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Abstract— In these weird times that we are living the 

last year and a half, keeping a safety distance between 

individuals to prevent Covid-19 from spreading has 

become one of the most effective measures to control de 

pandemic. Since we are in 2020 and technology is now our 

way of understanding everything, to ensure all these 

measures are being followed by the population, we need a 

way of making sure they are, and, since the number of 

people controlling is very small in comparison to the 

people that needs to be controlled, using all the 

supervisising  methods we have, it should be at least 

studied. Using machine learning and the recent 

developments in computer vision this can be possibly 

handled and hopefully be useful not just for now, but for 

other future situations we may face. After training 

different models for detection, tracking and distance 

estimation between individuals, results show that, with 

some improvement, this objective can be achieved within 

the limits of real-time video. To achieve these results, 

three different versions of the state-of-the-art algorithm 

YOLO have been tested, then fed into a widely used 

tracking algorithm such as DeepSORT and finally, for the 

distance estimation part, we found the need of generating 

a completely synthetic dataset to feed color and depth 

information into a model and see if it can predict the 

distance between the individuals generated with a 

simulator. The results achieved are promising, but the 

road ahead is long and the room for improvement is big. 

Keywords — Deep learning, distance monitoring, CNN, 

people detection, tracking, PyTorch 

I. INTRODUCTION 

Computer vision is an area of study that is identified as a 

subfield of artificial intelligence and works in parallel with 

machine learning. The goal of computer vision is to 

understand the content of the digital images and therefore, 

videos, to mimic the ability of the human vision. For us 

humans, understanding an image is very easy, it comes 
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natural and effortless, but for a computer it is extremely 

complicated because it is very difficult to understand the 

changes in lighting, position, orientation, and expression that 

we see so natural. In the early 1970s, computer vision was 

only an ambitious point in the agenda of giving robots a 

human intelligence. In the 1980s and 1990s, the focus shifted, 

researchers centered their efforts on more complex 

mathematical techniques to perform image analysis. 

It is important to understand that image processing using 

common techniques such as image and contrast adjustment, 

histogram equalization and binarization is not computer 

vision. These techniques are very useful, but they are not 

computer vision because we cannot extract any analysis or 

knowledge from what is happening in the image. 

Since the year 2010 there have been several tasks in the 

field that have been extensively researched and that have 

achieved success. Some of them have been retail1, medical 

imaging2, surveillance & biometrics3, and motion capture4. 

The project follows the three stages proposed with some 

intermediate steps. It depicts the inference of the project 

proposed, but all the models involved, and some more, have 

been previously trained on different datasets and the best 

performing ones have been chosen for each stage, as 

described throughout the document. 

 

Figure 1. Schema of the system proposed. 
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II. PREVIOUS WORK, TECHNIQUES AND RESEARCH 

Security, privacy, autonomous vehicles, facial 

recognition, biometrics. Those are just some of the fields 

where computer vision has been used and developed in the 

recent years. Object segmentation, object detection, and 

object classification have been the main tasks these problems 

have tackled. 

In terms of image capturing, LiDAR and stereo vision are 

the main input sources used. LiDAR provides a point cloud 

that allows reconstructing the scene in 3D. Stereo vision uses 

two cameras with different perspectives to estimate depth. 

This information is useful in the last stage of the project. 

While a lot of techniques and methods can be applied to 

the task we are tackling, the rest of the section focuses only 

on the ones that have been applied in this project. 

A. Traditional techniques 

Early models of sensory processing by the human brain is 

the inspiration behind neural networks [1]. By coding an 

algorithm that mimics processes of real human neurons, our 

newly created, artificial, neural network can ‘learn’. A neuron 

receives input from external sources, or even from other units 

within the network. It weighs each input and, if the total 

output is above a threshold, the output is one. So, in relation 

to our problem, a neural network can solve a classification 

problem, if the target is binary or multi-class. In the scenario 

of video surveillance, neural networks perform low level 

processing of pixels and then perform classification on the 

outputs of these preprocessed pixels. This approach is highly 

adaptive, which makes it perfect for outdoor cameras 

processing. 

The problems that are not linearly separable can be also 

classified with what is called a hidden layer. This, at a high 

level, is another threshold unit that its mission is to do partial 

classification. After that, the output level leverages each 

partial classification and comes up with a final prediction. 

These are called feed forward neural networks and are the 

first type of neural networks that appeared. The activation 

function can be changed into other function that can classify 

the objects more accordingly to what we want. In our case, 

for the distance estimation part, a linear activation function is 

needed since it is a regression problem. 

In the early 2000s, two approaches were used to do a more 

robust and flexible tracking. These two techniques are 

Kalman filters and P2DHMM (Pseudo-2D Hidden Markov 

Model), that is actually used to feed a Kalman filter [2]. These 

two algorithms work together, making it possible to track 

people even if the background has moving objects. The main 

advantages of using a statistical model approach such as 

P2DHMM is that, a priori, it can recognize some human body 

shapes and learn the only the features relevant to the problem.  

Kalman filters provide estimates of a variable given the 

measurement observed over time. It has two stages, 

prediction and update. The prediction stage estimates a new 

measurement from the output of the update stage. The filter is 

recursive, so a stopping constraint needs to be specified. 

These filters are widely used to track moving objects. This 

algorithm is the basis of the DeepSORT algorithm used for 

the tracking stage. 

