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Abstract

Options are financial securities of great importance in risk management
and are widely used instruments in hedging strategies. The use of reinforce-
ment learning in hedging is an active field of research. However, the historical
data on option prices might not be sufficient to train complex machine learn-
ing models without overfitting. This motivates the creation of option market
simulators, which can augment the existing data. This project consists in
the creation of an option market simulator based on Generative Adversarial
Networks (GANs). This work uses a similar methodology to that used in the
paper “Deep Hedging: Learning to simulate equity option markets” written by
Magnus Wiese et al. However, a different generating mechanism to the one
used in such paper is explored. Here, option market scenarios are generated
as images. The realism of the generated markets is evaluated by compar-
ing distributional and time series statistics on the real and synthetic mar-
kets. The generated markets are reasonably realistic and guaranteed to be
arbitrage-free by construction. Nevertheless, the recursive mechanism used
in the aforementioned paper produces significantly better results. See the
extended version of this article for a more detailed description of the project.

1 Introduction

Options are financial securities of great importance to investors and risk managers
in the financial industry and elsewhere. A company that produces biscuits, for ex-
ample, may use options (or futures) on wheat to protect themselves financially
against an increase in its price and therefore be able to sell their biscuits at a sta-
ble price [1].

In the financial industry, options are of particular interest for hedging strategies.
A hedge is an investment which is intended to reduce the risk of adverse price
movements in an asset. Normally, a hedge consists in taking an offsetting position
in a related security [2]. As an example, an investor holding a stock can buy a put
option to reduce their exposure to a fall in the price of the stock.

In a an ideal frictionless market like that of the Black-Scholes model [3], mathe-
matical finance can provide for a perfect hedging strategy for a given portfolio of



derivatives. However, hedging in real life is much more complicated and involves
transaction costs, among other difficulties. The use of reinforcement learning to
tackle this problem is an active field of research [4, 5]. However, deep machine
learning models require huge amounts of data to avoid overfitting and the histor-
ical data might not be enough for many applications in finance. This motivates
the creation of option market simulators, which can augment the existing data.

The goal of this work is to use Generative Adversarial Networks (GANSs) to gener-
ate realistic synthetic option markets using a similar approach to that used in [6]
but exploring a different generating mechanism.

2 State of the art

Time series of asset prices exhibit some common statistical features across a wide
variety of markets and instruments. These features are known as stylized facts [7].
Generating financial time series consists in producing synthetic time series that
properly imitate this behaviour or that of some instrument or market in particular.

The most basic way to generate financial time series is the use of stochastic pro-
cesses. This approach consists in designing a stochastic process that can model the
behaviour of such time series realistically and then fine-tuning its parameters on
historical data. The time series are then generated as realisations of such stochas-
tic processes using the calibrated parameters. Brownian motion [8] and geometric
brownian motion [9] are the simplest stochastic processes used to model financial
time series. Some more sophisticated attempts at this task come in the form of
the Heston model [10] and the ARCH and GARCH models [11, 12]. The main
advantage of generating financial time series through stochastic processes is the
ease of implementation. The greatest shortcoming of these models is their lack of
realism, since most of them fail to reproduce all stylized facts at once as pointed
outin [7].

Generative modelling aims to solve the problem of generating data samples imi-
tating those in a training set. Creating synthetic financial time series is a gener-
ative modelling problem, which motivates the application of sophisticated gener-
ative modelling techniques to the problem in hand. Generative Adversarial Net-
works (GANs) are an example of modern generative models. Some of the existing
literature on the use of GANs to generate financial time series is explored here.

A GAN is a machine learning framework invented by Ian Goodfellow and his
colleagues in 2014 [13]. In a GAN setup, two neural networks (a generator and
a discriminator) play a game. The discriminator is a classifier whose goal is to
distinguish fake data samples from real ones. The generator network’s goal is to
create fake data samples that are as realistic as possible so as to fool the discrimi-
nator into classifying them as real. Once the networks are trained, the generator



can be used to produce synthetic data samples. GANs have been particularly suc-
cesful in generating synthetic images [14, 15, 16]. The GAN framework has also
been applied to create synthetic time series [17, 18].

