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Abstract 

There are thousands of millions of video surveillance cameras 

around the world, designed to ensure that the streets or 

premises in which they are installed are safe. Currently, all of 

these cameras require constant monitoring by a person, who 

must ensure that there is no anomalous activity on any of the 

cameras, and therefore that no crime is occurring and no one 

is in danger. Developing a model capable of analyzing what is 

happening in each security camera and drawing conclusions 

from these videos would save millions of euros worldwide, as 

well as getting a machine to do the thankless job of constantly 

monitoring these cameras. This is why there is growing 

interest in achieving a stable model capable of solving this 

problem. 

This project aims precisely at this application of Computer 

Vision: detecting actions in videos from video surveillance 

cameras, which turns the problem into a classification 

problem, in which the model must be able to indicate whether 

the action in question has occurred or not in a video.  

 

I. INTRODUCTION 

Currently, there is a growing interest in developing Artificial 

Intelligence models that facilitate the tasks to be performed by 

humans. The problems whose solution is sought through the 

application of this type of algorithms are becoming 

increasingly larger and more varied, ranging from the 

detection of people and objects in images to the prediction of 

the stock market or the driving of autonomous cars. Although 

it may seem that Artificial Intelligence has just landed in the 

world, this is not so. The first neural network model was 

designed by Frank Rosenblatt more than sixty years ago; more 

specifically in 1957 [1]. This model introduced for the first 

time the Perceptron, which was capable not only of learning, 

but also of generalizing, and is still used today for pattern 

recognition. 

These neural network models have evolved greatly since 

Frank Rosenblatt's first design, giving rise to very different 

architectures that provide solutions to a wide variety of 

problems. This rapid evolution in recent times has been 

favored by the rapid increase in processing capacity, which is 

growing exponentially and is making it possible to develop 

models of great complexity. 

One of the aspects that Artificial Intelligence has adopted is 

Deep Learning, which has meant a paradigm shift, since 

before the appearance of this type of models, it was necessary 

to extract the characteristics of the data before training the 

Artificial Intelligence model, which made the work more 

complex and biased the decision making towards the 

characteristics that the developers considered important. With 

the advent of Deep Learning, it is no longer necessary to 

extract these features, but thanks to the depth of the networks 

(i.e. the number of layers connected to each other), they are 

able to extract these features by themselves, understanding 

which ones are relevant when making predictions.  

Deep Learning models are currently used for multiple 

solutions: predicting future values, classifying input data, 

understanding the content of a text, detecting objects in 

images.... There are many applications, but the one that will be 

discussed in depth in this paper is called Computer Vision. 

This consists in the creation of models capable of analyzing 

images and extracting information from them. There is a lot of 

different information that can be extracted from an image, and 

that is why there are different families of Computer Vision 

algorithms. The main applications or families of models are 

the following: 

• Image Classification: the goal of this type of models is 

to classify an image according to its content. 

• Object detection: it consists of detecting certain objects 

and locating them in the image. For this purpose, boxes 

called "bounding boxes" are placed over the objects to 

specify their position. 

• Image segmentation: this use case is similar to the 

previous one, but in this case, it is intended to specify 

to which object each pixel of the image corresponds. 

• Key point detection: consists of detecting characteristic 

points in an image. This technique is used for facial 

recognition and to detect the posture of people, since it 

is possible to locate the location of the joints in the 

image. 
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Although the most developed application of Computer Vision 

so far is image analysis, it is not limited only to this task, but 

also aims to analyze videos.  

The analysis of videos by means of Computer Vision 

techniques presents a complex but interesting solution to 

many problems that man must currently solve without the help 

of machines. This type of techniques are currently booming, 

with a great interest from the developer community due to 

their potential applications. The most popular application at 

present is the action recognition in video surveillance 

cameras, which is the focus of this project. 