The Microsoft Research Vision Technology Group 

established in [3] the characteristics and rules that a real-life 

vision-based tracking system must comply with. They did that 

by focusing their research on depth information analysis and 

by clustering, they determined that we can extract shapes 

from that information.  

 

Figure 2. Results of the research [3]. 

Support Vector Machines (SVM) have also been used 

several times as classifiers for crowd monitoring tasks after 

doing training in the corresponding model [4]. First of all, an 

initial calibration of the scene is needed. This is used to build 

a density map of shapes within the image. A common method 

is to split the image in rectangles and calculate the density in 

each rectangle. After the image is divided, the density 

estimation of each rectangle and the design of the density map 

of the complete image are carried out. 

B. Modern techniques 

A very common method is semantic segmentation, and a 

technique developed by University of Cambridge researchers 

that has proven successful is de SegNet Encoder-Decoder. 

SegNet is a deep encoder-decoder consists of four layers of 

encoders and their corresponding layers of decoders, 

followed by a pixel classifier.  

SegNet uses CNNs that, for our case, take an input image, 

assign importance to the different parameters, and 

differentiate one from another. While in traditional 

techniques the preprocessing is more archaic and tedious, the 

preprocessing required for CNNs is much lower. The 

difference with a common Neural Network is that, in NN, we 

can just take a matrix of pixel values and turn it into a 1D 

vector to use as input. In CNN we cannot do that because it 

can also capture the spatial and temporal characteristics of an 

image with the appropriate filters. The convolutional part is 

that the objective of the CNN is to reduce the images into a 

form that is easier to process without losing feature 

information to provide a good prediction. Depicted below is 

the common architecture of a Convolutional Neural Network. 

Based on this architecture, most modern models such as the 

ones used in this project like YOLO are based and it consist 

of a set of convolutional layers, with its corresponding 

pooling and normalization, the neck of the model, that serves 

as a connection between the convolutional backbone and the 

classifier, is a fully connected layer following the outputs of 

the convolutional layers and finally the classification output, 

where probabilities for each class are calculated in order to 

classify the input. 



 

 

 
Figure 3. Architecture of a CNN. 

For detectors, the basis for all the project, previous 

research has shown that the best approaches are region-based 

algorithms or regression-based algorithms. Combining the 

first one with CNNs we get R-CNNs. They solve the problem 

of selecting a huge number of regions in common CNNs by 

generating many region proposals by selective search and 

generating a feature vector classified later by an SVM. 

Selective search uses a greedy algorithm to recursively 

combine similar regions into larger ones and use them as final 

candidate regions. These are very computationally expensive 

so a variation of the Fast R-CNNs that improved the results 

by using a single-stage training algorithm that classifies and 

refine locations at the same time was proposed in [6][7]. 

Because of the computational requirements, regression-based 

algorithms appeared, like YOLO. 

YOLO is a model developed for object detection that uses 

the target detection as a regression problem for a separate 

target box and its category [8]. A single neural network 

predicts the confidence of the box and the category. Initial 

YOLO implementations could only detect 49 objects and had 

high localization error. An evolution appropriately called 

YOLOv2 follows the following process, implementing batch 

normalization on all the convolutional layers and a high-

resolution classifier [9]: 

1) At first, the image is divided into a grid. If the object 

we want to track is in a grid, it is responsible for detecting the 

object. Each grid cell predicts the detection boxes and its 

confidence. 

2) For each detection box, YOLO establishes 5 values , 

the coordinates of the center, height, width and confidence, 

all of these related to the box. 

3) Prediction of the pedestrian probability for each grid 

4) The probability is multiplied by the predictive value of 

each box, called IOU, which is the overlapping area between 

the prediction box and the ground truth box. This operation 

gives the confidence of the class as a result for this box. 

There are some variations in the application of YOLO to 

detection. One of them is the YOLO-R network which is a 

recursive application of the YOLO algorithm. It combines 

convolutional layers alongside pooling layers (using the max 

criterion) in the same way as CNN and reorganization layers. 

This method increases the performance of YOLO by a small 

margin in terms of precision and recall [9]. The main 

advantage of YOLO is that it is faster than other methods, 

including Fast-RCNN. Continuous evolution in the algorithm 

is the main reason to start the project trying the YOLOv3 

version and then, the following ones. 

 

Figure 4. Simplistic Architecture of YOLO. 

In terms of tracking, Kalman Filters are extensively used 

nowadays. So much, that the state-of-the-art algorithm in 

real-time tracking, DeepSORT is based on it [6][10]. The 

technique used in this algorithm is called tracking-by-

detection. This technique divides the task into two parts, the 

first part is detecting the object and the second is associate 

detections of the same object in different time points. The first 

method for this technique is using graphs for tracking. Given 

two images in the same space in different time frames, the 

nodes of the graph are the detections, and the edges are the 

spatial and temporal differences between the images. 

Specifying some constraints and using different programming 

approaches the network flow can be solved, for example 

using a k-shortest path algorithm. A second method within 

this technique is using multiple cues. This approach uses data 

association to improve the robustness of the tracking system. 

These cues are used to combine different textures, shapes and 

depth coming from stereo systems. This tracking-by-

detection is the preferred method nowadays in terms of usage 

and performance. 

