
DISCRETE AND CONTINUOUS doi:10.3934/dcdsb.2015.20.3267
DYNAMICAL SYSTEMS SERIES B
Volume 20, Number 9, November 2015 pp. 3267–3299

STABILIZING INTERPLAY BETWEEN

THERMODIFFUSION AND VISCOELASTICITY IN A

CLOSED-LOOP THERMOSYPHON
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Abstract. Viscoelastic fluids represent a major challenge both from an en-

gineering and from a mathematical point of view. Recently, we have shown

that viscoelasticity induces chaos in closed-loop thermosyphons. This induced
behavior might interfere with the engineering choice of using a specific fluid.

In this work we show that the addition of a solute to the fluid can, under

some conditions, stabilize the system due to thermodiffusion (also known as
the Soret effect). Unexpectedly, the role of viscoelasticity is opposite to the

case of single-element fluids, where it (generically) induces chaos. Our results
are derived by combining analytical results based on the projection of the dy-

namics on an inertial manifold as well as numerical simulations characterized

by the calculation of Lyapunov exponents.

1. Introduction. Thermosyphons are special heat exchange devices that function
autonomously by exploiting the effect of natural convection (due to temperature
differences) on the motion of a fluid.

Many oils and coolants used in thermosyphons are composed of long-chain poly-
mers, having viscoelastic properties. Unlike Newtonian fluids, viscoelastic fluids
share some properties with elastic solids. In particular, they have both viscous and
elastic characteristics. Viscous materials, like water, cannot resist shear and deform
linearly when a shear stress is applied [1]. Elastic materials, like solids, strain in-
stantaneously when stretched and, unless the plastic limit is reached, they cannot
flow. Elasticity is the result of bond stretching along crystallographic planes in an
ordered solid, whereas viscosity is the result of the diffusion of atoms or molecules
inside an amorphous material. Depending on the change of strain rate versus stress
inside a material, the viscosity can be categorized as having a linear or nonlinear
response. When a fluid exhibits a linear relation between stress and instantaneous
strain rate, it is called, generically, a Newtonian fluid. In this case the stress is
linearly proportional to the strain rate. If the material exhibits a nonlinear re-
sponse to the strain rate, it is called a non-Newtonian fluid [6]. Besides the linear
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response to stress, viscoelastic materials possess elastic restoring forces like solids
do. In summary, viscoelastic materials have elements of both, viscous as well as
elastic properties and, as such, exhibit time dependent strain. This combined effect
of both liquids and solids can be quantified experimentally by means of constant
stress experiments (creep) or relaxation after stress removal [6].

In a recent work [32], we showed that viscoelasticity can induce chaotic behaviors
related to the memory effects intrinsic to this sort of material. Thus, the stronger
the influence of viscoelasticity, the faster is the route to chaos. This situation poses
an appealing question from an engineering perspective: under which conditions or
mechanisms can we remove this chaotic oscillation? This question arises naturally
as, in practice, thermosyphons are expected to operate under stable conditions
(namely, the thermosyphon will be more efficient if the velocity sustained inside it
is constant).

One possibility aimed to control this chaotic behavior is to explore their response
to non-equilibrium conditions like thermodiffusion (also known as thermophoresis
or the Soret effect), besides the intrinsic properties of the material. Thermodiffusion
refers to the effect caused by a temperature gradient [4] in a mixture of two or more
diffusing substances. The term “Soret effect” normally means thermodiffusion in
liquids [12].

The Soret effect is a very important component of the study of any physical
experiment that incorporates thermodiffusion. It gives rise to interaction between
the thermal and solute gradients even when the fluid is at rest [19]. Inside a ther-
mosyphon, because of the temperature gradients, the Soret effect induces solute
concentration gradients, thus triggering natural convection inside the loop.

The diffusion induced by the temperature gradients and solute gradients of the
viscoelastic fluid by the Soret effect is the main focus of our study. The study of
the spatiotemporal phenomena in viscoelastic fluids emerges from the integrated
observations of velocity, temperature and solute concentration [12]. Interestingly,
the effect involves a new field for the solute concentration (S, see Eq. (10)) that is
doubly coupled with temperature through the equations for the velocity and solute
concentration respectively.

Our contributions in this paper are:

• To introduce a system of equations (10) governing a closed loop thermosyphon
model of a viscoelastic fluid with the Soret effect which, although is a gener-
alization of the previous models [32, 9, 16, 15, 14, 17, 22, 11, 28, 24], increases
the order of the time derivatives in velocity giving rise to different routes to
chaos.

• To generalize previous results for the dynamics on the inertial manifold in
the case of having an additional partial differential equation for the solute
concentration, coupled with both the temperature and the velocity inside the
loop.

• To provide a detailed numerical analysis of the behavior of the velocity, tem-
perature and solute concentration which includes a thorough study of the
various behaviors of the system for different values of viscoelastic fluid and
the Soret coefficient.

• To assess the interplay between the viscoelastic memory effect and the Soret
effect on the system.

This paper contains four sections. The first section provides a brief introduction
to the problem, explaining briefly the underlying Physics of a thermosyphon with
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viscoelastic fluids and including the Soret effect. The second section illustrates the
mathematical formulation of the model of the system, deriving a nonlinear system
of equations and the physical meaning of the relevant parameters. The third section
contains the numerical approximation of the nonlinear system of equations. The
fourth section deals with the numerical analysis of the reduced model and discussion
of the results using Lyapunov exponents. Finally, we conclude by discussing the
main effects of viscoelasticity under non-equilibrium conditions and summarising
our findings along with some insights for future research.

2. Mathematical formulation of the model. We consider a thermosyphon
model in which the confined fluid is viscoelastic (for instance, consider the be-
havior of jelly or toothpaste). This has some a-priori interesting peculiarities that
could affect the dynamics with respect to a Newtonian fluid (like water). On the
one hand, the dynamics has memory (see below) as its behavior depends on the
whole past history. On the other hand, for small perturbations, the fluid behaves
like an elastic solid with a characteristic frequency of resonance that, eventually,
could be relevant.

The simplest approach to viscoelasticity comes from the so-called Maxwell con-
stitutive equation [21, 3]. Although this model is a great simplification, it has been
proven valid even for complex fluids as blood in which red cells change its behavior
depending on their concentration or even the geometry of the vessel [27]. In this
model, both Newton’s law of viscosity and Hooke’s law of elasticity are generalized
and complemented through an evolution equation for the stress tensor, Σ. The
stress tensor comes into play in the equation for the conservation of momentum:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+∇ ·Σ + ρg, (1)

where p is the hydrostatic pressure, ρ the density of the material and g is the
acceleration due to gravity (g = 9.81 m/s2). The latter equation is supplemented
with the hypothesis of incompressibility (accurate enough for liquids), referred to
as the continuity equation:

∇ · v = 0. (2)

For a Maxwellian fluid in a thin section thermosyphon, the stress tensor, Σ, is
reduced to just one independent component, say σ̃, that evolves according to:

µ

E

∂σ̃

∂t
+ σ̃ = µγ̇, (3)

where µ is the fluid viscosity, E the Young’s modulus and γ̇ is the only non-zero
component of the shear strain rate tensor, Γ̇ (or rate at which the fluid deforms)
defined as

Γ̇ =
(
∇v + (∇v)

T
)
.

Under stationary flow, equation (3) reduces to Newton’s law and, consequently,
Eq. (1) reduces to the celebrated Navier-Stokes equation. For short times where
impulsive behavior from rest can be expected and equation (3) reduces to Hooke’s
law of elasticity.

In order to describe de physical mechanisms introduced in Section 1, we will
formulate a mathematical model for the following observables: the velocity v, the
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distribution of the temperature T of the fluid and the solute concentration S into
the loop, the latter governed by transport equations. Specifically,

ρ

(
∂T

∂t
+ v · ∇T

)
= −∇ · JT +KT (4)

ρ

(
∂S

∂t
+ v · ∇S

)
= −∇ · JS +KS (5)

where JT,S represent the heat and solute fluxes (or currents), and KT,S , external
temperature or solute sources, respectively. Typically, those terms are specified
using constitutive equations that are linear combinations of the gradients of other
variables. For instance, Fourier’s law of heat conduction establishes that JT =
−ν∇T , so Eq. (4) provides the well-known Laplacian ν∇2T , etc.

In order to proceed, we follow the same procedure as [29] (see Fig. 1 for a rationale
of the method and some basic notation):

(i) Project equations (1), (2), (4) and (5) along the tangent of the thermosyphon
pipe (whose coordinate we call x hereafter).

(ii) Assuming that the section, A, of the thermosyphon is small enough, we can
assume that differences in the cross direction of the pipe are negligible so
averaging does not produce a significant loss of accuracy.

(iii) As the averaged velocity is the same throughout the pipe (because the fluid
is incompressible).

Figure 1. A section of the thermosyphon: we project Eqs. (1),
(2), (4) and (5) along the tangent, ŝ and average them over a section
of diameter A � 1. As shown, we denote x the coordinate along
the thermosyphon pipe.

Before following these steps, we eliminate the stress component σ̃ in the following
way: we first differentiate Eq. (1) with respect to time and multiply it by µ/E. Then
add the former Eq. (1) and use Eq. (3) to find

ρ
µ

E

∂2v

∂t2
+
µ

E
∇∂p
∂t

+ ρ
∂v

∂t
+∇p− ρg = µ∇v + non-linear terms (6)

Following Refs. [29, 18], we assume that the non-linear terms and the viscous term,
∇2v, can be expressed in terms of the so-called wall law force, F, that is a function
of the average velocity (see below for details).
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Because of the incompressibility hypothesis, Eq. (2), the averaged velocity v is
the same throughout the thermosyphon, thus, it only depends on time, t, but not on
the spatial coordinate along the pipe, x. Also due to this projection and averaging
steps, temperature, T , and solute concentration, S, will only be functions of time,
t, and position along the loop, x.

Projecting along the direction of the pipe, we arrive at:

ρ
µ

E

(
d2v

dt2

)
s

+ ρ

(
dv

dt

)
s

= −ρg cosφ+ Fs −∇
(
∂p

∂x
+
µ

E

∂2p

∂x∂t

)
, (7)

where Fs is the projection of the wall law force along the pipe (see below for details
about this function).

Velocity in Eqs. (1)-(3) is coupled with temperature and diffusion through the
body force ρg, where ρ depends on density (hotter fluids are less dense) and so-
lute concentration (higher concentrations of solute imply higher densities). Mathe-
matically, one can assume that there is a linear relationship between density and
temperature. Likewise, in this work we assume also a linear relationship between
density and solute concentration. So, in the end

ρ = ρ0(1− αTT + αSS), (8)

where αT and αS are dilatation and thermophoretic coefficients. Here, (as in Refs.
[29, 18]) we apply the Boussinesq approximation, that states that the density, when
it is proportional to the dynamical terms d2v/dt2 and dv/dt, is approximately con-
stant and equal to ρ0, and also that inertial contributions from temperature and
solute concentration are negligible. Thus, integrating Eq. (7) along the length of the
pipe L (so the integrated pressure gradients and the constant gravitational term,
ρ0g, are zero),

ρ
µ

E

d2v

dt2
+ ρ

dv

dt
+

∫ L

0

Fs dx = g

∫ L

0

(αTT (t, x)− αSS(t, x))f(x)dx, (9)

where f(x) is a function that expresses cosφ in terms of the coordinate x. Following
Ref. [22], we assume that the projection of the wall law depends locally on the

velocity, v, as
∫ L

0
Fs dx ≡ G(v)v, where G(v) has some generic properties defined

below.
In order to close Eq. (9) and Eq. (4) they need to be supplemented with proper

constitutive equations for the temperature and solute concentrations. The main
mechanisms that we consider for the evolution of the temperature are:

• Convection (transport with the velocity), included in the second term of the
left hand side of Eq. (4)

• Heat exchange with an external source (Newton’s cooling): KT = l(v)(Ta−T )

• Thermal diffusion (conduction): JT = −ν∇T , so from Eq. (4), −∇·JT = ν ∂
2T
∂x2

Analogously, for the solute concentration, we consider the following physical
mechanisms:

• Convection (transport with the velocity), included in the second term of the
left hand side of Eq. (5)

• Solute diffusion: JS,1 = −c∇S
• Onsager coupling (thermodiffusion or the Soret effect): JS,2 = b∇T .

so from Eq. (5), −∇ · (JS,1 + JS,2) = c∂
2S
∂x2 − b∂

2T
∂x2



3272 J. YASAPPAN, A. JIMÉNEZ-CASAS AND M. CASTRO

Finally, we nondimensionalize the resulting equations: lengths are scaled by the
loop length (so the whole loop is the interval [0, 1]), temperatures are scaled by
(gαT )−1, solute concentration by (gαS)−1, . . .

