
1

Action Recognition in video with a

Convolutional+LSTM Model

Luis Navarro Velasco

Master Thesis. Universidad Pontificia de Comillas

Master in Smart Industry

Tutors: Álvaro López López and Lucía Güitta López

Abstract

There are thousands of millions of video surveillance cameras

around the world, designed to ensure that the streets or

premises in which they are installed are safe. Currently, all of

these cameras require constant monitoring by a person, who

must ensure that there is no anomalous activity on any of the

cameras, and therefore that no crime is occurring and no one

is in danger. Developing a model capable of analyzing what is

happening in each security camera and drawing conclusions

from these videos would save millions of euros worldwide, as

well as getting a machine to do the thankless job of constantly

monitoring these cameras. This is why there is growing

interest in achieving a stable model capable of solving this

problem.

This project aims precisely at this application of Computer

Vision: detecting actions in videos from video surveillance

cameras, which turns the problem into a classification

problem, in which the model must be able to indicate whether

the action in question has occurred or not in a video.

I. INTRODUCTION

Currently, there is a growing interest in developing Artificial

Intelligence models that facilitate the tasks to be performed by

humans. The problems whose solution is sought through the

application of this type of algorithms are becoming

increasingly larger and more varied, ranging from the

detection of people and objects in images to the prediction of

the stock market or the driving of autonomous cars. Although

it may seem that Artificial Intelligence has just landed in the

world, this is not so. The first neural network model was

designed by Frank Rosenblatt more than sixty years ago; more

specifically in 1957 [1]. This model introduced for the first

time the Perceptron, which was capable not only of learning,

but also of generalizing, and is still used today for pattern

recognition.

These neural network models have evolved greatly since

Frank Rosenblatt's first design, giving rise to very different

architectures that provide solutions to a wide variety of

problems. This rapid evolution in recent times has been

favored by the rapid increase in processing capacity, which is

growing exponentially and is making it possible to develop

models of great complexity.

One of the aspects that Artificial Intelligence has adopted is

Deep Learning, which has meant a paradigm shift, since

before the appearance of this type of models, it was necessary

to extract the characteristics of the data before training the

Artificial Intelligence model, which made the work more

complex and biased the decision making towards the

characteristics that the developers considered important. With

the advent of Deep Learning, it is no longer necessary to

extract these features, but thanks to the depth of the networks

(i.e. the number of layers connected to each other), they are

able to extract these features by themselves, understanding

which ones are relevant when making predictions.

Deep Learning models are currently used for multiple

solutions: predicting future values, classifying input data,

understanding the content of a text, detecting objects in

images.... There are many applications, but the one that will be

discussed in depth in this paper is called Computer Vision.

This consists in the creation of models capable of analyzing

images and extracting information from them. There is a lot of

different information that can be extracted from an image, and

that is why there are different families of Computer Vision

algorithms. The main applications or families of models are

the following:

• Image Classification: the goal of this type of models is

to classify an image according to its content.

• Object detection: it consists of detecting certain objects

and locating them in the image. For this purpose, boxes

called "bounding boxes" are placed over the objects to

specify their position.

• Image segmentation: this use case is similar to the

previous one, but in this case, it is intended to specify

to which object each pixel of the image corresponds.

• Key point detection: consists of detecting characteristic

points in an image. This technique is used for facial

recognition and to detect the posture of people, since it

is possible to locate the location of the joints in the

image.

2

Although the most developed application of Computer Vision

so far is image analysis, it is not limited only to this task, but

also aims to analyze videos.

The analysis of videos by means of Computer Vision

techniques presents a complex but interesting solution to

many problems that man must currently solve without the help

of machines. This type of techniques are currently booming,

with a great interest from the developer community due to

their potential applications. The most popular application at

present is the action recognition in video surveillance

cameras, which is the focus of this project.

Video action detection is undergoing a great development in

recent years, in which numerous models are emerging that

seek to address this problem in different ways. Some of these

models are limited to study each frame of the video

separately, while other more ambitious models aim not only to

extract information from the frames, but also to study their

evolution over time.