As a clarification, there is a tracker based on YOLO called 

ROLO. It implements the extensively explained YOLO 

architecture and attaches an LSTM network at the end. All the 

feature information extracted from the feature extractor 

(Backbone + Neck) is passed to the LSTM, which provides 

the bounding box predictions and the time and space 

information. It seems that the logical path for the project 

would be to use ROLO. Well, unfortunately, ROLO is, for 

now, only contemplated for single object detection and 

struggles when it must deal with data association [11]. 

Given that an introduction into the main methods used in 

this project has been made, let’s dive into the specifications 

of each of the models and the structure of the system. 

III. DESCRIPTION OF THE SYSTEM 

Given that this is a 3-stage project, it is easier and clearer 
if I divide this section into three, so I can explain clearly and 
with some degree of depth what is done in each of the steps. I 
will start by describing the thought process behind the election 
of the detection model, its features and characteristics, and 
how it will work in the context of this project. I’ll do the same 
for the following tracking model and distance estimation 
stage. 

A. Detection stage 

The growth of deep learning is what allowed us to have a 

modern approach to detection. As outlined before, it allows 

extracting more complex features of the images, getting a 

better representation of the feature space. There are basically 

two frameworks where all the previous techniques exposed 

are grouped in. These frameworks are region proposal 

algorithms, such as R-CNNs and the other framework 

consists in regression-based algorithms, such as YOLO. As 

mentioned earlier, R-CNN architecture generates the 



 

 

proposals of objects bounding boxes first, then does the 

feature extraction and finally carries out classification and 

localization. As main drawbacks, doing a selective search of 

locations is very computationally expensive and takes more 

time. However, its accuracy is better than regression-based 

algorithms as seen earlier, there are architectures such as Fast-

RCNN and Faster-RCNN which can provide a faster training, 

but they still take considerably long. Essentially, these 

approaches are not very suitable for real-time applications, 

just by how they are built. 

The regression/classification-based frameworks are 

different because they search for spaces in an image with high 

probabilities of containing an object. The main algorithm 

within this approach is YOLO and its different versions. 

Since the detection can be done in just one step, this algorithm 

is considerably faster than the different RCNNs algorithms. 

However, its accuracy is a slightly lower because it usually 

struggles with small objects that appear in groups. 

In general, all applications where real-time processing is 

essential should be implemented with regression-based 

algorithms due to the improved speed they provide. Common 

tasks for this framework are autonomous vehicles. In this case 

it is very clear the importance of providing a real-time 

processing with the smallest delay possible. Taking into 

consideration the limitations and the advantages of all these 

different algorithms and the different use cases for each of 

them, it is logical that the optimal algorithm to use for our 

people detection in real-time use case is YOLO and its 

different versions. 

The first model tried was YOLOv3. The only relevant 

information from the previous versions is that the backbone 

used was a 19-layer convolutional network and that the mAP 

is 48.1, as outlined in both the official website5and the paper 

[12]. The structure of this version, and the basis of the 

following ones is as follows [12].  

 
1) The feature extractor:  To avoid the struggles of 

detecting smaller objects in the previous version, this one 

uses what they called Darknet-53[12]. It is a mix of 

convolutional layers and residual networks that works as 

follows: There are consecutive 3x3 and 1x1 convolution 

layers followed by a skip connection (the residual part), 

which prevents having to diminish the gradient too much 

when propagating information. The combination of the 53 

convolutional layers, the residual layers and the detection 

head result in a total 106-layer fully convolutional 

architecture.  

2) The multi-scale detector:  Derived from the name, the 

detector needs inputs with different scales. Depending on how 

the structure is defined, the detector takes the output of 3 

different parts of the network and defines feature vectors of 

different dimensions (13x13, 26x26 and so on and so forth). 

The larger vectors will be used for the detection of larger 

objects and the smaller ones for small objects [12]. The 

different detection heads are placed alongside the model and 

the preceding convolutional network needs to have a linear 

activation function, let's not forget this is a regression-based 

 

5Yolo Official Website: https://pjreddie.com/darknet/yolo/ 

algorithm. In the model used there are three detection heads 

in charge of providing detections for the image at three 

different scales. The shape of the kernel depends on the 

number of classes to predict, so for the different datasets, a 

different file is needed because the filters of the convolutional 

layer preceding the detection head needs to depend on the 

classes provided by the dataset. The formula for calculating 

it is the following: 

𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =  (𝐵 ∗ (5 + 𝑛𝑢𝑚𝑐𝑙𝑎𝑠𝑠𝑒𝑠)) 

𝑤ℎ𝑒𝑟𝑒 𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑐ℎ𝑜𝑟𝑠 (𝑌𝑂𝐿𝑂𝑣3 𝑢𝑠𝑒𝑠 3) (1) 

 

The number 5 on equation (1) refers to the key parameters 

of the bounding boxes (height, width), (center_x, center_y) 

and the confidence score (1 per class).  

3) The loss used in previous versions of YOLO was the 

sum of squared errors.  It is very ineffective when doing multi-

class classification. That is why in this version the authors 

decided to use Binary Cross-Entropy to measure loss in the 

predictions. 

 
Figure 5. Architecture of YOLOv3 [12]. 

