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Abstract 

The development of new technologies in recent years has 

brought with it a high level of progress in areas such as 

robotics. In turn, the growing interest in increasingly 

flexible and robust algorithms has led to the emergence of 

new types of artificial intelligence techniques, including, 

among others, object detection models. Despite these 

advancements, the use of robotic arms currently found in 

logistics and manufacturing centers is still limited by the 

type of gripper they are equipped with, thus restricting 

their gripping capabilities.  

This project seeks to explore different solutions to this 

problem by developing an algorithm to overcome this 

limitation. Thus, by using color and depth cameras, in 

combination with traditional and artificial vision 

algorithms, it is intended to provide an ambidextrous robot 

with the ability to grasp any of the different types of parts 

found in a specific set of automotive components. These 

grips can be carried out by means of a parallel or suction 

cup type gripper, depending on the morphological 

characteristics and texture of the part to be gripped. As a 

result, the gripping capacity of the robotic arm is 

enhanced, providing it with the flexibility to perform 

grasping operations without being limited by a particular 

type of gripper. 
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I. INTRODUCTION 

Using a robotic arm capable of providing a sufficiently 

robust grip for a wide variety of objects is currently a major 

challenge present in a multitude of domains, ranging from 

online retail logistics to manufacturing processes. One of 

the existing limitations is the difficulty in making a single 

type of gripper capable of grasping objects with disparate 

geometries and textures in a sufficiently robust manner, 

leading to the need for multiple types of grippers depending 

on their application. 

 

Figure 1. Setup of the YuMi robot in the laboratory at 

ICAI’s Institute for Research in Technology. 

Thus, this project seeks to explore different ways to solve 

this problem and will be carried out in collaboration with 

the Institute of Technological Research of the Universidad 

Pontificia Comillas (ICAI). To this end, the project seeks to 

combine disciplines such as robotics and artificial vision to 

find an algorithm that allows a robotic arm to pick up any 

part of a set of automotive components, using a single 

gripper (also known as universal picking). This process will 

be carried out through a set of techniques ranging from 
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computer vision to the use of depth imaging.  

To achieve this goal, the configuration shown in Figure 1 is 

arranged. The robot used will be an ABB YuMi - IRB 

14000, in front of which there is a work surface on which 

the different parts to be grasped will be positioned. The 

detection of these parts will be carried out through an RGB-

D camera capable of providing both a color image (RGB) 

and a depth map (Depth) that will allow the measurement of 

the distance from its sensor to each point in the scene. 

 

Figure 2. Information flow throughout the project. 

The flow of information throughout the project is as shown 

in Figure 2. Using the RGB and depth images captured by 

the camera, the aim is to detect and extract the target part, 

on which a gripping proposal will be calculated – either by 

means of a parallel gripper or by means of a suction cup. 

This grasping proposal will finally be sent to the YuMi 

robot, which will be responsible for executing it and 

grasping the part. It is important to mention that the third 

stage of the information flow will explore the possibility of 

using the Dex-Net GQ-CNN [3] to compute a grasp on an 

already detected part. 

The set of parts to be used in the project is known and 

already fixed, and is made up of different automotive 

components that are regularly handled in an industrial 

environment. Hence, the development context of the project 

will revolve around the feasibility of applying the solution 

found in such an environment, which will impose working 

conditions such as light changes or a limited number of part 

types. 

 

II. SOLUTION 

The flow of information throughout the project previously 

shown in Figure 2 consists of three different phases: 

capturing the RGB-D image through a depth camera, 

detecting and capturing the target part, and calculating the 

proposed grip on it. 

 

A. RGB-D image capture 

The RGB-D cameras available are the D435 [1] and L515 

[2] models from Intel’s RealSense line. Both cameras will 

undergo a calibration method that will make it possible to 

approximate their respective intrinsic parameters in order to 

eliminate the different types of distortions that their images 

may suffer [6]. In addition, given that the former uses 

stereoscopic vision as a method of measuring the depth of 

the scene – compared to the LiDAR technology of the latter 

– a quality analysis of the depth image provided by each of 

them will be conducted. 

