

Interpersonal Distance Monitoring Using Deep

Learning and Computer Vision

Rodrigo López de Toledo Soler

Author

Jaime Boal Martín Larrauri & Alvaro Jesús López

López

Director

Abstract— In these weird times that we are living the

last year and a half, keeping a safety distance between

individuals to prevent Covid-19 from spreading has

become one of the most effective measures to control de

pandemic. Since we are in 2020 and technology is now our

way of understanding everything, to ensure all these

measures are being followed by the population, we need a

way of making sure they are, and, since the number of

people controlling is very small in comparison to the

people that needs to be controlled, using all the

supervisising methods we have, it should be at least

studied. Using machine learning and the recent

developments in computer vision this can be possibly

handled and hopefully be useful not just for now, but for

other future situations we may face. After training

different models for detection, tracking and distance

estimation between individuals, results show that, with

some improvement, this objective can be achieved within

the limits of real-time video. To achieve these results,

three different versions of the state-of-the-art algorithm

YOLO have been tested, then fed into a widely used

tracking algorithm such as DeepSORT and finally, for the

distance estimation part, we found the need of generating

a completely synthetic dataset to feed color and depth

information into a model and see if it can predict the

distance between the individuals generated with a

simulator. The results achieved are promising, but the

road ahead is long and the room for improvement is big.

Keywords — Deep learning, distance monitoring, CNN,

people detection, tracking, PyTorch

I. INTRODUCTION

Computer vision is an area of study that is identified as a

subfield of artificial intelligence and works in parallel with

machine learning. The goal of computer vision is to

understand the content of the digital images and therefore,

videos, to mimic the ability of the human vision. For us

humans, understanding an image is very easy, it comes

1https://www.forbes.com/sites/cognitiveworld/2019/08/22/revolutionizi

ng-brick-and-mortar-retail-with-computer-vision/?sh=5a83412ad112
2 P. Srinivasan and V. Srinivasna, "A Comprehensive Diagnostic Tool

for Skin Cancer Using a Multifaceted Computer Vision Approach," 2020 7th

International Conference on Soft Computing & Machine Intelligence

(ISCMI), 2020, pp. 213-217, doi: 10.1109/ISCMI51676.2020.9311557.

natural and effortless, but for a computer it is extremely

complicated because it is very difficult to understand the

changes in lighting, position, orientation, and expression that

we see so natural. In the early 1970s, computer vision was

only an ambitious point in the agenda of giving robots a

human intelligence. In the 1980s and 1990s, the focus shifted,

researchers centered their efforts on more complex

mathematical techniques to perform image analysis.

It is important to understand that image processing using

common techniques such as image and contrast adjustment,

histogram equalization and binarization is not computer

vision. These techniques are very useful, but they are not

computer vision because we cannot extract any analysis or

knowledge from what is happening in the image.

Since the year 2010 there have been several tasks in the

field that have been extensively researched and that have

achieved success. Some of them have been retail1, medical

imaging2, surveillance & biometrics3, and motion capture4.

The project follows the three stages proposed with some

intermediate steps. It depicts the inference of the project

proposed, but all the models involved, and some more, have

been previously trained on different datasets and the best

performing ones have been chosen for each stage, as

described throughout the document.

Figure 1. Schema of the system proposed.

3 http://www.forbes.com/sites/forbestechcouncil/2019/09/23/four-ways-

computer-vision-is-transforming-physical-security/?sh=530888c65846
4 https://paperswithcode.com/paper/babel-bodies-action-and-behavior-

with-english

II. PREVIOUS WORK, TECHNIQUES AND RESEARCH

Security, privacy, autonomous vehicles, facial

recognition, biometrics. Those are just some of the fields

where computer vision has been used and developed in the

recent years. Object segmentation, object detection, and

object classification have been the main tasks these problems

have tackled.

In terms of image capturing, LiDAR and stereo vision are

the main input sources used. LiDAR provides a point cloud

that allows reconstructing the scene in 3D. Stereo vision uses

two cameras with different perspectives to estimate depth.

This information is useful in the last stage of the project.

While a lot of techniques and methods can be applied to

the task we are tackling, the rest of the section focuses only

on the ones that have been applied in this project.

A. Traditional techniques

Early models of sensory processing by the human brain is

the inspiration behind neural networks [1]. By coding an

algorithm that mimics processes of real human neurons, our

newly created, artificial, neural network can ‘learn’. A neuron

receives input from external sources, or even from other units

within the network. It weighs each input and, if the total

output is above a threshold, the output is one. So, in relation

to our problem, a neural network can solve a classification

problem, if the target is binary or multi-class. In the scenario

of video surveillance, neural networks perform low level

processing of pixels and then perform classification on the

outputs of these preprocessed pixels. This approach is highly

adaptive, which makes it perfect for outdoor cameras

processing.

The problems that are not linearly separable can be also

classified with what is called a hidden layer. This, at a high

level, is another threshold unit that its mission is to do partial

classification. After that, the output level leverages each

partial classification and comes up with a final prediction.

These are called feed forward neural networks and are the

first type of neural networks that appeared. The activation

function can be changed into other function that can classify

the objects more accordingly to what we want. In our case,

for the distance estimation part, a linear activation function is

needed since it is a regression problem.

In the early 2000s, two approaches were used to do a more

robust and flexible tracking. These two techniques are

Kalman filters and P2DHMM (Pseudo-2D Hidden Markov

Model), that is actually used to feed a Kalman filter [2]. These

two algorithms work together, making it possible to track

people even if the background has moving objects. The main

advantages of using a statistical model approach such as

P2DHMM is that, a priori, it can recognize some human body

shapes and learn the only the features relevant to the problem.

Kalman filters provide estimates of a variable given the

measurement observed over time. It has two stages,

prediction and update. The prediction stage estimates a new

measurement from the output of the update stage. The filter is

recursive, so a stopping constraint needs to be specified.

