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Indices 
 

Symbol Interpretation 

c  contract; 
g  generating unit; 

h  hydro unit; 

i  agent; firm; 

j  component of a vector; 
agent; firm; 

k  scenario; possible realization of an uncertain factor; 

l  vertex of the set of possible solutions of a linear program; 
element of the set of accumulated iterations; 

n  hour; hourly auction; 

m  
stage of a multistage decision process; 

market mechanism; 

o  option; 
p  period of time (day); 

t  thermal unit; 

ν  hour in which a thermal unit remains offline; 
current iteration of an algorithm; 
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Sets 
 

Symbol Interpretation 
DC  contracts for differences; 
PC  physical contracts; 

H  hydro units; 

J  
segments used to approximate a curve; 

components of a vector; 

K  possible realizations of an uncertain factor; 

M  market mechanisms; 
EM  market mechanisms in which energy is traded; 
RM  market mechanisms in which reserve is traded; 

N  hourly auctions; 
PO  options that are physically settled; 
FO  options that are financially settled; 
LPPO  long put positions that are physically settled; 
LPFO  long put positions that are financially settled; 
SCPO  short call positions that are physically settled; 
SCFO  short call positions that are financially settled; 

P  periods (days); 

Pm
nk  constraints affecting the value of option o  in the n -th hour if market 

situation k  occurs; 
Qg  feasible schedules for generating unit t ; 
Qm

n  feasible outputs for the n -th hourly auction of the m -th market mechanism; 

Qm
nk  feasible outputs for the n -th hourly auction of the m -th market mechanism 

if market situation k  occurs; 

S  supply functions 

T  thermal units; 

Um
nk  constraints affecting the exercise of option o  in the n -th hour if market 

situation k  occurs; 
OV  optimality cuts; 
FV  feasibility cuts; 

X  feasible values for the vector of variables x ; 

Λ  vertices of the set of possible solutions of a linear program; 
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Parameters 
 

Symbol Interpretation 
,A B  matrices of coefficients; 

b  vector of parameters; 

c  vector of costs; 

e  vector of 1’s; 

tf  variable fuel cost of thermal unit t , in €/Tcal; 

h
ni  net inflows received by the reservoir corresponding to hydro unit h  in hour 

n , in MWh; 

gk  self-consumption coefficient of generating unit g , in p.u.; 

tl  ramp-rate limit of thermal unit t , in MW/h; 
qM  a large quantity; 
pM  a large price; 

to  variable O&M cost of thermal unit t , in €/MWh; 

jp  j -th element of a vector of J  prices; 
c
np  exercise price of contract c  in hour n , in €/MWh; 
o
np  exercise price of option o  in hour n , in €/MWh; 

m
nkQ  volume of energy traded in the n -th hourly auction of the m -th market 

mechanism if market situation k  occurs, in MWh; 

lm
nkq  energy sold by the company in the n -th hourly auction of the m -th market 

mechanism in iteration l  if market situation k  occurs, in MWh; 
c
nq  amount of energy involved in contract c  in hour n , in MWh; 
o
nq  amount of energy involved in option o  in hour n , in MWh; 

g
q , gq  minimum and maximum gross output of generating unit g , in MW; 

ts  start-up cost of thermal unit t , in €/startup; 

hw , hw  minimum and maximum storage level of the reservoir corresponding to hydro 
unit h , in MWh; 

0hW  available energy in the reservoir corresponding to hydro unit h  at the 
beginning of the planning horizon, in MWh; 

tα  linear term of the heat rate function of thermal unit t , in Tcal/MWh; 

tβ  intercept of the heat rate function of thermal unit t , in Tcal; 

γ  Penalizing coefficient, in €/MWh; 

jδ  slope of the residual demand curve in its j -th segment; 

jρ  slope of the revenue function in its j -th segment; 

kπ  probability of scenario k ; 

tν  minimum number of hours that unit t  must remain online, in h; 



xx Notation 

 

 
 

Symbol Interpretation 

hη  Performance of the pump-turbine cycle of hydro unit h , in p.u.; 
lθ  value of the recourse function in iteration l  of Benders’ algorithm, in €; 
lϕ  value of the feasibility function in iteration l  of Benders’ algorithm; 

lλ  
value of the dual variables of the optimality subproblem in iteration l  of 
Benders’ algorithm; 
value of the Lagrange multipliers in iteration l ; 

lµ  value of the Lagrange multipliers in iteration l ; 

lσ  value of the dual variables of the feasibility problem in iteration l  of Benders’ 
algorithm; 

m
nσ  value of the company’s market share in the n -th hourly auction of the m -th 

market mechanism, in € per unit; 
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Variables 
 

Symbol Interpretation 
B , iB  benefit, in €; benefit obtained by agent i , in €; 

h
nkb  energy pumped by hydro unit h  in hour n  if market situation k  occurs, in 

MWh; 
q  quantity; 
p  price; 

nkp  spot price of electricity in hour n  if market situation k  occurs, in €/MWh; 
o
nkp  value of option o  in hour n  if market situation k  occurs, in €/MWh; 

m
nkp  clearing price for the n -th hourly auction of the m -th market mechanism if 

market situation k  occurs, in €/MWh; 
g
nkq  net energy produced by generating unit g  in hour n  if market situation k  

occurs, in MWh; 

m
nkq  energy sold by the company g  in the n -th hourly auction of the m -th 

market mechanism if market situation k  occurs, in MWh; 

r  revenue, in €; 

g
nkr  amount of reserve provided by generating unit g  in hour n  if market 

situation k  occurs, in MW; 

h
nks  energy spilt from the reservoir corresponding to hydro unit h  in hour n  if 

market situation k  occurs, in MWh; 

t  independent variable; 

m
jnku  

binary variable indicating that the j -th element of the residual demand curve 
has been reached in the n -th hourly auction of the m -th market mechanism 
if market situation k  occurs; 

o
nku  exercise decision for option o  in hour n  if market situation k  occurs; 
t
nku  commitment state of thermal unit t  in hour n  if market situation k  occurs; 
+v , −v  vectors of slack variables; 

m
jnkv  

incremental quantity corresponding to the j -th element of the residual 
demand curve in the n -th hourly auction of the m -th market mechanism if 
market situation k  occurs, in MWh; 

h
nkw  energy stored in the reservoir corresponding to hydro unit h  at the end of 

hour n  if market situation k  occurs, in MWh; 

m
nkkx ′  

binary variable indicating the relative position of two possible residual 
demand realizations, k  and k ′ , in the n -th hourly auction of the m -th 
market mechanism; 

x ,y  vectors of variables; 
t
nky  start-up decision for thermal unit t  in hour n  if market situation k  occurs; 

z  approximate value of the dual function, in €; 
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Symbol Interpretation 

t
nkz  shut-down decision for thermal unit t  in hour n  if market situation k  

occurs; 

σ  vector of dual variables corresponding to the feasibility problem; 

λ  vector of dual variables corresponding to the optimality subproblem; 
vector of Lagrange multiplers; 

µ  vector of Lagrange multiplers; 

θ  value of the recourse function, in €; 

 



Notation xxiii 

 

Functions 
 

Symbol Interpretation 
( )c q , ( )ic q  cost function, in €; cost function for agent i , in €; 

( )c q′ , ( )ic q′  marginal cost function, in €/MWh; cost function for agent i , in €/MWh; 

( ), ,t t t t
nkc q u y  operating costs of thermal unit t  in hour n  if market situation k  occurs, in 

€; 
( )D p  demand function; 

( )f x  objective function or part of the objective function; 
( )h x  vector of equality constraints ( )= 0 ; 
( )g x  vector of inequality constraints ( )≤ 0 ; 
( , , )x λ µL  Lagrange function; 

( )m m
nk nkp q  inverse residual demand function for the n -th hourly auction of the m -th 

market mechanism if market situation k  occurs, in €/MWh; 
( )p t , ( )q t  parametric equations used to represent an offer curve; 
( )r q  revenue function, in €; 
( )R p  residual demand function; 

( )1R p− , ( )p q  inverse residual demand function; 

( )m m
nk nkr q  revenue function for the n -th hourly auction of the m -th market mechanism 

if market situation k  occurs, in €; 
( )S p  supply function; 
( , )w λ µ  dual function; 
( , )q pψ  market distribution function; 
( )θ x  recourse function; 

( )θ x  approximation of the recourse function by an outer linearization; 
( )ϕ x  feasibility function; 
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Acronyms 
 

Symbol Interpretation 

AGC automatic generation control; 

APX Automated Power Exchange; Amsterdam Power Exchange; 

CAISO California Independent System Operator; 

CALPX California Power Exchange; 

CAMMESA Compañía Administradora del Mercado Mayorista de Electricidad (Marker 
Operator, Argentina); 

CCGT combined-cycle gas turbine; 

CDEC Centro de Despacho Económico de Cargas (Load Dispatch Center, Chile); 

CfDs contract for differences; 

CSF conjectured supply functions; 

CV conjectural variation; 

DCR demand curve for release; 

DCS demand curve for water in storage; 

DP dynamic programming; 

DSP dual of the subproblem; 

DSPF dual of the feasibility problem; 

E&W England and Wales; 

ECNZ Electricity Corporation of New Zealand; 

EEX European Energy Exchange (Frankfurt); 

EMCO/M-Co Electricity Market Company (New Zealand); 

EMF Energy Modeling Forum; 

ESP Energy Service Provider; 

EU European Union; 

GA genetic algorithms; 

GAMS General Algebraic Modeling Language; 

GME Gestore del Mercato Elettrico (Market Operator, Italy); 

GNE generalized Nash equilibrium; 

GRTN Gestore della Rete di Transmissione Nazionale (ISO and TSO, Italy); 

GS subproblem corresponding to a certain generation unit; 

HHI Hirschman-Herfindahl Index; 

IEA International Energy Agency; 

IOU independent owned utility; 
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Symbol Interpretation 

IPE International Petroleum Exchange; 

ISO Independent System Operator; 

LP linear programming; 

LPX Leipzig Power Exchange; 

LR Lagrangian relaxation; 

MCP mixed complementarity problem; 

MD master dual problem; 

MDF market distribution function; 

MEM Mercado Eléctrico Mayorista (Wholesale Electricity Market, Argentina); 

MIP mixed linear-integer programming; 

MO Market Operator; 

MP master problem; 

MPEC mathematical programming with equilibrium constraints; 

MS1 subproblem corresponding to the first market mechanism; 

MS2 subproblem corresponding to the second market mechanism; 

NEMMCO National Electricity Market Management Company Ltd. 

NETA New Electricity Trading Arrangements; 

NGC National Grid Company; 

OASIS Open Access Same Time Information System; 

OFGEM Office and Gas and Electricity Markets; 

OMEL Compañía Operadora del Mercado Eléctrico (Market Operator, Spain); 

OO ordinal optimization; 

OPF optimal power flow; 

OPS subproblem corresponding to options that are financially settled; 

OTC over the counter; 

P primal problem; 

PBC physical bilateral contract; 

PC personal computer; 

PJM Interconnection formed by Pennsylvania, New Jersey, Maryland, Delaware, 
Virginia and the District of Columbia; 

PWL Piecewise linear; 

PX Power Exchange; 
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QVI quasi-variational inequalities; 

REE Red Eléctrica de España (ISO and TSO, Spain); 

SC scheduling coordinator; 

SDDP stochastic dual dynamic programming; 

SFE supply function equilibrium; 

SMP system marginal price; 

SP subproblem; 

SPF feasibility problem; 

TSO Transmisión System Operator; 

TSP two-stage program; 

UKPX UK Power Exchange; 

US United States; 

VI variational inequalities; 

VPX Victoria Power Exchange; 

 



Summary 

 Summary 

 

 



 



Summary xxix 

 

This thesis addresses the problem of developing an optimal offering strategy for a 
generation company operating in an electricity spot market, an issue of the maximum 
relevance due to the process of regulatory reforms that the worldwide power industry 
has experienced in recent years. 

Nevertheless, the idea of constructing optimal offers for an electricity spot market is 
too general to be developed in a straightforward manner. The variety of spot market 
designs that can be found throughout the world is so wide that it is impossible to 
propose a general methodology valid for them all. Therefore, this thesis will commence 
with an overview of the most relevant spot market designs currently in operation. 
Based on this description and analysis, the rules that govern the spot market assumed 
in this thesis will be clearly defined. 

The search for an optimal offering strategy requires evaluating the expected benefit 
of any candidate strategy. In particular, a generation company must be able to 
estimate the revenues that it expects to obtain in the spot market. This implies 
modeling the rivals’ behavior, given that rivals exert a direct influence on the spot 
price of electricity. Among the variety of models that have been recently proposed to 
represent competition in wholesale electricity markets, this thesis should adopt the 
approach that best adapts to its general objective. As a result of a literature survey, a 
representation based on residual demand curves and revenue functions will be used to 
calculate the outcome of the hourly auctions that constitute the spot market of study. 

Uncertainty with respect to rivals’ behavior is at the root of the development of any 
offering strategy. It is because of this uncertainty that a generation company gets 
involved in a decision process more complex than simply choosing a single price for all 
its output or a specific level of production. However, not every representation of this 
uncertainty is equally amenable in order to search for an optimal offering strategy. In 
this thesis, uncertainty about the strategies followed both by rivals and by wholesale 
buyers in each of the hourly auctions that constitute the spot market will be 
represented by assuming that the probability distribution of the corresponding residual 
demand curve has finite support. In other words, it will be assumed that each hourly 
auction has a limited number of possible outcomes. Given that the spot market of 
study consists of a sequence of auctions, this approach will yield a representation of the 
spot market in the form of a multistage stochastic program. It will be shown that this 
representation is valid not only for the case of a generation company, but also for other 
agents operating in a spot market such as energy service providers. 

The previous multistage stochastic programming framework will be enriched with a 
detailed model of the company’s portfolio. This model will consider each of the 
company’s generation units, including their production costs and technical constraints. 
It will also take into account the obligations assumed by the company in previous 
market mechanisms, such as futures or options markets. 

Although this thesis focuses on the development of strategies for market mechanisms 
that operate on a daily basis, the main objective of a generation company is the 
maximization of its long-term profit. Hence, we should include some sort of guideline in 
our methodology, so as to orient its results toward this long-term objective. With this 
purpose, an explicit valuation of the market share obtained by the company in the spot 
market will be suggested in order to correct the myopic incentive that a generation 
company has to reduce its sales and increase the spot price of electricity. We will 
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evaluate the extent to which this parameter correctly represents the long-term 
objectives of the company from a short-term perspective. 

The size of the mathematical program that results when the abovementioned 
modeling features are put together is unmanageable for current commercial optimizers. 
In order to improve its numerical tractability, we will have to assume that the relative 
importance of the spot market mechanisms diminishes as the moment of physical 
delivery gets nearer. Under this assumption, the problem of choosing an optimal 
strategy for the spot market will adopt a twofold structure. On the one hand, the 
problem of developing optimal offers for a specific market mechanism will turn out to 
be a two-stage stochastic program, taking into account that recourse actions can be 
adopted in subsequent market mechanisms in order to correct any undesired result. On 
the other hand, the problem of deciding an optimal weekly unit-commitment schedule 
will be formulated as a sequence of two-stage stochastic programs. These two aspects of 
the operation of a generation company in a spot market are mutually consistent. 

Both problems require the use of decomposition techniques so that realistic study 
cases can be formulated and solved under this framework. An analysis of the structure 
of both problems will be performed in order to identify the decomposition technique 
that best suits each of them. In the light of this analysis, Benders’ decomposition will 
appear as the most adequate approach to solve the first type of problem, given that it 
adapts well to its two-stage structure. In contrast, Lagrangian relaxation will be the 
solution method chosen to address the weekly unit-commitment problem, due to the 
generalized presence of binary variables. The application of both decomposition 
techniques will be explained in detail. In particular, the formulation of the Lagrange 
function will provide an interesting economic interpretation of the Lagrange multipliers 
and permits a better understanding of the problem. 

The adequacy of the methodology developed in this thesis will be confirmed by the 
results obtained for a collection of realistic numerical examples. A variety of offering 
strategies will be derived for a generation company participating in a specific session of 
the Spanish day-ahead market under different circumstances. The sensitivity observed 
in the solutions proposed by our methodology with respect to a number of relevant 
factors will confirm its consistency. Additionally, a weekly stochastic unit-commitment 
schedule will be obtained for the same generation company. 
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1 Introduction 

This introductory chapter presents the general background that motivates this thesis: the 
regulatory reform that has recently shaken the foundations of the worldwide electric power 
industry. Due to this reform, generation companies have been forced to adapt to a new way of 
understanding their business. The traditional regulation, which typically guaranteed generation 
companies the full recovery of their costs, has been substituted by a competitive framework in 
which companies’ revenues depend on their ability to sell the energy produced by their plants. 
Among the variety of wholesale market designs that have been implemented throughout the 
world to introduce competition in the power industry, a relevant number of them include a 
daily spot market organized as a sequence of auctions. By submitting offers and bids to this 
spot market, participants are able to define their ultimate position for each trading period. 
Hence, in many cases, generation companies have had to learn how to express their operational 
decisions in terms of offering strategies. 

This thesis aims to develop an original methodology to construct optimal offers for generation 
companies operating in electricity spot markets. The achievement of this general objective 
requires the fulfillment of a number of more specific targets that are identified in this chapter. 
The organization of this dissertation is also briefly described in order to facilitate its reading. 
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1.1 The reform of the electric power industry 
During the last fifteen years the electric power industry has undergone an 

unprecedented worldwide process of reforms that has lead to a new way of 
understanding the supply of electric power. Traditionally, an electric utility assumed 
the obligation of satisfying the demand for electricity of a certain franchise region. 
Utilities covered all the phases of supply, including the generation of electricity, its 
transmission through a high voltage grid toward consumption centers and its 
distribution to final consumers through medium/low voltage networks. In addition to 
being in charge of the operation, maintenance and expansion of the generating system 
and the electric networks, utilities carried out commercial activities such as metering 
and billing. In general, regulatory authorities guaranteed utilities the full recovery of 
their costs, as long as their decisions were oriented to cover consumers’ demand at the 
minimum cost. 

In the second half of the twentieth century, the gradual expansion of power systems 
lead to an increase of wholesale electric energy interchanges between neighboring 
utilities in many regions throughout the world. In some cases, several utilities decided 
to coordinate the operation of their interconnected control areas in order to increase 
the efficiency and reliability of their supply. The creation of power pools comprising 
generating plants, transmission networks and distribution systems of several utilities 
soon uncovered the conceptual differences that exist between the different activities 
involved in the supply of electricity. On the one hand, the operation, maintenance and 
expansion of electric networks are activities that are more efficiently carried out by a 
single entity. Hence, network businesses can be considered as natural monopolies. On 
the other hand, the generation of electricity and the commercial aspects of retail supply 
are activities that can be assumed by a number of competing companies, as long as 
they are allowed to make use of the existing transmission and distribution facilities. 

With the aim of increasing the efficiency of electric supply, a few pioneering 
countries embarked themselves on the adventure of introducing competition in the 
power industry. This lead to the creation of wholesale electricity markets, mainly 
consisting of centralized daily spot markets similar to the preexisting power pools. 
Indeed, generation companies willing to sell energy in these pioneering spot markets 
were required to submit information relative not only to their production costs, but 
also to the technical characteristics and constraints of their units. Based on this 
information, generation units were dispatched according to the results of complicated 
optimization procedures. In general, the demand side did not take part in these spot 
markets. The spot price of electricity for each time period was determined by the 
variable cost of the last generating unit required to cover the demand for electricity in 
that period. 

Due to the experience gained by regulatory authorities, a second generation of 
wholesale electricity markets has been conceived that increases the freedom of 
participants to take their own decisions. A spot market design based on the concept of 
auction has been developed in which generation companies are required to tender offers 
and wholesale buyers have to submit bids in order to perform energy transactions. The 
agents are expected to internalize any particular aspect of their operation in the price 
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of their offers and bids. The spot price of electricity in each time period and each 
location is obtained as a result of the clearing of these auctions. 

In this context, generation companies and wholesale buyers assume a more intense 
risk exposure than in the traditional framework. They are both subject to the 
uncertain spot price of electricity, which conditions their revenues and costs, 
respectively. In order to hedge against this new risk, participants typically carry out 
part of their transactions through mechanisms other than the spot market, such as 
bilateral contracts or futures markets. The usage of electricity derivative products is 
also frequent in mature power markets, reaching transaction volumes that exceed 
several times those observed in the spot market. 

This ongoing process of reforms has triggered a formidable effort from researchers, 
observers and practitioners oriented to the analysis, representation and estimation of 
the strategic behavior of participants. The particular features of electricity as a 
product, together with its central role in the economy of both developing and 
developed countries undoubtedly increase the relevance of these studies. Although 
great advances have already been achieved, there are still many controversial open 
issues, particularly with respect to the design of wholesale electricity markets. 

The generation business has been greatly affected by these reforms. Competition has 
been introduced in this activity in a straightforward manner, in contrast with the 
typical gradual process followed by regulatory authorities when liberalizing the 
business of retail supply. As a consequence, generation companies have had to adapt 
themselves to a new way of making their decisions. Their revenues and the operation of 
their generation portfolio are now conditioned by the success of their strategies in a 
variety of market mechanisms. In particular, the spot market is frequently seen as the 
most relevant trading arena, given that the spot price of electricity is used as a 
reference for other transactions. 

This thesis adopts the perspective of a generation company operating in a wholesale 
electricity market. The transition from a framework in which companies were 
guaranteed the full recovery of their fixed and variable costs to a situation in which 
revenues are uncertain and depend on the companies’ strategies has created an urgent 
need for the development of new decision-support tools. These new methodologies still 
contemplate the time hierarchy that has traditionally structured the management of 
generation systems into long, medium and short-term decisions. Their most relevant 
novelty lies in that revenues are incorporated into the companies’ objective function, so 
that decisions are oriented to the maximization of their profits. 

In particular, this thesis focuses on the problem of developing optimal offering 
strategies for an electricity spot market. This is a task that generation companies must 
address on a daily basis and that significantly conditions the revenues they obtain for 
the energy they produce. The development of an offering strategy for the spot market 
currently constitutes one of the main short-term decisions of a generation company, 
given that it yields the ultimate position assumed by the company in the wholesale 
electricity market and the final schedule of its generating units. 

In addition to offering a general overview of the process of reforms that has recently 
revolutionized the power industry, this chapter specifies the objectives that this thesis 
aims to achieve and justifies their relevance. It also describes the organization of this 
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dissertation so as to facilitate its reading and provide a guideline to better understand 
the analysis, proposals and conclusions that constitute this work. 

1.2 Scope and objectives of this thesis 
As has been mentioned, this thesis aims to propose a methodology to develop 

optimal offering strategies for generation companies operating in electricity spot 
markets. Such an objective is of vital importance in the current context of regulatory 
reforms but is too vague to be addressed in a straightforward manner. This section 
provides a description of the steps that must be covered in order to achieve this target. 

The process of reforms experienced by the power industry in recent years has lead to 
the implementation of an increasing number of regional wholesale electricity markets. 
Although the authorities that have promoted this regulatory change in each part of the 
world share a general body of ideas and objectives, individual power markets have 
peculiarities that make it impossible to find two identical designs. The characteristics 
of both the generation portfolio and the transmission network of each power system are 
at the root of these distinctive features. Additionally, each regulatory authority adds 
its particular flavor when defining the details of the market rules1. From the 
perspective of the research community, this variety of situations complicates the 
identification of a general methodology to address the problems faced by generation 
companies in the new framework, particularly in the spot market, thus leading to a 
certain degree of confusion in the literature. Therefore, the first objective of any work 
devoted to the development of a methodology that aims to solve some of these 
problems is to provide a clear definition of the rules that dictate how energy is traded 
in the market mechanisms of study. However, these rules should be defined with the 
minimum possible degree of detail in order to avoid an unnecessary loss of generality. 
In this thesis, a spot market design based on a sequence of daily market mechanisms 
will be considered. Each of these market mechanisms will be constituted by hourly 
uniform-price auctions. This general framework is valid for a relevant number of real 
spot markets currently in operation but is obviously incompatible with recent pay-as-
bid proposals. Nevertheless we will argue that the general approach followed in this 
thesis can be applied to address any wholesale market design. 

Due to the introduction of competition, generation companies are plunged into the 
treacherous waters of uncertainty. Indeed, the benefit of a generation company 
operating in a wholesale electricity market is subject to a variety of uncertain factors. 
Some of these, such as the growth of demand, the volume of hydro inflows or the 
evolution of fuel prices, were already present and well studied before the reforms. 
However, the main source of uncertainty is new and stems from the strategic behavior 
of rivals, given that their decisions exert a great influence both on the energy sold by 
the company and on the price of electricity. As a consequence, in order to evaluate the 
expected benefits of a certain strategy, a generation company must be able to estimate 
the behavior of its competitors. This requirement has seduced a great number of 
researchers that have suggested a variety of approaches to model competition in 
wholesale electricity markets. The difficulty inherent to these competition models is the 

                                         
1 It is common knowledge that the devil is in the details. Hence, these slight differences may play a 
central role in the outcome of the reforms. 
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dramatic loss of computational tractability they suffer when they are required to 
represent complex and realistic situations. Hence, choosing the right modeling 
assumptions for each situation is a challenge. This leads to the second objective of this 
thesis: among the variety of competition models suggested in the literature the most 
adequate modeling approach for the purposes of this thesis must be chosen. A 
literature survey is of course implicit in this objective. 

In addition to evaluating the influence that rivals’ decisions exert on the company’s 
revenues, a methodology intended to provide optimal offering strategies for an 
electricity spot market must include an explicit representation of the uncertainty faced 
by the company. This requirement is by no means easy to satisfy. Indeed, the majority 
of methods proposed in the literature to represent this uncertainty present serious 
limitations concerning their applicability to real study cases. Another objective of this 
thesis is then to incorporate uncertainty into its developments in a way that permits 
addressing realistic situations. The accomplishment of this objective will imply the 
adoption of a specific mathematical approach to evaluate and optimize offering 
strategies for the spot market. It will be shown that a multistage stochastic 
programming framework is particularly suitable for this type of problem 

The previous two objectives focus on the representation of the spot market from the 
perspective of a generation company. Even though this aspect is particularly attractive 
due to its novelty, other facets of the generation business must be considered when 
developing an offering strategy for the spot market. The portfolio of a generation 
company dramatically determines the strategies that it can actually adopt. The core of 
the company’s portfolio is constituted by its generating units, whose specific 
characteristics have to be taken into account. The operation of these units can be 
represented in a manner similar to the one typical in traditional short-term operation-
planning tools such as economic-dispatch or unit-commitment models. Other relevant 
elements of the company’s portfolio are the open positions that it may have assumed in 
market mechanisms other than the spot market, such as long-term bilateral contracts 
or electricity derivatives. The consideration of these positions is of paramount 
importance in order to correctly evaluate the real influence that the spot price of 
electricity has on the company’s revenues. Consequently, the methodology proposed in 
this thesis has also the objective of including a full representation of the company’s 
portfolio. 

Numerical tractability is a major bottleneck for a methodology that aims to consider 
the influence of rivals’ behavior, include an explicit representation of uncertainty and 
model in detail the company’s portfolio. The size of the mathematical program that 
results when the problem of developing an optimal offering strategy is formulated in 
this manner is unmanageable for the existing commercial optimizers. The use of 
decomposition techniques is required to address the numerical resolution of such a 
problem. Therefore, one additional objective of this thesis is to derive a decomposition 
scheme that succeeds in overcoming this difficulty. 

In order to illustrate the potential of the methodology developed in this thesis, 
numerical examples must be provided. Two types of study cases are particularly 
appropriate to prove the validity of the proposed approach. On the one hand, small 
problems are more suitable to show the features of the suggested mathematical 
formulation and to evaluate the performance of decomposition techniques. On the 
other hand, the solution of a series of large realistic problems can be used to confirm 
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the adequacy of the developments of this thesis. This is the last objective that this 
thesis aims to cover. 

To summarize, the following six steps must be taken in order to develop a procedure 
that provides optimal offering strategies for a generation company operating in an 
electricity spot market: 

i) Define the rules that dictate how electricity is traded in the market mechanisms of 
interest, trying to reach a tradeoff between generality and specificity. 

ii) Review the models of competition proposed in the literature for the case of 
wholesale electricity markets and identify the most appropriate one, given the 
purposes of this thesis. 

iii) Suggest a consistent approach to represent the uncertainty faced by a generation 
company in an electricity spot market. 

iv) Take explicitly into consideration the company’s portfolio including not only its 
generation assets but also its open positions in market mechanisms other than the 
spot market. 

v) Devise a decomposition scheme that permits the numerical resolution of realistic 
problems. 

vi) Solve a collection of numerical examples so as to illustrate the features of the 
proposed methodology. 

1.3 Organization of this document 
The sequence of six stages that have to be covered in order to satisfy the general 

objective of this thesis provides a consistent structure for the organization of this 
dissertation. Indeed, each of the chapters of this document corresponds to one of these 
steps. In this manner, the accomplishment of these partial objectives can be more 
clearly justified. 

Chapter 2 defines the electricity marketplace considered in this thesis. In order to do 
so, a general overview of the different designs adopted throughout the world to 
establish wholesale electricity markets is provided. In the light of this panoramic 
perspective, the rules of the market mechanisms that are relevant for the developments 
of this thesis are specified. In particular, a spot market design based on a sequence of 
market mechanisms constituted as sets of hourly auctions is assumed. 

Chapter 3 is oriented to the identification of the most adequate approach to 
represent competition in the context of this thesis. It includes a survey of the variety of 
lines of research that have been suggested in the literature in recent years. Special 
attention is given to modeling proposals aiming to represent the influence of the spot 
market on the short-term operation of generation companies. The analysis of their 
advantages and shortcomings reveals the specific features that the competition model 
considered in this thesis should include. A number of modeling challenges are identified 
whose simultaneous accomplishment would constitute a significant advance with 
respect to previous developments. 

Chapter 4 provides a comprehensive description of the methodology proposed in this 
thesis. It shows how the problem of deciding an optimal offering strategy for a 
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generation company operating in an electricity spot market can be formulated as a 
multistage stochastic program. This approach permits an exhaustive representation of 
the spot market operation including the explicit consideration of uncertainty. This 
chapter also explains in detail the manner in which the company’s portfolio is 
represented, taking into account not only its generation assets, but also the obligations 
assumed in previous market mechanisms. The combination of all these aspects results 
in a large-scale mathematical program whose formulation covers the modeling 
challenges identified in chapter 3, thus constituting the conceptual core of this thesis. 

Chapter 5 is devoted to the definition of a solution approach that provides 
numerical results for the proposed mathematical model. The analysis begins with the 
identification of certain minor simplifications in the representation of the spot market 
that permit the otherwise unmanageable numerical resolution of the problem. Two 
perspectives are adopted to develop a short-term strategy for a generation company 
operating in a spot market. On the one hand, a weekly multistage stochastic 
programming approach can be used to obtain optimal unit-commitment schedules as 
well as guidelines to distribute available hydro reserves during the week. On the other 
hand, the problem of developing an optimal offering strategy for each spot market 
mechanism is formulated as a two-stage stochastic program. A detailed analysis of the 
structure of both mathematical programs permits the identification of the 
decomposition technique that best suits each of them. In the light of this analysis, 
Lagrangian relaxation is seen as the most appropriate decomposition technique for the 
weekly problem, given the generalized presence of binary variables. In contrast, 
Benders’ decomposition adapts well to the two-stage structure of the second type of 
problem. In this manner, both decomposition techniques provide a powerful framework 
to make short-term strategic decisions in the context of an electricity spot market. 

Chapter 6 presents a battery of numerical examples in order to illustrate the 
performance of the proposed solution strategy. The first part of the chapter describes 
the results obtained when applying Benders’ decomposition to a variety of realistic 
study cases in which a fictitious but representative generation company decides its 
offering strategy for a certain session of the Spanish day-ahead market. An analysis of 
the sensitivity of the solutions with respect to different relevant factors is included. 
The second part of the chapter concentrates on the solution of a numerical example of 
the weekly multistage stochastic program using Lagrangian relaxation. This chapter 
constitutes the ultimate confirmation of the flexibility and adequacy of the 
methodology proposed in this thesis. 

Chapter 7 summarizes the conclusions that can be derived from the analysis, 
developments and results included in this thesis. It also enumerates the main original 
contributions that this work has yielded. Finally, a number of future lines of study 
that stem from the research conducted in this thesis are suggested. 
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2 The electricity marketplace 

The variety of approaches adopted by regulatory authorities and governments throughout the 
world to introduce competition in the wholesale supply of electricity renders it impossible to 
identify a general framework for this thesis that includes them all. However, in order to achieve 
the proposed objectives, a particular setting must be defined. This chapter specifies the 
marketplace attributes considered for the developments of this thesis. The institutions, agents 
and market mechanisms to be mentioned henceforth are defined under the light of several 
illustrative real cases. Special attention is paid to the rules governing the mechanisms that 
constitute the spot market. 

Even though this chapter may not be considered an original contribution of this thesis, it 
certainly aims to provide the background to fully understand the problems addressed further on 
and the hypotheses under which the proposed solutions hold. 
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2.1 Introduction 
The speed at which reforms are introduced in the power industry of an increasing 

number of countries and the variety of adopted designs justify the need for a formal 
definition of the particular wholesale electricity market that will be considered as a 
framework for the developments of this thesis. Several authors have previously 
addressed the laborious task of suggesting a full characterization for the existing 
market designs [Kahn '95, Chao '99]. It is beyond the scope of this thesis to offer a 
complete and up-to-date review of the situation [Wolak '97, IEA '01]. However, in order 
to illustrate the hypotheses assumed, reference will be made to the solutions 
implemented in several real cases and to the opinion of experts in the organization of 
wholesale electricity markets. 

This chapter starts by recalling Schweppe’s pioneering definition of the spot price of 
electricity, a starting point and a benchmark for alternative market designs. In section 
3 we will specify the hypotheses relative to the infrastructure of the conceptual power 
system that will be analyzed in this thesis. Section 4 introduces the institutions that 
are relevant for the operation of the considered wholesale electricity market and 
describes the roles they play. Section 5 identifies and characterizes the market 
participants whose strategies will be examined hereafter. Section 6 is devoted to the 
definition of the rules that will govern the wholesale market mechanisms through 
which electricity is traded. Section 7 summarizes the assumptions made throughout the 
chapter and provides additional details about the marketplace considered in this thesis. 
Finally, section 8 highlights the most relevant conclusions of the chapter. 

2.2 Schweppe’s electricity spot market 
Due to the special features that characterize electricity as a commodity, the 

pioneering theories for the design of electricity spot markets1 were founded on the 
physical laws that rule power flows through transmission networks (Kirchhoff laws). 
The electricity spot pricing theory developed in [Schweppe '88] defines the optimal spot 
price of electricity at a certain node of the transmission network as the incremental 
cost of supplying one additional energy unit at that node when the system is 
dispatched in such a way that the net social benefit is maximized. These spot prices 
account for electricity variable generation costs (including energy and ancillary 
services), but also for transmission losses and congestions. They constitute the correct 
economic signals for both producers and consumers that induce them to behave 
efficiently. However, in practice, calculating Schweppe’s electricity spot prices requires 
the existence of a centralized authority that solves a non-linear and non-convex 
optimization problem based on detailed information about the elements that constitute 
the power system. Participants may not be satisfied by the outcome of this obscure 
market mechanism whose results are extremely sensitive to input data. Lack of 
transparency may also deter the entrance of new participants, thus limiting the degree 
of liquidity that can be attained. 

An interesting property of Schweppe’s spot prices is that, under the hypothesis of a 
loss-less and uncongested network, the spot price is the same for all the network nodes 
and equal both to the short-term marginal costs of generation and to the value of 
consumers’ short-term marginal utility. This single-node assumption significantly 
                                         
1 In a spot market for a certain commodity, agreements imply immediate physical delivery. Organized 
spot markets usually provide reference prices for other transactions referred to the same commodity. 
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simplifies the underlying optimization of Schweppe’s spot market definition and paves 
the way toward simpler market designs similar to those established for other 
commodities, characterized by their transparency and high degree of decentralization in 
decision-making. However, this casts a shadow of insecurity over an industry that 
provides an essential commodity and where reliability of supply has always been a 
totem. 

The conflict between these two trends ætight control by a central authority or 
decentralized decision-makingæ and the question of which of the two yields a higher 
degree of efficiency is at the root of the debate on how wholesale electricity markets 
should be designed. Although some authors clearly advocate for one of the two 
alternative frameworks [Hogan '01], in most cases the implementation of hybrid 
formulas performs correctly. 

2.3 Infrastructure of the power system 
It is obvious that the choice of an adequate design for a wholesale electricity market 

is heavily conditioned by the infrastructure of the corresponding power system, 
particularly that of the transmission network. Throughout most of this thesis, it is 
assumed that the transmission system does not impose significant constraints for the 
physical realization of energy transfers between the agents that participate in the 
wholesale electricity market. It is also assumed that transmission losses account for a 
low percentage of the overall costs. 

This hypothesis is quite restrictive. As a rule of thumb, as the area covered by the 
market increases, the limitations due to limited transmission capacity are more 
important2. Thus, transmission constraints usually have a minor impact for the 
analysis of an electricity market restricted to the territory of Spain or England and 
Wales. On the contrary, they play a major role in Scandinavia, Australia, New 
Zealand, Argentina, Chile, the Northeastern and Western coasts of the U.S., and a 
future hypothetic European electricity market. This presumption simplifies the 
analysis, which would otherwise become cumbersome, and facilitates the achievement 
of the objectives of this thesis. Nevertheless, we suggest possible solutions to adapt the 
developments of this work to those cases in which the influence of the transmission 
network cannot be neglected. One of the advantages of the proposed approach is that 
it is flexible enough to incorporate new modeling features different from those adopted 
in principle. 

The existing generation mix has also proven to be a determining factor for the 
performance of wholesale electricity markets. Power systems with a large hydro 
component but with irregular inflows (e.g. Colombia) require innovative market 
mechanisms so that participants can hedge against unacceptable risk exposure due to 
extreme price instability [Vázquez '01]. Hydro systems may also be constituted by a 
large number of independent reservoirs located in a reduced set of river basins (e.g. 
Brazil), yielding higher benefits when coordinately operated than if independently 
administered. Conversely, if generation is mainly gas-fired, electricity prices will be 
driven by the fluctuations of international gas prices. In this thesis, however, the 
generation system is assumed to include a variety of generation technologies (nuclear, 
coal, oil, gas, hydro), so that the proposed approach can be easily adapted to 
particular cases such as the abovementioned situations. 

                                         
2 The shape of the considered area is also important: Chile and New Zealand are two good examples. 
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2.4 Institutions 
Organizing a wholesale electricity market requires creating new institutions and 

redefining the roles played by preexisting ones. In this section, the main institutions 
that will be mentioned in subsequent chapters are defined. 

2.4.1 Regulatory authorities 

Every process of reform is launched with the contribution of one or several 
regulatory authorities (regulatory commissions, regional administrations, national 
governments or supra-national institutions as in the case of the European Union). 
These authorities determine the new rules under which the corresponding wholesale 
electricity market will operate, supervise the reform process and introduce further 
modifications if the results diverge from the objectives that motivated the reform 
(typically, the improvement of the industry’s efficiency standards). 

Regulatory authorities guarantee that the agents participating in the wholesale 
electricity market observe the established rules. In particular, great concern has been 
expressed about the possible exercise of market power3 by large generation companies, 
which would increase the price of electricity well above marginal costs. This possibility 
exists in most real cases, particularly in situations of scarce generation or transmission 
capacity, and is well documented4. However, market participants are not expected to 
keep the exercise of market power effective in the long run, as this would attract new 
entrants and increase the threat of adverse regulatory measures [Acutt '01]. Moreover, 
it has been shown that the operating profits of a generating unit controlled by a 
company that uses it to exercise market power are less than the operating profits of an 
identical generating unit controlled by a small fringe company, an effect known as “the 
curse of market power” [Lien '00]. Consequently, in this thesis the exercise of market 
power will not be considered a long-term sustainable strategy. On the contrary, 
generation companies will be assumed to value their market share as a measure of the 
strategic position they aim to defend5. 

The restructuring and privatization process initiated in England and Wales (E&W) at the 
beginning of the 1990s with the Pooling and Settlement Agreement gave birth to the Pool, a 
mandatory wholesale electricity spot market with daily sessions. Every day, the National Grid 
Company (NGC), obtained a day-ahead estimate of the system’s demand, scheduled generation to 
meet this estimate and determined Pool prices. Due to the high prices exhibited by the Pool, 
after several years of operation, the two major generation companies were forced twice to divest 
part of their assets. Their market share was further reduced due to new entry in the form of 
combined-cycle gas turbines (CCGTs). Eventually, after more than a decade of controversial 
operation [Green '99] the regulatory commission, OFGEM, reviewed the design of the Pool and 
decided to replace it with more transparent and simple trading arrangements, namely the New 
Electricity Trading Arrangements (NETA) [OFGEM '99]. 

                                         
3 Market power is defined as the ability of a firm to raise prices profitably above competitive levels for a 
significant period of time. 
4 [Borenstein '99] provides a thorough explanation of the concept of market power and its implications 
for wholesale electricity markets. Other relevant works oriented to the analysis of market power are 
mentioned in Chapter 3. 
5 However, under this assumption, barriers to entry are a relevant reason of concern [Viscusi '98]. 
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2.4.2 Independent system operator (ISO) 

The correct performance of a bulk power system requires the existence of one 
institution that guarantees that the wholesale supply of electricity is carried out under 
adequate conditions of quality, security and reliability. With the introduction of 
competition, this institution is also usually required to be independent from any agent 
having interests in the wholesale electricity market. We will refer to this entity as the 
independent system operator (ISO). In some cases, the ISO is also the owner of the 
high voltage transmission facilities, although this has a negligible effect for the 
purposes of this thesis. 

In order to comply with its responsibilities, the ISO frequently assumes several 
functions that can be characterized according to the time frame they refer to. In the 
long term (years), investments in transmission capacity expansion have to be 
evaluated. In the medium term (months), the maintenance of network elements must 
be planned. In the short term (one day to a week), scarce transmission capacity must 
be allocated and the procurement of ancillary services has to be scheduled. In real time 
(every second), the operation of the power system has to be monitored and the 
instruments required to keep the system’s variables between their limits must be 
coordinated. Thus, the activity of the ISO increases as the moment of physical delivery 
gets closer in time. 

The independence of the system operator was not considered in Chile’s pioneering reform, 
where a system operator owned by the generators manages the mandatory load dispatch center 
(Centro de Despacho Económico de Cargas, CDEC). The fact that its decisions are based on 
complicated and non-transparent procedures has been the cause of increasing disputes between 
generators [Rudnick '97]. 

2.4.3 Market authority 

In nearly all cases, the introduction of competition in the power industry has been 
accompanied by the creation of a series of official market mechanisms through which 
wholesale transactions can be performed. Three organizational models can be identified 
according to the authority that assumes the role of administering these market 
mechanisms. 

In the first model, market mechanisms are centralized and managed by the ISO. 
Under this framework (sometimes designated by the term pool or poolco), the ISO 
exerts a tight control over the wholesale electricity market, which probably results in a 
more efficient short-term operation and a smoother transition to competition. In some 
cases participation is mandatory. This reduces the flexibility of market participants to 
make their own decisions. In the long term, the lack of transparency that characterizes 
the ISO’s decision making may discourage new entrants and benefit incumbent 
generators. Additionally, demand-side responsiveness may be inhibited under the 
excessive protection of the ISO. 