GANSs have also been used succesfully in financial time series simulation in partic-
ular. In [19], a conditional GAN setting is used to generate financial time series
to fine-tune and aggregate trading strategies. In [20], temporal convolutional
networks (TCNs) are used for both the generator and discriminator to generate
financial time series using GANs. Finally, in [21, 22] GANs are used to predict the
stock market.

One of the most relevant studies to this project is [23]. In this paper, the au-
thor is able to generate synthetic returns series for some stocks belonging to the
S&P500 index and for the Chicago Board of Options Exchange (CBOE) Volatility
Index known as the VIX using GANSs.

The literature on this subject also includes some articles regarding the simula-
tion of option markets in particular. In [24] and [25], the authors model option
markets using stochastic processes. The most relevant paper to this work is [6].
In this article, the authors create a set of generative models based on neural net-
works to simulate the dynamics of a surface of option prices. The generator is
a deep neural network which maps noise and the current and past states of the
market to the new state. The present project uses a similar methodology to that
proposed in [6] based on the use of discrete local volatilities (DLVs) but explores
a different generating mechanism.

3 Problem formulation

3.1 Option pricing

Options are financial securities which give their holder the right (but not the obli-
gation) to buy or sell a certain asset on a certain time period at a predetermined
price. The asset is called the underlying and the predetermined price is called the
strike price [26]. A European option is that which can be exercised only at a spec-
ified expiry date and not before that. In this project we focus solely on European
call options.

In 1973, Fisher Black and Myron Scholes published “The Pricing of Options and
Corporate Liabilities” [27]. In this article, they derived a valuation formula for
options from the idea that option prices should not allow for arbitrage opportuni-
ties. Under some assumptions, the no-arbitrage price C(t, S) for a European call
option at time ¢ on an underlying asset with price S at ¢ is given by:

C(t,S) = SN(dy) — Ke "= N (dy) 1)
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Where K is the strike price and 7T is the expiry date of the call option, r is the risk-
free rate in the market, N(-) is the cumulative distribution function of a standard
normal random variable and d; and d, are given by:

In(2) + (r + Z)(T —t)

dv = T =1 2)
do=dy —oVT —t 3

Where ¢ is the volatility assumed for the underlying asset price process between
tand T.

3.2 Implied volatility

The Black-Scholes formula allows to calculate the price of a European option from
the following five variables: the underlying asset current price S, the strike price
K, the time remaining to the expiry date 7' — ¢, the risk-free rate in the market r
and the volatility of the underlying asset price o.

Note that the first 4 variables in the option price formula are market observables.
The LIBOR index or the US national treasury bonds yield are typical values which
are used as the theoretical concept of a riks-free rate. The only non-observable
in the formula is the volatility of the underlying. This volatility is not observable
firstly because it is the volatility of the underlying in the future (between time ¢
today and the option expiry 7). Each agent in the market will value an option
using their best estimate of 0. Once a value for this volatility is chosen, the price
of an option is fully determined.

In a typical order-driven matched bargain market, option prices are determined
like those of any other financial security by an offer and demand mechanism using
bid and ask prices. The quoted price of a security is the price of the last trans-
action [28]. In the same way as fixing a volatility for the underlying asset price
o determines an option price, fixing an option price also determines a volatility
o. The implied volatility of an option price is defined as the value of ¢ one must
introduce in the Black-Scholes formula to obtain such option price. The implied
volatility of an option price represents the market’s expectation of the volatility of
the underlying asset price up to the expiry date.

3.3 Project objective

On a given day and a given underlying asset, option prices and their respective
implied volatilities for different combinations of strike and maturities define a
surface on the strike-maturity plane.



In this project, the goal is to simulate the dynamics of the component of option
prices that depends on investor’s fear, which is given by implied volatility. Relative
option prices (to the underlying price) are also a good measure of investors sen-
timent, as the short-term dynamics of relative option prices are primarily driven
by changes in implied volatility. The dynamics of investor’s fear can thus be rep-
resented by the time-evolution of relative option prices and implied volatility sur-
faces. In order to enable a fair comparison of such surfaces across time, these can
be defined on a fixed grid of relative strike prices (to the current underlying price)
and maturity horizons.

