
 1 

 

 Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título DEVELOPMENT OF A 

PLATFORM TO CONNECT AND COMMUNICATE FOOD DONORS AND FOOD BANKS en la 

ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el  

curso académico 2019/2020 es de mi autoría, original e inédito y  

no ha sido presentado con anterioridad a otros efectos. El Proyecto no es plagio de otro, ni total 

ni parcialmente y la información que ha sido tomada  

de otros documentos está debidamente referenciada.  

 

 

Fdo.:  Carlos Ripoll Ramzi              Fecha: 26/08/2020 

 

 

Autorizada la entrega del proyecto  

EL DIRECTOR DEL PROYECTO             

  

 

Fdo.:  Álvaro Jesús López López             Fecha: 26/08/2020 

 

 

 

 



 2 

 

Resumen— El proyecto pretende agilizar la comunicación 

entre donantes de alimentos y entidades distribuidoras de 

alimentos. Consiste en la creación de dos aplicaciones en la 

nube y una plataforma de BackOffice, empleando la 

infraestructura Microsoft Power Apps. 

 

Abstract-- The project aims to streamline communication 

between food donors and food distribution entities. It 

consists of the creation of two applications in the cloud and 

a BackOffice platform, using the Microsoft Power Apps 

infrastructure. 

 

Keywords: Food bank, Microsoft Power Platform, 

Microsoft Power Apps 

 

I.  INTRODUCTION 

urrently, more and more companies are aware and 

predisposed to help those most in need. The Spanish 

Federation of Food Banks (FESBAL), which consists of 54 

Spanish associated food banks, distributes food to more than 

7000 charities, helping to combat hunger for more than one 

million beneficiaries. [1]    

To throw some numbers in, only in the Community of Madrid, 

almost 200 companies donate food regularly to the 553 

associations linked to the Madrid Food Bank [2]. The donating 

procedure involves phone calling every single association that 

could be interested in the food. This method has several 

drawbacks: 

• It is a slow procedure that requires a great effort on 

the part of the donor. 

• It takes a long time to make calls. 

• Not all receiving entities are called: only those that 

have had contact with the company, so new entities 

may not be called. 

• Any change or update to a donation or request must 

be communicated to all interested parties 

independently.  

As the reader might predict, it would not be surprising to 

believe that some companies might be refusing to follow this 

procedure to donate their products. This means that some food 

that could feed families in risk might be being thrown away. 

 

The objective of this Project is to develop a platform which 

allows donation management and provides fast and reliable 

communication food-donating companies and the receiving 

and distributing entities. 

II.  STATE OF THE ART 

The project will consist in three modules: 

1. Database (DB) + DB Management System (DBMS): 

The database will store the information, and the 

DBMS will grant access to the DB and ensure its 

cohesion and integrity.  

2. Online Application: This application will be the user 

interface. It will be in charge of communicating with 

the user (via forms) and show the requested data 

(tables, etc.). 

3. Linker: This part will connect the first module to the 

second one, receiving instructions from the web 

application and transforming them into DBMS 

language (usually SQL) to access the information 

stored in the DB. 

 
Figure 1. Physical schematics 

While the two first modules are pretty standard (Oracle 

MySQL, MS SQL Server are examples of DB + DBMS widely 

used, while Nintex or Hyperbase provide the creation of 

Business Management Apps based on views and forms), the 

linker between them is not that easy to implement. Before 

Cloud Computing became popular (and SaaS, PaaS solutions 

started to show up), companies would program their own linker 

in a low-level programming language such as C# or C++. 

However,  nowadays integral solutions are more common to 

see, due to their extended functionality and their ease to use. 

 

Integral Solutions consist of PaaS and SaaS solutions. Both 

include DB + DBMS and the linker to their web applications. 

The main difference between them in this context is that, while 

SaaS solutions include pre-made applications for the user, PaaS 

only provide tools to create them (they need to be 

programmed). 

