
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 748683, 20 pages
http://dx.doi.org/10.1155/2013/748683

Research Article
Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop
Thermosyphon: Physical Derivation, Asymptotic Analysis, and
Numerical Experiments

Justine Yasappan,1 Ángela Jiménez-Casas,1 and Mario Castro2
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Fluids subject to thermal gradients produce complex behaviors that arise from the competition with gravitational effects. Although
such sort of systems have been widely studied in the literature for simple (Newtonian) fluids, the behavior of viscoelastic fluids
has not been explored thus far. We present a theoretical study of the dynamics of a Maxwell viscoelastic fluid in a closed-loop
thermosyphon.This sort of fluid presents elastic-like behavior and memory effects. We study the asymptotic properties of the fluid
inside the thermosyphon and the exact equations of motion in the inertial manifold that characterizes the asymptotic behavior.
We derive, for the first time, the mathematical derivations of the motion of a viscoelastic fluid in the interior of a closed-loop
thermosyphon under the effects of natural convection and a given external temperature gradient.

1. Introduction

Instabilities and chaos in fluids subject to temperature gradi-
ents have been the subject of intense work for its applications
in engineering and in atmospheric sciences. In such sort of
systems, the fluid displays nontrivial behaviors (as turbulence
or the formation of convective rolls) when subject to a
heating that competes with buoyancy effects. A traditional
approach that goes back to the pioneering work by Lorenz
consists of the study of the systemunder some simplifications.
Another approach is to study the controlled setups that
capture the underlying complexity of the full system, being
a thermosyphon one of those simpler cases [1].

In the engineering literature, a thermosyphon is a device
composed of a closed-loop pipe containing a fluidwhere some
soluble substance has been dissolved [2, 3].Themotion of the
fluid is driven by the action of several forces such as gravity
and natural convection. The flow inside the loop is driven by
an energetic balance between thermal energy and mechan-
ical energy. The interest on this system comes both from
engineering and as a toy model of natural convection (for

instance, to understand the origin of chaos in atmospheric
systems).

Thus far, all the works on thermosyphons analyze the
behavior of a Newtonian fluid inside the loop, consequently
neglecting elastic effects in the system coming from either
the fluid itself or the elastic walls of the loop. However, many
interesting fluids are known to behave slightly different from
the common (Newtonian) fluids in terms of their response to
an applied stress and are commonly referred to as viscoelastic.
Among them, it is worth emphasizing volcanic lavas, snow
avalanches, flowing paint, or biological mucosas membranes.

Here, we consider a thermosyphon model in which
the confined fluid is viscoelastic. This has some a priori
interesting peculiarities that could affect the dynamics with
respect to the case of a Newtonian fluid. On the one hand,
the dynamics has memory and so its behavior depends on
the whole past history, and, on the other hand, at small
perturbations the fluid behaves like an elastic solid and
a characteristic resonance frequency could, eventually, be
relevant (e.g., consider the behavior of jelly or toothpaste).
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The simplest approach to viscoelasticity comes from the
so-called Maxwell constitutive equation [4]. In this model,
both Newton’s law of viscosity and Hooke’s law of elasticity
are generalized and complemented through an evolution
equation for the stress tensor, 𝜎.

The stress tensor comes into play in the equation for the
conservation of momentum:

𝜌(

𝜕k

𝜕𝑡

+ k ⋅ ∇k) = −∇𝑝 + ∇ ⋅ 𝜎. (1)

For a Maxwellian fluid, the stress tensor takes the form

𝜇

𝐸

𝜕𝜎

𝜕𝑡

+ 𝜎 = 𝜇 ̇𝛾, (2)

where 𝜇 is the fluid viscosity, 𝐸 the Young’s modulus, and
̇𝛾 the shear strain rate (or rate at which the fluid deforms).

Under stationary flow, (2) reduces to Newton’s law, and
consequently, (1) reduces to the celebrated Navier-Stokes
equation. On the contrary, for short times (where impulsive
behavior from rest can be expected) equation (2) reduces to
Hooke’s law of elasticity.

Memory effects can be well understood from (2) after
performing a separation of variables and integrating. Thus,
we can rewrite

𝜎 (𝑡) = ∫

𝑡

0

𝑒
𝐸/𝜇(𝑡−𝑠)

𝜇 ̇𝛾 (𝑠) 𝑑𝑠, (3)

where it is clear that the local state of stress 𝜎(𝑡) is calculated
from the present and values of ̇𝛾(𝑡) with amemory time scale
of order 𝜇/𝐸.

In a thermosyphon, the equations of motion can be
greatly simplified because of the quasi-one-dimensional
geometry of the loop.Thus, we assume that the section of the
loop is constant and small compared with the dimensions of
the physical device, so that the arc length coordinate along
the loop (𝑥) gives the position in the circuit. The velocity of
the fluid is assumed to be independent of the position in the
circuit; that is, it is assumed to be a scalar quantity depending
only on time. This approximation comes from the fact that
the fluid is assumed to be incompressible, and so

∇ ⋅ k = 0, (4)

besides the quasi-one-dimensional assumption. On the con-
trary, temperature is assumed to depend both on time and
position along the loop.

The derivation of the thermosyphon equations of motion
is similar to that in [2, 3].The simplest way to incorporate (2)
is by differentiating (1) with respect to time and replacing the
resulting time derivative of𝜎with (2).Thisway to incorporate
the constitutive equation allows to reduce the number of
unknowns (we remove 𝜎 from the system of equations) at the
cost of increasing the order of the time derivatives to second
order.

The resulting second-order equation is then averaged
along the loop section (as in [2]). Hence, after nondimen-
sionalizing the variables (to reduce the number of free
parameters) we arrive at our main system of equations

𝜀

𝑑
2V

𝑑𝑡
2
+

𝑑V

𝑑𝑡

+ 𝐺 (V) V = ∮𝑇𝑓, V (0) = V
0
,

𝑑V

𝑑𝑡

(0) = 𝑤
0
,

𝜕𝑇

𝜕𝑡

+ V
𝜕𝑇

𝜕𝑥

= ℎ (𝑥, V, 𝑇) + ]
𝜕
2
𝑇

𝜕𝑥
2
, 𝑇 (0, 𝑥) = 𝑇

0
(𝑥) ,

(5)

where ℎ(𝑥, V, 𝑇) = 𝑙(V)(𝑇
𝑎
− 𝑇); that is, we consider Newton’s

linear cooling law as in [3, 5–10] also in this paper we consider
the diffusion of temperature given by the term ](𝜕2𝑇/𝜕𝑥2).
The parameter 𝜀 in (5) is the nondimensional version of 𝜇/𝐸
which has dimensions of time. Roughly speaking, it gives the
(nondimensional) time scale in which the transition from
elastic to fluid-like occurs in the fluid.

The model we will take into consideration forms an
ODE/PDE system for the velocity V(𝑡), the distribution of the
temperature 𝑇(𝑡, 𝑥) of the fluid into the loop, (5) with ] ≥ 0,
where ∮ = ∫

1

0
𝑑𝑥 denotes integration along the closed path

of the circuit. The function 𝑓 describes the geometry of the
loop and the distribution of gravitational forces [2, 3]. Note
that ∮𝑓 = 0.

The system of (5) is not a trivial extension of the New-
tonian model in [11] due to the first term in the differential
equation for the velocity. Specifically, the addition of a term
proportional to the second derivative of V is singular, in the
sense that it changes qualitatively the character of the equa-
tions. The implications of this singular perturbation cannot
be ascertained using a standard boundary layer analysis (see
the Appendix for details). So a complementary theoretical
and numerical approach is mandatory.

We assume that 𝐺(V) which specifies the friction law at
the inner wall of the loop is positive and bounded away from
zero. This function has been usually taken to be 𝐺(V) = 𝐺, a
positive constant for the linear friction case [2] (Stokes flow),
or 𝐺(V) = |V| for the quadratic law [12, 13], or even a rather
general function given by 𝐺(V) = 𝑔(Re)|V|, where Re is the
Reynolds number, Re = 𝜌V𝐿/𝜇. Here we will consider a
general function of the velocity assumed to be large [9, 14].
The functions 𝐺, 𝑓, 𝑙, and ℎ incorporate relevant physical
constants of themodel, such as the cross-sectional area,𝐷, the
length of the loop, 𝐿, and the Prandtl, Rayleigh or Reynolds
number; see [9]. Here, we consider Newton’s linear cooling
law 𝑙(V)(𝑇

𝑎
− 𝑇) where 𝑙 represents the heat transfer law

across the loop wall, and is a positive quantity depending
on the velocity, and 𝑇

𝑎
is the (given) ambient temperature

distribution, see [3, 5, 9, 10].
Hereafter, we consider 𝐺 and 𝑙 as continuous functions,

such that 𝐺(V) ≥ G
0
> 0, and 𝑙(V) ≥ 𝑙

0
> 0, for 𝐺

0
and 𝑙

0

positive constants.
Our contributions in this paper are the following.

(i) To obtain the system of (5) governing a closed loop
thermosyphon model with a viscoelastic fluid and to
study the asymptotic behavior of this system which
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is a generalization of the previous model [11]. Thus,
although the dynamics of viscoelastic fluids has been
extensively studied in the engineering literature, it has
scarcely been considered in the applied mathematics
community.

(ii) To present an analysis beginning with the well-
posedness and boundedness of solution. The exis-
tence of an attractor and an inertialmanifold is shown
and an explicit reduction to low-dimensional systems
is obtained. It is noteworthy that we are able to obtain
an exact finite-dimensional reduction (87) that may
have a much lower number of degrees of freedom.

(iii) To provide a detailed numerical analysis of the behav-
ior of acceleration, velocity, and temperature which
includes a thorough study of the various behaviors of
the system for different values of viscoelastic fluid and
ambient temperature distribution.

(iv) The numerical analysis will show that viscoelasticity
induces a chaotic behavior that is not captured by a
boundary layer analysis (that would predict the same
qualitative behaviors as in the original model in [11]
see the Appendix for details) being the new (nontriv-
ial) emergent behaviors induced by the viscoelasticity
worth characterizing.

The structure of the paper is as follows. The first section
provides a general introduction to the system, explaining
briefly the dynamics of a thermosyphon, viscoelastic fluids,
and the objectives of this work. In Section 2, we prove the
existence, uniqueness, and boundedness of the solutions. In
Section 3, we provide a detailed derivation of the dynamics
of the system in the inertial manifold as a reduced dimen-
sionality version of the full system of (5). In Section 4, we
present the numerical integration of the reduced system of
equations valid in the manifold to understand the role of the
main parameters of the physical system. Finally, in Section 5,
we conclude with a proposal for future works.

2. Well-Posedness and Boundedness:
Global Attractor

2.1. Existence and Uniqueness of Solutions. In this section
we prove the existence and uniqueness of solutions of the
thermosyphon model (5).

First, we observe that for ] ≥ 0, if we integrate the equa-
tion for the temperature along the loop taking into account
the periodicity of 𝑇, that is, ∮(𝜕𝑇/𝜕𝑥) = ∮(𝜕

2
𝑇/𝜕𝑥

2
) = 0, we

have (𝑑/𝑑𝑡)(∮𝑇) = 𝑙(V)(∮𝑇
𝑎
−∮𝑇). Therefore, ∮𝑇 → ∮𝑇

𝑎

exponentially as time goes to infinity for every ∮𝑇
0
.

Moreover, if we consider 𝜏 = 𝑇 − ∮𝑇, then from the
second equation of system (5), we obtain that 𝜏 verifies the
equation

𝜕𝜏

𝜕𝑡

+ V
𝜕𝜏

𝜕𝑥

= ]
𝜕
2
𝜏

𝜕𝑥
2
+ 𝑙 (V) (𝜏

𝑎
− 𝜏) ,

𝜏 (0, 𝑥) = 𝜏
0
(𝑥) = 𝑇

0
− ∮𝑇

0
,

(6)

where 𝜏
𝑎
= 𝑇

𝑎
− ∮𝑇

𝑎
.

Finally, since ∮𝑓 = 0, we have ∮𝑇𝑓 = ∮𝜏𝑓 and the
equation for V reads

𝜀

𝑑
2V

𝑑𝑡
2
+

𝑑V

𝑑𝑡

+ 𝐺 (V) V = ∮𝜏𝑓, V (0) = V
0
,

𝑑V

𝑑𝑡

(0) = 𝑤
0
.

(7)

Thus,with𝑤 = 𝑑V/𝑑𝑡, we get (𝑤, V, 𝜏) verifying the system
(5) with 𝜏

𝑎
, 𝜏

0
replacing 𝑇

𝑎
, 𝑇

0
, respectively, and now ∮𝜏 =

∮𝜏
𝑎
= ∮𝜏

0
= ∮𝑓 = 0. Therefore, hereafter we consider the

system (5) where all functions have zero average.
Also, if ] > 0, the operator ]𝐴 = −](𝜕2/𝜕𝑥2), together

with periodic boundary conditions, is an unbounded, self-
adjoint operator with compact resolvent in 𝐿2per(0, 1) that is
positivewhen restricted to the space of zero average functions
�̇�
2

per(0, 1). Hence, the equation for the temperature 𝑇 in (5) is
of parabolic type for ] > 0.

2.1.1. The Case with Diffusion: ]> 0. We consider the accel-
eration 𝑤 = 𝑑V/𝑑𝑡 and write the system (5) as the
following evolution system for the acceleration, velocity, and
temperature:

𝑑𝑤

𝑑𝑡

+

1

𝜀

𝑤 = −

1

𝜀

𝐺 (V) V +
1

𝜀

∮𝑇𝑓, 𝑤 (0) = 𝑤
0
,

𝑑V

𝑑𝑡

= 𝑤, V (0) = V
0
,

𝜕𝑇

𝜕𝑡

+ V
𝜕𝑇

𝜕𝑥

− ]
𝜕
2
𝑇

𝜕𝑥
2
= 𝑙 (V) (𝑇

𝑎
− 𝑇) , 𝑇 (0, 𝑥) = 𝑇

0
(𝑥) ;

(8)

that is,

𝑑

𝑑𝑡

(

𝑤

V
𝑇

) +(

1

𝜀

0 0

0 0 0

0 0 −]
𝜕
2

𝜕𝑥
2

)(

𝑤

V
𝑇

) = (

𝐹
1
(𝑤, V, 𝑇)

𝐹
2
(𝑤, V, 𝑇)

𝐹
3
(𝑤, V, 𝑇)

) ,

(9)

with 𝐹
1
(𝑤, V, 𝑇) = −(1/𝜀)𝐺(V)V + (1/𝜀) ∮𝑇𝑓, 𝐹

2
(𝑤, V, 𝑇) = 𝑤

and𝐹
3
(𝑤, V, 𝑇) = −V(𝜕𝑇/𝜕𝑥)+𝑙(V)(𝑇

𝑎
−𝑇) and the initial data

(

𝑤

V
𝑇
) (0) = (

𝑤0
V0
𝑇0

).

The operator 𝐵 = (

1/𝜀 0 0

0 0 0

0 0 −](𝜕2/𝜕𝑥2)
) is a sectorial operator

inY = R2
× �̇�

1

per(0, 1) with domain 𝐷(𝐵) = R2
× �̇�

3

per(0, 1)

and has compact resolvent, where

�̇�
2

per (0, 1)={𝑢∈𝐿
2

loc (R) , 𝑢 (𝑥+1)=𝑢 (𝑥) a.e., ∮ 𝑢=0} ,

�̇�
𝑚

per (0, 1) = 𝐻
𝑚

loc (R) ∩ �̇�
2

per (0, 1) .