In Chile, CDEC is responsible both for meeting the demand requirements at the least possible 
cost and for preserving the security of the system. Similarly, in Argentina, the same company 
that operates the transmission system, CAMMESA, runs the official wholesale electricity market 
(Mercado Eléctrico Mayorista, MEM) [Rudnick '97, Gómez '00]. 
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In Australia, an interstate market has been progressively implemented. The Victoria Power 
Exchange (VPX) began to operate in July 1994, while New South Wales established a wholesale 
market for electricity in May 1996. Finally, in 1998, Australia’s National Electricity Market was 
created, comprising the interconnected power system formed by the Australian Capital Territory, 
New South Wales, South Australia and Victoria [Outhred '00]. This mandatory pool is operated 
by NEMMCO, which is also responsible for the security of the interconnected power system and 
the coordination of power system planning. [NEMMCO '99]. 

In some regions of the North-Eastern U.S. (New England, New York and the PJM 
interconnection formed by Pennsylvania, New Jersey, Maryland, Delaware, Virginia and the 
district of Columbia), centrally dispatched power pools had been in operation for many years 
before competition was introduced. In each of these regions a single market institution, the 
Independent System Operator (ISO), has been established, being  basically an extension of the 
preexisting pool. Recently, an initiative to create a Regional Networked Market including 
Allegheny Power, New England, New York and PJM has been launched. 

In the second model, the main wholesale market mechanisms are also centralized, 
but managed by an entity different from the ISO, usually known as the market 
operator (MO), and organized in the form of a power exchange (PX). These market 
mechanisms are usually based on simple rules, leaving to the agents the full 
responsibility of deciding the strategy they want to follow in order to sell or purchase 
electricity. Participants have to learn how to reach their objectives under the new 
scheme, a process that may require several years, particularly in the case of energy 
buyers. A careful coordination must be established between the MO and the ISO in 
order to guarantee that the transactions performed through the PX are physically 
feasible and comply with reliability and security criteria. 

The California electricity market was organized around two different institutions: the 
California ISO (CAISO) and the California Power Exchange (CALPX). CAISO was made 
responsible for operating the transmission network, guaranteeing the real-time balance between 
generation and demand and scheduling the procurement of ancillary services. CALPX was created 
as a voluntary energy exchange where agents could trade energy (the major Californian utilities 
were forced to operate only through the CALPX during the first four years). 

The core institution of The Nordic Power Market (Norway, Sweden, Finland and Denmark) is 
a non-mandatory Power Exchange, the NordPool, which operates a series of market mechanisms. 
NordPool also offers clearing services for contracts traded in over-the-counter (OTC) and 
bilateral markets6. About 25 % of the Nordic power generation is traded through the NordPool, 
while bilateral and OTC contracts account for the rest. The volume of financial contracts is 
estimated to be five times the volume of physical transactions. The liquidity and high level of 
activity achieved by the Nordic Power Market, where a careful coordination is required between 
the existing transmission system operators, is a success. 

During the decade of the 1990s, the electricity industry in New Zealand underwent a series of 
reforms in order to improve its performance, eliminate cross-subsidies and introduce customer 
choice [EMPG '01]. The progressive privatization of generation assets owned by the previous 
monopoly (Electricity Corporation of New Zealand, ECNZ) was accompanied by the 
establishment in 1988 of an independent state-owned transmission system operator (Transpower) 
and the creation in October 1996 of a wholesale electricity market operated by the Electricity 
Market Company (EMCO or M-Co). 

                                         
6 Over-the-counter transactions, can be carried out on whatever terms and with whatever provisions are 
permitted by law and acceptable to the two counter parties. There are no official rules or restrictions 
governing the hours or conditions of trading. Trading conventions are developed mostly by market 
participants. There is no official code prescribing what constitutes good market practice. On the other 
hand, in organized exchanges, trading takes place publicly in a centralized location. Hours, trading 
practices and other matters are regulated by the particular exchange and products are standardized. 
There are margin payments, daily marking to market, and cash settlements through a central 
clearinghouse. 
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In Spain, the enactment of law 54/1997 in November 1997 established a fully competitive 
framework for the generation of electricity. At the same time, a transient process was defined for 
the liberalization of retail supply. Two institutions are at the heart of the Spanish wholesale 
electricity market design. On the one hand, the market operator (Compañía Operadora del 
Mercado Eléctrico, OMEL) is in charge of the series of voluntary short-term market mechanisms 
through which the majority of physical transactions take place (the volume of bilateral contracts 
is still low). On the other hand, Red Eléctrica de España (REE), is the owner of the high-voltage 
transmission network and has been the system operator since 1984. 

Italy implemented the EU Directive 96/92/CE7 with the passing of legislative decree no. 79 in 
March 1999. The reform introduces new institutions, such as an independent state-owned 
transmission system operator (Gestore della Rete di Transmissione Nazionale, GRTN) which is 
responsible for the management of the national transmission grid and for ensuring safety, 
reliability and the least-cost operation of the electric system while providing a non-discriminatory 
access to the grid. This TSO has established a market operator (Gestore del Mercato Elettrico, 
GME) that will manage a national wholesale exchange system. 

The third alternative relies on pure bilateral trading and does not require the 
existence of a centralized market authority. However, the absence of centralized market 
mechanisms has evident limitations such as large transaction costs, insufficient 
liquidity, lack of reliable information about market performance and the difficulty to 
reach the level of coordination required to ensure a secure operation of the power 
system. Indeed, in those cases where no official market mechanisms have been defined, 
unofficial power exchanges typically surge driven by private initiative. 

Under NETA, the E&W system operator, NGC, is no longer responsible for the operation of 
the main market mechanisms. On the contrary, NGC is in charge of a short-term balancing 
mechanism designed to ensure the physical balance of the system. In addition to this, NGC must 
procure ancillary services such as reserve, frequency control and voltage support, as well as energy 
to overcome transmission constraints. The main market mechanisms are expected to evolve 
driven by private initiative in response to the requirements of market participants. Three power 
exchanges have already been established UK Power Exchange (UKPX), UK Automated Power 
Exchange (APX) and the International Petroleum Exchange (IPE)  that operate market 
mechanisms and offer clearing and settlement services for OTC transactions. In this context, 
OTC trading has become the preferred way to make long-term transactions [OFGEM '01]. 

In Germany, after the aggressive liberalization launched under the Act of 29 April 1998, no 
official electricity market institution has been established, neither a system or grid operator nor 
an organized exchange with a market operator. The absence of an official electric market 
authority complicates the access to reliable information about trading volumes, which must be 
estimated based on surveys [Strecker '00]. This has evident disadvantages such as high transaction 
costs and lack of transparency and liquidity. Thus, a natural standardization of contracts is in 
progress. In addition, private power exchanges have surged such as the Frankfurt-based European 
Energy Exchange (EEX) or the Leipzig Power Exchange (LPX). Some observers also see network 
access as a significant barrier to entry [IEA '01]. 

Although this variety of market institutions may appear somewhat confusing, from 
the point of view of the agents that participate in a wholesale electricity market, 
whether market mechanisms are operated by the ISO or by another entity is irrelevant. 
Other factors, such as the number of market participants, their relative size, the 
existing generation mix and, above all, the rules that dictate how electricity must be 
                                         
7 The basic principles that rule the regulatory reform process of the electricity industry in the European 
Union were established by Directive 96/92/EC [EU '96]. In it, the development of an internal market for 
electricity among the EU member states is promoted. The Directive dictates rules that guarantee a non-
discriminatory access to the European transmission networks and requires the unbundling of electricity 
services. It became effective in February 1997. Member nations were called to open at least 26% of their 
national markets to competition by February 1999, 30% by year 2000 and 35% by 2003. 
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traded, determine to a greater extent the outcome of the reform. In particular, this 
thesis assumes a non-mandatory power exchange (PX) similar to the ones currently 
operating in Spain or Scandinavia. This PX comprises several market mechanisms. The 
entity responsible for the operation of the PX is referred to as the market operator 
(MO). 

2.5 Market participants 
The introduction of competition in a power industry frequently requires previous 

structural changes. In some occasions these changes lead to the formation of new 
companies (separation of vertically integrated utilities, privatization processes, 
divestitures, etc). Typically, additional companies emerge to cover the new needs 
created by the market. The resulting structure is a key factor for the correct 
performance of the wholesale electricity market. In this section we introduce the agents 
that play an important role throughout the rest of this thesis. Their activity and 
objectives are specified. 

2.5.1 The wholesale supply side 

Generation companies the owners of electricity generation facilities are the most 
relevant players in wholesale supply. They may come from the vertical disintegration of 
state-owned or privately owned utilities (in which case they typically present a large 
size relative to the market under consideration). They may also be the result of a 
process of privatization or divestitures (the regulatory authority can then enforce a 
maximum size for the resulting companies). They can further be new entrants whose 
size is small but can progressively increase. Finally, generation companies whose plants 
are located in neighboring power systems can also participate, though their influence is 
limited by the transmission capacity of the interconnection. 

The aim of a generation company is to maximize its long-term profit through the 
operation of its generating plants. This implies recovering both fixed and variable costs 
which are basically the same as in the traditional regulatory framework, given that no 
significant technological changes have been introduced since the development of 
CCGTs [Wood '96]. In contrast, revenues are now driven by uncertain market forces 
through new market mechanisms, leading to a greater degree of risk exposure. 

The mixture of generation technologies owned by a certain company conditions its 
strategy in the wholesale electricity market. Generation companies with a variety of 
generating plants (portfolio generators) have greater flexibility to face the risks 
inherent to the production of electricity (uncertain hydro inflows, fuel prices, demand 
growth, units’ outages, etc.) and those arising from competition (uncertain wholesale 
electricity prices). Typically, they also have a relative size that allows them to actively 
participate in a variety of market mechanisms. On the contrary, generation companies 
that own a particular type of plants or whose size is small will have to concentrate on 
certain market segments and contractual forms. A good characterization of generation 
companies (and, in general, of the agents that are likely to participate in a wholesale 
electricity market) is provided in [OFGEM '99]. 

This thesis focuses on portfolio generators. In this manner, the developments of this 
work can be easily adapted to a generation company with a more specific profile. 
Chapter 3 presents a survey of modeling approaches that have been proposed to 
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represent the strategic behavior of generation companies in wholesale electricity 
markets. 

2.5.2 The wholesale demand side 

The characterization of wholesale energy buyers in a particular regulatory 
framework depends on the freedom of customers to choose a retail supplier. In many 
cases, the regulatory reform includes a transition period before the liberalization 
process is completed. During this period, the amount of energy consumption required 
for a consumer to freely choose its retail supplier gradually decreases until the smallest 
consumers are finally incorporated. In the meantime, regulated tariffs are maintained 
and distribution companies still assume the obligation to serve regulated consumers. 
This may lead to controversial situations in which regulated tariffs are insufficient to 
cover the cost of purchasing electricity in the wholesale market. In this thesis, it is 
assumed that all customers are free to choose their retail supplier and that regulated 
tariffs have been eliminated. 

Large industrial consumers may be interested in purchasing their energy directly 
through wholesale market mechanisms (either in the form of bilateral contracts with 
generation companies or participating in the PX). However, the main role in wholesale 
demand is typically played by energy services providers (ESPs). ESPs are companies 
that act as intermediaries between wholesale electricity suppliers (generation 
companies) and consumers. In addition, they offer technical advice, commercial 
services, risk-management solutions, etc. It is a business characterized by a significant 
degree of risk exposure, due to the consumers’ habit of paying stable prices and to the 
dramatic volatility observed in wholesale electricity prices. ESPs are thus expected to 
develop creative solutions in order to maximize their profit in this unfriendly 
environment. 

2.5.3 Other agents 

Other companies not directly involved in the production or retail supply of electric 
energy may intervene in wholesale electricity markets. Arbitrageurs, for instance, 
specialize in identifying market opportunities such as price differentials between 
neighboring power systems that may justify an energy transfer or forward prices that 
are excessively low given their estimation of future spot prices, etc. Although the 
volume of energy traded by arbitrageurs is expected to increase as further degrees of 
liberalization are attained, they are not essential for the operation of a theoretic 
wholesale electricity market and are not considered in this thesis. 

2.6 Market mechanisms 
In previous sections we have identified the market institutions and the agents that 

take part in the electricity marketplace considered in this thesis. It is now time to 
specify the market mechanisms that this marketplace consists of and their governing 
rules. As before, the diversity of regulatory approaches that have been adopted 
throughout the world will illustrate the discussion. 

2.6.1 Physical products 

Wholesale electricity markets are conceived as a means to trade electric energy. 
However, the supply of electric energy implies the existence of a number of generating 
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units, the access to a transmission network and the supervision and control of certain 
state variables such as the system’s frequency of bus voltage magnitudes. Indeed, a 
variety of physical products can be traded in wholesale electricity markets in addition 
to electric energy, such as ancillary services, generation capacity or physical 
transmission rights. 

The provision of ancillary services8 can be carried out through market mechanisms, 
typically conducted by the ISO, even if energy markets are not under its control [Singh 
'99a, Singh '99b]. The amount of ancillary services demanded by a power system 
depends on a wide range of parameters such as the accuracy with which the system’s 
load is estimated, the magnitude of this load, the reliability of the synchronized 
generators, the existence of interconnections with neighboring power systems and 
others. The ISO usually determines the requirement of ancillary services as an inelastic 
quantity9 due to the perception of short-term security of supply as an obligation. In 
this thesis we only consider active power reserves. No distinction is made according to 
their speed of response10. 

Some regulatory frameworks consider generation capacity as another product that 
must be remunerated so as to promote the large investments that capacity expansion 
requires, thus increasing the long-term security of supply [Chuang '00]. There is no 
general consensus on the convenience of these payments11. In this thesis we assume 
that capacity payments do not affect the short-term decision making of generation 
companies. However, an interesting approach based on the concept of financial options 
has been recently suggested that combines a natural hedging procedure for energy 
buyers against price spikes with a secure long-term payment to generators [Vázquez 
'01]. At the same time it diminishes the incentive these may have to induce price 
spikes. The influence of this kind of contracts on generators’ behavior in short-term 
electricity markets is evaluated in this thesis. 

                                         
8 Among ancillary services, active power reserves have attracted much attention due to their importance 
and complex nature. These reserves are used to control the system’s frequency and to restore the balance 
between electricity production and consumption in real-time operation. 
9 The elasticity of demand is defined as the percentage variation of demand divided by the percentage 
variation of price. If demand is inelastic, it means that it remains the same irrespective of the prices 
offered by suppliers. 
10 Active power reserves can be categorized, according to the speed of their response, into primary 
reserve (which includes the effect of the rotating machines’ momentum and the action of their speed 
governors in order to dampen frequency deviations), secondary reserve (which refers to the automatic 
generation control, AGC, that conducts a number of generators in order to eliminate deviations both in 
the system’s frequency and in the scheduled power interchanges with neighboring systems) and tertiary 
reserve (which is called upon to face anticipated shortfalls or to replace secondary reserve so that it can 
be available for future needs). Voltage control is another important ancillary service. Some authors have 
indicated that faster response reserves (e.g. secondary reserve or AGC) can substitute lower response 
reserves (e.g. replacement reserves) and have recommended pricing schemes that explicitly take this fact 
into consideration in order to provide the right incentives for generators to reveal their reserve quality 
and procurement costs [Oren '01]. 
11 Detractors of capacity payments suggest that long-term prices of electricity should allow generators to 
recover their average costs and provide economic signals for new investment decisions. Those generating 
units unable to do so would represent bad investment decisions. In practice, this requires sporadic (and 
unpopular) high prices, which typically occur when generating capacity is scarce, usually casting doubts 
over possible misbehavior of generators. It is interesting to point out that capacity payments do not 
eliminate the incentive generators may have to withdraw capacity under scarcity conditions. 
Additionally, they limit the ability of consumers to decide how much they want to pay for security. 
Currently, only Spain and some South American countries maintain administered capacity payments. 
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In those systems in which the structure of the transmission network imposes 
significant constraints for the physical realization of energy transfers, transmission 
capacity turns out to be a valuable product. Agents willing to make use of congested 
transmission lines to drive power from an exporting region to an importing region are 
typically forced to pay congestion charges that mainly depend on the behavior of 
generators located in the importing region. Two alternatives exist to provide these 
agents with a mechanism to hedge against congestion charges: physical and financial 
transmission rights [Joskow '00]. If energy and transmission markets are perfectly 
competitive these two types of transmission rights can be considered equivalent [Chao 
'96]. However, when perfect competition does not hold, both rights can create 
additional incentives to exercise market power. Physical transmission rights have even 
worse properties, as their owners can withhold them in order to affect market prices, 
thus reducing effective transmission capacity. In this thesis it is assumed that no 
trading takes place either with physical or financial transmission rights. 

2.6.2 Time frames supported by market mechanisms 

Agents participating in a wholesale electricity market require different market 
mechanisms to perform their transactions in the way that best suits their business 
strategy. In particular, the time scope with which the agents may be willing to trade 
can range from several years in advance to a few minutes prior to physical delivery. 

Energy buyers should naturally tend to carry out the majority of their purchases in 
long-term markets ranging from several years to several weeks in advance. On the one 
hand, this allows large consumers to respond to high prices, as they may find it too 
costly to adapt their energy consumption levels to the corresponding prices of 
electricity on a daily basis. On the other hand, it permits ESPs to hedge against 
unacceptable risk exposure. Similarly, small generators may find long-term contracts 
useful to finance their debt and hedge against the volatility of short-term prices. Power 
exchanges frequently provide mechanisms such as futures markets in which long-term 
contracts are negotiated in a continuous manner. In parallel, market participants 
typically develop innovative means of trading with electricity while managing their risk 
exposure. 

In the majority of wholesale electricity markets, there is a market mechanism that is 
considered as a reference for the rest of transactions and that typically takes place one 
day prior to physical delivery. There are a number of reasons for this timing, which we 
summarize as follows. 

On the one hand, it is considerably difficult to obtain an accurate estimate for the 
demand for electricity more than one day in advance, due to its strong dependence on 
weather. Additionally, generation costs heavily depend on the number and type of 
available generating units, which can suddenly change due to unexpected failures. 
Therefore, to guarantee that the main market mechanism correctly represents the costs 
of providing the actual demand for electricity, it must take place as close as possible to 
the moment of physical delivery. 

On the other hand, the start-up of many thermal generators usually requires several 
hours and variations in their power output are typically restricted by ramp-rate limits. 
Market mechanisms running too close to the moment of physical delivery limit the 
ability of generators to participate and reduce demand-side responsiveness. 

As a result of these two sets of conflicting objectives, a good tradeoff is to run the 
main market mechanism one day in advance (hence the name day-ahead market). In 
order to guarantee that the exact balance between power generation and demand is 
ultimately achieved, subsequent short-term market mechanisms such as hour-ahead, 
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real-time or balancing markets are also typically included. This gives the agents the 
possibility of introducing last-minute adjustments in their positions, prior to physical 
delivery. Consequently, the day-ahead market does not imply immediate physical 
delivery and cannot be considered as the spot market. In this thesis, the term spot 
market is used to denote the sequence of short-term mechanisms starting with the day-
ahead market and ending with physical delivery. This thesis proposes a methodology 
for the optimization of the strategies followed by agents participating in such a spot 
market. Transactions performed in longer-term markets are considered as input data in 
order to evaluate the overall costs assumed by the agents. 

2.6.3 A characterization of spot market mechanisms 

As has been indicated, the rules that govern market mechanisms must be carefully 
designed to guarantee that they foster competition between participants. Several 
attributes that can be used to establish a characterization of the most relevant spot 
market designs currently in operation are: 

i) The transparency of the rules governing energy trade. 

ii) The flexibility of operation conferred to participants. 

iii) The degree of decentralization achieved in decision-making. 

iv) The degree of integration between spot market mechanisms through which 
different products are traded: energy, generation capacity, transmission capacity, 
ancillary services. 

v) The particular manner in which spot market mechanisms are cleared, products 
are priced and financial settlement is reached. 

Experts have identified three basic spot market organizational paradigms according 
to the previous features [Kahn '95, Chao '99]. In order to illustrate the spot market 
design adopted for the developments of this thesis, a quick review of these three models 
is provided. 

2.6.3.1 The poolco model 

In the poolco model the spot market is operated by the ISO. The ISO schedules 
energy transactions based on complicated optimization procedures, frequently 
incorporating transmission constraints and considering the provision of ancillary 
services (integrated dispatch). This has the advantage of guaranteeing that spot 
market results are technically feasible. 

Optimization-based market mechanisms are very similar to the centralized 
operation-planning models that were used before the reform to obtain minimum-cost 
generation schedules. In the poolco model, in order to perform this optimization, 
generators are required to indicate their short-term production costs (including variable 
costs, start-up costs and no-load costs) and technical constraints (maximum capacity, 
minimum stable output, ramp-rate limits, etc.) In some cases participation is 
mandatory, though in others generators have the possibility of self-scheduling with a 
buying counter party. The demand side plays a secondary role and may even not be 
allowed to submit buy bids (as in E&W prior to NETA, [Borghetti '01]). Agents 
willing to hedge against volatile spot prices can enter in bilateral financial contracts. 

Spot prices may be calculated ex-ante, based on the results of the day-ahead 
dispatch and subsequent adjustments, or ex-post, stemming from actual energy 
transfers. They are typically nodal prices (also known as locational prices) and can be 
obtained as the dual variables of the scheduling optimization. In this manner, they can 
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include information about transmission losses, congestions and ancillary services, 
following Schweppe’s spot pricing theory. Thus, they constitute economic signals 
indicating agents which energy transfers are favored by the existing generating and 
network infrastructures. In some cases they can even incorporate a capacity payment 
to promote generation capacity expansion. 

In Chile, CDEC obtains yearly, monthly, weekly and daily operation schedules based on 
audited costs, reservoir levels, units’ availability and demand forecasts [Rudnick '97]. Due to the 
existence of large reservoirs with multi-year storage capabilities, a multibusbar multireservoir 
hydrothermal coordination tool is used to determine the value of water over a four-year scope. In 
contrast, unit commitment is not important for the dispatch of the Chilean system, which is 
predominantly hydro. The final real-time dispatch determines the system’s hourly marginal cost 
under a single-bus assumption. Penalty factors are then used to determine the contribution of 
each generator to marginal losses. Dispatched generators receive ex-post payments based on these 
hourly prices. 

In Argentina, generation companies negotiate long-term contracts limited to their production 
capacity with distribution companies or large consumers, typically for one year. In parallel, 
CAMMESA determines three-month seasonal prices based on information provided by 
distribution, transmission and generation companies [CAMMESA '01]. These are the prices that 
distribution companies pay for energy purchases exceeding the amount previously contracted with 
generators. Additionally, the spot market yields hourly spot prices. These are paid either by large 
consumers who contracted less energy than they actually required or by generators who 
contracted more energy than they were able to produce. Hourly spot prices are received 
indistinctly by generators, distributors and large consumers who sell energy in the spot market. 
The spot market in Argentina is quite similar to the Chilean one [Rudnick '97]. A hierarchical 
planning process ranging from several years to one day in advance is performed based on the 
variable costs declared by generators, including an energy price for hydro plants. Thermal plants 
declare their costs twice a year with a weekly resolution, while the frequency for hydro generators 
depends on the capacity of their reservoir. Distribution companies submit a seasonal demand 
forecast. CAMMESA calculates the water value by means of a two-reservoir single-bus dynamic 
programming model with a three-year scope. A weekly regional hydro dispatch is then performed 
with a linear programming model. Additionally, the thermal unit-commitment problem is solved 
taking into account start-up costs of steam and gas turbines and the overhead cost of peaking 
steam turbines (off-peak cost of committed steam turbines). Finally, the daily thermal economic 
dispatch is performed with a non-linear model. This model includes an explicit representation of 
the transmission network, thus yielding nodal prices that take into account both marginal losses 
and congestions. Market mechanisms also exist for the provision of frequency regulation, spinning 
reserve, cold reserve and voltage control. 

In the E&W Pool, generators were asked to submit sell offers for the following day. Sell offers 
included start-up costs, no-load costs (cost of operating at the unit’s minimum stable output) and 
four energy prices for different output levels. A mathematical programming model was used to 
obtain a minimum-cost half-hourly schedule as well as half-hourly system marginal prices (SMP, 
i.e. the price of the highest accepted offer including average start-up and no-load costs). Energy 
sales were paid at the Pool Purchasing Price, equal to the SMP plus a capacity payment. If this 
schedule led to grid constraints, the grid operator required some generators to increase their 
output, while others were forced to reduce it. Output increments were paid at their offer price 
plus the capacity payment, whereas decrements received only the capacity payment. Energy 
purchasers had to pay the Pool Selling Price, equal to the SMP plus an uplift to account for 
ancillary services, network constraints and transmission losses. The volatility observed in the 
SMP led to significant use of hedging financial instruments such as contracts for differences12. 
According to OFGEM, “innovative contracting strategies that might have developed if 
participants had been able to trade bilaterally outside the Pool, have been inhibited by the 
compulsory trading requirement. Furthermore, mandatory participation has reduced the 
incentives of the Pool itself to be innovative in the services it offers, since it does not have to 
compete in order to retain membership” [OFGEM '99]. 

                                         
12 In a contract for differences (CfDs) two parties agree to exchange the difference between a fixed price 
and the spot price at a specified moment of time and for a certain amount of energy. 
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Australia’s National Electricity Market consists of a centrally coordinated dispatch process 
and a spot market. The centrally coordinated dispatch process is based on a security-constrained 
optimization problem modeled as a linear program [NEMMCO '01]. Generators must indicate a 
minimum output level (self-dispatch) and a maximum of ten blocks of energy with different 
prices to indicate how much energy they are ready to sell at each price in the following day. 
Unlike the E&W Pool, different prices can be submitted for each of the half-hour periods. 
Generators can also declare their ramp-rate limits. Energy buyers can either indicate a load or 
specify a set of quantities they are willing to purchase at different prices. Participants may revise 
their submitted quantities (but not their prices) up to five minutes prior to physical delivery. In 
the spot market, ex-post half-hourly clearing prices are determined for five-minute time frames 
and the agents’ positions are settled based on the energy actually transferred. Due to the large 
extension of Australian territory, regional prices are calculated to approximately account for 
transmission congestions and transmission losses. No capacity payment has been introduced. CfDs 
between market participants also take place. Two electricity futures contracts are traded in the 
Sydney Futures Exchange. 

In PJM, the ISO operates a voluntary day-ahead market that consists of a security-
constrained dispatch based on both bilateral schedules and voluntary offers and bids submitted 
by the agents. This model is used to determine the corresponding nodal prices (locational 
marginal prices [PJM '01]). In order to sell energy through this market, generators are required to 
submit variable-cost-based offers (one price per day). They can also indicate start-up costs and 
no-load costs or specify a maximum ramp rate. An alternative is to self-schedule with a buying 
counter party. The day-ahead market is cleared based on the result obtained for the first day of a 
unit-commitment problem with a one-week time horizon. Agents willing to hedge against high 
congestion charges can participate in markets for transmission rights. 

2.6.3.2 The spot market as a sequence of auctions 

This spot market model is the one considered as a framework for this thesis and is 
therefore treated in more detail. 

The auction approach 

Instead of relying on complicated optimization techniques, energy transfers are 
accepted in this spot market model based on a set of rules oriented to yield a solution 
close enough to the social optimum, while maintaining a reasonable degree of 
transparency13. Many of the concepts underlying the design of such spot markets come 
from the literature of auction theory [Klemperer '99]. As indicated in [McAfee '87], “an 
auction is a market institution with an explicit set of rules determining resource 
allocation and prices on the basis of bids from market participants”. Organizing an 
auction is a practical approach to solve the question of price formation, particularly 
when information about the costs or benefits associated to the supply of a certain 
resource are dispersed. 

Congestion management after the day-ahead market 

Spot markets designed as a sequence  of auctions are usually administered by an 
entity different from the ISO and typically start to operate with a day-ahead session. 
The day-ahead market clearing process is frequently based on a single-node 
assumption. Once the day-ahead market clears, the ISO can assess the feasibility of the 
resulting transactions and allocate scarce transmission capacity. This may invalidate 
certain energy transfers, while new ones would be required to substitute them. An 
alternative is to identify network zones interconnected by tie lines that are likely to get 

                                         
13 Some observers have referred to these as “the second generation of power exchanges” [Millán '99] 
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congested. Whenever the day-ahead market clearing process results in congestion 
between two zones, the spot prices for these zones diverge, in order to reflect that 
consuming an additional energy unit in each zone has a different incremental cost. 

Ancillary services and balancing mechanisms 

As mentioned, ancillary services such as active power reserves are frequently traded 
independently from energy. In many cases, even distinct market mechanisms are 
established for different types of reserve according to their speed of response. 
Additional subsequent short-term market mechanisms such as hour-ahead or real-
time/balancing markets are provided to give the agents the possibility of adjusting 
their positions prior to physical delivery. 

Offers and bids 

Agents willing to transfer energy through these sequential market mechanisms must 
submit sell offers or buy bids to indicate the prices at which they are willing to perform 
transactions. The specific format with which offers and bids have to comply in order to 
be valid is another factor that conditions participants’ behavior to a certain extent. In 
the existing spot markets that have been conceived as sequences of auctions, offers’ 
formats differ notably from one case to another. Some of the attributes that cause 
these differences to arise are listed below: 

i) The most relevant feature is the amount of information that an offer must include. 
Simple offers (also know as one-part offers) consist only of a quantity (e.g. an 
amount of MWh for energy markets) and a price per unit of product (e.g. in 
€/MWh). In contrast, complex or multi-part offers include supplementary cost 
data (such as start-up costs or no-load costs) and/or information about the 
generation units’ technical constraints (minimum stable output, maximum 
capacity, ramping-rate limits, etc.) Complex offers require complex auction designs 
that sacrifice transparency in their intent to achieve higher efficiency levels. 
Indeed, complex offers are frequently used in conjunction with market mechanisms 
that are closer to the concept of optimization than to the idea of auction. The 
obligation to incorporate these complex conditions to offers and bids reduces the 
flexibility of participants to operate. 

ii) In some spot markets offers must be kept invariable throughout the day (as in the 
E&W Pool), although in the majority of cases offers can vary between trading 
periods. This gives participants additional degrees of freedom, particularly if 
simple offers are allowed. 

iii) Some systems permit portfolio bidding (as the CALPX, before the crisis) whereas 
others require the identification of the network zone or node to which the offer is 
referred (e.g. the NordPool) or even the generating unit that corresponds to each 
offer (e.g. Spain). 

iv) The number of offers that can be submitted to sell the energy produced by each 
generating unit may be limited (in Spain, each generating unit can offer up to 
twenty-five blocks of energy at different prices in each hour, whereas in Australia a 
generator is limited to specifying ten different prices). 

v) Although currently uncommon, demand-side bidding may not be allowed. 
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Pricing 

Two pricing schemes can be adopted for these auctions. On the one hand, under the 
uniform pricing formula, all transactions are valued at the same price, p*, irrespective 
of the prices submitted both by winning sellers and buyers. This approach is supported 
by standard microeconomic theory which clearly states that given the equilibrium 
price, p*, the amount of product that the demand side is willing to purchase is equal to 
the quantity that the supply side is willing to deliver. The benefits of this pricing 
scheme are shared between sellers and buyers. 

On the other hand, it may not be evident that generators should be paid the price 
of the most expensive accepted MWh (marginal or equilibrium price) rather than the 
price they actually offered. Uniform pricing, together with the unusually high volatility 
of electricity spot prices, seem to benefit inframarginal generators in excess, especially 
when price spikes occur. Advocates of price discrimination argue that the pay-as-bid 
policy eliminates this possibility and reduces the incentive of large generation 
companies to artificially increase marginal prices. However, several objections can be 
formulated against the pay-as-bid rule [Vázquez '00]. Firstly, price spikes take place 
typically when generation is scarce and should be seen as an economic signal for 
capacity expansion. It is well documented that generation units with lower short-term 
marginal costs typically require larger investments for their installation which must be 
recovered through continuous long-term operation. On the contrary, units with higher 
incremental costs typically operate during on-peak hours and require price spikes to 
recover their capital costs. Secondly, the pay-as-bid approach is not an incentive-
compatible mechanism, as it induces agents to submit offers that differ from their 
actual short-term marginal costs in order to recover their long-term average costs. 
Finally, small generation companies are likely to suffer more than large ones under the 
pay-as-bid rule, given that their revenues depend solely on their offers and not on the 
price set by others. This may also deter new entrants. In this thesis, all the sell offers 
accepted in a certain auction are assumed to receive the same price, which is equal to 
the price paid by all accepted buy bids. 

Final spot prices are typically calculated ex-ante, based on the sell offers and buy 
bids submitted by participants to each of the market mechanisms. They arise from the 
aggregation of the sequence of market-clearing prices and include terms referred to 
energy, ancillary services, transmission losses, congestions or capacity payments, if any. 
Except for the cases where some sort of zonal pricing is in force, the spot price is 
uniform. 

Non-mandatory spot market 

Spot markets designed as a sequence of auctions are typically non-mandatory. 
Market participants can always choose to participate in OTC markets or enter in 
longer-term physical bilateral contracts. Therefore, they are endowed with a wider 
range of possibilities to perform their business, while at the same time they bear the 
risk of making their own decisions. Generators, for instance, have freedom to decide 
when to start up and the amount of energy they wish to sell at each price. Whether 
they recover their start-up and variable costs is their sole responsibility. As in the 
poolco model, hedging through financial bilateral contracts such as CfDs is frequent, 
although the variety of contractual forms (options, swaps) is usually wider. 
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In California, both the day-ahead and hour-ahead markets operated by the CALPX were 
designed as auctions based on the simple hourly sell offers and buy bids submitted by 
participants. These were aggregated to form hourly offer and demand curves whose intersection 
determined the hourly market-clearing price. Agents were not required to identify the particular 
node of the transmission network to which each offer was referred, so portfolio offering was 
allowed. Once the day-ahead market cleared, the agents had to identify the nodes corresponding 
to the accepted offers, so that the CALPX could submit a detailed balanced schedule to the 
CAISO. Additionally, other entities called Scheduling Coordinators (SCs) could be licensed to 
submit hourly balanced schedules to the CAISO. Based on this information, the CAISO then 
obtained an adjusted schedule to avoid congestions. This resulted in different zonal market-
clearing prices and network usage charges. In the subsequent hour-ahead market, bids and offers 
were accepted up to two hours before actual delivery. Markets for ancillary services included 
AGC/frequency regulation, operating reserves and replacement reserves. Although some observers 
consider this design as the primary cause for the California’s electricity market crisis, similar 
frameworks have been adopted in other European countries that are performing well. 

In the Nordic Power Market, the spot market operated by NordPool, Elspot, is based on 24 
hourly auctions for the following day (day-ahead market). Market participants submit simple 
hourly sell offers and buy bids that lead to hourly aggregate offer curves and aggregate hourly 
demand curves. The intersection of both curves determines the spot price for each hour. As 
participants are not required to indicate which generating unit corresponds to each sell offer, 
portfolio bidding is permitted. However, they must specify their bidding area, so that if the power 
flow due to the spot market transactions exceeds the existing transmission capacity between 
bidding areas, slight differences arise between zonal spot prices. Participants must also make an 
ex-ante notification of any bilateral contracts traded up to that point. An hour-ahead balancing 
market, Elbas, also exists for Finland and Sweden that allows agents to trade up to two hours 
prior to delivery and which is in continuous expansion. Additionally, the existing transmission 
system operators call for real-time bids for upward and downward regulation to keep the balance 
between generation and demand, thus providing a price for participants’ power imbalances. 

In Spain, the sequence of market mechanisms devised to promote competition in the provision 
of energy and ancillary services is very similar to the ones implemented in California and 
Scandinavia. The day-ahead market consists of 24 hourly auctions based on the complex hourly 
offers presented by generators and the simple hourly bids submitted by energy buyers. It assumes 
a single-bus situation and yields a unique reference spot price for each hour of the following day. 
In spite of the possibility of tendering complex sell offers, the market outcome is essentially the 
result of matching the aggregate offer and demand curves. Complex conditions include a 
minimum daily payment required by each generator to operate either as a fixed amount or 
dependant of its total sale of energy, upward and downward ramp-rate limits and others. All 
agents are asked to indicate the generating unit that corresponds to each offer (in other words, 
portfolio offering is not possible). After the day-ahead market clears, a congestion management 
process is carried out by REE, which results in modifications of the previous schedule. Generators 
that are forced to decrease their output to alleviate transmission constraints receive no 
compensation, while those that are required to increase their production receive the price they 
offered in the day-ahead market. Participants can adjust their physical positions in subsequent 
sessions of the on-day market until one hour prior to physical delivery. In addition, markets for 
ancillary services such as frequency control or spinning reserve also take place. 

In Italy, the market operator, GME, will manage a national wholesale exchange system which 
will consist of five market mechanisms: a day-ahead market, an adjustment market, a congestion 
management procedure, a reserves market and a balancing market. Additionally, an entity owned 
by the system operator, GRTN, will be in charge of making wholesale purchases of electricity and 
selling it to the distribution companies to supply franchised consumers. Due to practical 
difficulties, the startup of this new regime is not expected until the end of year 2002. 

New Zealand’s can be defined as a hybrid design. Its non-mandatory spot market is based on 
simple sell offers and buy bids submitted by market participants for each half hour of the 
following day. A day-ahead session is performed that yields a proposed schedule and forecast half-
hourly prices. Agents are then free to change their offers and bids (both volumes and quantities) 
up to four hours prior to physical delivery. Transpower then obtains a least-cost dispatch based 
on the latest positions, thus determining nodal prices. 



2.6 Market mechanisms 27 

 

2.6.3.3 Continuous bilateral trading 

In the third spot market model, market mechanisms are designed to emulate 
continuous bilateral trading. Only E&W, after the introduction of NETA, and 
Germany fall under this category. In both cases, regulatory authorities perceive that 
the simplicity and flexibility inherent to bilateral trading between agents should yield 
an increase of liquidity and a reduction of wholesale electricity prices due to fiercer 
competition. The creation and operation of market mechanisms has been left to private 
initiative. 

In E&W, the only market mechanism that is still administered by the system operator, NGC, 
is the Balancing Mechanism, which opens three and a half hours prior to physical delivery. It is 
conceived as a means to ensure an efficient balancing of the system by the SO, whilst encouraging 
generators and ESPs to contract ahead for most of their requirements in forward, futures and 
short-term markets [OFGEM '99]. In the Balancing Mechanism, the SO accepts offers for 
electricity (generation increases and demand reductions) and bids for electricity (generation 
reductions and demand increases). Accepted offers are paid at the prices offered and accepted 
bids pay the prices bid. The largest power exchange by traded volume, UKPX, offers long-term 
cash- and delivery-settled futures, forward and option contracts. However, most trading is carried 
out via direct bilateral contracts between participants [OFGEM '01]. Additionally, UKPX and 
UK APX trade significant volumes of electricity in short-term markets. UKPX provides half-hour 
contracts which are traded in lots of 0.5 MWh from the start of the day until the opening of the 
Balancing Mechanism for the corresponding half hour. 

2.6.4 Information disclosure 

The release of information relative to the transactions performed through the 
existing wholesale market mechanisms is an issue of great concern for regulatory 
authorities. 

General agreement exists on the convenience of making publicly available the 
volume of energy transactions and the market clearing price for each market 
mechanism in every trading period. In the context of the spot market considered in this 
thesis, any agent can check whether his offers and bids have been adequately 
administered by simply comparing their prices with the corresponding uniform market-
clearing price. 

Information related to the technical performance of the existing generation 
technologies is also provided in some cases to guide generation companies when 
scheduling their units. 

In Norway and New Zealand forecast and actual reservoir levels are regularly published due to 
the relative importance of hydro power in both systems. ISOs in the US publish information 
about the scheduled maintenance of generating units, demand forecasts, power flows, loss factors, 
etc. through their Open Access Same Time Information Systems (OASIS). Australian NEMMCO 
provides information about generation schedules and actual generators’ output, as well as weekly 
estimations of supply and demand. In Spain, OMEL publishes the hourly energy sold in the spot 
market by each type of generation technology with a three-day delay. 

On the contrary, information on the transactions carried out by each participant 
should be treated as confidential information and kept private for a reasonable period 
of time, to avoid an undesirable surveillance of its behavior by rivals intending to force 
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coordinated bidding strategies. This consideration applies both to the spot market and 
to the long-term market mechanisms14. 

Until May 2001, Spanish OMEL informed participants about the hourly sales performed by 
every generating unit in each of the spot market mechanisms, although these data were not 
accessible to the general public. After a proposal by the regulatory commission, it was decided to 
delay the release of this information three months and to make it publicly available. 

Finally, the information about offers and bids submitted by participants receives a 
variety of treatments throughout the world. Revealing the particular offers and bids 
submitted by each participant is not appropriate because of the aforementioned risk of 
strategic coordination between agents. Quite the opposite, making offers and bids 
submitted by all agents public in an aggregate manner reduces the information 
asymmetries that would otherwise arise due the differences in participants’ relative size 
(it is obvious that a company with a 20 % market share also controls 20 % of the 
market information). 

In the E&W Pool, although bidding information was made available, the complexity of the 
market clearing and pricing mechanisms rendered it extremely difficult to establish a link 
between offers and the system marginal price [OFGEM '99]. In Australia and New Zealand 
bidding data is published with a 24-hour delay. In Spain, OMEL makes aggregate bidding data 
publicly available after each spot market session, whereas detailed information about the offers 
and bids submitted by each participant is published with a three-month delay. In California 
before the crisis aggregate bidding data was not released until three months had passed. In PJM 
the delay is extended to six months. In the NordPool individual offers, bids and contracts are 
treated as confidential information. 

In this thesis it is assumed that the MO publishes the following information 
immediately after the clearing of every market mechanism: 

i) Hourly volume of transactions. 

ii) Hourly market clearing prices. 

iii) Hourly aggregate offer and demand curves. 

No specific hypothesis is formulated on the release of information relative to the 
operation of long-term market mechanisms, which is irrelevant for the purposes of this 
thesis. 

2.7 The electricity marketplace considered in this thesis 
This section recapitulates the hypotheses assumed hitherto and provides further 

details concerning the operation of the power exchange that will be considered for the 
developments of this thesis. 

Table 2.1 summarizes the assumptions made in previous sections regarding the main 
aspects of the electricity marketplace under consideration. 

                                         
14 However, in [Lien '00] it is argued that if long-term forward positions were published they would serve 
incumbent generators as a device to transmit potential entrants its commitment to display an aggressive 
behavior in the spot market, which should lead to a more efficient use of the existing resources. 
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Transmission No significant transmission constraints Infrastructures 
Generation A variety of generation technologies 
Regulatory authorities Market power is not a long-term sustainable strategy 

System operator 

Independent. 
Responsible for the security of the system. 
Operates the transmission network. 
Schedules the supply of ancillary services. 

Institutions 

Market operator 
Independent. 
Operates a non-mandatory power exchange. 

Wholesale supply 
Generation companies. 
Objective: maximize long-term profits. Market 

participants 
Wholesale demand 

Energy service providers (ESPs). 
Intermediaries between generators and consumers. 
Energy. Physical products 
Active power reserves. 
Long-term mechanisms for futures, options, CfDs, etc. 