Finally, we arrive at our main system of equations
ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
(T (t, x)− S(t, x))f(x)dx, v(0) = v0,

dv

dt
(0) = w0

∂T

∂t
+ v

∂T

∂x
= l(v)(Ta − T ) + ν

∂2T

∂x2
, T (0, x) = T0(x)

∂S

∂t
+ v

∂S

∂x
= c

∂2S

∂x2
− b∂

2T

∂x2
, S(0, x) = S0(x)

(10)
The term l(v)(Ta − T ) is the Newton’s linear cooling law as in [16, 15, 14, 28, 17,
29, 5], which represents the heat transfer law across the loop, a positive quantity
depending on the velocity, and Ta is the (given) ambient temperature distribution,
see [15, 28, 29, 5]. By physical consistency, in this paper we consider that the
thermal diffusivity ν ≥ 0.

The system of equations (10) forms an ODE/PDE system for the evolution for
the observables v, T and S. Finally, in the equation for the solute concentration
S(t, x) the solute diffusivity, c > 0, and the Soret coefficient, b > 0, are both strictly
positive, like in the previous models with this kind of binary fluids as [9, 16, 15, 14,
17].

Notice that, throughout this work,
∮
· dx =

∫ 1

0
· dx denotes integration along

the closed path of the circuit. We can make this identification if we consider only
periodic functions (with period 1). The function f describes the geometry of the
loop and the distribution of gravitational forces [29, 18], with

∮
f(x) dx = 0 (as

f(x) = cosφ(x), so integrated along a closed loop it is zero).
The parameter ε in equation (10) is the nondimensional version of µ/E which

has dimensions of time. Roughly speaking, ε gives the (nondimensional) time scale
in which the transition from elastic to fluid-like occurs in the material.

We assume that G(v), which specifies the friction law at the inner wall of the
loop, is positive and bounded away from zero. This function has been usually taken
to be G(v) = G, a positive constant for the linear friction case [18] (Stokes flow),
or G(v) = |v| for the quadratic law [11, 20], or even a rather general function given
by G(v) = g̃(Re)|v|, where Re is the Reynolds number, Re = ρvL/µ. Here we
will consider a general function of the velocity assumed to be large [28, 25]. The
functions G, f , and l incorporate relevant physical constants of the model, such
as the cross sectional area, D, the length of the loop, L, the Prandtl, Rayleigh,
or Reynolds numbers, etc., see [28]. G and l as continuous functions, such that
G(v) ≥ G0 > 0, and l(v) ≥ l0 > 0, for G0 and l0 are positive constants. Below, we
will impose additional restrictions that will be introduced below in Eq. (28), this is
we consider the nonlinear friction G such that G satisfies (28), i.e. there exists a
constant h0 ≥ 0 such that:

lim sup
s→∞

|G′(s)|
G(s)

= 0 and lim sup
s→∞

|sG′(s)|
G(s)

≤ h0.

2.1. Well-posedness and boundedness: Global attractor. We will introduce
some function spaces that will be used in the study of the existence of solutions of
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(10). Let Ω = (0, 1) and consider the spaces

L2
per(Ω) = {u ∈ L2

loc(IR), u(x+ 1) = u(x)a.e.x ∈ IR}, Hm
per(Ω) = Hm

loc(IR) ∩ L2
per(Ω)

(11)
where m ∈ IN ∪ {0}, and u ∈ L2

loc(IR) (or Hm
loc(IR)) iff for every open set ω ⊂⊂ IR

one has u ∈ L2
loc(ω) (or Hm

loc(ω), respectively). Finally, we consider functions with
zero average, and we denote by:

L̇2
per(0, 1) = {u ∈ L2

loc(IR), u(x+ 1) = u(x)a.e.,

∮
u(x)dx = 0}, (12)

Ḣm
per(0, 1) = Hm

loc(IR) ∩ L̇2
per(0, 1). (13)

2.1.1. Existence and uniqueness of solutions. In this section, we prove the existence
and uniqueness of solutions of the thermosyphon model (10), with f ∈ L̇2

per(0, 1),

Ta, T0 ∈ Ḣ1
per(0, 1) and S0 ∈ L̇2

per(0, 1), where L̇2
per(0, 1) and Ḣ1

per(0, 1) are given by
(12) and we note that the dot stand for functions with zero average (and it is not
related to time derivatives of the functions). For ν > 0, if we integrate the equation
for the temperature along the loop, taking into account the periodicity of T , i.e.,∮

∂T
∂x dx =

∮
∂2T
∂x2 dx = 0, and d

dt

∮
T (t, x)dx = l(v)(

∮
Ta(x)dx−

∮
T (t, x)dx).

Therefore,
∮
T (t, x)dx→

∮
Ta(x)dx exponentially as the time goes to infinity for

every
∮
T0(x)dx.

Moreover, if we consider τ(t, x) = T (t, x) −
∮
T (t, x)dx then from the second

equation of the system (10), τ satisfies the equation:

∂τ

∂t
+ v

∂τ

∂x
= l(v)(τa − τ) + ν

∂2τ

∂x2
, τ(0, x) = τ0(x) = T0(x)−

∮
T0(x)dx

where τa(x) = Ta(x)−
∮
Ta(x)dx.

We integrate the equation for the solute concentration along the loop and taking

into account the periodicity of S,
∮
∂S
∂x dx =

∮
∂2S
∂x2 dx = 0 and d

dt (
∮
S(t, x)dx) = 0.

As
∮
S(t, x)dx is constant, it implies that the solute

∮
S(t, x) =

∮
S0(x) for all t.

Defining σ(t, x) = S(t, x)−
∮
S0(x)dx, (not be confounded with the stress com-

ponent σ̃) then from the third equation of the system (10), σ satisfies the equation:

∂σ

∂t
+ v

∂σ

∂x
= c

∂2σ

∂x2
− b∂

2τ

∂x2
, σ(0, x) = σ0(x).

Since
∮
f(x)dx = 0, then

∮
(T (t, x)− S(t, x))f(x)dx =

∮
(τ(t, x)− σ(t, x))f(x)dx

and the equation for v is

ε
d2v

dt2
+
dv

dt
+G(v)v =

∮
(τ(t, x)− σ(t, x))f(x)dx, v(0) = v0,

dv

dt
(0) = w0.

Therefore, (v, τ, σ) satisfies the system (10) with τa, τ0, σ0 replacing Ta, T0, S0 re-
spectively and

∮
f(x)dx =

∮
τ0(x)dx =

∮
τa(x)dx =

∮
σ0(x)dx = 0 and

∮
T (t, x)dx

=
∮
S(t, x)dx = 0 for all t ≥ 0. Hereafter we consider all the functions of the system

(10) to have zero average.

Also, as ν, c > 0 the operators νA = −ν ∂2

∂x2 and cA = −c ∂
2

∂x2 , together with
periodic boundary conditions, are unbounded, self-adjoint operators with compact
resolvent in L2

per(0, 1), that are positive when restricted to the space of zero average

functions in L̇2
per(0, 1). Moreover, the equation for the temperature T and the

equation for the solute concentration S in (10) are of parabolic type for ν, c > 0.
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We write the system (10) as the following evolution system for acceleration,
velocity, temperature and solute concentration:

dw

dt
+

1

ε
w = − 1

εG(v)v + 1
ε

∮
(T (t, x)− S(t, x))f(x)dx,w(0) = w0

dv
dt = w, v(0) = v0

∂T

∂t
+ v

∂T

∂x
− ν ∂

2T

∂x2
= l(v)(Ta − T ), T (0, x) = T0(x)

∂S

∂t
+ v

∂S

∂x
= c∂

2S
∂x2 − b∂

2T
∂x2 , S(0, x) = S0(x).

(14)
That is:

d

dt


w
v
T
S

+


1
ε 0 0 0
−1 0 0 0

0 0 −ν ∂2

∂x2 0

0 0 0 −c ∂
2

∂x2




w
v
T
S

 =


F1(w, v, T, S)
F2(w, v, T, S)
F3(w, v, T, S)
F4(w, v, T, S)

 (15)

with

F1(w, v, T, S) = −1

ε
G(v)v +

1

ε

∮
(T (t, x)− S(t, x))f(x)dx, (16)

F2(w, v, T, S) = 0, (17)

F3(w, v, T, S) = −v ∂T
∂x

+ l(v)(Ta − T ), (18)

F4(w, v, T, S) = −v ∂S
∂x
− b∂

2T

∂x2
(19)

and initial data


w
v
T
S

 (0) =


w0

v0

T0

S0

.

The operator B =


1
ε 0 0 0
−1 0 0 0

0 0 −ν ∂2

∂x2 0

0 0 0 −c ∂
2

∂x2

 is a sectorial operator in Y =

IR2× Ḣ1
per(0, 1)× L̇2

per(0, 1) with domain D(B) = IR2× Ḣ3
per(0, 1)× Ḣ2

per(0, 1) and
has compact resolvent, see Eq. (12).

Using the results and techniques about sectorial operator of [10] to prove the
existence of solutions of the system, we have the Theorem 2.1.1.

Theorem 2.1.1. We assume that H(r) = rG(r) and l(r) are locally Lipschitz,

f ∈ L̇2
per(0, 1), Ta ∈ Ḣ1

per(0, 1), G(v) ≥ G0 > 0 and l(v) ≥ l0 > 0. Then, given

(w0, v0, T0, S0) ∈ Y = IR2× Ḣ1
per(0, 1)× L̇2

per(0, 1), there exists a unique solution of
(10) satisfying

(w, v, T, S) ∈ C([0,∞),Y) ∩ C(0,∞, IR2 × Ḣ3
per(0, 1)× Ḣ2

per(0, 1)),(
dw

dt
,
dv

dt
,
∂T

∂t
,
∂S

∂t

)
∈ C(0,∞, IR2 × Ḣ3−δ

per (0, 1)× Ḣ2−δ
per (0, 1)),

for every δ > 0. In particular, (14) defines a nonlinear semigroup, S∗(t) in Y =

IR2×Ḣ1
per(0, 1)× L̇2

per(0, 1), with S∗(t)(w0, v0, T0, S0) = (w(t), v(t), T (t, x), S(t, x)).
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Proof. Step (i). We prove the local existence and regularity. This follows easily
from the variation of constants formula of [10]. In order to prove this, we write the
system as (15), and we have:

Ut +BU = F (U), with U =


w
v
T
S

 ,

B =


1
ε 0 0 0
−1 0 0 0

0 0 −ν ∂2

∂x2 0

0 0 0 −c ∂
2

∂x2

 ,

F =


F1

F2

F3

F4


where the operator B is a sectorial operator in Y = IR2 × Ḣ1

per(0, 1) × L̇2
per(0, 1)

with domain D(B) = IR2 × Ḣ3
per(0, 1) × Ḣ2

per(0, 1) and has compact resolvent. In

this context, the operator A = − ∂2

∂x2 must be understood in the variational sense,

i.e., for every T, ϕ ∈ Ḣ1
per(0, 1),

〈A(T ), ϕ〉 =

∮
∂T

∂x

∂ϕ

∂x
dx

and L̇2
per(0, 1) coincides with the fractional space of exponent 1

2 as in [10]. We

denote Ḣ−1
per(0, 1) as the dual space and ‖.‖ the norm on the space L̇2

per(0, 1). If

we prove that the nonlinearity F : Y = IR2 × Ḣ1
per(0, 1) × L̇2

per(0, 1) 7→ Y− 1
2 =

IR2× L̇2
per(0, 1)×Ḣ−1

per(0, 1) is well defined, Lipschitz and bounded on bounded sets,

we obtain the local existence for the initial data in Y = IR2×Ḣ1
per(0, 1)× L̇2

per(0, 1).