YOLO works the following way. The objective of the 

network is to predict bounding boxes of each object and the 

probability of this object belonging to each possible class in 

the dataset. The input image is divided in a SxS grid, and, by 

the formula explained earlier, there are [B*(5+num_classes)] 

[12] filters.  

As per the paper, the model predicts the class of the object 

whose center of the bounding box lies inside the grid cell. 

Therefore, the output of each forward pass through the 

network is a 3D tensor of dimension [S, S, 

[B*(5+num_classes)]]. 

Since the objects to detect are not squares, the authors use 

a term called “anchor boxes”. They are predefined boxes with 

an aspect ratio set defined by a K-Means clustering on the 

entire dataset. YOLOv3 uses 3 anchor boxes per detection 

scale and the center of these boxes are the same as the centroid 

https://pjreddie.com/darknet/yolo/


 

 

of the grid cells. In total, since there are 3 detection scales, 

YOLOv3 uses 9 anchor boxes. 

There is a chance that after the single forward pass there 

are lots of bounding boxes for the same object (Same 

centroids). What we need is the box better suited for this 

object. The authors use what is called Non-Max Suppression 

to select the better bounding box. A threshold can be defined 

to just clear all the bounding boxes with confidence scores 

lower than this threshold. After this first stage, it ranks in the 

bounding boxes descending order and determines that the 

appropriate one is the one with highest confidence score. 

After eliminating the boxes for this grid cell, it needs to 

eliminate the rest by doing the IoU, Intersection over Union 

calculation, that measure the distance between the ground 

truth boxes and the predicted boxes.  

𝐼𝑜𝑈 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝/𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛 

If the overlap and the union is very similar (IoU 

approximately 1) it means that the bounding box predicted is 

very accurate. An IoU of more than 0.5 is considered a good 

prediction, so the first attempts with the models will be with 

that threshold and a 0.4 confidence threshold. 

YOLOv4 and YOLOv5 work in a very similar way. Since, 

as showed in the results later, the best performing model and 

the one worth using is YOLOv5, here are the main 

improvements made for it, which, are very similar to 

YOLOv4 [13]. 

It uses a slightly different backbone called 

CSPDarknet53. It is very similar to the original Darknet53, 

the only difference is that it uses a partition strategy to 

separate the feature map of the base layer into two parts and 

then merges them through a cross-stage hierarchy. This 

approach allows a larger gradient flow through the network. 

This architecture is more light-weighted and enhances the 

variability of the learnt features in the different layers [14].  

The method used for parameter aggregation is PANet to 

sum the features and parameters from different levels. PANet 

is chosen because of its ability to preserve spatial information 

accurately, helping in proper localization of pixels for mask 

formation [13]. 

The main advantage between YOLOv5 [15] and the 

previous versions is that it is built natively in PyTorch, 

making the inference, parsing and building of the model much 

easier on the machine and, therefore, much quicker. Previous 

versions were built in C/C++ and when implementing them 

in Python, all the configuration files and parsing made the 

models much slower than YOLOv5 even though they are 

simpler and with less parameters (less accurate also). 

There is some controversy about YOLOv5, because it has 

been published with that name even though none of the 

authors participated in the previous papers and, in fact, there 

is no YOLOv5 paper as of June 2021. However, its 

performance is good enough so it’s worth using it. 

B. Tracking stage 

The next stage in the project is to provide some tracking 

within the frames to make sure that we do not lose the 

identification of the people that the previous algorithm 

detects. This can be seen as a “safety” measure because it is 

possible to feed an object detector directly into the distance 

estimator, if the detector performs accurately. However, 

adding a tracking mechanism in between those stages, allows 

the algorithm to “memorize” previous detections for a certain 

amount of time in case it loses a detection in a given frame, 

but the same person appears again in one of the next ones. It 

is a very efficient method to deal with occlusions. 

In this project, the approach will be tracking-by-detection. 

This approach takes consecutive frames and tracks detections 

through them. This is different for example than re-

identification, which attempts to match a detection in a given 

image with a previous detection. Re-identification is not a 

real-time approach. Since our input will be a video feed, 

tracking-by-detection is the obvious choice for the task. 

The most popular tracking algorithm is DeepSORT. It is 

an evolution of the SORT (Simple Object Real Time Tracker) 

[51] algorithm. The main difference between the two 

algorithms is that DeepSORT replaces the Hungarian method 

association metric used by SORT with a CNN network. 

The authors of the paper [10], decided to use the 

Mahalanobis distance, which allows them to take into 

consideration the uncertainty, and work better with 

distributions. The authors threshold the Mahalanobis distance 

metric at a 95% confidence interval. 

𝒅(𝟏)(𝒊, 𝒋) =  (𝒅𝒋  −  𝒚𝒊 )
𝑻𝑺𝒊  − 𝟏 ∗ (𝒅𝒋  −  𝒚𝒊 )[10] (2) 

In equation (2), dj denotes the j-th detection and Si and yi 

denotes the spatial information of the i-th track [10]. Despite 

the effectiveness of the filters and the associations provided 

by the Hungarian algorithm, it still struggles with occlusions 

and different viewpoints, that is why the authors [10] included 

a deep learning approach to the previously existing algorithm. 