The no arbitrage principle in finance says there is no "free lunch” in the mar-
ket. Informally, an arbitrage opportunity is the possibility to make a profit in
a financial market without risk and without net investment of capital [29]. In
the real world markets, arbitrage opportunities are small, rare and fleeting. It
is therefore desirable that the generated option markets do not exhibit arbitrage
opportunities. A surface of call prices needs to satisfy some conditions in order
to be free of static arbitrage opportunities. The most simple of such conditions is
that, for a fixed maturity, call prices must be decreasing in strike price. See the
extended version of this article for a deeper explanation of such conditions [30].

The goal of this project is to generate synthetic multivariate time series that im-
itate the dynamics of relative call prices and their respective implied volatilities
on a fixed grid of relative strikes and maturity horizons. The generated markets
should be realistic and the generated surfaces should be arbitrage-free. The re-
alism of the markets will be evaluated by comparing distributional and time series
statistics on the historical and synthetic markets.

4 Methodology

The methodology is divided into three parts: processing of the options data,
model training and evaluation of the synthetic markets.

4.1 Transformation of the data

The underlying index for the generated markets in this project is the S&P500. The
generative models of this project are trained on processed data of closing pirces
of European options on this index for the period between the 1st of January 2004
and the 30th of September 2019. The source of data is the Chicago Board of Op-
tions Exchange (CBOE) data shop [31].

The used grid on which the option markets are generated is defined as the set
K x M, where K is the set of relative strikes and M is the set of maturity horizons



in business days, given by:

K ={0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15}
M = {30, 50, 100, 150, 200}

Training a generative model to produce option markets on such grid requires data
of the historical evolution of option prices on such grid. However, financial mar-
kets do not offer all possible options on any combination of strikes and maturities,
so there might not be observable data for option prices on the grid K x M for
many days in the CBOE dataset. This requires that the prices on the grid K x M
on each day are estimated by interpolation from the observable prices on such day.

In order to generate relative call price surfaces that are free of arbitrage one needs
to impose such conditions on the generative model. The conditions on call prices
are too complicated and those on implied volatilities are even more awkward [6].
Because there is no easy known way to impose such conditions on a GAN genera-
tor, it is convenient that the GAN generative model is trained to produce surfaces
of discrete local volatilties (DLVs), as proposed in [6].

Discrete local volatilities (DILVs) provide a “codebook” for arbitrage-free call price
surfaces because the set of such surfaces is in one-to-one correspondence with
the set of positive DIVs surfaces. By transforming relative call price surfaces into
DIVs and then into log-DIVs and training the GAN model on the log-DIVs histor-
ical process one does not need to worry about restraining the generator output,
because any real-valued log-DIV surface will necessarily translate into a postive
DLV surface and an arbitrage-free surface of relative call prices. The historical
data of interpolated relative call prices on the grid K x M is translated into the
form of log-DIVs. A correction procedure is applied before this transformation on
those surfaces that exhibit arbitrage. The procedure is similar to that proposed
in [32] and consists in finding the closest arbitrage-free surface of relative call
prices to the input surface. The historical implied volatilities process is also com-
puted, using the FVX index as risk-free rate.

Finally, because of the strong correlations across time between the different com-
ponents of the log-DILV historical process, a dimensionality reduction procedure
using Principal Component Analysis (PCA) is used. The log-DIV process is thus
compressed from 35 dimensions to 10 principal components, while conserving
85.82% of the variance.

Figure 1 illustrates how the interpolated and corrected surfaces of relative call
prices are processed:



| S H Positive DLVs matrices

‘ log-DLVs matrices

Principal components time series

. . .

log()

— . 02
]l YR (RIS — . . .
&Pl PC\(t) PCy(t) - PCy(1)
o
bijection trading days to expiry in M
-

" Black-Scholes +
risk-free rate

relative
strikes
inkK

K = {0.85,0.9,0.95,1,1.05,1.1, L.15}
M = {30, 50, 100, 150, 200}

‘ Implied volatility matrices

Figure 1: Summary of the processing of the data from interpolated and corrected
surfaces of relative call prices to the principal components of the log-DLV process.