(10)

Using the results and techniques of sectorial operator of
[15], we obtainTheorem 1.
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Theorem 1. We assume that𝐻(𝑟) = 𝑟𝐺(𝑟) and 𝑙(V) are locally
Lipschitz, 𝑓 ∈ �̇�

2

per(0, 1), 𝑇𝑎 ∈ �̇�
1

per(0, 1), and 𝑙(V) ≥ 𝑙
0
> 0.

Then, given (𝑤
0
, V

0
, 𝑇

0
) ∈ Y = R2

× �̇�
1

per(0, 1), there exists a
unique solution of (5) satisfying

(𝑤, V, 𝑇) ∈ 𝐶 ([0,∞) ,R
2
× �̇�

1

per (0, 1))

∩ 𝐶 (0,∞,R
2
× �̇�

3

per (0, 1)) ,

(�̇�, 𝑤,

𝜕𝑇

𝜕𝑡

) ∈ 𝐶 (0,∞,R
2
× �̇�

3−𝛿

per (0, 1)) ,

(11)

where 𝑤 = V̇ = 𝑑V/𝑑𝑡 and �̇� = 𝑑
2V/𝑑𝑡2 for every 𝛿 > 0.

In particular, (5) defines a nonlinear semigroup, 𝑆(𝑡) in Y =

R2
× �̇�

1

per(0, 1), with 𝑆(𝑡)(𝑤0
, V

0
, 𝑇

0
) = (𝑤(𝑡), V(𝑡), 𝑇(𝑡)).

Proof. We cover several steps.

Step 1. We prove the local existence and regularity. This
follows easily from the variation of constants formula of [15].
In order to prove this we write the system as (9), and we have

𝑈
𝑡
+ 𝐵𝑈 = 𝐹 (𝑈) , with 𝑈 = (

𝑤

V
𝑇

) ,

𝐵 = (

1

𝜀

0 0

0 0 0

0 0 −]
𝜕
2

𝜕𝑥
2

), 𝐹 = (

𝐹
1

𝐹
2

𝐹
3

) ,

(12)

where the operator 𝐵 is a sectorial operator in Y = R2
×

�̇�
1

per(0, 1) with domain 𝐷(𝐵) = R2
× �̇�

3

per(0, 1) and has
compact resolvent. In this context, the operator𝐴 = −𝜕

2
/𝜕𝑥

2

must be understood in the variational sense; that is, for every
𝑇, 𝜑 ∈ �̇�

1

per(0, 1),

⟨𝐴 (𝑇) , 𝜑⟩ = ∮

𝜕𝑇

𝜕𝑥

𝜕𝜑

𝜕𝑥

, (13)

and �̇�2per(0, 1) coincides with the fractional space of exponent
1/2 [15]. Hereafter we denote by ‖ ⋅ ‖ the norm on the space
�̇�
2

per(0, 1). Now, if we prove that the nonlinearity 𝐹 : Y =

R2
× �̇�

1

per(0, 1) → Y−1/2
= R2

× �̇�
2

per(0, 1) is well defined
and is Lipschitz and bounded on bounded sets, we obtain the
local existence for the initial data inY = R2

× �̇�
1

per(0, 1).
Using 𝐻(V) = 𝐺(V)V and 𝑙(V) being locally Lipschitz

together with 𝑓 ∈ �̇�
2

per(0, 1) and 𝑇
𝑎
∈ �̇�

1

per(0, 1), we will
prove the nonlinear terms, 𝐹

1
(𝑤, V, 𝑇) = −(1/𝜀)𝐺(V)V +

(1/𝜀) ∮𝑇𝑓, 𝐹
2
(𝑤, V, 𝑇) = 𝑤, and 𝐹

3
(𝑤, V, 𝑇) = −V(𝜕𝑇/𝜕𝑥) +

𝑙(V)(𝑇
𝑎
− 𝑇) and satisfy 𝐹

1
: R2

× �̇�
1

per(0, 1) → R, 𝐹
2
: R2

×

�̇�
1

per(0, 1) → R, and 𝐹
3
: R2

× �̇�
1

per(0, 1) → �̇�
2

per(0, 1); that
is, 𝐹 : Y → Y−1/2 is well defined, Lipschitz, and bounded
on bounded sets. It is possible to prove this by considering

𝑇
𝑎
∈ �̇�

2

per(0, 1). In order to prove these properties of the
nonlinearity 𝐹, let 𝑈

𝑖
= (𝑤

𝑖
, V

𝑖
, 𝑇

𝑖
)
𝑡, and we note that





𝐹
3
(𝑈

1
) − 𝐹

3
(𝑈

2
)





≤










−V
1

𝜕𝑇
1

𝜕𝑥

+ 𝑙 (V
1
) (𝑇

𝑎
− 𝑇

1
) + V

2

𝜕𝑇
2

𝜕𝑥

−𝑙 (V
2
) (𝑇

𝑎
− 𝑇

2
)










≤




𝑙 (V

1
) − 𝑙 (V

2
)









𝑇
𝑎





+ (1) + (2) ,

(14)

where

(1) ≡










−V
1

𝜕𝑇
1

𝜕𝑥

+ V
2

𝜕𝑇
2

𝜕𝑥










, (2) ≡




𝑙 (V

2
) 𝑇

2
− 𝑙 (V

1
) 𝑇

1





,

(15)

and adding ±V
1
(𝜕𝑇

2
/𝜕𝑥), ∓V

2
(𝜕𝑇

1
/𝜕𝑥) and ∓V

1
(𝜕𝑇

1
/𝜕𝑥) in

(1), we have

(1) ≤ (




V
1





+




V
2





)










𝜕𝑇
2

𝜕𝑥

−

𝜕𝑇
1

𝜕𝑥










+




V
2
− V

1















𝜕𝑇
1

𝜕𝑥










+




V
1















𝜕𝑇
1

𝜕𝑥

−

𝜕𝑇
2

𝜕𝑥










,

(16)

and adding ±𝑙(V
2
)𝑇

1
in (2), we get

(2) ≡




𝑙 (V

2
) 𝑇

2
− 𝑙 (V

1
) 𝑇

1





≤




𝑙 (V

1
) − 𝑙 (V

2
)









𝑇
1






+




𝑙 (V

2
)









𝑇
2
− 𝑇

1





,

(17)

and from the previous hypothesis on function 𝑙(V), there
exists 𝑀 > 0 such that‖𝐹

3
(𝑈

1
) − 𝐹

3
(𝑈

2
)‖ ≤ 𝑀(|V

1
−

V
2
| + ‖𝑇

1
− 𝑇

2
‖
�̇�
1

per(0,1)
) ≤ 𝐶‖𝑈

1
− 𝑈

2
‖R2×�̇�1per

and the rest is
obvious.

Therefore, using the techniques of variations of con-
stants formula of [15], we obtain the unique local solutions
(𝑤, V, 𝑇) ∈ 𝐶([0, 𝜏],Y) of (8) which are given by

𝑤 (𝑡) = 𝑤
0
𝑒
−(1/𝜀)𝑡

−

1

𝜀

∫

𝑡

0

𝑒
−(1/𝜀)(𝑡−𝑟)

𝐻(𝑟) 𝑑𝑟

+

1

𝜀

∫

𝑡

0

𝑒
−(1/𝜀)(𝑡−𝑟)

(∮𝑇 (𝑟) 𝑓) 𝑑𝑟,

(18)

with𝐻(𝑟) = 𝐻(V(𝑟)),

V (𝑡) = V
0
+ ∫

𝑡

0

𝑤 (𝑟) 𝑑𝑟, (19)

𝑇 (𝑡, 𝑥) = 𝑒
−]𝐴𝑡

𝑇
0
(𝑥)

+ ∫

𝑡

0

𝑒
−]𝐴(𝑡−𝑟)

𝑙 (V (𝑟)) [𝑇
𝑎
(𝑟, 𝑥) − 𝑇 (𝑟, 𝑥)] 𝑑𝑟

− ∫

𝑡

0

𝑒
−]𝐴(𝑡−𝑟)

V (𝑟)
𝜕𝑇 (𝑟, 𝑥)

𝜕𝑥

𝑑𝑟,

(20)

and using again the results of [15], we get the regularity of
solutions. In fact, from the smoothing effect of the equations,
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we have (𝑤, V, 𝑇) ∈ 𝐶([0, 𝜏],Y = R2
× �̇�

1

per(0, 1)) ∩ 𝐶((0, 𝜏),

R2
× �̇�

2

per(0, 1)) and (�̇�, 𝑤, (𝜕𝑇/𝜕𝑡)) ∈ 𝐶((0, 𝜏),R2
× �̇�

2−𝛿

per
(0, 1)), for some positive 𝜏 and any 𝛿 > 0. Now, for 𝜖 > 0 we
have (𝑤(𝜖), V(𝜖), 𝑇(𝜖)) ∈ R2

× �̇�
2

per(0, 1), and since 𝐹 : R2
×

�̇�
2

per(0, 1) → R2
× �̇�

1

per(0, 1) is well defined, Lipschitz, and
bounded on bounded sets, we have (𝑤, V, 𝑇) ∈ 𝐶([𝜖, 𝜏],R2

×

�̇�
2

per(0, 1)) ∩ 𝐶((𝜖, 𝜏),R
2
× �̇�

3

per(0, 1)) and (�̇�, 𝑤, (𝜕𝑇/𝜕𝑡)) ∈
𝐶((𝜖, 𝜏),R2

× �̇�
3−𝛿

per (0, 1)). Since 𝜖 is arbitrary, we obtain the
regularity of the local solution.

Step 2.Now, we prove the solutions of (8) for every time 𝑡 ≥ 0.
To prove the global existence, we must show that the

solutions are bounded inY = R2
× �̇�

1

per(0, 1) norm on finite
time intervals. First, to obtain that the norm of 𝑇 is bounded
in finite time, we note that multiplying the equations for the
temperature by 𝑇 in �̇�

2

per(0, 1) and integrating by parts, we
have:

1

2

𝑑

𝑑𝑡

‖𝑇‖
2
+ ]










𝜕𝑇

𝜕𝑥










2

= ∮ 𝑙 (V) (𝑇
𝑎
− 𝑇)𝑇𝑑𝑥, (21)

since ∮𝑇(𝜕𝑇/𝜕𝑥) = (1/2) ∮(𝜕/𝜕𝑥)(𝑇
2
) = 0.

Using Cauchy-Schwartz and the Young inequality and
then the Poincaré inequality, since ∮𝑇 = 0 together with 𝜋2

is the first nonzero eigenvalue of 𝐴 = −𝜕
2
/𝜕𝑥

2 in �̇�2per(0, 1),
we obtain

1

2

𝑑

𝑑𝑡

‖𝑇‖
2
+ (]𝜋

2
+ 𝑙 (V)) ‖𝑇‖

2
≤

𝑙 (V)

2





𝑇
𝑎






2

+

𝑙 (V)

2

‖𝑇‖
2
,

(22)

and using 𝑙(V) ≥ 𝑙
0
> 0, we get

𝑑

𝑑𝑡

‖𝑇‖
2
+ (2]𝜋

2
+ 𝑙

0
) ‖𝑇‖

2
≤ 𝑙 (V)





𝑇
𝑎






2

, (23)

and we conclude that the norm of 𝑇 in �̇�
2

per(0, 1) remains
bounded in finite time.

Now, we note that differentiating the second equation
of (5) with respect to 𝑥, we obtain the same equations for
‖𝜕𝑇/𝜕𝑥‖, and considering now ‖𝜕𝑇

𝑎
/𝜕𝑥‖, we obtain

𝑑

𝑑𝑡










𝜕𝑇

𝜕𝑥










2

+ (2]𝜋
2
+ 𝑙

0
)










𝜕𝑇

𝜕𝑥










2

≤ 𝑙 (V)









𝜕𝑇
𝑎

𝜕𝑥










2

. (24)

Thus, we show that the norm of 𝑇 in �̇�1

per(0, 1) remains
bounded in finite time. Then, using ‖𝑇‖ bounded for finite
time, we prove that |𝑤(𝑡)| and |V(𝑡)| remain bounded in finite
time and we conclude.

2.1.2.The Case with No Diffusion: ]=0. The system now reads

𝜀

𝑑
2V

𝑑𝑡
2
+

𝑑V

𝑑𝑡

+ 𝐺 (V) V = ∮𝑇𝑓, V (0) = V
0
,

𝑑V

𝑑𝑡

(0) = 𝑤
0
,

𝜕𝑇

𝜕𝑡

+ V
𝜕𝑇

𝜕𝑥

= ℎ (𝑥, V, 𝑇) , 𝑇 (0, 𝑥) = 𝑇
0
(𝑥) ,

(25)

where ℎ(𝑥, V, 𝑇) = 𝑙(V)(𝑇
𝑎
− 𝑇); that is, we consider Newton’s

linear cooling law as in [6–8, 10], and it is no longer of a
parabolic type system and is given by

𝑑𝑤

𝑑𝑡

+

1

𝜀

𝑤 = −

1

𝜀

𝐺 (V) V +
1

𝜀

∮𝑇𝑓, 𝑤 (0) = 𝑤
0
,

𝑑V

𝑑𝑡

= 𝑤, V (0) = V
0
,

𝜕𝑇

𝜕𝑡

+ V
𝜕𝑇

𝜕𝑥

= 𝑙 (V) (𝑇
𝑎
− 𝑇) , 𝑇 (0, 𝑥) = 𝑇

0
(𝑥) .

(26)

To prove the system is well posed, we use the techniques
from [16] considering the same transport equation for tem-
perature in different thermosyphon models as [6–8, 10, 16].

We note that if V(𝑡) is a given continuous function, then
the equation for the temperature can be integrated along
characteristics to obtain

𝑇
V
(𝑡, 𝑥) = 𝑇

0
(𝑥 − ∫

𝑡

0

V) 𝑒
−∫
𝑡

0
𝑙(V)

+ ∫

𝑡

0

[𝑙 (V (𝑟)) 𝑒
−∫
𝑡

𝑟
𝑙(V)
𝑇
𝑎
(𝑥 − ∫

𝑡

𝑟

V)] ,

(27)

and plugging this into the nonlocal differential equation for
the acceleration and into the equation for the velocity yields

𝑤
V
(𝑡) = 𝑤

0
𝑒
−(1/𝜀)𝑡

−

1

𝜀

∫

𝑡

0

𝑒
−(1/𝜀)(𝑡−𝑟)

𝐺 (V (𝑟)) V (𝑟) 𝑑𝑟

+

1

𝜀

∫

𝑡

0

𝑒
−(1/𝜀)(𝑡−𝑟)

(∮𝑇
V
(𝑟) 𝑓) 𝑑𝑟,

V (𝑡) = V
0
+ ∫

𝑡

0

𝑤
V
(𝑟) 𝑑𝑟.

(28)

We note that for 𝑇
0
, 𝑇

𝑎
∈ �̇�

2

per(0, 1) and since in this
space the translations are continuous isometries, (27) defines
a continuous function of time with values in this space.
Although we restrict ourselves to �̇�

2

per(0, 1), many other
choices of space are possible for solving problem (26). In fact
any Banach space of 1-periodic functions of 𝑥 having zero
mean and in which translations are continuous isometries
can be used as an “admissible space”𝑋; see [16]. In particular
𝑊

𝑚,𝑝

per (0, 1), 𝐶
𝑘

per(0, 1) are admissible spaces between others.
Then, we can prove Lemma 2.