Time frames 
Short-term spot market: 
 Sequence of market mechanisms. 
 Hourly auctions. 
 Simple offers and bids. 
 Uniform pricing. 

Hourly volume of transactions. 
Hourly market clearing prices. 

Market 
mechanisms 

Information disclosure 
Aggregate offer and demand curves. 

Table 2.1. The electricity marketplace considered in this thesis. 

Given that the general objective of this thesis focuses on the development of optimal 
offering strategies for generation companies participating in electricity spot markets, it 
is crucial to provide additional details about the operation of these market 
mechanisms. The particular PX considered in this thesis includes both long-term 
market mechanisms and a spot market constituted as a sequence of short-term market 
mechanisms. Long-term market mechanisms are based on the continuous bilateral 
trading of both financial and physical contracts between participants. On the contrary, 
the spot market is designed as a sequence auctions administered by the MO and based 
on sell offers and buy bids submitted by the agents (Figure 2.1). 

 

Futures and options markets 

Bilateral negotiation 

OTC markets 

Several 
years 

One 
week 

One 
day 

Physical
delivery 

Spot Market 

POWER EXCHANGE 
Continuous trading Sequence of auctions 

 
Figure 2.1. Market mechanisms. 
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2.7.1 Long-term market mechanisms 

Two basic long-term contractual forms are considered in this thesis in order to 
evaluate their influence on the strategies adopted by the agents in the spot market. 
They are traded indistinctly in the PX or in OTC markets. 

A long-term contract c is an agreement to deliver a specific amount of energy cq  at 
a specified trading period n and a given location for a fixed price cp  per MWh. 
Contracts can be settled with the physical delivery of the corresponding energy by the 
selling party and a payment equal to the product c cq p⋅  by the buying counter party, 
in which case they are typically known as physical contracts. Alternatively, they can be 
settled financially, taking the spot price for that trading period, np , as a reference. In 
that case, the selling party receives from the buying counter party a net payment equal 
to ( )c c nq p p⋅ − , which is the definition of a contract for differences. 

A European call option o gives its holder (long position) the right (but not the 
obligation) to buy a certain amount of energy oq  at a specific trading period n and a 
given location for a fixed price op  per MWh. If the long party decides to exercise its 
right and the call option is physically settled, the option seller (short position) is forced 
to provide the amount oq , receiving a payment equal to o oq p⋅  in exchange, but only 
when the price in the spot market for that trading period, np , is higher than the 
option’s strike price op . On the contrary, if the option is financially settled, the long 
party receives a payment equal to ( )o n oq p p⋅ −  when the spot price is higher than the 
strike price. Conversely, the holder of a European put option has the right to sell an 
amount of energy at a fixed price. The short party is forced either to purchase that 
energy at the strike price (physical settlement) or face a payment equal to ( )o o nq p p⋅ −  
when the spot price is lower than the strike price. 

Although a wider variety of contractual forms could be defined, it would add little 
to the developments of this thesis. Similar approaches to the ones that will be proposed 
for these two basic contracts can and should be used to evaluate the influence of 
forward contracts on the optimal offering strategy of an agent in the spot market. 

2.7.2 The spot market as a sequence of market mechanisms 

As mentioned, a reasonable approximation to Schweppe’s definition of the spot 
price of electricity can be obtained if the optimal scheduling problem is decomposed 
into a sequence of market mechanisms, allowing sellers to gradually allocate their 
resources and buyers to gradually carry out their purchases. The spot market 
considered in this thesis has a structure similar to the ones implemented in Spain or in 
California before the crisis. It will consist of a day-ahead market, a congestion 
management procedure, an adjustment market, a reserves market and a balancing 
mechanism (Figure 2.2). Italy’s proposed spot market also follows this design. 

Day-ahead 

market 

Congestion 
management 
procedure 

Adjustment 

market 

Reserves 

market 

Balancing 

mechanism 
 

Figure 2.2. Sequence of spot market mechanisms. 

It is obvious that in such a spot market the main market mechanism is the day-
ahead market. This does not imply that the largest volume of transactions will be 
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performed through the spot market, given that long-term bilateral contracting and 
OTC trading are also allowed. This thesis, however, focuses on the spot market and, 
particularly, on the day-ahead market. Due to the abovementioned assumption on 
transmission capacity, the congestion management procedure is ignored hereafter. 

2.7.3 Spot market mechanisms as auctions 
The spot market considered in this thesis takes the form of a sequence of repetitive 

sealed-bid15 multi-unit16 uniform-price17 double18 auctions. More precisely, each market 
mechanism comprises a set of hourly auctions19. For instance, the day-ahead market is 
constituted by twenty-four hourly auctions that take place one day in advance. The 
adjustment market has several sessions, each one including auctions for several hours. 
The balancing mechanism has hourly sessions, each one consisting of a single auction 
for the following hour. The active power reserve market is held shortly after the day-
ahead market and comprises twenty-four hourly auctions20. Participants willing to 
exchange energy through each market mechanism have to submit sell offers and buy 
bids compliant with the particular format that we specify below. 

2.7.4 Offers and bids 
In this thesis, the mechanisms integrated in the spot market run based on simple 

sell offers and buy bids. Participants are allowed to operate as a portfolio in the day-
ahead market and the adjustment market, although they are required to submit a 
detailed schedule after the adjustment market clears. They have no limits on the 
number of offers or bids they wish to submit and are allowed to tender different ones 
for each hour. Demand-side bidding is possible in all energy markets, although not in 
the reserve market, where the ISO acts as a single buyer. 

2.7.5 Market clearing, pricing and settlement 
Based on the offers and bids submitted by participants, the spot market determines 

the amount of each product (e.g. energy) that each seller must supply, the quantity 
that each buyer purchases, the payments that sellers receive and buyers afford and the 
manner in which these pecuniary transactions are financially settled. 

The hourly double auctions that constitute each of the spot market mechanisms are 
mutually independent. Consequently, every hourly auction has its own clearing, pricing 
and financial settlement, even when several hours are simultaneously cleared. For 
instance, although the twenty-four hourly auctions that form the day-ahead market are 

                                         
15 In a sealed-bid auction, each participant ignores the bids submitted by the rest of participants. 
16 In a multi-unit auction, a variable quantity of the resource is allocated, which may have or not a 
capacity limit. 
17 In a uniform-price auction, all buyers pay the same price and/or all sellers receive the same price. In 
contrast, if price discrimination is implemented, each buyer pays a different price and/or each seller 
receives a different price. Although this can be an adequate policy if participants are asymmetric, price 
discrimination may discourage agents from revealing their actual valuation of the resource. In other 
words, price discrimination may prevent the auction from being an incentive-compatible mechanism. 
18 According to [McAfee '87], “in a double auction, several buyers and several sellers submit bids 
simultaneously. The double auction is a stylized representation of organized exchanges such as stock 
exchanges or commodity markets.” 
19 Without loss of generality, the spot market trading period in this thesis will be one hour. 
20 This spot market design almost coincides with the one currently operating in Spain. In this manner, 
the information relative to the offers and bids submitted to the Spanish spot market can be used for the 
numerical examples included in this thesis. 
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cleared at the same time, the results of one of these auctions are based only on the 
offers and bids submitted by participants for that specific hour. 

Every auction follows the same clearing and pricing rules, whether they are part of 
the day-ahead market, the adjustment market, the balancing mechanism or even the 
reserve market, whose demand is determined by a single buyer, the ISO. 

The clearing process for a certain hourly auction evolves as follows. The set of sell 
offers submitted for that hour yields an aggregate offer curve, whereas the buy bids 
form an aggregate demand curve, as represented in Figure 2.3. According to the most 
basic microeconomic equilibrium theory, the intersection of both curves determines the 
volume of transactions q* that should take place. Indeed, sell offers placed below the 
intersection are ready to supply an amount of energy q* if the price is p*, whereas, 
given that price, buy bids above the intersection are willing to consume the same 
quantity q*. 

*p

*q Quantity q [MWh]

Price p 

[€/MWh] 
Buyers’ 

surplus 
Sellers’ 

surplus 

 
Figure 2.3. Market clearing for a certain hour. 

When aggregating offers or bids, the resulting curve can either be defined as a 
stepwise function (as in Figure 2.3) or can be transformed into a piecewise linear 
function. The adoption of either of these criteria slightly affects the quantities 
transferred, as shown in Figure 2.4. In this thesis both representations are indistinctly 
used, assuming that the number of individual offers and bids is large enough to make 
the difference between them negligible. 

 Quantity q [MWh]

Price p 

[€/MWh] 

Quantity q [MWh]

Price p 
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Figure 2.4. Intersection of the aggregate offer and demand curves. 

In this thesis a marginal or uniform pricing scheme is adopted for all the hourly 
auctions that constitute the spot market, as a better approximation to Schweppe’s spot 
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pricing theory. The clearing price is determined by the intersection of the aggregate 
offer and demand curves. In this manner, an offer is fully rejected if and only if its 
price is strictly greater than the market-clearing price. Similarly, a bid is fully 
discarded if and only if its price is strictly lower than the market-clearing price21 
(Figure 2.5). 

 Quantity q [MWh]

Price p 

[€/MWh] 

Quantity q [MWh]

Price p 

[€/MWh] 

 
Figure 2.5. Price discovery. 

The results of each hourly auction will be firm and will be financially settled 
accordingly. In other words, every seller with accepted offers is put under the 
obligation of providing the resultant amount of energy during the corresponding 
trading period and is granted a payment equal to the product of that quantity and the 
auction clearing price. Conversely, each buyer with accepted bids is forced both to 
consume the resultant amount of energy during the corresponding trading period and 
to face a payment equal to the product of that quantity and the auction clearing price. 

2.8 Conclusion 
This chapter describes the power system and the wholesale electricity market that 

constitute the framework for this thesis. It formulates relevant hypotheses concerning 
the infrastructure of the power system such as the limitations imposed by the 
transmission network on the physical realization of energy transfers or the technologies 
comprised in the system’s generation mix. Additionally, it identifies the institutions 
and participants that play a relevant role in the wholesale electricity market, including 
a characterization of market designs based on the degree of decentralization achieved 
on decision-making. Most importantly, this chapter defines the time frames supported 
by the market mechanisms considered in this thesis, as well as the rules that govern 
them. Particular attention is paid to the design of the spot market, which is critical for 
the developments of this thesis. The examples that illustrate the discussion confirm the 
relevance of the regulatory reforms that are affecting the worldwide power industry. 

                                         
21 In Spain, market-clearing prices are always determined by the last accepted sell offer and never by the 
last accepted buy bid. This approach implicitly assumes that the demand side is less active in the spot 
market than the supply side. 
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3. Modeling competition in wholesale electricity markets 

3 Modeling competition in 
wholesale electricity markets 

Due to the special features of electricity, the power industry has traditionally been subject to 
close analysis by practitioners, regulatory authorities and different research communities 
including economists, electrical engineers and experts on operations research. Complex 
operation planning models that focus on different decision stages of the provision of electricity 
have systematically been used during decades to minimize the costs of supply prior to the 
advent of competition. 

This modeling tradition has continued after the process of reforms. However, the operation of a 
deregulated power industry is the result of the interaction of a number of agents with different 
objectives. Consequently, this interaction must be somehow incorporated into models so that 
they adequately represent the decision-making process. Concepts from game theory, industrial 
organization theory, auction theory and other related fields have become frequent in electrical 
engineering publications during the last decade and great modeling advances have been 
accomplished due to the impressive research effort that has been made. This chapter presents a 
survey of the most relevant modeling approaches that have been proposed to represent 
competition in wholesale electricity markets, in order to justify the particular model chosen for 
the developments of this thesis. The challenges that this modeling approach entails are also 
identified.
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3.1 Introduction 
The main objective of the reforms that have been described in the previous chapter 

is to improve the efficiency of the power industry. It is believed that competition 
should force companies to reduce their costs and that this should lead to a reduction of 
the price of electricity paid by the final consumer. However, the special features of 
electricity as a commodity and the limited number of generation companies that 
typically take part in wholesale electricity markets sometimes lead to situations that 
are far from the ideal of perfect competition. Regulatory authorities have expressed 
their concern about the consequences of imperfect competition and are willing to 
identify measures that effectively mitigate these unwanted effects. From a different 
perspective, generation companies are faced with a new way of understanding their 
business, which is characterized by a much higher degree of risk exposure due to the 
uncertain behavior of their competitors and the threat of new entry. The urgent need 
to answer these and other related questions has triggered an unprecedented research 
effort devoted to the development of conceptual models that shed light on the possible 
outcome of these reforms. 

A wide range of modeling approaches has been adopted to analyze competition in 
wholesale electricity markets. Differences between models can be identified in a variety 
of attributes, such as the hypotheses formulated by the modeler/analyst about the 
agents’ behavior, the specific purpose of the ongoing analysis, the characteristics of the 
underlying power system, the detail with which the elements of the power system are 
represented, the organization of the corresponding wholesale electricity market or the 
technique used to obtain numerical results. 

The objective of this chapter is to provide a general framework that justifies the 
particular model selected to represent competition in this thesis. A succinct 
characterization of the existing modeling proposals is performed, rather than an 
extensive review, which is a task that several authors have already successfully 
addressed [Kahn '98], [Ventosa '01]. Each modeling approach is illustrated with 
references to representative works. 

The problem of modeling the behavior of a finite number of agents that try to 
maximize their profits in a competitive setting is a ground where a variety of fields of 
knowledge (microeconomic theory, auction theory, game theory, etc.) get mixed up, 
providing different perspectives that significantly enrich the analysis. Although many 
of the existing wholesale electricity markets are based on the interaction of both the 
supply and the demand side, research efforts have concentrated on modeling 
competition between generation companies, while treating wholesale energy buyers in 
an aggregate manner. According to [Ventosa '01], models used to analyze competition 
between generators can either focus on the behavior of a single generation company or 
explicitly represent every individual generation company that participates in the 
market. This particular scheme is the one followed in this chapter to organize the 
review. 

3.2 Models that include an explicit representation of each 
generation company 

Models that fall into this category try to estimate the outcome of a wholesale 
electricity market as a result of the interaction of a number of agents that are assumed 
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to behave rationally1. Each agent develops his2 strategies based on the characteristics 
of his generation units, the limits imposed by the transmission system and his 
perception about the past, present and future behavior of the rest of agents (including 
both rival generators and demand-side participants). In practice, two main types of 
models can be identified according to the approach adopted to obtain numerical 
results: equilibrium models and simulation models [García-González '01]. 

3.2.1 Equilibrium models 

Equilibrium models have been extensively applied to the case of the power industry 
during the last few years in order to predict its evolution under the new regulatory 
framework. In particular, they have been used to explore possible market outcomes 
that may result under an industrial structure with a limited number of relevant agents 
(oligopoly). The wide range of applications that have been proposed confirms the 
interest of this approach, although it also has lead to a certain degree of confusion. As 
mentioned, the development of one of these models requires the combination of several 
disciplines and each specialist puts the accent on the issues that are more familiar to 
his or her background. 

In an equilibrium3 model, a problem is formulated in which each agent is assumed 
to choose his best strategy4 based on certain conjectures5 about the behavior of the 
relevant rest of the world. To search for a solution, the modeler must either enumerate 
all the possible combinations of strategies or derive the optimality conditions that 
represent each agent’s decision process. The great advantage of deriving optimality 
conditions is that their interpretation reveals the incentives that drive the agents’ 
decisions. In some cases, under certain simplifications, it is possible to reach a closed-
form expression of the solution. In others, sufficient conditions can be found that 
guarantee that a given set of strategies is an equilibrium. In practice, the possibility of 
obtaining numerical results for large study cases reinforces the validity of a modeling 
approach. 

Equilibrium models can explicitly take into account the repetitive aspects of 
wholesale electricity market mechanisms. However, dynamic equilibrium models have 
not attracted much research interest, mainly because of their inadequacy to incorporate 
a detailed representation of the wholesale electricity market. Simulation techniques 
have proven to be an interesting alternative to address dynamic large-scale problems. 

                                         
1 A rational player takes the actions that lead toward his highest expected payoff. 
2 In this thesis, a singular genderless agent is referred to as ‘he’ and the agent’s position as ‘his’. 
3 The definition of equilibrium most commonly used is that of Nash: an equilibrium point is such that 
each player’s mixed strategy maximizes his payoff if the strategies of the others are held fixed [Nash '51]. 
4 In game theory, a player’s strategy is a rule (or function) that associates a player’s move with the 
information available to him at the time when he decides which move to choose. In the context of 
industrial organization, firms’ strategies take the form of quantities, prices or, less frequently, supply 
functions that express the amount of product that each firm is willing to sell at each price. 
5 Conjectures about each rival can involve assumptions about his actions (which may be correctly 
estimated or not), his real actions (if the firm’s decisions are taken after the rival’s move has been made) 
or his decision rules (which, again, may be correctly estimated or not). 
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A good analysis of the influence of repetition on the behavior of agents participating in 
electricity markets can be found in [Rothkopf '99]. From the perspective of auction theory, daily 
repetition reduces the advantages of progressive auctions with respect to single-shot sealed-bid 
auctions and diminishes the pernicious effect of selecting winning offers and bids using rules that 
only yield approximately optimal solutions. On the other hand, repetition increases the threat of 
tacit collusion between participants. A sociological analysis reveals that the agents that 
participate in repetitive auctions end up forming a social group and tend to cooperate in order to 
defend their common interests. From the viewpoint of game theory, the effect of repetition is 
analyzed under the light of the prisoner’s dilemma. When this game is repeated a large but finite 
number of times the best strategy is to deceive the rival. On the contrary, if the game is played 
an infinite number of times, the best strategy is to collude. 

In [Fabra '99] a dynamic model is used to evaluate the extent to which repetition and the 
uniform pricing rule can facilitate collusive practices in wholesale electricity markets. Fabra 
considers a repeated game of capacity-constrained price competition6 between two firms that 
interact for an infinite number of periods. Both firms have constant and equal marginal costs, as 
well as equal production capacity. Demand is modeled as a random variable. The author admits 
that the model is oversimplified, a necessary toll that must be paid in order to extract relevant 
conclusions when dynamics are included in an equilibrium model. In particular, the author argues 
that assuming two symmetrical firms and a single generation technology does not determine the 
findings of this research, which would still be valid in more complex settings. Its main conclusion 
is that tacit collusion is more likely to arise in a uniform pricing context. Another relevant factor 
is the size of the competing generation companies (the larger a company, the less interest it will 
have in reducing prices to punish other companies for deviating from the collusive equilibrium, 
whereas the smaller a company, the greater its incentive to break that equilibrium). 

In [Barquín '00] a methodology is proposed to calculate water value based on dynamic game 
theory. A duopoly setting is considered where firms play a repeated Cournot game with uncertain 
inflows. At every stage each firm decides its thermal and hydro output in order to maximize its 
present and future profits. By discretizing both the probability space and the admissible reservoir 
levels, the game is solved via the traditional backward dynamic programming technique. Water 
value is calculated as the incremental profit obtained due to an additional unit of hydro reserves 
at the beginning of the game. Although the study case presented by the authors is rather simple, 
guidelines are given to extend this approach in order to handle more complex situations. 

Quite the opposite, static equilibrium models have been profusely used under the 
assumption that agents decide their strategies simultaneously and are not able to react 
to their rivals’ decisions. Proposals have ranged from the basic Cournot7 model to more 
refined versions that include increasingly complex representations of the players’ 
strategies. Particularly, supply function equilibrium (SFE) models have received much 
attention due to the fact that many of the wholesale electricity market mechanisms are 
organized as auctions in which each participant submits a supply curve so as to 
maximize its profits in the context of an uncertain demand curve (see appendix A for a 
definition of the concept of residual demand curve). Thus, competition in electricity 
markets can be understood as a game in which players take their strategic decisions in 
the form of offers that constitute supply functions. 

3.2.1.1 Cournot model and extensions 

Cournot’s oligopoly model has proven to be useful for a diversity of purposes. In 
particular, it has frequently been used to support market power studies [EMF '99]. 

                                         
6 The most basic model of price competition is Bertrand’s model, which consists of a sequential game in 
which firms simultaneously choose the prices they want to receive for their production, followed by 
consumers choosing how much to purchase, with full information about each firm’s posted price. 
7 The Cournot model is a simultaneous move game in which the strategy of each firm i  is its output 
level  iq  of a homogeneous good. Moreover, each firm correctly estimates the output jq  decided by each 
of its rivals j . Demand is represented by means of a curve ( )q p  that indicates the amount of that good 
q  that is consumed at each price p  [Daughety '88]. 
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Some of these market power analysis incorporate simple Cournot models merely to 
illustrate researchers’ assertions. 

[Oren '97] presents a theoretical analysis of the possible consequences of relying on a market 
for financial transmission congestion contracts (TCCs) as a substitute for a design with physical 
transmission rights. In this context, the holder of a TCC between a certain pair of nodes has the 
right to receive a payment indexed to their nodal price difference. Using a Cournot model, the 
author shows that, if generators are assumed to correctly estimate the influence of their decisions 
on transmission congestions and the unconstrained Cournot equilibrium is not feasible due to 
limited transmission capacity, a unique equilibrium does not exist. The reason is that generators 
can offer their production at a number of different prices and perform the same volume of energy 
transactions (those allowed by the available transmission capacity). In practice, generators in 
exporting nodes are expected to identify the price at which the energy demanded in the importing 
region is equal to the existing transmission capacity and offer their production at that price, thus 
capturing all congestion rents. 

Other authors rely on the Cournot model to obtain a numerical evaluation of the 
potential for market power in a certain electricity industry as an intermediate solution 
between excessively simple concentration measures, such as the Hirschman-Herfindahl 
Index (HHI)8 or the Lerner Index9, and the obscurity of more sophisticated equilibrium 
models, such as SFE. 

In [Borenstein '98], Cournot model is used to evaluate the influence of market power on the 
emerging California electricity market. The authors admit that Cournot model probably 
overstates the problem of market power due to the inelasticity of the demand curve faced by each 
of the oligopolistic agents. The SFE alternative, although appraised by the authors, is left aside 
due to its inherent complexity and the difficulty of expressing generation marginal costs in the 
form of smooth functions. The transmission network is represented as a radial grid with 
California importing energy from the three neighboring regions through a set of major flow gates. 
The three independent owned utilities (IOUs) in California are modeled as Cournot players10 
facing a competitive fringe consisting of both minor in-state producers and out-of-state companies 
whose sales are constrained by limited importing transmission capacity. Marginal cost functions 
are constructed for each company including steps due to changes of technology. Fringe firms’ 
supply curves are subtracted from market demand, so as to derive a residual demand curve for 
the three Cournot firms that is more elastic than the original demand function. The authors 
recognize the difficulty of modeling the optimal allocation of hydro resources in such a setting 
and use an approximate technique known as “peak shaving”. The algorithm they suggest to 
calculate Cournot equilibrium is iterative: the profit-maximizing output of each supplier is 
determined keeping the production of the rest of players fixed and the process is repeated for each 
player until convergence is reached. The method is used to simulate the monthly operation of the 
CalPX under a variety of market situations (different demand elasticities, varying hydro reserve 
levels, divestiture scenarios, etc.) to evaluate the extent to which the IOUs might exert market 
power. 

                                         
8 The HHI sums the squares of the market shares of all firms in the relevant market to arrive at a 
statistical measure of concentration. 
9 The Lerner Index attempts to measure market power by subtracting a firm's marginal cost from its 
price, and then dividing the result by the firm's price. 
10 Authors frequently use the term “Cournot player” when they refer to an agent whose strategic 
variable is his output. This does not imply that the model under consideration is Cournot’s model, which 
has a precise definition. Indeed, the standard one-leader Stackelberg model can be extended to a 
multileader situation introducing Cournot players. In [Daughety '88] a case of n  firms with m  leaders 
and n m−  followers is considered. Each of the followers takes the aggregate output of the leaders as 
given, makes conjectures about the outputs of all the followers and produces an output. Knowing this, 
each leader takes the response function of each of the followers, makes conjectures about the outputs of 
the rest of leaders and computes a best response output to produce. Thus, the followers “play Cournot” 
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In some cases market analysis disregards the influence of the transmission network 
and restricts its attention to the behavior of generation companies. Traditional 
operation planning models that were used in the previous regulatory framework to 
obtain single-node cost-minimizing hydrothermal schedules have been adapted to the 
new situation by including a representation of the generators’ strategic decisions fall 
into this category. 

In [Scott '96] a medium-term hydrothermal coordination model based on stochastic dual 
dynamic programming (SDDP) is used to explore the outcome of New Zealand’s wholesale 
electricity market. The subproblem that is solved at each stage of the SDDP procedure is 
formulated as a Cournot game in which generation companies maximize their profits taking into 
account future benefits due to water reserves saved for subsequent stages. Each stage is divided 
into a number of subperiods that represent different demand levels. Consumers at each subperiod 
are represented by means of an aggregate demand curve. The influence of forward contracts and 
options is also accounted for. The equilibrium at each subperiod is approximated by calculating 
the aggregate output level that makes the average marginal cost equal to the average marginal 
revenue. This yields an equilibrium price, which is then used to determine the output level of 
each generation company. The marginal revenue obtained for each of the subperiods of a certain 
stage can be used to construct a water value curve for that stage (demand curve for release, 
DCR). A future-profit curve for the water stored in the reservoirs at the end of the current stage 
(demand for water in storage, DCS) can then be built by aggregating the DCRs of future stages. 
The authors suggest using the DCS obtained for each week of the year as input data for the 
short-term scheduling of the generation system. This procedure has been successfully applied to a 
duopoly case representing New Zealand’s power industry under a number of forward contracting 
scenarios. The relevant conclusion is that a high level of forward contracting and/or demand-side 
responsiveness reduce the likelihood of strategic gaming in the spot market. 

In general, early intents to apply Cournot’s oligopoly model to the case of electricity 
markets did not rely on the special structure of the resulting problem. This resulted in 
complicated solution procedures or approximate (and inexact) formulations. However, 
fruitful conclusions were reached from this research that paved the path for future 
developments. 

In [Ramos '98] and in [Ventosa '99] a set of constraints are introduced in a traditional 
medium-term linear programming operation planning model to represent the strategic behavior of 
generation companies as Cournot players. Large-scale problems can be solved under this 
framework with a conventional LP solver, although, in rigor, the solution is only an 
approximation of the equilibrium. 

Currently, equilibrium models based on Cournot’s conjecture are usually formulated 
as mixed complementarity problems (MCP, [Cottle '92]) or, alternatively, as a 
system of variational inequalities, VI. In this manner, modelers benefit from the 
existence of powerful commercial solvers capable of solving large-scale MCPs [Billups 
'97] and from the fact that modeling algebraic languages such as GAMS have been 
specially adapted to this special kind of problems [Rutherford '95]. Both approaches, 
MCP and VI, have been successfully applied to perform market power analysis in 
which the transmission network plays a central role. 

                                                                                                                       
against all other firms, while the leaders “play Cournot” against the other leaders only. No leaders or 
followers are misjudging what any other player is doing. 
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[Wei '99] is the first attempt to evaluate the extent to which generators are able to exert 
market power or the influence of transmission pricing on energy trading under the MCP/VI 
framework. This paper focuses on the long-term equilibrium reached in a specific power system as 
a consequence of investment decisions and long-term contracts. Generators are represented as 
Cournot players that choose their output in order to maximize their profit, taking transmission 
prices and their rivals’ output decisions as fixed. The authors give three arguments to justify the 
validity of Cournot model for their purposes: its computational convenience, its adequacy to 
represent the long-term equilibrium reached by generators when deciding their optimal generating 
capacities and the possibility of extending Cournot analysis to treat more general types of 
equilibria. The transmission network is represented by the flow conservation equations only, so 
that phase-flow equations and thermal losses are neglected. Transmission pricing is carried out 
according to certain rules based on the amount of transmission services demanded by the agents. 
Consumers are represented by nodal demand functions. The equilibrium is formulated as a set of 
interrelated profit maximization problems where the strategy of each producer is constrained by 
those of others producers due to limited transmission capacity, a structure known as Generalized 
Nash Equilibrium (GNE). The authors transform this set of optimization problems into a single 
VI problem that can be solved with commercial solvers and provide sufficient conditions for the 
existence and uniqueness of the equilibrium. The situation of multiple equilibria identified in 
[Oren '97] when there is no market for physical transmission rights, arises again here. Even in 
those cases in which the VI problem has a unique solution, multiple equilibria may exist if 
transmission constraints are such that the GNE does not coincide with the unconstrained Nash 
equilibrium. However, if transmission prices correctly reflect the cost of congestions then, when 
the solution to the VI problem is unique, the equilibrium is also unique. A numerical example is 
solved involving transactions between a number of European countries under two transmission 
pricing schemes that do not guarantee a unique equilibrium: long-run average-cost pricing and 
long-run marginal-cost pricing. The results indicate that, due to the exercise of market power, the 
amount of electric energy supplied in a hypothetic European market might suffer a significant 
reduction. 

The VI approach has been used to evaluate the outcome of a variety of market 
designs under different assumptions about the strategic behavior of participants and 
with explicit consideration of the transmission network. Research efforts have been 
oriented to further analyze the influence of transmission pricing on participants’ 
behavior from the perspective of an integrated European electricity market. 

In [Daxhelet '01] a variety of electricity market designs are expressed in the form of VI 
problems. In this case, both generators and consumers are assumed to have no market power and 
are represented in terms of supply and demand curves, respectively. The relevant role is played 
by traders (power marketers) that purchase energy at generation nodes and sell it at demand 
nodes, making profit of the price difference that they may be able to obtain after paying for 
transmission services. Competitive traders are unable to exert market power, while oligopolistic 
traders act as Cournot players both with respect to generators and consumers. Power flows 
through the transmission network are calculated using the standard DC model. In this context, 
the authors formulate a number of market designs as VI problems and extract relevant 
conclusions from their analysis. In particular, the case of a wholesale electricity market with 
transmission constraints but no market for transmission services previously studied in [Wei '99] is 
revisited, although in this case the GNE is formulated as a quasi variational inequality problem 
(QVI). It is shown that, in the presence of transmission constraints, if no market for transmission 
services exists, the solution of the QVI is indeterminate and multiple generalized equilibria exist. 
The authors then consider a transmission system operator that maximizes its revenue taking 
congestion charges as fixed (price taker). Two congestion pricing schemes are explored under this 
perspective; Chao and Peck’s flow gate mechanism [Chao '96] and Schweppe’s nodal pricing 
approach. This research line is continued in [Smeers '01], where the concept of flow gate is 
extended to include limited transmission capacity that is not physically defined in terms of 
specific network elements and that may change over time. This allows to represent the limited 
cross-border transmission capacity between European countries considered by the European 
Association of Transmission Operators and suggests a dual perspective of the network: traders 
work with aggregate transmission capacities to perform their energy transactions and ISOs adapt 
this aggregate information to the physical reality of the transmission system. The authors also 
analyze how forward energy markets and markets for transmission rights interact with the spot 
market, in order to further evaluate the ability of traders to hedge against uncertain congestion 
charges through physical or financial transmission rights. 
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Similarly, the MCP approach has also proven to be a powerful framework to 
perform market analysis under a wide range of hypotheses with explicit consideration 
of a large number of generation units and network nodes. Studies have focused on the 
comparison of conflicting wholesale market designs such as the bilateral and poolco 
models. 

[Hobbs '01a] successfully combines elements of [Wei '99] and [Daxhelet '01] under an MCP 
framework, assuming a bilateral market in which the ISO allocates scarce transmission capacity. 
As in [Wei '99], each generation company decides its output on the belief that its rivals’ 
quantities are fixed (Cournot conjecture) and that transmission prices are not affected by its 
decisions (Bertrand conjecture). The author sees this latter assumption as a compromise between 
realism and computability, though overlooking the analysis of [Oren '97], where generators 
correctly anticipate the influence of their behavior on transmission prices. Power flows are 
calculated using the linearized DC approximation. Consumers are modeled by means of nodal 
linear demand functions. The grid owner allocates scarce transmission capacity by maximizing the 
revenues obtained from participants in payment for transmitting energy between different nodes. 
In this mechanism the grid owner considers congestion fees and participants’ transactions as 
fixed. This emulates a market for transmission rights in which generators do not exercise market 
power. In this framework, the cost of transmitting energy between a pair of nodes may not 
adequately reflect the difference between the prices at which energy is being traded in both nodes. 
The reason is that congestion charges are determined under the assumption of perfect 
competition, while generators perform their bilateral transactions acting as Cournot players, a 
dichotomy that is not easy to justify. An alternative framework similar to that in [Daxhelet '01] 
is then proposed in which a new type of agent, the arbitrageur, is able to detect price differences 
that exceed the cost of transmission and try to benefit from it. Arbitrageurs are assumed to 
behave competitively, ultimately leading to price differences that adequately reflect transport 
costs. Under this assumption the outcome of the bilateral market coincides with that of a poolco 
situation with Cournot generators: each generator receives for its production the price of its node, 
irrespective of the prices at which it sells energy to consumers in other nodes. A small numerical 
example consisting of a three-network node is solved to illustrate the previous analysis. 

From a different perspective, researchers willing to assess the hydrothermal 
coordination problem of a generation company operating in a wholesale electricity 
market have also frequently adopted the Cournot framework. 

[Bushnell '98], assuming a linear demand curve and firms with linear marginal costs, derives 
optimality conditions for the hydrothermal coordination problem that lead to a number of 
remarkable conclusions. Thermal units’ should be operated at output levels such that their 
marginal costs are equal to the company’s marginal revenue, as long as their capacity permits it. 
Hydro units should be scheduled so that the value of hydro resources (water value) is equal to the 
company’s marginal revenue in each planning period. Additionally, hydro reserves should be 
administered to equalize water value between different planning periods. 

In [Ventosa '00a] and in [Rivier '01] a medium-term (one year) operation-planning model for 
generation companies is formulated and solved using the MCP approach. Each generation 
company is represented as a Cournot player that schedules the operation of its units with the 
objective of maximizing its profits. Generating units are modeled with a significant level of detail, 
something unusual in an equilibrium approach. In particular, the medium-term management of 
fuel stocks and hydro reserves is optimized taking explicitly into account their chronological 
evolution. As usual, consumers are aggregated into a linear demand function. No reference is 
made to the transmission network. Optimality conditions are derived for each firm and 
interpreted under an operation planning perspective, leading to conclusions similar to those of 
[Bushnell '98]. Pumped-storage units are also included in this model and their ability to arbitrage 
between different planning periods is highlighted. This MCP approach is extended in [Ventosa 
'00b] to account for inflow uncertainty in the context of medium-term hydrothermal coordination. 
A stochastic dual dynamic programming procedure (SDDP) similar to that of [Scott '96] is 
proposed in which market equilibrium is computed at every stage as an MCP. Inflow uncertainty 
is assumed to have finite support and is represented by means of a scenario tree. Firms’ profits at 
each stage include not only present profits, but also future profits which are approximated by a 
piecewise linear function of the hydro reserves saved for subsequent stages. The SDDP algorithm 
proceeds backward, so that the slopes of the piecewise linear future-profit function at stage s  are 
obtained from the dual variables of the problem solved at stage 1s+ . This approach has been 
successfully applied to real-size numerical examples concerning the Spanish wholesale electricity 
market. 
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In conclusion, the assumption of generation companies behaving as Cournot players 
has been extensively used to conduct a diversity of analysis concerning the medium-
term outcome of a variety of electricity market designs, including different transmission 
pricing schemes and additional agents in the form of power marketers or arbitrageurs. 
The possibility of formulating these models under the MCP/VI framework and 
benefiting from specific commercial solvers capable of tackling large-scale problems has 
significantly contributed to the popularity of this approach. 

However, a number of drawbacks seem to question the applicability of Cournot 
model. Firstly, it relies on the demand function to determine equilibrium prices, given 
that generators’ strategies are expressed in terms of quantities and not in the form of 
offer curves. This seems to substantially deviate from the reality of electricity markets, 
where a significant number of market mechanisms are based on the offer and bid 
curves submitted by participants. Secondly, demand in short-term electricity markets 
is characterized by its inelasticity, which leads to extremely high prices in the Cournot 
framework. Additionally, Cournot model assumes that each participant knows exactly 
the decisions taken by his rivals and the shape of the demand function. These 
shortcomings appear to reinforce the idea that SFE is a better alternative to represent 
competition in electricity markets [Rudkevich '99]. 

The fact is that, in many wholesale electricity markets, generation companies have 
the possibility of increasing prices well above their usual levels. The reasons why they 
avoid doing so have already been pointed out in Chapter 2, but are difficult to 
quantify in a model. Nevertheless, although Cournot models may not yield accurate 
prices, they are generally perceived to adequately reflect the long and medium-term 
equilibria reached in wholesale electricity markets in terms of quantities. This is based 
on the intuition that, due to repetitive interaction, generators are able to correctly 
estimate the energy that their rivals are expected to produce during a time period of 
about one year11. This seems to reconcile Cournot’s assumptions with the dynamic 
aspect of electricity market mechanisms and the uncertainty about rivals’ strategy, 
when considering a medium-term model. Quite the opposite, uncertainty plays a major 
role in the design of strategies for short-term market mechanisms and must be 
explicitly considered in related decision-support models, such as the one developed in 
this thesis. 

3.2.1.2 Supply function equilibrium 

According to the previous section, a large number of models assume that generation 
companies both express their decisions in terms of quantities and perceive that their 
rivals also consider their output as the relevant strategic variable. 

In [Klemperer '86] it is shown that, in the absence of uncertainty and given the 
competitors’ strategic variables (quantities or prices), each firm has no preference 
between expressing its decisions in terms of a quantity or a price, because it faces a 
unique residual demand. This does not mean that, in the case of a duopoly, the four 
possible Nash equilibria yield the same outcome: they are all are different and so are 

                                         
11 When a coin is thrown it is impossible to know in advance whether the result will be heads or tails. 
However, if the coin is thrown a large number of times, an accurate prediction of the proportion of heads 
that will be obtained is straightforward and a measure of the maximum error that can be expected is 
available. 
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the corresponding firms’ profits. On the contrary, in the presence of uncertainty, it is 
no longer true that, given the strategic variable of the rival, a firm does not prefer one 
strategic variable to other. In other words, when a firm faces a range of possible 
residual demand curves, in general, it expects a bigger profit when expressing its 
decisions in terms of one of the strategic variables rather than in terms of the other. 
Two main factors make one firm prefer one strategic variable to other: the slope of its 
marginal cost curve and the probability distribution estimated for the residual demand 
curve. 

A step forward is to assume that firms are able to choose an intermediate strategy 
that consists of a supply function. This is the supply function equilibrium approach, 
which was developed in [Klemperer '89] and has proven to be an extremely attractive 
line of research for the analysis of equilibrium in wholesale electricity markets. 

In [Klemperer '89] a static simultaneous game is proposed in which each firm i  expresses its 
strategic decisions in the form of a twice continuously differentiable supply function, ( )

i iq S p= , 
that indicates the quantity iq  that the firm produces given a price p . In the absence of 
uncertainty, multiple Nash supply function equilibria exist for the case of a symmetric duopoly 
and a homogeneous product. When exogenous uncertainty about the demand curve is introduced, 
the number of supply function equilibria (SFE) is reduced to the set of trajectories that solve a 
system of differential equations in the region corresponding to possible realizations of the demand 
curve. A number of interesting results is obtained for the case of a symmetric duopoly and a 
homogeneous product. All trajectories pass through the origin ( )0,0  but do not intersect in the 
rest of their domain. In other words, each equilibrium outcome ( ) ( )0 0, 0,0q p ≠  that results from a 
demand realization is supported by a unique pair of identical supply functions. In particular, if 
uncertainty has bounded support, some of the trajectories are equivalent, at certain points, to the 
Cournot or Bertrand outcomes. Moreover, given a realization of the demand curve, the SFE 
outcome lies, in terms of price, output and profits, between the corresponding Cournot and 
Bertrand equilibria for that demand curve. The wider the range of possible demand curves, the 
narrower the set of trajectories that constitute an SFE. The existence of a unique SFE is proved 
under the particular assumption of linear demand, identical linear marginal cost curves12 and 
uncertainty with unbounded support. An analysis of the sensitivity of the solution with respect to 
the number of symmetric competing firms, the shape of the marginal cost curves and the demand 
curve is also performed. Results are extended to the case of differentiated products. The explicit 
consideration of demand uncertainty and of the firms’ ability to adopt more flexible strategies 
than a mere quantity or a price are the two major contributions of this new equilibrium model, 
whose assumptions and properties are defined by the authors in thorough detail. 

Calculating an SFE requires solving a set of differential equations, instead of the 
typical set of algebraic equations that arises in traditional equilibrium models, where 
strategic variables take the form of quantities or prices (in fact, the latter can be 
understood as particularizations of the general SFE problem under certain 
circumstances). SFE models have thus considerable limitations concerning their 
numerical tractability. In particular, it is very rare that they include a detailed 
representation of the generation system under consideration. On the other hand, they 
provide a more flexible framework to examine a wider range of strategies that 
simultaneously incorporate quantity decisions and price-setting tactics. The SFE 
approach was extensively used to predict the performance of the pioneering England & 
Wales (E&W) Pool, whose revolutionary design did not seem to fit into more 
conventional oligopoly models. The relative unimportant role played by the 
transmission network in this particular power system increased the relevance of these 
studies. 

                                         
12 It can be shown that, in the case of identical costs, marginal costs for zero output are irrelevant, given 
that a translation can be performed in the price domain that makes these marginal costs equal to zero. 
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In [Green '92] an analysis of the behavior of the duopoly that characterized the E&W 
electricity market during its first years of operation is performed under the SFE approach, which 
is seen as the best model to represent competition in the Pool. It is assumed that each company 
submits a daily smooth supply function, instead of the actual stepwise curve that results from the 
aggregation of the daily offers corresponding to each of the company’s generating units. The 
authors focus on a static Nash SFE, arguing that such an equilibrium is likely to be reached due 
to daily repetition and to the short delay with which offers are published. The demand curve 
faced by generation companies is extremely inelastic (demand-side bidding was almost inexistent) 
and uncertain due to its variation over time (in the E&W Pool offers were required to be kept 
invariable throughout the day). A novelty is the introduction of capacity constraints that restrict 
the number of SFE, eliminating those corresponding to lower equilibrium prices. Interesting 
conclusions that do not arise in other oligopoly models are reached. For instance, in the case of 
an asymmetric duopoly it is shown that the large firm finds price increases more profitable and 
therefore has a greater incentive to submit a steeper supply function. The small firm then faces a 
less elastic residual demand curve and also tends to deviate from its marginal costs. This could be 
seen as a case of tacit collusion, previously pointed out by [Bolle '92], where the large generation 
company suffers the consequences of the curse of market power and indirectly causes an increase 
of its rivals’ profits. The numerical example they provide considers the case of a symmetric n-firm 
duopoly with quadratic marginal costs and analyzes the influence of demand elasticity and of the 
number of firms on the resulting SFE for a one-year case based on demand data from three 
typical days of the E&W Pool. From the whole range of possible SFE the highest-price 
equilibrium is chosen, which implies an output reduction of more than 10% and a price increase 
of almost 100% when compared to the competitive outcome. The authors express their concern 
about these results, which they believe to be caused by an excessive concentration in the 
generation business due to an inadequate privatization policy. Further research on the influence 
that long-term contracts and the threat of entry may exert on the behavior of incumbent 
generation companies is conducted under the SFE approach in [Newbery '97]. 