Using H(v) ≡ G(v)v and l(v) are locally Lipschitz together with f ∈ L̇2
per(0, 1)

and Ta ∈ Ḣ1
per(0, 1), we will prove the nonlinear terms, F1...4 in Eqs. (16)-(19)

satisfy F1 : IR2×L̇2
per(0, 1)×L̇2

per(0, 1) 7→ IR, F2 : IR2×Ḣ1
per(0, 1)×L̇2

per(0, 1) 7→ IR,

F3 : IR2×Ḣ1
per(0, 1)×L̇2

per(0, 1) 7→ L̇2
per(0, 1) and F4 : IR2×Ḣ1

per(0, 1)×L̇2
per(0, 1) 7→

Ḣ−1
per(0, 1), that is F : Y 7→ Y− 1

2 is well defined, Lipschitz and bounded on bounded
sets.

Applying the techniques of variation of constants formula of [10], we obtain the
unique local solution (w, v, T, S) ∈ C([0, t∗],Y) (with a suitable t∗ > 0) of (14),
which are given by

w(t) = w0e
− 1
ε t − 1

ε

∫ t
0
e−

1
ε (t−r)H(r)dr+

+ 1
ε

∫ t
0

[∮
(T (r, x)− S(r, x))f(x)dx

]
e−

1
ε (t−r)dr

(20)

with H(r) = G(v(r))v(r).

v(t) = v0 +

∫ t

0

w(r)dr (21)
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T (t, x) = e−νAtT0(x) +

∫ t

0

e−νA(t−r)l(v(r))[Ta(r, x)− T (r, x)]dr

−
∫ t

0

e−νA(t−r)v(r)
∂T (r, x)

∂x
dr, (22)

S(t, x) = e−cAtS0(x) +

∫ t

0

e−cA(t−r)[−v(r)
∂S

∂x
(r)− b∂

2T

∂x2
(r)]dr. (23)

where (w, v, T, S) ∈ C([0, t∗],Y = IR2× Ḣ1
per(0, 1)× L̇2

per(0, 1)) and using again the
results of [10], (the smoothing effect of the equations together with the bootstrap-
ping method), we get the regularity of solutions.

Step (ii). To prove the global existence, we must show that the solutions are

bounded in Y = IR2 × Ḣ1
per(0, 1)× L̇2

per(0, 1) for finite time intervals and using the
nonlinearity of F, maps bounded on bounded sets, we conclude.

To prove that the norm of T is bounded in finite time, we multiply the equation
for the temperature by T in L̇2

per(0, 1). Then integrating by parts, we have:

1

2

d

dt
‖T‖2 + ν‖∂T

∂x
‖2 =

∮
l(v)(Ta(x)− T (t, x))T (t, x)dx

since
∮
T (t, x)∂T∂x dx = 1

2

∮
∂
∂x (T 2)dx = 0.

Using Cauchy-Schwartz and Young inequalities and then the Poincaré inequality
for functions of zero average, since

∮
T (t, x)dx = 0, and, as π2 is the first nonzero

eigenvalue of A = − ∂2

∂x2 in L̇2
per(0, 1), we obtain

1

2

d

dt
‖T‖2 + (νπ2 + l(v))‖T‖2 ≤ l(v)

2
‖Ta‖2 +

l(v)

2
‖T‖2,

and using the fact that l(v) ≥ l0 > 0 we get

d

dt
‖T‖2 + (2νπ2 + l0)‖T‖2 ≤ l(v)‖Ta‖2. (24)

and we conclude that the norm of T in L̇2
per(0, 1) remains bounded in finite time.

By differentiating the third equation of (14) with respect to x, we obtain

d

dt

∥∥∥∥∂T∂x
∥∥∥∥2

+ (2νπ2 + l0)

∥∥∥∥∂T∂x
∥∥∥∥2

≤ l(v)

∥∥∥∥∂Ta∂x
∥∥∥∥2

(25)

what proves that the norm of T in Ḣ1
per(0, 1) remains bounded in finite time.

Then, we show that the norm of S in L̇2
per(0, 1) does not blow-up in finite time.

Multiplying the fourth equation of (14) by S, integrating by parts, applying the

Young inequality and again taking into account that
∮
S(t, x)∂S∂x dx = 1

2

∮
∂S2

∂x dx =
0, since S is periodic, we get

1

2

d

dt
‖S‖2 + (c− ε)‖∂S

∂x
‖2 ≤ b2Cε‖

∂T

∂x
‖2 (26)

for every ε > 0 with Cε = 1
4ε . Thus, taking ε = c

2 , and using (25) together with the
Poincaré inequality for functions with zero average, we find

d

dt
‖S‖2 + cπ2‖S‖2 ≤ b2

c
‖∂T
∂x
‖2 ≤ k1 (27)

with k1 > 0. Therefore ‖S(t)‖ remains bounded in finite time.
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Finally, since ‖T‖ and ‖S‖ are bounded in finite time, that implies that |w(t)|,
|v(t)| remain also bounded in finite time. Hence we have a global solution in the

nonlinear semigroup in Y = IR2 × Ḣ1
per(0, 1)× L̇2

per(0, 1).

2.1.2. Boundedness of the solutions: Global attractor. In this section, we adapt the
results and techniques in Refs. [16, 15, 25] for a fluid with one component, to prove
the existence of the global attractor for a binary fluid for the semigroup defined in
the space Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1).

To obtain the asymptotic bounds on the solutions as t → ∞, we consider the
friction function G as in [16, 15, 25] satisfying the hypotheses of the previous section
and there exits a constant h0 ≥ 0 such that:

lim sup
s→∞

|G′(s)|
G(s)

= 0 and lim sup
s→∞

|sG′(s)|
G(s)

≤ h0. (28)

Using the l’Hopital’s lemma proved in [24] we have the following lemma proved
in [32].

Lemma 2.1.2. If we assume that G(r) and H(r) ≡ rG(r) satisfy the hypotheses of
Theorem 2.1.1, together with (28), then:

lim sup
t→∞

∣∣∣H̃(t)− 1
ε

∫ t
0
e−

1
ε (t−r)H̃(r)dr

∣∣∣
G̃(t)

≤ H0 (29)

with H0 = (1 + h0)ε a positive constant such that H0 → 0 if ε → 0, and G̃(r) =

G(v(r)) and H̃(r) = v(r)G̃(r).

Remark 2.1.3. We note that the conditions (28) are satisfied for all the friction
functions G considered in the previous works, i.e., the thermosyphon models where
G is constant or linear or quadratic law. Moreover, the conditions (28) are true for
G(s) ≈ A|s|n, as s→∞.

Theorem 2.1.4. Under the above notation and hypotheses of Theorem 2.1.1, if we
assume that G satisfies (29) for some constant H0 ≥ 0 then

Part (i)

(i) lim sup
t→∞

|v(t)| ≤ 1

G0
lim sup
t 7→∞

|
∮

(T (t, x)− S(t, x))f(x)dx|+H0 (30)

In particular: If lim supt 7→∞ ‖(T − S)‖ ∈ IR then

lim sup
t→∞

|v(t)| ≤ 1

G0
‖f‖ lim sup

t7→∞
‖(T − S)‖+H0 ∈ IR. (31)

(ii)If lim supt 7→∞ ‖(T − S)‖ ∈ IR and G∗0 = lim supt→∞G(v(t)) with w(t) = dv
dt ,

then

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
I with I = lim sup

t7→∞
|
∮

(T (t, x)−S(t, x))f(x)dx|

(32)
and

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)
‖f‖ lim sup

t7→∞
‖(T − S)‖ ∈ IR. (33)

Part (ii) If ν 6= 0 and there exists L0 a positive constant such that L0 ≥ l(v) ≥
l0 > 0, then for any solution of (10) in the space Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1)

we have:
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(i)

lim sup
t→∞

‖T (t)‖ ≤
(

L0

2νπ2 + l0

) 1
2

‖Ta‖ and lim sup
t→∞

∥∥∥∥∂T∂x
∥∥∥∥ ≤ ( L0

2νπ2 + l0

) 1
2
∥∥∥∥∂Ta∂x

∥∥∥∥
(34)

(ii)

lim sup
t→∞

‖S(t)‖ ≤ 1

π

(
Bl
c

) 1
2

‖∂Ta
∂x
‖ where Bl =

b2

c

(
L0

2νπ2 + l0

)
> 0. (35)

(iii)

lim sup
t→∞

|v(t)| ≤ ‖f‖
G0

[( L0

2νπ2 + l0

) 1
2

‖Ta‖+
1

π

(
Bl
c

) 1
2

‖∂Ta
∂x
‖
]

+H0 (36)

(iv)

lim sup
t→∞

|w(t)| ≤ G∗0H0+

(
1 +

G∗0
G0

)
‖f‖

[(
L0

2νπ2 + l0

) 1
2

‖Ta‖+
1

π

(
Bl
c

) 1
2

‖∂Ta
∂x
‖

]
.

(37)
In particular, we have a global compact and connected attractor A in Y = IR2 ×
Ḣ1
per(0, 1)× L̇2

per(0, 1).

Proof. Part (i) (i) From (14) we have

dw

dt
+

1

ε
w = −1

ε
G(v)v +

1

ε

∮
(T (t, x)− S(t, x))f(x)dx (38)

and w(t) = dv
dt satisfies

dv
ds = w(0)e−

1
ε s − 1

ε

∫ s
0
e−

1
ε (s−r)H̃(r)dr+

+ 1
ε

∫ s
0

[ ∮
(T (r, x)− S(r, x))f(x)dx

]
e−

1
ε (s−r)dr

(39)

where H̃(r) = H(v(r)) = v(r)G(v(r)) and G̃(s) = G(v(s)). We rewrite (39) as

dv

ds
+ G̃(s)v = w(0)e−

1
ε s + I1(s) + I2(s), (40)

with

I1(s) =
1

ε

∫ s

0

[ ∮
(T (r, x)− S(r, x))f(x)dx

]
e−

1
ε (s−r)dr and I2(s)

= H̃(s)− 1

ε

∫ s

0

e−
1
ε (s−r)H̃(r). (41)

For any δ > 0 there exits t0 > 0 such that δ(s) = w(0)e−
1
ε < δ for any s ≥ t0

and integrating (40) with t ≥ t0 we obtain

|v(t)| ≤ |v(t0)|e−
∫ t
t0
G̃(s)ds

+ e
−

∫ t
t0
G(s)ds

∫ t

t0

e
∫ s
t0
G(r)dr

(δ + |I1(s)|+ |I2(s)|) (42)

Using L’Hopital’s lemma proved in [24], we find the following two results:

lim sup
t→∞

e
−

∫ t
t0
G̃(s)ds

∫ t

t0

e
∫ s
t0
G̃(r)dr

(|I1(s)|+ |I2(s)|+ δ) =
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= lim sup
t→∞

∫ t
t0
e
∫ s
t0
G̃(r)dr

(|I1(s)|+ |I2(s)|+ δ)ds

e
∫ t
t0
G̃(s)ds

≤ lim sup
t→∞

|I1(t)|+ |I2(t)|+ δ

G̃(t)
(43)

for any δ > 0 and

lim supt→∞ |I1(t)| ≤ lim supt→∞

∫ t
0
e
r
ε |

∮
(T (t,x)−S(t,x))f(x)dx|

εe
t
ε

≤
≤ lim supt→∞ |

∮
(T (t, x)− S(t, x))f(x)dx|

and from (42) together with (29) we conclude for any δ,

lim sup
t→∞

|v(t)| ≤ lim sup
t→∞

lim supt→∞ |
∮

(T (t, x)− S(t, x))f(x)dx|
G0

+H0 + δ.