Lemma 2. Let 𝜏 > 0, fix V ∈ 𝐶[0, 𝜏], and assume that 𝑇
0
, 𝑇

𝑎
∈

𝑋 where 𝑋 is an “admissible space”; see [16], in particular
𝑇
0
, 𝑇

𝑎
∈ �̇�

1

per(0, 1). Then, the function given in (27), 𝑇V

∈ 𝐶([0, 𝜏],X), is an integral solution of the PDE which is
satisfied only if 𝑇

0
and 𝑇

𝑎
are differentiable. In particular,

if 𝑇
0
, 𝑇

𝑎
∈ �̇�

1

per(0, 1), then 𝑇
V is continuous with values in

�̇�
1

per(0, 1) and satisfies the PDE as an equality in �̇�
2

per(0, 1), a.e.
in time. Moreover, (27) satisfies the following properties:

(i)




𝑇
V


𝑋

≤ max {

𝑇
0




𝑋
,




𝑇
𝑎




𝑋
} 𝑎.𝑒. in time; (29)
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(ii) if there exist positive constants 𝑐
𝑑
, 𝑑 = 𝑎 and 𝑑 = 0 such

that 𝑇
0
, 𝑇

𝑎
satisfy ‖𝑇

𝑑
(⋅ + ℎ) − 𝑇

𝑑
(⋅)‖

𝑋
≤ 𝑐

𝑑
|𝑘| for all 𝑘,

then 𝑇V satisfies




𝑇
V
(𝑡 + 𝑘) − 𝑇

V
(𝑡)



𝑋

≤ 𝐶 |𝑘| , 𝐶 = 𝐶 (‖V‖
∞
,




𝑇
𝑎




𝑋
) (30)

positive constant independent on time;
(iii) we assume that 𝑋 ⊂ �̇�

2

per(0, 1) and there exist positive
constants 𝑐

𝑑
, 𝑑 = 𝑎 and 𝑑 = 0 such that 𝑇

0
, 𝑇

𝑎
satisfy

‖𝑇d(⋅ + ℎ) − 𝑇𝑑(⋅)‖�̇�2per
≤ 𝑐

𝑑
|𝑘| for all 𝑘. If we also

assume that V
𝑖
, 𝑖 = 1, 2 are continuous in 𝑡 ∈ [0, 𝜏],

then

sup
𝑟∈[0,𝜏]





𝑇
V
1
(𝑟) − 𝑇

V
2
(𝑟)




≤ 𝐾𝜏





V
1
− V

2




∞

, (31)

𝐾 is a positive constant, and ‖V
1
− V

2
‖
∞

= sup
𝑟∈[0,𝜏]

|V
1
(𝑟) − V

2
(𝑟)|.

Proof. See [6–8, 10, 16]. Then, we haveTheorem 3.

Theorem 3. Assume that 𝐺(V)V is locally Lipschitz, 𝑓 ∈

�̇�
2

per(0, 1), 𝑇0, 𝑇𝑎 ∈ �̇�
1

per(0, 1), and 𝑤0
, V

0
∈ R2. Then there

exists a unique solution of (26) satisfying

(𝑤, V, 𝑇) ∈ 𝐶 ((0,∞) ,R
2
× �̇�

1

per (0, 1)) (32)

and 𝑇 satisfies the PDE in the sense of (27). Moreover
(�̇�, V̇, (𝜕𝑇/𝜕𝑡)) ∈ 𝐶([0,∞),R2

× �̇�
2

per(0, 1)).

Proof. As noted earlier, we need to solve the fixed point
problem

V (𝑡) = F (V) (𝑡)

= V
0

+∫

𝑡

0

(𝑤
0
𝑒
−(1/𝜀)𝑠

−

1

𝜀

∫

𝑠

0

𝑒
−(1/𝜀)(𝑠−𝑟)

𝐺 (V (𝑟)) V (𝑟) 𝑑𝑟) 𝑑𝑠

+

1

𝜀

∫

𝑡

0

(∫

𝑠

0

𝑒
−(1/𝜀)(𝑠−𝑟)

(∮𝑇
V
(𝑟) 𝑓) 𝑑𝑟) 𝑑𝑠,

(33)

on a space of continuous functions. More precisely, we take
𝑊 = {V ∈ 𝐶[0, 𝐿], V(0) = V

0
, |V(𝑡) − V

0
| ≤ 𝑀}, endowed with

the sup norm, with 𝐿 and𝑀 to be chosen and prove that F
is a contraction on𝑊.

From (29) in Lemma 2 for 𝑇
V, we have ‖𝑇

V
‖ ≤

max{‖𝑇
0
‖‖𝑇

𝑎
‖}, and this, together with the local Lipschitz

property of 𝐺(V)V shows that for fixed 𝑀, F(M) ⊂ M if 𝐿
is sufficiently small.

To show that F is a contraction, it is clear that we must
prove some Lipschitz dependence on ∮𝑇V

𝑓 with respect to
V ∈ 𝑊.

First, we note that from 𝑇
0
, 𝑇

𝑎
∈ �̇�

1

per(0, 1), then verify
(30), that is, ‖𝑇

𝑑
(⋅ + ℎ) − 𝑇

𝑑
(⋅)‖

�̇�
2

per
≤ 𝑐

𝑑
|𝑘| for all 𝑘 with 𝑑 =

0, 𝑎, and given V
𝑖
∈ 𝑊, again from (31) in Lemma 2, we have

sup
𝑟∈[0,𝜏]





𝑇
V
1
(𝑟) − 𝑇

V
2
(𝑟)




≤ 𝐿𝑀





V
1
− V

2




∞

. (34)

With these we find thatF is Lipschitz on𝑊 with a Lipschitz
constant depending on 𝐿 and𝑀 that tends to zero as 𝐿 → 0

and then F is a contraction for small enough 𝐿. Therefore,
local well-posedness follows.

To prove the global existence, it is sufficient to prove that
(𝑤(𝑡), V(𝑡)) is bounded on finite time intervals, since from

𝑤
V
(𝑡

1
) − 𝑤

V
(𝑡

2
)

= 𝑤
0
𝑒
−(1/𝜀)(𝑡1−𝑡2)

−

1

𝜀

∫

𝑡2

𝑡1

𝑒
−(1/𝜀)(𝑡−𝑟)

𝐺 (V (𝑟)) V (𝑟) 𝑑𝑟

+

1

𝜀

∫

𝑡2

𝑡1

𝑒
−(1/𝜀)(𝑡−𝑟)

(∮𝑇
V
(𝑟) 𝑓) 𝑑𝑟,

V (𝑡
1
) − V (𝑡

2
)

= −∫

𝑡2

𝑡1

(𝑤
0
𝑒
−𝑠/𝜀

−

1

𝜀

∫

𝑠

0

𝑒
−(1/𝜀)(𝑠−𝑟)

𝐺 (V (𝑟)) V (𝑟) 𝑑𝑟

+

1

𝜀

∫

𝑠

0

𝑒
−(1/𝜀)(𝑠−𝑟)

∮𝑇
V
(𝑟) 𝑓 𝑑𝑟 𝑑𝑠) ,

(35)

we find that (𝑤(𝑡), V(𝑡)) is of Cauchy type as 𝑡 → 𝑡
0
for finite

𝑡
0
. Consequently, the limit of (𝑤(𝑡), V(𝑡), 𝑇(𝑡)) exists in R2

×

�̇�
2

per(0, 1) and the solution can be prolonged.
But again from (29) together with (18) and (19), we obtain

boundedness on finite time intervals and global existence
follows.

As noted earlier, if 𝑇
0
, 𝑇

𝑎
∈ �̇�

1

per(0, 1), then 𝑇 satisfies the
PDE equation as an equality in �̇�2per(0, 1) a.e. in time. In par-
ticular, we have (𝜕𝑇/𝜕𝑡) ∈ 𝐶((0,∞), �̇�

2

per(0, 1)).

2.2. Boundedness of the Solutions and Global Attractor. In
order to obtain asymptotic bounds on the solutions as
𝑡 → ∞, we consider the friction function 𝐺 satisfying the
hypotheses from the previous section andwe also assume that
there exists a constant ℎ

0
≥ 0 such that

lim sup
𝑡→∞






𝐺

(𝑡)







𝐺 (𝑡)

= 0, lim sup
𝑡→∞






𝑡𝐺


(𝑡)







𝐺 (𝑡)

≤ ℎ
0
. (36)

We make use of L’Hopital’s lemma proved in [11] to prove
several results in this section.

Lemma 4 (L’Hopital’s lemma). Assume that 𝑓 and 𝑔 are real
differentiable functions on (𝑎, 𝑏), 𝑏 ≤ ∞, 𝑔


(𝑥) ̸= 0 on (𝑎, 𝑏)

and lim
𝑥→𝑏

𝑔(𝑥) = ∞.

(i) If lim sup
𝑥→𝑏

(𝑓

(𝑥)/𝑔


(𝑥)) = 𝐿, then lim sup

𝑥→𝑏

(𝑓(𝑥)/𝑔(𝑥)) ≤ 𝐿.
(ii) If lim inf

𝑥→𝑏
(𝑓


(𝑥)/𝑔


(𝑥)) = 𝐿, then lim inf

𝑥→𝑏

(𝑓(𝑥)/𝑔(𝑥)) ≥ 𝐿.

With this, we have Lemma 5.
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Lemma 5. If one assumes that 𝐺(𝑟) and𝐻(𝑟) = 𝑟𝐺(𝑟) satisfy
the hypothesis fromTheorem 1 orTheorem 3 together with (36),
then

lim sup
𝑡→∞







𝐻 (𝑡) − (1/𝜀) ∫

𝑡

0
𝑒
−(1/𝜀)(𝑡−𝑟)

𝐻(𝑟) 𝑑𝑟








𝐺 (𝑡)

≤ 𝐻
0
,

(37)

with 𝐻
0
= (1 + ℎ

0
)𝜀 a positive constant such that 𝐻

0
→ 0 if

𝜀 → 0.

Proof. Integrating by parts we have

𝐻(𝑡) −

1

𝜀

∫

𝑡

0

𝑒
−(1/𝜀)(𝑡−𝑟)

𝐻(𝑟) 𝑑𝑟 = ∫

𝑡

0

𝑒
−(1/𝜀)(𝑡−𝑟)

𝐻

(𝑟) 𝑑𝑟,

(38)
and using Lemma 4 we obtain

lim sup
𝑡→∞

∫

𝑡

0
𝑒
(1/𝜀)𝑟 




𝐻


(𝑟)






𝑑𝑟

𝑒
(1/𝜀)𝑡

𝐺 (𝑡)

≤ 𝜀 lim sup
𝑡→∞






𝐻


(𝑡)







𝐺 (𝑡) + 𝜀𝐺

(𝑡)

≤ 𝜀 lim sup
𝑡→∞






𝐺 (𝑡) + 𝑡𝐺


(𝑡)







𝐺 (𝑡) + 𝜀𝐺

(𝑡)

,

(39)
and from (36) we conclude.

Remark 6. We note that the conditions (36) are satisfied for
all friction functions𝐺 considered in the previous works, that
is, the thermosyphonmodels, where𝐺 is constant or linear or
quadratic law. Moreover, the conditions (36) are also true for
𝐺(𝑠) ≈ 𝐴|𝑠|

𝑛, as 𝑠 → ∞.

Now, we use the asymptotic bounded for temperature
to obtain the asymptotic bounded for the velocity and the
acceleration functions.

Theorem 7. Under the previous notations and hypothesis of
Theorem 1 or Theorem 3, if one assumes also that 𝐺 satisfies
(37) for some constant𝐻

0
≥ 0, then one has the following.

Part (I). General case:
(i)

lim sup
𝑡→∞

|V (𝑡)| ≤
1

𝐺
0

lim sup
𝑡→∞









∮𝑇 (𝑡, ⋅) 𝑓 (⋅)









+ 𝐻
0
. (40)

In particular: If lim sup
𝑡→∞

‖𝑇‖ ∈ R, then

lim sup
𝑡→∞

|V (𝑡)| ≤
1

𝐺
0





𝑓




lim sup
𝑡→∞

‖𝑇‖ + 𝐻
0
∈ R. (41)

(ii) If lim sup
𝑡→∞

‖𝑇‖ ∈ R and𝐺∗

0
= lim sup

𝑡→∞
𝐺(V(𝑡)),

then

lim sup
𝑡→∞

|𝑤 (𝑡)| ≤ 𝐺
∗

0
𝐻

0
+ (1 +

𝐺
∗

0

𝐺
0

) 𝐼

with 𝐼 = lim sup
𝑡→∞









∮𝑇 (𝑡, ⋅) 𝑓 (⋅)









,

(42)

lim sup
𝑡→∞

|𝑤 (𝑡)| ≤ 𝐺
∗

0
𝐻

0
+ (1 +

𝐺
∗

0

𝐺
0

)




𝑓




lim sup
𝑡→∞

‖𝑇‖ ∈ R.

(43)

Part (II). If ] ̸= 0 and also assume that there exists 𝐿
0
a positive

constant such that 𝐿
0
≥ 𝑙(V) ≥ 𝑙

0
, then for any solution of (5)

in the spaceY = R2
× �̇�

1

per(0, 1), one has
(i)

lim sup
𝑡→∞

‖𝑇 (𝑡)‖ ≤ (

𝐿
0

2]𝜋2
+ 𝑙

0

)

1/2





𝑇
𝑎





,

lim sup
𝑡→∞










𝜕𝑇

𝜕𝑥

(𝑡)










≤ (

𝐿
0

2]𝜋2
+ 𝑙

0

)

1/2 








𝜕𝑇
𝑎

𝜕𝑥










;

(44)

(ii)

lim sup
𝑡→∞

|V (𝑡)| ≤
1

𝐺
0

(

𝐿
0

2]𝜋2
+ 𝑙

0

)

1/2





𝑇
𝑎










𝑓




+ 𝐻

0
; (45)

(iii) if 𝐺∗

0
= lim sup

𝑡→∞
𝐺(V(𝑡)),

lim sup
𝑡→∞

|𝑤 (𝑡)| ≤ 𝐺
∗

0
𝐻

0
+ 𝐺

2





𝑇
𝑎










𝑓





√2]𝜋2
+ 𝑙

0

with 𝐺
2
= (1 +

𝐺
∗

0

𝐺
0

)√𝐿
0
.

(46)

In particular, (5) has a global compact and connected attractor,
A, inY = R2

× �̇�
1

per(0, 1).

Proof.
Part (I). General case.

(i) From (8) we have that
𝑑𝑤

𝑑𝑡

+

1

𝜀

𝑤 = −

1

𝜀

𝐺 (V) V +
1

𝜀

∮𝑇 ⋅ 𝑓, (47)

and 𝑤(𝑡) = 𝑑V/𝑑𝑡 satisfies
𝑑V

𝑑𝑠

= 𝑤 (0) 𝑒
−(1/𝜀)𝑠

−

1

𝜀

∫

𝑠

0

𝑒
−(1/𝜀)(𝑠−𝑟)

𝐻(𝑟) 𝑑𝑟

+

1

𝜀

∫

𝑠

0

(∮𝑇 (𝑟) ⋅ 𝑓) 𝑒
−(1/𝜀)(𝑠−𝑟)

𝑑𝑟,

(48)

where 𝐻(𝑟) = 𝐻(V(𝑟)) = V(𝑟)𝐺(V(𝑟)). First, we rewrite (48)
as

𝑑V

𝑑𝑠

+ 𝐺 (𝑠) V = 𝑤 (0) 𝑒
−(1/𝜀)𝑠

+ 𝐼
1
(𝑠) + 𝐼

2
(𝑠) , (49)

with

𝐼
1
(𝑠) =

1

𝜀

∫

𝑠

0

(∮𝑇 (𝑟) ⋅ 𝑓) 𝑒
−(1/𝜀)(𝑠−𝑟)

𝑑𝑟,

𝐼
2
(𝑠) = 𝐻 (𝑠) −

1

𝜀

∫

𝑠

0

𝑒
−(1/𝜀)(𝑠−𝑟)

𝐻(𝑟) .