The possibility of obtaining reasonable medium-term price estimations with the SFE 
approach is considerably attractive, particularly when conventional equilibrium models 
based on the Cournot conjecture have proven to be unreliable in this aspect mainly 
due to their strong dependence on the elasticity assumed for the demand curve. Indeed, 
the SFE framework does not require the residual demand curve neither to be elastic 
nor to be known in advance. Based on the assumption of inelastic demand further 
advances on the SFE theory have been reported that increase its applicability. 

In [Rudkevich '98a] a closed-form expression is obtained that provides the price for an SFE 
given a demand realization under the assumption of an n-firm symmetric oligopoly with inelastic 
demand and uniform pricing. Among all the possible SFE, the lowest-price one is considered, in 
contrast with the highest-price criterion followed in [Green '92]. Convergence problems due to the 
numerical integration of the SFE system of differential equations are thus overcome. This 
approach also allows to consider stepwise marginal cost functions, which is more realistic than the 
convex and differentiable cost functions typical in other SFE models. Consequently, the price at a 
certain time interval (e.g. one hour) is calculated as a function of the marginal cost curves, the 
demand for that time interval, the maximum expected demand during the period for which offers 
are valid (e.g. one day) and the number of identical generation companies under consideration. 
These theoretical results are applied to the 1995 case of the Pennsylvania power system with a 
varying number of symmetric firms. Days are classified into ten types according to their demand 
of energy so that ten different SFE are calculated, one for each day type. Planned capacity 
outages and a certain degree of uncertainty are also included in the study. Significant price 
markups13 are obtained for relatively low values of the Hirschman-Herfindahl Index. As expected, 
markups increase with the percentage of unavailable capacity and decrease with the number of 
symmetric firms and the degree of uncertainty about demand. The impact of a change in the 
payment rules (specifically, the substitution of the uniform pricing rule by the pay-as-bid rule) is 
explored with a slightly different perspective in [Rudkevich '98b]. 

                                         
13 The price markup for a certain output level is given by the difference between the actual price and 
the marginal cost corresponding to that output. 
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For numerical tractability reasons, researchers have recently focused on the linear 
SFE model, in which demand is linear14, marginal costs are linear or affine and SFE 
can be obtained in terms of linear or affine supply functions. In fact, this simplification 
was addressed for the first time in [Klemperer '89], where uniqueness of the equilibrium 
for the case of a symmetric duopoly with linear demand and linear marginal costs was 
proved. This line of research has since then witnessed substantial development, mainly 
due to its ability to handle situations with more than two asymmetric firms. 

In [Green '96] the case of an asymmetric n-firm oligopoly with linear marginal costs facing a 
linear demand curve whose slope remains invariable over time is considered. An SFE expressed in 
terms of affine supply functions is obtained. Uniqueness is not proved, based on the argument 
that the assumption of unbounded demand uncertainty is not appropriate for the electricity 
industry. Consequently, the author restricts the possibilities of the model to giving qualitative, 
rather than quantitative, predictions for an electricity market. Under this framework, three 
potential ways of increasing competition are evaluated: forcing incumbents to divest part of their 
generation assets, breaking them up into a number of smaller companies and encouraging 
additional entry. The model provides relative measures of the effectiveness of these alternative 
methods to mitigate market power. Further developments for the linear-SFE paradigm can be 
found in [Rudkevich '99], where the uniqueness of the affine SFE solution provided in [Green '96] 
is proved. The possibility of reaching such equilibrium through a repetitive learning process and 
its robustness with respect to demand uncertainty are assessed. 

In [Baldick '00], previous results are extended to the case of affine marginal cost functions and 
capacity constraints. Solutions for the SFE are provided in the form of piecewise affine non-
decreasing supply functions. The case of affine supply functions with no capacity constraints is 
considered first and a SFE solution is obtained in which the intercept of each firm’s supply 
function is equal to that of its marginal cost function, thus generalizing previous work by [Green 
'96] and [Rudkevich '99]. The uniqueness of this solution is based on the authors’ assumption that 
offer curves are required to be affine rather than on a formal proof. A step forward is to allow for 
piecewise linear supply functions so as to avoid negative productions at very low prices and to 
account for capacity constraints. When a firm finds that the price is too low to produce, it can be 
eliminated, so that equilibrium can be computed for the rest of firms. This yields a number of 
different equilibria, each one being valid for a certain range of prices. If the piecewise linear 
functions that result from different equilibria are non-decreasing then they constitute a valid 
piecewise linear SFE. Additionally, fringe firms with capacity constraints can be incorporated into 
the demand function, leading to a piecewise linear modified demand function. In this context, 
knowing the specific load-duration curve of the system under consideration turns out to be a 
requisite. The authors propose an ad hoc solution method to overcome this difficulty that 
provides a reasonable approximation. They use this method to predict the extent to which 
structural changes in the E&W electricity industry may affect wholesale electricity spot prices. 

In [Baldick '01], a comprehensive review of the SFE approach is performed. The authors first 
revisit the general SFE problem of an asymmetric n-firm oligopoly facing a linear demand curve 
(no explicit assumption is made relative to the firms’ marginal costs) and show the extraordinary 
complexity of obtaining solutions for the system of differential equations that results. In 
particular, they highlight the difficulty of discarding infeasible solutions (e.g. equilibria with 
decreasing supply functions). A number of assumptions typical in SFE analysis such as the 
requirement that supply functions remain invariable over time are then discussed to shed light on 
their implications. The stability of the range of equilibria that result in the symmetric n-firm 
oligopoly with affine marginal costs and no capacity constraints is also discussed. It turns out 
that, in this symmetric case, every SFE located strictly above the affine equilibrium is unstable, 
which suggests that those equilibria are unlikely to arise. In particular, it questions the choice of 
the high-price equilibrium made in [Green '92]. A detailed analysis both from a theoretical and a 
practical perspective shows that, except for the very special cases of symmetric firms, asymmetric 
firms with affine marginal costs but no capacity constraints or great variations of demand, it is 
extremely difficult to find solutions to the general SFE problem that are non-decreasing. 
However, once the non-decreasing constraints are enforced, the SFE that result are paradoxically 
strictly increasing, as if these constraints were not binding. Based on these ideas an iterative 
procedure to calculate feasible SFE solutions is proposed and extensively used to analyze the 
influence of a variety of factors such as capacity constraints, price caps, bid caps or the time 
horizon over which offers are required to remain invariable. 

                                         
14 According to [Baldick '00], the precise description would be “affine demand”, whereas the term 
“linear” should be restricted to affine functions with zero intercept. 
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Some authors have used SFE models to predict the outcome of a given market 
structure including an explicit representation of the transmission network. Forcing 
supply functions to be affine typically alleviates the complexity of searching for a 
solution. As indicated in [Berry '99], this is different from obtaining a linear or affine 
SFE solution without a priori enforcing it, which is the trend followed by previous 
authors. Different conceptual approaches have been adopted to obtain numerical 
solutions for this family of models. In general, no existence or uniqueness conditions are 
derived. 

In [Ferrero '97] the decision process of a group of agents participating in a non-mandatory 
pool is analyzed from the perspective of game theory. Generation companies are assumed to offer 
one affine supply curve at each of the nodes in which their units are located. Supply curves are 
derived from the corresponding marginal cost curves, which are also assumed to be affine, by 
simply multiplying the slope of the marginal cost function by a constant factor. Transaction costs 
are calculated based on Schweppe’s spot pricing theory, including the influence of transmission 
constraints. A finite number of offering strategies are defined for each generation company (e.g. 
offer high, offer low) and a payoff matrix is constructed to identify dominant strategies and 
predict participants’ behavior under a variety of hypotheses, such as coalitions between agents or 
conjectures about rivals’ decisions. 

In [Berry '99] an analysis of some of the possible ways in which generation companies may 
exercise their market power in an electric network is carried out with a SFE model in which 
supply functions are enforced to be affine a priori. A non-mandatory poolco administered by an 
ISO is considered that determines nodal prices as a result of a welfare maximization problem with 
transmission constraints based on the supply and demand functions submitted by participants. 
Three types of behavior are explored for generation companies: perfect competition, profit 
maximization by each generator and profit maximization by a monopoly owning all generation. 
Consumers simply submit their linear marginal utility functions. The problem of determining a 
generalized Nash equilibrium for this game consists of finding an intercept and a slope for each 
generator’s supply function such that each player is not willing to change its supply functions 
given his rivals’ decisions and the transmission constraints. An iterative procedure is used to 
search for such a solution in two numerical cases consisting of a two and a four-node network, 
although its applicability to large problems is significantly limited. A number of interesting policy 
conclusions are extracted from these studies. The assertion in [Oren '97] that generation 
companies are likely to capture transmission rents by strategically reducing transmission 
constraints is partially supported by these results, which raises concern about the long-term 
distortion that this effect may introduce both in generation and transmission expansion. 
Regulators are encouraged to base their policy on careful analysis of transmission networks, 
focusing on flows rather than on transmission constraints. 

In [Hobbs '00] an SFE model is proposed in which the strategy of each firm takes the form of 
a set of nodal affine supply functions. The slope of each firm’s nodal supply functions is equal to 
the slope of the marginal cost function at that node, being the intercept of the supply function 
the decision variable. The problem is structured in two optimization levels. In the first level, each 
of the dominant firms decides its nodal supply functions. In the second level the ISO clears the 
market by solving an OPF problem. Optimality conditions can be obtained for this OPF problem 
and arranged under a mixed-linear complementarity formulation. These optimality conditions are 
then introduced into each of the firms’ optimal bidding problems, which are thus transformed 
into a set of mathematical programs with linear complementarity or equilibrium constraints 
(MPEC). This approach permits the application of sound theoretical developments to assess the 
existence and uniqueness of an equilibrium and the use of iterative solution methods that can 
handle large MPEC problems- In this manner, an SFE is obtained that takes into account 
transmission pricing and network constraints. 

The SFE perspective can also be adopted to calculate optimal offering strategies for 
generators operating in a short-term electricity market. A generation company must 
conceive its supply curve as the best response to the combined effect of the demand 
curve and the aggregate supply of its competitors. An SFE can then be understood as 
the situation in which every generation company opts for its best-response supply 
curve. 
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In [Anderson '98] the SFE problem is addressed from the perspective of each individual 
generator. The short-term problem of calculating the best response of a generator whose costs are 
expressed as a continuous function and that faces a given residual demand curve is considered 
first. When uncertainty about the (inelastic) demand is introduced, the authors suggest obtaining 
the best response for each residual demand realization and constructing a supply curve formed by 
the combination of these decisions. However, such a curve can only be considered a supply curve 
if it is monotonically increasing, a property that, in general, cannot be guaranteed. It is then 
proved that if the competitors’ aggregate supply function is convex and differentiable and the 
firm’s costs are convex, then a supply-function response exists that is optimal for any demand 
realization. This result has the weakness of not being valid when each agent is uncertain about its 
competitors’ aggregate supply function. Based on the concept of best-response supply function, 
the SFE for a duopoly can be defined as a pair of supply functions such that each one is the best-
response supply function for the other. The existence of an SFE between two identical generators 
with convex costs facing an inelastic demand is proved and an expression for it is derived. 
Moreover, under certain hypotheses concerning transmission losses, if each generator is located at 
one end of an unconstrained transmission line then a symmetric SFE can be obtained. The 
authors also consider the fact that real supply curves are expressed as stepwise functions for 
which, in general, an optimal response does not exist. A reasonable strategy is then to 
approximate the uncertain competitors’ aggregate supply curve by a convex differentiable supply 
function, construct an optimal supply-function response and approximate it by a stepwise 
function. Bounds relative to the accuracy of these approximations for any demand realization are 
provided. 

In spite of the variety of modeling proposals, it is possible to identify a number of 
attributes that can be used to establish a comparison between different SFE 
approaches. Some of these attributes refer to the market representation adopted by 
each author, such as the possibility of considering asymmetric firms and the 
assumptions made about the shape of the marginal cost curves, the supply functions or 
the demand curve. Others refer to the model of the generation system (e.g. capacity 
constraints) or the transmission network (e.g. transmission constraints). Finally, the 
solution method used by each author and the numerical cases addressed are also two 
relevant features. Table 3.1 presents a summary of the works that have been reviewed 
in this section with the aim of illustrating the evolution of this line of research. 

 Asymmetric 
firms 

Marginal 
costs 

Demand 
curve 

Supply 
functions 

Capacity 
constraints

Solution 
method 

Transmission 
network 

Numerical 
application 

[Klemperer '89] No 
( ) 0C q′ ≥  
( ) 0C q′′ ≥  

( ) 0D p′ <  
( ) 0D p′′ ≤  

Twice 
continuously 
differentiable 

No Necessary 
conditions No No 

[Green '92] No Quadratic Linear 
Twice 

continuously 
differentiable 

Yes Numerical 
integration No E&W Pool 

[Rudkevich '98a] No Stepwise Inelastic Differentiable Yes Closed-form 
expression No Pennsylvania 

[Green '96] Yes Linear Linear Affine No Closed-form 
expression No E&W Pool 

[Rudkevich '99] Yes Linear Linear Affine No Closed-form 
expression No 5-firm case 

[Baldick '00] Yes Affine Linear Piecewise 
linear Yes Heuristics No E&W Pool 

[Baldick '01] Yes Affine Linear 
Piecewise 
linear non-
decreasing 

Yes Heuristics No E&W Pool 

[Ferrero '97] Yes Affine Inelastic Affine Yes Exhaustive 
enumeration Yes IEEE 30-bus 

system 

[Berry '99] Yes Affine Linear Affine Yes Heuristics Yes Four-node 
case 

[Hobbs '00] Yes Affine Linear Affine Yes MPEC Yes 30-node case 

[Anderson '98] No 
( ) 0C q′ ≥  
( ) 0C q′′ ≥  

Inelastic Differentiable 
and convex Yes Necessary 

conditions Yes Two-node 
case 

Table 3.1. A characterization of SFE models. 
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In conclusion, the SFE approach presents certain advantages with respect to more 
traditional models of imperfect competition. In particular, it appears to be an 
appropriate model to predict medium-term prices of electricity, given that it does not 
rely on the demand function, as the Cournot model, but on the shape of the 
equilibrium supply functions decided by the firms. In addition to this, firms’ strategies 
do not need to be modified as demand evolves over time. Quite the opposite, supply 
functions are specifically conceived to represent the firms’ behavior under a variety of 
demand scenarios15. This flexibility, however, is accompanied by significant practical 
limitations concerning numerical tractability. To date, only under very strong 
assumptions have SFE problems been solved when applied to real cases. Given that 
SFE shortcomings are well documented, only the main disadvantages will be cited here. 
Firstly, in general multiple SFE may exist and it is not clear which of them is more 
qualified to represent firms’ strategic behavior16. Secondly, except for very simple 
versions of the SFE model, existence and uniqueness of a solution are very hard to 
prove. Thirdly, closed-form expressions of a solution are very rarely obtained. 
Consequently, numerical methods are needed to solve the system of differential 
equations, thus increasing the computational requirements of this approach. Moreover, 
some of this system’s solutions may violate the non-decreasing constraint that supply 
functions must observe. This leads to ad hoc solution procedures that usually present 
convergence problems. Needless to say, transmission constraints are only considered in 
extremely simplified versions of the SFE model. Nevertheless, research efforts have 
recently produced encouraging results that may ultimately increase the applicability of 
this approach. 

3.2.1.3 Conjectural Variations17 

The previous discussion shows that the two more relevant approaches that have 
been adopted to predict the outcome of electricity markets from the perspective of 
equilibrium theory appear to have complementary advantages and shortcomings. It is 
natural then that intermediate solutions arise that try to fill the gap between both 
trends. 

On the one hand, the main deficiency detected in the SFE methodology refers to the 
difficulty of obtaining a solution even for a single-node asymmetric n-firm case with 
affine marginal costs and capacity constraints. The fact that multiple SFE may exist 
and uniqueness is not easy to prove only contributes to aggravate the situation. On the 
other hand, Cournot’s numerical tractability is overshadowed by its inability to predict 
equilibrium prices. Some authors also highlight that Cournot is a static model in which 

                                         
15 Authors do not seem to agree on the period of time during which offers should be expected to remain 
invariable. Some refer to start-up costs to indicate that this period should not exceed a number of hours. 
Others assume that equilibrium supply functions can be maintained during periods ranging from one 
month to a year. An intermediate approach would be to consider different supply functions for different 
load levels (e.g. distinguish between on-peak and off-peak hours) and assume they are kept unchanged 
for no more than a few weeks (so that they reflect changes in fuel prices, inflows, etc.) 
16 The stability analysis performed in [Baldick '01] seems to indicate that higher-price equilibria are less 
likely to arise due to their inherent instability. 
17 A conjectural variation (CV) is a conjecture by one firm about how other firm will adjust its decision 
variable with respect to potential adjustments in the first firm’s action. CV models, in which each firm’s 
rivals are assumed to react to the firm’s output by modifying their own output decisions, have recently 
received particular attention. 
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players assume that their rivals will not react to their decisions, thus disregarding the 
fact that electricity markets are based on the repetitive interaction of participants 
through a variety of market mechanisms18. This has resulted in changes on the 
conjectures that generators are expected to assume about their competitors’ strategic 
decisions, in terms both of the possibility of future reactions (conjectural variations) 
and the format of these decisions (more sophisticated than plain quantities). 

In [Day '02], after reviewing a diversity of equilibrium models to represent strategic 
interaction between firms, a model is presented in which each firm assumes that its rivals will 
react to the market-clearing price by adjusting their quantities. In other words, each firm predicts 
(perhaps incorrectly) the supply function with which each of its rivals is operating in the 
wholesale electricity market (conjectured supply functions, CSFs). Yet every firm considers its 
own output as strategic variable, instead of actually deciding its supply curve (which would be 
the case of an SFE). The fact that each firm’s decisions are restricted by its rivals’ actions due to 
transmission constraints and that every firm anticipates its rivals’ reactions yields a type of game 
that does not fit into Nash’s equilibrium definition but into a generalized equilibrium framework. 
This model is seen as an alternative to Cournot or SFE models, which, in spite of their 
popularity, have serious limitations. CSFs take the form of affine functions, leading to two 
different models. In the first one, the slope of the CSFs are assumed to be constant and the 
intercepts are adjusted so that each CSF correctly reflects both the output decided by the 
corresponding firm and the market clearing price. In the second one, the intercept is kept 
constant and the slope is adjusted. Choosing one of the two models and setting the numerical 
value of the fixed parameters gives the modeler flexibility to represent different degrees of 
competition. However, existence and uniqueness of the solution can only be readily proved for the 
case of fixed-slope CSFs. Moreover, the choice of these parameters is not straightforward. With 
respect to transmission prices, generators act as price takers. The models of the ISO and of the 
arbitrageurs are similar to those presented in previous proposals [Hobbs '01a]. This leads to an 
MCP problem that can be treated using specific solvers. Numerical examples based on the E&W 
case illustrate the potential of this approach. 

In [García-Alcalde '02] a smart approach is proposed to correctly reflect the strategic behavior 
of a number of generation companies participating in a single-node electricity market. They 
assume that each company makes its decisions based on its perception of the market, which they 
express in terms of the elasticity of the residual demand faced by the company. In other words, 
when the company faces a residual demand curve whose elasticity is high (low), the company 
perceives that its ability to affect the market-clearing price is reduced (increased). This is a 
generalization of Cournot equilibrium, in which every generation company faces the same residual 
demand elasticity, given by the elasticity of the aggregate demand curve. The authors also 
provide a practical method to estimate the long-term elasticity faced by each company. It is 
based on the assumption that each company took optimal decisions in the past based on an 
estimation of the elasticity of its residual demand curve. Consequently, the historic behavior of a 
generation company can be characterized by a single parameter: its perception of its residual 
demand elasticity. This implicit elasticity does not necessarily coincide with that of the actual 
residual demand curves faced by the company. Using this method, the authors estimate the long-
term elasticities that are implicit in the behavior of the most relevant Spanish generation 
companies and determine the equilibrium reached by these in a numerical example. The market 
clearing prices thus obtained correctly reflect the reality of the Spanish wholesale prices of 
electricity, which are significantly lower than those calculated under Cournot’s conjecture. 

3.2.2 Simulation models 

As indicated, equilibrium models are always based on a formal definition of 
equilibrium, which is mathematically expressed in the form of a system of algebraic 
and/or differential equations. This imposes limitations on the representation of 

                                         
18 Nevertheless, [Daughety '88] argues that, under a more precise definition of the notion of conjectural 
variation, the rational and consistent duopoly (oligopoly) equilibrium is, in general, a Cournot 
equilibrium. 
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competition between participants in at least two ways. Firstly, there are certain 
strategic decisions that cannot be easily expressed in terms of equations. Secondly, even 
if any line of conduct could be characterized through a mathematical model, the 
resulting set of equations, if it has a solution, is frequently too hard to solve. The fact 
that power systems are constituted by generation units with complex constraints and 
by transmission networks that follow Kirchhoff laws only contributes to complicate the 
situation. 

In recent years, the number of simulation models proposed in the technical 
literature to analyze the operation of wholesale electricity markets has significantly 
increased. It is the objective of this section to outline some of the modeling approaches 
that have been adopted, rather than to offer an extensive survey. 

Simulation models are an alternative to equilibrium models when the problem under 
consideration is too complex to be addressed within a formal equilibrium framework. 
Simulation models typically represent each agent’s strategic decision dynamics by a set 
of sequential rules that can range from scheduling generation units to constructing 
offer curves that include a reaction to previous offers submitted by competitors. The 
great advantage of a simulation approach lies in the flexibility it provides to implement 
almost any kind of strategic behavior. However, this freedom also requires that the 
assumptions embedded in the simulation be theoretically justified. 

In many cases, simulation models are closely related to one of the families of 
equilibrium models. For example, if in a simulation model companies are assumed to 
take their decisions in the form of quantities the authors will typically refer to the 
Cournot equilibrium model in order to support the adequacy of their approach. 

It is also frequent that simulation models, although conceptually static, involve 
iterative solution procedures that emulate repetitive interaction between participants. 
This is equivalent to the case of equilibrium models in which firms correctly guess the 
strategic decisions of their competitors, as if they had already been competing for a 
long time. 

In [Otero-Novas '99] a simulation model is presented that considers the profit maximization 
objective of each generation company while accounting for the technical constraints that affect 
thermal and hydro generating units. Other relevant factors, such as minimum domestic-fuel 
consumption rules can also be easily incorporated into this framework. The decisions taken by the 
generation companies are derived with an iterative procedure. In each iteration, given the results 
obtained in the previous one, every generation company modifies its strategic position with a two-
level decision process. Firstly, each company updates its output for each planning period by 
means of a profit maximization problem in which market clearing prices are held fixed and a 
Cournot constraint is included that limits the company’s output. Technical constraints are also 
considered in great detail. Subsequently, the price at which the company offers the output of each 
generating unit in each planning period is modified according to a descending rule. The authors 
interpret this framework as a game in which firms first act as Cournot players and then adjust 
their moves as Bertrand players. New market clearing prices are calculated based on these offers 
and on the evolution of demand, which is assumed to be inelastic. This approach is applied to the 
analysis of the one-year operation of the Spanish wholesale electricity market. Numerical results 
confirm that, when companies consider the influence that the market clearing price exerts on 
their overall profit rather than considering each generation unit independently, prices tend to 
increase. This methodology has also been adopted to explore the short-term outcome of a 
wholesale electricity market [Otero-Novas '00] and to perform risk analysis [Alba '99]. 
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A simulation model based on agents that construct optimal supply functions is proposed in 
[Day '99] to analyze the potential for Market Power in the E&W Pool. This approach is similar 
to the SFE scheme, but it provides a more flexible framework that allows considering actual 
marginal cost data and asymmetric firms. In this model, each generation company assumes that 
its competitors will keep the same supply functions that they submitted in the previous day. As 
in [Green '92], uncertainty about the residual demand curve is due to demand variation 
throughout the day. A procedure to construct nearly optimal supply functions is presented where 
the price domain is uniformly divided into a number of segments and generation companies 
decide in which price segments they wish to allocate the energy of their generation plants. This 
optimization process is based on an exhaustive search, rather than on the solution of a formal 
mathematical programming problem. After simulating the repetitive interaction of generation 
companies during several hundreds of days and discarding the supply curves obtained for the first 
days to eliminate the effect of initial conditions, the authors claim that the resulting average 
supply functions correctly represent the strategic behavior of the agents. To confirm this 
assertion, they compare the results of their model for a symmetric case with linear marginal costs 
to those obtained under the SFE framework, which turn out to be extraordinarily similar. They 
then apply this model to analyze the behavior of generation companies in the E&W pool in a 
number of divestment scenarios with different demand elasticity levels and varying degrees of 
forward contracting. The results support the idea that regulatory authorities frequently 
understate the potential for market power. 

As indicated when discussing dynamic equilibrium models, simulation provides a 
more flexible framework to explore the influence that the repetitive interaction of 
participants exerts on the evolution of wholesale electricity markets. Static models 
seem to neglect the fact that agents base their decisions on the historic information 
accumulated due to the daily operation of market mechanisms. In other words, agents 
learn from past experience, they improve their decision making and they adapt to 
changes of the environment (e.g. competitors’ moves, demand variations or uncertain 
hydro inflows). This suggests that adaptive-agent-based simulation techniques can shed 
light on features of electricity markets that static models ignore. 

[Bower '99] presents a simulation model in which generation companies are represented as 
autonomous adaptive agents that participate in a repetitive daily market and search for strategies 
that maximize their profit based on the results obtained in the previous session. Each company 
expresses its strategic decisions by means of the prices at which it offers the output of its plants. 
Every day, companies are assumed to pursue two main objectives: a minimum rate of utilization 
for their generation portfolio and a higher profit than that of the previous day. If a company does 
not fulfill these goals in a certain session, it changes its strategy in a reasonable manner including 
a random component, to avoid enforcing a specific behavior to the firms. In this process, the only 
information available to each generation company consists of its own profits and the hourly 
output of its generating units. As is frequent in these models, demand side is simply represented 
by a linear demand curve. This setting allows the authors to test a number of market designs 
that are relevant for the changes that have recently taken place in the E&W wholesale electricity 
market. In particular, they compare the market outcome that results under the pay-as-bid rule to 
the one obtained when uniform pricing is assumed. Additionally, they evaluate the influence of 
allowing companies to submit different offers for each hour, instead of keeping them unchanged 
for the whole day. The conclusion is that daily bidding together with uniform pricing yields the 
lowest prices, whereas hourly bidding under the pay-as-bid rule leads to the highest prices. 

Simulation models can also incorporate a representation of the transmission 
network. In contrast with equilibrium models, where power flow equations are 
linearized to allow for computational tractability, a simulation framework does not 
impose, in principle, limitations on the complexity of the power flow model used. This 
permits a more detailed analysis of the influence of transmission constraints, such as 
voltage limits, or the effect of transmission losses, an aspect typically ignored in 
equilibrium models. 
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In [Weber '98] and in [Weber '99] a simulation tool is described that includes an optimal 
power flow (OPF) to represent the decision process of the ISO when selecting the sell offers and 
buy bids that should be accepted in order to maximize social welfare. In this model, both sellers 
and buyers are assumed to submit nodal linear curves to express the amount of energy they are 
willing to interchange at different prices in each node. Offers are required to be simple so as to 
avoid unit-commitment decisions, which would significantly complicate the solution of the OPF. 
This tool can be used by a generation company to evaluate a variety of offering strategies based 
on the expected behavior of the rest of agents. However, the number of simulations may become 
prohibitive if too many offering strategies are explored or an excessive number of market 
scenarios (competitors’ strategies) is considered. Numerical examples illustrate the possibilities of 
this approach, in particular when the influence of the transmission network must be considered in 
great detail. 

3.2.3 Conclusion 

In this section we have described the main modeling approaches that have been 
recently proposed in the literature in order to represent competition in wholesale 
electricity markets explicitly considering all the generation companies involved. 

We have explored equilibrium models, which typically adopt a static point of view. 
Cournot models present computational advantages, but show a critical dependence on 
demand elasticity, a factor that is not easy to estimate. In contrast, SFE models 
represent more accurately the interaction of participants in the electricity market and 
the process of price formation, but have important shortcomings concerning numerical 
tractability. An intermediate solution that has recently been proposed is to introduce 
conjectural variations in order to represent agents’ reactions. 

The features of simulation models have also been analyzed. Simulation models 
provide a more flexible framework to represent firms’ behavior but have a less 
consistent theoretical background. 

Neither equilibrium models nor simulation techniques seem the best approach to 
represent competition for the purposes of this thesis. Indeed, our objective is to develop 
optimal offering strategies for a generation company operating in a spot market. This 
requires a detailed representation of the company’s portfolio and of the influence of the 
company’s decisions on its own revenues. Hence, a model that focuses on the 
generation company of study and treats the rest of participants in an aggregate 
manner seems more appropriate. 

3.3 Models that focus on a specific generation company 
A generation company willing to optimize its scheduling decisions may not be 

interested in using an operation planning model that includes an explicit 
representation of the rest of generation companies, as that requires solving a larger 
problem and using input data that may be difficult to estimate. The alternative then is 
to use a model that represents in detail only the generating units owned by the 
company and considers in an aggregate manner those owned by its competitors (or not 
considers them at all). The disadvantage of this approach is that price formation 
cannot be modeled as the result of the interaction of market participants. 

According to [Ventosa '01], there are two alternative ways to incorporate electricity 
prices into a model of this sort. The first one is to assume that the generation company 
is not able to modify the price of electricity with its decisions. This is a hypothesis that 
is only realistic for relatively small generation companies, but that significantly 
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simplifies the analysis, as will be highlighted in this section. The second approach is to 
express the price of electricity as a function of the company’s strategic decisions. This 
can be done by means of the residual demand curve, but other methodologies have also 
been proposed. 

This section presents a survey of models that include an explicit representation of 
only one generation company with the aim of illustrating the characterization 
suggested by [Ventosa '01]. Special attention is paid to models that focus on the 
problem of scheduling generating units for the short term (one day to one week) and 
those that develop offering strategies for an electricity spot market. A more 
comprehensive literature survey on the problem of developing optimal offering 
strategies for competitive electricity markets can be found in [David '00]. Additionally, 
the new role played by unit-commitment models in a deregulated electricity industry is 
an issue that several authors discuss in depth in [Hobbs '01b]. 

3.3.1 Models that assume that prices are exogenously fixed 

Assuming that electricity prices are exogenously determined greatly simplifies the 
problem of determining the short-term profit-maximizing policy that a generation 
company must follow. In first place, if the price of electricity does not depend on the 
company’s decisions, the company’s revenues turn out to be a linear function of its 
output. Additionally, the problem of optimally scheduling each generating unit owned 
by a company that operates as a price taker can be considered independent of the rest 
of the company’s generating portfolio, unless some other constraints are present that 
simultaneously affect the output of several of its generating units (e.g. hydro units 
located in the same river basin). This allows authors to restrict their attention to the 
problem of optimally scheduling a single generating unit. 

This approach is closely related to the traditional Lagrangian relaxation procedure, 
where the Lagrangian dual of the unit-commitment problem is formulated by relaxing 
the complicating constraints that establish a link between the generating units under 
consideration (see chapter 5 for a more detailed description of the Lagrangian 
relaxation method). Lagrangian relaxation (LR) leads to an iterative solution 
procedure that consists of two steps. In the first step, each generating unit is 
independently scheduled, given the Lagrange multipliers obtained in the previous 
iteration. A new cut is thus obtained that improves the linear outer approximation of 
the dual function, which is then used in the second step to search for a better dual 
solution and update Lagrange multipliers. Assuming exogenous prices is equivalent to 
assuming that the company’s decisions do not affect Lagrange multipliers or, in other 
words, that the marginal cost of the system (“system’s lambda”) does not depend on 
the generation units scheduled by the company. Such a problem can be solved with a 
single iteration of the LR procedure. 

In [Gross '96], the daily scheduling process imbedded in the E&W Pool is formulated as a cost 
minimization problem and decomposed using the LR approach. The Lagrange multiplier 
associated to the demand (reserve) constraint is assumed to be equal to the marginal price of 
energy (reserve). The optimal offering problem for a specific generation company is then 
expressed in terms of these Lagrange multipliers, which, in general, depend on the company’s 
decisions. However, if perfect competition is assumed, Lagrange multipliers do not vary with the 
company’s decisions and the problem turns out to be extremely easy to solve. In fact, an 
analytical solution exists which simply consists of revealing the company’s true costs and 
production capacity. 
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The exogenous-price assumption seems to be a step backward with respect to LR 
developments. However, this can be acceptable if the company is small enough to 
admit that its ability to modify electricity prices is negligible with respect to the price 
uncertainty introduced by its competitors’ decisions. Indeed, this has been the choice of 
a number of authors. Additionally, dynamic programming (DP) appears to be the 
preferred approach to derive optimal scheduling decisions for a generation unit under 
uncertain exogenous prices. This is due to the fact that DP was also the method used 
by many authors to solve the individual generation subproblems in each step of their 
LR procedures. Thus, researchers have simply applied their DP routines to the new 
self-commitment problem faced by generation companies acting as price takers in a 
deregulated electricity market. 

In [Rajamaran '01] the self-commitment problem of a generation company is described and 
solved in the presence of exogenous price uncertainty. The possibility of providing either energy 
or reserve is considered, as well as the different short-term market mechanisms (day-ahead and 
real-time) in which the company can participate. The authors highlight that this self-commitment 
problem does not include the requirement to meet the system’s load. The objective function to be 
maximized is the company’s profit, based on the prices of energy and reserve at the nodes where 
the company’s units are located, which are assumed to be exogenously determined and are 
uncertain. The authors correctly interpret that, in this setting, the scheduling problem for each 
generating unit can be treated independently, which significantly simplifies the process of 
obtaining a solution, thus permitting a detailed representation of each unit. A DP approach is 
suggested in which the state of each unit in each time period must be chosen from a set of 
discrete states. The exogenous price of energy is modeled by means of a discrete Markov process 
for which transition probabilities can be obtained from historical data. Reserve prices are 
assumed to be correlated with energy prices. Fuel prices are expected to remain constant during 
the time scope of the model (one week). The problem is solved using backward DP and several 
numerical examples illustrate the possibilities of this approach. 

[Valenzuela '01] addresses the problem of constructing energy price scenarios for a similar self-
commitment problem. The authors postulate perfect competition and assume that a good 
estimation of the marginal costs of each generation unit operating in the system is available. The 
problem then reduces to determining the probability distribution for the marginal generation unit 
in each time period, including the influence of demand uncertainty and unplanned generation 
outages. A variety of methods are suggested and compared to approximate these probability 
distributions. 

Given that the case of a small company with no influence on electricity prices is 
particularly easy to solve, it provides an excellent context to examine certain issues 
with a level of detail that would be prohibitive otherwise. For example, the intuitive 
idea that the optimal offering strategy for a generator acting as a price taker is to 
reveal its marginal costs may not be true if the generator’s costs are not convex, as its 
marginal costs would not be non-decreasing. Even if the generator’s marginal costs are 
increasing, they may not fit into the offer format imposed by the market operator if, 
for instance, the number of blocks of energy that can be offered at different prices is 
limited. 

In [Neame '01] the problem of constructing the best offer curve for a single generator and a 
single trading period is addressed. The generator is assumed to act as a price taker facing an 
uncertain market-clearing price with a known probability distribution. The authors focus on how 
to express the generator’s marginal costs in terms of a stepwise offer curve with a limited number 
of steps. It is shown that a necessary condition for optimality is that each step of the offer curve 
has a price equal to the average marginal cost of the energy it comprises. Where to place these 
steps is, however, a question that may have multiple locally optimal answers. A DP procedure 
that overcomes this difficulty is proposed for the special case of piecewise linear (not necessarily 
convex) cost functions. 



3.3 Models that focus on a specific generation company 59 

 

3.3.2 Models that express the price of electricity as a function of the 
company’s decisions 

The special features of electricity as a commodity tend to increase the ability of 
generation companies to affect electricity prices. It is thus very rare that a generation 
company can consider the price of electricity as independent of its own decisions. When 
this is not the case the company can no longer consider the problem of scheduling each 
of its generating units independently. In addition to this, the company must bear in 
mind that the price also depends on the strategy followed by the rest of agents. 
Moreover, the rivals’ scheduling decisions depend on the price. 

As mentioned, including the rivals’ generating units in a model increases the size of 
the problem that has to be solved and requires estimating their costs and technical 
parameters. An alternative is to represent the company’s competitors by means of their 
offer curves. These indicate both how rivals’ decisions affect the price of electricity and 
how their scheduling decisions vary with the price of electricity. The question then is 
how to express their offer curves so as to guarantee that the resulting problem is 
numerically tractable. A frequent approach is to assume that they take the form of 
linear or quadratic functions. 

In [Wen '01] a method is proposed to develop offering strategies for a generation company 
participating in a day-ahead energy market and the subsequent spinning reserve market, 
assuming that all firms submit linear energy and reserve offer curves. The limited capacity of the 
company’s generation units requires a tradeoff solution to maximize its total profit. The authors 
optimize the parameters of the company’s linear offer functions, while those of its competitors are 
supposed to follow correlated normal distributions. They propose sampling rivals’ parameters 
with the Monte Carlo method and then optimizing the company’s parameters with a genetic 
algorithm. A probability distribution is thus obtained for the company’s profits both in the day-
ahead and the spinning reserve market. 

In [Zhang '00] the daily offering problem of a generation company operating in the New 
England electricity market is considered by representing offers as quadratic functions. The 
authors first define a model for the day-ahead market and obtain a closed-form expression both 
for the market clearing price and for the energy sold by the company. Each of these expressions is 
a function of the company’s quadratic offer curve parameters (which have to be optimized) and of 
the competitors’ parameters (which are assumed to follow discrete probability distributions). 
They then formulate the company’s optimal bidding problem where the above expressions are 
used to evaluate the company’s expected revenues. Production costs and technical constraints are 
also incorporated. The bidding problem is decomposed using LR, leading to the iterative solution 
of a set of subproblems, one for each generating unit and an additional one to construct the 
company’s offer curve. The presence of this subproblem, in which the company’s revenues are 
evaluated at each iteration, is an interesting novelty and shows how traditional generation 
scheduling procedures based on LR can be adapted to the new competitive environment. 

Mathematical programming techniques are quite restrictive in terms of their ability 
to tackle problems that include non-convex functions such as the ones required to 
accurately model offer curves. In principle, introducing binary variables permits to 
overcome this difficulty, but their usage must be limited to guarantee that the 
resulting problem can be handled by the existing mixed linear-integer programming 
(MIP) solvers. 



60 Chapter 3. Modeling competition in wholesale electricity markets  

 

In [Nowak '00] a mixed linear-integer formulation is adopted to model the market operation 
and calculate the company’s expected revenues. They discretize the price domain into a fixed 
number of levels. For each hour and each price level, they define three binary variables. The first 
variable is equal to one for a certain price level only if this level is below the market-clearing 
price. The second variable is equal to one only if the price level is above the market-clearing 
price. Finally, the third variable indicates that both prices coincide. The generation company has 
to decide the optimal quantity to sell and to buy at each price level. The quantities actually 
accepted by the market operator will depend on the quantity offered by competitors at the same 
price levels, which are taken as given data. Though results are only reported for a deterministic 
case, the authors sketch an extension to the stochastic version and suggest the use of a dual 
decomposition method. 

Indeed, some authors explicitly abandon the standard mathematical programming 
framework, arguing that very good solutions can be obtained using other search 
methods that do not impose special restrictions on the functions used to represent offer 
curves. 

In [Guan '01] the optimal offering problem of a generation company is formulated explicitly 
considering the influence that the company’s decisions exert on the market-clearing price. The 
authors regard this as a challenging problem and suggest searching for a good bidding strategy, 
rather than struggling to obtain the optimal one. This justifies the use of ordinal optimization 
(OO) as a solution method, which is based on the idea that it is easier to estimate the order of a 
set of solutions than to calculate their real values. An additional advantage of OO is that it poses 
no restrictions on the form of the function that defines the company’s influence on the market-
clearing price. The particular application of OO to the optimal offering problem follows this 
sequence. First a nominal offer curve is built by optimizing the company’s generation schedule 
given a set of price scenarios. Then a population of alternative offer curves is constructed by 
perturbing the nominal offer curve. These offer curves are ordered according to a rough 
estimation of their associated profits and a selection of good enough curves is made. Among these, 
the best offer curve is identified with a more accurate evaluation method. Further details can be 
found in [Guan '99b]. An extension to incorporate the reserve market is outlined in [Guan '99a]. 

In practice, the difficulty of addressing the optimal offering problem with a 
mathematical programming perspective is caused by the non-concave nature of the 
company’s revenue function. This revenue function is obtained, for each of the spot 
market auctions, as the product of the company’s energy sales, q , and the clearing 
price, p , which in general depends on the company’s sales. This dependence can be 
expressed through the company’s residual demand function, ( )p q , as is further 
explained in appendix A. Thus, the company can first estimate the residual demand 
function for each spot market auction with available historical data and then derive an 
expected revenue function, ( )r q , by simply multiplying each output q  by the 
corresponding market clearing price, ( )p q . The resulting revenue function, although 
not globally concave, typically has concave sections (i.e. sections where its slope is non-
increasing) that can be easily identified. If a binary variable is assigned to each concave 
section, a mixed linear-integer programming formulation is obtained that can be solved 
with a commercial MIP optimizer. 

[García-González '99] develops a weekly generation scheduling method based on mixed linear-
integer programming in which the company faces a series of linear residual demand curves, one 
for each hour, leading to hourly quadratic revenue functions that are approximated by means of 
outer linearizations. This approach, together with the use of a commercial MIP optimizer, allows 
the authors to solve real-size self-commitment problems that explicitly take into account the 
company’s influence on market clearing prices, which is a significant step forward with respect to 
previous proposals. An alternative representation of the revenue function is suggested in [Baíllo 
'01], where non-concave revenue functions are expressed in terms of piecewise linear functions. 
Further developments of this line of research can be found in [García-González '00b]. 
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However, as indicated in [Klemperer '89], a key ingredient that a firm must consider 
when developing an optimal offering strategy is uncertainty about its residual demand. 
A firm that knows its residual demand in advance has infinite equally optimal offering 
strategies. On the contrary, the number of optimal offer curves decreases as 
uncertainty about the residual demand increases. There are a number of ways in which 
this uncertainty can be represented and incorporated into an optimal offering 
procedure. One elegant (although not very practical) alternative is to consider a 
probability distribution function for the residual demand curve that returns the 
probability of each offer ( ),q p  being accepted. 

In [Anderson '99] a set of necessary conditions that must be fulfilled by an offer curve to be 
locally optimal is derived for a generation company facing a market distribution function (MDF). 
For each offer of the company’s supply curve, the MDF returns the probability of it not being 
fully accepted. The authors base their analysis on the systematic application of optimal control 
theory to the trajectory followed by the company’s supply function. They start by considering a 
certain offer curve and then perturb it to derive the conditions that must hold for it to be locally 
optimal. This particular formulation of the problem does not consider intertemporal effects or 
technical constraints. The same line of reasoning is followed in [Anderson '00] to develop 
necessary and sufficient conditions for local optimality. 