Video action detection is undergoing a great development in 

recent years, in which numerous models are emerging that 

seek to address this problem in different ways. Some of these 

models are limited to study each frame of the video 

separately, while other more ambitious models aim not only to 

extract information from the frames, but also to study their 

evolution over time. 

The first approach, that of only extracting information from 

the frames, is the simplest and currently the most developed. 

This consists of using Computer Vision techniques for image 

analysis and applying them to each of the video frames. This 

could lead to misunderstanding what action is taking place, 

since the model will not be able to extract information from 

the movement of the person, but only from his situation in 

each frame separately. This makes the model rely heavily on 

the environment in which the action is taking place to 

determine the action. However, this technique has great 

application in other video analysis problems, such as object 

detection or person identification. 

On the other hand, the second approach mentioned for video 

analysis using Computer Vision consists not only in extracting 

information from each separate frame, but also how the scene 

evolves. This approach to the problem of action detection is 

more complete than the previous one, and allows to really 

focus on the human action and not so much on the situation in 

which the person is in the image. 

Two different methods are currently being used when 

analyzing videos in this way: a first approach that consists of 

pre-processing the images to extract features from them to 

later introduce the processed data into a model, and a second 

approach that consists of using only Deep Learning with the 

raw data, and having the model itself extract the features. 

The first approach is to perform pre-processing in the images 

to extract some relevant characteristics, and use the new data 

to train a neural network. An example of this is the publication 

"Real-Time Action Detection in Video Surveillance using 

Sub-Action Descriptor with Multi-CNN" [2]. In this case it is 

proposed to process each frame to extract from each of them 

the position and movement of the person, and then feed a 

Convolutional Neural Network with these new processed 

frames. 

The second method mentioned above makes it possible to use 

the raw videos, i.e. without the need to perform any prior 

transformation on the input data, thanks to the use of Deep 

Learning. To solve the classification problem in this way, 

Neural Network structures such as Conv3D are being used, 

which allows a spatio-temporal analysis of the videos. This 

type of models have been emerging for only 3 years and are 

still in the research and development phase. Some of the 

models worth mentioning are the Conv + LSTM (which has 

been developed in this project), Conv3D, Two-Stream 

Networks and Two-Stream Inflated 3D ConvNets. [3] 

The use of Deep Learning has made it possible to combine 

several types of networks to extract desired features from both 

the frames and the temporal component. An example of this is 

the possibility of detecting key points of people (their joints) 

and studying their evolution over time or even carrying out a 

segmentation of the image and extracting the pixels that 

correspond to people to later analyze them temporally.  

In addition to these Deep Learning algorithms mentioned 

above, it is worth mentioning the so-called Optical Flow. This 

model aims to know the movement of objects in the image by 

studying the "movement" of the pixels that make up the 

image, i.e., it is to find in the next frame the pixel values 

found in the current frame, and thus compare the initial 

position and the next by simply observing their position in 

both frames. This can allow not only to know the movement 

of objects in a video, but also to predict how these objects will 

move in subsequent frames. 

In this project, it has been decided to analyze both the frames 

and the time sequence because, although it is presented as a 

more complex solution, it presents a higher accuracy in videos 

with static environments, that is, in those videos that are 

recorded from the same camera positioned in the same place, 

thus offering a better solution for video surveillance 

applications, which is the scope of this project. In addition, 

after exploring the two mentioned methods, it has been 

decided to make use of Deep Learning, since the previous 

extraction of features can bias the decisions of the final model. 

Something to have in mind is that the fact that the action to be 

detected occurs in video surveillance camera recordings 

increases the complexity of the model. This is due to the fact 

that it is not possible to use the information provided by the 

environment, as will be discussed later. In addition, recordings 

from security cameras are usually restricted, so there are not 

enough videos available on the Internet for the action to be 

detected in this case. It is also to be mentioned that the quality 

of these videos is usually very low. 

 

II. METHODOLOGY 

The development of this project can be divided into four 

successive parts, which make up a Computer Vision pipeline: 

• Creation of the dataset. 