These filters are widely used to track moving objects. This

algorithm is the basis of the DeepSORT algorithm used for

the tracking stage.

The Microsoft Research Vision Technology Group

established in [3] the characteristics and rules that a real-life

vision-based tracking system must comply with. They did that

by focusing their research on depth information analysis and

by clustering, they determined that we can extract shapes

from that information.

Figure 2. Results of the research [3].

Support Vector Machines (SVM) have also been used

several times as classifiers for crowd monitoring tasks after

doing training in the corresponding model [4]. First of all, an

initial calibration of the scene is needed. This is used to build

a density map of shapes within the image. A common method

is to split the image in rectangles and calculate the density in

each rectangle. After the image is divided, the density

estimation of each rectangle and the design of the density map

of the complete image are carried out.

B. Modern techniques

A very common method is semantic segmentation, and a

technique developed by University of Cambridge researchers

that has proven successful is de SegNet Encoder-Decoder.

SegNet is a deep encoder-decoder consists of four layers of

encoders and their corresponding layers of decoders,

followed by a pixel classifier.

SegNet uses CNNs that, for our case, take an input image,

assign importance to the different parameters, and

differentiate one from another. While in traditional

techniques the preprocessing is more archaic and tedious, the

preprocessing required for CNNs is much lower. The

difference with a common Neural Network is that, in NN, we

can just take a matrix of pixel values and turn it into a 1D

vector to use as input. In CNN we cannot do that because it

can also capture the spatial and temporal characteristics of an

image with the appropriate filters. The convolutional part is

that the objective of the CNN is to reduce the images into a

form that is easier to process without losing feature

information to provide a good prediction. Depicted below is

the common architecture of a Convolutional Neural Network.

Based on this architecture, most modern models such as the

ones used in this project like YOLO are based and it consist

of a set of convolutional layers, with its corresponding

pooling and normalization, the neck of the model, that serves

as a connection between the convolutional backbone and the

classifier, is a fully connected layer following the outputs of

the convolutional layers and finally the classification output,

where probabilities for each class are calculated in order to

classify the input.

Figure 3. Architecture of a CNN.

For detectors, the basis for all the project, previous

research has shown that the best approaches are region-based

algorithms or regression-based algorithms. Combining the

first one with CNNs we get R-CNNs. They solve the problem

of selecting a huge number of regions in common CNNs by

generating many region proposals by selective search and

generating a feature vector classified later by an SVM.

Selective search uses a greedy algorithm to recursively

combine similar regions into larger ones and use them as final

candidate regions. These are very computationally expensive

so a variation of the Fast R-CNNs that improved the results

by using a single-stage training algorithm that classifies and

refine locations at the same time was proposed in [6][7].

Because of the computational requirements, regression-based

algorithms appeared, like YOLO.

YOLO is a model developed for object detection that uses

the target detection as a regression problem for a separate

target box and its category [8]. A single neural network

predicts the confidence of the box and the category. Initial

YOLO implementations could only detect 49 objects and had

high localization error. An evolution appropriately called

YOLOv2 follows the following process, implementing batch

normalization on all the convolutional layers and a high-

resolution classifier [9]:

1) At first, the image is divided into a grid. If the object

we want to track is in a grid, it is responsible for detecting the

object. Each grid cell predicts the detection boxes and its

confidence.

2) For each detection box, YOLO establishes 5 values ,

the coordinates of the center, height, width and confidence,

all of these related to the box.

3) Prediction of the pedestrian probability for each grid

4) The probability is multiplied by the predictive value of

each box, called IOU, which is the overlapping area between

the prediction box and the ground truth box. This operation

gives the confidence of the class as a result for this box.

There are some variations in the application of YOLO to

detection. One of them is the YOLO-R network which is a

recursive application of the YOLO algorithm. It combines

convolutional layers alongside pooling layers (using the max

criterion) in the same way as CNN and reorganization layers.

This method increases the performance of YOLO by a small

margin in terms of precision and recall [9]. The main

advantage of YOLO is that it is faster than other methods,

including Fast-RCNN. Continuous evolution in the algorithm

is the main reason to start the project trying the YOLOv3

version and then, the following ones.

Figure 4. Simplistic Architecture of YOLO.

In terms of tracking, Kalman Filters are extensively used

nowadays. So much, that the state-of-the-art algorithm in

real-time tracking, DeepSORT is based on it [6][10]. The

technique used in this algorithm is called tracking-by-

detection. This technique divides the task into two parts, the

first part is detecting the object and the second is associate

detections of the same object in different time points. The first

method for this technique is using graphs for tracking. Given

two images in the same space in different time frames, the

nodes of the graph are the detections, and the edges are the

spatial and temporal differences between the images.

Specifying some constraints and using different programming

approaches the network flow can be solved, for example

using a k-shortest path algorithm. A second method within

this technique is using multiple cues. This approach uses data

association to improve the robustness of the tracking system.

These cues are used to combine different textures, shapes and

depth coming from stereo systems. This tracking-by-

detection is the preferred method nowadays in terms of usage

and performance.

As a clarification, there is a tracker based on YOLO called

ROLO. It implements the extensively explained YOLO

architecture and attaches an LSTM network at the end. All the

feature information extracted from the feature extractor

(Backbone + Neck) is passed to the LSTM, which provides

the bounding box predictions and the time and space

information. It seems that the logical path for the project

would be to use ROLO. Well, unfortunately, ROLO is, for

now, only contemplated for single object detection and

struggles when it must deal with data association [11].

Given that an introduction into the main methods used in

this project has been made, let’s dive into the specifications

of each of the models and the structure of the system.

III. DESCRIPTION OF THE SYSTEM

Given that this is a 3-stage project, it is easier and clearer
if I divide this section into three, so I can explain clearly and
with some degree of depth what is done in each of the steps. I
will start by describing the thought process behind the election
of the detection model, its features and characteristics, and
how it will work in the context of this project. I’ll do the same
for the following tracking model and distance estimation
stage.