(ii) From (38) together with the Gronwall’s lemma, we get

|w(t)| ≤ |w(t0)|e− 1
ε t +

1

ε

∫ t

t0

e−
1
ε (t−r)

[
G(r)|v(r)|+ |

∮
(T (r, x)− S(r, x))f(x)dx|

]
dr

(44)

where G̃(r) = G(v(r)). Consequently, for any δ > 0 there exits t0 such that for any
t ≥ t0

1

ε

∫ t

t0

e−
1
ε (t−r)

[
G(v(r))|v(r)|+ |

∮
(T (r, x)− S(r, x))f(x)dx|

]
dr ≤

≤
[
δ + lim sup

t→∞

[
G(v(t))|v(t)|+ |

∮
(T (t, x)− S(t, x))f(x)dx|

]
(1− e− 1

ε (t−t0)) (45)

this is

lim sup
t→∞

|w(t)| ≤ lim sup
t→∞

[
G(v(t))|v(t)|+ |

∮
(T (t, x)− S(t, x))f(x)dx|+ δ

]
, (46)

for any δ > 0, and using the result (i) we get (33).
Part (ii) (i) Combining (24) and (25) we find

‖T‖2 ≤ L0

2νπ2 + l0
‖Ta‖2 +

(
‖T0‖2 −

L0

2νπ2 + l0
‖Ta‖2

)
+

e−(2π2ν+l0)t and (47)

∥∥∥∥∂T∂x
∥∥∥∥2

≤ L0

2νπ2 + l0

∥∥∥∥∂Ta∂x
∥∥∥∥2

+

(
‖T0‖2 −

L0

2νπ2 + l0
‖Ta‖2

)
+

e−(2π2ν+l0)t (48)

then we obtain (34).
(ii) From (27) together with (48) we get

d

dt
‖S‖2 + cπ2‖S‖2 ≤ b2

c

(
L0

2νπ2 + l0

)∥∥∥∥∂Ta∂x
∥∥∥∥2

+Ne−(2π2ν+l0)t (49)

where N =
(
‖T0‖2 − L0

2νπ2+l0
‖Ta‖2

)
+
. Given δ > 0, there exists t0 > 0 such that

d

dt
‖S‖2 + cπ2‖S‖2 ≤ b2

c

(
L0

2νπ2 + l0

)∥∥∥∥∂Ta∂x
∥∥∥∥2

+ δ, ∀t ≥ t0 (50)

and from the Gronwall lemma, for every δ > 0, we get

lim sup
t→∞

‖S‖2 ≤ Bl
cπ2

∥∥∥∥∂Ta∂x
∥∥∥∥2

+ δ, ∀δ > 0, where Bl =
b2

c

(
L0

2νπ2 + l0

)
> 0 (51)

and, consequently, we obtain (35). Using Part I, the rest (iii) and (iv) follow straight-
forwardly.
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Finally, since the sectorial operator B, as defined in Theorem 2.1.1, has compact
resolvent, the rest follows from [8] [Theorem 4.2.2 and 3.4.8].

Remark 2.1.5. First, we consider l(v) ≥ l0 > 0 and we note that in Theorem 2.1.4,
we assumed that also “l(v) ≤ L0”, this hypothesis is satisfied when we consider the
Newton’s linear cooling law l(v) = k(Ta − T ), where k is a positive quantity i.e.,
l(v) = k = L0 as [13]. Moreover, this condition is also satisfied if we consider
l = l(v)(Ta − T ) where l(v) is a positive upper bounded function.

Second, it is important to note that we prove in the next section the existence
of the global compact and connected attractor and the inertial manifold for the
system (14), for the general Newton’s linear cooling law, where l(v) is a locally
Lipschitz function with l(v) ≥ l0 > 0 without the additional above hypothesis for
l(v), namely, “without the upper bounded L0”, and for every ν ≥ 0.

In order to get this, we introduce the Fourier expansions of the fields T and S to
prove lim supt→∞ ‖T (t)‖ ≤ ‖Ta‖ and lim supt→∞ ‖S(t)‖ ≤ b

c‖Ta‖ for every locally
Lipschitz and positive function l(v) and for every ν ≥ 0.

2.2. Asymptotic behavior: Reduction to finite-dimensional systems. In
this section we reduce the asymptotic behavior of the system (14) to study the other
finite dimensional systems in some cases. We take a close look at the dynamics
of (14) by considering the Fourier expansions of all the functions of the system
(temperature and solute concentration). First, we consider the Fourier expansion for
the function associated to the geometry of the loop f, and the ambient temperature
Ta, whose coefficients are very important to study the asymptotic behavior of the
system. Then, we prove the asymptotic behavior of the system (14), described by
suitable Fourier coefficients associated to f and Ta.

We note the Fourier expansion for all g ∈ Ḣm
per(0, 1),m ≥ 0 is given by the

expression g(x) =
∑
k∈Z∗ ake

2πkix with Z∗ = Z \ {0} and we have

‖g‖Ḣmper(0,1) = (2π)m
( ∑
k∈Z∗

k2m|ak|2
) 1

2

. (52)

Assume that Ta, T ∈ Ḣ1
per(0, 1) and f, S ∈ L̇2

per(0, 1) are given by the following
Fourier series expansions:

Ta(x) =
∑
k∈Z∗

bke
2πkix and f(x) =

∑
k∈Z∗

cke
2πkix with Z∗ = Z \ {0} (53)

T (t, x) =
∑
k∈Z∗

ak(t)e2πkix and S(t, x) =
∑
k∈Z∗

dk(t)e2πkix (54)

with the initial data T0 ∈ Ḣ1
per(0, 1) is given by T0(x) =

∑
k∈Z∗ ak0e

2πkix and

S0 ∈ L̇2
per(0, 1) is given by S0(x) =

∑
k∈Z∗ dk0e

2πkix. Since all functions involved

are real and periodic, we have āk = a−k, b̄k = b−k, c̄k = c−k and d̄k = d−k.

Proposition 2.2.1. Under the above notation and hypotheses of Theorem 2.1.1,
we consider Ta ∈ Ḣ1

per(0, 1) and f ∈ L̇2
per(0, 1) given by (53) and the initial data

T0 ∈ Ḣ1
per(0, 1) given by T0(x) =

∑
k∈Z∗ ak0e

2πkix and S0 ∈ L̇2
per(0, 1) given by

S0(x) =
∑
k∈Z∗ dk0e

2πkix. Let (w, v, T, S) be the solution of the system (10) given
by Theorem 2.1.1; then we have:
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(i) The coefficients ak(t) and dk(t) in (54), satisfy the equations
dak
dt

+
(

2kπvi+ 4νk2π2 + l(v)
)
ak(t) = l(v)bk(t), ak(0) = ak0, k ∈ Z∗

d(dk)
dt +

(
2kπvi+ 4ck2π2

)
dk(t) = 4bπ2k2ak(t), dk(0) = dk0, k ∈ Z∗.

(55)
(ii) The equation for the velocity is

ε
d2v

dt
+
dv

dt
+G(v)v =

∑
k∈Z∗

ak(t)c̄k −
∑
k∈Z∗

dk(t)c̄k.

Proof. By using the following Fourier expansion for a generic function u(t, x) of the
form, u(t, x) =

∑
k∈Z∗ uk(t)e2πkix with Z∗ = Z \ {0} then, the Fourier coefficients

uk(t) satisfy the following relations:

∂u(t, x)

∂t
=

∑
k∈Z∗

duk
dt

e2πkix, (56)

∂u(t, x)

∂x
=

∑
k∈Z∗

2πkiuk(t)e2πkix, (57)

∂2u(t, x)

∂x2
= −

∑
k∈Z∗

4π2k2uk(t)e2πkix. (58)

Consider the model (10) and the Fourier series expansions of all functions depending
on spatial variable x, i.e. T (t, x) =

∑
k∈Z∗ ak(t)e2πkix, S(t, x) =

∑
k∈Z∗ dk(t)e2πkix

given by (54), Ta(x) =
∑
k∈Z∗ bke

2πkix and f(x) =
∑
k∈Z∗ cke

2πkix given by (53), to-

gether with the expansions of initial data for temperature T0(x) =
∑
k∈Z∗ ak0e

2πkix

and for solute S0(x) =
∑
k∈Z∗ dk0e

2πkix; then we easily find that the coefficients for
temperature ak(t) and solute concentration dk(t) are the solution of (55).

Besides, it is sufficient to note that∮
(T (t, x)− S(t, x))f(x)dx =

∑
k∈Z∗

ak(t)c̄k −
∑
k∈Z∗

dk(t)c̄k, (59)

since all the functions involved are real and periodic, we have for all k ∈ Z∗ = Z\{0},
āk = a−k, b̄k = b−k, c̄k = c−kand d̄k = d−k; to conclude that (10) is equivalent to
infinite systems of ODEs consisting of (55) coupled with

ε
d2v

dt
+
dv

dt
+G(v)v =

∑
k∈Z∗

ak(t)c−k −
∑
k∈Z∗

dk(t)c−k, v(0) = v0,
dv

dt
(0) = w0.

Remark 2.2.2. We note that the system (10) is equivalent to the system (14) for
acceleration, velocity, temperature and solute concentration and from the above
proposition, it is equivalent to the following infinite system of ODEs (60)

dw

dt
+

1

ε
w = −1

ε
G(v)v +

1

ε

∑
k∈Z∗

ak(t)c−k −
1

ε

∑
k∈Z∗

dk(t)c−k, w(0) = w0

dv
dt = w, v(0) = v0

dak
dt +

(
2kπvi+ 4νk2π2 + l(v)

)
ak(t) = l(v)bk, ak(0) = ak0, k ∈ Z∗

ddk
dt +

(
2kπvi+ 4ck2π2

)
dk(t) = 4bk2π2ak(t), dk(0) = dk0, k ∈ Z∗.

(60)
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The system of equations (60) reflects two of the main features: (i) the coupling
between the modes enter through the velocity, while the diffusion acts as a lin-
ear damping term, (ii) the non linear term, given by Newton’s cooling law in the
temperature also affects the evolution of the solute concentration.

In what follows, we will exploit this explicit equation for the temperature and so-
lute concentration Fourier modes to analyze the asymptotic behavior of the system
and to obtain the explicit low-dimensional models. A similar explicit construction
was given by Bloch and Titi in [2] for a nonlinear beam equation where the non-
linearity occurs only through the appearance of the L2 norm of the unknown. A
related construction was given by Stuart in [26] for a nonlocal reaction-diffusion
equation.

In the following section, we prove the boundedness of these coefficients which
improve, in some sense, the boundedness of temperature and solute concentration,
in order to prove the existence of the inertial manifold for the system (14), using
similar techniques as in Refs. [22, 25].

2.3. Inertial manifold. We consider the general case ν > 0 together with the
nonlinear Newton’s cooling law l(v)(Ta − T ) with l(v) ≥ l0 > 0 being locally Lips-
chitz function and use inertial manifold techniques, in the spirit of the non-diffusion
case of [22], to give an explicit low-dimensional system of ODEs that describes the
asymptotic dynamics of (14). The existence of an inertial manifold does not rely,
in this case, on the existence of large gaps in the spectrum of the elliptic operator
but on the invariance of certain sets of Fourier modes.