(50)

Next, for any 𝛿 > 0 there exists 𝑡
0
> 0 such that 𝛿(𝑠) =

𝑤(0)𝑒
−1/𝜀

< 𝛿 for any 𝑠 ≥ 𝑡
0
and integrating with 𝑡 ≥ 𝑡

0
,

we obtain

|V (𝑡)| ≤




V (𝑡

0
)




𝑒
−∫
𝑡

𝑡0

𝐺(𝑠)𝑑𝑠

+ 𝑒
−∫
𝑡

𝑡0

𝐺(𝑠)𝑑𝑠

∫

𝑡

𝑡0

𝑒
∫
𝑠

𝑡0

𝐺(𝑟)𝑑𝑟

(𝛿 +




𝐼
1
(𝑠)




+




𝐼
2
(𝑠)




) .

(51)
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Using L’Hopital’s Lemma 4 proved in [11], we get

lim sup
𝑡→∞

𝑒
−∫
𝑡

𝑡0

𝐺(𝑠)𝑑𝑠

∫

𝑡

𝑡0

𝑒
∫
𝑠

𝑡0

𝐺(𝑟)𝑑𝑟

(




𝐼
1
(𝑠)




+




𝐼
2
(𝑠)




+ 𝛿)

= lim sup
𝑡→∞

∫

𝑡

𝑡0

𝑒
∫
𝑠

𝑡0

𝐺(𝑟)𝑑𝑟

(




𝐼
1
(𝑠)




+




𝐼
2
(𝑠)




+ 𝛿) 𝑑𝑠

𝑒
∫
𝑡

𝑡0

𝐺(𝑠)𝑑𝑠

≤ lim sup
𝑡→∞





𝐼
1
(𝑡)




+




𝐼
2
(𝑡)




+ 𝛿

𝐺 (𝑡)

for any 𝛿 > 0.

(52)

Moreover, using again the L’Hopital’s Lemma 4 proved in [11],
we get

lim sup
𝑡→∞





𝐼
1
(𝑡)




≤ lim sup

𝑡→∞

∫

𝑡

0
𝑒
𝑟/𝜀 



∮ 𝑇 (𝑡) ⋅ 𝑓







𝜀𝑒
𝑡/𝜀

≤ lim sup
𝑡→∞









∮𝑇 (𝑡) ⋅ 𝑓









,

(53)

and from (51) together with (37), we conclude that

lim sup
𝑡→∞

|V (𝑡)| ≤ lim sup
𝑡→∞

lim sup
𝑡→∞






∮ 𝑇 (𝑡) ⋅ 𝑓







𝐺
0

+ 𝐻
0
+ 𝛿,

(54)

for any 𝛿.
(ii) From (47) together with Gronwall’s lemma, we get

|𝑤 (𝑡)| ≤




𝑤 (𝑡

0
)




𝑒
−(1/𝜀)𝑡

+

1

𝜀

∫

𝑡

𝑡0

𝑒
−(1/𝜀)(𝑡−𝑟)

[𝐺 (𝑟) |V (𝑟)| +








∮𝑇 (𝑟) ⋅ 𝑓









] 𝑑𝑟,

(55)

where 𝐺(𝑟) = 𝐺(V(𝑟)). Consequently, for any 𝛿 > 0, there
exists 𝑡

0
such that for any 𝑡 ≥ 𝑡

0
,

1

𝜀

∫

𝑡

𝑡0

𝑒
−(1/𝜀)(𝑡−𝑟)

[𝐺 (V (𝑟)) |V (𝑟)| +








∮𝑇 (𝑟) ⋅ 𝑓









] 𝑑𝑟

≤ [𝛿 + lim sup
𝑡→∞

(𝐺 (V (𝑡)) |V (𝑡)| +








∮𝑇 (𝑡) ⋅ 𝑓









)]

× (1 − 𝑒
−(1/𝜀)(𝑡−𝑡0)

) ,

(56)

that is,

lim sup
𝑡→∞

|𝑤 (𝑡)|

≤ lim sup
𝑡→∞

(𝐺 (V (𝑡)) |V (𝑡)| +





∮ 𝑇 (𝑡) ⋅ 𝑓






+ 𝛿) ,

(57)

for any 𝛿 > 0, and using the previous results (i) we get (42).

Part (II). (i) From (23) together with (24), we get

‖𝑇‖
2
≤

𝐿
0

2]𝜋2
+ 𝑙

0





𝑇
𝑎






2

+ (




𝑇
0






2

−

𝐿
0

2]𝜋2
+ 𝑙

0





𝑇
𝑎






2

)

+

× 𝑒
−(2𝜋
2]+𝑙0)𝑡

,










𝜕𝑇

𝜕𝑥










2

≤

𝐿
0

2]𝜋2
+ 𝑙

0










𝜕𝑇
𝑎

𝜕𝑥










2

+ (




𝑇
0






2

−

𝐿
0

2]𝜋2
+ 𝑙

0





𝑇
𝑎






2

)

+

×𝑒
−(2𝜋
2]+𝑙0)𝑡 ,

(58)

and by elementary integration we obtain (44). Using Part (I),
the rest (ii) and (iii) are obvious. Since the sectorial operator𝐵
defined in Section 2.1.1 has compact resolvent, the rest follows
from [17, Theorems 4.2.2 and 3.4.8].

Remark 8. First, we note that the hypothesis about the
function 𝑙(V) in Theorem 7, 𝑙(V) ≤ 𝐿

0
is satisfied when we

consider Newton’s linear cooling law ℎ = 𝑘(𝑇
𝑎
− 𝑇), where 𝑘

is a positive quantity; that is, 𝑙(V) = 𝑘 = 𝐿
0
, as [18]. Moreover,

this condition is also satisfied if we consider ℎ = 𝑙(V)(𝑇
𝑎
− 𝑇)

where 𝑙(V) is a positive upper bounded function.
Second, it is important to note that we prove in the next

section the existence of the global compact and connected
attractor and the inertial manifold for the system (8), when
we consider the general Newton’s linear cooling law without
the additional previous hypothesis on 𝑙(V); but we assume that
the friction function 𝐺(V) always satisfies (36).

In order to get this, we consider the Fourier expansions
and observe the dynamics of each coefficient of Fourier
expansions to improve the asymptotic bounded of temper-
ature. In particular, we will prove lim sup

𝑡→∞
‖𝑇(𝑡)‖ ≤ ‖𝑇

𝑎
‖

for every locally Lipschitz and positive function 𝑙(V) and also
for every ] ≥ 0 (see (72) in Proposition 9) and for every
friction function 𝐺(V) satisfying (36).

3. Asymptotic Behavior: Reduction to
Finite-Dimensional Systems

We take a close look at the dynamics of (5) by considering
the Fourier expansions of each function and observing the
dynamics of each Fourier mode. Assume that 𝑇

𝑎
∈ �̇�

1

per(0, 1)

and 𝑓 ∈ �̇�
2

per(0, 1) are given by the following Fourier
expansions:

𝑇
𝑎
(𝑥) = ∑

𝑘∈Z∗

𝑏
𝑘
𝑒
2𝜋𝑘𝑖𝑥

,

𝑓 (𝑥) = ∑

𝑘∈Z∗

𝑐
𝑘
𝑒
2𝜋𝑘𝑖𝑥 with Z

∗
,

(59)

while the initial data 𝑇
0
∈ �̇�

1

per(0, 1) is given by 𝑇
0
(𝑥) =

∑
𝑘∈Z∗ 𝑎𝑘0𝑒

2𝜋𝑘𝑖𝑥.
Assume that 𝑇(𝑡, 𝑥) ∈ �̇�1

per(0, 1) is given by

𝑇 (𝑡, 𝑥) = ∑

𝑘∈Z∗

𝑎
𝑘
(𝑡) 𝑒

2𝜋𝑘𝑖𝑥
. (60)
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Then, we find that the coefficient 𝑎
𝑘
(𝑡) in (60) is a solution of

̇𝑎
𝑘
(𝑡) + (2𝜋𝑘V𝑖 + 4]𝜋

2
𝑘
2
+ 𝑙 (V)) 𝑎

𝑘
(𝑡) = 𝑙 (V) 𝑏

𝑘
,

𝑎
𝑘
(0) = 𝑎

𝑘0
, 𝑘 ∈ Z

∗
.

(61)

Since all the functions involved are real, we have 𝑎
𝑘

=

𝑎
−𝑘
, 𝑏

𝑘
= 𝑏

−𝑘
, and 𝑐

𝑘
= 𝑐

−𝑘
. Therefore, (5) is equivalent to

the infinite system of ODEs consisting of (61) coupled with

𝜀

𝑑
2V

𝑑𝑡

+

𝑑V

𝑑𝑡

+ 𝐺 (V) V = ∑

𝑘∈Z∗

𝑎
𝑘
(𝑡) 𝑐

−𝑘
. (62)

The system of (5) reflects two of the main features: (i) the
coupling between the modes enter only through the velocity,
while diffusion acts as a linear damping term, and (ii) it
is important to note in this model that we have also the
nonlinear term given by Newton’s linear cooling law.

We note that the system (5) is equivalent to the system (8)
for acceleration, velocity and temperature. It is equivalent to
the following infinite system of ODEs:

𝑑𝑤

𝑑𝑡

+

1

𝜀

𝑤 = −

1

𝜀

𝐺 (V) V +
1

𝜀

∑

𝑘∈Z∗

𝑎
𝑘
(𝑡) 𝑐

−𝑘
, 𝑤 (0) = 𝑤

0
,

𝑑V

𝑑𝑡

= 𝑤, V (0) = V
0
,

̇𝑎
𝑘
(𝑡) + (2𝜋𝑘V𝑖 + 4]𝜋

2
𝑘
2
+ 𝑙 (V)) 𝑎

𝑘
(𝑡) = 𝑙 (V) 𝑏

𝑘
,

𝑎
𝑘
(0) = 𝑎

𝑘0
, 𝑘 ∈ Z

∗
.

(63)

In what follows, we will exploit this explicit equation for
the temperature modes to analyze the asymptotic behavior
of the system and to obtain the explicit low-dimensional
models.

3.1. Attractors and Inertial Manifolds. The existence of an
inertial manifold does not rely, in this case, on the existence
of large gaps in the spectrum of the elliptic operator but on
the invariance of certain sets of Fourier modes.

A similar explicit construction was given by Bloch and
Titi in [19] for a nonlinear beam equation where the nonlin-
earity occurs only through the appearance of the 𝐿2 norm of
the unknown. A related construction was given by Stuart in
[20] for a nonlocal reaction-diffusion equation.

In order to get the inertial manifold for this system,
we first improve the bounds on acceleration, velocity, and
temperature of the previous section for all situations with ] ≥
0 and 𝑙(V) ≥ 𝑙

0
> 0 general locally Lipschitz function under

the hypotheses of Lemma 5 for some 𝐻
0
≥ 0, in particular

𝐺(V) satisfying (36).
We will prove in Proposition 9 that we have always an

upper bounded for the temperature in �̇�2(0, 1) independent
of the velocity and the function 𝑙(V), considered in Newton’s
linear cooling law and also independent of the diffusion
coefficient. That is,

lim sup
𝑡→∞

‖𝑇 (𝑡, ⋅)‖ ≤




𝑇
𝑎





. (64)

Proposition 9. Under the previous notations, for every solu-
tion of the system (5), (𝑤, V, 𝑇), and for every 𝑘 ∈ Z∗, one has

(i)

lim sup
𝑡→∞





𝑎
𝑘
(𝑡)




≤




𝑏
𝑘





, in particular lim sup

𝑡→∞

‖𝑇 (𝑡, ⋅)‖≤




𝑇
𝑎





,

(65)

(ii)

lim sup
𝑡→∞

|V (𝑡)| ≤
𝐼
0

𝐺
0

+ 𝐻
0
, with 𝐼

0
= ∑

𝑘∈Z∗





𝑏
𝑘










𝑐
𝑘




 (66)

and 𝐺
0
a positive constant such that 𝐺(V) ≥ 𝐺

0
;

(iii)

lim sup
𝑡→∞

|𝑤 (𝑡)| ≤ 𝐺
∗

0
𝐻

0
+ (1 +

𝐺
∗

0

𝐺
0

) 𝐼
0
,

with 𝐼
0
= ∑

𝑘∈Z∗





𝑏
𝑘










𝑐
𝑘





, 𝐺

∗

0
= lim sup

𝑡→∞

𝐺 (V (𝑡)) .

(67)

In particular, one has a global compact and connected attractor
A ⊂ [−𝑀,𝑀]×[−𝑁,𝑁]×Cwhere𝑀,𝑁 are the upper bounds
for acceleration and velocity as given in (67) and (66) and 𝑇

0
∈

C = {𝑅(𝑥) = ∑
𝑘∈Z∗ 𝑟𝑘𝑒

2𝜋𝑘𝑖𝑥
, |𝑟

𝑘
| ≤ |𝑏

𝑘
|}.

Proof. From (61), we have

𝑎
𝑘
(𝑡) = 𝑎

𝑘0
𝑒
−4]𝜋2𝑘2𝑡

𝑒
−∫
𝑡

0
[2𝜋𝑘V𝑖+𝑙(V)]

+ 𝑏
𝑘
∫

𝑡

0

𝑒
−4]𝜋2𝑘2(𝑡−𝑠)

𝑙 (V (𝑠)) 𝑒
−∫
𝑡

𝑠
[2𝜋𝑘V𝑖+𝑙(V)]

𝑑𝑠

(68)

with








𝑒
−∫
𝑡

0
2𝜋𝑘V𝑖









=









𝑒
−∫
𝑡

𝑠
2𝜋𝑘V𝑖









= 1, 𝑒
−4]𝜋2𝑘2(𝑡−𝑠)

≤ 1,

∫

𝑡

0

𝑙 (V (𝑠)) 𝑒
−∫
𝑡

𝑠
𝑙(V)
𝑑𝑠 = 1 − 𝑒

−∫
𝑡

0
𝑙(V)
.

(69)

Thus, we obtain





𝑎
𝑘
(𝑡)




≤




𝑎
𝑘0





𝑒
−4]𝜋2𝑘2𝑡

𝑒
−∫
𝑡

0
𝑙(V)

+




𝑏
𝑘





(1 − 𝑒

−∫
𝑡

0
𝑙(V)
) , (70)

and we get lim sup
𝑡→∞

|𝑎
𝑘
(𝑡)| ≤ |𝑏

𝑘
|. Using Theorem 7

together with ∮𝑇𝑓 = ∑
𝑘∈Z∗ 𝑎𝑘(𝑡)𝑐𝑘, we get

lim sup
𝑡→∞

|V (𝑡)| ≤
1

𝐺
0

lim sup
𝑡→∞









∮𝑇 (𝑡, ⋅) 𝑓 (⋅)









+ 𝐻
0
,

lim sup
𝑡→∞

|𝑤 (𝑡)| ≤ 𝐺
∗

0
𝐻

0
+ (1 +

𝐺
∗

0

𝐺
0

)




𝑓




lim sup
𝑡→∞

‖𝑇‖ ∈ R.

(71)

From this upper bounded for the velocity, we also have 𝐿
0
the

upper bound for the continuous positive function 𝑙(V), and
using Part (II) fromTheorem 7 we conclude.
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We note from the previous result that we have always
the upper bound for ‖𝑇‖ and from Theorem 7 for the
velocity. Therefore, we can consider 𝐿

0
the upper bound for

the continuous positive function 𝑙(V); we note that 𝐿
0

=

lim sup
𝑡→∞

𝑙(V) and we prove in Proposition 10 the bound of
solutions to show the influence of diffusion coefficient ].

Proposition 10. Under the previous notations, for every solu-
tion of the system (5), (𝑤, V, 𝑇), and for every 𝑘 ∈ Z∗, one has

lim sup
𝑡→∞





𝑎
𝑘
(𝑡)




≤ 𝐿

𝑘

]




𝑏
𝑘





, with 𝐿

𝑘

] =
𝐿
0

4]𝜋2
𝑘
2
+ 𝑙

0

in particular lim sup
𝑡→∞

‖𝑇 (𝑡, ⋅)‖ ≤

𝐿
0

4]𝜋2
+ 𝑙

0





𝑇
𝑎





.