Author: Carlos Ripoll Ramzi: 201409243@alu.comillas.edu 

Supervisor: Alvaro Jesús López López 

Collaborating entity: ICAI - Comillas Pontifical University 

DEVELOPMENT OF A PLATFORM TO CONNECT AND 

COMMUNICATE FOOD DONORS AND FOOD BANKS 

C 



 3 

A good example of PaaS are Oracle Cloud Platform and 

SalesForce CRM.  

Salesforce CRM provides DB + DBMS and the creation of 

web applications in open-source languages such as Ruby, Java 

or PHP. Furthermore, it provides out-of-the-box tools which 

allow, for example, downloading apps made by other users, 

selling your own applications and data analytics. Its license 

price starts from $25 [3]. As an example, Mediaset’s CRM 

uses SaleForce CRM. Its main advantage is its fast speeds, 

while its main drawback for the sake of this Project is the 

necessity of programming the web application, which would 

require the Food Bank to have a dedicated team for dealing 

with it. 

 

Oracle Cloud Platform provides: 

• Information managing, deep learning and AI tools. 

• Online Desktop and Smartphone app developing: 

These apps are Java-based. Oracle’s app designer 

helps reduce the needed coding. 

• Third-party cloud services integration. 

• Business Analytics 

• Security layer: Authentication, security applications. 

Its main drawback is its cost: In order to use this service, the 

client needs to own a Oracle Server, starting its price in $2000. 

This makes it unsuitable for small projects. 

 

The most relevant SaaS infrastructure is Microsoft Power 

Apps. MSPA is the improved version of MS Access and 

belongs to the group of Microsoft cloud applications 

commercially named Microsoft Power Platform: 

 

 
Figure 2. MS Power Platform components 

MS Power Apps consists of a Cloud Platform and a list of 

tools, connectors and services which allow the client to 

generate online apps without a single line of code. [4] 

These apps can run in either local or online DB (Excel, 

Sharepoint, etc.) or on top of a MS SQL Server DB, and 

Microsoft’s Common Data Service will provide extended 

features to the DBMS such as a security layer.  

Power Apps can be: 

• "Canvas" applications: These are those that, as their 

name suggests, start with a blank canvas, on which the 

developer includes modules, components, etc., to 

design the user interface. In addition, it allows the 

redistribution and change of shape and orientation of 

the elements. Once the application is designed, it must 

be communicated with all the data sources by means 

of not very complex (high-level) formulas. They put 

the full burden of customization on the designer, who 

will have to make all relevant changes to the 

application. 

 

• "Portal" applications: They allow creating responsive 

websites that can be shared with users outside the 

organization 

 

• Model-driven applications: Specially designed for 

working with relational databases, whether stored on 

the Microsoft platform (Common Data Service, CDS) 

or in a local or online relational database ( Excel, 

Sharepoint, SQL Server, etc.). The display screens are 

predefined to fit the data model (hence the name), and 

while the user interface is not as customizable as in 

canvas apps, the user can quickly make changes to the 

app by altering the your "application map". In a matter 

of minutes, the application can be updated without the 

need for technical knowledge.  

MS Apps license costs 8.40€ per month (the cheapest solution 

so far) and has the advantage of belonging to a reliable 

company such as Microsoft.  

The tool election will be performed based on four aspects: 

• Usable, manageable, and updateable by a nonskilled 

user: Any kind of coding needed (link programming, 

app programing) is undesired. 

• Price: Scalable prices will be desired over fixed-price 

solutions, especially for the Project. Monthly 

subscription fees are preferred over single payments. 

• Ease to use by a nonskilled user (food bank 

volunteers). 

• Suitability to implement BI tools (for further 

developments). 

The performance of the tools can be seen in the following 

table: 

Tool Cost Integral BI Non skill  

MS  

Power Apps 

Monthly 

(8.40€) 
Yes 

Yes, but 

charged 

Yes. 