Proposition 2.3.1. Under the above notation and hypotheses of Theorem 2.1.4,
with initial conditions (w0, v0, T0, S0) ∈ Y = IR2 × Ḣ1

per(0, 1)× L̇2
per(0, 1), for every

solution of the system (14), (w, v, T, S), and for every k ∈ Z∗, and recalling the
expansions

Ta(x) =
∑
k∈Z∗

bke
2πkix and f(x) =

∑
k∈Z∗

cke
2πkix with Z∗ = Z \ {0}

T (t, x) =
∑
k∈Z∗

ak(t)e2πkix and S(t, x) =
∑
k∈Z∗

dk(t)e2πkix

with the initial data T0 ∈ Ḣ1
per(0, 1) is given by T0(x) =

∑
k∈Z∗ ak0e

2πkix and

S0 ∈ L̇2
per(0, 1) is given by S0(x) =

∑
k∈Z∗ dk0e

2πkix, we have
(i)

lim sup
t→∞

|ak(t)| ≤ |bk|, (61)

lim sup
t→∞

|dk(t)| ≤ b|bk|
c
, (62)

lim sup
t→∞

|v(t)| ≤ I0
G0

(
1 +

b

c

)
+H0, with I0 =

∑
k∈Z∗

|bk||ck| (63)

and G0 a positive constant such that G(v) ≥ G0,

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)(
1 +

b

c

)
I0, with G∗0 = lim sup

t→∞
G(v(t)). (64)

(ii)

lim sup
t→∞

‖T (t)‖ ≤ ‖Ta‖ (65)
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lim sup
t→∞

‖S(t)‖ ≤ b

c
‖Ta‖ (66)

lim sup
t→∞

|v(t)| ≤ ‖f‖‖Ta‖
G0

(
1 +

b

c

)
+H0 (67)

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)(
1 +

b

c

)
‖f‖‖Ta‖. (68)

In particular, if Ta ∈ Ḣm
per(0, 1), we have the global compact and connected at-

tractor A ⊂ [−M,M ] × [−N,N ] × C × C where M,N are the upper bounds for
acceleration and velocity as given in (68) and (67) respectively and T, S ∈ C =

{R(x) ∈ Ḣm
per(0, 1), R(x) =

∑
k∈Z∗ rke

2πkix, |rk| ≤ d|bk|}, where d = max{1, bc} and

A is a compact set in IR2 × Ḣm
per(0, 1)× Ḣm

per(0, 1).

Proof. (i) From (55), we have

ak(t) = ak0e
−4νπ2k2te−

∫ t
0

[2πkvi+l(v)] + bk

∫ t

0

e−4νπ2k2(t−s)l(v(s))e−
∫ t
s

[2πkvi+l(v)]ds

(69)
and taking into account that

|e−
∫ t
0

2πkvi| = |e−
∫ t
s

2πkvi| = 1, e−4νπ2k2(t−s) ≤ 1, and∫ t

0

l(v(s))e−
∫ t
s
l(v)ds = 1− e−

∫ t
0
l(v) (70)

we obtain:
|ak(t)| ≤ |ak0|e−4νπ2k2te−

∫ t
0
l(v) + |bk|(1− e−

∫ t
0
l(v)) (71)

and we get (61) i.e., lim supt→∞ |ak(t)| ≤ |bk|.
From (55), we have

dk(t) = dk0e
−4cπ2k2te−

∫ t
0

2πkvi + 4bπ2k2

∫ t

0

ak(s)e−4cπ2k2(t−s)e−
∫ t
s

2πkvids. (72)

Substituting (69) in (72), we have

|dk(t)| ≤ |dk0|e−4cπ2k2t + 4bπ2k2(|I1(t)|+ |I2(t)|) (73)

where

I1(t) =

∫ t

0

ak0e
−

∫ s
0

[2πkvi+l(v)]e−4cπ2k2(t−s)e−
∫ t
s

2πkvie−4νπ2sds

and

I2(t) = bk

∫ t

0

[
e−4cπ2k2(t−s)e−

∫ t
s 2πkvi( ∫ s

0

l(v(r))e−
∫ s
r [2πkvi+l(v)]dre−4νπ2k2(s−r)dr

)]
ds.

Using (70) and l(v) ≥ l0 in I1(t), we get,

|I1(t)| ≤ |ak0|e−4cπ2k2t

∫ t

0

e(4cπ2k2−4νπ2−l0)sds

and

|I1(t)| ≤ |ak0|
|4π2k2c− 4π2ν − l0|

|e−(4π2ν+l0)t − e−4cπ2k2t|. (74)

Again, as |e−
∫ t
0

2πkvi| = |e−
∫ t
s

2πkvi| = 1, we have

|I2(t)| ≤ |bk|
∫ t

0

e−4cπ2k2(t−s)
(∫ s

0

l(v(r))e−
∫ s
r
l(v)e−4νπ2k2(s−r)dr

)
ds
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|I2(t)| ≤ |bk|
∫ t

0

e−4cπ2k2(t−s)
(∫ s

0

l(v(r))e−
∫ s
r
l(v)dr

)
ds

so using Eq. (70), we find

|I2(t)| ≤ |bk|
4cπ2k2

(1− e−4cπ2k2t). (75)

Finally, from (73) together with (74) and (75), we have

|dk(t)| ≤ |dk0|e−4cπ2k2t + 4bπ2k2|ak0|
|4π2k2c−4π2ν−l0| |e

−(4π2ν+l0)t − e−4cπ2k2t|+
+ b|bk|

c (1− e−4cπ2k2t)

that is

|dk(t)| ≤
b|bk|
c

+
(
|dk0| −

b|bk|
c

)
e−4cπ2k2t +

4bπ2k2|ak0|
|4π2k2c− 4π2ν − l0|

|e−(4π2ν+l0)t − e−4cπ2k2t|

(76)

and we get (62) i.e., lim supt→∞ |dk(t)| ≤ b|bk|
c .

From (30) in Theorem 2.1.4 together with∮
(T (t, x)− S(t, x))f(x)dx =

∑
k∈Z∗

ak(t)c−k −
∑
k∈Z∗

dk(t)c−k

and using (61) and (62), we get

lim sup
t→∞

|
∮

(T (t, x)− S(t, x))f(x)dx| ≤
(

1 +
b

c

)
I0 where I0 =

∑
k∈Z∗

|bk(t)||ck(t)|.

(77)
Hence, we obtain (63), namely

lim sup
t→∞

|v(t)| ≤ I0
G0

(
1 +

b

c

)
+H0

and using (32), we obtain (64) i.e.,

lim sup
t→∞

|w(t)| ≤ G∗0H0 +

(
1 +

G∗0
G0

)(
1 +

b

c

)
I0, with G∗0 = lim sup

t→∞
G(v(t)).

(ii) Using again Theorem 2.1.4 and taking into account Eq. (52) together with
I0 =

∑
k∈Z∗ |bk(t)||ck(t)| ≤ ‖Ta‖‖f‖, we obtain for any solution of (14), we have

(65), (66), (67) and (68), since the sectorial operator B define above (in the section
2.1.1) has compact resolvent from [Theorem 4.2.2 and 3.4.8] in Ref. [8], the system

has a global compact and connected attractor,A, in Y = R2×Ḣ1
per(0, 1)×L̇2

per(0, 1).
Next, we show that A ⊂ [−M,M ] × [−N,N ] × C × C where C = {R(x) ∈

Ḣm
per(0, 1), R(x) =

∑
k∈Z∗ rke

2πkix, |rk| ≤ d|bk|}, with d = max{1, bc}..
From equations (61) and (62), for any (w(t), v(t), T (t, x), S(t, x)) ∈ A we have

|ak| ≤ d|bk| and |dk| ≤ d|bk|, therefore ‖T‖ ≤ d‖Ta‖ and ‖S‖ ≤ d‖Ta‖, i.e. if

Ta ∈ Ḣm
per(0, 1) then T, S ∈ Ḣm

per(0, 1) and we have (w(t), v(t), T (t, x), S(t, x)) ∈
[−M,M ]× [−N,N ]× C × C, this is we get A ⊂ [−M,M ]× [−N,N ]× C × C.

Finally we show that C is compact in Ḣm
per(0, 1).

Indeed, for any sequence {Rn} in C we can extract a subsequence that we suntil
denote {Rn} such that it converges weakly to a function R and such that, for any
k ∈ Z∗, the Fourier coefficients verify rnk → rk as n → ∞, where rk is the kth
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Fourier coefficients of R. Therefore, |rk| ≤ d|bk| and for every integer N0.

‖Rn −R‖2m ≤
N0∑
|k|=1

|k|2m|rnk − rk|2 + C

∞∑
|k|=N0+1

|k|2m|bk|2,

where ‖.‖m denotes the norm in Ḣm
per(0, 1). Hence, the first term goes to zero as n→

∞ and the second can be made arbitrarily small as N0 →∞ since Ta ∈ Ḣm
per(0, 1)

with ‖Ta‖2m = C
∑
k∈Z∗ |k|2m|bk|2 < ∞. Consequently, R ∈ C and Rn → R in

Ḣm
per(0, 1) and the result is proved.
Now, we will prove that there exists an inertial manifold M (see a definition in

Ref. [7]) for the semigroup S∗(t) in the phase space Y = R2×Ḣ1
per(0, 1)×L̇2

per(0, 1),
i.e., a submanifold of Y such that

(i)S∗(t)M⊂M for every t ≥ 0,
(ii) there exists δ > 0 satisfying that for every bounded set B ⊂ Y, there exists

C(B) ≥ 0 such that dist(S(t),M) ≤ C(B)e−δt, t ≥ 0 see, for example, [7] and [23].

Assume that Ta ∈ Ḣ1
per(0, 1) with

Ta =
∑
k∈K

bke
2πkix

with bk 6= 0 for every k ∈ K ⊂ Z∗ with 0 /∈ K, since
∮
Ta(x)dx = 0. We denote

by V1 and V0 the closure of the subspaces of Ḣ1
per(0, 1) and L̇2

per(0, 1) respectively

generated by {e2πkix, k ∈ K}.

Theorem 2.3.2. Assume that Ta ∈ Ḣ1
per(0, 1) and f ∈ L̇2

per(0, 1). Then the set

M = R2 × V1 × V0 is an inertial manifold for the flow of S∗(t)(w0, v0, T0, S0) =

(w(t), v(t), T (t), S(t)) in the space Y = R2 × Ḣ1
per(0, 1)× L̇2

per(0, 1). Moreover if K
is a finite set, the dimension of M is 2|K|+ 2, where |K| is the number of elements
in K.

Proof. Step (i). First, we show that M is invariant. Note that if k /∈ K, then
bk = 0, and therefore if ak0 = 0, from (69), we get that ak(t) = 0 for every t, i.e.,

T (t, x) =
∑
k∈K

ak(t)e2πkix and if dk0 = 0, using ak(t) = 0, from (72) we get dk(t) = 0

for every t, i.e., S(t, x) =
∑
k∈K

dk(t)e2πkix. Therefore, if (w0, v0, T0, S0) ∈ M, then

(w(t), v(t), T (t), S(t)) ∈M for every t, i.e., M is invariant.