The first approach, that of only extracting information from

the frames, is the simplest and currently the most developed.

This consists of using Computer Vision techniques for image

analysis and applying them to each of the video frames. This

could lead to misunderstanding what action is taking place,

since the model will not be able to extract information from

the movement of the person, but only from his situation in

each frame separately. This makes the model rely heavily on

the environment in which the action is taking place to

determine the action. However, this technique has great

application in other video analysis problems, such as object

detection or person identification.

On the other hand, the second approach mentioned for video

analysis using Computer Vision consists not only in extracting

information from each separate frame, but also how the scene

evolves. This approach to the problem of action detection is

more complete than the previous one, and allows to really

focus on the human action and not so much on the situation in

which the person is in the image.

Two different methods are currently being used when

analyzing videos in this way: a first approach that consists of

pre-processing the images to extract features from them to

later introduce the processed data into a model, and a second

approach that consists of using only Deep Learning with the

raw data, and having the model itself extract the features.

The first approach is to perform pre-processing in the images

to extract some relevant characteristics, and use the new data

to train a neural network. An example of this is the publication

"Real-Time Action Detection in Video Surveillance using

Sub-Action Descriptor with Multi-CNN" [2]. In this case it is

proposed to process each frame to extract from each of them

the position and movement of the person, and then feed a

Convolutional Neural Network with these new processed

frames.

The second method mentioned above makes it possible to use

the raw videos, i.e. without the need to perform any prior

transformation on the input data, thanks to the use of Deep

Learning. To solve the classification problem in this way,

Neural Network structures such as Conv3D are being used,

which allows a spatio-temporal analysis of the videos. This

type of models have been emerging for only 3 years and are

still in the research and development phase. Some of the

models worth mentioning are the Conv + LSTM (which has

been developed in this project), Conv3D, Two-Stream

Networks and Two-Stream Inflated 3D ConvNets. [3]

The use of Deep Learning has made it possible to combine

several types of networks to extract desired features from both

the frames and the temporal component. An example of this is

the possibility of detecting key points of people (their joints)

and studying their evolution over time or even carrying out a

segmentation of the image and extracting the pixels that

correspond to people to later analyze them temporally.

In addition to these Deep Learning algorithms mentioned

above, it is worth mentioning the so-called Optical Flow. This

model aims to know the movement of objects in the image by

studying the "movement" of the pixels that make up the

image, i.e., it is to find in the next frame the pixel values

found in the current frame, and thus compare the initial

position and the next by simply observing their position in

both frames. This can allow not only to know the movement

of objects in a video, but also to predict how these objects will

move in subsequent frames.

In this project, it has been decided to analyze both the frames

and the time sequence because, although it is presented as a

more complex solution, it presents a higher accuracy in videos

with static environments, that is, in those videos that are

recorded from the same camera positioned in the same place,

thus offering a better solution for video surveillance

applications, which is the scope of this project. In addition,

after exploring the two mentioned methods, it has been

decided to make use of Deep Learning, since the previous

extraction of features can bias the decisions of the final model.

Something to have in mind is that the fact that the action to be

detected occurs in video surveillance camera recordings

increases the complexity of the model. This is due to the fact

that it is not possible to use the information provided by the

environment, as will be discussed later. In addition, recordings

from security cameras are usually restricted, so there are not

enough videos available on the Internet for the action to be

detected in this case. It is also to be mentioned that the quality

of these videos is usually very low.

II. METHODOLOGY

The development of this project can be divided into four

successive parts, which make up a Computer Vision pipeline:

• Creation of the dataset.

• Processing of the videos that make up the dataset.

• Design and implementation of a functional model.

• Training analysis.

• Model optimization.

3

The first task of the project is to create a balanced (with a

similar amount of videos of each action to be detected) and

meaningful dataset, in order to provide the model a sufficient

and unbiased amount of data so that it can generalize, and thus

be able to determine the action shown in videos that are not

part of the dataset with which it has been trained.