Codeless 

Salesforce 

Platform 

Monthly 

($25) 
Yes 

Yes, in some 

subscriptions 
No 

Oracle CP 
Fixed 

($2000) 

Connects 

to Outlook 

BI included 

in some 

subscriptions 

Yes 

Self-made  

solution 

N/A 

No cloud 

No email 

Would need 

to be 

programmed 

No 



 4 

 

The tool which will be used for this project is MS Power Apps 

because of two key factors:  

1. Oracle Cloud Platform is too expensive to use and 

requires coding  

2. Salesforce requires coding knowledge and therefore 

does not meet the requirement of being updated by a 

non-skilled user.  

III.  PROJECT DEFINITION 

The Project consists of the creation of two applications 

(accessible both from a web browser and a mobile application) 

that allow food donor companies to communicate with food 

banks, so that the former can publish donations on the server to 

which the latter can respond with requests for food. All this 

will be carried out using the Microsoft Power Platform. 

 

 

IV.  PROJECT OBJECTIVES 

The project will be considered accomplished if the following 

requisites are met: 

1. Both donors and beneficiaries can log in to their user 

accounts and fill in their personal information. 

2. Receivers are able to subscribe to donors, so that they 

receive a notification whenever the donor publishes a 

new donation. 

3. Donors can create new donations, specifying both the 

product being given out and the total quantity offered. 

4. Receivers can submit donation requests linked to 

those donations, specifying the amount of food they 

would like to be given. 

5. Donors can assign the offered resources among all the 

active requests, closing the donation whenever they 

are done. Receivers will then receive a notification 

which will inform of the final status of their request: 

accepted or denied. 

6. Both the model and the apps can be exported from the 

Testing Tenant and stores, and re-installed into the 

Operations Tenant 

V.  MODEL DESCRIPTION 

Simplicity has been the key factor when developing the 

model, in order to reduce the possibility of malfunctioning. 

The assumption of each donation consisting of only one 

product has been made, so the product name will be a text field 

belonging to the donation, rather than the product being a 

whole entity. This way the total number of entities can be 

reduced to 4: Donors, Receivers, donations, and requests. This 

is the simplest yet most efficient model that has been thought 

of to meet the requirements of the Project. 

The Entity-Relationship diagram of the proposed model is 

as follows: 

 
Illustration 3. Entity-Relationship model diagram 

 

As can be seen, the relationship of donors with subscribers 

is allowed through the M: N Subscription relationship. Donors 

will have a 1: N relationship with donations, and receivers will 

be related to requests in the same way. In addition, there will 

be a 1: N relationship between donations and requests, since 

several requests may be submitted to a donation, which are 

only directed to one donation. 

Donations may have any of the following states: 

 

 
Illustration 4. State machine diagram for donations. 

 

VI.  IMPLEMENTATION 

To develop the Project, these last Model-driven apps have been 

chosen. These apps consist roughly of three parts: 

1. Views of one or more entities: The values of the 

desired fields of each record (instance) of an entity are 

shown in table form. These views will allow you to 

sort the records based on any of their fields and 

perform searches within the table. It is the equivalent 

of executing a “Select […] from […]” command. 

Below is an example of the view used in the project, 

called “Active Donations”: 

 



 5 

 
Illustration 5. MPA view example. 

 

2. Entity forms: They allow the creation of a record or 

the updating of the values of its fields (attributes). 

Every form must contain at least all the fields 

“required by the company” (that is, those fields that 

cannot have a null value). An advantage of using 

Power Apps in the project is the possibility of 

presenting different forms to users depending on their 

security role, and in this way creating forms that 

restrict access to certain fields, defining them as read-

only (for example: In the project, the donors, in their 

Request entity form (property of the receiver) can 

only modify the field "awarded amount", and the 

other fields (requested amount, application number ...) 

are not modifiable. This can be seen in the following 

illustration: 

 

 
Illustration 6. MPA form example. 

 

3. Entity workflows: Workflows are customizable 

routines performed by the application itself. These 

routines can run in the background and perform 

actions such as updating values of the fields of a 

record, sending e-mails, or executing other workflows 

belonging to records that are directly related (that is, 

that are “one jump” in the ERD) with the record in 

question. This last functionality will be used to create 

“domino effects” and thus be able to execute entity 

workflows at more than one jump. This will be 

explained later. The following illustration shows an 

example workflow, with the actions that you will 

perform sequentially: 

 

 
Illustration 7. MPA workflow example. 