Step (ii). From previous assertions,
∮

(T (t, x)−S(t, x))f(x)dx =
∑
k∈K

ak(t) · c−k −∑
k∈K

dk(t) · c−k and the flow on M is given by



dw
dt + 1

εw + 1
εG(v)v = 1

ε

∑
k∈K ak(t) · c−k − 1

ε

∑
k∈K dk(t) · c−k

dv
dt = w

dak
dt +

[
2πkvi+ 4νπ2k2 + l(v)

]
ak(t) = l(v)bk, k ∈ K

d(dk)
dt +

[
2πkvi+ 4cπ2k2

]
dk(t) = 4bπ2k2ak(t), k ∈ K

ak = dk = 0, k /∈ K

(78)
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Now, we consider the following decomposition in Ḣ1
per(0, 1), T = T 1 +T 2, where

T 1 is the projection of T on V1 and T 2 is the projection of T on the subspace gen-

erated by {e2πkix, k ∈ Z∗ \K} i.e., T 1 =
∑
k∈K

ake
2πkix and T 2 =

∑
k∈Z∗\K

ake
2πkix =

T − T 1.
Analogously, we consider the decomposition S = S1 + S2 in L̇2

per(0, 1) where S1

is the projection of S on V0, i.e., S1 =
∑
k∈K dke

2πkix and S2 = S − S1. Then,

given (w0, v0, T0, S0) ∈ Y we decompose T0 = T 1
0 + T 2

0 , S0 = S1
0 + S2

0 , and T (t) =
T 1(t) + T 2(t), S(t) = S1(t) + S2(t) and we consider (w(t), v(t), T 1(t), S1(t)) ∈ M
and then

(w(t), v(t), T (t), S(t))− (w(t), v(t), T 1(t), S1(t)) = (0, 0, T 2(t), S2(t)).

From (71), and taking into account that bk = 0 for k ∈ Z∗, we have |ak(t)| ≤
|ak0|e−4νπ2k2t and together with 4νπ2k2t ≥ 4νπ2t for every k ∈ Z∗ with (52),

implies that ‖T 2(t)‖Ḣ1
per
≤ ‖T 2

0 ‖Ḣ1
per
e−4νπ2t i.e., T 2(t)→ 0 in Ḣ1

per(0, 1) if t→∞.

Moreover, we have S2(t) =
∑
k∈Z∗\K dk(t)e2πkix, therefore

‖S2(t)‖2
L̇2
per(0,1)

=
∑

k∈Z∗\K

|dk(t)|2.

Since bk = 0 for k ∈ Z∗ \K, from (76) we have

|dk(t)|2 ≤
(
|dk0|e−4cπ2k2t +

b|ak0|
c
|Ik||e−(4π2ν+l0)t − e−4cπ2k2t|

)2

where |Ik| = k2∣∣k2− νc− l0
4π2c

∣∣ .
Then, using (α + β + γ)2 ≤ 4(α2 + β2 + γ2), together with π2k2δt ≥ π2δt for

every k ∈ Z∗ and δ = min{ν, c}, we get

|dk(t)|2 ≤ 4e−8π2δt

(
|dk0|2 + 2

b2|ak0|2

c2
|Ik|2

)
.

From this, we obtain

‖S2(t)‖2
L̇2
per
≤ 4e−8π2δt

‖S20‖2L̇2
per

+
2b2

c2

∑
k∈Z∗\K

|ak0|2|Ik(t)|2
 (79)

Now, we note for any ε > 0 there exists N0(ε) such that |Ik − 1| ≤ ε for every
|k| ≥ N0, and then |Ik|2 ≤ (ε+ 1)2. Thus taking ε = 1 (for example), we have

∑
k∈Z∗\K

|ak0|2|Ik(t)|2 =

N0∑
|k|=1

|ak0|2|Ik(t)|2 +

∞∑
|k|=N0+1

|ak0|2|Ik(t)|2 ≤ C + 2‖T20‖2L̇2
per
.

Thus,

‖S2(t)‖2
L̇2
per
≤ 4e−8δπ2t

(
‖S20‖2L̇2

per
+

2b2

c2
(C + 2‖T20‖2L̇2

per
)

)
. (80)

Therefore, ‖T 2(t)‖Ḣ1
per

and ‖S2(t)‖L̇2
per
→ 0 as t→∞ with exponential decay rate

e−4π2δt. Thus, M attracts (w(t), v(t), T (t), S(t)) with exponential rate e−4π2δt in

R2 × Ḣ1
per(0, 1)× L̇1

per(0, 1).
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Remark 2.3.3. If T0, S0 ∈ Ḣm
per(0, 1), from |ak(t)| ≤ |ak0|e−4δπ2t and taking into

account of (52), we get ‖T 2(t)‖Ḣmper(0,1) ≤ e−4δπ2t‖T 2
0 ‖Ḣmper(0,1); and we note working

as above we have

‖S2(t)‖2
Ḣmper(0,1)

≤ 4e−8δπ2t

(
‖S20‖2Ḣmper(0,1)

+
2b2

c2
(C + 2‖T20‖2Ḣmper(0,1)

)

)
and the invariant M, attracts the solutions (w(t), v(t), T (t), S(t)) in

R2 × Ḣm
per(0, 1)× Ḣm

per(0, 1)

with exponential rate e−4π2δt.

2.4. The explicit reduced subsystem. Under the hypotheses and notation of
Theorem 2.3.2, we suppose that

f(x) =
∑
k∈J

cke
2πkix, (81)

with ck 6= 0 for every k ∈ J ⊂ Z and ck = 0 if k /∈ J.. On the inertial manifold∮
(T (t, x)−S(t, x))f(x)dx =

∑
k∈K

ak(t)·c−k−
∑
k∈K

dk(t)·c−k =
∑
K∩J

(ak(t)−dk(t))c−k.

So, the evolution of velocity v, and acceleration w depends on the Fourier coef-
ficients of T and S in the set K ∩ J . In order to solve full system, this, first we get
the coefficients of T and S which belong to the set K ∩ J and after we must solve
the equations for the coefficients of T and S k /∈ K ∩ J (i.e. |K \ (K ∩ J)|).

We note that 0 /∈ K ∩ J and since K = −K and J = −J then the set K ∩ J
has an even number of elements, that we denote by 2n0. Therefore, the number of
positive elements of K ∩ J , (K ∩ J)+, is n0.

Corollary 2.4.1. Under the notation and hypotheses of the Theorem 2.3.2, we
suppose that the set K ∩ J is finite and then |K ∩ J | = 2n0. Then the asymptotic
behavior of the system (14), is described by a system of N = 4n0 + 2 coupled
equations in RN , which determine (w, v, ak, dk), k ∈ K ∩ J, and a family of |K \
(K ∩ J)| linear non-autonomous equations. In particular, if K ∩ J = ∅, l(v) = l0
and G(v) = G0 then for every (w0, v0, T0, S0) ∈ R2× Ḣ1

per(0, 1)× L̇2
per(0, 1) we have

that the associated solution satisfies that v(t)→ 0 and T (t)→ θ∞ in Ḣ1
per(0, 1) and

S(t) → b
cθ∞ in L̇2

per(0, 1) where θ∞(x) is the unique solution in Ḣ2
per(0, 1) of the

equation

− ν ∂
2θ∞
∂x2

+ l0θ∞ = l0Ta(x). (82)

It is worth mention that (v(t), T (t, x), S(t, x)) → (0, θ0,
b
cθ0), which is an equi-

librium solution of the equations (10).

Proof. On the inertial manifold∮
(T (t, x)− S(t, x))f(x)dx =

∑
k∈K

(ak − dk)(t)c−k =
∑

k∈K∩J

ak(t)c−k −
∑

k∈K∩J

dk(t).c−k.

Therefore, the dynamics of the system depends on the coefficients in K∩J. Moreover
the equations for a−k and d−k are conjugates of the equations for ak and dk, and

therefore we have
∑

k∈K∩J

ak(t)c−k = 2Re

 ∑
k∈(K∩J)+

ak(t)c−k

 and
∑

k∈K∩J

dk(t)c−k
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= 2Re

 ∑
k∈(K∩J)+

dk(t)c−k

. From this, taking real and imaginary parts of ak, (a
k
1 ,

ak2) and dk, (d
k
1 , d

k
2), k ∈ (K ∩ J)+ in (60) with n0 = |(K ∩ J)+|, we conclude.

Finally, if K ∩ J = ∅, l(v) = l0 and G(v) = G0 then on the inertial manifold we
get a homogeneous linear equation for the velocity with positive coefficients, that
is:

ε
d2v

dt2
+
dv

dt
+G0v = 0

and therefore we have v(t)→ 0 when t→∞.
Moreover from the equation for the temperature in (14) we have that the function

θ = T − θ∞ satisfies the equation:

∂θ

∂t
+ v

∂θ

∂x
= −v ∂θ∞

∂x
+ ν

∂2θ

∂x2
− l0θ. (83)

We can multiply by θ in L̇2
per and taking into account that

∮
∂θ
∂xθdx = 1

2

∮ ∂(θ2)
∂x dx

= 0, since θ is periodic, we have

1

2

d

dt
‖θ‖2 + ν‖∂θ

∂x
‖2 = −v

∮
∂(θ∞)

∂x
θdx−

∮
l0θ

2dx (84)

and using Cauchy-Schwartz and Young inequality with δ, Cδ = 1
4δ and then the

Poincaré inequality, since
∮
θdx = 0, we have

1

2

d

dt
‖θ‖2 + (νπ2 + l0)‖θ‖2 ≤ |v|(Cδ‖

∂θ∞
∂x
‖2 + δ‖θ‖2). (85)

Using v(t)→ 0, together with Gronwall lemma, we prove that θ(t)→ 0 in L̇2
per(0, 1).

We note that S − b
cθ∞ satisfies the equation

∂(S − b
cθ∞)

∂t
− c

∂2(S − b
cθ∞)

∂x2
= −v ∂S

∂x
− b∂

2(θ)

∂x2
(86)

multiplying this equation by S − b
cθ integrating by parts and taking into account,

the periodicity of S, we obtain
∮
∂S
∂xSdx = 0, and applying the Young and Poincaré

inequality, we get the inequality du/dt + c∗u ≤ ε
2 for every t ≥ t0, large enough,

with u = ‖S − b
cθ∞‖

2, and c∗ > 0. Finally, from the Gronwall lemma we have

u(t) ≤ u(t0)e−c
∗(t−t0) +

ε

2
(1− e−c

∗(t−t0))

and thus lim supt7→∞ u(t) ≤ ε
2 for every ε > 0.

Remark 2.4.2. Taking the real and imaginary parts of the coefficients of the
temperature, ak(t), heat flux at the wall of the loop, bk, the geometry of the circuit,
ck, and the solute concentration, dk(t), k ∈ (K ∩ J)+, as

ak(t) = ak1(t) + iak2(t), bk = bk1 + ibk2 , ck = ck1 + ick2 , dk(t) = dk1(t) + idk2(t)
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the asymptotic behavior of the system (14) is given by a reduced explicit system of
ODEs in IRN , with N = 4n0 + 2, given by

dw

dt
+

1

ε
w +

1

ε
G(v)v(t) =

1

ε
2

∑
k∈(k∩J)+

[ak2(t)ck2 − ak1(t)ck1 ]−

− 1
ε2
∑
k∈(k∩J)+

[dk2(t)ck2 − dk1(t)ck1 ]
dv
dt = w
dak1
dt + [l(v) + 4π2k2νak1(t)− 2πkv(t)ak2(t)] = l(v)bk1 , k ∈ (K ∩ J)+
dak2
dt + [l(v) + 2πkv(t)ak1(t) + 4π2k2νak2(t)] = l(v)bk2 , k ∈ (K ∩ J)+
d(dk1 )
dt + [4cπ2k2dk1(t)− 2πkv(t)dk2(t)] = 4bπ2k2ak1(t), k ∈ (K ∩ J)+

d(dk2 )
dt + [4cπ2k2dk2(t) + 2πkv(t)dk1(t)] = 4bπ2k2ak2(t), k ∈ (K ∩ J)+

Thus, we have reduced the asymptotic behavior of the initial system (14) to
the dynamics of the reduced explicit system (87). It is worth noting that, from
the above analysis, it is possible to design the geometry of the circuit and/or the
external heating source, by properly choosing the functions f and/or the ambient
temperature, Ta, so that the resulting system has an arbitrary number of equations
of the form N = 4n+ 2.