4.2 Models

The next stage of the project is to train a GAN to imitate the dynamics of each
of the principal components historical series. A market can then be generated
by sampling a time series from each of the 10 GANs independently and then
carrying out the inverse processing of the data from principal components to rel-
ative call prices and implied volatilities accordingly. The principal components
of the log-DIVs process are uncorrelated in the historical data by construction
through the PCA algorithm, which is why this methodology is used. Generating
a synthetic process of log-DIVs by applying the inverse PCA transformation on
independently generated samples of the principal components should result in a
correlation structure of the generated log-DIVs process close to that found in the
historical process. When transforming relative call prices into implied volatilities
for a generated market, the risk-free rate is assumed constant and takes a random
value from the historical FVX series.

The particular GAN setting used in this project is the Wasserstein GAN with gradi-
ent penalty (WGAN-GP) [33]. In all models, the generator takes a random noise
signal of 50 values as input, where the values are a sequence of independent and
identically distributed standard normal random variables. The output of the gen-
erator is a sequence of 1000 values corresponding to a generated scenario for its
corresponding principal component. The discriminator takes sequences of 1000
values for real and fake scenarios of its corresponding principal component and
classifies them as real or fake.

In order to create a training set of 1000 values-long scenarios for a given principal
component, a sliding window of length 1000 is rolled over the whole historical
series. A picture of the series is taken every interval of 10 values, so each picture



intersects with the previous one in 990 values.

Both the generator and discriminator are based on 1-dimensional convolutional
layers, combined with batch normalization (in the generator only) and the use
of Leaky ReLu as activation function. The full architecture of the discriminator
and generator networks shall remain undisclosed due to confidentiality issues
with the company at which this project is developed. Please contact ETS Asset
Management Factory for further inquiries.

4.3 Evaluation of the generated markets

Evaluating the quality of the samples produced by a generative model is a com-
plex task. In the particular case of synthetic image generation with GANs, one
may think that fooling a person in distinguishing real and fake images should be
the ultimate performance measure. However, this measure may favour models
that concentrate on a limited section of the data (memorizing and mode drop-
ping) and do not properly recover the whole data distribution. Quantitative mea-
sures, while being less subjective, may not correspond to how people perceive the
images. These, along with other hardships make evaluating GAN performance
notoriously difficult and there is no clear consensus as to which measure should
be used [34]. Refer to [34] and [35] for further discussion of the evaluation of
generative models.

In this article, the generated markets are evaluated by comparing a series of dis-
tributional and time series statistics on the real and synthetic data. This project is
a variation of [6], which motivates the use of (some of) the same metrics as this
paper to enable its use as a benchmark. The main difference between this project
and [6] is that here time series are generated as one-dimensional images whereas
in [6] a recursive generating mechanism is used. Comparing the scores obtained
here against this benchmark may enable to draw some conclusions on the two
methods.

Scores for one-dimensional time series:

Let x;, be the historical time series for a given variable. By taking sliding windows
on this series as in the building of the training set one can build a set of one-
dimensional images x() of scenarios for such time series, denoted Dj:

Dy = {xV x@ _ xM} 4)

Let D, be a set of synthetic scenarios for such time series:

D, = {?c“),’az(?), ...,’JE(M)} (5)
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In order to quantify the aforementioned measures of similarity, the following
scores are defined:

e Autocorrelation score: This is simply the euclidean distance between the
autocorrelation function (up to 32 lags) of the historical series and the av-
erage autocorrelation function in the synthetic samples:

M
AC Fy(xp,) — % > ACFLEY) (6)

=1 2

e Skewness score: This is the euclidean norm of the difference between the
skewness of the historical series and that of the whole generated set:

Hskew[xh] — skew[{fc(l),i@), i) }] H2 7)

e Kurtosis score: Likewise, the kurtosis score is the euclidean norm of the
difference between the kurtosis of the historical series and that of the whole
generated set:

Hkurt[xh] — kurt[{i(l),?c@), XM }] 8)

2

Cross-correlation scores for multi-dimensional time series:

In order to evaluate the degree of realism of multi-dimensional time series, it is
not sufficient to evaluate the previous scores on each dimension individually. This
would ignore the existing correlations between the different series. The corre-
lation matrices of the generated and historical multi-dimensional processes are
calculated and compared as a way of measuring how well the generator imitates
the correlation structure of the real process.