• Processing of the videos that make up the dataset. 

• Design and implementation of a functional model. 

• Training analysis. 

• Model optimization. 
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The first task of the project is to create a balanced (with a 

similar amount of videos of each action to be detected) and 

meaningful dataset, in order to provide the model a sufficient 

and unbiased amount of data so that it can generalize, and thus 

be able to determine the action shown in videos that are not 

part of the dataset with which it has been trained.  

Before starting the creation of a dataset, it is necessary to 

understand those characteristics of the dataset that could lead 

to poor results in model training. In addition to the need of a 

balanced and meaningful dataset so that all classes are 

adequately represented to obtain good prediction results in all 

of them, the influence of the environment must be considered 

in order to develop a model that is agnostic to it, as in the case 

of this project. This need for an environment-agnostic model 

is due to the fact that what is intended to be detected are 

actions in video surveillance cameras, in which there is no 

change of environment, since they are pointing to a fixed 

point. 

This is opposite to the vast majority of current video action 

detection solutions, which rely heavily on the environment to 

detect actions, just as the human brain does in many cases. 

This problem is presented in the paper "Why Can't I Dance in 

the Mall?" [4], which explains that, in a similar way to people, 

models that have been trained on actions in different 

environments are able to predict the action without actually 

looking at the person, but by analyzing the environment. This 

effect can be understood in the following images, where the 

person performing the action is hidden by a green block, but 

nevertheless we know which action is being performed in 

each case thanks to the environment: 

 

         

Figure 1. Images hiding the person 

Not being able to support the decision in the environment 

increases the complexity of this project considerably, since the 

model must be able to fully understand human movements, as 

if it were playing a mime game. This means that the model 

needs to extract more and more complex characteristics, and 

so the algorithm must be more complex and the amount of 

data required is greater. 

Having this in mind, the first task to be performed to generate 

the dataset is to search the Internet for those databases already 

created that may be useful for the problem to be solved 

(detection of a specific action in video surveillance cameras). 

These must be filtered to obtain only those videos of interest, 

i.e., those containing scenes of the actions to be detected. In 

this case, there are no databases available on the Internet that 

contain the desired action, so the search was continued in 

public repositories that could contain such videos. 

Finally, after a search of several public repositories, videos 

were found on YouTube that contained the desired class, 

although it is to mention the poor quality of these videos. To 

generate the dataset, a code was created to download both 

videos and lists of videos from YouTube, which made it 

possible to obtain the content quickly and automatically. After 

this procedure, a total of 210 videos were obtained. 

Once the videos that will compose the dataset are available, it 

is necessary to process the data. This consists in choosing the 

video section in which the specific action takes place, 

discarding the rest of the video to avoid confusing the model. 

In addition, the videos must be formatted so that they all have 

the same dimensions, since the model requires that all input 

data has the same format. For this, the videos must be scaled, 

modifying their frame height and width dimensions and the 

number of frames in the video. It is also a good practice to 

keep the number of frames per second constant, so that the 

time shift between each frame is constant in all videos. After 

doing some research, 10fps was found to be a good value to be 

kept. 

Once the videos were formatted, different techniques were 

carried out to increase the amount of data available in the 

dataset. This is a technique called Data Augmentation. For this 

purpose, codes were implemented to generate a mirror mode 

of the video (symmetry on vertical axis) and videos with 

Gaussian noise. This last form of Data Augmentation was 

developed based on the idea of Adversarial Training. With the 

implementation of these methods, the dataset size was 

increased to a total of 630 videos. These videos were divided 

between the training, validation and test sets, with a 

proportion of 60% of the videos for training, 20% for 

validation and the remaining 20% for testing. 

Once the creation of the dataset was completed, the model 

design and implementation proceeded. The model designed to 

try to predict video actions follows a Conv2D + LSTM 

structure. Following this structure, three different models were 

created. The first one was designed using the Keras library. 