A. Detection stage

The growth of deep learning is what allowed us to have a

modern approach to detection. As outlined before, it allows

extracting more complex features of the images, getting a

better representation of the feature space. There are basically

two frameworks where all the previous techniques exposed

are grouped in. These frameworks are region proposal

algorithms, such as R-CNNs and the other framework

consists in regression-based algorithms, such as YOLO. As

mentioned earlier, R-CNN architecture generates the

proposals of objects bounding boxes first, then does the

feature extraction and finally carries out classification and

localization. As main drawbacks, doing a selective search of

locations is very computationally expensive and takes more

time. However, its accuracy is better than regression-based

algorithms as seen earlier, there are architectures such as Fast-

RCNN and Faster-RCNN which can provide a faster training,

but they still take considerably long. Essentially, these

approaches are not very suitable for real-time applications,

just by how they are built.

The regression/classification-based frameworks are

different because they search for spaces in an image with high

probabilities of containing an object. The main algorithm

within this approach is YOLO and its different versions.

Since the detection can be done in just one step, this algorithm

is considerably faster than the different RCNNs algorithms.

However, its accuracy is a slightly lower because it usually

struggles with small objects that appear in groups.

In general, all applications where real-time processing is

essential should be implemented with regression-based

algorithms due to the improved speed they provide. Common

tasks for this framework are autonomous vehicles. In this case

it is very clear the importance of providing a real-time

processing with the smallest delay possible. Taking into

consideration the limitations and the advantages of all these

different algorithms and the different use cases for each of

them, it is logical that the optimal algorithm to use for our

people detection in real-time use case is YOLO and its

different versions.

The first model tried was YOLOv3. The only relevant

information from the previous versions is that the backbone

used was a 19-layer convolutional network and that the mAP

is 48.1, as outlined in both the official website5and the paper

[12]. The structure of this version, and the basis of the

following ones is as follows [12].

1) The feature extractor: To avoid the struggles of

detecting smaller objects in the previous version, this one

uses what they called Darknet-53[12]. It is a mix of

convolutional layers and residual networks that works as

follows: There are consecutive 3x3 and 1x1 convolution

layers followed by a skip connection (the residual part),

which prevents having to diminish the gradient too much

when propagating information. The combination of the 53

convolutional layers, the residual layers and the detection

head result in a total 106-layer fully convolutional

architecture.

2) The multi-scale detector: Derived from the name, the

detector needs inputs with different scales. Depending on how

the structure is defined, the detector takes the output of 3

different parts of the network and defines feature vectors of

different dimensions (13x13, 26x26 and so on and so forth).

The larger vectors will be used for the detection of larger

objects and the smaller ones for small objects [12]. The

different detection heads are placed alongside the model and

the preceding convolutional network needs to have a linear

activation function, let's not forget this is a regression-based

5Yolo Official Website: https://pjreddie.com/darknet/yolo/

algorithm. In the model used there are three detection heads

in charge of providing detections for the image at three

different scales. The shape of the kernel depends on the

number of classes to predict, so for the different datasets, a

different file is needed because the filters of the convolutional

layer preceding the detection head needs to depend on the

classes provided by the dataset. The formula for calculating

it is the following:

𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = (𝐵 ∗ (5 + 𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠))

𝑤ℎ𝑒𝑟𝑒 𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 (𝑌𝑂𝐿𝑂𝑣3 𝑢𝑠𝑒𝑠 3) (1)

The number 5 on equation (1) refers to the key parameters

of the bounding boxes (height, width), (center_x, center_y)

and the confidence score (1 per class).

3) The loss used in previous versions of YOLO was the

sum of squared errors. It is very ineffective when doing multi-

class classification. That is why in this version the authors

decided to use Binary Cross-Entropy to measure loss in the

predictions.

Figure 5. Architecture of YOLOv3 [12].

YOLO works the following way. The objective of the

network is to predict bounding boxes of each object and the

probability of this object belonging to each possible class in

the dataset. The input image is divided in a SxS grid, and, by

the formula explained earlier, there are [B*(5+num_classes)]

[12] filters.

As per the paper, the model predicts the class of the object

whose center of the bounding box lies inside the grid cell.

Therefore, the output of each forward pass through the

network is a 3D tensor of dimension [S, S,

[B*(5+num_classes)]].

Since the objects to detect are not squares, the authors use

a term called “anchor boxes”. They are predefined boxes with

an aspect ratio set defined by a K-Means clustering on the

entire dataset. YOLOv3 uses 3 anchor boxes per detection

scale and the center of these boxes are the same as the centroid

https://pjreddie.com/darknet/yolo/

of the grid cells. In total, since there are 3 detection scales,

YOLOv3 uses 9 anchor boxes.

There is a chance that after the single forward pass there

are lots of bounding boxes for the same object (Same

centroids). What we need is the box better suited for this

object. The authors use what is called Non-Max Suppression

to select the better bounding box. A threshold can be defined

to just clear all the bounding boxes with confidence scores

lower than this threshold. After this first stage, it ranks in the

bounding boxes descending order and determines that the

appropriate one is the one with highest confidence score.

After eliminating the boxes for this grid cell, it needs to

eliminate the rest by doing the IoU, Intersection over Union

calculation, that measure the distance between the ground

truth boxes and the predicted boxes.

𝐼𝑜𝑈 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝/𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛

If the overlap and the union is very similar (IoU

approximately 1) it means that the bounding box predicted is

very accurate. An IoU of more than 0.5 is considered a good

prediction, so the first attempts with the models will be with

that threshold and a 0.4 confidence threshold.

YOLOv4 and YOLOv5 work in a very similar way. Since,

as showed in the results later, the best performing model and

the one worth using is YOLOv5, here are the main

improvements made for it, which, are very similar to

YOLOv4 [13].