Upon completion of this analysis, it is concluded that the 

depth image provided by the LiDAR L515 model is superior 

to that of the D435 model, offering an actual accuracy of 

fewer than 3 millimeters compared to the 10 millimeters of 

its competitor. It is also observed that, despite the post-

processing filters used to improve the quality of the depth 

image in both cameras, the LiDAR model shows much 

fewer fluctuations in the depth images produced between 

shots than its stereoscopic analog. The L515 model is 

therefore chosen as the main RGB-D camera to be used 

throughout the project. 

 

B. Extraction of the target piece 

Throughout the project, various techniques oriented to 

image object detection and extraction are explored using the 

Python OpenCV library [4]: depth segmentation, 

background subtraction, and object detection using 

convolutional neural networks (YOLOv3) [5]. 

The depth segmentation method is the most straightforward 

of the three and consists of extracting from the image 

everything whose distance to the camera (positioned as 

indicated in Figure 1) is less than the distance to the 

workbench. Background subtraction, on the other hand, 

compares an image where the parts appear on the 

workbench with another image where the workbench is 

empty. This way, the difference between the two images 

provides a mask capable of locating the one thing that 

changes between the two shots – i.e., the workpieces. 

Although these two methods provide adequate results under 

controlled laboratory conditions, both have major 

limitations that make their use in an industrial environment 

unfeasible – such as low robustness to changes in lighting 

conditions or low accuracy. 

Consequently, it is decided to explore the possibility of 

using object detection algorithms such as YOLOv3. For this 

purpose, a custom dataset consisting of the 46 available car 

components will be created and will then be used to train 

one specific model for each type of component of the set – 

thus only being able to detect said type of component. Since 

the types of components to be detected will be a known 

parameter beforehand, this approach allows to reduce the 

number of false positives that may appear, compared to 

using a single model capable of detecting any type of 
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component. 

The masks obtained by each of these three methods are 

shown in Figure 3. While the quality of the background 

subtraction mask is highly detailed compared to depth 

segmentation, the slightest change of the background with 

respect to the original background image used by the 

algorithm is capable of completely invalidating any 

detection capability. On the other hand, it should be noted 

that YOLO, despite offering a bounding box instead of a 

detailed mask around the part, makes it possible to detect 

the part itself, and not a change in the image conditions, as 

is the case with the other two methods. Additionally, in 

order to obtain a more detailed mask out of the YOLO 

detections, depth segmentation is performed on the crop of 

its bounding box. 

 

Figure 3. Comparison of the output masks after the 

implementation of depth segmentation, background 

subtraction, and YOLO methods. 

 

C. Calculation of grip proposals 

Since the YuMi robot has two different arms, the possibility 

of using two types of grippers to grasp parts according to 

their morphology and texture is explored: using a parallel 

gripper on parallelepiped-type parts, and using a suction cup 

for parts with flat surfaces. 

Given a depth image of the scene and a binary mask of the 

target part, we explore the possibility of implementing the 

Dex-Net GQ-CNN [3] on the parts of the custom dataset. 

However, as shown in Figure 4, due to an obtained 

confidence score lower than 5% for most of the proposed 

grips, as well as the fact that these grips are always 

perpendicular to the work plane and not to the part itself, its 

use is discarded and it is decided to develop a custom 

algorithm for each type of tool available – parallel and 

suction cup. 

 

Figure 4. Parallel grip proposals offered by Dex-Net 

(right) given a mask of the part (in red, left) and a depth 

image.  

Parallel gripping is performed perpendicular to the working 

surface. Using a cutout from the YOLO bounding box, edge 

detection is used to find the contours of the relevant 

workpiece. This way, by taking the center of the cutout and 

its depth measurement as the terminal grip point (𝑥, 𝑦, 𝑧)𝑇𝑃, 

and knowing that the part is a parallelepiped, it is possible 

to use the contours to calculate the orientation 𝜃𝑇𝑃 with 

which the gripper should be closed. This process is 

schematized in Figure 5.  