After studying the flexibility provided by the PyTorch library, 

it was decided to migrate the model to this framework. The 

initial model developed in PyTorch follows the following 

structure: 

 

 

Figure 2. Conv2D + LSTM model architecture 

The purpose of this model is to extract features both from the 

video frames, which is handled by the convolutional block (in 

blue in the image), and from the evolution of these frames 

over time, which is handled by the LSTM. It is worth to 

mention the use of a 1x1 convolutional layer, which makes it 

possible to reduce the number of input channels to the LSTM, 

thus drastically reducing the number of parameters of this 

layer. This data flow and the different dimensions of the data 

as it passes through the model are shown below: 
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Figure 3. Conv2D + LSTM characteristic dimensions 

Numerous modifications were made to this initial structure in 

order to achieve better results. Some of the most outstanding 

modifications are the elimination of most of the Pool layers, 

the elimination of the Dropout layers due to their low effect 

on the network and the implementation of a convolutional 

block that follows a structure based on the residual networks 

(ResNet). 

Despite these modifications to the architecture and a search 

for optimal hyperparameters, it was not possible to avoid 

overfitting. This led to the implementation of a third network, 

for which Transfer Learning was used. In this case, Transfer 

Learning consisted of introducing a pre-trained ResNet18 

network as an estimator, so that it extracts the necessary 

features from the images and passes them as input to an 

LSTM, resulting in a ResNet18 + LSTM model: 

 

 

Figure 4. ResNet18 + LSTM model architecture 

After the creation of the model, and during the iteration on the 

hyperparameters of the model, different training optimization 

methods were developed, which allowed to reduce the training 

times. These developed techniques are hardware acceleration 

using GPU and the implementation of Mixed Precission. 

The latter method allows training the network with both 

float32 and float16 weights while ensuring model stability. 

This is achieved by evaluating the size of the weight, and if its 

significant figures can be correctly represented in float16, that 

data format is used, and otherwise float32 is used. This allows 

not only to increase the training speed by reducing the time 

required to perform operations with the weights of the 

network, but also to reduce the computation requirements, 

which makes it a very interesting technique to apply in 

Machine Learning models. 

Regarding the evaluation of the model, several techniques 

were used to know the training status during training and its 

subsequent analysis. During training, the accuracy and loss 

values after each epoch are shown, as well as the time taken to 

complete each epoch in order to understand the impact of the 

different optimization methods on the model. As for the a 

posteriori training analysis, the precision and loss plots of the 

model are generated, which allow to analyze the behavior of 

the model and thus to be able to decide which will be the next 

modifications in the architecture and in the hyperparameters’ 

values. In addition, the confusion matrix is analyzed, and 

activation maps are generated for each of the layers, which 

allows understanding what the functional block is focusing on 

when extracting features from the frames. 

The analysis of these graphs allows understanding the current 

state of the model and how it is behaving, which is essential to 

continue with the iterative process of optimizing its 

architecture and hyperparameters. 

 

III. RESULTS 

The results obtained in this project are not limited to the 

results of the model, since in order to obtain them, a complete 

Computer Vision pipeline has been developed. That is why in 

this section it is also worth mentioning the developments that 

have been completed in each of the parts of the pipeline, 

which have led to the implementation of a model capable of 

extracting features from videos. 

First of all, a database has been generated with videos found 

on the Internet. For this purpose, not only an exhaustive search 

was performed to collect 210 videos of a type of action with 

scarce data on the Internet, but also, to speed up the download, 

a code was implemented to download both individual videos 

and lists from YouTube automatically. 

Once all the data was collected, a code was implemented that 

allows splitting the videos to extract the frames in which the 

action of interest takes place, and that tags the video according 

to whether that action appears or not. 

Then, having the videos classified, two Data Augmentation 

techniques were successfully implemented (mirror mode and 

Gaussian noise), which allowed to increase the size of the 

dataset by 300%, up to a total of 630 videos. In addition, 

functions to format each of the videos were implemented, so 

each one of them had the same dimensions, so that they could 

all be analyzed by the model to make predictions. 