It uses a slightly different backbone called

CSPDarknet53. It is very similar to the original Darknet53,

the only difference is that it uses a partition strategy to

separate the feature map of the base layer into two parts and

then merges them through a cross-stage hierarchy. This

approach allows a larger gradient flow through the network.

This architecture is more light-weighted and enhances the

variability of the learnt features in the different layers [14].

The method used for parameter aggregation is PANet to

sum the features and parameters from different levels. PANet

is chosen because of its ability to preserve spatial information

accurately, helping in proper localization of pixels for mask

formation [13].

The main advantage between YOLOv5 [15] and the

previous versions is that it is built natively in PyTorch,

making the inference, parsing and building of the model much

easier on the machine and, therefore, much quicker. Previous

versions were built in C/C++ and when implementing them

in Python, all the configuration files and parsing made the

models much slower than YOLOv5 even though they are

simpler and with less parameters (less accurate also).

There is some controversy about YOLOv5, because it has

been published with that name even though none of the

authors participated in the previous papers and, in fact, there

is no YOLOv5 paper as of June 2021. However, its

performance is good enough so it’s worth using it.

B. Tracking stage

The next stage in the project is to provide some tracking

within the frames to make sure that we do not lose the

identification of the people that the previous algorithm

detects. This can be seen as a “safety” measure because it is

possible to feed an object detector directly into the distance

estimator, if the detector performs accurately. However,

adding a tracking mechanism in between those stages, allows

the algorithm to “memorize” previous detections for a certain

amount of time in case it loses a detection in a given frame,

but the same person appears again in one of the next ones. It

is a very efficient method to deal with occlusions.

In this project, the approach will be tracking-by-detection.

This approach takes consecutive frames and tracks detections

through them. This is different for example than re-

identification, which attempts to match a detection in a given

image with a previous detection. Re-identification is not a

real-time approach. Since our input will be a video feed,

tracking-by-detection is the obvious choice for the task.

The most popular tracking algorithm is DeepSORT. It is

an evolution of the SORT (Simple Object Real Time Tracker)

[51] algorithm. The main difference between the two

algorithms is that DeepSORT replaces the Hungarian method

association metric used by SORT with a CNN network.

The authors of the paper [10], decided to use the

Mahalanobis distance, which allows them to take into

consideration the uncertainty, and work better with

distributions. The authors threshold the Mahalanobis distance

metric at a 95% confidence interval.

𝒅(𝟏)(𝒊, 𝒋) = (𝒅𝒋 − 𝒚𝒊)
𝑻𝑺𝒊 − 𝟏 ∗ (𝒅𝒋 − 𝒚𝒊)[10] (2)

In equation (2), dj denotes the j-th detection and Si and yi

denotes the spatial information of the i-th track [10]. Despite

the effectiveness of the filters and the associations provided

by the Hungarian algorithm, it still struggles with occlusions

and different viewpoints, that is why the authors [10] included

a deep learning approach to the previously existing algorithm.

Deep learning is used to fix this by introducing an appearance

metric based on CNNs. The idea is to obtain a feature vector

that accurately describes the images. After obtaining the

feature vector the distance metric is updated like this:

𝒄(𝒊,𝒋) = 𝝀 𝒅(𝟏)(𝒊, 𝒋) + (𝟏 − 𝝀)𝒅(𝟐)(𝒊, 𝒋)[10] (3)

In equation (3), d(1) is the Mahalanobis vector used before,

d(2) is the cosine distance between the feature vectors of the

current and previous image and 𝝀 is the weighing factor. The

authors [10] claim that the importance of d(2) is much more

than d(1) that they were able to achieve good results using

𝝀 =0, nullifying the Mahalanobis distance, when there is

considerable camera motion, therefore more occlusions.

Using this deep learning feature increased the power and

accuracy of DeepSORT considerably. To compare

consecutive frames in terms of appearance descriptors, the

algorithm takes the minimum cosine distance between the i-

th track and the j-th detection [10], as seen in equation (4),

where Ri denotes the collection of appearance descriptions of

the previous bounding boxes, and their tracks.

𝒅(𝟐)(𝒊, 𝒋) = 𝒎𝒊𝒏{𝟏 − 𝒓𝒋
𝑻𝒓𝒌

𝒊 |𝒓𝒌
𝒊 ∈ 𝑹𝒊}[10] (4)

In summary, the Mahalanobis measure provides useful

information for short term detection for bounding box

localization while the appearance descriptor considers

information that is very useful to recover predictions after

some time. The CNN architecture used is like this:

Figure 6. Architecture of DeepSORT’s CNN [10].

C. Distance estimation stage

For the last part of the project, the system needs to be able

to estimate the distance between 2 individuals and be able to

monitor it. There is very little research regarding DL

approaches for this. There are a lot of examples of distance

measuring, but they are almost all of them based on a

parameter of distance to get depth and all that information is

hardcoded and fixed for each camera and perspective. The

closest approach to a deep learning one is this one that

transforms the camera view into bird’s view [16], a zenithal

take of the same surroundings. The complication is that,

before changing the perspective into a bird’s view, you must

lock the objects you want to monitor [16]. That is not practical

at all for us because with that, the system would not be able

to track new people entering the scene.

To clarify once again, the model to be built is some simple

model with a couple convolutional layers and a linear output,

meaning that we will use a regression approach to solve the

problem. The model needs, first, a dataset of images. The

previously used datasets are not valid for several reasons. The

First and foremost, there are no annotations of the distance

between the people in the images. Also, these are very

complex datasets for this problem, at least at this stage where

this task is relatively new. There are too many people, and it

would be very difficult to estimate the distance between all of

them. The goal is to simplify the problem and use simple

images with only two individuals, and then see if the model

is able to estimate the distance between them. The third

requirement is some depth information, which the datasets do

not provide.