A more convenient approach is to assume that residual-demand uncertainty has 
finite support. In other words, the number of residual demand curves that the firm 
may face at each planning period is limited. This number should be high enough to 
correctly represent the variety of market situations that may arise but not as high as 
to require a prohibitive computational effort. Several approximate solution procedures 
have been suggested for the problem of obtaining the optimal offering strategy for a 
generation company that faces a set of spot market scenarios defined in terms of 
residual demand curves. 

In [Mateo '00], a procedure to obtain a set of residual demand curve scenarios for an auction 
of ancillary services based on past bidding data is proposed. Given these scenarios, the authors 
show how to obtain a good approximation for the company’s optimal offering strategy using 
genetic algorithms (GA). A population of offer curves is generated and the individuals are sorted 
according to their associated expected profit and degree of risk exposure. A new population is 
then derived from the best individuals of the previous generation and the process continues until 
no significant improvement is achieved. The promising results obtained with this method suggest 
future research to enhance its modeling features, by including technical constraints or explicitly 
considering correlation between hours. 

As a matter of fact, when technical constraints are incorporated into a model that 
includes several spot market scenarios in the form of residual demand curves, the 
resulting MIP problem cannot be solved with existing state-of-the-art MIP optimizers 
except for very small study cases. 

[Baíllo '00] constitutes an attempt to optimize the offer curve of a generation company taking 
into consideration several consecutive hours with a number of residual demand scenarios in a 
single-shot MIP framework. Although the results are encouraging, the size limitations of their 
proposal make it impractical. 

Some authors have decided to decompose the problem into a set of subproblems, one 
for each scenario. However, the solutions proposed do not provide an upper bound for 
the loss of optimality caused by this decomposition. This is a shortcoming that the 
developments of this thesis aim to overcome. 
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In [García-González '00a] an optimal schedule is obtained for each spot market scenario 
irrespective of the rest of scenarios under consideration. The set of schedules obtained (one for 
each scenario) may not be expressed in the form of an offer curve if they are not monotonically 
increasing with price. In other words, if the output decided by the company for a low price is 
higher than the output decided for a high price, both decisions are incompatible, as they cannot 
be simultaneously expressed in the same offer curve. This is not an unlikely result, due to the 
unpredictable shapes that revenue functions may adopt and to the intertemporal constraints that 
must be observed when scheduling generation units. The scatterplot obtained in the ( ),q p  space, 
constituted by as many offers as market scenarios are considered, can then be used to construct a 
piecewise linear approximation of the optimal offer curve. No upper bound is provided for the 
deviation of this solution from the optimal one. 

In [Berzal '01] market scenarios are first sorted in a decreasing-likelihood order. An optimal 
schedule is then obtained for the maximum-likelihood scenario irrespective of the rest of market 
scenarios. The optimal schedule obtained for the next scenario will be constrained by the schedule 
obtained for the first one, to guarantee that the company’s output decisions are monotonically 
increasing with price. The algorithm proceeds until a solution for the least likely scenario is 
obtained that observes the monotonic constraints imposed by all the previous ones. The 
optimality of this solution cannot be guaranteed, given that the most likely scenario might be 
extremely restrictive and dramatically condition the solutions obtained for the rest of scenarios. 

Given that the objective of this thesis is to provide a consistent procedure to 
develop optimal strategies for the short-term operation of a generation company, it is 
interesting to determine some of the relevant attributes that characterize models with 
similar features, such as the ones that have been reviewed in this section. Some of these 
features describe the market representation imbedded in the model (e.g. the market 
mechanisms considered by the model, the manner in which price formation is modeled 
or how market uncertainty is represented). Others indicate the detail with which the 
generation system is taken into account. With respect to the transmission network, it is 
interesting to point out that all the reviewed proposals consider a single-node situation. 
Finally, the method adopted by each author to obtain numerical results and the 
format of the solution provided by each model are also two relevant distinguishing 
features. 

 Markets 
considered Price formation Market 

uncertainty 
Network 

constraints 

Individual 
generation 

units 

Intertemporal 
constraints 

Solution 
method 

Solution 
format 

[Gross '96] E&W Pool Exogenous No No Yes Yes Closed-form 
solution Offers 

[Rajamaran '01] Energy and 
reserve Exogenous Yes No Yes Yes DP Schedule 

[Valenzuela '01] Energy Exogenous Yes No Yes Yes DP Schedule 
[Neame '01] Energy Exogenous Yes No Yes Yes DP Offers 

[Wen '01] Energy and 
reserve 

Linear offer 
functions Yes No Yes No GA Offers 

[Zhang '00] Energy Function of the 
company’s offers Yes No Yes Yes LR Offers 

[Nowak '00] Energy Function of the 
company’s output No No Yes Yes MIP Schedule 

[Guan '01] Energy and 
reserve 

Function of the 
company’s offers Yes No Yes Yes OO Offers 

[García-
González '99] Energy Residual demand No No Yes Yes MIP Schedule 

[Anderson '99] Energy Market distribution 
function Yes No No No Necessary 

conditions Offers 

[Mateo '00] Reserve Residual demand Yes No No No GA Offers 
[Baíllo '00] Energy Residual demand Yes No Yes No MIP Offers 
[García-
González '00a] Energy Residual demand Yes No Yes Yes MIP + 

heuristics Offers 

[Berzal '01] Energy Residual demand Yes No Yes Yes MIP + 
heuristics Offers 

Table 3.2. A comparison of models oriented to develop optimal short-term strategies. 



3.4 The demand side 63 

 

Section 3.5 provides an overview of the particular modeling approach adopted in 
this thesis in the light of the advantages and shortcomings of other proposals identified 
in the previous survey. 

3.4 The demand side 
Although pioneering electricity spot market designs did not usually contemplate the 

possibility of demand-side bidding, current electricity spot market mechanisms are 
frequently based on the double-auction concept, where transactions are accepted based 
on the sell offers and buy bids submitted by participants. 

Nevertheless, demand-side responsiveness is still perceived to be low. In particular, 
models oriented to represent firms’ interaction in wholesale electricity markets typically 
treat the demand side in an aggregate manner, by means of a demand curve that 
expresses the amount of energy that wholesale buyers are ready to purchase at each 
price. Moreover, the number of models that have been developed to obtain optimal buy 
bids for an energy service provider that purchases electricity in the wholesale market 
and then sells it to final consumers is insignificant when compared to the number of 
optimal offering procedures proposed for generation companies19. 

In subsequent chapters it will be shown that the model proposed in this thesis can 
be used to obtain optimal offers for a generation company or optimal bids for a 
wholesale buyer indistinctly. The main differences between both types of agent can be 
found in their portfolio, rather than in their perception of the market mechanisms. 

3.5 The model considered in this thesis: an overview 
Both the interest exhibited by the research community about the problem of 

developing optimal offering strategies for generation companies and the multiple 
difficulties that this problem entails confirm the relevance of this thesis and of other 
parallel ones that have been developed throughout the world in recent years. 
Additionally, the plethora of methodologies proposed in the literature requires that the 
particular model adopted to represent competition in this thesis be precisely defined. 
This section provides a general overview of the model chosen for this thesis in the light 
of the ideas previously presented in this chapter. It also specifies the particular 
challenges that this modeling approach involves. Finally, it serves as an introduction to 
the following chapter, in which the methodology proposed in this thesis to address the 
problem under consideration is presented. 

3.5.1 A model based on residual demand curves 

The residual-demand/revenue-function approach described in [García-González '99] 
and in [Baíllo '01] is the most sensible choice to model competition in an electricity 
spot market for the purposes of this thesis (see Appendix A for further details). The 
residual demand curve represents the relevant rest of the world with minimum 
information requirements. Yet, real residual demand curves yield revenue functions 
that are non-concave and, as a consequence, not easy to treat in an optimization 

                                         
19 [Borghetti '01] is one of the exceptions to this general trend. It provides an extension of the approach 
proposed in [Gross '96] to include demand-side bidding in a LR-based day-ahead market. 
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context. Some authors avoid this difficulty by considering linear or quadratic offer 
curves [Wen '01, Zhang '00]. 

An important remark is that a model only based on residual demand curves fails to 
completely represent the strategic behavior of rivals. This is due to the static 
perspective that a residual demand curve provides about other agents. The residual 
demand curve informs only about the strategy followed by the rest of agents in a 
specific situation. It does not reveal how rivals would react if the circumstances 
suffered a significant change. A sequence of several spot market sessions with similar 
residual demand curves may indicate that the spot market is in steady state 
(equilibrium). In this context, an agent can use his expected residual demand curve to 
evaluate how the market clearing price changes with slight modifications of his 
strategy. On the contrary, if the agent introduces a great variation in his strategy, the 
expected residual demand curve will only be valid for the current spot market session, 
but will be completely useless for the next sessions, given that the rivals’ reaction is 
almost unpredictable. In other words, the residual demand curve may only provide a 
short-term estimate of the consequences of a certain strategy. Therefore, the results 
provided by a model based on residual demand curves must be handled cautiously, 
particularly if they lead to sudden changes in the market conditions. These undesired 
effects can be dampened by including strategic constraints that guide the model toward 
a medium-term equilibrium target. 

3.5.2 A model that explicitly considers uncertainty 

The residual demand curves that a company will face in future auctions are not 
known in advance. Therefore, the company must make use of historic data to estimate 
them. This requires that there is public access to historic aggregate offer and demand 
curves, which is one of the assumptions made in chapter 220. 

For the sake of simplicity, some models consider only the expected residual demand 
curve [Nowak '00, García-González '99, Baíllo '01]. However, any rival can modify his 
behavior from one day to another and induce significant changes in the company’s 
residual demand curve. Hence, it is more convenient to explicitly consider the 
probability distribution of each of the company’s future residual demand curves. In 
this thesis it is assumed that these probability distributions have finite support. In 
other words, the number of residual demand curves that can occur in a certain auction 
is limited. A simple method is described in Appendix B that selects a number of past 
residual demand curves in order to build a discrete probability distribution for each of 
the spot market sessions to come. This method takes into consideration the possible 
correlation that may exist between the residual demand curves that arise in different 
auctions, even if they are part of different market mechanisms (e.g. the correlation that 
may exist between the residual demand curve of one of the day-ahead market auctions 
and the residual demand curve of one of the adjustment market auctions). In practice, 
the idea is to define spot market scenarios that consist of a collection of residual 
demand curves, one for each hourly auction of each market mechanism. 

                                         
20 Information about the sell offers and buy bids submitted to each of the hourly auctions that 
constitute the sequence of spot market mechanisms are assumed to be available some time after that 
auction is held 
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The influence of all market scenarios is simultaneously considered in our spot 
market model. This poses significant computational requirements, as we explain in 
subsequent chapters. To avoid this, other authors have proposed heuristic 
decomposition methods that cause optimality losses that are difficult to estimate 
[García-González '00a, Berzal '01]. 

3.5.3 A model that decides offering strategies 

In this thesis, the decisions taken by the generation company are expressed in the 
form of offers and not in the form of a generation schedule. As a matter of fact, a 
generation company operating in wholesale electricity markets is not usually given the 
possibility of actually deciding the precise output of its generating units. Quite the 
opposite, the schedule of its units is the result of a sequence of market mechanisms in 
which the company takes part. 

3.5.4 A model that takes the company’s portfolio into account 

Nevertheless, it is essential that a model intended to provide optimal short-term 
strategies for a generation company take into account the characteristics of the 
generation units owned by the company. However, the combination of a full spot 
market model with a detailed representation of the generating units is not easy to 
handle. Some proposals simply ignore the intertemporal constraints that affect the 
generating units, such as the logic of startups and shutdowns, the limits imposed by 
thermal units’ maximum ramp rates, the evolution of hydro reserves, etc. [Anderson 
'00, Anderson '99, Mateo '00]. This permits considering each hourly auction as an 
independent trading period, which significantly simplifies the solution of the problem. 
On the contrary, the approach developed in this thesis includes an explicit 
representation of these constraints, so that all the auctions that constitute the spot 
market must be simultaneously considered. The representation of the generation 
system is not extremely detailed but rather keeps a balance with the spot market 
representation, so that both aspects receive the attention they deserve. 

The resulting model, which is formally described in the next chapter, also considers 
the company’s position with respect to long-term contracts as well as other guidelines 
that orient the company’s strategy in the spot market towards its long-term profit-
maximization objective. 

3.5.5 A model that can be adapted to the case of an energy service 
provider 

From the perspective of a wholesale energy buyer such as an energy service provider 
(ESP), the residual demand approach can be easily adapted to obtain a residual offer 
model that indicates the price that the ESP must pay to purchase different amounts of 
electricity in a double auction. Chapter 4 provides guidelines for the representation of 
the ESP’s portfolio of customers and forward wholesale contracts as a first step of the 
process of developing a complete optimal bidding procedure. 

3.5.6 Summary of modeling challenges 

To summarize, in order to meet the modeling challenges assumed in this thesis, the 
methodology that we develop in subsequent chapters should: 
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i) model each of the auctions that constitute the spot market from the perspective of 
a generation company by means of a number of possible residual demand 
realizations, together with the corresponding revenue functions, whatever shape 
they may have; 

ii) represent the uncertainty faced by the generation company in the form of a 
discrete probability distribution using spot market scenarios; 

iii) express the optimal strategy for the generation company in terms of offers that can 
be submitted to the main market mechanisms that constitute the spot market; 

iv) simultaneously consider the influence of every spot market scenario when deciding 
this optimal strategy; 

v) incorporate a detailed representation of the company’s generating units, including 
the explicit formulation of intertemporal technical constraints; 

vi) allow for the consideration of other elements of the company’s portfolio, such as 
physical or financial long and medium-term contracts; 

vii) take into account other long-term strategic objectives, such as the position that 
the company wishes to defend in the wholesale electricity market; 

viii) be applicable to the case of an ESP with minor modifications; 

Each of the reviewed proposals meets some of the previous challenges but none 
covers them all simultaneously. Figure 3.1 illustrates the gap that this thesis aims to 
fill. As can be seen, our purpose is not only to formulate the problem, but to solve it 
making use of mathematical programming techniques that yield the best solution 
possible, while at the same time providing an upper bound for the loss of optimality 
that may be incurred in those cases where the size of the problem renders it impossible 
to guarantee optimality. 

Figure 3.1. Models oriented to develop optimal short-term strategies: a graphic characterization. 
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3.6 Conclusion 
This chapter justifies the modeling approach adopted to represent competition in 

the wholesale electricity market assumed in this thesis. This model has been chosen 
based on the analysis of the general modeling trends that have been followed in recent 
years. The impressive advances registered in this research field gives an idea of the 
attention that this matter has attracted during the last decade. 

Models that evaluate the interaction of agents in wholesale electricity markets have 
persistently stemmed from the game-theory concept of equilibrium. Some of these 
models represent equilibrium in terms of variational inequalities or, alternatively, in 
the form of a complementarity problem, providing a framework to analyze realistic 
cases that include a detailed representation of the generation system and the 
transmission network. This line of research has also rendered theoretical results relative 
to the design of electricity markets or to the medium-term operation of hydrothermal 
systems in the new regulatory framework. Other models explore in detail the 
implications of a market design in which agents use offer curves to express their 
strategic decisions and conclude that, in general, multiple supply function equilibria 
exist, which creates a new source of uncertainty for regulators. The contribution of 
simulation models has been significant as well, on account of their flexibility to 
incorporate more complex assumptions than those allowed by formal equilibrium 
models. 

Researchers have also adopted the viewpoint of a specific generation company to 
develop decision-support tools explicitly designed to face the challenges posed by the 
new regulatory framework. Although proposals have been made for the whole range of 
time scopes that are relevant in the decision process of a generation company, this 
chapter has focused on short-term models. It has been shown that ignoring the ability 
of generation companies to modify the price of electricity greatly simplifies the analysis 
but is unrealistic in most cases. A variety of methodologies have been proposed in the 
literature to take this effect into account though at the same time incurring in other 
simplifications that limit the relevance of their results. This thesis aims to take a step 
forward in this direction by adopting a modeling approach that simultaneously 
considers all the important ingredients that are involved in the development of short-
term optimal strategies for generation companies operating in an electricity spot 
market. 
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4 A model to develop optimal offers 
for an electricity spot market 

After laying the foundations of this thesis in chapters 2 and 3, this chapter presents the main 
structure of the building. Two lines of development define the approach adopted to formulate 
the problem under consideration. On the one hand, we define a spot market model that 
conceives the problem as a multistage stochastic program. This approach adapts well to the 
case of a spot market designed as a sequence of market mechanisms: each decision stage 
corresponds to one of the spot market mechanisms and stochasticity is due to the uncertain 
residual demand curves that the company faces. On the other hand, we suggest a detailed 
representation of the company’s portfolio, including not only its generation plants, but also its 
position in other market mechanisms and its main long-term strategic objectives. 

Although some of the developments of this chapter are subject to the specific institutional 
assumptions formulated in previous chapters, the conceptual approach is general and can be 
easily adapted to other spot market designs or different assumptions. In particular, we show 
how this methodology, originally conceived for the case of a generation company, is also valid 
for the case of an energy service provider. 
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4.1 Introduction 
This chapter can be considered the conceptual core of this thesis. It describes in 

detail the formulation proposed to represent the problem faced by a generation 
company in an electricity spot market. 

We suggest an original approach based on the theory of multistage stochastic 
programming to model the decision process of a generation company in a spot market 
designed as a sequence of market mechanisms. In such a spot market, the strategy of a 
generation company is implemented through several decision stages, each one 
corresponding to one market mechanism. Stochasticity is due to the fact that the 
actions taken by rivals are not known in advance. 

The influence of the rest of agents on the company’s results is modeled by means of 
residual demand curves. In this manner, several sets of residual demand curves define 
the different spot market situations that the company may face. The development of 
offering strategies in this framework is reduced to deciding vectors of outputs, one for 
each possible residual demand realization. 

The model presented in this chapter also includes a detailed representation of the 
company’s portfolio. The generation units owned by the company are represented as is 
usual in unit-commitment and economic-dispatch models. Particular attention is paid 
to the influence of the position adopted by the company with respect to long-term 
contracts and options. Although our work focuses on generation companies, we also 
justify its validity for the case of an energy service provider. 

This modeling approach not only covers the challenges identified in the previous 
chapter, but also yields a problem structure that is amenable to a solution strategy 
based on primal and dual decomposition methods, as is discussed in subsequent 
chapters. 

4.2 Modeling the spot market 
Chapter 3 has emphasized the immense research effort that has been devoted to the 

analysis of competition in wholesale electricity markets in order to represent the 
strategic behavior of the agents involved. The convenience of the residual demand 
model for the purposes of this thesis has also been justified. This section presents the 
details of the specific model used in this thesis to represent competition in the 
electricity spot market from the perspective of a particular company1. 

We begin by describing the residual demand model and by showing its connection 
with the company’s revenues. We then analyze the uncertainty faced by the company 
in the spot market and propose a representation based on discrete probability 
distributions. This entails important implications with respect to the way in which 
offering strategies are represented. Moreover, it leads to a multistage stochastic 

                                         
1 Appendix A provides some basic concepts about the residual demand model and includes a detailed 
description of how the residual demand model can be implemented in a mixed-integer programming 
framework. Its reading is very recommended at this point. 
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programming conception of the problem, which is one of the main contributions of this 
thesis. 

4.2.1 Residual demand curves and revenue functions 

An agent’s residual demand function indicates the amount of product q  that he is 
able to sell when the market-clearing price is p : 

( ) ( ).q p R p=  (4.1) 

The idea of residual demand typically arises in the context of microeconomic theory 
but can also be applied to the case of a multiunit double auction. In the case of an 
auction, however, it is more convenient to express the clearing price as a function of 
the agent’s sales: 

( ) ( )1 .p q R q−=  (4.2) 

The residual demand curve condenses the static information about the rest of the 
world that the agent must take into account when evaluating his strategies for the 
auction. In particular, the agent can calculate the revenue he expects to obtain in the 
auction as a function of his own sales with the following expression: 

( ) ( )1 .r q pq R q q−= =  (4.3) 

Hence, both the auction-clearing price and the revenue obtained by the agent can be 
expressed as a function of the agent’s sales, as illustrated in Figure 4.1. 
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Figure 4.1. A residual demand curve and the corresponding revenue function. 

In the mathematical programming models developed in this thesis, these functions 
are implemented by means of the piecewise linear approximation method described in 
Appendix A. This method considers a vector of J  different prices, ( )1, , Jp p… , and 
identifies each residual demand curve by the corresponding vector of J  quantities, 
( )1, , Jq q… . The auction-clearing price, p , can then be calculated as a function of the 
agent’s sales, q , with the following expression: 
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where jδ  is the slope of the residual demand curve in its j -th segment (the one 
delimited by jp  and 1jp + ), ju  is a binary variable that indicates that the quantity q  
sold by the agent has reached this segment and jv  is the incremental quantity 
corresponding to this segment (see Appendix A for details). Similarly, the agent’s 
revenue, r , can be obtained as a function of the agent’s sales, q : 
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where jρ  is the slope of the revenue function in its j -th segment. 

In this manner, the first of the challenges proposed in chapter 3 is met: every 
auction can be represented by means of a residual demand curve and a revenue 
function, whatever shape they may have, making use of these piecewise linear (PWL) 
approximations. 

4.2.2 Sources of uncertainty in a multiunit double auction 

Although an offering strategy based only on the expected residual demand curve is 
not a bad approximation, it is by definition incomplete. In the context of a multiunit 
double auction, it is because of uncertainty that an agent constructs an offer curve 
instead of deciding a unique quantity (or price).  

We consider only two sources of uncertainty for an agent selling a good in a 
multiunit double auction. On one hand, the agent does not know the bids that the 
buyers participating in the auction have submitted. On the other hand, the offers 
tendered by the rest of sellers are also uncertain. 

The residual demand curve is a stepwise function whose steps indistinctly refer to 
buy bids and to rivals’ sell offers. Hence, the residual demand curve is uncertain. In the 
next sections we describe the model used to represent this uncertainty and analyze the 
influence that this model exerts on the development of optimal offering strategies. 
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4.2.3 Choosing the right model to represent uncertainty 

In order to represent the uncertainty faced by an agent in a multiunit double 
auction, the probability distribution for the residual demand curve has to be 
estimated. Two main factors condition the form in which this probability distribution 
must be expressed. 

The first determinant factor is the historic data that is available to estimate this 
probability distribution. We have assumed that the aggregate offer and bid curves 
submitted to a certain auction are revealed shortly after this auction has taken place. 
Hence, each agent can construct the residual demand curve that he faced in every past 
auction and use it as input data to estimate the probability distribution of future 
residual demand curves. 

The second aspect that we must consider is the use that this probability 
distribution is going to receive. This thesis aims to develop optimal offering strategies 
using mathematical programming techniques. It is evident that there are certain forms 
of expressing uncertainty that are more convenient than others for a mathematical 
programming approach. 

This section discusses a method to represent residual demand uncertainty and shows 
how it fails to satisfy the requirements of this thesis, even though it has been 
successfully applied for other research purposes. The idea is to confirm the relevance of 
the abovementioned factors when choosing a model to represent uncertainty. 

Let us assume that the residual-demand probability distribution for a certain 
auction is expressed by means of a market distribution function ( ),q pψ  that indicates 
the probability with which a certain offer ( ),q p  will not be completely accepted 
[Anderson '99]. In other words, ( ),q pψ  expresses the probability with which the 
agent’s last accepted offer will be located between the origin and ( ),q p . Consequently, 
( ) ( )2 2 1 1, ,q p q pψ ψ−  provides the probability with which the agent’s last accepted offer 

will lie between ( )1 1,q p  and ( )2 2,q p , as shown in Figure 4.2. 

 

Firm i ’s output qi  

Price p  

( )1 1,q p

( )2 2,q p

( )1 1,q pψ∼

( )2 2,q pψ∼

 
Figure 4.2. The concept of market distribution function. 

In conclusion, the increment of ( ),q pψ  approximates the probability with which the 
agent’s last accepted offer will be located in a region around ( ),q p . This idea can be 
used to evaluate the expected revenue of a certain offering strategy. For instance, let us 
consider an offer curve expressed in the form of two parametric equations, 
( ) ( ) ( ) [ ]{ }, , , 0,q p q q t p p t t T= = ∈ . The expected revenue is calculated as follows: 

 ( ) ( )
0

.
T

r q t p t dψ= ∫E  (4.6) 
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A more convenient formulation is obtained after some algebra: 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
0 0

, .
T T

q pr q t p t d q t p t q t p t q t p t dtψ ψ ψ ′ ′= = +  ∫ ∫E  (4.7) 

Although the approach proposed in [Anderson '99] and in [Anderson '00] goes well 
beyond this point, a number of observations can already be done: 

i) This expression of the expected revenue does not seem appropriate to search for an 
optimal offering strategy in a mathematical programming context. The reason is 
that the decisions that have to be optimized are expressed in terms of functions, 

( )q q t=  and ( )p p t= , which leads to a functional optimization problem 
[Pflug '01]. There is not a general approach to obtain a numerical solution for such a 
problem. Nevertheless, necessary and sufficient conditions for the local optimality of 
a certain trajectory can be found in [Anderson '00]. 

ii) The information provided by past residual demand curves is much richer than the 
one imbedded in the function ( ),q pψ . To illustrate this, let us consider two offers, 
( )1 1,q p  and ( )2 2,q p  such that ( ) ( )1 2 1 2 0q q p p− ⋅ − <  (Figure 4.3). As has been 
shown, ( ),i iq pψ , informs us about the probability with which the offer ( ),i iq p , will 
not be completely accepted. This probability can be estimated from past residual 
demand curves by simply evaluating the percentage of auctions in which this offer 
would not have been completely accepted. What ( ),q pψ  does not provide is the 
percentage of cases in which offers ( )1 1,q p  and ( )2 2,q p  would both have been 
accepted, or both rejected, or one of them accepted and the other one rejected, 
which is an information that can actually be obtained from past residual demand 
curves. Figure 4.3 illustrates this idea with a probability distribution based on two 
past residual demand curves. Both ( )1 1,q p  and ( )2 2,q p  have a 50 % probability of 
not being fully accepted. However, if ( )2 2,q p  were accepted, ( )1 1,q p  would not be 
accepted and vice versa, which is an information that can only be derived using past 
residual demand curves. 

Firm i ’s output qi  

Price p  

( )1 1,q p  

( )2 2,q p

( )3 3,q p

 
Figure 4.3. The influence of considering an inadequate probability distribution. 

This is a minor drawback if only one auction is being considered, given that offers 
( )1 1,q p  and ( )2 2,q p  can never be simultaneously submitted (the offer curve must be 
increasing). Indeed, ( ),q pψ  does provide the probability with which offers ( )2 2,q p  
and ( )3 3,q p  are simultaneously rejected (whenever ( )2 2,q p  is rejected) or accepted 
(whenever ( )3 3,q p  is accepted) or even one accepted and one rejected 
( ( ) ( )3 3 2 2, ,q p q pψ ψ− ). 

However, when several auctions are simultaneously considered (as in this thesis), the 
shortcomings of the market distribution function approach are more critical. Let 
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( ),n q pψ  be the market distribution function for the n -th auction. As before, 
( ),n

i iq pψ  indicates the probability with which the offer ( ),i iq p  will not be 
completely accepted in the n -th auction. However, the probability with which this 
offer will not be completely accepted in two different auctions, n  and n ′ , may not 
be equal to the product ( ) ( ), ,n n

i i i iq p q pψ ψ ′⋅  if a certain degree of correlation exists 
between both auctions. This correlation can be easily estimated using historic 
residual demand data for both auctions, but is not provided by the market 
distribution functions ( )nψ i  and ( )nψ ′ i . As a result, when two or more auctions 
that may be correlated are simultaneously considered, the market distribution 
function is not an adequate approach to represent uncertainty. 

4.2.4 Probability distributions with finite support 
According to the suggested PWL approximation, the residual demand curve whose 

probability distribution is being sought can be seen as a random vector of J  quantities 
corresponding to a predefined vector of J  prices. Let us assume that this random 
vector has finite support. In other words, this vector has a finite number of possible 
realizations that will be denoted by 1, ,k K= …  and whose probabilities are 

, 1, ,k k Kπ = … . The set of all random vectors will be denoted by K 2. 

Using a probability distribution that consists of K  possible residual-demand 
realizations is the most adequate approach to represent uncertainty for our purposes. 
On one hand, it takes full advantage of the available historic information by 
constructing these future possible realizations from past residual demand curves. 
Figure 4.4 shows an example in which 9K =  possible residual demand realizations 
have been obtained from historic data in order to estimate the probability distribution 
for the residual demand curve of a fictitious generation company in a particular hourly 
auction of the Spanish day-ahead market. 
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Figure 4.4. Possible future residual demand realizations based on historic data. 

                                         
2 This notation convention is kept throughout the thesis. Sets are denoted by regular uppercase 
characters (e.g. K is the set of spot market scenarios). Italics uppercase characters denote the number of 
elements of each set (e.g. K is the number of spot market scenarios). Finally, italics lowercase characters 
denote generic elements of a set (e.g. k is a generic spot market scenario). 
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On the other hand, assuming a finite number of realizations is a natural approach in 
mathematical programming, in particular in the field of multistage stochastic 
programming [Birge '97]. As will be justified, the problem addressed in this thesis can 
be formulated as a multistage stochastic program. 

4.2.5 Implications for the development of optimal offering strategies 

The finite support assumption for the residual demand curve has important 
implications regarding the form in which the agent’s offering strategies are expressed. 
Such a discretization of the residual-demand probability distribution can be seen as a 
concentration of probability in certain regions of the ( ),q p  space while the rest is given 
zero probability. This is obviously a simplification, but provides a very convenient 
framework for the construction of optimal offer curves. Specifically, the shape of the 
agent’s offer curve between two consecutive residual demand realizations turns out to 
be irrelevant, given that the probability density in the region between both residual 
demand curves is null (Figure 4.5). 

 

Firm i ’s output qi  

Price p  

 
Figure 4.5. The shape of the offer curve between two consecutive residual demand realizations is irrelevant 

The offer curve that the agent has to submit can be simply constituted by as many 
offers as residual demand realizations are considered. An offer curve is then completely 
defined by a set of pairs, ( ), , 1, ,k kq p k K= … , that satisfy the following conditions: 

i) Each possible residual demand realization k  must have one (and only one) 
corresponding pair ( ),k kq p  that must be located in the residual demand curve. This 
condition can also be expressed by saying that each quantity kq  yields a price kp  as 
a result of the k -th residual demand realization: ( )1 .k k kp R q−=  These pairs 
( ), , 1, ,k kq p k K= … , can be seen as the set of K  offers submitted by the agent to 
the auction, given the K  possible residual demand realizations. 

ii) The resulting set of pairs or offers must constitute an offer curve that is non-
decreasing. Figure 4.6 depicts two sets of three offers such that only the second set 
yields a valid offer curve. 
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Figure 4.6. ( ),q p  pairs must constitute an increasing offer curve. 
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This can be guaranteed by introducing the following constraints: 

 ( ) ( ) 0, ,k kk kq q p p k k k′ ′ ′− ⋅ − ≥ ∀ >  (4.8) 

Constraints (4.8) are non-linear, so they cannot be used in a mixed linear-integer 
framework. Nevertheless, an equivalent MIP formulation exists: 
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where kkx ′  is a binary variable, qM  is a big quantity and pM  is a big price. When 
0kkx ′ = , the first and third constraints are in force, whereas when 1kkx ′ = , the 

second and fourth constraints exert their influence. This set of constraints is 
compatible with the case of residual demand curves that intersect, such as the ones 
depicted in Figure 4.6. 

It is worth to note that these constraints create a link between the decisions 
adopted by the agent for the different residual demand realizations. If he were 
allowed to submit a non-increasing offer curve then he would be able to decide an 
independent offer for each residual demand realization and the problem would be 
significantly easier to solve. In particular, the following two comments describe 
undesired effects caused by the set of complicating constraints (4.9). 

iii) If uncertainty about the residual demand curve and the revenue function were 
neglected and only the expected residual demand curve and the expected revenue 
function were considered, it would not be necessary to calculate the auction-clearing 
price, given that the agent is interested in his revenue rather than in the price. Of 
course, his revenue depends on the price, but that dependence is already modeled in 
the revenue function. Therefore, in a deterministic approach the price-evaluation 
equation is not required and it suffices with the revenue-evaluation equation [Baíllo 
'01]. On the contrary, when uncertainty is modeled via a number of possible residual 
demand realizations, the price kp  that is obtained for each demand realization, k , 
has to be evaluated in order to ensure that the resulting offer curve is non-
decreasing. 

iv) The binary variables jku  that guarantee that the PWL approximation of the k -th 
revenue function is correctly evaluated, have to be defined for every segment j . 
This is another disadvantage with respect to the deterministic case, in which binary 
variables are only required to separate concave sections (see Appendix A). Indeed, 
when several residual demand realizations and the corresponding revenue functions 
are handled, the presence of the non-decreasing constraints (4.9) establishes a link 
between the offers decided for these different realizations that requires the usage of a 
binary variable for each linear segment of the revenue function. 

To summarize, as a result of representing uncertainty by means of a finite number, 
K , of possible residual demand realizations, the problem of obtaining an optimal 
offering strategy is equivalent to the problem of deciding K  offers ( ), , 1, ,k kq p k K= … , 
that must constitute a non-decreasing offer curve. 



4.2 Modeling the spot market 83 

 

4.2.6 Correlation between different auctions 

The analysis performed hitherto has focused on the case of a single auction that can 
be part of any of the market mechanisms integrated in the spot market (see chapter 2). 
However, the correlation that may exist between the residual demand curves that a 
certain generation company faces in the series of auctions that constitute the spot 
market should not be neglected. We classify the sources of this correlation into two 
different categories. 

On one hand, the residual demand curves that arise in the sequence of twenty-four 
hourly auctions of a certain market mechanism (e.g. the day-ahead market) frequently 
present similarities. The analysis of these similarities can be easily performed if the 
residual demand curves faced by a company in a particular session of one of these 
mechanisms are represented with the PWL approximation suggested in previous 
sections, i.e. as vectors of J  quantities that correspond to a vector of J  prices. To 
illustrate this, Figure 4.7 shows an example in which the twenty-four residual demand 
curves faced by a fictitious generation company in a particular session of the Spanish 
day-ahead market have been represented as 50-component vectors and have been 
classified into four types according to their shape. This classification has been carried 
out with the K-means clustering algorithm [Hartigan '75]. As can be seen, the residual 
demand curves that belong to the same cluster are extraordinarily similar, which seems 
to confirm the correlation that exists between the residual demand curves arising in 
different hourly auctions of the same market mechanism. This intuitive result could be 
corroborated with further statistical analysis, but that is an issue that goes well beyond 
the scope of this thesis. 
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Figure 4.7. Four types of residual demand curves for a company in the Spanish day-ahead market. 
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On the other hand, the residual demand curves that arise in auctions of different 
market mechanisms are also likely to be correlated. For example, it would not be rare 
that a certain type of residual demand realization in the n -th hourly auction of the 
day-ahead market were frequently accompanied by a particular type of residual 
demand realization in the n -th hourly auction of a subsequent market mechanism, 
such as the adjustment market. Continuing with the example of Figure 4.7, Figure 4.8 
shows the shape of the twenty-four residual demand curves faced by the same fictitious 
company in the first session of the Spanish adjustment market (on-day market). These 
curves have been classified into four types according to the classification previously 
performed for the day-ahead market residual demand curves. That is, if the residual 
demand curve faced by the company in the first hourly auction of the day-ahead 
market belongs to cluster 2 then the residual demand curve faced by the company in 
the first hourly auction of the adjustment market is forced to belong to cluster 2. As 
can be seen, the classification performed for the day-ahead market residual demand 
curves yields a classification for the adjustment market residual demand curves that 
seems reasonable (cluster 3 is the only group in which the residual demand curves of 
the adjustment market present evident differences). 
 Cluster 2

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

Cluster 1

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

12/7/2001 

Cluster 4

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

Cluster 3

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

Date Day Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25/04/2001 Wednesday Cluster 2 1 1 1 1 1 1 1 2 2 3 4 4 4 3 3 3 3 3 3 2 2 3 2
 

Figure 4.8. Corresponding types of residual demand curves in the 1st session of the adjustment market. 

In conclusion, a relevant level of correlation may exist between the residual demand 
curves faced by a certain company in the different auctions that constitute the spot 
market. Hence, to avoid missing possible correlations, a generation company operating 
in such a spot market should not construct an independent set of scenarios for each 
hourly auction. What is more, it should not construct an independent set of scenarios 
for each market mechanism. 
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In this thesis, the uncertainty faced by a generation company in the spot market 
will be represented in terms of a discrete probability distribution consisting of a finite 
number, K , of possible spot market situations. Each market situation, k , consists of a 
set of residual demand curves, one for each auction of each market mechanism. The 
probability of the k -th market situation, kπ , indicates the probability with which the 
residual demand curves that it comprises coincide in the same spot market session. 
This representation of uncertainty allows us to consider the correlation that may exist 
between the residual demand curves of different auctions and market mechanisms. 

4.2.7 A multistage stochastic programming problem 

In the spot market considered in this thesis, we require participants to submit offers 
and bids for the auctions of each market mechanism after the clearing of the previous 
market mechanism. For example, a generation company decides its offers for the hourly 
auctions of the adjustment market after the clearing of the day-ahead market. 
Similarly, the company decides its offers for the reserve market after the clearing of the 
adjustment market. Subsequently, the company introduces last-minute changes to its 
generation schedule through the balancing mechanism. 

In each market mechanism, the generation company has the possibility of taking 
recourse actions to correct any undesired results obtained in previous market 
mechanisms. Figure 4.9 illustrates the decision process, which obviously has the 
structure of a multistage stochastic program with recourse [Birge '97]: 

 Offers for the day-
ahead market 

Day-ahead 
market 
clearing 

Day-ahead market discrete 
probability distribution 

Offers for the 
adjustment market

Adjustment 
market 
clearing 

Adjustment market discrete 
probability distribution 

Offers for the 
reserve market 

Reserve 
market 
clearing 

Reserve market discrete 
probability distribution 

Offers for the 
balancing mechanism 

Balancing 
mechanism 

clearing 

Balancing mechanism discrete
probability distribution 

Generation 
schedule  

Figure 4.9. The decision process of a generation company in the spot market. 

Given this structure, a multistage stochastic programming framework can be 
adopted in order to address the problem of deciding optimal strategies for an agent 
that participates in such an electricity spot market. To our knowledge, this approach 
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has not yet been suggested in the literature and can be considered an original 
contribution of this thesis. 

The electricity industry is not at all unfamiliar with the theory of stochastic 
programming. Stochastic programming techniques have traditionally been used to 
tackle a variety of problems such as the long-term capacity-expansion problem in the 
presence of uncertain demand and uncertain fuel prices, the mid-term hydrothermal 
coordination problem in the presence of uncertain inflows or the short-term unit-
commitment problem in the presence of uncertain demand [Wallace '02]. However, with 
the advent of competition, rivals have become one of the most relevant sources of 
uncertainty. The next section shows how the K  market situations used to represent 
spot market uncertainty must be structured in order to reflect this sequential decision 
process. 

4.2.8 A representation based on spot-market scenario trees 

Due to the abovementioned sequential process, two different market situations, 
,k k ′ , may be undistinguishable during the first τ  decision stages. This is the case of 

the pair of scenarios ,k k ′  depicted in Figure 4.10, which share τ  nodes of the scenario 
tree corresponding to the first τ  stages. Each market situation, k , is thus equivalent 
to one of these scenarios and the number of market situations, K , is equal to the 
number of terminal nodes. 

 Node 0 Stage 1 

Spot market 
scenario k 

Node 5 Stage 2 

Node z Stage M 

Spot market 
scenario k’  

Figure 4.10. Two scenarios in a scenario tree. 

The information that is available in scenarios k  and k ′  until stage τ  is the same. 
Hence, the decisions taken for both scenarios until stage τ  must also be the same 
(non-anticipativity). This can be guaranteed by introducing a set of constraints that 
force these decisions to be equal. An alternative is to formulate the problem in terms of 
the nodes of the scenario tree, rather than in terms of the scenarios. The probability of 
each node is the sum of the probabilities of the scenarios sharing that node. 

This approach fulfills the requirements of the second challenge proposed in chapter 
3, given that the uncertainty faced by the generation company is represented in the 
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form of spot market scenarios. Moreover, it provides multistage stochastic 
programming structure that can be exploited to solve the problem [Birge '97]. In order 
to further illustrate the features of this approach three different cases are explored. 

4.2.8.1 The case of a single auction 

When a single auction is considered, each scenario k  refers to one of the possible 
residual demand realizations that constitute the discrete probability distribution for 
that auction. The problem is then reduced to deciding the quantity, kq , that should be 
sold if the k -th residual demand realization occurs3. This quantity yields a price, 
( )k kp q , and a revenue for the agent, ( )k kr q . Figure 4.11 depicts this case. 

 

Node 0 

Stage 1: 
The agent decides
K quantities: 

1, , , ,k Kq q q… …  

Node k 
Scenario k: 

The k-th residual demand realization
occurs. The agent sells kq  MWh and
the auction clearing price is kp .  

Figure 4.11. The case of a single auction. 

For example, let us consider the auction corresponding to hour 1 of the Spanish 
day-ahead market in its session of July 25th. Assume that the probability distribution 
for the residual demand curve of a certain agent is defined with the two residual 
demand scenarios shown in Figure 4.12. The problem then reduces to deciding two 
quantities, 1q  and 2q . These quantities yield two possible prices, ( )1 1p q  and ( )2 2p q , 
with equal probabilities, 1 2 0.5π π= = . 
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Figure 4.12. Two residual demand scenarios for one auction. 

The expected revenue of such an offering strategy is: 

( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 1 2 2 2
K

0.5 0.5 0.5 0.5k k k
k

r r q r q r q q p q q p qπ
∈

= = ⋅ + ⋅ = ⋅ + ⋅∑E  (4.10) 

                                         
3 As has been indicated in previous chapters, different products such as energy or active power reserves 
can be traded in an electricity spot market. In this thesis, the term “quantity” refers to an amount of 
any of these products. If more precision is required, explicit reference will be made to “energy” or 
“reserve”. 
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As has been indicated, each pair ( )( ),k k kq p q  can be understood as a point of the 
agent’s offer curve, ( )q S p= . Therefore, the strategy followed by the agent in the 
auction is completely defined by the vector of quantities ( )1 2, , , Kq q q…  and the 
corresponding residual demand realizations. 

In order to guarantee that the quantities decided by the agent are admissible, they 
must constitute a non-decreasing offer curve. This is enforced by the set of constraints 
(4.9), which applied to the previous example would take the following form: 

 ( )
( ) ( )
( ) ( ) ( )

1 2 12

2 1 12

1 1 2 1 12

2 1 1 1 12

,
1 ,

,
1 ,

q

q

p

p

q q x M
q q x M
p q p q x M
p q p q x M

− ≥−
− ≥− −

− ≥−
− ≥− −

 (4.11) 

It must be emphasized that this set of constraints creates a link between the 
different residual demand scenarios that would not exist otherwise. If the quantities 
decided for the different scenarios were not required to form a non-decreasing offer 
curve, each scenario would be independent of the rest and the problem would be 
significantly easier to solve. This highlights the relevance of the third and fourth 
challenges proposed in chapter 3: all the spot market scenarios must be simultaneously 
considered in order to develop offering strategies that can be considered valid. 