As far as the model is concerned, three different models were 

developed. The first model was developed using the Keras 

library. This model was eventually discarded, and a migration 

was made to PyTorch, where a similar but more complex 

model was developed. This Conv2D + LSTM model presents 

the following results: 
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Figure 5. Conv2D + LSTM accuracy and loss plots 

As can be seen, there is a great deal of overfitting in the model 

despite the various techniques that have been implemented to 

avoid it. In the quest to reduce this overfitting, Dropout was 

introduced, L2 Regularization was implemented, the data 

volume was increased (by using the Data Augmentation 

techniques mentioned above) and the complexity of the model 

was tuned and tested. Since the implementation of these 

techniques did not favor the generalization capability, it was 

decided to implement Transfer Learning to try to reduce this 

overfitting. 

This decision to make use of Transfer Learning is what led to 

the development of the third and last model implemented in 

this project. This model is a ResNet18 + LSTM. In this way, 

the convolutional block was replaced by a pre-trained 

ResNet18, which allowed to substantially reduce the number 

of network parameters to be trained, since the ResNet18 is 

used as an estimator, so that it extracts the features from the 

frames, but is not trained with such data. The results are 

presented next: 

 

Figure 6. ResNet18 + LSTM accuracy and loss plots 

As can be seen, despite the fact that the beginning of training 

presents higher validation accuracy values, it has not been 

possible to avoid the overfitting that was also present in the 

previous model. In this model, the same techniques have been 

applied as in the previous one to try to avoid this overlearning, 

but despite their implementation, the problem has not been 

solved. 

Even though this problem persists in the results, it is to be 

noted that the fact that the model does overfitting indicates 

that it is a functional model (it is capable of extracting 

features), which is a starting point for further development in 

the search for better prediction results. This also shows that 

the previous steps developed in the pipeline work correctly, 

and allow the model to learn to extract features from the data. 

Finally, it is worth mentioning that in addition to all of the 

above, this project has successfully developed training 

optimization techniques such as hardware acceleration, which 

has greatly reduced training times through the use of GPU and 

Mixed Precission, which has reduced training times and 

computational requirements. 
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IV. CONCLUSIONS 

Aiming to automate the process of action recognition in video 

surveillance cameras, this project develops a Computer Vision 

model. For this purpose, different architectures have been studied 

and it has been chosen to implement a Conv2D+LSTM model. 

In this project, not only the model has been implemented, but also 

a complete Artificial Vision pipeline has been developed, from 

data collection for dataset training to model optimization, 

including video processing, model architecture design, training 

analysis... 

When analyzing the results of the model, it can be observed that it 

is able to extract features, which indicates that the developed 

pipeline works properly. Despite this, it has not been possible to 

avoid overfitting in the model, even though numerous techniques 

were applied to try to solve this common problem in Machine 

Learning models. On the other hand, these results lead us to think 

that there may be an error in the data (either in quality, quantity or 

in the way of classifying them) or that the model designed is not 

suitable for this type of problem, not being able to extract the 

adequate features despite the multiple modifications that have been 

made to its hyperparameters. This second idea leads to the fact that 

in future developments of this project, different network structures 

will be proposed in order to face the problem with a different 

approach than the current one. 

One of the major problems and challenges of this project has been 

the creation of the dataset. This is due to the scarcity of data on the 

Internet and the impossibility of generating such data. On the other 

hand, the quality of the videos available on the Internet is very 

low, in many cases not exceeding a quality of 240p. This may have 

greatly limited the learning capacity of the model, since, if the data 

with which it is trained are not of high quality, neither can its 

predictions be of high quality.  

The development of Machine Learning algorithms is a complex 

and time-consuming task, which is not always successful, but we 

must always learn from the previous developments to know what 

steps to take next to achieve a successful implementation. 
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