gent.tn(gt,t,i) ’ ’

v_cost.tn(gt,t,i) );

loop((gh,t,i)$(n(t,i) and mg_gh(m,gh)) , put / v_genh.tn(gh,t,i) ’ ’ v_qh(gh,t,i) ’

’ v_volume.tn(gh,t,i) ’ ’ v_qspillage.tn(gh,t,i) );

loop((res,t,i)$(n(t,i) and mg_res(m,res)) , put / v_genres.tn(res,t,i) );

put / e_fobj_market_agent.tn(m) ;

loop(s$sa(s), put / e_def_profit_nof.tn(m,s) );

loop((gt,t,i)$(n(t,i) and mg_gt(m,gt)), put / e_ThermCost.tn(gt,t,i) );

loop((gh,t,i)$(n(t,i) and mg_gh(m,gh)), put / e_WaterBala.tn(gh,t,i) ’ ’

e_HydroGen(gh,t,i));

);

put /;

loop((t,i)$n(t,i), put / ’vi ’ e_DemBala.tn(t,i) ’ ’ v_pi.tn(t,i));

putclose info /;

Model_MrNe.optfile = 1;
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solve Model_MrNe using emp ;

sol_gent (’MrNe’, gt , s, t ) = SUM[i$ns(t,i,s), v_gent.l(gt,t,i) ] ;

sol_genh (’MrNe’, gh , s, t ) = SUM[i$ns(t,i,s), v_genh.l(gh,t,i) ] ;

sol_genres (’MrNe’, res, s, t ) = SUM[i$ns(t,i,s), v_genres.l(res,t,i) ] ;

sol_volh (’MrNe’, gh , s, t ) = SUM[i$ns(t,i,s), v_volume.l(gh,t,i) ] ;

sol_outflowh (’MrNe’, gh , s, t ) = SUM[i$ns(t,i,s), v_qh.l(gh,t,i) ] ;

sol_dem (’MrNe’, s , t ) = SUM[i$ns(t,i,s), DEMti(t,i) ] ;

sol_pricespot(’MrNe’, s , t ) = SUM[i$ns(t,i,s), v_pi.l (t,i) ] ;

sol_profit (’MrNe’, s , m ) = v_profit.l(m,s) ;

);

*============================== (3)==============================

Solve the Risk Averse Market (CVaR) Equilibrium problem (MrAvCVaR)

if( flagMrAvCVaR = 1,

* Initialization of the variables of the MCP problem with the ones

* corresponding to the previous runs (Cen) to help finding the solution

v_pi.l (t,i)$n(t,i) = SUM[s$ns(t,i,s), sol_pricespot(’Cen’, s , t)]/SUM[s$ns(t,i,s),

1];

v_cost.l(gt,t,i) = (DGT(gt,’c1’)*v_gent.l(gt,t,i) +

DGT(gt,’c2’)*power(v_gent.l(gt,t,i),2) +

DGT(gt,’c3’)*power(v_gent.l(gt,t,i),3))*FCti(t,i);
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v_profit.l(m,s)$(mact(m) and sa(s)) = SUM[(t,i)$ns(t,i,s), DT(t,’dur’)*(

SUM[gt$mg_gt(m,gt), v_gent.l(gt,t,i) * v_pi.l (t,i)-v_cost.l(gt,t,i) ]

+ SUM[gh$mg_gh(m,gh), v_genh.l(gh,t,i) * v_pi.l (t,i) ]

+ SUM[res$mg_res(m,res), v_genres.l(res,t,i) * v_pi.l (t,i) ] )];

* In order to initialize the CVaR it is necessary to compute the VaR.

* For each agent the sorted profits are computed in ASorted (using the library

gdxrank)

loop(m$(mact(m) and DM(m,’mu’) <> 0 and DM(m,’beta’)<>0),

A(s)$sa(s)=v_profit.l(m,s) ;

execute_unload "rank_in.gdx", A;

execute ’gdxrank rank_in.gdx rank_out.gdx > %system.nullfile%’;

execute_load "rank_out.gdx", AIndex=A;

ASorted(s + (AIndex(s)- Ord(s)))$sa(s) = A(s);

* I assume that all elements in s are active scenarios, and I extract the position

of the beta% percentile (using floor)

v_VaR.l(m)$(mact(m) and DM(m,’mu’) <> 0 and DM(m,’beta’)<>0) =

sum(s$(ord(s)=floor(DM(m,’beta’)*card(s))), ASorted(s));