Deep learning is used to fix this by introducing an appearance 

metric based on CNNs. The idea is to obtain a feature vector 

that accurately describes the images. After obtaining the 

feature vector the distance metric is updated like this: 

𝒄(𝒊,𝒋)  =  𝝀 𝒅(𝟏)(𝒊, 𝒋) + (𝟏 −  𝝀)𝒅(𝟐)(𝒊, 𝒋)[10] (3) 

In equation (3), d(1) is the Mahalanobis vector used before, 

d(2) is the cosine distance between the feature vectors of the 

current and previous image and 𝝀 is the weighing factor. The 

authors [10] claim that the importance of d(2) is much more 

than d(1) that they were able to achieve good results using 

𝝀 =0, nullifying the Mahalanobis distance, when there is 

considerable camera motion, therefore more occlusions. 

Using this deep learning feature increased the power and 

accuracy of DeepSORT considerably. To compare 

consecutive frames in terms of appearance descriptors, the 

algorithm takes the minimum cosine distance between the i-

th track and the j-th detection [10], as seen in equation (4), 

where Ri denotes the collection of appearance descriptions of 

the previous bounding boxes, and their tracks. 

𝒅(𝟐)(𝒊, 𝒋)  =  𝒎𝒊𝒏{𝟏 −  𝒓𝒋
𝑻𝒓𝒌

𝒊  |𝒓𝒌
𝒊  ∈  𝑹𝒊}[10] (4) 

In summary, the Mahalanobis measure provides useful 

information for short term detection for bounding box 

localization while the appearance descriptor considers 

information that is very useful to recover predictions after 

some time. The CNN architecture used is like this: 



 

 

 
Figure 6. Architecture of DeepSORT’s CNN [10]. 

C. Distance estimation stage 

For the last part of the project, the system needs to be able 

to estimate the distance between 2 individuals and be able to 

monitor it. There is very little research regarding DL 

approaches for this. There are a lot of examples of distance 

measuring, but they are almost all of them based on a 

parameter of distance to get depth and all that information is 

hardcoded and fixed for each camera and perspective. The 

closest approach to a deep learning one is this one that 

transforms the camera view into bird’s view [16], a zenithal 

take of the same surroundings. The complication is that, 

before changing the perspective into a bird’s view, you must 

lock the objects you want to monitor [16]. That is not practical 

at all for us because with that, the system would not be able 

to track new people entering the scene. 

To clarify once again, the model to be built is some simple 

model with a couple convolutional layers and a linear output, 

meaning that we will use a regression approach to solve the 

problem. The model needs, first, a dataset of images. The 

previously used datasets are not valid for several reasons. The 

First and foremost, there are no annotations of the distance 

between the people in the images. Also, these are very 

complex datasets for this problem, at least at this stage where 

this task is relatively new. There are too many people, and it 

would be very difficult to estimate the distance between all of 

them. The goal is to simplify the problem and use simple 

images with only two individuals, and then see if the model 

is able to estimate the distance between them. The third 

requirement is some depth information, which the datasets do 

not provide. 

To overcome these problems, a synthetic dataset was 

generated using CoppeliaSim 6, a robot simulator. With this 

Several scenarios will be generated where there are two 

people and then the simulator will measure the distance 

between them. These scenarios will be saved as images and 

the distances as the labels. This way I am going to construct 

a synthetic dataset. Using the simulator, the depth images can 

also be saved and can be used as part of the dataset. Since the 

previously trained detector is very accurate, in order to help 

this final model, the images generated from the simulator will 

be passed through the detector it will get the bounding boxes 

and put them on the depth images, this way, the model does 

not have to deal with colors or other information, it only needs 

 

6 CoppeliaSim Developers: https://www.coppeliarobotics.com 

to take the grayscale values of the depth and, with the help of 

the bounding boxes, estimate the distances provided in the 

labels. The following images explain this a little better. 

The simulator used is CoppeliaSim, which is a simulator 

built for robot tasks, but it is open source, and it might be 

enough. 

 
Figure 7. Scenario generated in the simulator and tagged with the detector 

The first image in Figure 7 is the output of the simulator. 

As seen, it generates two people in random positions within 

the limits of the scenario. Those images are passed through 

the detector and the bounding boxes are “translated” to the 

depth image, as seen in the image on the right. No difference 

can be seen between the individuals and the background in 

the depth image. This is because the difference between pixel 

values is so small that it is not perceivable by the human eye, 

but, in theory, the computer is able to differentiate them, 

giving the information of the distance to the individual from 

the camera´s point. Ideally, this dataset would have several 

perspectives in order to have a model that generalizes 

correctly when the camera changes position but with the 

hardware available, creating a dataset that big is impossible. 

For now, this dataset is good enough for the objectives of this 

task. 

After several attempts with different configurations of the 

simulator and the models for a long time creating a CSV 

dataset became an option. This dataset includes all the 

bounding box information and their centers pixels values to 

train only a DNN instead of a full CNN, this dataset is like 

this sample.  

 
Figure 8. CSV format dataset 

The distance estimation models are built on both of these 

datasets and depending on their performance it can be 

evaluated if it is possible to estimate the distance between 

individuals. This dataset contains the coordinates, heigh and 

width of both individuals and the pixel value of the center of 

the bounding box for each individual, representing some 

depth information. 