(72)

Moreover, one has that

‖𝑇‖
2

�̇�
𝑚+2

per
≤

𝐿
0

4]𝜋2





𝑇
𝑎






2

�̇�
𝑚

per
,

lim sup
𝑡→∞

|V (𝑡)| ≤
𝐼
0

𝐺
0

+ 𝐻
0
, with 𝐼

0
=

𝐿
0

4]𝜋2
+ 𝑙

0

× ∑

𝑘∈Z∗





𝑏
𝑘










𝑐
𝑘





,

(73)

and 𝐺
0
positive constant such that 𝐺(V) ≥ 𝐺

0
;

lim sup
𝑡→∞

|𝑤 (𝑡)| ≤ 𝐺
∗

0
𝐻

0
+ 2𝐼

0
,

with 𝐼
0
=

𝐿
0

4]𝜋2
+ 𝑙

0

∑

𝑘∈Z∗





𝑏
𝑘










𝑐
𝑘





, 𝐺

∗

0
= lim sup

𝑡→∞

𝐺 (V (𝑡)) .

(74)

Proof. Using again

𝑎
𝑘
(𝑡) = 𝑎

𝑘0
𝑒
−4]𝜋2𝑘2𝑡

𝑒
−∫
𝑡

0
[2𝜋𝑘V𝑖+𝑙(V)]

+𝑏
𝑘
∫

𝑡

0

𝑒
−4]𝜋2𝑘2(𝑡−𝑠)

𝑙 (V (𝑠)) 𝑒
−∫
𝑡

𝑠
[2𝜋𝑘V𝑖+𝑙(V)]

𝑑𝑠,

(75)

if we assume that 0 < 𝑙
0
≤ 𝑙(V) ≤ 𝐿

0
, then we obtain





𝑎
𝑘
(𝑡)




≤




𝑎
𝑘0





𝑒
−(4]𝜋2𝑘2+𝑙0)𝑡

+




𝑏
𝑘





𝐿
0
∫

𝑡

0

𝑒
−4(]𝜋2𝑘2+𝑙0)(𝑡−𝑠)

, (76)

and we get





𝑎
𝑘
(𝑡)




≤ (





𝑎
𝑘0





−

𝐿
0

4]𝜋2
𝑘
2
+ 𝑙

0





𝑏
𝑘





)

+

𝑒
−(4]𝜋2𝑘2+𝑙0)𝑡

+

𝐿
0

4]𝜋2
𝑘
2
+ 𝑙

0





𝑏
𝑘





;

(77)

that is, if |𝑎
𝑘0
| ≤ (𝐿

0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
|, then |𝑎

𝑘
(𝑡)| ≤

(𝐿
0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
|.

In particular |𝑎
𝑘
(𝑡)| ≤ (𝐿

0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
| ≤ (𝐿

0
/

(4]𝜋2
+ 𝑙

0
))|𝑏

𝑘
| for every 𝑘 ∈ Z∗ and also |𝑎

𝑘
(𝑡)| ≤

(𝐿
0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
| ≤ (𝐿

0
/(4]𝜋2

𝑘
2
))|𝑏

𝑘
|; that is, |𝑎

𝑘
(𝑡)| ≤

(𝐿
0
/4]𝜋2

)|𝑏
𝑘
|.

Then, we also have that

‖𝑇‖
2

�̇�
𝑚+2

per
≤

∞

∑

|𝑘|=1

|𝑘|
2𝑚+4 




𝑎
𝑘
(𝑡)




≤

𝐿
0

4]𝜋2

∞

∑

|𝑘|=1

|𝑘|
2𝑚 



𝑏
𝑘






≤

𝐿
0

4]𝜋2





𝑇
𝑎






2

�̇�
𝑚

per
.

(78)

Finally, we note that if 𝐿
0
= lim sup

𝑡→∞
𝑙(V(𝑡)), then

given 𝛿 > 0, there exists 𝑡
0
such that 𝐿(V(𝑡)) ≤ 𝐿

0
+ 𝛿

for every 𝑡 ≥ 𝑡
0
, and integrating in 𝑡 ≥ 𝑡

0
, we obtain

lim sup
𝑡→∞

|𝑎
𝑘
(𝑡)| ≤ (𝐿

0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
| + 𝛿, for any 𝛿 > 0,

and

‖𝑇‖
2

�̇�
𝑚

per
≤ ‖𝑇‖

2

�̇�
𝑚+2

per
≤

𝐿
0

4]𝜋2





𝑇
𝑎






2

�̇�
𝑚

per
. (79)

Using againTheorem 7, we conclude.

We note that if ] = 0, then |𝑎
𝑘
| ≤ |𝑏

𝑘
| ≤ (𝐿

0
/𝑙
0
)|𝑏

𝑘
|. If

] > 0we observe in the numerical experiments, as ] is bigger,
that the solution becomes stable or periodic.

As a consequence, we have the following result on the
smoothness of the attractor of (5).

Corollary 11. (i) If |𝑎
𝑘0
| ≤ (𝐿

0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
|, then

|𝑎
𝑘
(𝑡)| ≤ (𝐿

0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
| for every 𝑡 ≥ 0.

(ii) If A is the global attractor in the space Y = R2
×

�̇�
1

per(0, 1), then for every (𝑤
0
, V

0
, 𝑇

0
) ∈ A, with 𝑇

0
(𝑥) =

∑
𝑘∈Z∗ 𝑎𝑘𝑒

2𝜋𝑘𝑖𝑥, one gets





𝑎
𝑘





≤

𝐿
0

4]𝜋2
𝑘
2
+ 𝑙

0





𝑏
𝑘





, 𝑘 ∈ Z

∗
. (80)

In particular, if𝑇
𝑎
∈ �̇�

𝑚

per(0, 1)with𝑚 ≥ 1, the global attractor
A → R2

× �̇�
𝑚+2

per (0, 1) and is compact in this space.

Proof. (i) From (77) we have |𝑎
𝑘
(𝑡)| ≤ (𝐿

0
/(4]𝜋2

𝑘
2
+𝑙

0
))|𝑏

𝑘
|+

(|𝑎
𝑘0
| − (𝐿

0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
|)
+
𝑒
−∫
𝑡

0
𝑙(V), therefore, if |𝑎

𝑘0
| ≤

(𝐿
0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
|, then |𝑎

𝑘
(𝑡)| ≤ (𝐿

0
/(4]𝜋2

𝑘
2
+ 𝑙

0
))|𝑏

𝑘
|

for every 𝑡 ≥ 0 and 𝑘 ∈ Z∗.
(ii) We note that from (i), if 𝑇

𝑎
(𝑥) = ∑

𝑘∈Z∗ 𝑏𝑘𝑒
2𝜋𝑘𝑖𝑥

∈

�̇�
𝑚

per, then ∑
𝑘∈Z∗ 𝑘

2𝑚
|𝑏
𝑘
|
2
< ∞, and therefore 𝑇

0
∈ C =

{𝑅(𝑥) = ∑
𝑘∈Z∗ 𝑟𝑘𝑒

2𝜋𝑘𝑖𝑥
∈ �̇�

𝑚+2

per , 4]𝜋
2
𝑘
2
|𝑟
𝑘
| ≤ |𝑏

𝑘
|}; that is,

A ⊂ [−𝑀,𝑀] × [−𝑁,𝑁] × C where 𝑀,𝑁 are the upper
bounds for acceleration and velocity as given in (74) and (73).
But, the setC is compact in �̇�𝑚+2

per since for any sequence {𝑇𝑛
}

in C we can extract a subsequence that we still denote {𝑇𝑛
}

such that it converges weakly to a function 𝑇 and such that
for any 𝑘 ∈ Z∗, the Fourier coefficients verify 𝑎𝑛

𝑘
→ 𝑎

𝑘
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as 𝑛 → ∞, where 𝑎
𝑘
is the 𝑘th Fourier coefficient of 𝑇.

Therefore, 4]𝜋2
𝑘
2
|𝑎

𝑘
| ≤ |𝑏

𝑘
| and for every integer 𝐸,





𝑇
𝑛
− 𝑇






2

𝑚+2
≤

𝐸

∑

|𝑘|=1

|𝑘|
2𝑚+4




𝑎
𝑛

𝑘
− 𝑎

𝑘






2

+ 𝐶
0

∞

∑

|𝑘|=𝐸+1

|𝑘|
2𝑚+4

|𝑘|
2𝑚



𝑏
𝑘






2

,

(81)

where ‖ ⋅ ‖
𝑚+2

denotes the norm in �̇�
𝑚+2

per . Hence, the first
term goes to zero as 𝑛 → ∞ and the second term can be
made arbitrarily small as 𝐸 → ∞. Consequently, 𝑇 ∈ C and
𝑇
𝑛
→ 𝑇 in �̇�𝑚+2

per , and the result follows.

Note that this result reveals in particular the asymptotic
smoothing of (5). In the next result we will prove that the
dynamical system induced by (8) in the phase space Y =

R2
× �̇�

𝑚

per(0, 1), 𝑚 ≥ 1, has an inertial manifold. According
to [21], we have the following definition.

Definition 12. Let 𝑆(𝑡), 𝑡 ≥ 0, be a nonlinear semigroup in
a Banach space in Y that has a global attractor A. Then, a
smooth manifoldM ⊂ Y is called an inertial manifold if

(i) M is positively invariant, that is, 𝑆(𝑡)M ⊂ M for
every 𝑡 ≥ 0;

(ii) M contains the attractor, that is,A ⊂ M;

(iii) M is exponentially attracting in the sense that there
exists a constant 𝛿 > 0 such that for every bounded
set 𝐵 ⊂ Y there exists 𝐶 = 𝐶(𝐵) ≥ 0 such that

dist (𝑆 (𝑡) 𝐵,M) ≤ 𝐶𝑒
−𝛿𝑡
, (82)

for every 𝑡 ≥ 0.

See, for example, [21, 22].
Assume the ambient temperature given by

𝑇
𝑎
(𝑥) = ∑

𝑘∈𝐾

𝑏
𝑘
𝑒
2𝜋𝑘𝑖𝑥

∈ �̇�
𝑚

per (0, 1) , (83)

where 𝐾 ⊂ Z, that is, with 𝑏
𝑘

̸= 0 for every 𝑘 ∈ 𝐾 ⊂ Z with
0 ∉ 𝐾, since ∮𝑇

𝑎
= 0.

Then, we denote by 𝑉
𝑚

the closed linear subspace of
�̇�

𝑚

per(0, 1) spanned by {𝑒
2𝜋𝑘𝑖𝑥

, 𝑘 ∈ 𝐾} and consider the
following spectral decomposition in �̇�𝑚

per(0, 1) : 𝑇 = 𝑇
1
+𝑇

2,
where 𝑇1 denotes the projection of 𝑇 onto 𝑉 and 𝑇

2 the

projection onto the space generated by {𝑒2𝜋𝑘𝑖𝑥, 𝑘 ∉ 𝐾}. Note
that (8) is equivalent to

𝜀

𝑑
2V

𝑑𝑡
2
+

𝑑V

𝑑𝑡

+ 𝐺 (V) V = ∮(𝑇
1
+ 𝑇

2
) 𝑓,

V (0) = V
0
,

𝑑V

𝑑𝑡

(0) = 𝑤
0
,

𝜕𝑇
1

𝜕𝑡

+V
𝜕𝑇

1

𝜕𝑥

=𝑙 (V) (𝑇
𝑎
− 𝑇

1
)+]

𝜕
2
𝑇
1

𝜕𝑥
2
, 𝑇

1
(0, 𝑥)=𝑇

1

0
(𝑥) ,

𝜕𝑇
2

𝜕𝑡

+ V
𝜕𝑇

2

𝜕𝑥

= −𝑙 (V) 𝑇
2
+ ]

𝜕
2
𝑇
2

𝜕𝑥
2
, 𝑇

2
(0, 𝑥) = 𝑇

2

0
(𝑥) .

(84)

Note that from (61), if 𝑏
𝑘
= 0, then the 𝑘th mode for

the temperature is damped out exponentially, and therefore
the space𝑉 attracts the dynamics for the temperature.This is
precisely stated in the following result.

Theorem 13. Assume that 𝑇
𝑎
∈ �̇�

𝑚

per(0, 1) and 𝑓 ∈ �̇�
2

per(0, 1).
Then, the setM = R2

× 𝑉
𝑚
is an inertial manifold for the flow

of 𝑆(𝑡)(𝑤
0
, V

0
, 𝑇

0
) = (𝑤(𝑡), V(𝑡), 𝑇(𝑡)) in the space Y = R2

×

�̇�
𝑚

per(0, 1). Moreover, if𝑓 ∈ 𝑉
𝑚
the inertial manifoldM has the

exponential tracking property; that is, for every (𝑤
0
, V

0
, 𝑇

0
) ∈

R2
× �̇�

𝑚

per(0, 1), there exists (𝑤
1
, V

1
, 𝑇

1
) ∈ M such that if

(𝑤
𝑖
(𝑡), V

𝑖
(𝑡), 𝑇

𝑖
(𝑡)), 𝑖 = 0, 1, are the corresponding solutions of

(8), then (𝑤
0
(𝑡), V

0
(𝑡), 𝑇

0
(𝑡)) − (𝑤

1
(𝑡), V

1
(𝑡), 𝑇

1
(𝑡)) → 0 in

R2
× �̇�

𝑚

per(0, 1). In particular if𝐾 is a finite set, the dimension
ofM is |𝐾| + 2, where |𝐾| is the number of elements in 𝐾.

Proof. In order to prove thatM is invariant, we note if 𝑘 ∉ 𝐾,
then 𝑏

𝑘
= 0, and therefore 𝑎

𝑘0
= 0, (𝑇

2

0
= 0), from (70), we get

that 𝑎
𝑘
(𝑡) = 0, for every 𝑡; that is, 𝑇(𝑡, 𝑥) = ∑

𝑘∈𝐾
𝑎
𝑘
(𝑡)𝑒

2𝜋𝑘𝑖𝑥
=

𝑇
1. Thus, if (𝑤

0
, V

0
, 𝑇

0
) ∈ M, then (𝑤(𝑡), V(𝑡), 𝑇(𝑡)) ∈ M for

every 𝑡, that is, invariant manifold.
We consider the decomposition in �̇�

𝑚

per, 𝑇 = 𝑇
1
+ 𝑇

2,
where𝑇1 is the projection of𝑇 on𝑉

𝑚
and𝑇2 is the projection

of 𝑇 on the subspace generated by {𝑒2𝜋𝑘𝑖𝑥, 𝑘 ∈ Z∗
\ 𝐾}; that

is, 𝑇1
= ∑

𝑘∈𝐾
𝑎
𝑘
𝑒
2𝜋𝑘𝑖𝑥 and 𝑇2

= ∑
𝑘∈Z∗\𝐾 𝑎𝑘𝑒

2𝜋𝑘𝑖𝑥
= 𝑇 − 𝑇

1.
From (77) taking into account that 𝑏

𝑘
= 0 for 𝑘 ∈

Z∗
\ 𝐾, we have that |𝑎

𝑘
(𝑡)| ≤ |𝑎

𝑘0
|𝑒
−(4]𝜋2𝑘2+𝑙0)𝑡 for every

𝑘 ∈ Z∗ implies that there exist positive constants 𝐶
𝑖
, such

that ‖𝑇2
(𝑡)‖

�̇�
2𝑚

per
≤ 𝐶

1
‖𝑇

2
(𝑡)‖

�̇�
𝑚

per
≤ 𝐶

2
‖𝑇

2

0
‖
�̇�
𝑚

per
𝑒
−(4]𝜋2+𝑙0)𝑡, that

is, 𝑇2
(𝑡) → 0 in �̇�2𝑚

per(0, 1) if 𝑡 → ∞.
Therefore, we have in particular that ‖𝑇2

(𝑡)‖
�̇�
𝑚

per
→ 0

as 𝑡 → ∞ with exponential decay rate 𝑒−(4]𝜋
2
+𝑙0)𝑡. Thus,

M also attracts (𝑤(𝑡), V(𝑡), 𝑇(𝑡))with exponential rate 𝑒−4]𝜋
2
𝑡,

since distY((𝑤(𝑡), V(𝑡), 𝑇(𝑡)),M) = dist
�̇�
𝑚

per
(𝑇(𝑡), 𝑉) =

‖𝑇
2
(𝑡)‖

�̇�
𝑚

per
≤ 𝐶

2
‖𝑇

2

0
‖
�̇�
𝑚

per
𝑒
−(4]𝜋2+𝑙0)𝑡

.
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To prove the exponential tracking property just note that
the flow insideM is given by setting𝑇2

= 0where∮𝑇(𝑥)⋅𝑓 =

∑
𝑘∈𝐾

𝑎
𝑘
(𝑡) ⋅ 𝑐

−𝑘
; that is,

�̇� +

1

𝜀

𝑤 +

1

𝜀

𝐺 (V) V =
1

𝜀

∑

𝑘∈𝐾

𝑎
𝑘
(𝑡) ⋅ 𝑐

−𝑘
,

V̇ = 𝑤,

̇𝑎
𝑘
(𝑡) + (2𝜋𝑘V𝑖 + 4]𝜋

2
𝑘
2
+ 𝑙 (V)) 𝑎

𝑘
(𝑡) = 𝑙 (V) 𝑏

𝑘
, 𝑘 ∈ 𝐾,

𝑎
𝑘
= 0, 𝑘 ∉ 𝐾.