);

v_profit_aux.l(m,s)$(mact(m) and sa(s) and DM(m,’mu’) <> 0 and DM(m,’beta’)<>0) =

max(0, v_VaR.l(m)-v_profit.l(m,s)) ;
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v_CVaR.l(m)$( mact(m) and DM(m,’mu’) <> 0 and DM(m,’beta’)<>0 ) =

v_VaR.l(m)-SUM[s,ProbS(s)*v_profit_aux.l(m,s)]/DM(m,’beta’);

v_fobj_market_agent.l(m)$mact(m) = (1-DM(m,’muiter’)) * SUM[s$sa(s), ProbS(s)*

v_profit.l(m,s)] + DM(m,’muiter’) * v_CVaR.l(m) ;

* . . . . . . . . . . . . . . . . . . . . . . . . . .

put info;

put / ’equilibrium’;

loop(m$mact(m), put / ’max ’ v_fobj_market_agent(m);

put / v_CVaR.tn(m) ’ ’ v_VaR.tn(m)

loop(s$sa(s), put / v_profit.tn(m,s) ’ ’ v_profit_aux(m,s) );

loop((gt,t,i)$(n(t,i) and mg_gt(m,gt)) , put / v_gent.tn(gt,t,i) ’ ’

v_cost.tn(gt,t,i) );

loop((gh,t,i)$(n(t,i) and mg_gh(m,gh)) , put / v_genh.tn(gh,t,i) ’ ’ v_qh(gh,t,i) ’

’ v_volume.tn(gh,t,i) ’ ’ v_qspillage.tn(gh,t,i) );

loop((res,t,i)$(n(t,i) and mg_res(m,res)) , put / v_genres.tn(res,t,i) );

put / e_fobj_market_agent_mean_risk.tn(m) ’ ’ e_def_CVaR(m) ;

loop(s$sa(s), put / e_def_profit_nof.tn(m,s) ’ ’ e_def_profit_aux.tn(m,s) );

loop((gt,t,i)$(n(t,i) and mg_gt(m,gt)), put / e_ThermCost.tn(gt,t,i) );

loop((gh,t,i)$(n(t,i) and mg_gh(m,gh)), put / e_WaterBala.tn(gh,t,i) ’ ’

e_HydroGen(gh,t,i));

);
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put /;

loop((t,i)$n(t,i), put / ’vi ’ e_DemBala.tn(t,i) ’ ’ v_pi.tn(t,i));

putclose info /;

MrAv_CVaR.optfile = 1;

loop(iter$(ord(iter) <= niter),

DM(m,’muiter’)=min(1, mumin + DM(m,’mu’)*(ord(iter)-1)/card(iter) );

solve MrAv_CVaR using emp ;

);

sol_gent (’MrAvCVaR’, gt , s, t ) = SUM[i$ns(t,i,s), v_gent.l(gt,t,i) ] ;

sol_genh (’MrAvCVaR’, gh , s, t ) = SUM[i$ns(t,i,s), v_genh.l(gh,t,i) ] ;

sol_genres (’MrAvCVaR’, res, s, t ) = SUM[i$ns(t,i,s), v_genres.l(res,t,i) ] ;

sol_volh (’MrAvCVaR’, gh , s, t ) = SUM[i$ns(t,i,s), v_volume.l(gh,t,i) ] ;

sol_outflowh (’MrAvCVaR’, gh , s, t ) = SUM[i$ns(t,i,s), v_qh.l(gh,t,i) ] ;

sol_dem (’MrAvCVaR’, s , t ) = SUM[i$ns(t,i,s), DEMti(t,i) ] ;

sol_pricespot(’MrAvCVaR’, s , t ) = SUM[i$ns(t,i,s), v_pi.l (t,i) ] ;

sol_profit (’MrAvCVaR’, s , m ) = v_profit.l(m,s) ;

);

****************************************************************
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*---------Declaration of auxiliary file-------

file TMP_output /tmp_output.txt/

put TMP_output putclose

’par=sol_gent rng=generationT!C2 rdim=3 ’/

’par=sol_genh rng=generationH!C2 rdim=3 ’/

’par=sol_genres rng=generationRES!C2 rdim=3 ’/

’par=sol_volh rng=reservoirsV!C2 rdim=3 ’/

’par=sol_outflowh rng=reservoirsQ!C2 rdim=3 ’/

’par=sol_dem rng=DEM!C2 rdim=2 ’/

’par=sol_pricespot rng=price!C2 rdim=2 ’/

’par=sol_profit rng=profits!C2 rdim=2 ’/

*---------GAMs loading data-------------------

execute_unload "results.gdx"

*---------GAMs loading data-------------------

execute ’gdxxrw.exe results.gdx o="Output.xlsx" SQ=n Squeeze=0 EpsOut=0

@tmp_output.txt’

*---------Deleting Auxiliary Files--

execute ’del tmp_output.txt results.gdx’;
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