To overcome these problems, a synthetic dataset was

generated using CoppeliaSim 6, a robot simulator. With this

Several scenarios will be generated where there are two

people and then the simulator will measure the distance

between them. These scenarios will be saved as images and

the distances as the labels. This way I am going to construct

a synthetic dataset. Using the simulator, the depth images can

also be saved and can be used as part of the dataset. Since the

previously trained detector is very accurate, in order to help

this final model, the images generated from the simulator will

be passed through the detector it will get the bounding boxes

and put them on the depth images, this way, the model does

not have to deal with colors or other information, it only needs

6 CoppeliaSim Developers: https://www.coppeliarobotics.com

to take the grayscale values of the depth and, with the help of

the bounding boxes, estimate the distances provided in the

labels. The following images explain this a little better.

The simulator used is CoppeliaSim, which is a simulator

built for robot tasks, but it is open source, and it might be

enough.

Figure 7. Scenario generated in the simulator and tagged with the detector

The first image in Figure 7 is the output of the simulator.

As seen, it generates two people in random positions within

the limits of the scenario. Those images are passed through

the detector and the bounding boxes are “translated” to the

depth image, as seen in the image on the right. No difference

can be seen between the individuals and the background in

the depth image. This is because the difference between pixel

values is so small that it is not perceivable by the human eye,

but, in theory, the computer is able to differentiate them,

giving the information of the distance to the individual from

the camera´s point. Ideally, this dataset would have several

perspectives in order to have a model that generalizes

correctly when the camera changes position but with the

hardware available, creating a dataset that big is impossible.

For now, this dataset is good enough for the objectives of this

task.

After several attempts with different configurations of the

simulator and the models for a long time creating a CSV

dataset became an option. This dataset includes all the

bounding box information and their centers pixels values to

train only a DNN instead of a full CNN, this dataset is like

this sample.

Figure 8. CSV format dataset

The distance estimation models are built on both of these

datasets and depending on their performance it can be

evaluated if it is possible to estimate the distance between

individuals. This dataset contains the coordinates, heigh and

width of both individuals and the pixel value of the center of

the bounding box for each individual, representing some

depth information.

While it would be possible to train the model without the

depth information, it is useful because they work as a safety

measure for when the bounding box doesn´t correspond to the

parameters of height and distance of the individuals, for

example, when one has an armed lifted, the bounding box

reaches the full length of the arm, that could be at 2.2 meters,

way above the average height. Also, if there are partial

occlusions, the bounding box of the partially occluded

individual will start from what is visible, meaning that it

would not represent the entire height of the person. For that,

the depth information is valuable.

IV. RESULTS

As in the last section, it is easier to present the results of
the three different stages in order to evaluate each of them and
be able to make decisions on these partial results.

A. Detection stage

For this stage several models have been trained and tried

on several datasets (On the GPUs provided by Google Colab,

normally a Tesla P100). I have tried YOLOv3, YOLOv4 and

YOLOv5 (A smaller, medium, and larger version) all of them

in COCO[17] and CrowdHuman[18] datasets and only

YOLOv3 and YOLOv4 on KITTI[19], the reason behind that

is that KITTI performed significantly worse than the other

two on the first two models, so I decided to stop using the

dataset. The reason behind the lack of performance is clearly

that this dataset is designed for autonomous driving problems

and all the images are from the same perspective (a car), so,

when generalizing to another perspectives, results are much

worse than the other datasets that have way more variability.

An exploratory analysis of CrowdHuman Dataset vs. KITTI

is provided next to understand that.

Figure 9. Exploratory Analysis of KITTI and CrowdHuman.

As seen in the images, the center coordinates of the

bounding boxes of CrowdHuman (that all of them represent

humans) are distributed way more heterogeneously through

the picture dimensions than KITTI.

Training YOLOv5 in CrowdHuman provided the training

results that are shown in Figure 10. These results, compared

to the ones COCO provided are way better, since the model

couldn´t get more than 0.65 mAP in any of the COCO models

(YOLOv3 got 0.45 mAP), probably because it is a dataset

with more classes than people, not like CrowdHuman that is

dedicated to persons.

Figure 10. Training Results of CrowdHuman.

As seen, the larger model reaches almost 0.8 mAP (0.786

to be exact), and the medium one 0.764. While the larger

model has more accuracy, taking into consideration the real-

time objectives this project has, it seems better to use the

medium sized model because is faster on inference. I have

done a comparison of all the model tried including the number

of detections and the FPS that each of them reaches.

All ratios shown in the table are calculated against the

number of detections that the best model did, taking into

consideration accuracy and speed. The ratio only measures

the number of detections the model has been able to make in

the set of images fed into it. All models were fed the same set

of images.

TABLE I. COMPARISON OF RESULTS OF THE DETECTION STAGE

Model Dataset
Ratio Of

Detections
FPS

YOLOv3

COCO 0.44

37.1 KITTI 0.27

CrowdHuman 0.79

YOLOv4

COCO 0.5

25.3 KITTI 0.03

CrowdHuman 0.63

YOLOv5 - Small
COCO 0.48

78.4
CrowdHuman 0.95

YOLOv5 -

Medium

COCO 0.46
53.0

CrowdHuman 1

YOLOv5 - Large
COCO 0.5

33.9
CrowdHuman 1.02

As aforementioned, when choosing the best performing

model in this stage and using it to train the tracker after, it is

needed to account for the accuracy and the processing speed.

Taking in consideration that the limit of real-time processing

is commonly put at 30 frames per second, any model

performing below that number can be discarded. Because of

the difference in accuracy, all YOLOv3 models were

discarded and, because it is very much on the limit and not at

all much better in accuracy, the YOLOv5 large model of

CrowdHuman was discarded also. The last two models

standing are the YOLOv5 small and medium models trained

on CrowdHuman. I decided in favor of the medium sized one

since it has a very wide margin in terms of FPS and is a little

bit more accurate in large distance shots. In the next images

are presented some images of this detector working and, in

the conclusions, I provided links to all the results of all the

models.