Let X;, be the historical multi-dimensional time series and D, = {X"), X ... x")

be a set of generated multi-dimensional time series. The correlation matrix of the
historical process X, is denoted ¥;,. The average correlation matrix of the gen-
erated samples in D, is denoted ¥,. The cross-correlation score is simply the
euclidean distance between the two matrices:

th - Z9”2 (9)

Evaluation procedure:

As shown in Figure 1, arbitrage-free option markets allow for several equivalent
representations so the quality of the generated markets could be evaluated in any
of these. Here, following what is done in [6], the markets are evaluated in im-
plied volatilities.



Given a time series x = {xt};‘rzl, the corresponding absolute returns series r =
{rt}thz is calculated as r; = z;—z;_;. The individual metrics are calculated on each
of the 35 series of the used grid K x M in implied volatilities and their absolute
returns. These individual scores are then averaged to obtain a single score for
the whole process. Additionally, the cross-correlation scores are calculated on
log-DIVs as well as on implied volatilities, for comparison with the benchmark
scores.

5 Results

The historical process of implied volatilities is shown in Figure 2:

Implied volatilities histerical process
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Figure 2: Historical implied volatilities process.

As a way of showing that the implied volatility markets have been generated cor-
rectly and look reasonable, two samples of the generated markets are presented:
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Figure 3: Synthetic sample 1.
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Figure 4: Synthetic sample 2.

At a first glance, the previous figures show how the generated samples correctly
imitate the behaviour of the historical implied volatility process, with alternating

periods of calmness and high volatility.

Table 1 shows the computed scores on the historical market and a sample of 200
synthetic markets. See appendix A for a series of plots comparing the real and

synthetic distributions of markets.

ACF | Skewness

Kurtosis | Cross-correlation

Values 1.435 1.022

Absolute Returns | 0.289 1.024

4.719
61.821

4.850
5.756

Table 1: Scores of the synthetic implied volatility markets.

As explained, the scores for the best model in [6] are used as a benchmark. Table
2 shows a comparison between the results of this project and the benchmark on a

few scores used in their work:

Values ACF | Values skewness Values kurtosis log-DLVs. e absolute.
cross-correlations | returns cross-correlations
Benchmark ‘ 0.186 0.063 ‘ 0.097 0.137 0.771
This project 1.435 1.022 4.719 6.811 15.518

Table 2: Comparison with benchmark scores.

The ACF, skewness and kurtosis scores in the previous table are calculated on im-
plied volatilities whereas the cross-correlation scores are calculated on log-DIVs

and their absolute returns.
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6 Conclusion

The option markets generated in this project can be said to be decently realistic
and are guaranteed to be arbitrage-free by construction. However, the scores ob-
tained here are much worse than the benchmark scores for the best model in [6].
Although it is not rigorous to generalise across all network architectures, GAN set-
tings and other variations of the methodology, generating option markets through
the recursive mechanism of [6] seems to produce a distribution of synthetic op-
tion markets that approximates the real distribution more closely than the method
used in this project.

A possible explanation is that the generator in this work aims to recover a distri-
bution on a 1000-dimension space, whereas in [6] such distribution lies in a lower
dimensional space (32, which is the number of points on the used grid, times the
number of dimensions of the conditioning state). The task of learning a probabil-
ity distribution is more difficult the higher the dimensionality of the underlying
space.

Secondly, the sliding windows method used here to produce a training set of sce-
narios yields roughly 300 images per principal component from almost 15 years
of option data. Using the methodology of [6] would result in a training set for the
GAN of almost 4000 examples from the same 15 years of data.