 

Figure 5. Calculation process of the orientation of the 

parallel grip. 

Suction cup gripping, while following the same operating 

principle as parallel gripping, offers some additional 

challenges. As in parallel gripping, the starting point is a 

cutout according to YOLO’s bounding box – however, the 

cropping is also performed on the depth image in this case. 
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Depth segmentation is then performed on this crop so as to 

obtain a mask of the target piece, whose centroid can be 

calculated, thus obtaining the point of contact (𝑥, 𝑦, 𝑧)𝑇𝑃 of 

the suction cup on the upper surface of the piece, as shown 

in Figure 6. 

 

Figure 6. Calculation of the terminal point for the suction 

cup grip. 

Lastly, in order to offer a more flexible solution that allows 

the use of the suction cup on tilted surfaces, the 

implementation of the RANSAC algorithm for the detection 

of oblique planes is carried out. In this way, the calculation 

of the orientation of the terminal point of the robotic arm is 

equivalent to that of the normal vector to the plane of the 

detected part, as shown in Figure 7.  

 

Figure 7. Horizontal and tilted plane detection through the 

RANSAC algorithm. 

As a result, an algorithm capable of proposing both parallel 

grips and suction cup grips – even on angled pieces – is 

obtained. 

 

III. RESULTS 

Throughout this project, different types of algorithms that 

allow to detect and extract a target piece given an RGB 

image and a depth image have been analyzed.  

While the depth segmentation method is robust to the 

environmental changes that may occur in an industrial 

environment, the quality of the mask provided was not 

sufficient to allow for the calculation of a quality grasp. 

Depth subtraction, while providing a clear and quality 

mask, is a technique that is severely affected by both light 

fluctuations and changes in the working table, causing it to 

suffer from a level of robustness that is far too low for 

industrial environments. Furthermore, both techniques are 

based on the fixed detection of parts, without being able to 

actually identify them. In addition, the possibility of 

implementing Dex-Net’s GQ-CNN on the custom dataset 

is ruled out due to excessively low confidence scores on the 

calculated grips, as well as the restriction of the grips to an 

orientation normal to the working plane. 

This problem is overcome by using the YOLO algorithm, 

which is able to detect, locate and identify the part to be 

grasped – making it much more robust to changes in its 

environment compared to the two previous masking 

methods. Hence, by combining the YOLO detections with 

edge and plane detection techniques (see Figure 8), an 

algorithm capable of gripping any part from the available 

set of parts – either by means of a parallel gripper or a 

suction cup – is achieved, even for planes not parallel to the 

working surface.  

 

Figure 8. Comparison of the results obtained using the 

different gripping options (parallel and suction cup)  
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IV. CONCLUSIONS 

As mentioned in the previous section, the results obtained 

in this project offer the possibility to calculate parallel and 

suction cup grips in a flexible way depending on the 

location and type of the part.  

Thus, the following conclusions can be drawn: 

▪ Traditional algorithms such as depth segmentation 

and background subtraction, although adequate in 

laboratory conditions, are not suitable for use in 

industrial environments due to their low robustness. 

▪ The creation of a proprietary ad-hoc dataset for a 

specific project is a time-consuming and resource-

intensive task, which can present a barrier to entry for 

the application of artificial intelligence algorithms.  

▪ The use of object detection algorithms such as 

YOLOv3, once the dataset barrier is overcome, offers 

a level of flexibility and robustness that leads to very 

satisfactory results, easily transferable to an industrial 

environment.  

▪ While plane detection using RANSAC provides good 

results in laboratory conditions, its application on 

containers of pieces in an industrial environment, 

where these are chaotically stacked and interlocked 

with each other, may not be sufficient. 
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