Figure 11. Inference examples of YOLOv5 trained on CrowdHuman.

B. Tracking stage

The authors in the paper evaluated the model using the

MOT challenge [17]. This challenge is specifically designed

to track objects in public locations, including people and the

results were very good, as shown in the paper.

Taking this into consideration, the decision was to use the

already trained model of DeepSORT and put it after the

detectors I trained before. Training DeepSORT includes

training also the detectors so, since the detectors are already

trained, it makes a lot of sense to use the already pretrained

DeepSORT model and use for inference the detector trained.

The model provided by the authors allows selecting different

parameters for the inference such as IoU, Confidence and Age

of Tracks, which is a feature of DeepSORT that allows

choosing the number of frames you want to keep a lost track´s

information for. This allows the model to not overload the

tracks matrix and keep the model lighter. It works in a very

simple way, whenever a track is lost, because of detector

mistake, occlusions etc., you can set the number of frames

you want that track information to be kept so you can match

it with another detection. For example, setting the age to 50

frames, it can “recover” the detection if that same object

appears in the following 50 frames, but not after. If the age is

very high, the inference time will increase. Personally, for this

task, 60 frames age is chosen initially and then checking the

inference time to see if it works or if it needs to be reduced.

For this case, if the frame is lost for more than 60 frames, at

30 fps is 2 seconds, it is considered to be a detection that is

going to appear either on a completely different location of

the frame or it is not going to appear again at all after that

time.

The results in terms of FPS for detection are shown below.

I had some time and tried it also on the other models but, my

previous conclusions stand.

TABLE II. COMPARISON OF RESULTS OF THE TRACKING STAGE

Model Version FPS

YOLOv3 - 33.2

YOLOv4 - 22.1

YOLOv5

Small 69.0

Medium 52.0

Large 32.3

As seen in the table, there is not much difference when

applying the tracker, except in the YOLOv5 - small model,

that got its FPS reduced by 10 frames. The rest are similar,

and we still maintain the 20 FPS margin from the real-time

limit in the model selected as the best performing one. In the

following images, forming two sequences are presented the

results of the tracker in action on some videos of situations

where it might be necessary the distance monitoring that has

been talked about.

Figure 12. Sequence images of DeepSORT inference.

Figure 13. Sequence images of DeepSORT inference – 2.

C. Distance estimation

For this stage several tryouts were made also, including

trying different configurations in the simulator like including

walls, adjusting the range of the vision sensor, and generating

the people with different orientations. For clarification, the

dataset was generated with walls surrounding the scenario

and carefully adjusting the range of the sensor. The

individuals were generated in the 4 main orientations taking

the camera as the point of view. Not only that but different

configurations of the model were tried also. For example,

transfer learning from different models such as InceptionV3

or MobileNetV2, simple models generated from scratch were

also tried and a DNN model to work with the CSV dataset

showed before. In the following lines are shown the two best

performing models that also allows us to understand that the

objective can be reached from two different paths.

The first one is using a CNN model. As seen in the curves

of figure 14, the model is a bit unstable but much more

precise, which for this problem, is a much better option

because it is going to be able to differentiate better between

pixels. The other models tried reached, the best ones, 1.6

MAE that, taking into consideration that MAE for this model

is 0.93 meters in the training dataset and 1.2 in the test dataset,

proves that this model and dataset is the best performing ones

among the CNN models tried. It also does not overfit as the

previous model did. All distances are in meters.

Figure 14. Training curves of the CNN model.

The architecture of the CNN model is as follows. Using a

pretrained model like MobileNetv2 [20], the model used adds

dropout and a flattening layer to the output of the pretrained

model. It adds after it a 30-neuron fully connected layer and

a 15-neuron fully connected after it. With a dropout layer

afterwards, the models’ output is a single neuron with a linear

activation function. The objective for this architecture is to

provide a little bit of adaptation from the pretrained model to

the synthetic dataset used.

If we put in a scatter plot the predicted outputs against the

supposed results, the following result shoes. As seen, the

predictions follow the ground truth values, while not

perfectly, with enough degree of accuracy. While it has some

trouble predicting short distances, with some improvement,

both in the model and in the dataset, the accuracy will increase

automatically. As before, all distances are in meters.

Figure 15. Scatter Plot of the CNN model on Test Dataset.

The other model is the DNN model. Even though this is a

different approach, the structure is similar. The dense layers

substitute the CNNs, and the output is linear once again.

Training the model for 1000 epochs, the training curves are

as follows:

Figure 16. Training Curves of the DNN model.

Even though this model is affected by noise, it does not

overfit and is more stable. It still shows a little bias on the

scatter plot, but less than the previous model. It also has much

less variance than the CNN model. In summary, it reduces the

bias and the variance from the model with CNNs, meaning

that is better than it. The only drawback it has is that it still

suffers slightly when trying to predict either very long

distance or very short ones, which is the real problem,

although it deals better with short ones than long ones. These

improvements, translated to a metric, mean that the MAE of

this model is 0.6 meters, that, while not perfect, it is much less

than previous models.

Figure 17. Scatter Plot of the DNN model on Test Dataset

In the table below a summary comparison of the models

is presented.

TABLE III. COMPARISON OF RESULTS OF THE DISTANCE ESTIMATION

STAGE

Model
Training MAE

(m)

Test

MAE

(m)

CNN – Transfer

Learning
0.93 1.2

CNN 1.6 2.1

DNN 0.78 0.6

V. CONCLUSIONS & FUTURE WORK

Considering the results presented, mainly in the last

section, the monitorization of the interpersonal distance using

deep learning while having a processing speed within the

boundaries of real time (30 FPS) is possible. However, I´ll

provide now a brief summary of the results of each section

and the conclusions that can be drawn from them.