(85)

Therefore, if 𝑓 ∈ 𝑉, then ∮𝑇𝑓 = ∮𝑇
1
𝑓, and given (𝑤

0
,

V
0
, 𝑇

0
) ∈ Y and (𝑤(𝑡), V(𝑡), 𝑇(𝑡)), the solution of (84), we

decompose 𝑇
0

= 𝑇
1

0
+ 𝑇

2

0
and 𝑇(𝑡) = 𝑇

1
(𝑡) + 𝑇

2
(𝑡).

Then, we consider (𝑤(𝑡), V(𝑡), 𝑇1
(𝑡)) ∈ M and it is still a

solution of (85). Hence, (𝑤(𝑡), V(𝑡), 𝑇(𝑡))−(𝑤(𝑡), V(𝑡), 𝑇1
(𝑡)) =

(0, 0, 𝑇
2
(𝑡)) and the right-hand side is of order 𝑒−(4]𝜋

2
+𝑙0)𝑡. In

particular, if the set 𝐾 is finite, then the inertial manifoldM
is of finite dimension and the flow inside is equivalent to the
finite system of ODEs given by (85). Thus, the theorem is
proved.

3.2. The Reduced Subsystem. Under the hypotheses and
notations of Theorem 13, we suppose that

𝑓 (𝑥) = ∑

𝑘∈𝐽

𝑐
𝑘
𝑒
2𝜋𝑘𝑖𝑥

, (86)

with 𝑐
𝑘

̸= 0 for every 𝑘 ∈ 𝐽 ⊂ Z. Then, ∮(𝑇 ⋅ 𝑓) =

∑
𝑘∈𝐾∩𝐽

𝑎
𝑘
(𝑡)𝑐

−𝑘
. So, the evolution of velocity V and acceler-

ation 𝑤 depend only on the coefficients of 𝑇 which belong to
the set𝐾∩𝐽. Note that in (85) the set of equations for 𝑎

𝑘
with

𝑘 ∈ 𝐾∩𝐽 togetherwith the equation for V and𝑤 is a subsystem
of coupled equations denoted by the reduced subsystem.

Thus, we will reduce the asymptotic behavior of the initial
system (5) to the dynamics of the reduced explicit system (87)
when we consider the relevant modes of temperature 𝑎

𝑘
, 𝑘 ∈

𝐾 ∩ 𝐽. Consider
𝑑𝑤

𝑑𝑡

+

1

𝜀

𝑤 +

1

𝜀

𝐺 (V) V =
1

𝜀

∑

𝑘∈(𝑘∩𝐽)

𝑎
𝑘
(𝑡) 𝑐

−𝑘
, 𝑤 (0) = 𝑤

0
,

𝑑V

𝑑𝑡

= 𝑤, V (0) = V
0
,

̇𝑎
𝑘
(𝑡) + (2𝜋𝑘V𝑖 + 4]𝜋

2
𝑘
2
+ 𝑙 (V)) 𝑎

𝑘
(𝑡) = 𝑙 (V) 𝑏

𝑘
,

𝑎
𝑘
(0) = 𝑎

𝑘0
, 𝑘 ∈ 𝐾 ∩ 𝐽,

(87)

where 𝑎
−𝑘
= 𝑎

𝑘
, 𝑏

−𝑘
= 𝑏

𝑘
, and 𝑐

−𝑘
= 𝑐

𝑘
as we consider only the

real functions. After solving this, we must solve the equations
for 𝑘 ∉ 𝐾 ∩ 𝐽 which are linear autonomous equations.

Now, we will show themodes in 𝑘 ∈ 𝐾∩𝐽 that will play an
essential role in the dynamics. With the previous notations,
we further decompose 𝑇

1
as follows:

𝑇
1
= 𝜏 + 𝜃, (88)

where 𝜏 is the projection onto the space generated by
{𝑒

2𝜋𝑘𝑖𝑥
, 𝑘 ∈ 𝐾 ∩ 𝐽} and 𝜃 is the projection onto the space

generated by {𝑒2𝜋𝑘𝑥, 𝑘 ∈ 𝐾\𝐽}. We denote by 𝑃 the projection
𝑃(𝑤, V, 𝑇) = (𝑤, V, 𝜏) and 𝑄 = 𝐼 − 𝑃. With these notations
and decomposing 𝑇

𝑎
as 𝑇

𝑎
= 𝜏

𝑇𝑎
+ 𝜃

𝑇𝑎
, (8) and (84) can be

decomposed as a system of the form

𝑑𝑤

𝑑𝑡

+

1

𝜀

𝑤 = −

1

𝜀

𝐺 (V) V +
1

𝜀

∮ (𝜏 + 𝑇
2
) 𝑓,

𝑤 (0) = 𝑤
0
,

𝑑V

𝑑𝑡

= 𝑤, V (0) = V
0
,

𝜕𝜏

𝜕𝑡

+ V
𝜕𝜏

𝜕𝑥

= 𝑙 (V) (𝜏
𝑇𝑎
− 𝜏) + ]

𝜕
2
𝜏

𝜕𝑥
2
,

𝜏 (0, 𝑥) = (𝑇
0
)
𝜏
(𝑥) ,

𝜕𝜃

𝜕𝑡

+ V
𝜕𝜃

𝜕𝑥

= 𝑙 (V) (𝜃
𝑇𝑎
− 𝜃) + ]

𝜕
2
𝜃

𝜕𝑥
2
,

𝜃 (0, 𝑥) = (𝑇
0
)
𝜃
(𝑥) ,

𝜕𝑇
2

𝜕𝑡

+ V
𝜕𝑇

2

𝜕𝑥

= −𝑙 (V) 𝑇
2
+ ]

𝜕
2
𝑇
2

𝜕𝑥
2
, 𝑇

2
(0, 𝑥) = 𝑇

2

0
(𝑥) .

(89)

Since ∮𝜃𝑓 = 0 and setting 𝑇
2
= 0, the first four equa-

tions give the flow inside the inertial manifold M; that
is, they are equivalent to (84) while the first three are the
only nonlinearity coupled equations. Therefore, once this
subsystem is solved, the other unknowns are determined
through linear nonhomogeneous equations.

To make this idea more precise in terms of semigroup
and attractors, we proceed as in [14]. We denote by 𝑆(𝑡) the
semigroup generated by (8) on Y := R2

× �̇�
1

per(0, 1) and by
𝑆
𝑀
(𝑡) its restriction to the inertial manifold M, that is, the

semigroup generated by (90). Consider

𝑑𝑤

𝑑𝑡

+

1

𝜀

𝑤 = −

1

𝜀

𝐺 (V) V +
1

𝜀

∮𝑇
1
𝑓, 𝑤 (0) = 𝑤

0
,

𝑑V

𝑑𝑡

= 𝑤, V (0) = V
0
,

𝜕𝑇
1

𝜕𝑡

+ V
𝜕𝑇

1

𝜕𝑥

= 𝑙 (V) (𝑇
𝑎
− 𝑇

1
) + ]

𝜕
2
𝑇
1

𝜕𝑥
2
,

𝑇
1
(0, 𝑥) = 𝑇

1

0
(𝑥) ,

𝜕𝑇
2

𝜕𝑡

+ V
𝜕𝑇

2

𝜕𝑥

= −𝑙 (V) 𝑇
2
+ ]

𝜕
2
𝑇
2

𝜕𝑥
2
,

𝑇
2
(0, 𝑥) = 𝑇

2

0
(𝑥) ,

𝑇
2
= 0.

(90)

We will find a reduced semigroup on the reduced space
YR := 𝑃(Y), denoted as 𝑆

𝑅
(𝑡), that, in a sense, determines

the asymptotic behavior of 𝑆
𝑀
(𝑡) and therefore that of 𝑆(𝑡).
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Note that 𝑆(𝑡) and 𝑆
𝑀
(𝑡) have the same attractor, while the

dimension of the spaceYR might be much smaller than that
ofM. The next result states, in particular, that the attractor of
the full system can be reconstructed from the attractor of the
reduced one.

Proposition 14. With the previous notation, one has the
following conditions.

(i) The system of equations

𝑑𝑤

𝑑𝑡

+

1

𝜀

𝑤 +

1

𝜀

𝐺 (V) V =
1

𝜀

∮ (𝜏 + 𝑇
2
) 𝑓, 𝑤 (0) = 𝑤

0
,

𝑑V

𝑑𝑡

= 𝑤, V (0) = V
0
,

𝜕𝜏

𝜕𝑡

+ V
𝜕𝜏

𝜕𝑥

= 𝑙 (V) (𝜏
𝑇𝑎
− 𝜏) + ]

𝜕
2
𝜏

𝜕𝑥
2
, 𝜏 (0, 𝑥) = (𝑇

0
)
𝜏
(𝑥) ;

(91)

defines a nonlinear semigroup, denoted as 𝑆
𝑅
(𝑡), on

YR := 𝑃(Y) that can be identified with 𝑃𝑆
𝑀
(𝑡)𝑃 =

𝑃𝑆
𝑀
(𝑡) restricted toYR.

(ii) If A denotes the maximal attractor of (8), then A
𝑅
=

𝑃(A) is the maximal attractor of (91). Moreover,

A = G (AR) , (92)

whereG : AR → A is continuous.
(iii) If the set 𝐾 ∩ 𝐽 is finite, (91) is equivalent to a system

of complex ODEs of the form (87). Consequently, the
asymptotic behavior of (8) is described by an explicit
system of ODEs in R𝑁 with 𝑁 = |𝐾 ∩ 𝐽| + 2 an even
number. In particular, if𝐾∩𝐽 = 0, 𝑙(V) = 𝑙

0
, and𝐺(V) =

𝐺
0
for every (𝑤

0
, V

0
, 𝑇

0
) ∈ R2

×�̇�
1

per(0, 1), one has that
the associated solution verifies V(𝑡) → 0 and 𝑇(𝑡) →

𝜃
∞
in �̇�1

per(0, 1), where 𝜃∞(𝑥) is the unique solution in
�̇�

2

per(0, 1) of the equation

−]
𝜕
2
𝜃
∞

𝜕𝑥
2
+ 𝑙

0
𝜃
∞
= 𝑙

0
𝑇
𝑎
. (93)

Moreover, if ] = 0, one gets V(𝑡) → 0 and 𝑇(𝑡) → 𝑇
𝑎
.

Proof. (i) Working as aforementioned, we prove that the
semigroups 𝑆

𝑀
(𝑡) and 𝑆

𝑅
(𝑡) are well defined and prove the

existence of attractorA
𝑅
. Using the techniques of [16] we can

work as in [14] to prove (ii). Then (iii) we note that 0 ∉ 𝐾∩ 𝐽,
and since 𝐾 = −𝐾 and 𝐽 = −𝐽, then the set 𝐾 ∩ 𝐽 is a
symmetric set and has an even number of elements that we
denote by 2𝑛

0
.Therefore, the number of the positive elements

of𝐾 ∩ 𝐽, (𝐾 ∩ 𝐽)
+
, is 𝑛

0
.

Note that ∮𝑇 ⋅ 𝑓 = ∑
𝑘∈Z∗ 𝑎𝑘(𝑡)𝑐𝑘 = ∑

𝑘∈𝐾∩𝐽
𝑎
𝑘
(𝑡) ⋅

𝑐
−𝑘
. Thus, the dynamics of the system depends only on the

coefficients in 𝐾 ∩ 𝐽. Moreover, the equations for 𝑎
−𝑘

are
conjugates of the equations for 𝑎

𝑘
, and therefore we have that

∑

𝑘∈𝐾∩𝐽

𝑎
𝑘
(𝑡) 𝑐

−𝑘
= 2Re( ∑

𝑘∈(𝐾∩𝐽)+

𝑎
𝑘
(𝑡) 𝑐

−𝑘
) . (94)

Taking real and imaginary parts of 𝑎
𝑘
, 𝑘 ∈ (𝐾 ∩ 𝐽)

+
, that is,

employing real variables, 𝑎
𝑘
= 𝑥

𝑘
+ 𝑖𝑦

𝑘
, we have a system in

R𝑁 with𝑁 = 2𝑛
0
+ 2.

If 𝐾 ∩ 𝐽 = 0, then from the equation for the velocity

𝜀

𝑑
2V

𝑑𝑡
2
+

𝑑V

𝑑𝑡

+ 𝐺
0
V = 0, (95)

we have

lim
𝑡→∞

V (𝑡) = 0. (96)

Moreover, from the equation for the temperature in (5),
we have that the function 𝜃 = 𝑇 − 𝜃

∞
satisfies the equation

𝜕𝜃

𝜕𝑡

+ V
𝜕𝜃

𝜕𝑥

= −V
𝜕𝜃

∞

𝜕𝑥

+ ]
𝜕
2
𝜃

𝜕𝑥
2
− 𝑙

0
𝜃. (97)

We can multiply by 𝜃 in �̇�
2

per(0, 1), and taking into account
that ∮(𝜕𝜃/𝜕𝑥)𝜃 = (1/2) ∮(𝜕(𝜃

2
)/𝜕𝑥) = 0, since 𝜃 is periodic,

we have

1

2

𝑑

𝑑𝑡

‖𝜃‖
2
+ ]










𝜕𝜃

𝜕𝑥










2

= −V∮
𝜕 (𝜃

∞
)

𝜕𝑥

𝜃 − ∮ 𝑙
0
𝜃
2
, (98)

and using Cauchy-Schwartz and Young inequality with
𝛿, 𝐶

𝛿
= 1/4𝛿 and then Poincaré inequality, since ∮𝜃 = 0,

together with −𝑙
0
∮𝜃

2
≤ 0, we have that

1

2

𝑑

𝑑𝑡

‖𝜃‖
2
+ (]𝜋

2
+ 𝑙

0
) ‖𝜃‖

2
≤ |V| (𝐶

𝛿










𝜕𝜃
∞

𝜕𝑥










2

+ 𝛿‖𝜃‖
2
) .