4.2.8.2 The case of several auctions that are simultaneously cleared 

Let us consider now the case of N  auctions that are simultaneously cleared (e.g. the 
24 auctions that constitute the Spanish day-ahead market). Each market scenario, k , 
consists of N  residual demand curves, one for each auction. In order to distinguish the 
quantities decided for each of the auctions, the subscript n  is introduced. For example, 

nkq  indicates the amount of product that the agent sells in the n -th auction if the 
market situation k  occurs. The corresponding clearing price is ( )nk nkp q  and the 
agent’s revenue is ( )nk nkr q . The overall expected revenue is estimated as follows: 

( )
K N

.k nk nk
k n

r r qπ
∈ ∈

= ∑ ∑E  (4.12) 

Figure 4.13 illustrates this case. As before, the agent’s strategy is completely defined 
by a vector of quantities. There is no possibility of taking a recourse action. 
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Figure 4.13. The case of several simultaneous auctions. 
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For example, let us consider 24 auctions of the Spanish day-ahead market 
corresponding to its session of July 25th. Assume that the day-ahead-market probability 
distribution for a certain agent is defined with the two scenarios shown in Figure 4.12. 
The problem would then reduce to deciding two series of 24 quantities. This yields two 
possible price series with equal probabilities, 1 2 0.5π π= = . 
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Figure 4.14. Two day-ahead market scenarios. 

Again, the two quantities decided for the n -th hour, 1nq  and 2nq , must constitute a 
non-decreasing offer curve and must observe the following set of constraints: 

 ( )
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( ) ( ) ( )
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 (4.13) 

4.2.8.3 The case of several market mechanisms 

Consider M  market mechanisms, and assume that each market mechanism, m , 
consists of mN  hourly auctions. Every market scenario, k , is defined by 

M
m

m

N
∈
∑  

residual demand curves, one for each hourly auction. Without loss of generality, 
assume that the mN  hourly auctions of market mechanism m  are simultaneously 
cleared. Hence, each market mechanism corresponds to a decision stage. 
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In each stage, m , the agent has to decide mK N⋅  quantities. However, if scenarios 
k  and k ′  are indistinguishable for the agent until the clearing of market mechanism 
m , the decisions taken for both of them will be the same (non-anticipativity). In 
practice, if the scenario tree has mL  nodes in each stage m , the problem is reduced to 
deciding 

M
m

m

L
∈
∑  quantities. 

We introduce the superscript m  to distinguish the vectors of quantities decided by 
the agent for each of the market mechanisms. For example, m

nkq  indicates the amount 
of product sold by the agent in the n -th hourly auction of the m -th market 
mechanism if market situation k  occurs. The corresponding auction-clearing price is 
( )m m

nk nkp q  and the agent’s revenue is ( )m m
nk nkr q . The overall expected revenue is given by: 

( )
K M N

.m m
k nk nk

k m n
r r qπ

∈ ∈ ∈
= ∑ ∑ ∑E  (4.14) 

As shown in Figure 4.15, in market mechanism 1m +  the agent can take a recourse 
action to correct the result obtained after the previous m  stages. If the problem of 
deciding the strategy for market mechanism 1m +  is never infeasible whatever 
decisions are taken in the previous stages, the recourse is said to be complete. 
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Figure 4.15. The case of several market mechanisms. 

For example, let us consider the 24 hourly auctions of the Spanish day-ahead 
market session and 24 hourly auctions of the Spanish on-day market session that took 
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place on July 25th 2001. Assume that the probability distribution of this sequence of 
two market mechanisms for a certain agent is defined with the two scenarios depicted 
in Figure 4.16. The agent must decide two series of 24 quantities for the day-ahead 
market and two series of 24 quantities for the on-day market. This yields two possible 
price series for both the day-ahead market and the on-day market with equal 
probabilities, 1 2 0.5π π= = . 
 

24/Jul/2001 Intraday market  24 h

0
20
40
60

80
100

120
140
160
180

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Energy (MWh)

Pr
ic

e 
(€

/M
W

h)

20/Jul/2001 Intraday market  24 h

0
20
40
60

80
100

120
140
160
180

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Energy (MWh)

Pr
ic

e 
(€

/M
W

h)

24/Jul/2001 Intraday market  1 h

0

20
40

60
80

100

120

140
160

180

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Energy (MWh)

Pr
ic

e 
(€

/M
W

h)

20/Jul/2001 Intraday market  1 h

0

20
40

60
80

100

120

140
160

180

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Energy (MWh)

Pr
ic

e 
(€

/M
W

h)

24/Jul/2001 Day-ahead market  24 h

0

20
40

60
80

100
120

140
160
180

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Energy (MWh)

Pr
ic

e 
(€

/M
W

h)

20/Jul/2001 Day-ahead market  24 h

0
20
40
60

80
100

120
140
160
180

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Energy (MWh)

Pr
ic

e 
(€

/M
W

h)

20/Jul/2001 Day-ahead market  1 h

0
20
40
60

80
100

120

140
160
180

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Energy (MWh)

Pr
ic

e 
(€

/M
W

h)

24/Jul/2001 Day-ahead market  1 h

0

20
40

60

80
100

120

140

160

180

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Energy (MWh)

Pr
ic

e 
(€

/M
W

h)

Scenario 1 Scenario 2 

H
ou

r 
1 

H
ou

r 
24

 
H

ou
r 

1 
H

ou
r 

24
 

D
ay

-a
he

ad
 m

ar
ke

t 
O

n-
da

y 
m

ar
ke

t 

 
Figure 4.16. Two spot market scenarios. 

A compact representation of the previous scenario tree is provided in Figure 4.17. It 
is important to notice that this scenario structure implies that two possible outcomes 
are being considered for the day-ahead market, but only one for the on-day market. 
The reason is that, once one of the two possible realizations of the day-ahead market 
occurs, the tree suggests only one possible realization for the on-day market. 
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Figure 4.17. A compact representation of the two-stage two-scenario tree. 

In this example, the two quantities decided for the n -th hourly auction of the first 
market mechanism, 1
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 (4.15) 

On the contrary, the two quantities decided for the n -th hourly auction of the 
second market mechanism, 2

1nq  and 2
2nq , are not required to constitute a non-decreasing 

offer curve, given that it is being assumed that only one of the two decisions will 
actually be made. In other words, only those nodes of the scenario tree that share their 
ancestor node are linked by the non-decreasing constraints. 

This multistage stochastic representation can be extended in order to consider 
several spot market sessions. After one spot market session has finished, the company 
has to decide a generation schedule in order to meet the obligations assumed in the 
different market mechanisms that constitute that spot market session. Then a new spot 
market session begins in which the company must decide a new offering strategy. 
When several spot market sessions are considered, we will use the index p  to denote a 
particular spot market session. Hence, mp

nkq  is the quantity that the company sells in 
the n -th hourly auction of the m -th market mechanism corresponding to the p -th 
spot market session if the k -th scenario occurs. 

4.2.9 The influence of zonal pricing 

We have assumed that the transmission network of the power system of study does 
not impose significant limitations to electricity trading. However, in order to provide a 
more general perspective, let us discuss in this section how the residual demand model 
could be generalized if the spot price of electricity varied from one zone to another due 
to congestions in certain flow gates. Our aim is to suggest guidelines for such a 
generalization, leaving its full development as a future line of research. 

The first step toward the generalization of the residual demand model is to consider 
a residual demand curve for each zone. This can be obtained by aggregating the 
demand curve and the rivals’ offer curve for that zone. It is important to specify that 
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the aggregate demand curve of a certain zone is constituted by the bids of consumers 
located in that zone. Similarly, the aggregate offer curve of a certain zone is due to the 
offers of generating facilities located in that zone. The residual demand of each zone 
can be satisfied either with energy generated by the company in that zone or with 
imports from other zones. These imports are due to sales of both the company and its 
rivals in other zones. 

The generalized model must incorporate a representation of the physical laws that 
determine how energy flows through the transmission network. A linearized 
representation would be the most appropriate one, given that transmission capacity 
constraints are more frequent than voltage constraints. This would require one flow 
equation for each flowgate (or line) and one balance equation for each zone (or node). 
It would also introduce the transmission capacity constraints and additional variables 
such as node phase angles and line flows. 

The final step would be to represent the behavior of the market operator, which is 
oriented to the maximization of the net social benefit. In the single-node case, this 
behavior is simply modeled by determining the market-clearing price as the intersection 
of the aggregate offer curve and the aggregate demand curve. In contrast, when 
transmission capacity constraints are taken into account, this solution may not be 
feasible. Hence, in order to obtain the first-order optimality conditions that represent 
the behavior of the market operator, the corresponding Lagrange function must be 
explicitly formulated and derived. These optimality conditions would be included in 
the model in the form of a set of equality constraints and a set of Lagrange multipliers. 
Complementarity slackness conditions might be modeled by means of binary variables. 

As mentioned, the formal development of this generalized residual demand model 
exceeds the scope of this thesis. Nevertheless, it is a line of research that can yield 
fruitful results both from a theoretical and from a practical perspective. 

4.2.10 Building the scenario tree 

The construction of a scenario tree such as the ones described in previous sections is 
not an easy task. Appendix B explains in detail the simple and practical approach 
adopted to build the scenario trees used for the numerical examples presented in this 
thesis. The development of a state-of-the-art spot-market scenario-tree construction 
method would constitute the subject of a doctoral research itself. 

Nevertheless, the idea of representing the spot market as a multistage stochastic 
program constitutes one of the major contributions of this thesis. It provides a 
consistent framework for the evaluation of the expected revenue associated to a certain 
short-term strategy expressed in terms of a vector of quantities. Additionally, this 
model can be easily formulated as a multistage stochastic programming problem in 
order to search for optimal strategies. 

4.3 Modeling the portfolio of a generation company 
The previous section has shown that the strategy of an agent in the spot market can 

be expressed in terms of a vector of quantities. Both the agent’s expected revenue and 
the expected clearing prices can be easily estimated based on this vector of quantities. 
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Additionally, this vector of quantities yields a set of hourly expected net sales in the 
spot market. These hourly sales, together with other sales performed in market 
mechanisms other than the spot market, lead to a supply (or consumption) obligation 
for the agent in each hour. In the case of a generation company, after the clearing of all 
the spot market mechanisms, the company must determine its net accumulated sales 
not only in the spot market but also in other long-term market mechanisms so as 
to derive a production schedule for its generating units. Furthermore, the company 
must take into account the cost of this production schedule and the constraints that 
limit the operation of its generating units when deciding its strategy for the spot 
market. 

From the viewpoint of the spot market, the portfolio of a generation company is 
constituted both by its positions in long-term market mechanisms and by the 
generating units it owns. This section evaluates how the portfolio of a generation 
company conditions its strategy in the spot market. The proposed approach meets the 
requirements of the fifth, sixth and seventh challenges defined in chapter 3. 

4.3.1 Generating units 

A generation system can be formed by a combination of thermal units, hydro plants 
and pumped-storage stations [Wood '96]. Their representation in a mathematical 
programming model typically depends on the time scope considered for the analysis. 

In this thesis, we adopt a mixed linear-integer modeling approach similar to the one 
usual in unit-commitment and economic-dispatch models. Equations are formulated for 
each particular market situation, k , in order to guarantee that a feasible schedule can 
be obtained irrespective of the spot market outcome. This fulfills the requirements of 
the fifth challenge proposed in chapter 3. Given that the degree of detail with which 
generating units can be modeled is somewhat limited by the computational 
requirements of the spot market model, certain simplifications are assumed. 

4.3.1.1 Thermal units 

A thermal unit, t , has a fuel consumption characteristic that can be expressed as a 
non-linear and non-convex function of its power output, due to the presence of several 
valves and turbines in the gas and/or steam cycle. A usual approximation is to express 
these costs as a piecewise linear function of the unit’s output. Additional costs due to 
start-ups also have to be accounted for. Although start-up costs depend on the time 
the unit has been switched off, we neglect this effect. The production costs of 
generating unit t in hour n for a certain market situation k are thus calculated as 
follows: 

, T, N, K
t

t t t t nk
nk t nk t nk t t nk t

t

q
c s y o q f u t n k

k
β α
  = + + + ∈ ∈ ∈   

, (4.16) 

1 , T, N, Kt t t t
nk nk nk n ky z u u t n k−− = − ∈ ∈ ∈ , (4.17) 

0 1, T, N, Kt
nky t n k≤ ≤ ∈ ∈ ∈ , (4.18) 

0 1, T, N, Kt
nkz t n k≤ ≤ ∈ ∈ ∈ , (4.19) 

where 
t
nkc  are the production costs of unit t in hour n and situation k, in €, 
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ts  is the start-up cost of unit t, in €/startup, 
t
nky  is the start-up decision for unit t in hour n and situation k, 
t
nkz  is the shut-down decision for unit t in hour n and situation k, 

to  are the variable O&M costs of unit t, in €/MWh, 
t
nkq  is the net energy produced by unit t, in MWh, 

tf  is the fuel cost, in €/Tcal, 

tβ  is the independent term of the heat rate function for unit t, in Tcal, 
t
nku  is the commitment state (on/off) for unit t in hour n and situation k, 

{ }0,1t
nku ∈ , 

tα  is the linear term of the heat rate function for unit t, in Tcal/MWh, 

tk  is the self consumption coefficient of thermal unit t, in p.u. 

Thermal units also have a maximum capacity, a minimum stable output, and ramp 
rate limits: 

, T, N, Kt t t t
t nk nk nk t nkttq k u q r q k u t n k≤ + ≤ ∈ ∈ ∈ , (4.20) 

1 , T, N, Kt t
t nk n k tl q q l t n k−− ≤ − ≤ ∈ ∈ ∈ , (4.21) 

where 
t
nkr  is the amount of reserve provided by unit t, in MW, 

tq  is the minimum gross stable output for unit t, in MW, 

tq  is the maximum gross capacity for unit t, in MW, 

tl  is the ramp rate limit for unit t, in MW/h. 

Additional constraints can be considered, such as minimum up and down times, to 
control the frequency of startups. The following formulation, suggested in [Nowak '99], 
can be adopted to guarantee a minimum up time of tν  hours for unit t: 

{ }1 0, T, N, K, 1, ,min , 1t t t
n k n k nk tu u u t n k N nν ν ν+ −+ − ≥ ∈ ∈ ∈ = − −… . (4.22) 

In [Arroyo '00] a variety of constraints for thermal units formulated in terms of 
mixed linear-integer expressions can also be found. 

4.3.1.2 Hydro units 

A hydraulic system is formed by a complex network of rivers, dams, channels, and 
hydroelectric plants. Its administration requires taking into consideration the mutual 
influence of all these elements. However, the explicit consideration of the configuration 
of the hydro network requires a modeling effort that would deviate us from our main 
objectives. Hence, our model manages hydro reserves in an aggregate manner by 
integrating several hydro plants into a single equivalent hydro unit. The detail of the 
hydro network can be considered in a subsequent decision stage in order to derive a 
more precise hydro schedule. 

A hydro unit, h , transforms a water flow into electric energy. The energy/flow 
conversion rate depends on the net head of the upstream reservoir and on the actual 
water flow through the turbine [Ni '99]. In spite of this, we neglect these dependences 
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and consider a constant energy/flow ratio. This is equivalent to modeling hydro 
reserves in terms of stored energy, expressed in MWh. Some hydro units can also 
operate in pumping mode, driving water from the downstream dam back to the 
upstream reservoir. The state of each reservoir can thus be evaluated in a 
straightforward manner: 

1 , H, N, K
h

h h h h hnk
nk n k n nk h nk

h

q
w w i s b h n k

k
η−= − + − + ∈ ∈ ∈ , (4.23) 

where 
h
nkw  is the energy stored in reservoir h at the end of hour n in market situation k, in 

MWh, 
h
nkq  is the net energy produced by unit h in hour n and situation k, in MWh, 

hk  is the self consumption coefficient of hydro unit h, in p.u. 
h
ni  are the net inflows received by reservoir h in hour n, in MWh, 
h
nks  is the energy spilt from reservoir h due to an excess of reserve in hour n and 

situation k, in MWh, 
h
nkb  is the energy pumped by unit h in hour n and situation k, in MWh. 

hη  is the performance of the pump-turbine cycle for unit h, in p.u., 

Hydro units have upper and lower bounds for their operation variables and 
reservoirs have minimum and maximum levels: 

0 , H, N, Kh h
nk nk h hq r k q h n k≤ + ≤ ∈ ∈ ∈ , (4.24) 

0 , H, N, Kh
hnkb b h n k≤ ≤ ∈ ∈ ∈ , (4.25) 

0 , H, N, Kh
nks h n k≤ ∈ ∈ ∈ , (4.26) 

, H, N, Kh
hnkhw w w h n k≤ ≤ ∈ ∈ ∈ . (4.27) 

In this thesis we assume that a certain amount of energy, 0hW , is available in each 
reservoir h at the beginning of the planning horizon. A medium-term hydrothermal 
model can determine this energy. An alternative approach would be to assign a value 
to the energy that is left unused at the end of the planning horizon, according to the 
dual variables returned by the medium-term model. 

4.3.1.3 The balance between the net sales in the spot market and the generation 
schedule 

Let us assume that the generation company operates only in the spot market. After 
the clearing of all the spot market mechanisms, 1, ,m M= … , the company has to 
produce with its generating units the net energy it has sold for each hour n . This 
yields the following energy balance equation: 

EM T H
, N, Km t h h

nk nk nk nk
m t h

q q q b n k
∈ ∈ ∈

= + − ∈ ∈∑ ∑ ∑ , (4.28) 

where EM  is the set of spot market mechanisms in which energy is traded. 
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The company also has the obligation of providing the reserve it has sold for each 
hour n . A reserve balance equation must then be formulated: 

RM T H
, N, Km t h

nk nk nk
m t h

q r r n k
∈ ∈ ∈

= + ∈ ∈∑ ∑ ∑ , (4.29) 

where RM  is the set of spot market mechanisms in which reserve is traded. 

It is clear that each market situation k  implies a different generation schedule. 
Equation (4.28) is the first version of the energy balance equation that the generation 
company must observe to guarantee a consistent operation. This equation will be 
gradually enhanced in order to reflect all the alternative mechanisms that the company 
can make use of to perform its sales. 

4.3.1.4 The influence of the generation schedule on the company’s benefit 

We can already formulate a preliminary expression of the company’s short-term 
expected benefit, assuming that the company operates only in the spot market. The 
company’s expected benefit is given by the difference between the net expected 
revenues obtained from its sales in the spot market auctions and the generating costs of 
thermal units4: 

( ) ( )
K M N T N

, ,m m t t t t
k nk nk nk nk nk nk

k m n t n
r q c q y uπ

∈ ∈ ∈ ∈ ∈

 
 = − 
  

∑ ∑ ∑ ∑ ∑BE . (4.30) 

Additional terms will be gradually added to this expression of the company’s 
expected benefit until its complete formulation is attained. 

4.3.2 Forward contracts 

As shown in chapter 2, there are a variety of alternative ways of trading with 
electricity in addition to the spot market. Almost always, generation companies have 
the possibility of selling part of their production through long-term contracts5. These 
contracts, in their most basic form, consist of an agreement to exchange a certain 
amount of energy for a fixed price at certain hours (for instance, the peak hours of a 
specific month) and at a certain node of the network. Before entering into one of these 
contracts, the company must certainly evaluate the benefits that it expects to obtain 
from it. In the short-term, however, the company must evaluate the influence that its 
portfolio of long-term contracts exerts on the benefits it expects to obtain in the spot 
market. From this perspective, the particular form in which these contracts are settled 
plays an important role. 

The settlement of these contracts can be either physical or financial. In the first 
case, the generation company assumes the obligation of providing the specified amount 
of energy at the hours and network node arranged and receives in exchange the fixed 
price agreed. The second type of contract does not imply a physical energy transaction 
but rather a cash flow in which one party pays the other the difference between the 
agreed price and the spot price for that particular hour. These two contractual forms 

                                         
4 The costs of providing reserve are neglected. 
5 The particular form in which these contracts are negotiated (OTC, bilaterally or through an organized 
market) is irrelevant here. 
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present certain differences regarding their representation in a short-term model that 
must be analyzed. 

4.3.2.1 Physical settlement 

If a long-term contract implies the obligation of physically supplying a certain 
amount of energy during a number of hours, the generation company must take this 
into account when scheduling its generating units. This type of contacts are commonly 
known as physical bilateral contracts (PBCs). 

Let PC  be the set of PBCs signed by the generation company and let c  be one of 
these contracts. The amount of energy that the company has agreed to serve in hour n  
as a result of that contract is c

nq  MWh and the price that the company will be paid is 
c
np  €/MWh. The influence that these contracts exert on the company’s energy balance 

equation is expressed as follows: 

E PM C T H
, N, Km c t h h

nk n nk nk nk
m c t h

q q q q b n k
∈ ∈ ∈ ∈

+ = + − ∈ ∈∑ ∑ ∑ ∑ . (4.31) 

In addition to this, the company’s revenue increases in 
PC

c c
n n

c
p q

∈
∑  €. However, this is 

a constant term and cannot be modified by introducing changes in the strategy 
followed by the company in the spot market. The formulation of the company’s 
expected benefit with this additional term is: 

PK M N T N C N

m t c c
k nk nk n n

k m n t n c n
r c p qπ

∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 = − + 
  

∑ ∑ ∑ ∑ ∑ ∑ ∑BE . (4.32) 

where ( )m m m
nk nk nkr r q=  and ( ), ,t t t t t

nk nk nk nk nkc c q y u= . 

4.3.2.2 Financial settlement 

A generation company enters into a long-term contract with the objective of 
securing part of its revenues, instead of being fully exposed to the uncertainty of the 
spot price. This can be achieved by means of a physical bilateral contract but also with 
a contract for differences (CfDs). This is a financial contract in which one party pays 
the other the difference between a fixed price and the spot price for a certain hour. 

Let DC  be the set of contracts for differences signed by the generation company. A 
contract for differences, c , for a quantity c

nq  and a price c
np  does not affect the 

company’s energy balance equation. On the contrary, if market situation k  occurs, the 
net revenue obtained by the company in hour n  due to that contract for differences is 
given by ( )c c

n nk np p q− , where nkp  is the spot price of electricity in hour n 6. This leads 
to the following expression for the company’s expected benefit: 

                                         
6 The spot price of electricity in hour n , nkp , is obtained as a weighted combination of the clearing 
prices that have resulted in the spot market auctions for hour n . A CfDs can also be indexed to the 
price of one of the spot market mechanisms, m

nkp . 
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( )
DK M N C N T N

m c c t
k nk n nk n nk

k m n c n t n
r p p q cπ

∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 = + − ⋅ − 
  

∑ ∑ ∑ ∑ ∑ ∑ ∑BE . (4.33) 

4.3.2.3 Equivalence of both types of contracts 

In order to show the equivalence between PBCs and CfDs, let us consider a single 
market mechanism with a unique auction. Let us also assume that the discrete 
probability distribution for that auction consists of a unique residual demand curve. 
Under these assumptions, the clearing price is denoted by ( )p q , where q  is the energy 
sold by the company in that auction. Let us also express the company’s generation 
costs as a function of its production in the form ( )c q . If the company enters into a 
CfDs for a quantity cq  and a price cp  the company’s benefit is given by: 

( ) ( )( ) ( ) ( ) ( ) ( )c c c c cp q q p p q q c q p q q q p q c q= ⋅ + − ⋅ − = ⋅ − + ⋅ −B . (4.34) 

Let us define now the change of variable * cq q q= − . The company’s benefit is then 
expressed as: 

( ) ( )* * *c c c cp q q q p q c q q= + ⋅ + ⋅ − +B , (4.35) 

which is similar to the benefit that the company would obtain if it entered into a PBC 
for a quantity cq  and a price cp  and its sales in the auction were *q . The only 
inconsistency seems to arise from the value of the market clearing price, which is a 
function of both the energy sold by the company in the spot market, *q , and the 
energy sold by the company through the PBC, cq , instead of being a function 
exclusively of the energy sold by the company in the spot market. However, we must 
take into account that the residual demand function faced by the company changes 
when the company enters into a PBC for cq  MWh. The reason is that its counter 
party reduces its net purchase in the auction in exactly cq  MWh. This is equivalent to 
a horizontal translation of the residual demand curve. A new residual demand curve 
( )* *p q  is obtained such that ( ) ( )* * * cp q p q q= + , as illustrated in Figure 4.18. 

Consequently, we can consider that both types of contracts are equivalent, except for 
the fact that CfDs do not include the obligation to supply energy, which is certainly an 
advantage. 

 

q  

Company’s sold quantity q  

Price p  
cq

p

* cq q q= −
Company’s sold quantity *q  

Price *p  

p

Residual demand curve with no 
physical bilateral contract 

Residual demand curve with a physical 
bilateral contract for 

cq  MWh 
 

Figure 4.18. The influence of a bilateral physical contract on the residual demand. 
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4.3.3 Options 

Generation companies frequently have the possibility of trading with options7. A 
generation company will typically assume long put positions (i.e. it will purchase the 
right to sell energy at a fixed price) and/or short call positions (i.e. it will sell the right 
to buy energy at a fixed price). In this section we focus on the positions adopted by the 
company that have not been cancelled (i.e. they are still open) when the corresponding 
spot market session takes place. From the perspective of the spot market, the option 
price paid by the company when it assumes a long position or the option price received 
in the case of a short position is not relevant. What matters is the influence that these 
positions exert on the company’s strategy in the spot market. 

When evaluating the effect of long-term contracts, we distinguished between PBCs 
and CfDs. This distinction seems unnecessary in the case of options, given that agents 
are not likely to be interested in trading with options that are physically settled. 
However, the formulation of both types of options is an interesting exercise that 
illustrates the potential of the MIP modeling approach. The equivalence between 
physical and financial options will be explored when formulating the Lagrangian 
function in chapter 5. 

4.3.3.1 Long put position 

A generation company may be interested in assuming a long put position in order to 
guarantee a minimum revenue for the energy produced by its units. It is not so clear, 
however, which type of agent would be interested in assuming a short put position. 

Let LPPO  be the set of long put positions assumed by the generation company that 
are physically settled, i.e. if the company decides to exercise its right to sell, it will 
actually have to produce the corresponding energy. Consider the case of one of these 
options, o , for o

nq  MWh with an exercise price of o
np  €/MWh. The decision of 

exercising this option will be represented by a binary variable o
nku . If in scenario k  the 

company decides to exercise option o  in hour n , then 1o
nku = . In other case, 0o

nku = . 

The influence that the company’s long put positions exert on its own benefit is 
evaluated in the following expression: 

LPPK M N O N T N

m o o o t
k nk nk n n nk

k m n o n t n
r u p q cπ

∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 = + ⋅ ⋅ − 
  

∑ ∑ ∑ ∑ ∑ ∑ ∑BE . (4.36) 

The energy balance equation is then: 

E LPPM O T H
, N, Km o o t h h

nk nk n nk nk nk
m o t h

q u q q q b n k
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+ = + − ∈ ∈∑ ∑ ∑ ∑ . (4.37) 

It should be noticed that there is no need to enforce the value of the binary variable 
o
nku . The optimization procedure will decide the right value when maximizing the 

company’s expected benefit. 

                                         
7 Again, the particular form in which these options are negotiated is irrelevant here. 
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Consider now the set of long put positions assumed by the generation company that 
are financially settled, LPFO . If the company decides to exercise one of these options, 
o , the company receives a payment equal to ( )o o

n nk np p q−  €, where nkp  is the spot 
price of electricity in hour n . This leads to the following expression for the company’s 
expected benefit: 

( )
LPFK M N O N T N

m o o o t
k nk nk n nk n nk

k m n o n t n
r u p p q cπ

∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 = + ⋅ − ⋅ −   

∑ ∑ ∑ ∑ ∑ ∑∑BE .(4.38) 

The term ( )o o o
nk n nk nu p p q⋅ − ⋅  is non-linear ( o

nku  is a variable and so is nkp ). An 
equivalent mixed linear-integer expression must be derived if state-of-the-art MIP 
optimizers are to be used to solve this problem. For that purpose a new variable, o

nkp , 
is introduced such that { }max ,o o

nk n nkp p p= . The new mixed linear-integer expression 
for the company’s expected benefit is: 

( )
LPFK M N O N T N

m o o t
k nk nk nk n nk

k m n o n t n
r p p q cπ

∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 = + − ⋅ − 
  

∑ ∑ ∑ ∑ ∑ ∑ ∑BE . (4.39) 

To guarantee that { }max ,o o
nk n nkp p p= , the following constraints must be 

introduced: 

( )
{ }

LPF

LPF

LPF

, O , N, K,

1 , O , N, K,

0,1 , O , N, K,

o p o
nk nk nk

o o p o
n nk nk

o
nk

p p M u o n k

p p M u o n k

u o n k

− ≥− ∈ ∈ ∈

− ≥− − ∈ ∈ ∈

∈ ∈ ∈ ∈

 (4.40) 

where pM  is a large price. To illustrate how this formulation works let us assume that 

0o
nku = . In that case constraints (4.40) reduce to: 

LPF

LPF

0, O , N, K,

, O , N, K.

o
nk nk

o o p
n nk

p p o n k

p p M o n k

− ≥ ∈ ∈ ∈

− ≥− ∈ ∈ ∈
 (4.41) 

Given that the company’s objective is the maximization of its expected benefit, the 

variable o
nkp  will take the maximum possible value, which in this case is nkp . 

Therefore, 0o
nku =  implies that o

nk nkp p=  and the result is that the company does not 

exercise the option. Conversely, if 1o
nku =  constraints (4.40) reduce to: 

LPF

LPF

, O , N, K,

0, O , N, K.

o p
nk nk

o o
n nk

p p M o n k

p p o n k

− ≥− ∈ ∈ ∈

− ≥ ∈ ∈ ∈
 (4.42) 

In this case the maximum value for o
nkp  is o

np . Hence, the company obtains a 

benefit equal to ( )o o
n nk np p q−  € from its long put position. 
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4.3.3.2 Short call position 

A generation company that assumes a short call position is limiting the maximum 
price that it will receive for its production but it receives a payment in exchange: the 
price of the option. Its counter party can be an energy service provider willing to hedge 
against the risk of facing price spikes. This can be seen as a form of capacity payment, 
as suggested in [Vázquez '01]. 

Let SCPO  be the set of short call positions assumed by the company that are 
physically settled. With each of these options, o , the company sells to the other party 
the right to buy o

nq  MWh with an exercise price of o
np  €/MWh. We represent the 

counter-party’s exercise decision by a binary variable, o
nku . If in scenario k  the counter 

party decides to exercise option o  in hour n , then 1o
nku = . In other case, 0o

nku = . 
The formulation of the company’s expected benefit and the expression of the energy 
balance equation are equivalent to those suggested for the case of the long put position, 
(4.36) and (4.37): 

SCPK M N O N T N

m o o o t
k nk nk n n nk

k m n o n t n
r u p q cπ

∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 = + ⋅ ⋅ − 
  

∑ ∑ ∑ ∑ ∑ ∑ ∑BE . (4.43) 

SCPM O T H
, N, Km o o t h h

nk nk n nk nk nk
m o t h

q u q q q b n k
∈ ∈ ∈ ∈

+ = + − ∈ ∈∑ ∑ ∑ ∑ . (4.44) 

However, it is obvious that the option exercise decision corresponds to the counter 
party and is not oriented to the maximization of the generation company’s profit. As a 
result, a set of constraints must be introduced to guarantee that the binary variables 
correctly represent the decisions taken by the counter party: 

( )

SCP

SCP

, O , N, K,

1 , O , N, K.

o p o
n nk nk

o p o
nk n nk

p p M u o n k

p p M u o n k

− ≥− ∈ ∈ ∈

− ≥− − ∈ ∈ ∈
 (4.45) 

It is easy to check that o
n nkp p>  implies 0o

nku = , so the option is not exercised. 
Conversely, if o

n nkp p<  then 1o
nku =  and the option is exercised. 

Consider now the set of short call positions assumed by the company that are 
financially settled, SCFO . The expression of the company’s expected benefit that must 
be used is given by an expression equivalent to the one suggested for financial long put 
positions, (4.39): 

( )
SCFK M N O N T N

m o o t
k nk nk nk n nk

k m n o n t n
r p p q cπ

∈ ∈ ∈ ∈ ∈ ∈ ∈

 
 = + − ⋅ − 
  

∑ ∑ ∑ ∑ ∑ ∑ ∑BE . (4.46) 

In this case the expression for the auxiliary price is { }min ,o o
nk n nkp p p= . Hence, the 

following constraints have to be introduced: 

SCF

SCF

, O , N, K,

, O , N, K,

o
nk nk

o o
nk n

p p o n k

p p o n k

≤ ∈ ∈ ∈
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 (4.47) 

and no binary variables are required. 
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4.3.4 The value of the company’s market share 

The expressions of the company’s expected benefit that we have formulated in 
previous sections focus only on the short term. However, the company’s objective is (or 
should be) the maximization of its long-term benefit. This includes aspects such as the 
strategy followed by the company in order to defend its market position against new 
entrants. As stated in [Viscusi '98], one pricing strategy is for an incumbent firm 
always to set the price that maximizes its current profit. Typically, setting such a high 
price will cause the fringe to invest in capacity and expand. This can be called myopic 
pricing. The polar opposite case is that the incumbent sets a price that prevents all 
fringe expansion (limit pricing). Myopic pricing gives higher profits today, while limit 
pricing gives higher profits in the future. Pricing at a level to exclude from the market 
less efficient competitors is, of course, what competition is supposed to do. Pricing to 
exclude equally or more efficient competitors is known as predatory pricing and 
constitutes an intent to acquire the monopoly position. 

Let us evaluate the influence that the slope of the residual demand curve, ( )ip q , 
exerts on the short-term strategy of a certain firm, i , whose costs are given by ( )i ic q . 
Firm i ’s short-term benefit is given by: 

( ) ( )i i i i ip q q c q= −B . (4.48) 

The output iq  that maximizes the firm’s short-term profit must fulfill the following 
first-order optimality condition: 

( ) ( ) ( ) ( ) ( ) ( )
0i ii

i i i i i i i i
i i i

p q p q
p q q c q p q c q q

q q q
∂ ∂∂ ′ ′= + − = ⇒ − =−

∂ ∂ ∂
B

. (4.49) 

Hence, firm i ’s optimal strategy is to produce a quantity such that the difference 
between the resulting price, ( )ip q , and its marginal costs, ( )i ic q′ , is equal to 
( )i

i
i

p q
q

q
∂
∂

. This difference is usually known as price markup. 

Consider a spot market auction corresponding to an on-peak hour. In on-peak hours 
the slope of the residual demand curve that a generation company faces is typically 
very steep and the company’s output is high, which suggests a large price markup. 
Consequently, if no long-term guidelines were included, the model would blindly tend 
to reduce the company’s production so as to cause a increase of the clearing price and 
maximize the company’s current profit. However, this also allows competitors to sell 
more quantity at a higher price. Taking into account that the price of electricity 
usually behaves as a mean-reverting process, if the firm repeatedly gives up its position 
during on-peak hours, competitors will find it profitable to increase their market shares 
and, in the long run, prices will return to the original level. If this happens, the 
company will have lost its market position. The possibility of suffering from market-
power mitigation measures applied by the regulator is another adverse consequence of 
this myopic behavior. 

In order to avoid these undesirable effects, the company should take into 
consideration the future value of its current market position when designing its short-
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term strategy. This can be simply done by including an additional term in the benefit 
expression: 

( ) ( ) i
i i i i i

q
p q q c q

Q
σ= − +B , (4.50) 

where σ  is the value of the company’s market share, expressed in € per unit and Q  is 
the total trading volume expected for that particular auction. The value of σ  can be 
obtained from a medium-term strategic model that includes a minimum-market share 
constraint. In subsequent chapters we will illustrate the relevance of this additional 
term with numerical examples. A more specific expression of the company’s expected 
benefit, including the future value of the company’s current market share is: 
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where m
nσ  is the value of the company’s market share in the n -th hourly auction of 

the m -th market mechanism expressed in € per unit and m
nkQ  is the total trading 

volume expected for that particular auction if market situation k  occurs. 

4.4 The case of an energy service provider 

4.4.1 The short-term problem of an energy service provider 

The activity of an energy service provider (ESP) in a wholesale electricity market 
presents an important conceptual difference with respect to the business of a 
generation company. A generating unit can be seen as an option, given that its owner 
is typically free to decide whether it produces electricity or it remains offline. Of 
course, in the long term, the unit must produce in order to be profitable, since the 
price paid for such an option the cost of the plant is extremely high. On the 
contrary, an ESP does not require large investments to operate. The core of its 
portfolio is constituted by obligations in the form of retail contracts with its 
customers8. 

An ESP must buy in the wholesale market the energy purchased by its customers 
according to these retail contracts. The ESP can perform these wholesale purchases 
either through medium- and long-term contracts or through the spot market. Hence, in 
the short-term, an ESP is faced with a portfolio of wholesale long positions (purchases) 
and retail short positions (sales) that must be balanced with purchases in the spot 
market. The problem is then to decide the bids that must be submitted to the spot 
market in order to buy the required amounts of energy at the minimum possible cost. 
This problem presents certain symmetries with respect to that of a generation company 
and can be addressed following the ideas presented in previous sections. Nevertheless, 
it must be emphasized that an ESP is subject to a more significant risk exposure in the 
spot market than a generation company, given that an ESP is forced to balance its 
position, whereas the generation company can decide the amount of energy that it 
wishes to produce. In order to reduce this risk exposure, an ESP should perform the 
majority of its purchases through medium- and long-term wholesale contracts. 
                                         
8 Some of these contracts can be options, but it is rare that customers decide to expose themselves to 
the risk of the spot market. 
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4.4.2 The portfolio of an energy service provider 

As indicated, the portfolio with which an ESP goes to the spot market is typically 
integrated by wholesale long positions and retail short positions. In order to develop an 
optimal strategy for the spot market, we must take into account the influence of these 
contracts. This influence can be represented in a mathematical programming problem 
following the same logic that has been used when modeling the portfolio of a 
generation company. 

For instance, an ESP can enter in a physical bilateral contract with a generation 
company and purchase a certain amount of energy that the generation company will 
supply in a specific moment of the future at a certain node of the network. In this 
manner, the ESP secures part of its purchases and reduces its exposure in the spot 
market. The influence that such a contract exerts on the strategy followed by the ESP 
in the spot market can be evaluated following the ideas presented in section 4.3.2.1. 
The conclusion is the same if the ESP enters in a contract for differences. 

Trading with options in the wholesale market is also another way in which an ESP 
can reduce its risk exposure. For example, an ESP can assume a long call position for a 
certain amount of energy where the counter party is a generation company that 
assumes a short call position. In this manner, the ESP guarantees the maximum price 
that it will have to pay for that energy. On the contrary, it is not likely that an ESP 
be interested in assuming a short put position, given that this would only contribute to 
increase its risk exposure. 

The variety of retail contracts that an ESP can sign with its customers is extremely 
wide. Nevertheless, the range of contractual forms that can be formulated with mixed 
linear-integer expressions is also very broad. The analysis of a particular case would 
surely shed light over this matter and will be suggested as a future line of research. 

In conclusion, the portfolio of an ESP consists mainly of wholesale and retail 
contracts. The ESP must consider the influence of these contracts when developing its 
bidding strategy. It is expected that this influence can be evaluated in a mathematical 
programming framework using mixed linear-integer expressions. 

4.4.3 The spot market from the perspective of an ESP 

When deciding its strategy for the spot market, an ESP must evaluate the change 
that its purchase decisions will induce in the spot price. This can be evaluated in each 
of the spot-market auctions by means of a residual offer curve. Such a curve is 
obtained by subtracting the bid curves of the rest of wholesale buyers from the 
aggregate offer curve. The residual offer curve leads to a cost function, ( )c q , that 
indicates the cost incurred by the ESP when purchasing q  MWh in that particular 
auction. These cost functions present the distinctive shape shown in Figure 4.19. They 
are non-decreasing piecewise linear curves. A representation based on PWL 
approximations identical to the one suggested for residual demand curves can be used 
to implement these curves in a MIP model. 
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Figure 4.19. A residual offer curve and the corresponding cost function. 

In conclusion, the problem of finding the optimal strategy of an ESP in the spot 
market presents similarities with the case of a generation company that can be 
exploited in order to follow the same line of attack. Specifically, we have shown that 
the portfolio of an ESP is constituted by wholesale and retail contracts that should 
adapt well to a mixed linear-integer framework. Additionally, the perspective that an 
ESP has of the spot market is symmetrical to the one of a generation company, which 
permits the usage of a similar representation. Consequently, the modeling approach 
suggested in this chapter, originally conceived for the case of a generation company, 
also meets the eighth challenge, which requires that the model can be easily adapted to 
the case of an ESP. 

4.5 Problem statement 
This section summarizes the mixed linear-integer formulation that results from the 

analysis of the problem faced by a generation company operating in a spot market. The 
formulation of such a problem is itself a contribution, as it has required the full 
comprehension of the real problem and is the first step toward its solution. Indeed, it 
has been shown that the eight challenges identified in chapter 3 are fulfilled by this 
modeling approach. 

4.5.1 Objective function 

The objective function that must guide the generation company when designing its 
strategy for the spot market is its expected benefit. In previous sections we have 
identified a variety of elements that have an influence on the company’s expected 
benefit, such as the revenues obtained by the company in the different spot market 
mechanisms, the production costs of its generating units, the positions assumed by the 
company with respect to options and long-term contracts or the future value of the 
company’s current market share. The following equation integrates the expressions that 
we have suggested to evaluate these contributions in a mixed linear-integer framework. 
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Other terms can be added, provided that they are formulated as mixed linear-integer 
expressions. 
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where PO  is the set of options that are physically settled and FO  is the set of options 
that are financially settled. A number of terms of the previous objective function are 
constants and will not be altered by the strategy followed by the company in the spot 
market. Hence, they could be suppressed when implementing the model. 

4.5.2 Constraints 

4.5.2.1 Energy balance equation 

In our model, the most relevant constraint is the energy balance equation. This 
constraint establishes a link between different aspects of the company’s operation. In 
particular, it indicates the amount of energy that the generation company must 
produce in order to meet the obligations assumed due to its net sales in the wholesale 
electricity market. The following formulation of the energy balance equation includes 
all the elements analyzed in previous sections. Other contributions can be incorporated 
in the form of mixed linear-integer expressions. 

E P PM C O T H
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nk n nk n nk nk nk
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q q u q q q b n k
∈ ∈ ∈ ∈ ∈
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4.5.2.2 Reserve balance equation 

The reserve balance equation evaluates the amount of reserve that the generation 
company must provide with its units as a result of its sales in the reserve market 
mechanisms: 
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nk nk nk
m t h
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= + ∈ ∈∑ ∑ ∑ . (4.54) 

4.5.2.3 Spot market 

In this chapter we have used a compact notation to represent both the spot market 
clearing prices and the revenues obtained by the company in each of the spot market 
mechanisms. However, in practice, a number of constraints have to be included in 
order to correctly represent the operation of the spot market. In particular, we 
approximate residual demand curves and revenue functions by means of piecewise 
linear functions, according to the following expressions: 
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To guarantee that the decisions suggested by the model constitute admissible 
offering strategies for the spot market, a set of non-decreasing constraints has to be 
included for each pair of residual demand realizations considered in every spot market 
auction: 
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4.5.2.4 Generating units 

In this model, the constraints that take into account the technical features of each 
generating unit are quite similar to the ones traditionally used in unit-commitment or 
economic-dispatch models to derive short-term minimum-cost generation schedules. 
The following equations are used to represent thermal units: 
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Another set of equations refers to hydro units: 
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Many other constraints can be introduced, as long as they are expressed in terms of 
mixed linear-integer equations. 