For the detection stage, 9 different detectors spread out in

4 different datasets (COCO, KITTI, Caltech and

CrowdHuman) and 3 different models have been tried. Trying

all of them in chronological order, I was able to discern why

each of them perform the way they do. Starting with

YOLOv3, it provided a relatively low accuracy for the COCO

dataset but a very reasonable one for both KITTI and

CrowdHuman. However, in inference, the COCO model was

the second best performing one just behind CrowdHuman.

KITTI was not able to generalize that well due to the nature

of its dataset, as explained in the corresponding section. In

terms of FPS, this model provided a speed of around 30 FPS,

which is very much on the limit of real time.

The evolution of YOLOv3 into YOLOv4 should mean

better results, but that was not the case. YOLOv4 model is a

much deeper model that, in training, it’s true that the results

were better than YOLOv3, but in inference, that difference in

accuracy was not tangible. In fact, there was only a slight

improvement in the COCO dataset, but not in CrowdHuman

or KITTI, the worst performing one clearly. In terms of FPS,

since this is a much heavier model than YOLOv3, its

performance was far from real time processing, so I decided

to discard all YOLOv4 models for the next stages, they were

less accurate and slower than YOLOv3.

Then YOLOv5 appeared in the scene and the results were

all better than what we saw before. Not only in training, where

the smaller model was already more accurate than all the

previous models, but also on inference time. As explained

before, YOLOv5 has the same structure and advances as

YOLOv4, but it is much faster and precise because it is built

natively on PyTorch, not in C++ like YOLOv4 and YOLOv3

model is. Reducing all the translating and parsing of

documents and a simpler structure was enough to have much

more accuracy and reduced the inference time considerably,

reaching a 60 FPS processing speed for the model selected. In

terms of datasets, CrowdHuman was the best performing one

by a considerable distance, so I decided to stick with the

YOLOv5 model trained on CrowdHuman dataset for the next

stage.

So far, we have a very accurate model, that has some

difficulties detecting people from very long distances and has

some trouble with occlusions. However, it is very fast. For

now, long distance detection is not a problem of much

concern, as long as short distance detection is good, which it

is. The occlusions, however, are a problem and we need to

deal with them. That is why we incorporate a tracking

mechanism. To try to avoid occlusions I relied on

DeepSORT. It is based on Kalman Filters but incorporates a

Deep Convolutional Network that works as an appearance

descriptor between frames. Comparing the output of it to

determine if a detection is very similar to one in the previous

frame, we can “recover” lost detections some frames later.

Looking at the results and inference time of the YOLOv5

model + DeepSORT model, the outcome is very satisfactory.

Occlusions are corrected in a lot of cases. Of course, this is

not an exact science and between frames, as explained, one

detection can occupy the space of another and be very similar.

Unfortunately, some of those occlusions are not corrected, but

that is rare and overall performance is very good. In terms of

FPS, the processing speed is obviously reduced since the

images pass through another model, but the FPS of the models

selected are still above 50 FPS, a speed well above the limits

stablished. Since the last stage is a very simple and light

model, the processing speed is not expected to be reduced so,

the real-time objective is reached with a considerable margin.

For the last stage, we encountered the problem the datasets

we had used so far were not usable. To estimate the distance,

we need some kind of distance annotations to train the model

against them and check accuracy etc. There are no datasets

like this so, in order to reach a deep learning solution for the

problem, we decided to create a synthetic dataset. For this we

used a simulator and generated a dataset of 600 images of 2

individuals with the distance between them measured and

stored as the labels. This is very archaic, and it is not a state-

of-the-art dataset but, as shown in the results, is good enough

for now. While using a very simple dataset and a very simple

DNN model, we reached an MAE of only 0.6 m, that is not

excellent but is good enough, to check that estimating the

distance is possible using Deep Learning. In the section

following this one I´ll discuss how that can be improved.

With all these stages producing good results, I can

determine that estimating the distance between individuals is

possible using a Deep Learning approach and with real time

processing speed. Of course, there is much work ahead, but

this could be a first step towards a much more general and

precise solution in the future.

A. Future work

In terms of detection and tracking, there is much to

improve, but since the FPS is very good in the project, which

was the main objective of these stages, it is a more researched

field, and the part that needs more improvements is distance

estimation, I´ll focus on what can we do to improve that last

one.

To begin with, generating a better dataset is key. As

mentioned, the simulator we used is not designed for this type

of tasks. The right thing to do would be to use a photorealistic

simulator in order to generate better images and depth

information. For example, it only managed to provide a pixel

value range between 80 and 92. That is not good enough and

is not very precise since, ideally, a range between 0 and 255

is what the simulator can give. I was able to generate 600

images and create the dataset but having more time to

generate a bigger dataset (or having a more powerful

machine) could be of great help. Time was limited and what

was generated was good enough.

Apart from that, which I believe would be enough to

provide a very good solution, a deeper DNN model with a

more complex structure could be of help also. Since we have

more than 20 FPS of margin between the actual system with

the selected model and the real time limit of 30 FPS, investing

in a deeper model should improve the results accordingly,

even if it slows the process a little bit.

As an end note, incorporating that last stage into the

pipeline could be done more efficiently since, now, the input

depth information is reworked into the 80-92 range of pixel

values to be correctly inferenced. With a better dataset and

better simulator knowledge, we could train the DNN with a

0-255 range and then, no reworking of the input depth

information would be needed, but, for now, that is the way it

can be done.

VI. REFERENCES

[1] K. Sage and S. Young, "Security applications of computer vision,"
in IEEE Aerospace and Electronic Systems Magazine, vol. 14, no. 4,

pp. 19-29, April 1999, doi: 10.1109/62.756080.