(99)

Next, using V(𝑡) → 0, we prove that 𝜃(𝑡) → 0 in �̇�2per(0, 1).
Now, we multiply (97) by −𝜕2𝜃/𝜕𝑥2 in �̇�

2

per. Integrating
by parts, applying Young inequality and taking into account
again that ∮(𝜕𝜃/𝜕𝑥)(𝜕2𝜃/𝜕𝑥2) = 0 since 𝜕𝜃/𝜕𝑥 is periodic,
together with −𝑙

0
∮𝜃(−𝜕

2
𝜃/𝜕𝑥

2
) = −𝑙

0
∮(𝜕𝜃/𝜕𝑥)

2
≤ 0, we

obtain that

1

2

𝑑

𝑑𝑡










𝜕𝜃

𝜕𝑥










2

+ ]











𝜕
2
𝜃

𝜕𝑥
2











2

≤ |V| (𝐶
𝛿










𝜕𝜃
∞

𝜕𝑥










2

+ 𝛿











𝜕
2
𝜃

𝜕𝑥
2











2

)

(100)

for every 𝛿 > 0 with 𝐶
𝛿
= 1/4𝛿. Thus, working as afore-

mentiond and taking into account that |V(𝑡)| → 0, we
get (𝜕𝜃/𝜕𝑥)(𝑡) → 0 in �̇�

2

per(0, 1); that is, 𝜃 → 0 ∈

�̇�
1

per(0, 1).

Next, we pay attention to the other modes for the
temperature 𝑎

𝑘
where 𝑘 ∉ (𝐾∩𝐽). Also, note that thesemodes

are determined as solution of the linear nonhomogeneous
equations

̇𝑎
𝑘
(𝑡) + (2𝜋𝑘V𝑖 + 4]𝜋

2
𝑘
2
+ 𝑙 (V)) 𝑎

𝑘
(𝑡) = 𝑙 (V) 𝑏

𝑘
,

𝑘 ∉ (𝐾 ∩ 𝐽) ,

(101)
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with initial data 𝑎
𝑘
(0) ∈ 𝐶. Therefore, we call these the slave

modes.
We will show in Proposition 15 that the dynamics of these

modes are completely determined by the solution of (87),
in the sense that the solution will have only one asymptotic
behavior as time goes to infinity.

Proposition 15. Assume that {(𝑤(𝑡), V(𝑡), 𝑎
𝑘
(𝑡)), 𝑘 ∈ 𝐾 ∩ 𝐽}

is a solution of (87). Then, for any 𝑘 ∉ (𝐾 ∩ 𝐽), there exists a
solution of (101), denoted as 𝑎∗

𝑘
(𝑡), such that |𝑎∗

𝑘
(𝑡)| ≤ |𝑏

𝑘
| for

every 𝑡 ≥ 0 and for any other solution of (101),





𝑎
𝑘
(𝑡) − 𝑎

∗

𝑘
(𝑡)




→ 0 (102)

at an exponential rate independent of 𝑘, as 𝑡 → ∞. Moreover,
if 𝑘 ∉ 𝐾, that is, if 𝑏

𝑘
= 0, then 𝑎

∗

𝑘
(𝑡) = 0; that is,

this subset of the slave mode is damped out exponentially. In
particular, if {(𝑤(𝑡), V(𝑡), 𝑎

𝑘
(𝑡)), 𝑘 ∈ 𝐾 ∩ 𝐽} is a stationary or

periodic (resp., quasiperiodic, almost periodic) solution, then
𝑎
∗

𝑘
(𝑡) can be chosen such that it is stationary or periodic with

the same period (resp., quasiperiodic, almost periodic with a set
of frequencies contained in those of V(𝑡)).

Proof. Define |𝑎
∗

𝑘
(𝑡)| as a solution of (101) with an initial

condition satisfying |𝑎∗
𝑘
(𝑡)| ≤ |𝑏

𝑘
|. In particular, if 𝑘 ∉ 𝐾, that

is, if 𝑏
𝑘
= 0, then |𝑎∗

𝑘
(𝑡)| = 0. Then for any other solution of

(101), 𝑧
𝑘
= 𝑎

𝑘
(𝑡) − 𝑎

∗

𝑘
(𝑡) satisfies the homogeneous equation

�̇�
𝑘
+ [2𝜋𝑘𝑖V + 4]𝜋

2
𝑘
2
+ 𝑙 (V)] 𝑧

𝑘
= 0, (103)

and |𝑧
𝑘
(𝑡)| ≤ |𝑧

𝑘
(0)|𝑒

−∫
𝑡

0
[2𝜋𝑘𝑖V+4]𝜋2𝑘2+𝑙(V)] which proves the

statement.
If the solution of (87) is stationary, that is, independent

of time, then we choose 𝑎∗
𝑘
(𝑡) to be the solution of (2𝜋𝑘V𝑖 +

4]𝜋2
𝑘
2
+ 𝑙(V))𝑎

𝑘
(𝑡) = 𝑙(V)𝑏

𝑘
and the result follows.

If {(𝑤(𝑡), V(𝑡), 𝑎
𝑘
(𝑡)), 𝑘 ∈ 𝐾 ∩ 𝐽} is a periodic solution of

(87), then since the 𝑎∗
𝑘
(𝑡) are the solutions of linear scalar

differential equations of the form �̇�(𝑡) +𝐴(𝑡)𝑥(𝑡) = 𝑓(𝑡), with
𝐴(𝑡) and 𝑓(𝑡) period of the same period and the homoge-
neous equation is stable, the result follows from Fredholm’s
alternative. For the quasiperiodic or almost periodic case, the
result follows fromTheorem 6.6 in [23].

Remark 16. Taking real and imaginary parts of 𝑎
𝑘
, 𝑏

𝑘
, and 𝑐

𝑘

as

𝑎
𝑘
(𝑡) = 𝑎

𝑘

1
(𝑡) + 𝑖𝑎

𝑘

2
(𝑡) , 𝑏

𝑘
= 𝑏

𝑘

1
+ 𝑖𝑏

𝑘

2
,

𝑐
𝑘
= 𝑐

𝑘

1
+ 𝑖𝑐

𝑘

2
,

(104)

the asymptotic behavior of the system (5) is given by a
reduced explicit system in R𝑁, where𝑁 = 2𝑛

0
+ 2, given by

𝑑𝑤

𝑑𝑡

+

1

𝜀

𝑤 +

1

𝜀

𝐺 (V) V (𝑡) =
1

𝜀

2 ∑

𝑘∈(𝑘∩𝐽)+

[𝑎
𝑘

2
(𝑡) 𝑐

𝑘

2
− 𝑎

𝑘

1
(𝑡) 𝑐

𝑘

1
] ,

𝑑V

𝑑𝑡

= 𝑤,

̇𝑎
𝑘

1
(𝑡) + [𝑙 (V) + 4𝜋

2
𝑘
2
]𝑎

𝑘

1
(𝑡) − 2𝜋𝑘V (𝑡) 𝑎

𝑘

2
(𝑡)] = 𝑙 (V) 𝑏

𝑘

1
,

𝑘 ∈ (𝐾 ∩ 𝐽)
+
,

̇𝑎
𝑘

2
(𝑡) + [𝑙 (V) + 2𝜋𝑘V (𝑡) 𝑎

𝑘

1
(𝑡) + 4𝜋

2
𝑘
2
]𝑎

𝑘

2
(𝑡)] = 𝑙 (V) 𝑏

𝑘

2
,

𝑘 ∈ (𝐾 ∩ 𝐽)
+
,

(105)

where 𝑎
−𝑘
= 𝑎

𝑘
, 𝑏

−𝑘
= 𝑏

𝑘
, and 𝑐

−𝑘
= 𝑐

𝑘
.

Observe that from the previous analysis, it is possible to
design the geometry of circuit and/or the external heating by
properly choosing the functions 𝑓 and/or the heat flux 𝑙 and
the ambient temperature 𝑇

𝑎
so that the resulting system has

an arbitrary number of equations of the form𝑁 = 2𝑛 + 2.
Note that the set 𝐾 ∩ 𝐽 can be much smaller than the set

𝐾, and therefore the reduced subsystemmay possess far fewer
degrees of freedom than the system on the inertial manifold.
Also note that it may be the case that𝐾 and 𝐽 are infinite sets,
but their intersection is finite. Also, for a circular circuit, we
have 𝑓(𝑥) ∼ 𝑎 sin(𝑥) + 𝑏 cos(𝑥), that is, 𝐽 = {±1} and then
𝐾 ∩ 𝐽 is either {±1}, or the empty set. Also, if in the original
variable for (5) 𝑇

𝑎
is constant, we get𝐾∩𝐽 = 0 for any choice

of 𝑓.

The physical andmathematical implications of the result-
ing system of ODEs which describe the dynamics at the
inertial manifold need to be analyzed numerically.The role of
the parameter 𝜀 which contains the viscoelastic information
of the fluid deserves special attention and will be the aim of
the next section.

4. Numerical Experiments

In this section, we describe the results of the numerical
experiments obtained using the MATHEMATICA package
[24] for the resolution of the differential equations, using
a fourth-order explicit Runge-Kutta method for stiffness
equations following the method used in previous works [5,
15]. We will solve a system of ordinary differential equations
which are the projection of the partial differential equations
(5) on the inertial manifold derived in the preceding sections.
All the variables and equations that we deal with are nondi-
mensional. As the system ismultidimensional, we present the
results in temporal graphs (a given variable versus time) and
phase-space graphs (two physical variables plot against each
other).
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Specifically, we are integrating the system of (87) where
we consider only the coefficients of temperature 𝑎

𝑘
(𝑡) with

𝑘 ∈ 𝐾 ∩ 𝐽 (relevant modes). Then,

𝑑𝑤

𝑑𝑡

+

𝑤

𝜀

+

𝐺 (V) V (𝑡)

𝜀

=

2

𝜀

Real( ∑

𝑘∈𝐾∩𝐽

𝑎
𝑘
(𝑡) 𝑐

−𝑘
) ,

𝑑V

𝑑𝑡

= 𝑤,

̇𝑎
𝑘
(𝑡) + 𝑎

𝑘
(𝑡) (2𝜋𝑘𝑖V + ]4𝜋

2
𝑘
2
+ 𝑙 (V)) = 𝑙 (V) 𝑏

𝑘
,

(106)

where 𝑎
−𝑘

= 𝑎
𝑘
, 𝑏

−𝑘
= 𝑏

𝑘
, and 𝑐

−𝑘
= 𝑐

𝑘
since all the physical

observable are real functions. In particular, we will consider
a thermosyphon with a circular geometry; so 𝐽 = {±1} and
𝐾 ∩ 𝐽 = {±1}. Consequently, we take 𝑘 = 1 and omit the
equation for 𝑘 = −1. Hence,

𝑑𝑤

𝑑𝑡

=

2𝑎
1
𝑐
−1

𝜀

−

𝑤

𝜀

−

𝐺 (V) V (𝑡)

𝜀

,

𝑑V

𝑑𝑡

= 𝑤,

̇𝑎
1
(𝑡) + 𝑎

1
(𝑡) (2𝜋𝑖V + ]4𝜋

2
+ 𝑙 (V)) = 𝑙 (V) 𝑏

1
,

(107)

where the unknowns are 𝑤(𝑡) (the acceleration of the fluid),
V(𝑡) (velocity of the fluid), and 𝑎

1
(𝑡) (the Fourier mode of the

temperature). More complex geometries will result in higher
dimensional dynamics on the inertial manifold. It is beyond
the scope of the present work.

In order to reduce the number of parameters wemake the
change of variables 𝑎

1
𝑐
−1

→ 𝑎
1
and we define the real and

imaginary parts of the equations in the following way:

𝑎
1
(𝑡) = 𝑎

1
(𝑡) + 𝑖𝑎

2
(𝑡) ,

𝑏
1
= 𝐴 + 𝑖𝐵,

(108)

with 𝐴 ∈ R, 𝐵 ∈ R. Therefore, our central results correspond
to the system of equations

𝑑𝑤

𝑑𝑡

=

2𝑎
1

𝜀

−

𝑤

𝜀

−

𝐺 (V) V (𝑡)

𝜀

,

V̇ = 𝑤,

̇
𝑎
1
= 𝑙 (V) 𝐴 − 𝑙 (V) 𝑎

1
(𝑡) − ]4𝜋

2
𝑎
1
+ V2𝜋𝑎

2
,

̇
𝑎
2
= 𝑙 (V) 𝐵 − 𝑙 (V) 𝑎

2
(𝑡) − ]4𝜋

2
𝑎
2
− V2𝜋𝑎

1
.

(109)

Note that it is a system of four equations with four unknowns
where we need to make explicit choices for the constitutive
laws for both the fluid-mechanical and thermal properties.
Thus, for the friction law 𝐺(V) and heat flux 𝑙(V) we will take
the ones used in [5, 15]. For the numerical experiments, which
are of a similar model of thermosyphon for a fluid with one
component they use the functions 𝐺(V) = (|V| + 10

−4
) and

𝑙(V) = (10
−2
|V| + 1). The function 𝐺(V) has a clear physical

meaning; it interpolates between a low Reynolds number
friction law (in which the overall friction 𝐺(V)V is linear
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Figure 1:The chaotic progress of acceleration for 𝜀 = 10, 𝐵 = 50, ] =

0.

(Stokes friction law) and high Reynolds number (in which
the friction is a quadratic law).

𝐴 and 𝐵 refer in this model to the position-dependant
(𝑥) heat flux inside the loop and will be used as tuning
parameters. Without loss of generality, we will assume that
𝐴 = 0 in order to simplify in analogy with Lorenz’s model, as
it is shown in [5, 15] (changing 𝐴 and 𝐵 simultaneously only
results in a change in the phase of initial temperature profile).

We have carried out two different sets of numerical
experiments with regard to heat diffusion.The first numerical
experiments are carried out keeping the heat diffusion to zero
as it was done in [11]. And the second numerical experiments
are performed with heat diffusion. The initial conditions are
fixed as 𝑤(0) = 0, V(0) = 0, 𝑎

1
(0) = 1, 𝑎

2
(0) = 1. This split

would appear naive as diffusion tends to smooth the solution
however, as the order of the equations changes in the presence
of diffusion (from first to second order due to the Laplacian),
it is worth studying both cases separately.

Numerical analysis has been carried out keeping 𝜀 the
viscoelastic coefficient as the tuning parameter ranging from
100 to 0.0001 and 𝐵 the heat flux also as a tuning parameter
ranging from 1 to 10000. The impact of 𝜀 on the system has
been keenly observed for various parameters of time 𝑡, as
short as 50 time units and as long as 5000 time units. We
will show that in analogy with the classical Lorenz system,
as 𝜀 varies, the dynamics of the model undergoes various
transformations including steady asymptotic behavior, meta-
stable chaos, that is, transient irregular behavior followed by
convergence to equilibria, periodic behaviors, and chaotic
progressions.

4.1. Dynamics of the Thermosyphon without Heat Diffusion
(]= 0). In this section, we summarize some of the outcomes
of the model equations. As we have mentioned earlier, this
behavior is highly sensitive to the choice of parameters.Thus,
we present those results in different subsections accounting
for the most relevant signature for each set of numerical
experiments.