4.5.2.5 Options and long-term contracts 

In order to guarantee that the influence of the long put and short call positions 
assumed by the company is correctly evaluated, several constraints have to be 
introduced. Specifically, long put positions that are financially settled require the 
following set of constraints: 
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 Short call positions that are physically settled must be accompanied by another set 
of constraints: 
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Finally, short call positions that are financially settled entail a different set of 
constraints: 
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4.5.2.6  Other long-term strategic objectives 

We have justified that a company should not blindly fall into the trap of short-term 
profits but rather identify long-term targets that guide the company’s daily operation. 
In particular, we have suggested including an additional term into the objective 
function that represents the future return that the company’s current market share will 
yield. 

4.6 Conclusion 
In this chapter we have formulated the problem of optimizing the strategy of a 

company in the electricity spot market as a multistage stochastic program. This 
approach reflects the decision process that actually takes place in the spot market 
considered in this thesis, which is designed as a sequence of market mechanisms. 
Moreover, the proposed formulation meets the eight modeling challenges established in 
chapter 3. Let us examine this in further detail: 
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• A methodology based on piecewise linear approximations has been suggested to 
represent both the residual demand curves and the revenue functions of all the 
spot market auctions (challenge 1). 

• The scenario-tree structure used to represent spot-market uncertainty, in 
addition to adapting well to a multistage stochastic programming framework, 
takes into consideration the correlation that may exist between different spot 
market auctions (challenge 2). 

• To guarantee that the decisions suggested by the model constitute admissible 
offering strategies for the spot market (challenge 3), a set of non-decreasing 
constraints has been defined. This requires that all the spot market scenarios be 
simultaneously considered (challenge 4). 

• The operation of the generating units has been modeled in detail with a 
formulation similar to the one typically used in unit-commitment and economic-
dispatch models (challenge 5). 

• A variety of other elements of the generation company’s portfolio can be 
incorporated into the model (challenge 6), following the guidelines suggested for 
long-term contracts and options. 

• A novel approach has been proposed to guarantee that the model takes into 
account the company’s objective of defending a certain market position 
(challenge 7). 

• The applicability of this model to the case of an energy service provider has been 
justified (challenge 8). 

In this manner, one of the main objectives of this thesis has been fulfilled. Indeed, 
the model presented in this chapter constitutes an original approach to address the 
problem faced by a generation company in an electricity spot market. It takes into 
account the aspects that have a relevant influence on the company’s operation, 
including the strategy that its rivals are expected to follow and the company’s own 
portfolio. It also presents a structure that suggests the usage of decomposition 
techniques to obtain numerical results. In the following chapter, a detailed analysis of 
this structure will lead to a solution procedure based on two decomposition techniques, 
Lagrangian relaxation and Benders’ decomposition, that turn out to be 
complementary. 
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5. The development of a solution strategy 

5 The development of a 
solution strategy 

The general problem faced by a generation company in an electricity spot market has been 
formulated as a multistage stochastic program. However, this formulation must be 
particularized to address more specific problems in order to obtain numerical results for real-
size study cases. In this chapter two particularizations of this general approach are suggested. 
On one hand, the problem of developing an offering strategy for one spot market mechanism is 
formulated as a two-stage program, assuming that the relative importance of the subsequent 
market mechanisms diminishes as the moment of physical delivery gets nearer. On the other 
hand, the weekly stochastic unit-commitment problem is formulated as a sequence of two-stage 
stochastic programs, one for each day of the week. 

Both mathematical programs turn out to be large-scale programs whose numerical resolution 
requires a careful analysis of their structure and properties in order to identify adequate 
solution strategies. In particular, Benders’ decomposition is considered the most convenient 
approach to solve the two-stage optimal offering problems. In contrast, Lagrangian relaxation is 
more appropriate to address the weekly stochastic unit-commitment problem. The combination 
of both techniques provides a powerful framework to handle the short-term operation of a 
generation company participating in an electricity spot market. 
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5.1 Introduction 
The adoption of a multistage stochastic programming approach to represent the 

problem faced by a generation company in a spot market is one of the main 
contributions of this thesis. However, the formulation of such a problem would be 
completely useless if it were impossible to obtain numerical results for it. 

This chapter constitutes an effort to develop a solution strategy that can be used to 
solve real-size problems. It begins by reducing the multistage stochastic program into a 
sequence of two-stage programs, an approximation that greatly simplifies the search for 
a solution. 

Each two-stage program represents the process of developing an offering strategy by 
a generation company for a particular market mechanism. It models not only the 
uncertainty of the current market mechanism, but also the influence of the subsequent 
market mechanism and the daily generation schedule that results from the sequence of 
sales performed by the company. 

In accordance with the previous idea, this chapter also suggests representing the 
weekly stochastic problem of the generation company as a sequence of two-stage 
programs. This provides a framework to make unit-commitment decisions and to 
manage hydro resources on a weekly basis explicitly considering the uncertainty of the 
spot market. 

The formidable size of the mathematical programs that result when the real short-
term problems faced by a generation company are formulated in this manner makes it 
impossible to derive numerical solutions for them without making use of some sort of 
decomposition technique. 

An analysis of the structure of the suggested two-stage program leads to the usage 
of two alternative decomposition techniques for its numerical resolution. On the one 
hand, Benders’ decomposition adapts well to the two-stage structure of the problem 
and to the presence of complicating variables. An original ad hoc method is proposed 
to accelerate the convergence of Benders’ algorithm when solving this particular type of 
problem that reinforces the adequacy of this approach. On the other hand, Lagrangian 
relaxation is a technique frequently used in the context of short-term generation 
scheduling, where the presence of coupling constraints complicates the search for a 
solution. Its application to the two-stage problem provides some meaningful economic 
interpretations, but its advantages are outnumbered by its shortcomings. In this 
manner, Benders’ algorithm is the right choice to solve the two-stage program. 

In contrast, when it comes to addressing the weekly stochastic unit-commitment 
problem, Benders’ decomposition cannot be used due to the generalized presence of 
binary variables. In this context, Lagrangian relaxation turns out to be the most 
appropriate technique [Nowak '99]. In this manner, the short-term problems faced by a 
generation company in a spot market can be addressed with a combination of these 
two decomposition approaches. 
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5.2 A sequence of two-stage stochastic programs 

5.2.1 The relative importance of market mechanisms 

In chapter 4, we have formulated the problem faced by a generation company in an 
electricity spot market as a multistage stochastic program. According to this approach, 
in the first stage the company decides its offers for the day-ahead market. After the 
clearing of the auctions that constitute the day-ahead market, the company must 
decide its offers for the adjustment market based on the results obtained in the day-
ahead market. Hence, the decisions taken by the company for the adjustment market 
can be seen as recourse actions oriented to correct previous undesired results. The 
process goes on until the balancing mechanism is cleared. A generation schedule results 
from this sequence of market mechanisms. 

In practice, the volumes traded in the sequence of market mechanisms diminish as 
the moment of physical delivery gets nearer. For example, in the Spanish spot market, 
the volume of energy traded in the adjustment market is usually between 10 % and 
20 % of the volume traded in the day-ahead market. Similarly, the reserve market is 
less relevant than the adjustment market and so forth. This suggests separating the 
company’s multistage decision process into a sequence of two-stage decision processes. 
Specifically, when deciding the offers for the day-ahead market, the generation 
company might consider only the adjustment market and neglect the influence that the 
reserve market and the balancing mechanism have on its final generation schedule. 

Furthermore, the company might also neglect the influence of the uncertainty faced 
in the adjustment market by simply reducing its discrete probability distribution to 
the set of expected hourly residual demand curves. In other words, the company can 
assume that each possible realization of the day-ahead market is accompanied by a 
single possible realization of the adjustment market. This results in the simplified 
decision process depicted in Figure 5.1. It must be noticed that the expected outcome 
for the adjustment market typically depends on the day-ahead market results, so each 
possible day-ahead market realization will be accompanied by a different expected 
situation for the adjustment market. While the decisions taken for the first market 
mechanism take the form of an offer curve, the decisions for the second market 
mechanism are expressed as expected sales. Hence, the quantities decided for the 
second market mechanism are not required to constitute a non-decreasing offer curve. 

Offers for the day-
ahead market 

Day-ahead 
market 
clearing 

Day-ahead market discrete 
probability distribution 

Offers for the 
adjustment market

Adjustment 
market 
clearing 

Adjustment market 
expected outcome 

Generation 
schedule  

Figure 5.1. A simplified version of the decision process from the perspective of the day-ahead market. 
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Similar two-stage decision processes result for each of the spot market mechanisms, 
as represented in Figure 5.2. In this manner, when a company decides its offering 
strategy for one of the spot market mechanisms, it should solve one of these two-stage 
programs, instead of solving a unique multistage stochastic program for the whole spot 
market session. This simplification significantly reduces the computational effort 
required to solve the problem faced by the generation company in the spot market. 
Nevertheless, the size of these two-stage programs still requires the use of advanced 
mathematical programming techniques in order to obtain numerical results. 
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Figure 5.2. The scenario structure for each of the two-stage stochastic programs. 

5.2.2 A compact formulation for a two-stage program 

Let us formulate the two-stage program corresponding to a set of two consecutive 
market mechanisms { }M 1,2= . According to the general formulation developed in 
chapter 4, the company’s objective function for this particular problem is expressed as: 
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where the revenue obtained by the company in each of the two spot market 
mechanisms is expressed in terms of the corresponding clearing prices, instead of using 
the hourly revenue functions. Additionally, both CfDs and options are indexed to the 
clearing prices of the first market mechanism. Hence, the revenues obtained by the 
company due to these products depend only on the energy sold by the company 
through the first market mechanism. 

Assuming that both market mechanisms are devoted to energy trading, the energy 
balance equation takes the following form: 

P P

1 2

C O T H
, N, Kc o o t h h

nk nk n nk n nk nk nk
c o t h

q q q u q q q b n k
∈ ∈ ∈ ∈

+ + + = + − ∈ ∈∑ ∑ ∑ ∑ . (5.2) 

A relevant observation is that, if the market mechanism of interest is not the day-
ahead market, the sales performed in previous market mechanisms of the current spot 
market session should be treated as supply obligations assumed by the company, as 
suggested for physical contracts. 

The objective function, (5.1), together with constraints (5.2) constitute the nucleus 
of the two-stage program. The rest of constraints would be formulated as indicated in 
chapter 4 and add little to the developments of this chapter. Hence, they will rather be 
expressed in a compact manner. For example, the quantities offered by the company 
for the first market mechanism in each hour n  must satisfy constraints (4.55) and 
(4.56), which are condensed in equation (5.3): 

{ }1 1, K Q , Nnk nq k n∈ ∈ ∈ . (5.3) 

Equation (5.3) establishes a link between the quantities decided for each of the 
possible outcomes of the first market mechanism. In contrast, it has been assumed 
that, once the first mechanism has been cleared, the company decides a unique 
quantity for the second market mechanism, based on its expected outcome. Hence, non-
decreasing constraints (4.56) do not affect the second-stage decisions taken by the 
company. Only constraints (4.55) must be formulated for these recourse actions. We 
express this by means of the following equation: 

2 2Q , N, Knk nkq n k∈ ∈ ∈ . (5.4) 

It is worth noticing that equations (5.3) and (5.4) both include integrality 
constraints due to the binary variables that guarantee both that non-concave revenue 
functions are correctly evaluated and that the resulting offer curves are non-decreasing. 

The schedule decided for each thermal generating unit, t , in each scenario k  
consists of a set of N  production levels { }, Nt

nkq n ∈  that must comply with the unit’s 
technical constraints, (4.57) to (4.63). Similarly, the schedule of each hydro unit, h , 
for each scenario k  must observe constraints (4.64) to (4.68). The limitations imposed 
by these technical constraints are comprised in equations (5.5) and (5.6): 

{ }, , , N Q , T, Kt t t t
nk nk nkq y u n t k∈ ∈ ∈ ∈ , (5.5) 

{ }, , N Q , H, Kh h h
nk nkq b n h k∈ ∈ ∈ ∈ . (5.6) 
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Finally, the binary variables used to represent the exercise of options and the 
auxiliary variables with which the current value of each option is evaluated are subject 
to constraints (4.69) to (4.71), which are condensed in equations (5.7) and (5.8): 

FP , O , N, Ko o
nk nkp o n k∈ ∈ ∈ ∈ , (5.7) 

PU , O , N, Ko o
nk nku o n k∈ ∈ ∈ ∈ . (5.8) 

This compact formulation will be used in subsequent sections in order to analyze the 
adequacy of two different solution strategies, given that it facilitates the application of 
decomposition methods. 

5.2.3 A numerical example 

In this chapter, a number of small numerical examples are provided in order to 
illustrate the methodologies proposed. All these examples are based on the same input 
data so that the different solution approaches can be compared1. They address the two-
stage problem faced by a fictitious generation company in the Spanish day-ahead 
market on Wednesday October 24th 2001. Uncertainty in the day-ahead market is 
represented by means of two scenarios. Residual demand curves and revenue functions 
are approximated by means of piecewise linear curves with six linear segments. No 
long-term contracts are considered. Commitment decisions are taken as input data. 
Figure 5.3 indicates the hourly values given to the coefficient that represents the value 
of market share in the day-ahead market. For example, a value of 2 M€ per unit in a 
certain hour means that a future profit of 2 M€ would be obtained if a 100 % of market 
share were reached in that hour. 
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Figure 5.3. Hourly market-share value for the two-scenario case. 

The resulting problem has 13249 equations and 13771 variables, 474 of which are 
binary. It has been formulated in the algebraic modeling language GAMS [Brooke '96]. 
6.5 s are required to solve it with the commercial solver CPLEX 7.5 in a Pentium III 
1 GHz 256 MB PC. The solution obtained is 30.112293 M€. Approximately 26 M€ 

                                         
1 The details of the input data used for the numerical examples of this thesis can be found in appendix 
C. 
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correspond to the value of the current market share2. The revenues obtained in the 
day-ahead market are 8 M€, whereas those obtained in the adjustment market account 
for -0.4 M€. Finally, the variable costs are 3.5 M€. 

Figure 5.4 shows the amount of energy offered by the company for the two scenarios 
in each of the hourly auctions that constitute the day-ahead market and the 
adjustment market. It also depicts the clearing prices that result. 
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Figure 5.4. Hourly offers for the day-ahead market and the adjustment market. 

The aggregation of the offers decided for both market mechanisms yields two 
generation schedules, one for each scenario. These schedules consist of a production 
program and a pumping profile, as can be seen in Figure 5.5. 
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Figure 5.5. Hourly generation and pumping schedules for the units owned by the generation company. 

                                         
2 The value of the company’s market share in the day-ahead market has been adjusted to obtain clearing 
prices that are similar to those observed in the Spanish spot market. 



5.2 A sequence of two-stage stochastic programs 121 

 

Figure 5.6 illustrates the manner in which the company’s influence on the market-
clearing price is represented. It depicts the offers decided by the model for the two 
residual demand scenarios considered in the 21st hourly auction of the day-ahead 
market. It also shows the corresponding revenues that the company would obtain in 
both scenarios. The same magnitudes are represented in Figure 5.7 for the adjustment 
market. 
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Figure 5.6. Detail of the offers decided for the 21st hourly auction of the day-ahead market. 
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Figure 5.7. Detail of the offers decided for the 21st hourly auction of the adjustment market. 
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This numerical example serves as a benchmark to test the solution strategies that 
are developed in this chapter. Due to its small size (only two scenarios are considered 
and six linear segments are used to approximate each curve) CPLEX is able to solve it 
in a straightforward manner, without making use of the elaborate decomposition 
techniques that are presented below. 

5.2.4 The weekly stochastic unit-commitment problem 

Assuming that the relative importance of the market mechanisms that constitute a 
certain spot market session diminishes as the moment of physical delivery gets nearer 
has the advantage of reducing the problem faced by a generation company in a specific 
spot market session to a sequence of two-stage stochastic programs. 

However, spot market sessions are repeated on a daily basis and it cannot be 
assumed that the results of tomorrow’s day-ahead market are negligible if compared 
with those of today’s day-ahead market. This has important implications that have 
already been pointed out. In first place, some medium-term strategic guideline must be 
considered when deciding the offers for the current spot market session, so as to avoid 
myopic decisions that may trigger undesirable reactions of rivals in subsequent spot 
market sessions. The value of the company’s market share in the spot market is the 
parameter used in this thesis to orient short-term decisions toward long-term 
objectives. Secondly, the startup and shutdown of thermal units are decisions that 
should not be taken with a time scope of only one day. The reason is that it takes 
several days to recover the cost of starting up certain thermal plants. Hence, when 
deciding the offering strategy for a specific spot market session, the generation 
company should already have a weekly unit-commitment schedule. Finally, water 
reserves have a future value and cannot be used arbitrarily. A limited amount of hydro 
energy should be assigned to each day, in order to avoid an inefficient use of this 
valuable resource. This assignment can also be done with a one-week perspective. 

Although several unit-commitment models that take into account the influence of 
the company’s decisions on the spot price of electricity have recently been proposed, 
their deterministic approach is inconsistent with the stochastic perspective adopted in 
this thesis [García-González '00, Baíllo '01]. Assuming that the two most relevant 
market mechanisms are the day-ahead market and the adjustment market, the weekly 
multistage stochastic program can be seen as a sequence of two-stage programs. This 
yields the scenario structure represented in Figure 5.8. A simplified procedure to build 
such a scenario tree can be found in appendix B. 
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Figure 5.8. The decision process from the perspective of a whole week. 

It is important to emphasize that the decisions suggested by this weekly multistage 
stochastic model should be updated every day, after the uncertainty of the current spot 
market session has been unveiled. It must also be noticed that these decisions are 
flexible, in the sense that they depend on the realization of uncertainty. In other 
words, the model does not provide a rigid unit-commitment schedule, but rather a 
collection of schedules adapted to the different spot market scenarios that may arise 
during the week. For instance, if three spot market situations are considered for the 
first day and it is Monday, three different startup strategies will be obtained, each one 
corresponding to one particular market outcome. In order to implement these decisions, 
it suffices to develop an offering strategy that assumes a different unit-commitment 
schedule for each spot market scenario. 
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In this manner, the problems that a generation company participating in a spot 
market faces in the short term (one day to a week) can be addressed with two types of 
closely related mathematical models. On the one hand, the problem of deciding an 
offering strategy for each particular market mechanism can be tackled as a two-stage 
stochastic program using the formulation suggested in 5.2.2. On the other hand, the 
problem of deciding the startup and shutdown of the thermal units and of assigning 
the hydro resources that should be used each day can be addressed with a weekly 
stochastic unit-commitment model structured as a sequence of two-stage programs. 

5.3 Analysis of the problem structure 
According to the ideas presented in the previous section, we formulate the problems 

faced by a generation company in the spot market as a sequence of large-scale mixed 
linear-integer two-stage stochastic programs. As indicated in [Geoffrion '70], large-scale 
mathematical programs are characterized not only by their size, but also by their 
structure. Almost always, a large-scale program has a distinctive structure that can be 
exploited in order to obtain numerical solutions. Solution strategies have already been 
proposed in the literature for the most common structures, so the first step to solve a 
large-scale program is to determine whether it belongs to one of these standard types 
(it is not infrequent that a given problem falls simultaneously into two or more of these 
general categories). In this section, we analyze two structural aspects of the 
mathematical programs formulated in this chapter: the presence of complicating 
variables and the presence of complicating constraints. Both aspects are explored with 
the aim of identifying a suitable solution strategy. The analysis is valid both for the 
two-stage program and for the weekly stochastic unit-commitment model. 

5.3.1 Complicating variables 

A certain problem includes complicating variables if the problem that is obtained 
after fixing the value of certain variables is significantly easier to solve. In each of our 
problems, binary variables can be considered as complicating variables, given that 
when their value is fixed each problem turns out to be a linear program. 

Binary variables appear in our spot market model to guarantee that the revenue 
functions of each market mechanism, m, are correctly evaluated ( m

jnku ) and to ensure 
that the resulting offer curves are strictly increasing ( '

m
nkkx ). We also use binary 

variables to model the exercise of the options included in the company’s portfolio 
( o

nku ). Finally, the on/off state of each thermal unit t  in each scenario k  and each 
hour n  is also represented with a binary variable ( t

nku ). Figure 5.9 shows the matrix 
structure of the mathematical programs proposed in this thesis, highlighting the 
presence of binary variables. 
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Figure 5.9. The matrix structure of the mathematical programs. 

In [Benders '62], a partitioning procedure is proposed that exploits the presence of 
complicating variables. It separates the problem into two parts. The first part 
comprises the complicating variables, whereas the second part is obtained by fixing the 
complicating variables in the original problem and must have a convex structure. It 
can be proved that the first part, together with additional information about the 
second part in the form of a finite number of linear constraints, constitutes a problem 
whose solution is identical to that of the original problem. Benders suggested an 
algorithm that sequentially obtains these linear constraints. In every iteration, new 
values are given to the complicating variables by solving a problem constituted by the 
first part of the problem and the linear constraints already obtained (master problem). 
These new values of the complicating variables yield a new version of the second part 
of the problem (subproblem), which is then solved to derive a new linear constraint. 
After a finite number of iterations, the linear constraints obtained condense enough 
information about the subproblem to guarantee that the solution of the master 
problem coincides with that of the original problem. 

A more detailed review of Benders’ algorithm is performed in a subsequent section, 
in which we explain the application of this decomposition technique to the two-stage 
program that addresses the problem of developing optimal offers for a certain market 
mechanism. We justify that the binary variables corresponding to the second-stage 
decisions can be omitted under certain mild assumptions. This yields the matrix 
structure depicted in Figure 5.10. As can be seen, Benders’ decomposition not only 
benefits from the presence of complicating variables, but also adapts well to the two-
stage structure of the problem. 
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Figure 5.10. Benders’ decomposition exploits the presence of complicating variables. 

5.3.2 Complicating constraints 

A large-scale program is said to have complicating constraints if by relaxing a 
number of its constraints a new problem is obtained that is significantly easier to solve. 
Complicating constraints are also frequently referred to as coupling constraints because 
when they are relaxed the original large-scale problem naturally decomposes into a set 
of smaller problems. In the mathematical programs developed in this thesis, the main 
set of complicating constraints corresponds to the energy balance equation. This 
equation establishes a link between the decisions taken by the company in the different 
market mechanisms and the schedule of the company’s generating units in each hour n  
and each scenario k , as shown in Figure 5.9. If the complicating constraints are 
relaxed, the problem naturally decomposes into the following smaller subproblems: 

i) One subproblem for each hourly auction of the spot market, including decisions 
relative to the exercise of options. 

ii) One subproblem for each generating unit for the whole time scope of the model. 

The effect of relaxing the energy balance equation is illustrated in Figure 5.11. 



5.4 A Benders’ decomposition approach to solve the two-stage program 127 

 

 

Objective function 

Day-ahead 
market 

variables 

Adjustment 
market 

variables 

Generation 
units’ 

variables 

Day-ahead 
market 

constraints 

Adjustment 
market 

constraints 

Generation 
units’ 

constraints 

Binary variables 

Day-ahead 
market 

subproblems 

Adjustment 
market 

subproblems 

Generation 
units’ 

subproblems 

 
Figure 5.11. The relaxation of complicating constraints yields smaller subproblems. 

Needless to say, the solution provided by the problem or problems that result when 
one or several constraints of the original problem are eliminated does not coincide with 
the solution of the original problem. However, there are solution strategies that are 
particularly suitable for problems with complicating constraints. Specifically, dual 
decomposition methods, such as Lagrangian relaxation, have been extensively used to 
deal with the traditional weekly unit-commitment problem, in which the complicating 
constraints are those guaranteeing that the generation units cover the demand for 
energy and reserve. Unlike Benders’ decomposition, Lagrangian relaxation does not 
imply special requirements with respect to the presence of binary variables. This makes 
it particularly suitable to address the weekly stochastic unit-commitment problem. A 
detailed description of how Lagrangian relaxation can be applied to address both the 
two-stage program and the weekly stochastic unit-commitment problem is provided in 
subsequent sections. 

5.4 A Benders’ decomposition approach to solve the two-stage 
program 

A variety of authors have revisited Benders’ approach from different perspectives, 
thus increasing the relevance and applicability of this technique. Benders proposed his 
decomposition algorithm to address large-scale mathematical programs that included 
complicating variables [Benders '62]. 

In [Van Slyke '69], Benders’ algorithm was “reinvented” to tackle the L-shaped 
linear programs that typically appear in optimal control theory and stochastic 
programming (hence the name “L-shaped method”) This method has become a 
standard way of addressing two-stage linear recourse problems [Birge '97]. In [Pereira 
'91], a nested version of Benders’ decomposition was applied to the multi-stage 
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stochastic hydrothermal coordination problem under the name “stochastic dual 
dynamic programming”. 

In this section, we begin by providing a brief and intuitive description of Benders’ 
algorithm based on the previous references. The use of this technique to solve each of 
the abovementioned two-stage problems requires the adoption of a number of 
assumptions that are justified in detail. In this manner, a solution strategy based on 
Benders’ method is finally presented that can be used to obtain optimal offers for a 
generation company operating in an electricity spot market. 

5.4.1 Benders’ decomposition algorithm 

Consider the following non-linear two-stage program, TSP: 
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where ( )f i  is a function that can be non-linear and non-concave and X is a set that 
can be non-convex (e.g. it can be defined as a number of integrality constraints 
affecting the vector of variables x ). From the perspective of [Benders '62], x  comprises 
the complicating variables (e.g. integer or binary variables). According to [Van Slyke 
'69], x  represents the vector of first-stage decisions that must be taken before the 
realization of a number of uncertain factors, while y  refers to the second-stage 
decisions that are taken as recourse actions once the value of those uncertain factors is 
known. 

Problem TSP can be reformulated as follows: 

(TSP’)
( ) ( )Max
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x x
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where ( )θ x  is a function that can be evaluated solving the following linear program, 
SP: 
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 (5.11) 

In the context of two-stage stochastic programming, ( )θ x  is usually referred to as 
recourse function and evaluates the benefit obtained due to the recourse actions, y , 
that can be taken based on the first stage decisions, x , and after the realization of 
uncertainty. The recourse function is concave because SP is a linear program. If the 
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algebraic expression of the recourse function were known in advance, problem TSP 
would be reduced to solving problem TSP’. Sorrowfully, the only general method to 
evaluate the recourse function is to solve problem SP, which is referred to as 
subproblem. Benders’ algorithm is based on the approximation of the recourse function 
by means of an outer linearization. This is done by iteratively solving problem SP and 
the following problem, which is an approximation of TSP’: 

(MP)
( ) ( )Max

s.t.      X,

f θ+

∈
x

x x

x
 (5.12) 

where ( )θ x  is an outer linearization of the recourse function ( )θ x .  Problem MP is 
usually referred to as master problem. After a finite number of iterations, the outer 
linearization obtained for the recourse function is good enough to guarantee that the 
solution of MP coincides with that of TSP. 

In order to explain how Benders’ algorithm constructs the outer linearization that 
approximates the recourse function in the master problem, we divide the discussion 
into three parts. The first part refers to the linear constraints that are added to the 
master problem in order to avoid first-stage decisions for which no feasible recourse 
action exists. The second part is dedicated to the linear constraints that approximate 
the recourse function. Finally, the third part presents the organization of the 
algorithm. 

5.4.1.1 Feasibility [Van Slyke '69] 

Assume a certain value for the vector of first-stage decisions, x . In order to evaluate 
the value of the recourse function, ( )θ x , problem SP must be solved. However, there is 
no guarantee that a feasible solution can be obtained for problem SP given the value of 
the first-stage decisions, x . In order to determine whether a feasible recourse action 
exists, the following problem can be solved: 
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where e  is a vector of 1’s. We can interpret 1
+v , 1

−v  and 2
−v  as three vectors of slack 

variables that measure the infeasibilities produced by the vector of first-stage decisions, 
x . These infeasibilities are evaluated in the objective function, ( )ϕ x . Hence, given the 
first-stage decisions, x , a feasible second-stage decision exists if and only if the solution 
of problem SPF , ( )ϕ x , is equal to zero. On the contrary, ( ) 0ϕ >x  implies that no 
feasible recourse actions can be taken. In that case, a constraint must be added to 
problem MP in order to avoid the first-stage decision x . 

To obtain the formulation of such a constraint let us consider the dual problem of 
problem SPF: 
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Given the vector of first-stage decisions, x , a feasible recourse action can be taken if 
and only if the solution of DSPF, ( )ϕ x , is equal to zero. On the contrary, ( ) 0ϕ >x  
implies that no feasible second-stage decision exists. The constraint that must be added 
to problem MP in order to avoid the solution x  in subsequent iterations is: 

[ ] [ ]t t t t
1 1 1 2 2 2 3 3 4 4* * * * 0,A A− + − + + ≤b x b x b bσ σ σ σ  (5.15) 

where 1 *σ , 2 *σ , 3 *σ  and 4 *σ  are the vectors of dual variables obtained in the 
current iteration after solving problem SPF. This constraint is usually known as 
feasibility cut [Van Slyke '69; Birge '97]. After some algebra a more convenient 
expression for such a constraint can be obtained: 
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5.4.1.2 Optimality [Pereira '91] 

Let us assume now that, given the vector of first-stage decisions, x , the solution 
obtained for problem SPF is ( ) 0ϕ =x , i.e., a feasible recourse action exists. In order 
to determine the best possible recourse action and its benefit, the following version of 
the subproblem has to be solved: 
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Let us consider the dual problem of problem SP: 
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As can be seen, x  only appears in the objective function of DSP. Hence, the set of 
possible solutions for DSP does not depend on the value of the first-stage decisions. Let 

( )1 2 3 4, , ,=λ λ λ λ λ  be the vector of variables of problem DSP and let 

{ }1 2, , , , ,l LΛ = … …λ λ λ λ  be the set of vertices of the constraint set. The solution of 
problem DSP is obtained in (at least) one of these vertices. As a result, problem DSP 
can be solved by enumeration: 
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According to this expression, the recourse function ( )θ x  is a piecewise linear 
function of the first-stage decisions, x . This function is defined by as many 
hyperplanes as vertices has the set of possible solutions of the dual problem, DSP. In 
general, it is not easy to calculate all the vertices of the set Λ . Hence, an alternative is 
to obtain these vertices sequentially. Given a new first-stage decision, problem SP can 
be solved to obtain the dual variables associated to its constraints. These dual 
variables define one of the vertices of the set of possible solutions of the dual problem. 

Assume that the vector of dual variables lλ  corresponding to the l -th vertex of 
problem DSP has been obtained by solving problem SP for a given value of the first-
stage decisions, x . The following condition holds: 

( ) t t t t
1 1 2 2 3 41 2 3 4= .l l l lA Aθ    − + − + +      x b x b x b bλ λ λ λ  (5.20) 

Consequently, the recourse function must observe this constraint for any value of x : 

( ) [ ] [ ]t t t t
1 1 2 2 3 41 2 3 4 .l l l lA Aθ ≤ − + − + +x b x b x b bλ λ λ λ  (5.21) 

which is typically known as an optimality cut. Such a constraint must be included in 
the master problem in order to improve the approximation of the recourse function. 
After a sufficient number of optimality cuts has been generated, the approximation of 
the recourse function is good enough to guarantee that the solution provided by the 
master problem coincides with that of the original problem. 

A more convenient expression for the optimality cuts is obtained after some algebra: 
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 (5.22) 
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which is the expression of the region delimited by a hyperplane that is tangent to the 
recourse function in x . 

5.4.1.3 The algorithm 

Both optimality and feasibility cuts are linear constraints conceived to improve the 
piecewise linear representation of the subproblem that is included in the master 
problem. This permits the selection of better first-stage decisions without having to 
solve the full two-stage problem, TSP. Benders suggested the following algorithm to 
iteratively obtain these linear constraints: 

Step 1: Set O F0,V ,Vν = =∅ = ∅ . 

Step 2: Set 1ν ν= + . If 1ν =  set the value of θ  to zero. Solve problem MP formulated 
as: 
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A new value for the first-stage decisions, νx , is obtained. 

Step 3: Solve problem SPF to obtain ( )νϕ x  and the dual variables 1
νσ , 2

νσ , 3
νσ  and 4

νσ . 
If ( ) 0νϕ >x , add the constraint ( ) ( ) ( )1 21 2 0t tA Aν ν νν νϕ + − + − ≤x x x x xσ σ  to 
problem MP, add ν  to the set FV  and go to step 2. 

Step 4:  Solve problem SP to obtain ( )νθ x  and the dual variables 1
νλ , 2

νλ , 3
νλ  and 4

νλ . 
Add the constraint ( ) ( ) ( )t t

1 21 2A Aν ν νν νθ θ≤ + − + −x x x x xλ λ  to problem MP. 
Add ν  to the set OV . 

Step 5: Check for convergence. If false, go to step 2. 

5.4.2 Application to the two-stage program 

In this section we show how Benders’ algorithm can be applied to the two-stage 
program defined in 5.2.2. The objective is to formulate the three problems required to 
use this algorithm: the master problem, the subproblem and the feasibility problem. 

5.4.2.1 The master problem 

The master problem comprises the decisions referring to the strategy of the company 
in the first market mechanism. Given that the long-term positions of the company are 
indexed to the price of this market mechanism, their influence is also evaluated in the 
master problem. Additionally, optimality cuts and feasibility cuts must be 
incorporated. The following formulation results: 
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5.4.2.2 The subproblem 

The subproblem evaluates the revenues obtained by the company in the second 
market mechanism as well as the cost of its final generation schedule. For this reason, 
the subproblem includes the energy balance equation, in which the first-stage decisions 
are taken into account. 
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This formulation of the subproblem includes two types of binary variables. On the 
one hand, a set of binary variables guarantees that the revenue functions of the second 
market mechanism are correctly evaluated. On the other hand, binary variables are 
used to represent the commitment state of thermal units. This is an important 
drawback, given that Benders’ algorithm requires the subproblem to be convex. We 
will show that a convex formulation can be obtained for the subproblem under certain 
mild assumptions. 
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5.4.2.3 The feasibility problem 

The feasibility problem is similar to the subproblem, except for the slack variables 
and the objective function. The comments made about the presence of binary variables 
in the subproblem are relevant also in this case. 
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5.4.3 The presence of binary variables in the subproblem 

As has been indicated, although Benders’ decomposition adapts well to the two-
stage structure of the problem, the presence of binary variables in the second stage 
invalidates this approach. Hence, it is worth reconsidering whether these binary 
variables are essential for a correct representation of the problem. 

In particular, let us consider the two-stage problem corresponding to the day-ahead 
market illustrated in Figure 5.1. Binary variables are required in the second stage in 
order to represent the following aspects: 

i) According to the simplifications introduced in section 5.2, each possible day-ahead 
market realization is assumed to be accompanied by a unique possible adjustment 
market outcome. The correct evaluation of the company’s revenues in the 
adjustment market scenarios requires binary variables to account for possible non-
concavities.  

ii) Thermal units’ commitment states in each hour and each scenario are represented 
by means of binary variables. 

We can justify the elimination of these binary variables under certain mild 
assumptions. 

On the one hand, if the revenue functions used to represent the adjustment market 
were forced to be concave, no binary variables would be required. In particular, if the 
residual demand curves faced by the generation company in the adjustment market 
were assumed to be linear (instead of piecewise linear) the revenue function would turn 
out to be parabolic and concave, as illustrated in Figure 5.12. In the numerical 
example solved in section 5.2.3 the residual demand functions were assumed to be 
linear, as can be seen in Figure 5.7. This linear approximation of the second-stage 
residual demand curves eliminates the need for binary variables. 
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Figure 5.12. Linearization of the adjustment-market residual demand curve. 

On the other hand, it has been indicated that thermal units’ commitment decisions 
are usually taken with a one-week perspective rather than with a time scope of only 
one day. Hence, when deciding an offering strategy for the market mechanisms of a 
specific spot market session, the binary variables that represent the commitment state 
of the thermal units should be considered as input data. After the uncertainty of that 
spot market session has been unveiled, the weekly unit-commitment schedule can be 
updated to account for any unexpected change in the market conditions. 

In conclusion, by adopting certain reasonable assumptions, second-stage binary 
variables can be eliminated. This permits the use of Benders’ decomposition to obtain 
numerical solutions for these problems, as is shown in the next numerical example. 

5.4.4 Numerical example 

The numerical example solved in section 5.2.3 can be solved using Benders 
decomposition, given that neither the adjustment market nor the generating units 
require binary variables for their representation. 

The suggested Benders’ algorithm has been implemented in GAMS language. The 
master problem for this numerical example has 1297 equations (in the first iteration) 
and 764 variables, 474 of which are binary. The subproblem has 11953 equations and 
13009 variables. The feasibility problem has 11953 equations and 13105 variables, due 
to the presence of slack variables (two slack variables per hour and per scenario make a 
total of 96). Table 5.1 compares the attributes of these problems with those of the full 
problem solved in section 5.2.3. 

 Full problem Master problem Subproblem 
Obj. function 1 1 1 

Equations 13248 1296 11952 
Variables 13770 763 13008 

Binary variables 474 474 0 

Table 5.1. Attributes of the problems that result from Benders’ decomposition. 
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88 iterations of Benders’ algorithm are required to solve this two-stage program. 
Table 5.2 shows the evolution of the algorithm during the first fifteen iterations. It can 
be seen that in six iterations the offers decided by the master problem for the day-
ahead market yield an infeasible subproblem. The feasibility cuts generated by the 
algorithm eliminate all infeasibilities after the seventh iteration. 

Iteration Master Subproblem Infeasibility Obj. function 

IT1 35.44591  -0.954437  
IT2 35.441504  -0.4785  
IT3 35.438018 -8.780276  26.657742 
IT4 39.140633  -1.868153  
IT5 39.134687  -0.242236  
IT6 39.133743  -0.324065  
IT7 39.132685  -0.000092  
IT8 39.132684 -1.509484  20.469494 
IT9 32.955894 -3.811005  30.023687 
IT10 30.216797 -3.619947  29.961037 
IT11 30.201207 -3.851254  30.065004 
IT12 30.168791 -3.64353  30.036351 
IT13 30.150968 -4.149272  30.023969 
IT14 30.14834 -4.058577  30.053459 
IT15 30.146364 -4.008166  30.083179 

Table 5.2. Evolution of Benders’ algorithm during the first 15 iterations. 

The right column of Table 5.2 evaluates the objective function of the original 
problem, given the values obtained for the variables in each iteration of Benders’ 
algorithm. It can be seen that the master problem always provides an upper bound for 
the objective function of the original problem. When the objective function of the 
master problem coincides with the value obtained for the objective function of the 
original problem the algorithm stops. Figure 5.13 compares the evolution of the 
objective function of the original problem with that of the master problem. 
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Figure 5.13. Evolution of the objective function in Benders’ algorithm. 
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The evolution of the objective function of the subproblem is depicted in Figure 5.14. 
It can be seen that, while the objective function of the master problem evolves 
monotonically, the objective function of the subproblem oscillates around its final 
value. 
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Figure 5.14. Evolution of the subproblem’s objective function in Benders’ algorithm. 

An interesting subproduct of Benders’ decomposition is the value of the dual 
variables corresponding to the constraints that establish a link between the master 
problem and the subproblem. In this numerical case, the link between the master 
problem and the subproblem is created by the energy balance equation. Figure 5.15 
represents the values obtained for the corresponding dual variables. These values can 
be interpreted as the marginal costs of the offering decisions adopted for each of the 
hourly auctions of the day-ahead market. These costs are due to the energy that the 
company must produce to comply with its obligations, but also to the recourse actions 
taken in the adjustment market. 
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Figure 5.15. Dual variables corresponding to the energy balance equation. 

In this particular case, Benders’ decomposition cannot compete with the speed of 
CPLEX solving the original two-stage program (267 s. were required to solve the 
problem using Benders’ algorithm, whereas CPLEX solves the original problem in only 
only 6 s. as indicated in section 5.2.3). However, the solution of this small example 
illustrates the possibilities of Benders’ algorithm. Moreover, given that the solution 
obtained with both approaches coincides, we have reasons to assume that our 
implementation of Benders’ algorithm is correct. 



138 Chapter 5. The development of a solution strategy 

 

5.4.5 Separability of the master problem 

Even though Benders’ decomposition separates the two-stage program into a master 
problem and a subproblem, in practice, the master problem is still a large-scale 
problem. This is a great disadvantage, given that the master problem must be solved 
in each iteration of Benders’ algorithm. In particular, it is the presence of binary 
variables what complicates the resolution of the master problem (for real-size problems, 
a commercial optimizer, such as CPLEX 7.5, is frequently unable to find an integer 
solution). In this section we show that by separating the master problem into a 
number of smaller problems a feasible integer solution can be easily obtained. 

Assume that, when solving problem FSP in iteration l , the infeasibility is 
discriminated by hours and scenarios according to the equation: 

= l ll
nk nknk vvϕ −+ + . (5.27) 

This yields the following expression for the feasibility cuts: 
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It is interesting to notice that if each feasibility cut is separated into a set of hourly 
cuts, a more restrictive condition is imposed to the master problem: 
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Similarly, we can separate the recourse function into as many contributions as 
scenarios and hours are being considered: 
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The following expression is then obtained for the optimality cuts: 
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As before, if each optimality cut is separated into hourly cuts, the resulting 
constraints are more restrictive: 
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Consequently, if the following set of hourly problems is solved, the solution obtained 
constitutes a feasible solution for problem MP. However, it is likely that the solution 
obtained will not be optimal for problem MP, given that more restrictive conditions 
are being imposed: 
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In practice, the separation of the optimality cuts into hourly cuts only produces a 
loss of optimality in the solution of the master problem. In contrast, the separation of 
the feasibility cuts into hourly cuts may cause the master problem to be infeasible. 
This suggests avoiding the use of feasibility cuts. A simple approach is to adopt the 
following formulation for the subproblem, in which the energy balance constraint has 
been relaxed with the introduction of two slack variables. The use of these slack 
variables is penalized in the objective function. 
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where γ  is a penalizing coefficient. 

In conclusion, two simplifications facilitate the numerical resolution of the two-stage 
problem with Benders’ decomposition. On the one hand, slack variables can be 
introduced into the subproblem in order to avoid the use of feasibility cuts. On the 
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other hand, the master problem can be separated into a set of hourly problems so as to 
obtain a feasible initial solution. This reduces the effort required by the branch and 
bound algorithm to search for the optimal solution of the master problem. The idea of 
separating the master problem into hourly problems is an original contribution of this 
thesis. 

5.4.6 Numerical example 

Let us solve the two-stage problem proposed in section 5.2.3 making use of the two 
techniques presented in the previous section. In first place we introduce slack variables 
into the subproblem to avoid infeasibilities. The value given to the penalizing 
coefficient is γ  = 1 M€/GWh. 

In this case the algorithm converges in 83 iterations and 190 s., i.e., five iterations 
less than with the standard Benders’ decomposition and a reduction of almost 30 % in 
the execution time. This suggests that introducing slack variables, although being less 
elegant, is an effective strategy. Table 5.3 shows the evolution of the algorithm during 
the first twenty iterations. As can be seen, the presence of slack variables prevents the 
infeasibility of the subproblem. 