Before starting the creation of a dataset, it is necessary to

understand those characteristics of the dataset that could lead

to poor results in model training. In addition to the need of a

balanced and meaningful dataset so that all classes are

adequately represented to obtain good prediction results in all

of them, the influence of the environment must be considered

in order to develop a model that is agnostic to it, as in the case

of this project. This need for an environment-agnostic model

is due to the fact that what is intended to be detected are

actions in video surveillance cameras, in which there is no

change of environment, since they are pointing to a fixed

point.

This is opposite to the vast majority of current video action

detection solutions, which rely heavily on the environment to

detect actions, just as the human brain does in many cases.

This problem is presented in the paper "Why Can't I Dance in

the Mall?" [4], which explains that, in a similar way to people,

models that have been trained on actions in different

environments are able to predict the action without actually

looking at the person, but by analyzing the environment. This

effect can be understood in the following images, where the

person performing the action is hidden by a green block, but

nevertheless we know which action is being performed in

each case thanks to the environment:

Figure 1. Images hiding the person

Not being able to support the decision in the environment

increases the complexity of this project considerably, since the

model must be able to fully understand human movements, as

if it were playing a mime game. This means that the model

needs to extract more and more complex characteristics, and

so the algorithm must be more complex and the amount of

data required is greater.

Having this in mind, the first task to be performed to generate

the dataset is to search the Internet for those databases already

created that may be useful for the problem to be solved

(detection of a specific action in video surveillance cameras).

These must be filtered to obtain only those videos of interest,

i.e., those containing scenes of the actions to be detected. In

this case, there are no databases available on the Internet that

contain the desired action, so the search was continued in

public repositories that could contain such videos.

Finally, after a search of several public repositories, videos

were found on YouTube that contained the desired class,

although it is to mention the poor quality of these videos. To

generate the dataset, a code was created to download both

videos and lists of videos from YouTube, which made it

possible to obtain the content quickly and automatically. After

this procedure, a total of 210 videos were obtained.

Once the videos that will compose the dataset are available, it

is necessary to process the data. This consists in choosing the

video section in which the specific action takes place,

discarding the rest of the video to avoid confusing the model.

In addition, the videos must be formatted so that they all have

the same dimensions, since the model requires that all input

data has the same format. For this, the videos must be scaled,

modifying their frame height and width dimensions and the

number of frames in the video. It is also a good practice to

keep the number of frames per second constant, so that the

time shift between each frame is constant in all videos. After

doing some research, 10fps was found to be a good value to be

kept.

Once the videos were formatted, different techniques were

carried out to increase the amount of data available in the

dataset. This is a technique called Data Augmentation. For this

purpose, codes were implemented to generate a mirror mode

of the video (symmetry on vertical axis) and videos with

Gaussian noise. This last form of Data Augmentation was

developed based on the idea of Adversarial Training. With the

implementation of these methods, the dataset size was

increased to a total of 630 videos. These videos were divided

between the training, validation and test sets, with a

proportion of 60% of the videos for training, 20% for

validation and the remaining 20% for testing.

Once the creation of the dataset was completed, the model

design and implementation proceeded. The model designed to

try to predict video actions follows a Conv2D + LSTM

structure. Following this structure, three different models were

created. The first one was designed using the Keras library.

After studying the flexibility provided by the PyTorch library,

it was decided to migrate the model to this framework. The

initial model developed in PyTorch follows the following

structure:

Figure 2. Conv2D + LSTM model architecture

The purpose of this model is to extract features both from the

video frames, which is handled by the convolutional block (in

blue in the image), and from the evolution of these frames

over time, which is handled by the LSTM. It is worth to

mention the use of a 1x1 convolutional layer, which makes it

possible to reduce the number of input channels to the LSTM,

thus drastically reducing the number of parameters of this

layer. This data flow and the different dimensions of the data

as it passes through the model are shown below:

4

Figure 3. Conv2D + LSTM characteristic dimensions

Numerous modifications were made to this initial structure in

order to achieve better results. Some of the most outstanding

modifications are the elimination of most of the Pool layers,

the elimination of the Dropout layers due to their low effect

on the network and the implementation of a convolutional

block that follows a structure based on the residual networks

(ResNet).