4.1.1. Chaotic Behavior of the Model for Large Values of 𝜀.
The simulations of the numerical experiments done for large



16 Abstract and Applied Analysis

2

4

6
Velocity

Ve
lo

ci
ty

10 20 30 40 50
Time

−6

−4

−2

Figure 2: The inconsistent behavior of velocity for 𝜀 = 10, 𝐵 =
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Figure 3: A chaotic global attractor of real and complex temperature
for 𝜀 = 10, 𝐵 = 50, ] = 0.

values of 𝜀, for instance, 𝜀 ranging from 2 to 1000, show
that the system exhibits a pattern of chaotic behavior. For
relatively large values of viscoelastic components, chaotic
behaviors are observed. For all the values of heat flux 𝐵,
starting from 1 to 10000, this chaotic behavior is observed (see
Table 2). To illustrate the previously stated chaotic behavior,
we observe the plots obtained for the values of 𝜀 = 10 and
𝐵 = 50.

In Figure 1, we show a time graph of acceleration for a
large value of the viscoelastic parameter 𝜀. The acceleration
ranges from −3.5 to 3.5. Since the very beginning, it displays
a chaotic behavior. The curve is not very erratic although
it does not show any sort of periodicity. As velocity is the
time integral of acceleration, in Figure 2, the curve does
not present abrupt changes close to some maxima and
minima, but the nonperiodic features are also captured by this
observable.

In Figure 3, we show a phase-diagram plot for the real
and imaginary parts of the temperature. As expected, it also
exhibits a nonperiodic pattern in which the trajectory in this
phase-plane moves inwards and outwards the graph. This
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Figure 4: The stabilizing progress of acceleration for 𝜀 = 0.1, 𝐵 =

100, ] = 0.
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Figure 5: Velocity stabilizes at 3.19981 for 𝜀 = 0.1, 𝐵 = 100, ] = 0.

graph illustrates the complex underlying dynamics of the
attractor (of which Figure 3 is a two-dimensional projection).

This sort of behavior remains similar for other values of
𝐵 as long as the viscoelastic parameter takes larger than unity
values as summarized in Table 2. In other words, the elastic
effects introduce a memory effect in the dynamics which
avoids the system to fully stabilize but, rather, viscoelasticity
sustains the chaotic pattern. This memory effect can be
understood from (3).

To sum up this section, large values of the viscoelas-
tic parameter 𝜀 result on sustained chaotic behaviors. The
dynamics becomes more complex, characterized in all the
cases by periods of chaos and of violent oscillations, giving
an idea of the complexity of the solutions of the system under
these variables. In the detailed analysis of the evolution of
the acceleration, velocity, and temperature, we say that the
chaotic behavior of the system reveals the chaotic nature of
the viscoelastic fluids.

4.1.2. Transient Irregular Behavior Followed by Stable Behavior
for 𝜀 = 0.1 to 1. For values of 𝜀 ranging from 0.1 to 1, the
system tends towards a stable fixed point, although it is still
chaotic in the initial stages. This transient irregular behavior
followed by equilibrium is shown in Figures 4, 5, and 6.

The general behavior of acceleration is that it has a
chaotic outburst in the initial stages. But as time progresses
it tends to stabilize, attaining equilibria. The velocity too, in
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Figure 6: Equilibrium velocity scale.

Table 1: Equilibrium values of velocity for different values of heat
flux 𝐵.

𝐵 𝜀 = 1 𝜀 = 0.1

1 0.6718 0.6718
10 1.4723 1.4723
20 1.8601 1.8601
30 2.1325 2.1325
40 2.3495 2.3495
50 2.5329 2.5329
100 3.1998 3.1998
1000 6.9800 6.9800
10000 15.430 15.430

Table 2: Behavior of solutions without diffusion (]= 0) for different
values of the viscoelastic characteristic time, 𝜀 (rows), and the
temperature gradient, B (columns). We introduce the following
notation to account for the obtained numerical results: “C” denotes
a fully chaotic behavior, “CS” a transition from chaotic outburst to
stable equilibria, “P” a stable periodic orbit, and “CP” a transitional
behavior from chaotic to periodic.

𝐵/𝜀 10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

1 CS CS CS CS CS C C
10 CS CS CS CS CS C C
20 CS CS CS CS CS C C
30 CP CP CP CS CS C C
40 CP CP CP CS CS C C
50 CP CP CP CS CS C C
100 P P CP CS CS C C
1000 CP CP CP CS CS C C
10000 CP CP CP CS CS C C

the initial stages, when the time period is less than 20 units,
is very inconsistent and at times unpredictable. But as the
time progresses, velocity converges to a stable fixed point.

Table 3: Behavior of solutions with diffusion (] ̸= 0) for different
values of the viscoelastic characteristic time, 𝜀 (rows), and the
temperature gradient, B (columns). We introduce the following
notation to account for the obtained numerical results: “C” denotes
a fully chaotic behavior, “CS” a transition from chaotic outburst to
stable equilibria, and “P” a periodic orbit.

𝐵/𝜀 10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

1 CS CS CS CS CS CS CS
10 CS CS CS CS CS CS CS
20 CS CS CS CS CS CS CS
30 CS CS CS CS CS CS CS
40 P P P CS CS CS CS
50 P P P CS CS CS CS
100 P P P CS CS CS CS
1000 P P P CS CS CS CS
10000 P P P CS CS CS CS
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Figure 7:The periodic progress of velocity for 𝜀 = 0.001, 𝐵 = 30, ] =

0.

Interestingly, this fixed point for the velocity is not trivial
(V ̸= 0) but, on the contrary, it depends strongly on the choice
of the parameters. Specifically, in Table 1, we summarize
this asymptotic value. Physically, this means that the fluid
inside the thermosyphon performs sustained flow in the
same direction over time. This stage could be identified by
the existence of convective rolls in a fully spatially extended
system.

It is worth noting in Table 1 that both columns have the
same value for the asymptotic velocity. This is a signature
that viscoelastic effects do not play any role in this case
(so memory effects are damped out after the early chaotic
transient).

Another comment regarding Table 1 concerns the role of
the parameter 𝐵. Roughly, 𝐵 accounts for the scale of tem-
perature gradients inside the thermosyphon. These results
suggest that higher temperature gradients produce higher
values of the sustained stationary velocity. Actually, as shown
in Figure 6, the equilibrium velocity scales with𝐵nontrivially
(as a power law with exponent 1/3 approximately).

To sum up this section, we conclude that although the
system has a chaotic initial transient, it tends to stabilize
at longer times reaching a temperature gradient dependent
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Figure 9:The stabilizing process of acceleration for ] = 1, 𝜀 = 5, 𝐵 =

1000, ] ̸= 0.

equilibrium velocity. Notwithstanding, this asymptotic veloc-
ity depends nontrivially on temperature as a power law,
being this a signature of the underlying nonlinearity of the
equations.

4.1.3. Transition to Periodic Pattern of Behaviors for Small
Values of 𝜀. When the viscoelastic effects are gradually less
important (values of 𝜀 between 0.01 and 0.0001), the system
exhibits different behaviors as a function of the temperature
gradient (see Table 2). For lower values of 𝐵, the system
behaves in a similar fashion as for higher values of 𝜀. On the
contrary, for larger values of 𝐵, the system displays a periodic
pattern. As in the previous case, both long-term behaviors
may be preceded by an initial chaotic transient (probably
caused by viscoelasticity).

To illustrate this, in Figure 7, we show a periodic (nontriv-
ial) behavior for 𝜀 = 0.001. In some cases, the initial transient
cannot be distinguished from the periodic one and we refer it
simply to periodic type in Table 2.

In Figure 8, we show the phase-space of the complex
components of the temperature. Although at first sight it
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Figure 10: The fast stabilization of acceleration for ] = 2, 𝜀 = 5, 𝐵 =

1000, ] ̸= 0.

resembles a typical chaotic attractor motif, after the men-
tioned initial transient, the trajectories are overlapped for
longer times.

Thus, in order to summarize the information covered in
the last three subsections, we collect all the outcomes of the
model in Table 2.

4.2. Dynamics of the Thermosyphon with Heat Diffusion
(] ̸= 0). In this case, to avoid unnecessary repetitions in the
text, we focus on the main differences between this case and
that in Section 4.1.

Thus, in this second set of numerical experiments we
introduce a nonzero value for the thermal diffusivity, ]. The
role of diffusion is to reduce temperature gradients. This can
be seen in a hand-waving way by realizing that

𝜕
2

𝑥
𝑇 ≡ −𝜕

𝑥
𝐽; (110)

namely, the Laplazian can be understood as the flux of
temperature created by a temperature current, 𝐽 = −∇𝑇.
This current is larger in those regions where the temperature
variations are also larger. Thus, the system tends to reduce
those differences. As shown in Table 3, the variety of the
behaviors is clearly less rich than in the case when ] = 0.

So, here we will only illustrate the most interesting
behaviors with two examples. The first one takes the values
of heat diffusion ] = 1, 𝜀 = 5, and 𝐵 = 1000. As shown
in Figure 9, the acceleration performs a series of damped
oscillations that eventually stabilizes.

Similarly, the second example (Figure 10) takes the values
] = 2, 𝜀 = 5, and 𝐵 = 1000.The behavior is qualitatively equal
but the period of the oscillations is enlarged. In Table 3, we
summarize the interaction between the tuning parameters.

To sum up this section, we have found that greater
values of the heat diffusion, ], smoothen the dynamics of the
system which, invariably, tends to stabilize, either reaching
an equilibrium steady state or stable periodic orbits. These
two behaviors are governed by the value of the temperature
gradient which in a similar fashion as in Section 4.1 tends to
produce richer behaviors for large values.
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5. Conclusion

In this work, we have derived a novel system of equations
to study the behavior of a viscoelastic material inside a
thermosyphon. This model serves as a preliminary simplifi-
cation of a more complex fully spatially extend system. This
model illustrates the presence/absence of complex chaotic
behaviors and also enables to relate themwith the underlying
viscoelastic (memory effects).

The main result is that we are able to prove that the
original system (which involves both ordinary and partial
different equations) possesses an inertial manifold in which
the dynamics can be accurately described by a system of
ODEs. By numerical integration of the reduced equations, we
have been able to better understand the role of viscoelasticity
(as opposed to a simpler Newtonian fluid) through the
parameter 𝜀. This parameter is a nondimensional version of
the so-calledMaxwellian viscoelastic time [4]which accounts
for memory effects.

Our results suggest that in the absence of heat diffusion
(] = 0), a large value of 𝜀 drives the dynamics to chaotic
behaviors for all the physical observable (acceleration, veloc-
ity, and temperature). As the value of 𝜀 gradually decreases,
the system is no longer chaotic but stable or periodic.
Notably, these results cannot be understood in terms of
a boundary layer theory as the attractor of the dynamics
changes dramatically when the second-order derivative term
𝜀𝑑

2V/𝑑𝑡2 is introduced in (5).
Physically, this induction of chaotic behaviors can be

rationalized in terms of the memory effects inherent to
viscoelastic models explicitly shown in (3). Thus, in the same
way as delayed equations are known to produce chaos, even
in the simplest situations, viscoelasticity apparently produces
the same kind of transition (see, e.g., [25]).

Other interesting results are related to the effect of
heat diffusion. We have found that as the heat diffusion
is not zero, the system tends to stabilize either to a fixed
equilibrium point or to a (]-dependent periodicity) periodic
orbit. This abrupt change in the qualitative behavior of the
system is, again, due to the fact that the term ]𝑑2𝑇/𝑑𝑥2 is a
singular perturbation that changes the type of equation for
the temperature from hyperbolic to parabolic, which justifies
the explicit analysis of each situation separately in Section 2.

Our work can be generalized in many different ways,
from changing the constitutive equation (fromMaxwellian to
other more complex situations) or to include shear-thinning
effects [4] common tomany non-Newtonianmaterials. Shear
thinning is the manifestation of a shear-rate-dependent
viscosity. Thus, it is commonly observed that many fluids
reduce their resistance to flow for large enough imposed
stresses (in our case, temperature gradients), for instance,
tooth paste, paint, or lava. In principle, shear thinning means
that the viscosity is smaller for higher velocities what could
help to sustain oscillations once they have been formed inside
the loop. However, as shown in the present work, this sort of
hand waving analysis might lead to erroneous conclusions,
and a detailed consideration of those effects deserves further
(and deeper) investigation. These generalizations will be the
aim of future works.

Appendix

Boundary Layer Theory

The system of (5) can be seen as a singular perturbation
problem provided that when 𝜀 = 0, the order of the
differential equation reduces to one. In order to provide some
insight about the solutions of those equations, a standard
boundary layer theory is customary (see, e.g., [26]).

In particular, one splits the problem into two parts: the
inner problem and the outer problem. The inner problem is
defined as the dynamics of the system for times up to 1/𝜀 in
which the term 𝜀𝑑

2V/𝑑𝑡2 is dominant.This regime is strongly
dominated by transient impulsive changes in the physical
variables. Following [26], we define a new time scale 𝜏 = 𝑡/𝜀.
So, the first equation in (5), up to order 𝜀, is given by

𝑑
2V

𝑑𝜏
2
+

𝑑V

𝑑𝜏

= 𝑂 (𝜀) , (A.1)

whose solution is

V (𝜏) = V (0) + 𝛽 (𝑒
−𝜏
− 1) , (A.2)

with𝛽 a constant that can be determined bymatchingwith the
outer solution. For instance, if one assumes, the velocity has
initial condition V(0) and the matching time is 𝜏 = 𝑂(1) ≃ 1,
then it is straightforward to see that the velocity at amatching
time 𝜏 = 1 converges exponentially to Vmatching = V(0) +

𝛽(𝑒
−1
− 1).

Besides, the outer problem is defined as the naive approx-
imation 𝜀 → 0. Thus, the system of (5) reduces to that in [11]
with an effective initial condition given by Vmatching. So one
would expect the same qualitative behaviors as in that work.

For instance, if the parameter 𝐵 = 10, the model
in [11] predicts a stable behavior. However, as shown in
Table 2 (second row), increasing the value of 𝜀 induces a
chaotic behavior. Naturally, different values of the parameters
(including𝐵)would provide different values of 𝜀 forwhich the
trivial case 𝜀 → 0 cannot account for the observed dynamics
(even for small enough values of 𝜀).

This simple analysis shows the intrinsic complexity of
the physical problem when viscoelasticity is considered and,
more importantly, the need to study every parameter set
in detail to provide an accurate description of the type of
dynamics in which the system evolves.

Acknowledgments

This work is partially supported by projects MTM2009-
07540, GR58/08 Grupo 920894 BSCH-UCM, Grupo de In-
vestigación CADEDIF, and FIS2009-12964-C05-03, Spain,
and partially supported by Grant MTM2012-31298 from
Ministerio de Economia y Competitividad, Spain.

References

[1] M. C. Cross andH.Greenside,Pattern Formation andDynamics
in Nonequilibrium Systems, Cambridge University Press, New
York, NY, USA, 2009.



20 Abstract and Applied Analysis

[2] J. B. Keller, “Periodic oscillations in a model of thermal
convection,” Journal of Fluid Mechanics, vol. 26, no. 3, pp. 599–
606, 1966.

[3] P. Welander, “On the oscillatory instability of a differentially
heated fluid loop,” Journal of Fluid Mechanics, vol. 29, no. 1, pp.
17–30, 1967.

[4] F. Morrison, Understanding Rheology, Oxford University Press,
New York, NY, USA, 2001.

[5] R. Greif, Y. Zvirin, and A. Mertol, “The transient and stability
behavior of a natural convection loop,” Journal of Heat Transfer,
vol. 107, pp. 684–688, 1987.
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Mass, USA, 1991.

[20] A. M. Stuart, “Pertubration theory of infinite-dimensional
dynamical systems,” in Theory and Numerics of OrdInary and
Partial Differential Equations, M. Ainsworth, J. Levesley, W. A.
Light, and M. Marletta, Eds., Oxford University Press, Oxford,
UK, 1994.

[21] C. Foias, G. R. Sell, and R. Temam, “Inertial manifolds for non-
linear evolutionary equations,” Journal of Differential Equations,
vol. 73, no. 2, pp. 309–353, 1988.
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