Finally, in [6] the used models are trained on option prices on the EUROSTOXX 50
index between 2011 and 2019, which do not include the crisis of 2008 as in this
project. This implies that the real data distribution of the present project could
have a stranger shape, with a certain amount of mass at the anomalous events of
2008. This is likely a harder distribution to learn for a GAN generator, which may
have deteriorated the results of this project with respect to not including the crisis
of 2008 in the training data.
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A Plots

The following figures show a series of plots comparing the empirical distributions
found in the real and synthetic implied volatilities processes. The synthetic distri-
butions are calculated on a sample of 200 synthetic markets. The plots are pre-
sented in a matrix form, where rows correspond to relative strikes and columns
correspond to maturity horizons. All plots are calculated both on implied volatil-
ities and their absolute returns. For each component of the processes, let x;,, Dy,
and D, be defined as in 4.3.

Figures 5 and 6 show the empirical distribution of values and absolute returns in
the historical series against the distribution found in the generated sample:

real
Values histograms 1 synthetic
0.85_30 0.85_50 0.85_100 0.85_150 0.85_200
n n
0
° n
10 o r|1| o ol
0 ) ) I h
2 04 06 g L 12 00 2 A 8 L oo 02 04 06 08 00 0z 04 06 00 0z 04
0.9.30 0.9.50 0.9_100 0.9.150 0.9_200
0 bl
2 D4 06 8 1 02 04 8 : oo 02 04 06 08 oo 2 04 06 : 00 02 4
0.95_30 0.95_50 0.95_100 0.95_150 0.95_200
i
Ul
@ 02 o1 05 08 L0 @ 0z o4 06 o8 a0 02 04 0s 08 a0 a2 0a 0s a0 0z 04
130 150 1100 1150 1200
1
oo 02 04 06 08 0 02 o4 06 0B 00 02 04 06 0 02 04 06 00 02 04
1.05_30 1.05_50 1.05_100 1.05_150 1.05_200
04
) JJ“L ) k . m ) FL N AT
02 04 06 0g 02 o4 06 02 04 06 02 04 06 oL 02 03 04
1130 1150 11.100 11.150 11.200
0 o ) 204
) <
" Jn‘L B M . m B PL "] I_L
2 04 8 oL o2 03 04 05 06 02 04 06 0l 02 03 04 05 06 ol 02 03 04 05 06
11530 11550 115 100 » 115150 115 200
n o o
) J]\ b ,Pl\ i Jrk ) Jlﬁl"\ i ,[r‘k
2 04 8 1 2 3 a o7 : 01 02 03 04 1 2 3 a4 1 2 3 04

Figure 5: Values histograms.
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Figure 6: Absolute returns histograms.

Figures 7 and 8 show the autocorrelation functions of the historical series against
the corresponding average autocorrelation function in the generated sample:
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Figure 7: Values ACFs.
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In order to compare the degree of asymmetry around the mean in the real and
synthetic distributions, histograms of the skewness in the real and generated se-
ries are plotted. Figures 9 and 10 show, for each component, a histogram of
skew[x®] for x in D, against a histogram of skew[x""] for X in D,:
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Figure 9: Values skewness.
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Absolute returns skewness
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Figure 10: Absolute returns skewness.
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Likewise, histograms of the kurtosis in the real and generated series are plotted as
a way of comparing the probability of occurrence of extreme values. Figures 11

and 12 show, for each component, a histogram of kurt|x!
histogram of kurt[x'

Y1 for x”

inDg:

9] for x¥) in D, against a
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Figure 11: Values kurtosis.



Absolute returns kurtosis ree!
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Figure 12: Absolute returns kurtosis.

Finally, Figures 13 and 14 show the correlation matrix of the historical market
and the average correlation matrix on the synthetic markets:

Pearson cross-correlations
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Figure 13: Values cross-correlation matrices.
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Pearson cross-correlations

Real absolute returns correlation matrix Synthetic absolute returns average correlation matrix
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Figure 14: Absolute returns cross-correlation matrices.
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