While it would be possible to train the model without the 

depth information, it is useful because they work as a safety 

measure for when the bounding box doesn´t correspond to the 

parameters of height and distance of the individuals, for 

example, when one has an armed lifted, the bounding box 

reaches the full length of the arm, that could be at 2.2 meters, 



 

 

way above the average height. Also, if there are partial 

occlusions, the bounding box of the partially occluded 

individual will start from what is visible, meaning that it 

would not represent the entire height of the person. For that, 

the depth information is valuable. 

IV. RESULTS 

As in the last section, it is easier to present the results of 
the three different stages in order to evaluate each of them and 
be able to make decisions on these partial results. 

A. Detection stage 

For this stage several models have been trained and tried 

on several datasets (On the GPUs provided by Google Colab, 

normally a Tesla P100). I have tried YOLOv3, YOLOv4 and 

YOLOv5 (A smaller, medium, and larger version) all of them 

in COCO[17] and CrowdHuman[18] datasets and only 

YOLOv3 and YOLOv4 on KITTI[19], the reason behind that 

is that KITTI performed significantly worse than the other 

two on the first two models, so I decided to stop using the 

dataset. The reason behind the lack of performance is clearly 

that this dataset is designed for autonomous driving problems 

and all the images are from the same perspective (a car), so, 

when generalizing to another perspectives, results are much 

worse than the other datasets that have way more variability. 

An exploratory analysis of CrowdHuman Dataset vs. KITTI 

is provided next to understand that. 

 

Figure 9. Exploratory Analysis of KITTI and CrowdHuman. 

As seen in the images, the center coordinates of the 

bounding boxes of CrowdHuman (that all of them represent 

humans) are distributed way more heterogeneously through 

the picture dimensions than KITTI. 

Training YOLOv5 in CrowdHuman provided the training 

results that are shown in Figure 10. These results, compared 

to the ones COCO provided are way better, since the model 

couldn´t get more than 0.65 mAP in any of the COCO models 

(YOLOv3 got 0.45 mAP), probably because it is a dataset 

with more classes than people, not like CrowdHuman that is 

dedicated to persons. 

 
Figure 10. Training Results of CrowdHuman. 

As seen, the larger model reaches almost 0.8 mAP (0.786 

to be exact), and the medium one 0.764. While the larger 

model has more accuracy, taking into consideration the real-

time objectives this project has, it seems better to use the 

medium sized model because is faster on inference. I have 

done a comparison of all the model tried including the number 

of detections and the FPS that each of them reaches. 

All ratios shown in the table are calculated against the 

number of detections that the best model did, taking into 

consideration accuracy and speed. The ratio only measures 

the number of detections the model has been able to make in 

the set of images fed into it. All models were fed the same set 

of images. 

TABLE I.  COMPARISON OF RESULTS OF THE DETECTION STAGE 

Model Dataset 
Ratio Of 

Detections 
FPS 

YOLOv3 

COCO 0.44 

37.1 KITTI 0.27 

CrowdHuman 0.79 

YOLOv4 

COCO 0.5 

25.3 KITTI 0.03 

CrowdHuman 0.63 

YOLOv5 - Small 
COCO 0.48 

78.4 
CrowdHuman 0.95 

YOLOv5 - 

Medium 

COCO 0.46 
53.0 

CrowdHuman 1 

YOLOv5 - Large 
COCO 0.5 

33.9 
CrowdHuman 1.02 

 

As aforementioned, when choosing the best performing 

model in this stage and using it to train the tracker after, it is 

needed to account for the accuracy and the processing speed. 

Taking in consideration that the limit of real-time processing 

is commonly put at 30 frames per second, any model 

performing below that number can be discarded. Because of 

the difference in accuracy, all YOLOv3 models were 

discarded and, because it is very much on the limit and not at 

all much better in accuracy, the YOLOv5 large model of 

CrowdHuman was discarded also. The last two models 

standing are the YOLOv5 small and medium models trained 

on CrowdHuman. I decided in favor of the medium sized one 



 

 

since it has a very wide margin in terms of FPS and is a little 

bit more accurate in large distance shots. In the next images 

are presented some images of this detector working and, in 

the conclusions, I provided links to all the results of all the 

models. 

 

Figure 11. Inference examples of YOLOv5 trained on CrowdHuman. 

B. Tracking stage 

The authors in the paper evaluated the model using the 

MOT challenge [17]. This challenge is specifically designed 

to track objects in public locations, including people and the 

results were very good, as shown in the paper. 

Taking this into consideration, the decision was to use the 

already trained model of DeepSORT and put it after the 

detectors I trained before. Training DeepSORT includes 

training also the detectors so, since the detectors are already 

trained, it makes a lot of sense to use the already pretrained 

DeepSORT model and use for inference the detector trained. 

The model provided by the authors allows selecting different 

parameters for the inference such as IoU, Confidence and Age 

of Tracks, which is a feature of DeepSORT that allows 

choosing the number of frames you want to keep a lost track´s 

information for. This allows the model to not overload the 

tracks matrix and keep the model lighter. It works in a very 

simple way, whenever a track is lost, because of detector 

mistake, occlusions etc., you can set the number of frames 

you want that track information to be kept so you can match 

it with another detection. For example, setting the age to 50 

frames, it can “recover” the detection if that same object 

appears in the following 50 frames, but not after. If the age is 

very high, the inference time will increase. Personally, for this 

task, 60 frames age is chosen initially and then checking the 

inference time to see if it works or if it needs to be reduced. 