Despite these modifications to the architecture and a search

for optimal hyperparameters, it was not possible to avoid

overfitting. This led to the implementation of a third network,

for which Transfer Learning was used. In this case, Transfer

Learning consisted of introducing a pre-trained ResNet18

network as an estimator, so that it extracts the necessary

features from the images and passes them as input to an

LSTM, resulting in a ResNet18 + LSTM model:

Figure 4. ResNet18 + LSTM model architecture

After the creation of the model, and during the iteration on the

hyperparameters of the model, different training optimization

methods were developed, which allowed to reduce the training

times. These developed techniques are hardware acceleration

using GPU and the implementation of Mixed Precission.

The latter method allows training the network with both

float32 and float16 weights while ensuring model stability.

This is achieved by evaluating the size of the weight, and if its

significant figures can be correctly represented in float16, that

data format is used, and otherwise float32 is used. This allows

not only to increase the training speed by reducing the time

required to perform operations with the weights of the

network, but also to reduce the computation requirements,

which makes it a very interesting technique to apply in

Machine Learning models.

Regarding the evaluation of the model, several techniques

were used to know the training status during training and its

subsequent analysis. During training, the accuracy and loss

values after each epoch are shown, as well as the time taken to

complete each epoch in order to understand the impact of the

different optimization methods on the model. As for the a

posteriori training analysis, the precision and loss plots of the

model are generated, which allow to analyze the behavior of

the model and thus to be able to decide which will be the next

modifications in the architecture and in the hyperparameters’

values. In addition, the confusion matrix is analyzed, and

activation maps are generated for each of the layers, which

allows understanding what the functional block is focusing on

when extracting features from the frames.

The analysis of these graphs allows understanding the current

state of the model and how it is behaving, which is essential to

continue with the iterative process of optimizing its

architecture and hyperparameters.

III. RESULTS

The results obtained in this project are not limited to the

results of the model, since in order to obtain them, a complete

Computer Vision pipeline has been developed. That is why in

this section it is also worth mentioning the developments that

have been completed in each of the parts of the pipeline,

which have led to the implementation of a model capable of

extracting features from videos.

First of all, a database has been generated with videos found

on the Internet. For this purpose, not only an exhaustive search

was performed to collect 210 videos of a type of action with

scarce data on the Internet, but also, to speed up the download,

a code was implemented to download both individual videos

and lists from YouTube automatically.

Once all the data was collected, a code was implemented that

allows splitting the videos to extract the frames in which the

action of interest takes place, and that tags the video according

to whether that action appears or not.

Then, having the videos classified, two Data Augmentation

techniques were successfully implemented (mirror mode and

Gaussian noise), which allowed to increase the size of the

dataset by 300%, up to a total of 630 videos. In addition,

functions to format each of the videos were implemented, so

each one of them had the same dimensions, so that they could

all be analyzed by the model to make predictions.

As far as the model is concerned, three different models were

developed. The first model was developed using the Keras

library. This model was eventually discarded, and a migration

was made to PyTorch, where a similar but more complex

model was developed. This Conv2D + LSTM model presents

the following results:

5

Figure 5. Conv2D + LSTM accuracy and loss plots

As can be seen, there is a great deal of overfitting in the model

despite the various techniques that have been implemented to

avoid it. In the quest to reduce this overfitting, Dropout was

introduced, L2 Regularization was implemented, the data

volume was increased (by using the Data Augmentation

techniques mentioned above) and the complexity of the model

was tuned and tested. Since the implementation of these

techniques did not favor the generalization capability, it was

decided to implement Transfer Learning to try to reduce this

overfitting.