VII.  RESULTS 

The results are these two model-driven power apps: 

  

 
Illustration 8. Final Power Apps. 

These two apps and the BackOffice software both work as 

intended and meet all of the requirements. The solution in 

which everything is contained can be exported from the testing 

Environment (sandbox) into the Use Environment (the one 

from the food bank). Both apps have been successfully tested. 

The following section of the paper summarizes a use case, 

done from both a PC browser (Donor) and a Smartphone with 

Dynamics 365 App. 

 

The test performed to the applications have been: 

Functionality Test 

User sign-up 
Login. User information 

providing 

Subscriptions 

Nearby donor searching. 

Subscription creation, 

management, and access 

Donations Donation creation (demo) 

Requests Request creation (demo) 



 6 

Email notifications Email-related workflows run 

Donation awarding and 

closure 

Closure of a donation with 

both accepted and rejected 

requests 

 

The results of these tests have been successful. The following 

sub sections show the key parts: 

A.  Donor app 

The donor app allows donors to view their active donations and 

to create one: 

 
Figure 3. Donations view (donor app). 

 
Figure 4. Donation creation form (donor app) 

Once a donation is created, it can be published or cancelled: 

 
Figure 5. Donation cancellation or publishment 

After a donation is published, receivers can request the 

products that are offered. Donors can enter those requests and 

assign them resources. Once they are done with all the 

requests, they can close the donation. All the donations with 

zero or no assigned resources will be cancelled, and the rest 

will be accepted. Every receiver will receive an email 

informing about their request status. 

 
Figure 6. Resource assignation 

 
Figure 7. Donation Closure 

B.  Receiver App 

Receiver app allows searching for active donors and 

subscribing to them: 

 
Figure 8. Subscription creation 

Once the subscription has been made, the recipient will receive 

notifications when the donor posts a donation.  

 

Once a donor publishes a new donation, any recipient can 

create a request to that donation: 



 7 

 
Figure 9. Request creation 

Recipients need to include the quantity they desire to receive 

and the minimum quantity they are willing to accept. 

 
Figure 10. Request form (recipient app) 

 Any Request can be deleted whenever by selecting it from the 

requests menu and hitting the ‘delete’ button. 

 
Figure 11. Request deletion. 

C.  Email generation 

E-mails are automatically generated from the request entity, so 

that one email is sent to the owner of each request. The 

structure of these emails has been edited so that they generate 

automatically with the relevant information: 

 
Figure 12. Automatic email creation 

As it can (hardly) be seen, yellow-shaded text corresponds to 

any entity field that is going to be looked up (owner of the 

register, awarded resources, etc.). 

D.  Smartphone app layout 

The Smartphone app is generated automatically at the same 

time as the desktop one when the data model is finished. 

Therefore, both of them offer the same functionality. However, 

the smartphone app offers a different layout: Forms and views 

are presented in a different format so that user experience and 

usability are maximized. The following illustration shows the 

donation form from the Recipient’s smartphone app: 

 

 
Illustration 11. Request creation form (smartphone) 

 

Smartphone apps hide all the menus that are visible in the 

desktop app in order to save space. On the other hand, it 

offers a drop-down tree-like menu that is very intuitive to 



 8 

use. The following illustration shows the donations drop-

down menu from the donor’s app: 

 
Figure 13. Quick drop-down view of donations 

VIII.  PROJECT COST AND VIABILITY STUDY 

In order to carry out this Project, the basic requirements are: 

1. A computer with Internet access 

2. (Optional) A smartphone with internet access and 

with the “Dynamics 365” app installed (available at 

the regular app store). 

3. A trial Office 365 environment (Tenant), where the 

solution will be nested. Once the Project is finished, it 

will be available for exporting and installation into the 

definitive environment (the Food Bank environment). 

4. Five accounts with Power Apps Licensing. One of 

them will be the used to develop the Project 

(administrator role) while the other four will be used 

for testing (two donators plus two receivers). 