For this case, if the frame is lost for more than 60 frames, at 

30 fps is 2 seconds, it is considered to be a detection that is 

going to appear either on a completely different location of 

the frame or it is not going to appear again at all after that 

time. 

The results in terms of FPS for detection are shown below. 

I had some time and tried it also on the other models but, my 

previous conclusions stand. 

TABLE II.  COMPARISON OF RESULTS OF THE TRACKING STAGE 

Model Version FPS 

YOLOv3 - 33.2 

YOLOv4 - 22.1 

YOLOv5  

Small 69.0 

Medium 52.0 

Large 32.3 

 

As seen in the table, there is not much difference when 

applying the tracker, except in the YOLOv5 - small model, 

that got its FPS reduced by 10 frames. The rest are similar, 

and we still maintain the 20 FPS margin from the real-time 

limit in the model selected as the best performing one. In the 

following images, forming two sequences are presented the 

results of the tracker in action on some videos of situations 

where it might be necessary the distance monitoring that has 

been talked about. 

 

 

 
Figure 12. Sequence images of DeepSORT inference. 

 

 

Figure 13. Sequence images of DeepSORT inference – 2. 

C. Distance estimation 

For this stage several tryouts were made also, including 

trying different configurations in the simulator like including 

walls, adjusting the range of the vision sensor, and generating 

the people with different orientations. For clarification, the 

dataset was generated with walls surrounding the scenario 

and carefully adjusting the range of the sensor. The 

individuals were generated in the 4 main orientations taking 

the camera as the point of view. Not only that but different 

configurations of the model were tried also. For example, 

transfer learning from different models such as InceptionV3 

or MobileNetV2, simple models generated from scratch were 



 

 

also tried and a DNN model to work with the CSV dataset 

showed before. In the following lines are shown the two best 

performing models that also allows us to understand that the 

objective can be reached from two different paths.  

The first one is using a CNN model. As seen in the curves 

of figure 14, the model is a bit unstable but much more 

precise, which for this problem, is a much better option 

because it is going to be able to differentiate better between 

pixels. The other models tried reached, the best ones, 1.6 

MAE that, taking into consideration that MAE for this model 

is 0.93 meters in the training dataset and 1.2 in the test dataset, 

proves that this model and dataset is the best performing ones 

among the CNN models tried. It also does not overfit as the 

previous model did. All distances are in meters. 

 
Figure 14. Training curves of the CNN model. 

The architecture of the CNN model is as follows. Using a 

pretrained model like MobileNetv2 [20], the model used adds 

dropout and a flattening layer to the output of the pretrained 

model. It adds after it a 30-neuron fully connected layer and 

a 15-neuron fully connected after it. With a dropout layer 

afterwards, the models’ output is a single neuron with a linear 

activation function. The objective for this architecture is to 

provide a little bit of adaptation from the pretrained model to 

the synthetic dataset used. 

If we put in a scatter plot the predicted outputs against the 

supposed results, the following result shoes. As seen, the 

predictions follow the ground truth values, while not 

perfectly, with enough degree of accuracy. While it has some 

trouble predicting short distances, with some improvement, 

both in the model and in the dataset, the accuracy will increase 

automatically. As before, all distances are in meters. 

 
Figure 15. Scatter Plot of the CNN model on Test Dataset. 

The other model is the DNN model. Even though this is a 

different approach, the structure is similar. The dense layers 

substitute the CNNs, and the output is linear once again. 

Training the model for 1000 epochs, the training curves are 

as follows: 

 
Figure 16. Training Curves of the DNN model. 

Even though this model is affected by noise, it does not 

overfit and is more stable. It still shows a little bias on the 

scatter plot, but less than the previous model. It also has much 

less variance than the CNN model. In summary, it reduces the 

bias and the variance from the model with CNNs, meaning 

that is better than it. The only drawback it has is that it still 

suffers slightly when trying to predict either very long 

distance or very short ones, which is the real problem, 

although it deals better with short ones than long ones. These 

improvements, translated to a metric, mean that the MAE of 

this model is 0.6 meters, that, while not perfect, it is much less 

than previous models.  

 
Figure 17. Scatter Plot of the DNN model on Test Dataset 

In the table below a summary comparison of the models 

is presented. 

TABLE III. COMPARISON OF RESULTS OF THE DISTANCE ESTIMATION 

STAGE 

Model 
Training MAE 

(m) 

Test 

MAE 

(m) 

CNN – Transfer 

Learning 
0.93 1.2 

CNN 1.6 2.1 

DNN  0.78 0.6 

 



 

 

V. CONCLUSIONS & FUTURE WORK 

Considering the results presented, mainly in the last 

section, the monitorization of the interpersonal distance using 

deep learning while having a processing speed within the 

boundaries of real time (30 FPS) is possible. However, I´ll 

provide now a brief summary of the results of each section 

and the conclusions that can be drawn from them. 

For the detection stage, 9 different detectors spread out in 

4 different datasets (COCO, KITTI, Caltech and 

CrowdHuman) and 3 different models have been tried. Trying 

all of them in chronological order, I was able to discern why 

each of them perform the way they do. Starting with 

YOLOv3, it provided a relatively low accuracy for the COCO 

dataset but a very reasonable one for both KITTI and 

CrowdHuman. However, in inference, the COCO model was 

the second best performing one just behind CrowdHuman. 