[2] G. Rigoll, B. Winterstein and S. Muller, "Robust person tracking in real
scenarios with non-stationary background using a statistical computer
vision approach," Proceedings Second IEEE Workshop on Visual
Surveillance (VS'99) (Cat. No.98-89223), Fort Collins, CO, USA,
1999, pp. 41-47, doi: 10.1109/VS.1999.780267.

[3] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale and S. Shafer,
"Multi-camera multi-person tracking for EasyLiving," Proceedings
Third IEEE International Workshop on Visual Surveillance, Dublin,
Ireland, 2000, pp. 3-10, doi: 10.1109/VS.2000.856852.

[4] X. Wu, G. Liang, K. K. Lee and Y. Xu, "Crowd Density Estimation
Using Texture Analysis and Learning," 2006 IEEE International
Conference on Robotics and Biomimetics, Kunming, 2006, pp. 214-
219, doi: 10.1109/ROBIO.2006.340379.

[5] N. Deepika and V. V. Sajith Variyar, "Obstacle classification and
detection for vision based navigation for autonomous driving," 2017
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), Udupi, 2017, pp. 2092-2097, doi:
10.1109/ICACCI.2017.8126154.

[6] Joel Janai; Fatma Güney; Aseem Behl; Andreas Geiger, "Computer
Vision for Autonomous Vehicles: Problems, Datasets and State of the
Art," in Computer Vision for Autonomous Vehicles: Problems,
Datasets and State of the Art , now, 2020.

[7] S. Ren, K. He, R. Girshick and J. Sun, "Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks," in IEEE

[8] Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no.
6, pp. 1137-1149, 1 June 2017, doi: 10.1109/TPAMI.2016.2577031.

[9] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis,
Eftychios Protopapadakis, "Deep Learning for Computer Vision: A
Brief Review", Computational Intelligence and
Neuroscience, vol. 2018, Article
ID 7068349, 13 pages, 2018. https://doi.org/10.1155/2018/7068349

[10] W. Lan, J. Dang, Y. Wang and S. Wang, "Pedestrian Detection Based
on YOLO Network Model," 2018 IEEE International Conference on
Mechatronics and Automation (ICMA), Changchun, 2018, pp. 1547-
1551, doi: 10.1109/ICMA.2018.8484698

[11] N. Wojke, A. Bewley and D. Paulus, "Simple online and realtime
tracking with a deep association metric," 2017 IEEE International
Conference on Image Processing (ICIP), 2017, pp. 3645-3649, doi:
10.1109/ICIP.2017.8296962.

[12] G. Ning et al., "Spatially supervised recurrent convolutional neural
networks for visual object tracking," 2017 IEEE International
Symposium on Circuits and Systems (ISCAS), 2017, pp. 1-4, doi:
10.1109/ISCAS.2017.8050867.

[13] J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement"
2018 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 1804.02767.

[14] A. Bochkowsky, C. Y Wang and H.Y. M. Liao, “YOLOv4: Optimal
Speed and Accuracy of Object Detection”, 2020 ArXiv, 2004.10934

[15] C. Wang, H. Mark Liao, Y. Wu, P. Chen, J. Hsieh and I. Yeh, "CSPNet:
A New Backbone that can Enhance Learning Capability of CNN," 2020
IEEE/CVF

[16] Deepak Biria´s Project: https://blog.usejournal.com/social-distancing-
ai-using-python-deep-learning-c26b20c9aa4c

[17] COCO Dataset: https://cocodataset.org/

[18] CrowdHuman Dataset: https://www.crowdhuman.org/

[19] KITTI Dataset: http://www.cvlibs.net/datasets/kitti/

[20] K. Dong, C. Zhou, Y. Ruan and Y. Li, "MobileNetV2 Model for Image
Classification," 2020 2nd International Conference on Information
Technology and Computer Application (ITCA), 2020, pp. 476-480,
doi: 10.1109/ITCA52113.2020.00106.

https://doi.org/10.1155/2018/7068349
https://blog.usejournal.com/social-distancing-ai-using-python-deep-learning-c26b20c9aa4c
https://blog.usejournal.com/social-distancing-ai-using-python-deep-learning-c26b20c9aa4c
https://cocodataset.org/
https://www.crowdhuman.org/
http://www.cvlibs.net/datasets/kitti/

	I. Introduction
	II. Previous Work, Techniques and Research
	A. Traditional techniques
	B. Modern techniques
	1) At first, the image is divided into a grid. If the object we want to track is in a grid, it is responsible for detecting the object. Each grid cell predicts the detection boxes and its confidence.
	2) For each detection box, YOLO establishes 5 values , the coordinates of the center, height, width and confidence, all of these related to the box.
	3) Prediction of the pedestrian probability for each grid
	4) The probability is multiplied by the predictive value of each box, called IOU, which is the overlapping area between the prediction box and the ground truth box. This operation gives the confidence of the class as a result for this box.

	III. Description of the System
	A. Detection stage
	1) The feature extractor: To avoid the struggles of detecting smaller objects in the previous version, this one uses what they called Darknet-53[12]. It is a mix of convolutional layers and residual networks that works as follows: There are consecuti...
	2) The multi-scale detector: Derived from the name, the detector needs inputs with different scales. Depending on how the structure is defined, the detector takes the output of 3 different parts of the network and defines feature vectors of different...
	𝑓𝑖𝑙𝑡𝑒𝑟𝑠 = ,𝐵∗,5+𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠..
	𝑤ℎ𝑒𝑟𝑒 𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 (𝑌𝑂𝐿𝑂𝑣3 𝑢𝑠𝑒𝑠 3) (1)
	3) The loss used in previous versions of YOLO was the sum of squared errors. It is very ineffective when doing multi-class classification. That is why in this version the authors decided to use Binary Cross-Entropy to measure loss in the predictions.

	B. Tracking stage
	C. Distance estimation stage

	IV. Results
	A. Detection stage
	B. Tracking stage
	C. Distance estimation

	V. Conclusions & Future Work
	A. Future work

	VI. References