The Project’s total cost will be the cost of the five accounts 

plus the Tenant renting. The cost of a monthly subscription to 

Microsoft Power Apps is 8,40€ as of August 25, 2020 [2]. The 

Tenant rental price is unknown. 

 

Timewise, the project started in June although conversations 

with Food Bank volunteers were held in early March. The 

week of completion was August 17-23th, after ~320 hours of 

work (there was a lot of learning involved).  

 

The viability study is a bit tricky. Since FESBAL is a 

nonprofit organization, a project does not pay off if it generates 

greater revenue in form of money. Instead, the viability study 

needs to find out if this is the optimal way that money can be 

invested to help feed people at risk of poverty, or if there are 

better ways to spend that money (for example, buying food 

with that money).  

The viability study will only consider the Community of 

Madrid and the Community of Madrid Food Bank. Starting 

data are:  

• The average person eats from 700g to 1200g of food 

daily depending on their gender and condition. [5] 

• The average cost to feed a person for the food bank is 

68.83€ [5] 

• The Community of Madrid’s Food Bank receives 

321500kg/month of food donations via their 553 

associated entities [2] 

• It is assumed that the license cost will be 8.40€ (worst 

case scenario). All 553 associations will purchase a 

license, and 100 donor licenses are also purchased. 

From the first two bullet points, it is assumed that the average 

person eats 30kg of food per month (one kilogram per day). 

Dividing the average monthly cost by the average monthly 

food, the marginal cost of a kilogram of food is 2.30€/kg.  

Therefore, if the cost of the project provides more than 

2.30€/kg, the project will be viable. 

 

The total cost for the 653 licenses is 5485.2€ per month. With 

this money, 2384kg of food could be bought at the 2.30€/kg 

rate. An increase in 2384kg from the 3215000kg monthly food 

that is donated counts for a 0.74% increase. 

 

Therefore, we can conclude that the Project is viable since a 

0.74% increase (at least) in donations seems reasonable to 

expect. 

IX.  CONCLUSIONS 

The conclusions of this Project are positive since: 

• Functionality-wise, the two apps and the backoffice 

software meet all the functionality. What is more, the 

apps are easy to use and keep updated. The whole 

solution can be exported and stored, for further 

implementations. 

• Viability-wise, the required donations growth 

(0.74%) to make the project profitable looks very 

realistic to achieve. 

• Ethic-wise, this project aligns itself with six of the 

Sustainable Development Goals: 

o 1: End of poverty 

o 2: Zero hunger 

o 3: Health and well-being. 

o 10: Reduced inequalities. 

o 12: Responsible production and 

consumption. 

o 13: Climate action. 

 

 



 9 

X.  REFERENCES 

 

[1]  FESBAL, «¿Quiénes somos?,» [En línea]. Available: 

https://www.fesbal.org.es. [Último acceso: 28 08 2020]. 

[2]  M. F. Bank, «Memoria Anual 2018,» Madrid, 2018. 

[3]  «Salesforce Platform,» Salesforce, [En línea]. Available: 

https://developer.salesforce.com/platform#:~:text=The%

20Salesforce%20Platform%20empowers%20developers,

hardware%20provisioning%20or%20application%20stac

ks.. [Último acceso: 28 09 2020]. 

[4]  M. España, «¿Qué es Power Apps?,» 02 08 2020. [En 

línea]. Available: https://docs.microsoft.com/es-

es/powerapps/powerapps-

overview#:~:text=Power%20Apps%20es%20un%20conj

unto,las%20necesidades%20de%20su%20empresa.. 

[Último acceso: 21 08 2020]. 

[5]  R. C. Naseiro, OPTIMIZACIÓN DE RECURSOS EN EL 

BANCO DE, Madrid, 2020.  

[6]  N. Unidas, «Objetivos de Desarrollo Sostenible,» UN, 

[En línea]. Available: 

https://www.un.org/sustainabledevelopment/es/objetivos

-de-desarrollo-sostenible/. [Último acceso: 23 08 2020]. 

 

 
 