KITTI was not able to generalize that well due to the nature 

of its dataset, as explained in the corresponding section. In 

terms of FPS, this model provided a speed of around 30 FPS, 

which is very much on the limit of real time. 

The evolution of YOLOv3 into YOLOv4 should mean 

better results, but that was not the case. YOLOv4 model is a 

much deeper model that, in training, it’s true that the results 

were better than YOLOv3, but in inference, that difference in 

accuracy was not tangible. In fact, there was only a slight 

improvement in the COCO dataset, but not in CrowdHuman 

or KITTI, the worst performing one clearly. In terms of FPS, 

since this is a much heavier model than YOLOv3, its 

performance was far from real time processing, so I decided 

to discard all YOLOv4 models for the next stages, they were 

less accurate and slower than YOLOv3.  

Then YOLOv5 appeared in the scene and the results were 

all better than what we saw before. Not only in training, where 

the smaller model was already more accurate than all the 

previous models, but also on inference time. As explained 

before, YOLOv5 has the same structure and advances as 

YOLOv4, but it is much faster and precise because it is built 

natively on PyTorch, not in C++ like YOLOv4 and YOLOv3 

model is. Reducing all the translating and parsing of 

documents and a simpler structure was enough to have much 

more accuracy and reduced the inference time considerably, 

reaching a 60 FPS processing speed for the model selected. In 

terms of datasets, CrowdHuman was the best performing one 

by a considerable distance, so I decided to stick with the 

YOLOv5 model trained on CrowdHuman dataset for the next 

stage. 

So far, we have a very accurate model, that has some 

difficulties detecting people from very long distances and has 

some trouble with occlusions. However, it is very fast. For 

now, long distance detection is not a problem of much 

concern, as long as short distance detection is good, which it 

is. The occlusions, however, are a problem and we need to 

deal with them. That is why we incorporate a tracking 

mechanism. To try to avoid occlusions I relied on 

DeepSORT. It is based on Kalman Filters but incorporates a 

Deep Convolutional Network that works as an appearance 

descriptor between frames. Comparing the output of it to 

determine if a detection is very similar to one in the previous 

frame, we can “recover” lost detections some frames later.  

Looking at the results and inference time of the YOLOv5 

model + DeepSORT model, the outcome is very satisfactory. 

Occlusions are corrected in a lot of cases. Of course, this is 

not an exact science and between frames, as explained, one 

detection can occupy the space of another and be very similar. 

Unfortunately, some of those occlusions are not corrected, but 

that is rare and overall performance is very good. In terms of 

FPS, the processing speed is obviously reduced since the 

images pass through another model, but the FPS of the models 

selected are still above 50 FPS, a speed well above the limits 

stablished. Since the last stage is a very simple and light 

model, the processing speed is not expected to be reduced so, 

the real-time objective is reached with a considerable margin. 

For the last stage, we encountered the problem the datasets 

we had used so far were not usable. To estimate the distance, 

we need some kind of distance annotations to train the model 

against them and check accuracy etc. There are no datasets 

like this so, in order to reach a deep learning solution for the 

problem, we decided to create a synthetic dataset. For this we 

used a simulator and generated a dataset of 600 images of 2 

individuals with the distance between them measured and 

stored as the labels. This is very archaic, and it is not a state-

of-the-art dataset but, as shown in the results, is good enough 

for now. While using a very simple dataset and a very simple 

DNN model, we reached an MAE of only 0.6 m, that is not 

excellent but is good enough, to check that estimating the 

distance is possible using Deep Learning. In the section 

following this one I´ll discuss how that can be improved. 

With all these stages producing good results, I can 

determine that estimating the distance between individuals is 

possible using a Deep Learning approach and with real time 

processing speed. Of course, there is much work ahead, but 

this could be a first step towards a much more general and 

precise solution in the future.  

A. Future work 

In terms of detection and tracking, there is much to 

improve, but since the FPS is very good in the project, which 

was the main objective of these stages, it is a more researched 

field, and the part that needs more improvements is distance 

estimation, I´ll focus on what can we do to improve that last 

one. 

To begin with, generating a better dataset is key. As 

mentioned, the simulator we used is not designed for this type 

of tasks. The right thing to do would be to use a photorealistic 

simulator in order to generate better images and depth 

information. For example, it only managed to provide a pixel 

value range between 80 and 92. That is not good enough and 

is not very precise since, ideally, a range between 0 and 255 

is what the simulator can give. I was able to generate 600 

images and create the dataset but having more time to 

generate a bigger dataset (or having a more powerful 

machine) could be of great help. Time was limited and what 

was generated was good enough. 

Apart from that, which I believe would be enough to 

provide a very good solution, a deeper DNN model with a 

more complex structure could be of help also. Since we have 

more than 20 FPS of margin between the actual system with 

the selected model and the real time limit of 30 FPS, investing 



 

 

in a deeper model should improve the results accordingly, 

even if it slows the process a little bit. 

As an end note, incorporating that last stage into the 

pipeline could be done more efficiently since, now, the input 

depth information is reworked into the 80-92 range of pixel 

values to be correctly inferenced. With a better dataset and 

better simulator knowledge, we could train the DNN with a 

0-255 range and then, no reworking of the input depth 

information would be needed, but, for now, that is the way it 

can be done. 
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