Note that K and J may be infinite sets, but their intersection is finite. For
instance, for a circular circuit we have f(x) ∼ a sin(x) + b cos(x), i.e., J = {±1}
and then K ∩ J is either {±1} or the empty set.

3. Numerical integration. In this section we present some numerical integra-
tions using the MATHEMATICA package [31] for the resolution of the differential
equations (87), using a fourth-order explicit Runge-Kutta method suitable for stiff
equations [5, 10]. To study the asymptotic behavior of the system of equations, we
consider the coefficients of temperature ak(t) and the coefficients of solute concen-
tration dk(t) with k ∈ K∩J, as the relevant modes. Then, we have the finite system
of differential equations:

dw
dt =

2Re(
∑
k∈(K∩J)+

ak(t)c−k)

ε −
2Re(

∑
k∈(K∩J)+

dk(t)c−k)

ε − G(v)v
ε − w

ε ,
dv
dt = w,

dak
dt = l(v)bk − l(v)ak(t)− 4νπ2k2ak(t)− 2πkvak(t)i,
d(dk)
dt = −4cπ2k2dk(t) + 4bπ2ak(t)− 2πkvdk(t)i.

(87)
If we take, for sake of simplicity, a circular geometry, then J = {±1} and K∩J =

{±1}. Also, if we take k = 1 and omit the equation for −k, the conjugate of k.
Therefore, we have the following transformed set of equations:

dw
dt = 2Re(a1(t)c−1)

ε − 2Re(d1(t)c−1)
ε − G(v)v

ε − w
ε ,

dv
dt = w,

da1
dt = l(v)b1 − l(v)a1(t)− 4νπ2a1(t)− 2πva1(t)i,
d(d1)
dt = −4cπ2d1(t) + 4bπ2a1(t)− 2πvd1(t)i

(88)

where the unknowns are w(t), the acceleration of the fluid, v(t), the velocity of the
fluid, a1(t), the Fourier mode of the temperature and d1(t), the Fourier mode of the
solute concentration.

In order to reduce the number of free parameters, we make the following change
of variables a1c−1 → a1 and d1c−1 → d1 and we introduce the real and imaginary
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parts of the equations in the following way:

a1(t) = a1(t) + ia2(t),

d1(t) = d1(t) + id2(t)

b1 = A+ iB

with a1, a2, d1, d2, A, B ∈ IR. Finally, we will integrate the system

dw
dt = 2a1−2d1−G(v)v−w

ε ,
dv
dt = w,

da1

dt = l(v)A− l(v)a1 − 4νπ2a1 + 2vπa2

da2

dt = l(v)B − l(v)a2 − 4νπ2a2 − 2vπa1

d(d1)
dt = −4cπ2d1 + 4bπ2a1 + 2vπd2

d(d2)
dt = −4cπ2d2 + 4bπ2a2 − 2vπd1

(89)

This forms a system of six differential equations with six unknowns where we need
to make explicit choices for the constitutive laws of both the fluid-mechanical and
thermal properties. The function G(v) has a clear physical meaning; it interpolates
between a low Reynolds number friction law (in which the overall friction, G(v)v
is nonlinear (Stokes friction law), and high Reynolds number (in which the friction
is a quadratic law). For the friction law G(v) and heat flux l(v) = l(v)(Ta − T ),
we will take the ones used in the references [5, 10]. For the numerical experiments,
which are of a similar model of thermosyphon for a fluid with one component, they
use the functions G(v) = (|v|+ 10−4) and l(v) = (10−2|v|+ 1).

The parameter ε in the system of equations (14) is the nondimensional version
of µ/E which has dimensions of time. Roughly speaking, it gives the (nondimen-
sional) time scale in which the transition from elastic to fluid-like occurs in the
fluid. Numerical analysis has been carried out keeping ε the viscoelastic coefficient
as the tuning parameter ranging from 10−5 (almost Newtonian) to 101 a highly
viscoelastic value. The impact of ε on the system has been keenly observed for the
parameters of time t, as short as 100 time units and as long as 1000 time units. All
the variables and equations that we deal with are non-dimensional.

For the Soret effect diffusion coefficients (b and c), we will assume the values
calculated by Hart in [9], that consider a thermosyphon of circular geometry of
radius R0 (for the loop) and Rp (for the pipe). Hart takes the values for a mixture
of alcohol and water, borrowed from Hurle and Jakeman [9]. This reference settles
down that c = Ds

V R0
is the number of Lewis, where Ds is the diffusivity of the solute

that has a value for such a mixture of 10−5cm2s−1 and V is the scale of velocity,
with a value of 10−2cms−1 for a circular thermosyphon whose loop to pipe radius
ratio is 10. Therefore we will take c = 10−3. Also, as Hart discussed in [9], b (the
Soret diffusion coefficient) is a parameter that determines the qualitative behaviour
of the variables. Therefore, in the numerical experiments we treat the value of b
the Soret coefficient as another tuning parameter ranging from 10−5 to 101.

We plot the relevant modes of temperature and solute concentration as they
are the ones to have influence on the acceleration w(t) and velocity v(t). The
real and imaginary parts of the Fourier transform of the temperature (a1 and a2)
and the analogous for the solute concentration (respectively, d1 and d2). As the
system is multidimensional, we present the results in temporal graphs (a given
variable versus time) and phase-space graphs (two physical variables plot against
each other). We will show that, in analogy with the classical Lorenz system, as
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ε varies, the dynamics of the model undergoes various transformations including
steady asymptotic behavior, meta-stable chaos, i.e., transient irregular behavior
followed by convergence to equilibria, periodic behaviors and chaotic progressions.

4. Results and discussion. In this section we analyze and discuss the behavior
of the system for various parameters of the viscoelastic coefficients with various
Soret Effect gradients. In each of the subsequent subsections, we define and fix the
various parameters that are employed in this model. A and B refer to the position-
dependant (x) heat flux inside the loop. Without loss of generality, we will assume
A = 0, while B is fixed to be 30, in order to simplify and, in analogy with Lorenz’s
model, as it is shown in references [5, 10] (changing A and B simultaneously only
results in a change in the phase of initial temperature profile). The heat diffusivity is
fixed to ν = 0.002, namely, temperature diffusion is present but not dominant. The
initial conditions are fixed as w(0) = 0, v(0) = 0, a1(0) = 1, a2(0) = 1, d1(0) = 0.01,
and d2(0) = 1. As, in all cases, we are concerned with the long time behavior of
the system, the specific choice of the initial condition does not change significantly
the main qualitative conclusions following our results.

4.1. Experiment I: Soret coefficient b = 10−5. In this very first numerical ex-
periment, keeping the Soret coefficient b as small as 10−5, we observe the impact
of ε the viscoelastic coefficient on the system. Numerical experiments were carried
out for different viscoelastic coefficients ε ranging from 10−5 to 10 as tuning pa-
rameters. In Figs. 1-3 we show the behavior of the system for a particular case of
numerical experiments for the values of ε = 10−5 and Soret coefficient 10−5, plot-
ting acceleration, velocity, temperature and the solute concentration versus time.

Figure 2. The chaotic behavior of acceleration and velocity for
ε = 10−5, A=0, B=30, b = 10−5, ν = 0.002, G(v) = (|v| + 10−4)
and l(v) = (10−2|v| + 1). The right panel shows the acceleration-
velocity phase-space graph.

Clearly, the chaotic behavior of the system is observed for these ranges of param-
eters. The plots in Fig. 2 of acceleration and velocity portray the chaotic nature
of the behavior of the system. The acceleration ranges from -20 to 20 while the
velocity ranges from -3 to 3. As the velocity is the time derivative of acceleration,
the deviation in the time series plot of velocity is reduced to -3 to 3. But both the
plots exhibit chaotic progresses for the entire range of 1000 time units. So, when the
viscoelastic coefficient as well as the Soret coefficient are small enough (∼ 0.00001)
the system has, apparently, chaotic behaviors.

The real and imaginary parts of the temperature are plotted in Fig. 3 for the last
time units used in the numerical integration. Both plots exhibit complex and chaotic
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Figure 3. The chaotic behavior of the real and imaginary parts
of temperature for ε = 10−5, A=0, B=30, b = 10−5, ν = 0.002,
G(v) = (|v|+10−4) and l(v) = (10−2|v|+1). The right panel shows
the acceleration-velocity phase-space graph.

Figure 4. The chaotic behavior of the real and imaginary parts
of solute concentration for ε = 10−5, A=0, B=30, b = 10−5, ν =
0.002, G(v) = (|v|+10−4) and l(v) = (10−2|v|+1). The right panel
shows the acceleration-velocity phase-space graph.

features until the end of the entire 1000 time units. As in the case of acceleration
and velocity, the temperature too is chaotic, when both the viscoelastic and Soret
effect coefficients are as small as 10−5. This is a consequence of the coupling between
the variables. The right panel in Fig. 3 shows the phase-space graph, resembling
the celebrated Lorenz’s phase-diagram.

The real and imaginary parts of the solute concentration Fourier mode are given
in Fig. 4 for the last time units, the first one corresponding to the real part of
the solute concentration and, the second, to the imaginary part of the solute con-
centration. Both plots have a similar chaotic behavior. Comparing the plots of
temperature with solute concentration, we find that the deviation in temperature
is very well distributed throughout the progression, whereas the deviation in the
solute concentration is found to be more concentrated at the centre.

To sum up this first numerical experiment, we find that when the value of vis-
coelastic and Soret coefficients are both 10−5, the system is chaotic. Similar type
of chaotic behaviors are found for all the values of the viscoelastic components ε
ranging from 10−5 to 10, when the value of Soret coefficient is 10−5. From the
above observations, we can qualitatively state that when the Soret coefficient b is
smaller than 10−5, the system has chaotic behaviors. In Sec. 4.4 we will extend
these results quantitatively by means of standard Lyapunov exponent analysis.

4.2. Experiment II: Soret coefficient b = 10−3. In this second set of numerical
experiments, by keeping the Soret coefficient b = 10−3, we determine the impact of
ε the viscoelastic coefficient on the system, by ranging from ε = 10−5 to 10.
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4.2.1. Case I. Transition from chaotic behavior for ε = 10−1. Numerical experi-
ments were carried out for the viscoelastic coefficients 10−5, 10−4, 10−3, 10−2, and
10−1, keeping the Soret coefficient fixed to be b = 10−3. Until the value of ε=0.1,
the system has chaotic behavior. But at ε=0.1, the system begins to change from
fully chaotic behavior to periodic or stable behavior. To avoid redundancy, we will
show, hereafter, the plots for the velocity.

Figure 5. The chaotic transition of the fluid velocity for ε=0.1,
A=0, B=30, b = 10−3, ν = 0.002, G(v) = (|v| + 10−4) and l(v) =
(10−2|v| + 1). Left: The first 100 time steps. Right: The last 5
timesteps. Notice the transition from chaotic to periodic.

The phase-space plots of system variables is shown in Fig. 5, portray the transi-
tion that takes place in the nature of the behavior of the system, though it suntil
is chaotic apparently. The plot exhibits a chaotic behavior at the early stages of
the dynamics together with a decay towards the long-time behavior. Thus, after
around 400 time units, the system begins to change its behavior to converge to a
periodic solution (not shown). This change of behavior is present also in the time
series plots of temperature and solute concentration, which help us to make note of
the changing phenomena for these particular parameters.

4.2.2. Case II. The quasi-periodic behavior for ε=1. Continuing from the previous
numerical experiment, when ε is increased to 1, a relatively greater value from the
previous experiment, we find a significant change to quasi-periodic behavior taking
place in the system. In order to illustrate the quasi-periodic behavior of the system,
we plot different phase-diagrams in Fig. 6. In contrast with the phase-space plots
in Fig. (4) in this case the solution covers the ring in that figure, always in the
same direction (either clockwise or anti-clockwise) what shows that the behavior is
(quasi-)periodic but it is no longer chaotic.