This decision to make use of Transfer Learning is what led to

the development of the third and last model implemented in

this project. This model is a ResNet18 + LSTM. In this way,

the convolutional block was replaced by a pre-trained

ResNet18, which allowed to substantially reduce the number

of network parameters to be trained, since the ResNet18 is

used as an estimator, so that it extracts the features from the

frames, but is not trained with such data. The results are

presented next:

Figure 6. ResNet18 + LSTM accuracy and loss plots

As can be seen, despite the fact that the beginning of training

presents higher validation accuracy values, it has not been

possible to avoid the overfitting that was also present in the

previous model. In this model, the same techniques have been

applied as in the previous one to try to avoid this overlearning,

but despite their implementation, the problem has not been

solved.

Even though this problem persists in the results, it is to be

noted that the fact that the model does overfitting indicates

that it is a functional model (it is capable of extracting

features), which is a starting point for further development in

the search for better prediction results. This also shows that

the previous steps developed in the pipeline work correctly,

and allow the model to learn to extract features from the data.

Finally, it is worth mentioning that in addition to all of the

above, this project has successfully developed training

optimization techniques such as hardware acceleration, which

has greatly reduced training times through the use of GPU and

Mixed Precission, which has reduced training times and

computational requirements.

6

IV. CONCLUSIONS

Aiming to automate the process of action recognition in video

surveillance cameras, this project develops a Computer Vision

model. For this purpose, different architectures have been studied

and it has been chosen to implement a Conv2D+LSTM model.

In this project, not only the model has been implemented, but also

a complete Artificial Vision pipeline has been developed, from

data collection for dataset training to model optimization,

including video processing, model architecture design, training

analysis...

When analyzing the results of the model, it can be observed that it

is able to extract features, which indicates that the developed

pipeline works properly. Despite this, it has not been possible to

avoid overfitting in the model, even though numerous techniques

were applied to try to solve this common problem in Machine

Learning models. On the other hand, these results lead us to think

that there may be an error in the data (either in quality, quantity or

in the way of classifying them) or that the model designed is not

suitable for this type of problem, not being able to extract the

adequate features despite the multiple modifications that have been

made to its hyperparameters. This second idea leads to the fact that

in future developments of this project, different network structures

will be proposed in order to face the problem with a different

approach than the current one.

One of the major problems and challenges of this project has been

the creation of the dataset. This is due to the scarcity of data on the

Internet and the impossibility of generating such data. On the other

hand, the quality of the videos available on the Internet is very

low, in many cases not exceeding a quality of 240p. This may have

greatly limited the learning capacity of the model, since, if the data

with which it is trained are not of high quality, neither can its

predictions be of high quality.

The development of Machine Learning algorithms is a complex

and time-consuming task, which is not always successful, but we

must always learn from the previous developments to know what

steps to take next to achieve a successful implementation.

V. REFERENCES

[1] «Historia de las Redes Neuronales,» Itnuevolaredo, [En

línea]. Available:

http://www.itnuevolaredo.edu.mx/takeyas/apuntes/Inteligen

cia%20Artificial/Apuntes/tareas_alumnos/RNA/Redes%20

Neuronales2.pdf.

[2] C.-B. Jin, «Real-Time Action Detection in Video

Surveillance using Sub-Action,» Arxiv, [En línea].

Available:

https://arxiv.org/ftp/arxiv/papers/1710/1710.03383.pdf.

[3] J. C. y. A. Zisserman, «Quo Vadis, Action Recognition? A

New Model and the Kinetics Dataset,» Arxiv, 12 Febrero

2018. [En línea]. Available:

https://arxiv.org/pdf/1705.07750.pdf.

[4] e. a. Jinwoo Choi, «Why Can’t I Dance in the Mall?

Learning to Mitigate Scene Bias in Action Recognition,»

Arxiv, 11 Diciembre 2019. [En línea]. Available:

https://arxiv.org/pdf/1912.05534.pdf