To sum up, we have found that when the viscoelastic coefficient is 1 and the
Soret coefficient b = 10−3, the system displays a transition from a chaotic behavior
to a quasi-periodic behavior. It also shows that the system is slowly transforming
towards a state of stable behavior.

4.2.3. Case III. The stable behavior for ε=10. Finally, numerical experiments were
carried out for the viscoelastic coefficient ε=10, keeping the Soret coefficient fixed
to be b = 10−3. For ε=10, a relatively large value, the velocity displays a chaotic
beginning but as time progressed it begins to stabilize around the time unit 400 (not
shown). Once crossing the 400 time mark, the plot shows a very stable progress
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Figure 6. Quasi-periodic behavior for ε=1, A=0, B=30, b =
10−3, ν = 0.002, G(v) = (|v| + 10−4), l(v) = (10−2|v| + 1). Left:
velocity-acceleration phase plot. Middle: real-imaginary parts of
temperature phase plot. Right: real-imaginary parts of solute con-
centration phase plot.

until the end of 1000 time units. A transition from chaotic to stable behaviors of
the system is displayed by the variables a1, a2, d1 and d2 (not shown). This gives
us a broad understanding that when the viscoelastic coefficient is large i.e., ε=10,
the system tends to stabilize as the time progresses. This result can be confirmed
by the value of the maximum Lyapunov exponent for this set of parameters and
summarized in Table 2. In particular, for ε = 10 and b = 10−3, this exponent is
−0.03 so, as it is the maximum, all the Lyapunov exponents are negative and the
system converges to a stable solution.

To sum up, we find that when the value of viscoelastic component is 10 and
the Soret coefficient is 0.001, the system has a transformation from chaos to stabil-
ity. From the above observation, we can state that when the value of viscoelastic
component is 10, the system has stabilizing effects.

To sum up the numerical experiment II, we find that when the Soret coefficient
b = 10−3, the system has different kind of behaviors depending on the range of ε
the viscoelastic coefficient. When ε is relatively small, i.e., ε < 10−1 the system has
chaotic effect. But when ε=1, the system has quasi-periodic effect and at ε=10, it
begins to stabilize. From these results, we can state that when the Soret coefficient
b = 10−3, the system has different kind of behaviors depending on the values of ε
the viscoelastic coefficient.

4.3. Experiment III: Soret coefficient b = 1. In the third set of numerical
experiments, numerical integrations were carried out, keeping the Soret coefficient
b fixed to be 1, while the viscoelastic coefficient ε ranging from 10−5 to 10 as tuning
parameter. A significant change in the behavior of the system is observed for the
viscoelastic coefficient ε=1. That is, when the viscoelastic coefficient and the Soret
coefficient are equal to 1, the system has a stable behavior.

In all cases integrated, we can claim that, in general, the most important param-
eter is ε.

Concluding all the three sets of numerical experiments, we want to empha-
size that the overall impact of the viscoelastic coefficient on the system for the
entire range of parameter ranging from 10−5 to 101, for both viscoelastic and
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ε/b 10−5 10−4 10−3 10−2 10−1 100 101

101 C C S S S S S
100 C C QP S S S S
10−1 C C QP S S S S
10−2 C C C C C C C
10−3 C C C C C C C
10−4 C C C C C C C
10−5 C C C C C C C

Table 1. Qualitative summary of the overall behavior of the sys-
tem for different values of the viscoelastic characteristic time, ε
(columns) and the Soret gradient(rows). We introduce the follow-
ing notation to account for the obtained numerical results: ‘S’ a
stable behavior,‘C’ denotes a fully chaotic behavior, and ‘QP’ a
transitional behavior from chaotic to either periodic or quasi-
periodic.

Soret gradients. We observe that when the viscoelastic coefficient is small, i.e.,
ε = 10−5, 10−4, 10−3 and 10−2 the system has chaotic behaviors irrespective of the
Soret gradient. But when ε=0.1, 1 and 10 the system has three different kind of
behaviors depending on the Soret gradients. At first, when the Soret coefficient is
10−5 and 10−4, the system has chaotic behavior for all the values of viscoelastic
coefficients. In the second place, when the Soret gradient is 10−3, the system has
chaotic, quasi-periodic and stable behavior when ε=0.1, 1 and 10 respectively. And
in the third place, when the values of viscoelastic coefficient and the Soret gradient
are 0.1, 1 and 10, the system has stable behavior. Table 1 provides the qualitative
details of all of these behavior of the system for various parameters, where we have
introduced the following notation to account for the obtained numerical results:
‘S’ a stable behavior,‘C’ denoting a fully chaotic behavior, and ‘QP’ a transitional
behavior from chaotic to quasi-periodic behavior.

4.4. Analysis of the behavior of the system using Lyapunov exponents.
The behavior of physical systems has been a matter of primary importance to
scientists, engineers and mathematicians in order to determine and characterize
the dynamical behavior of the system. In this regard, the behavior of the sys-
tem that we are working with has to be ascertained as it has nonlinear dynamics
with many variables. To that aim, the Russian mathematician Alexandr Lyapunov
introduced definitions and criteria to establishes unambiguously chaotic, periodic,
quasi-periodic or stable behavior by studying the linearization of the equations of
motion to determine the behavior of any system, through the now so-called Lya-
punov exponents. The signs and the values of the Lyapunov exponents allow us to
determine the qualitative and quantitative patterns of behavior of any system [30].

The Lyapunov exponents have been proved useful for determining and distin-
guishing the various types of orbits and behavior of our system. In the first case,
when the viscoelastic coefficients ε = 10−5, 10−4, 10−3 and 10−2 relatively lesser
gradients, the system has positive Lyapunov exponents, which is a clear indicator
for chaotic or strange behavior of the system. In the second case, when the vis-
coelastic coefficients ε are 0.1, 1 and 10, relatively higher gradients, the system
has positive, negative and around the zero point Lyapunov exponents which imply
different kind of behaviors. In this case, depending on the value of Soret gradients
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the system exhibits chaotic, quasi-periodic, periodic and stable behaviors. As the
viscoelastic and Soret gradients increased, the system has more negative Lyapunov
exponents which confirm to greater stable behaviors. In a particular case, when
the viscoelastic gradient is 1 and the Soret gradient is 10−3, the system has the
Lyapunov exponent in and around zero, which is an indication for a quasi-periodic
behavior.

ε/b 10−5 10−4 10−3 10−2 10−1 100 101

101 0.39 0.39 -0.03 -0.39 -0.52 -0.52 -0.52
100 0.45 0.45 0.07 -0.39 -0.49 -1.10 -1.11
10−1 0.42 0.42 0.01 -0.01 -0.24 -0.46 -0.46
10−2 2.61 2.61 1.25 1.36 1.36 1.36 0.87
10−3 2.22 2.22 2.22 2.22 2.22 2.22 2.22
10−4 2.24 2.24 2.24 2.24 2.24 2.24 2.24
10−5 2.29 2.29 2.34 2.29 2.29 2.29 2.29

Table 2. The maximum Lyapunov exponent of the system for dif-
ferent values of the viscoelastic characteristic time, ε (columns) and
the Soret gradient(rows). We can assume that maximum Lyapunov
exponents close to 0±0.1 correspond to quasi-periodic behavior (as
simple inspection of the time series plots confirm).

Figure 7. The overall behavior of the system for different values
of viscoelastic and Soret coefficients (the red area at the bottom
indicates chaos, the blue area in the middle indicates the quasi-
periodic behavior and the yellow area at the top indicates the stable
behavior).

Table 2 summarizes our results for different values of the viscoelasticity and the
Soret coefficients. It provides a schematic view of the behavior of the entire system.
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As Table 2 shows, we can observe that for a major part of the experiment, chaos
is the common feature of the behavior of the system, apart from a few stable and
quasi-periodic behavior of the system where the viscoelastic as well as the Soret
coefficient are high. Figure 7 gives the overall behavior of the system, where the
dark area indicates the chaos, the shaded area indicates the stable behavior and the
white area indicates the quasi-periodic behavior of the system.

5. Conclusion. In this work we have derived a system of equations that governs
the motion of a viscoelastic material with the Soret effect inside a closed-loop ther-
mosyphon. This model, which is a generalization of a previous work [32], has been
used to study the presence of complex chaotic behaviors and also to relate them
with the underlying viscoelastic (memory effects). This generalization comes from
the physical (as it allows to study the coupling of new physical mechanisms, as the
Soret effect) and mathematical sides (as the new field describing the solute concen-
tration is coupled in a non-trivial way with the velocity of the fluid and, also, with
the temperature). Thus, new equations for the solute concentration, S, introduces
new complexity into the equations and, consequently, the results for the inertial
manifold cannot be straightforwardly derived from Ref. [32] but, rather, involve
new assumptions and calculations with the Fourier coefficients as shown in Sec. 2.

The results suggest that, when the value of the viscoelastic coefficient ε is small,
it drives the dynamics to a chaotic behavior for all the physical observable (accel-
eration, velocity, temperature and solute concentration). In contrast, and contrary
to what happens in the absence of solute, as the value of ε gradually increases, the
system has a transition from chaotic to quasi-periodic or stable behavior depending
on the Soret gradient. From these numerical experiments, we observe that the vis-
coelastic material with Soret gradients sets the system in chaos when the viscoelastic
coefficient ε is small and stabilizes the system when the viscoelastic coefficient ε is
higher.

Physically, this means that, when the viscoelastic effects are large (namely, the
time scale ε−1 is comparable with the characteristic time scale of variation due to
thermodiffusion and Soret effect, the memory smoothening arising from equation
(3) drives the system towards an stable fixed point. This might explain why chaotic
behaviors are more commonly observed in fluids than in solids in which (sustained)
elastic oscillations are periodic or damped out with time due to dissipation.

This result prevents the system to develop chaotic oscillations, what provides a
good candidate for engineering tuning of the coolant properties of the fluid inside
the thermosyphon. Thus, the inclusion of a highly thermophoretic solute allows the
oscillations to damp-out and the system can sustain a constant (stable) velocity,
thus increasing the performance of the device.
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[32] J. Yasappan, A. Jiménez-Casas and M. Castro, Asymptotic behavior of a viscoelastic fluid in
a closed loop thermosyphon: Physical derivation, asymptotic analysis and numerical experi-

ments Abstract and Applied Analysis, 2013 Art. ID 748683, (2013), 20pp.

Received June 2013; 1st revision March 2014; 2nd revision May 2014.

E-mail address: justemmasj@gmail.com

E-mail address: ajimenez@comillas.edu

E-mail address: marioc@comillas.edu

http://www.ams.org/mathscinet-getitem?mr=MR805706&return=pdf
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://dx.doi.org/10.1016/0167-2789(85)90011-9
http://www.ams.org/mathscinet-getitem?mr=MR1721106&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3055980&return=pdf
mailto:justemmasj@gmail.com
mailto:ajimenez@comillas.edu
mailto:marioc@comillas.edu

	1. Introduction
	2. Mathematical formulation of the model
	2.1. Well-posedness and boundedness: Global attractor
	2.2. Asymptotic behavior: Reduction to finite-dimensional systems
	2.3. Inertial manifold
	2.4. The explicit reduced subsystem

	3. Numerical integration
	4. Results and discussion
	4.1. Experiment I: Soret coefficient b=10-5
	4.2. Experiment II: Soret coefficient b=10-3
	4.3. Experiment III: Soret coefficient b=1
	4.4. Analysis of the behavior of the system using Lyapunov exponents

	5. Conclusion
	Acknowledgments
	REFERENCES