Iteration Master Subproblem Total 

IT1 35.44591 -9.315766 26.130144 
IT2 35.056869 -6.201827 28.855042 
IT3 32.578624 -2.869617 29.709007 
IT4 30.672184 -4.425674 29.973338 
IT5 30.432099 -3.679893 30.044709 
IT6 30.177776 -4.141789 30.029525 
IT7 30.165454 -4.10417 30.001585 
IT8 30.159941 -4.108961 30.061101 
IT9 30.155745 -3.916013 30.061797 
IT10 30.147818 -3.932412 30.087031 
IT11 30.13999 -4.038316 30.080739 
IT12 30.137461 -4.02202 30.083379 
IT13 30.136322 -3.994939 30.074618 
IT14 30.136129 -3.968863 30.069797 
IT15 30.135819 -4.04927 30.077806 
IT16 30.135631 -3.879207 30.088226 
IT17 30.128751 -4.037095 30.058724 
IT18 30.128484 -3.908015 30.069284 
IT19 30.128232 -3.967812 30.08499 
IT20 30.128086 -3.933326 30.102728 

Table 5.3. Evolution of Benders’ algorithm with slack variables in the subproblem. 

We now solve the problem separating the master problem into twenty-four hourly 
problems. As indicated, this is likely to yield a suboptimal solution. However, it is a 
quick manner of obtaining a feasible solution. In large-size problems, such as the ones 
addressed in chapter 6, the branch-and-bound algorithm implemented in CPLEX is 
unable to find a feasible solution for the original problem due to the size of the branch-
and-bound binary tree. This strategy turns out to be very useful in such situations. 
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Table 5.4 presents the evolution of the algorithm when the master problem is 
separated into hourly problems. The best feasible solution is obtained in seven 
iterations. It can be seen that, given the more restrictive nature of the master problem, 
the objective function of the master problem intersects with the objective function of 
the original problem, which is something that never happens in the standard Benders’ 
algorithm. The solution obtained, 30.059836 M€, is suboptimal by only 0.174%. This 
suggests that the use of this technique, at least in a first stage of the solution process, 
is highly recommendable. 

Iteration Master Subproblem Total 

IT1 35.44591 -9.315766 26.130144 
IT2 32.965207 -3.883533 29.263376 
IT3 30.345947 -4.132596 29.850918 
IT4 30.081702 -3.864007 30.055584 
IT5 29.94533 -3.863922 30.022586 
IT6 29.849264 -3.849681 30.059836 
IT7 29.824912 -3.849681 30.059836 

Table 5.4. Evolution of Benders’ algorithm when the master problem is separated into hourly problems. 

5.4.7 Advantages and disadvantages of Benders’ decomposition for the 
two-stage program 

The application of Benders’ decomposition to solve the two-stage program presents 
several advantages that we list below: 

• It decomposes the original problem into two smaller problems that are easier to 
solve. 

• It adapts well to the two-stage structure of the problem. 

• Even if the optimal solution cannot be obtained, it is easy to reach a 
“reasonably good” feasible solution by separating the master problem into a 
number of hourly problems. 

Nevertheless, this technique has also two shortcomings that must be clearly 
identified: 

• The master problem, although having a smaller size than the original problem, 
is still large enough to complicate the search for the solution. 

• No binary variables can be included in the subproblem. This limits the accuracy 
with which the second market mechanism can be modeled. It also prevents the 
use of this method to solve the stochastic weekly unit-commitment problem. 

In conclusion, Benders’ decomposition seems a suitable approach to solve the 
abovementioned two-stage program, as long as no binary variables are included in the 
subproblem. The adequacy of this technique is further illustrated in chapter 6, where 
more realistic numerical examples are solved. 
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5.5 A Lagrangian relaxation approach to solve the two-stage 
program 

A large-scale problem with complicating constraints is particularly amenable for a 
dual decomposition solution strategy. Dual decomposition methods are based on the 
dualization of complicating constraints. In this manner, a Lagrangian dual problem is 
obtained whose objective function can be iteratively approximated by means of an 
outer linearization. In each iteration, one of the cutting planes that constitute the 
outer linearization of the dual objective function is obtained by solving a set of smaller 
problems. After a finite number of iterations, the approximation provided by this outer 
linearization is good enough to yield the solution of the dual problem. This approach is 
commonly known as Lagrangian relaxation [Geoffrion '74] and is frequently applied to 
large-scale stochastic programs [Nowak '99]. In this context, two strategies are typically 
adopted: scenario decomposition (dualization of the non-anticipativity constraints that 
establish a link between different scenarios) or component decomposition (dualization 
of the coupling constraints that link elements of the problem that would otherwise be 
independent, e.g. generation units) [Römisch '01]. 

If the original (primal) problem is convex, its solution coincides with that of the 
dual problem. Hence, the solution provided by the dual problem satisfies the 
complicating constraints that have been dualized. On the contrary, if the primal 
problem is non-convex (e.g. it includes integrality conditions) it cannot be guaranteed 
that the solution provided by the dual problem will be primal feasible, i.e., in general, 
the dual solution will not meet the dualized complicating constraints. If the primal 
problem is a maximization problem, the dual solution constitutes an upper bound of 
the primal solution and the difference between both solutions is the so-called duality 
gap. 

The two-stage problem formulated in this chapter includes binary variables, which 
means that its dualization will not provide a primal feasible solution. Nevertheless, 
Lagrangian relaxation, when applied to non-convex problems, is usually accompanied 
by heuristic postprocessing methods that introduce minor modifications in the dual 
solution in order to obtain a similar solution that is primal feasible. This approach has 
been extensively used in recent years to address the unit-commitment problem [Sheblé 
'94, Sen '98]. 

This section shows how Lagrangian relaxation can be applied to the two-stage 
program that represents the problem of developing an offering strategy for one of the 
spot market mechanisms (the matrix structure of one of this mathematical programs is 
depicted in Figure 5.16, to illustrate the presence of complicating constraints). This 
section also serves as an introduction to the following section, in which Lagrangian 
relaxation is applied to the weekly stochastic unit-commitment problem. We begin by 
presenting some basic concepts of Lagrangian duality and by formulating the 
Lagrangian dual problem of the two-stage program. A solution method is then 
explained that is based on the outer linearization of the dual function. 
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Figure 5.16. Matrix structure of one real two-stage program. 

5.5.1 The Lagrangian dual problem 

Let us consider the following general expression of a nonlinear programming 
problem P, which we will refer to as primal problem [Bazaraa '93]: 

(P) 
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One of the most popular definitions of the concept of dual problem is the one based 
on Lagrangian duality. The Lagrangian dual problem D of problem P is defined as 
follows: 

(D) 
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 (5.37) 

where ( ) ( ) ( ) ( ){ }t t, Sup , Xw f − − ∈
x

x h x g x xλ µ λ µ  is the Lagrangian dual function 

and λ  and µ  are called Lagrange multipliers. 

It is worth noticing that several Lagrangian dual problems can be defined for the 
same primal problem, depending on which constraints are included in ( )≤ 0g x  and 
( ) = 0h x  and which constraints are comprised in the definition of the set X. 

In general, the algebraic expression of the Lagrangian dual function is not known. 
Hence, in order to solve D, an iterative procedure must be followed. In each iteration, 
given the current value of the Lagrange multipliers λ  and µ , the corresponding value 
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of the dual function, ( ),w λ µ , is obtained by solving the maximization problem 
included in its definition: 

(S) 
( ) ( ) ( )t tMax ,

s.t.      X.

f − −

∈
x

x h x g x

x

λ µ
 (5.38) 

Problem S is usually referred to as the Lagrangian dual subproblem and its structure 
is very similar to that of the primal problem P. Problem S can be seen as a relaxation 
of problem P due to the inclusion of constraints ( ) = 0h x  and ( )≤ 0g x  in its 
objective function, which explains the term Lagrangian relaxation (LR). The objective 
function of problem S is the Lagrange function of problem P, whose definition is: 

( ) ( ) ( ) ( )t t ,f − −L x, x h x g xλ, µ λ µ  (5.39) 

The effort required to evaluate the dual function ( ),w λ µ  depends on the difficulty 
of solving problem S. If constraints ( ) = 0h x  and ( )≤ 0g x  constitute the complicating 
constraints of problem P, problem S turns out to be significantly easier to solve than 
problem P. Typically, due to the relaxation (or dualization) of these complicating 
constraints, problem S naturally decomposes into a number of smaller problems. 

An interesting geometric interpretation of the dual problem can be found in 
[Bazaraa '93 pp. 201-205], where the concept of duality gap is also explained from a 
geometric perspective. 

We now apply the previous definitions to the structure of the two-stage program 
formulated in section 5.2.2. The primal problem P is expressed in the following form: 
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As can be seen, problem P has been formulated with the objective of dualizing the 
energy balance equation, which has been identified as a set of complicating constraints. 
The Lagrange function corresponding to this problem is: 
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After some algebra, a more convenient formulation of the Lagrange function can be 
obtained: 

( )

( ) ( )

( )( )
P

1 2

1 2
1 1 1 2 2 2

1 1
K N N

1 1

C N

, , , , , , , , ,

           +

o o t t t h h
nk nk nk nk nk nk nk nk nk nk

n nk n nk
k nk nk nk nk nk nk

k knk nkk n n

c c cnk
n n n nk nk

kc n

q q u p q y u q b

p q q p q q
Q Q

p q p p q

λ

σ λ σ λπ
π π

λ
π

∈ ∈ ∈

∈ ∈

=

        + − ⋅ + + − ⋅        
  − + − ⋅    

∑ ∑ ∑

∑ ∑

L

( )( )

( ) ( )

D

P F

C N

1 1

O N O N

T N H N

          

          , , .

c
n

c n

o o o o onk
nk n n nk nk nk n

ko n o n

t t t t t h hnk nk
nk nk nk nk nk nk nk

k kt n h n

q

u p q p p q q

q c q y u q b

λ
π

λ λ
π π

∈ ∈

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

  + ⋅ − ⋅ + − ⋅    

+ − + − 

∑ ∑

∑ ∑ ∑ ∑

∑∑ ∑ ∑

 (5.41) 

A straightforward economic interpretation can be suggested for the coefficient nk

k

λ
π

. 

It can be considered as the marginal cost associated to a local variation of the total 
quantity sold by the company in hour n  and market scenario k . It can also be 
interpreted as the marginal revenue obtained by the company due to the total energy 
produced with its generation units in hour n  and market scenario k . It should be 
noticed that, in the Lagrange function, the term that evaluates the influence of 
physical bilateral contracts turns out to be very similar to the term corresponding to 
CfDs. Certain similarities can also be spotted between the term corresponding to 
options that are physically settled and the term that refers to options that are 
financially settled. 

In order to evaluate the dual function, ( )w λ , for a given value of the Lagrange 
multipliers, νλ , the following Lagrangian dual subproblem has to be solved: 
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Due to the dualization of the energy balance equation, this Lagrangian dual 
subproblem naturally decomposes into a number of smaller subproblems. The first type 
of subproblem, MS1n, decides the offering strategy for the n-th hourly auction of the 
first market mechanism and evaluates the influence of the contracts and options that 
are indexed to the clearing price of that auction, given the current value of the 
Lagrange multipliers: 
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The second type of subproblem, MS2nk, selects the offering strategy for the n-th 
auction of the second market mechanism in each scenario k, given the value of the 
Lagrange multiplier: 
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The third type of subproblem decides the exercise of each of the options that are 
physically settled in each hour n and each scenario k, given the value of the Lagrange 
multipliers: 
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The fourth type of subproblem optimizes the schedule of each thermal unit t , given 
the value of the Lagrange multipliers: 

(GSt) 
( ) ( )

{ }

GS
, , K N
Max , ,

                    s.t. , , , N Q , K.

t t tt
nk nk nk

t t t t tnk
nk k nk nk nk nk nk

q y u kk n

t t t t
nk nk nk

w q c q y u

q y u n k

ν
ν λλ π

π∈ ∈
= −

∈ ∈ ∈

∑ ∑
 

Finally, the fifth type of subproblem optimizes the schedule of each hydro unit h , 
given the value of the Lagrange multipliers: 
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Figure 5.17 illustrates the types of subproblems that Lagrangian relaxations yields 
when applied to the two-stage problem: 
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Figure 5.17. A representation of the effect of Lagrangian relaxation on the two-stage problem. 
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When Lagrangian relaxation is applied to the traditional problem of obtaining the 
minimum-cost generation schedule that covers a given demand profile, only the 
subproblems GSt and GSh arise. The identification of the presence of subproblems that 
focus on the optimization of the strategy followed by the generation company in the 
spot market can be considered an original contribution of this thesis. The structure of 
these subproblems permits a better understanding of the nature of the general problem 
of participating in an electricity spot market. This is one of the main advantages of 
adopting a dual decomposition approach. 

5.5.2 An outer-linearization method to solve the dual problem 

Let us propose a method to solve the dual problem. Any iterative procedure devised 
to solve the dual problem must alternatively evaluate the dual function for a certain 
value of the Lagrange multipliers and then update these multipliers in a descent 
direction of the dual function. On the one hand, as has been shown, by choosing an 
adequate version of the dual problem, the subproblem that must be solved to evaluate 
the dual function for a given value of the Lagrange multipliers is significantly easier to 
solve than the primal problem. On the other hand, a method is required to update 
Lagrange multipliers. A good survey of the several methods that have been proposed in 
the literature for this purpose is carried out in [Jiménez '99a]. 

In this thesis, Lagrange multipliers are updated based on a sequential 
approximation of the dual function by means of an outer linearization. The method is 
based on the definition of the Lagrangian dual function3: 

( ) ( ) ( ) ( ){ }t t, Sup , Xw f − − ∈
x

x h x g x xλ µ λ µ . 

If we let ( ),z w= λ µ , it is clear that ( ) ( ) ( )t tz f≥ − −x h x g xλ µ  for any X∈x . 
The dual problem D can then be restated as follows: 

(D) ( ) ( ) ( )

, ,
t t

Min

s.t.     , X

        .

z
z

z f≥ − − ∈

≥ 0

λ µ

λ µ
λ

x h x g x x  (5.42) 

The above problem is a linear program. However, the constraints that limit the 
variation of z  are infinite (they must hold for any X∈x ) and are not explicitly 
known. An alternative is to consider an approximate problem, MD, that includes a 
finite number of these constraints corresponding to a finite number of points 1, , L…x x : 

(MD) ( ) ( ) ( )
, ,

t t

Min

s.t.     , 1, , ,

        .

z

l l l

z

z f l L≥ − − =

≥ 0

…x h x g x
λ µ

λ µ
λ

 (5.43) 

This problem is usually known as master dual problem and is a linear program too. 
To check if its solution ( )*, *, *z λ µ  is also the solution of problem D, the dual 
function must be evaluated. To do so, we solve the Lagrangian dual subproblem: 

                                         
3 This discussion is taken from [Bazaraa '93 pp. 224-227]. 
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( ) ( ) ( ) ( ){ }t t*, * Max * * , Xw f= − − ∈
x

x h x g x xλ µ λ µ , (5.44) 

If the solution of this problem, *x , is such that 
( ) ( ) ( )t t* * * * * *z f≤ − −x h x g xλ µ , it means that an * X∈x  exists for which the 

constraint of problem (5.42) does not hold. To avoid this, a new constraint must be 
added to problem MD in the form ( ) ( ) ( )t t* * *z f≥ − −x h x g xλ µ . 

It is interesting to notice that when problem (5.44) is solved and it turns out that 
( )* *, *z w≤ λ µ what actually happens is that the piecewise linear approximation of the 

dual function, z , is below the dual function. The new constraint that must be added 
to avoid this undesired result can be reformulated as follows: 
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λ µ

λ µ

λ µ

λ µ λ µ

λ µ λ λ µ µ

 (5.45) 

which is the expression of the region delimited by a hyperplane that is tangential to 
the dual function in ( )*, *λ µ . 

In conclusion, five steps define the iterative process that must be followed to solve 
the dual problem using an outer linearization to approximate the dual function: 

Step 1: Set 0ν = . 

Step 2: Set 1ν ν= + . 
 If 1ν = , choose initial values for the Lagrange multipliers: 1 1,λ µ  and go to step 

3. 
 If 1ν > , update the Lagrange multipliers ,ν νλ µ  by solving the master dual: 

 ( ) ( ) ( ) ( ) ( )
, ,

t t

Min

s.t.     , , 1, , 1,

        .

z

l l l l l l

z

z w l

ν ν ν

ν

ν ν ν

ν

ν≥ − − − − = −

≥ 0

…

λ µ

λ µ λ λ µ µ
µ

h x g x  

Step 3: Solve the Lagrangian subproblem to evaluate the Lagrangian dual function: 
 ( ) ( ) ( ) ( )t t, Max ,  s.t. X.w fν ν ν ν= − − ∈

x
x h x g x xµλ µ λ  

Step 4: Check for convergence: If ( ),z wν ν ν≤ λ µ  go to step 2. 

Step 5: End. 

The evolution of this algorithm is illustrated in Figure 5.18. The reader must notice 
that in the first iterations the master dual problem is likely to be unbounded due to 
the reduced number of linear constraints that constitute the piecewise linear 
approximation of the dual function. To avoid this, several alternatives exist. In 
[Cerisola '02] a general approach based on Farkas’ laws is suggested that obtains the 
minimum number of constraints required to guarantee that the master dual problem is 
not unbounded. In [Jiménez '99b], the feasibility region for the Lagrange multipliers is 
artificially bounded to avoid the oscillations that are typically observed in LR 
procedures. These artificial boundaries are dynamically updated. Although Cerisola’s 
method is general and does not require the tuning of parameters, if the artificial 
boundaries suggested by Jiménez are chosen with care, the LR algorithm converges in 
significantly less time. 
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Figure 5.18. The algorithm used to solve the dual problem. 

Let us define now the particular iterative process that should be used in order to 
solve the dual problem of the problem formulated in 5.5.1: 

Step 1: Set 0ν = . 

Step 2: Set 1ν ν= + . 
 If 1ν = , choose initial values for the Lagrange multipliers: 1

nkλ  and go to step 3. 
 If 1ν > , update the Lagrange multipliers nk

νλ  by solving the master dual: 
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Step 3: To evaluate the Lagrangian dual function, problems MS1n, MS2nk, OPSo
nk , GSt 

and GSh have to be solved. The value of the dual function is calculated as: 
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o
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λ λ λ λ

λ λ
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Step 4: Check for convergence: If ( )1nkz wν νλ −≤  go to step 2. 

Step 5: End. 

This algorithm presents no relevant conceptual differences with respect to other 
applications of the LR method that can be found in the literature. As indicated, the 
main contribution of our approach is the identification of the new subproblems that 
arise due to the competitive framework in which the generation company must develop 
its business. 
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5.5.3 A numerical example 

In this section the two-stage problem proposed in 5.2.3 is solved again using the 
suggested LR algorithm, implemented in GAMS language. The two techniques that 
guarantee that the master dual problem is not unbounded are used here in order to 
determine which of the two is more efficient. 

5.5.3.1 An approach based on Farkas’ laws 

We begin by solving the dual problem using the approach suggested in [Cerisola 
'02]. This method, based on Farkas’ laws, divides the iterative solution of the dual 
problem into two phases. In the first phase, Lagrange multipliers are bounded between 
–1 and +1 and the hyperplanes that are tangent to the dual function are forced to pass 
through the origin. After a number of iterations, the objective function is null, 
indicating that the hyperplanes already obtained are enough to guarantee that the 
master dual problem is bounded. Figure 5.19 shows the evolution of this first phase for 
the considered problem, which required 49 iterations. 
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Figure 5.19. Evolution of Cerisola’s first phase. 

The second phase of the solution process is the standard LR algorithm. Figure 5.20 
shows the evolution of this second phase for the considered problem. It can be seen 
that the objective function of the master dual problem is monotonically increasing, 
given that no bounds are imposed on the Lagrange multipliers. This second phase 
required 1502 iterations and about 6 h of CPU time. The solution obtained is 
30.112433 M€, which is an upper bound for the solution of the original problem 
(30.112293 M€). The duality gap is 0.000140 M€. 

Detail of the second phase of the LR solution method
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Figure 5.20. Evolution of Cerisola’s second phase. 
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Due to the dualization of the complicating constraints, the hourly balance between 
the generation schedule and the sales of the company in both market mechanisms is 
not satisfied. Figure 5.21 represents the value of the hourly infeasibilities that arise due 
to this dualization. As can be seen, these infeasibilities are rather important if 
compared with the hourly energy sales of the company (about 10000 MWh). The 
reason is that the solution of the subproblems varies dramatically with minor changes 
in the value of the Lagrange multipliers. This is a well-known drawback of Lagrange 
relaxation and is commonly overcome by introducing postprocessing heuristics that 
provide a primal feasible solution. 
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Figure 5.21. Infeasibilities due to the dualization of the energy balance equation. 

The value obtained for the Lagrange multipliers is also an interesting information. 
As has been indicated, in this problem the Lagrange multipliers can be interpreted as 
the company’s marginal revenues in the spot market. Figure 5.22 reflects the value of 
the Lagrange multipliers for this numerical example. 
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Figure 5.22. Value of the Lagrange multipliers. 

5.5.3.2 An approach based on defining a dynamic feasibility region 

In [Jiménez '99b], the variation of the Lagrange multipliers in each iteration is 
artificially limited by imposing upper and lower bounds that are updated in each 
iteration. We have tried this approach by limiting the variation of the Lagrange 
multipliers in ±0.5 €/MWh. As can be seen in Figure 5.23, only 338 iterations of the 
LR algorithm and about 2 h of CPU time are required to obtain the solution of the 
dual problem. A good choice of the bounds for the variation of the Lagrange 
multipliers significantly reduces the oscillation of the master dual problem, thus 
eliminating one of the main disadvantages of the standard LR algorithm. This 
approach will be used in the rest of the applications of the LR algorithm included in 
this thesis. 
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Figure 5.23. Evolution of the LR algorithm with dynamic feasibility region. 

5.5.4 Advantages of the LR approach for the two-stage program 

Lagrangian relaxation presents both pros and cons when applied to the two stage-
program formulated in this chapter. In particular, three relevant advantages are: 

• It decomposes the original problem into a number of meaningful subproblems 
that are significantly easier to solve than the original problem. 

• It provides the value of the Lagrange multipliers, which have an interesting 
economic intepretation. 

• It admits the presence of binary variables in whatever part of the problem. 

However, two shortcomings limit the applicability of this solution method: 
• The solution of the dual problem does not satisfy the dualized constraints. 

• The LR algorithm entails a greater computational effort than Benders’ 
algorithm. It requires both a higher number of iterations and more CPU time. 
Due to the oscillations typical in LR solution processes, intermediate solutions 
obtained by interrupting the algorithm too soon are of limited interest. 

These two disadvantages are enough to outweigh the advantages of the LR solution 
approach. In particular, the fact that the energy balance equation is not fulfilled 
implies the risk of not being able to develop a generation schedule that satisfies the 
obligations assumed by the company in the spot market. Hence, Benders’ 
decomposition is considered a better choice than Lagrangian relaxation to solve the 
two-stage programs that represent the problem faced by the generation company in 
each spot market mechanism. 
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5.6 Lagrangian relaxation and the weekly unit-commitment problem 

5.6.1 An overview 

As the previous section points out, the main disadvantage of Lagrangian relaxation 
is that, when the primal problem is not convex, the dual solution it provides is not 
primal feasible. Nevertheless, a frequent approach to address the traditional unit-
commitment problem is to dualize the demand and reserve constraints, which establish 
a link between the different generation units. In this manner, the dual problem is 
iteratively solved by calculating the optimal schedule of each generating unit, given the 
current value of the Lagrange multipliers and subsequently updating these multipliers. 
The independent schedules thus obtained do not satisfy the demand and reserve 
constraints but are usually very close to the primal optimal solution. In particular, the 
numerical values of the binary variables that represent the commitment states of the 
generation units provide a good approximation of the optimal unit-commitment 
schedule. 

The weekly stochastic unit commitment problem proposed in section 5.2.4 can be 
addressed with a LR approach by dualizing the complicating constraints. In this case 
we consider as complicating constraints not only the energy balance equation, but also 
the non-decreasing constraints that force the offers decided by the model to constitute 
a valid offer curve. Obviously, the numerical solution obtained with this approach will 
suggest an offering strategy with infeasible features, such as offer curves that present 
decreasing offer blocks or imbalances between the expected sales and the expected 
generation schedule. However, when solving the weekly unit-commitment problem we 
are still not worried about the shape of our offer curve for each of the spot market 
auctions. On the other hand, we can assume that the unit-commitment schedule thus 
obtained is very close to the optimum. Moreover, the dual information provided by this 
approach is extremely useful to evaluate the state of the spot market. 

Figure 5.17 illustrates the types of subproblems that Lagrangian relaxations yields 
when applied to the weekly problem: 
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Figure 5.24. A representation of the effect of Lagrangian relaxation on the weekly problem. 



5.6 Lagrangian relaxation and the weekly unit-commitment problem 155 

 

5.6.2 Mathematical formulation 

Let us formulate the dual problem that results when both the energy balance 
equation and the non-decreasing constraints are dualized. In this case the primal 
problem P can be stated as follows: 
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 (5.46) 

where the non-decreasing constraints are now identified with the generic set of 
inequality constraints ( )≤ 0g x . In this manner we dualize both the energy balance 
equation and the non-decreasing constraints. 

The Lagrange function corresponding to this problem is: 
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The dualization of the non-decreasing constraints implies changes only in the master 
dual problem and in the subproblems corresponding to the first market mechanism. 
The rest of subproblems, MS2npk, OPS o

npk , GSt and GSh are formulated as indicated in 
section 5.5.1. 

The subproblem corresponding to the first market mechanism can now be 
formulated for each scenario k, each period p and each hourly auction n: 
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The master dual problem must update not only the Lagrange multipliers 
corresponding to the energy balance equation, but also those corresponding to the non-
decreasing constraints: 
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5.6.3 Advantages and disadvantages 

The Lagrangian relaxation approach presents several advantages when applied to 
the weekly stochastic unit-commitment problem: 

• It is a decomposition approach that tolerates the generalized presence of binary 
variables and provides a good approximation of the solution. 

• It also provides valuable information relative to the dual variables that can be 
used to evaluate the situation of the spot market. 

The disadvantages of Lagrangian relaxation in this case coincide with those 
identified when applying it to the two-stage stochastic program. However, given that 
standard Benders’ decomposition cannot efficiently cope with the commitment binary 
variables, we will adopt this methodology to solve the weekly stochastic unit-
commitment problem. A realistic numerical example is solved in chapter 6 to illustrate 
the features of this approach. 

5.7 Conclusion 
In this chapter we have developed a methodology to obtain numerical results for 

two of the main problems faced by a generation company in an electricity spot market. 
These two problems have been formulated as mathematical programs that are 
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particularizations of the general multistage stochastic programming approach suggested 
in chapter 4. 

On the one hand, we have formulated the problem of deciding an offering strategy 
for each of the spot market mechanisms as a two-stage program. This approach is 
based on assuming that the relative importance of the spot market mechanisms 
diminishes as the moment of physical delivery gets nearer. On the other hand, we have 
expressed the weekly stochastic unit-commitment problem as a sequence of two-stage 
programs. 

A detailed analysis of the structure of these two mathematical programs has lead to 
the identification of both complicating variables and complicating constraints. 
Focusing on the two-stage program, we have shown how Benders’ decomposition 
benefits from the existence of complicating variables and from the two-stage structure 
of the problem. This solution approach has been explored in detail and an original 
technique has been proposed that provides quasioptimal feasible solutions for this 
particular type of problem. Additionally, we have explained how Lagrangian relaxation 
exploits the presence of complicating constraints by relaxing them. The application of 
Lagrangian relaxation to the problems considered in this thesis presents several 
interesting novelties with respect to more traditional uses of this technique, such as the 
presence of new subproblems oriented to the optimization of the company’s strategy in 
the spot market. However, the solutions it yields fail to satisfy the energy balance 
equation, which is crucial to guarantee that the strategy followed by the company in 
the spot market can then be materialized with its generating units. 

Nevertheless, Lagrangian relaxation turns out to be an adequate methodology to 
address the weekly stochastic unit-commitment problem for a generation company 
participating in a spot market. In addition to providing a good approximation for the 
optimal unit-commitment schedule, it yields valuable dual information relative to the 
current situation of the spot market. 

The combination of Lagrangian relaxation (for the weekly unit-commitment 
problem) and Benders’ decomposition (to develop offering strategies for each market 
mechanism) provides a powerful framework whose possibilities are evaluated in chapter 
6. 



5.8 References 159 

 

5.8 References 
[Baíllo '01] Á. Baíllo, M. Ventosa, A. Ramos, M. Rivier, and A. Canseco, "Strategic Unit 

Commitment for Generation in Deregulated Electricity Markets," in The Next 
Generation of Electric Power Unit Commitment Models, International Series in 
Operations Research & Management Science, B. F. Hobbs, M. H. Rothkopf, R. 
P. O'Neill and H.-P. Chao, Eds., 1st ed., Kluwer Academic Publishers, Boston, 
2001, pp. 227-248. 

[Bazaraa '93] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming. 
Theory and Algorithms., 2nd ed., John Wiley and Sons, New York, 1993. 

[Benders '62] J. F. Benders, "Partitioning Procedures for Solving Mixed Variables 
Programming Problems," Numerische Mathematik, vol. 4, 1962, pp. 238-252. 

[Birge '97] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, 1st ed., 
Springer, New York, 1997. 

[Brooke '96] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A User's Guide, GAMS 
Development Corporation, Whashington, DC, 1996. 

[Cerisola '02] S. Cerisola and A. Ramos, "Benders decomposition for mixed-integer 
hydrothemal problems by Lagrangean relaxation," presented at the 14th Power 
Systems Computation Conference (PSCC '02), Sevilla, Spain, June 2002. 

[García-González '00] J. García-González and J. Barquín, "Self-unit Commitment of Thermal Units in 
a Competitive Electricity Market," presented at the 2000 IEEE - PES Summer 
Meeting, Seattle, WA, 2000. 

[Geoffrion '70] A. M. Geoffrion, "Elements of large-scale mathematical programming," 
Management Science, vol. 16, July, 1970, pp. 652-691. 

[Geoffrion '74] A. M. Geoffrion, "Lagrangean relaxation for integer programming," 
Mathematical Programming Study, vol. 2, pp. 82-114. 

[Jiménez '99a] N. Jiménez, "Coordinación Hidrotérmica en el Corto Plazo Mediante Técnicas 
de Relajación Lagrangiana," Ph.D. Thesis, Universidad de Málaga, Málaga, 
1999a. 

[Jiménez '99b] N. Jiménez and A. J. Conejo, "Short-term hydrothermal coordination by 
Lagrangian relaxation: solution of the dual problem," IEEE Transactions on 
Power Systems, vol. 14, 1999, pp. 89-95. 

[Nowak '99] M. P. Nowak, "Stochastic Lagrangian Relaxation in Power Scheduling of a 
Hydro-Thermal System under Uncertainty," Ph.D. Thesis, Mathematisch-
Naturwissenschaftlichen Fakultät II, Humboldt-Universität zu Berlin, Berlin, 
1999. 

[Pereira '91] M. V. F. Pereira and L. M. V. G. Pinto, "Multi-Stage Stochastic Optimization 
Applied to Energy Planning," Mathematical Programming, vol. 52, 1991, pp. 
359-375. 

[Römisch '01] W. Römisch and R. Schultz, "Multistage stochastic integer programs: An 
introduction," in Online Optimization of Large Scale Systems, M. Grötschel, S. 
O. Krumke and J. Rambau, Eds., 1st ed., Springer-Verlag, Berlin, 2001, pp. 
579-598. 

[Sen '98] S. Sen and D. P. Kothari, "Optimal Thermal Generating Unit Commitment: A 
Review," Electrical Power & Energy Systems, vol. 20, 1998, pp. 443-451. 



160 Chapter 5. The development of a solution strategy 

 

[Sheblé '94] G. B. Sheblé, "Unit Commitment Literature Synopsis," IEEE Transactions on 
Power Systems, vol. 9, February 1994, pp. 128-135. 

[Van Slyke '69] R. M. Van Slyke and R. Wets, "L-Shaped Linear Progams with Applications to 
Optimal Control and Stochastic Programming," SIAM Journal on Applied 
Mathematics, vol. 17, July 1969, pp. 638-663. 

 



6. Computational results 

6 Computational 
results 

This chapter presents several realistic numerical examples in order to evaluate the adequacy of 
the methodology proposed in this thesis. All these examples consider the case of a fictitious but 
large and representative generation company operating in the Spanish electricity spot market, 
which reinforces the validity of the suggested approach. 

The study cases included in this chapter are organized in two main parts. The first one is 
oriented to the development of an optimal offering strategy for the day-ahead market. This 
problem is solved under a variety of assumptions and a sensitivity analysis is performed so as 
to determine the influence that a number of relevant factors exert on the strategies developed 
by the model. The results obtained confirm the soundness of the ideas developed in this thesis. 
The second part of the chapter corresponds to the weekly stochastic unit-commitment problem 
and comprises only one study case due to the huge computational effort required for its 
numerical resolution. The unit-commitment decision tree derived with this approach is 
consistent with the stochastic perspective adopted in this thesis. 



 



6.1 Introduction 163 

 

6.1 Introduction 
In this thesis we have proposed a multistage stochastic programming framework to 

represent the problem faced by a generation company in an electricity spot market. 
This conceptual approach, although consistent and attractive, presents difficulties 
when numerical results have to be obtained. For this particular purpose two different 
perspectives have been adopted in chapter 5. 

On the one hand, we have suggested that the problem of developing an offering 
strategy for a certain spot market mechanism be represented as a two-stage program in 
which only two market mechanisms are explicitly considered. We have also shown that 
the best approach to solve this type of problem is Benders’ decomposition, together 
with two ad hoc techniques that facilitate the search for a good feasible solution. In 
this chapter we solve a number of realistic numerical examples in which the case of a 
fictitious but representative generation company operating in the Spanish electricity 
spot market is considered. In particular, an example consisting of eleven spot market 
scenarios is used in order to perform a sensitivity analysis of the offering strategies 
developed by the model with respect to different relevant factors, such as the value 
that the company gives to its market share, the volume of available hydro reserves, the 
outage of a generating unit or the existence of long-term open positions in the 
company’s portfolio. 

On the other hand, there are some decisions that depend on the uncertain outcome 
of the spot market but that must be taken with a one-week perspective, such as the 
commitment schedule for the thermal units or the management of hydro reserves 
during the week. We have proposed a modeling approach for this problem based on a 
sequence of seven daily two-stage programs. Given the abundance of binary variables 
in this formulation, Lagrangian relaxation is considered the best approach to obtain 
numerical results. In this chapter we solve a real numerical example in which the 
stochastic unit-commitment problem of the generation company of study is represented 
by means of sixteen weekly scenarios. This yields sixteen different unit-commitment 
schedules, together with sixteen different hydro management strategies, thus capturing 
much of the flexibility with which a generation company can operate in the spot 
market throughout the week. 

6.2 Offering strategies for the day-ahead market 
In this section we present the results of a number of numerical examples in which a 

generation company develops offering strategies for a day-ahead market1. All the cases 
correspond to the Spanish spot market session that took place on October 24th, 2001, 
which was also the session considered in the numerical examples solved in chapter 5. In 
this section, however, the problems solved are significantly larger. The first study case 
considers five spot market scenarios and is used to provide further details about the 
solution strategy suggested in the previous chapter. The rest of examples consist of 
eleven spot market scenarios and are basically identical, except for slight differences 
that are introduced to analyze the sensitivity of the solution with respect to a number 
of factors. More information about the input data used in these examples can be found 
in appendix C. 

                                         
1 The input data used that defines this company’s generation portfolio can be found in appendix C. 
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6.2.1 A five-scenario case 

6.2.1.1 Characteristics of the problem 

This study case is presented with the aim of providing a practical vision of the 
solution strategy developed in chapter 5. It is a larger problem than the one addressed 
in that chapter, not only due to an increase of the number of scenarios (from two to 
five) but also because of the detail with which residual demand curves and revenue 
functions are modeled (twenty segments, instead of six). Table 6.1 establishes a 
comparison between both numerical examples. 

 Equations Variables Binary 
variables 

Solution 
(M€) 

Maximum 
optimality loss 

Execution 
time 

Two-scenario 
problem 13249 13771 474 30.112293 0.00 % 6 s. 

Five-scenario 
problem 43921 41305 4704 32.099927 0.79 % 30 min. 

Table 6.1. A comparison of two study cases. 

In order to increase the number of spot market scenarios from two to five, it suffices 
to enlarge the range of historic days that are explored when seeking for sessions similar 
to the one of study (see appendix C for further details). Nevertheless, the input 
information not strictly related to the spot market model that was used for the two-
scenario case has also been used for the five-scenario case, including generating units’ 
data and the hourly value of the company’s market share. Hence, the results obtained 
for both examples should be similar. 

6.2.1.2 Numerical resolution 

When five spot market scenarios are considered, the problem can no longer be 
solved using CPLEX in a straightforward manner. Moreover, the use of the standard 
Benders’ algorithm is also useless, given that the master problem that is obtained is 
still a large-scale MIP problem. As a result, the ad hoc techniques suggested in chapter 
5 must be used in order to derive a feasible solution. In other words, the master 
problem must be separated into hourly problems, even though this may cause a loss of 
optimality. When the master problem is separated, Benders’ algorithm evolves as 
indicated in Table 6.2. As can be seen, the solution thus obtained is 32.040514 M€. 

Iteration Master Subproblem Total 
IT1 38.099767 -16.576566 21.5232 
IT2 36.886674 -7.348882 29.537792 
IT3 33.795529 -3.08575 31.091753 
IT4 32.1811 -3.912572 31.980665 
IT5 31.817476 -3.651384 32.044016 
IT6 31.625251 -3.80858 32.039218 
IT7 31.614987 -3.805078 32.040514 
IT8 31.613861 -3.799984 32.040507 
IT9 31.611793 -3.805078 32.040514 

Table 6.2. Evolution of Benders’ algorithm with the master problem separated into hourly problems. 
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The solution provided by Benders’ algorithm when the master problem is separated, 
is a feasible solution for the original problem. However, in this context, Benders’ 
algorithm does not provide a measure of the loss of optimality caused by the separation 
of the master problem into hourly problems. To derive such a measure we can simply 
try to solve the full original problem with CPLEX, using as initial values those 
obtained from the master problem separated into hourly problems. In this manner, the 
branch-and-bound algorithm starts from a feasible solution, which reduces the size of 
the binary tree used to search for new solutions. In practice, CPLEX branch-and-
bound algorithm is not able to improve the initial values of the binary variables. Its 
only contribution is to slightly improve the values of the continuous variables, now 
that the twenty-four auctions of the day-ahead market are being simultaneously 
considered. This leads to the solution indicated in Table 6.1, 32.099927 M€. This 
solution is better than the one obtained from the master problem separated into hourly 
problems in only 0.19 %. CPLEX also quantifies the maximum suboptimality of the 
final solution. As can be seen, this solution is suboptimal in, at most, 0.79 %. The 
computational effort required to obtain these final results (about 1 minute of CPU 
time) is minimal if compared with the effort required to derive the feasible initial 
solution (about 30 minutes). 

New improved solution: 
 Binary variables: u**=u*. 
 Continuous variables: x**. 

Solve problem P 
using CPLEX, 
taking as initial 

values u* and x *. 

Feasible solution: 
 Binary variables: u*. 
 Continuous variables: x*. 

Solve problem P 
using Benders’ 

algorithm, separating 
the master problem 
into hourly problems 

 
Figure 6.1. The solution process for a realistic two-stage problem. 

6.2.1.3 Analysis of the results 

Figure 6.2 depicts the five quantities that the company should offer to each of the 
day-ahead market hourly auctions, according to the results obtained. It also presents 
the five series of price realizations that might result, given those quantities. If these 
graphs are compared with the ones represented in chapter 5 for the two-scenario case, 
it can be seen that this study case yields higher expected prices for the day-ahead 
market. This can be explained by the presence of additional spot market scenarios that 
may correspond to situations of higher prices. 
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Figure 6.2. Offers for the five-scenario case. 

Figure 6.2 emphasizes the fact that the offering strategies developed by the model 
explicitly consider the links that exist between the different hourly auctions of the 
same spot market session. These links are due both to generation units’ constraints 
such as ramp rate limits and to the daily management of hydro reserves. 

It is also interesting to analyze the shape of the offer curves suggested by the model. 
Figure 6.3 shows the offer curve built for the twelfth hourly auction, which is almost 
completely vertical (the details can be seen in Figure 6.4). According to this offer 
curve, the company is almost certain to sell about 10600 MWh in this auction. In 
contrast, the clearing price might vary between 40 €/MWh and 56 €/MWh due to the 
uncertain behavior of the rest of agents. This figures highlight the mutual influence 
that exists between the offers decided for different spot market scenarios, which is 
explicitly formulated through the non-decreasing constraints. 
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Figure 6.3. Offers for the 12th hourly auction of the day-ahead market in the five-scenario case. 
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Figure 6.4. Detail of the offers for the 12th hourly auction of the day-ahead market in the five-scenario 

case. 

Figure 6.5 represents the offer curve suggested by the model for the fifth hourly 
auction. This curve is almost constituted by a unique offer, due to the similarity of the 
possible residual demand realizations in the vicinity of the solution. For a more 
detailed representation, see Figure 6.6. 
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Figure 6.5. Offers for the 5th hourly auction of the day-ahead market in the five-scenario case. 
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Figure 6.6. Detail of the offers for the 5th hourly auction of the day-ahead market in the five-scenario case. 

Figure 6.7 and Figure 6.8 show the recourse actions taken by the model in the 
twelfth hourly auction of the adjustment market. Similarly, Figure 6.9 and Figure 6.10 
depict the recourse actions corresponding to the fifth hourly auction. As can be seen, 
each recourse action corresponds to one specific realization of the five possible outcomes 
considered for the day-ahead market in this example. Hence, these decisions do not 
represent an offering strategy and are not required to constitute a non-decreasing offer 
curve. 
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Figure 6.7. Offers for the 12th hourly auction of the adjustment market in the five-scenario case. 
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Figure 6.8. Detail of the offers for the 12th hourly auction of the adjustment market in the five-scenario 

case. 
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Figure 6.9. Offers for the 5th hourly auction of the adjustment market in the five-scenario case. 
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Figure 6.10. Detail of the offers for the 5th hourly auction of the adjustment market in the five-scenario 

case. 

An important conclusion is that this numerical example confirms the validity of the 
modeling approach adopted to represent the spot market auctions. Indeed, the offers 
constructed by the model are in accordance with the residual demand curves used as 
input data. Moreover, whatever the shape of these residual demand curves, the model 
provides decisions that yield admissible offer curves for the day-ahead market. This 
example also indicates that Benders’ algorithm, in combination with the techniques 
suggested in chapter 5, provides solutions that are reasonably close to the optimum. 

6.2.2 An eleven-scenario case 

6.2.2.1 Characteristics of the problem 

The encouraging results obtained for the previous study case suggest testing the 
model with larger problems. We now consider a numerical example with eleven spot 
market scenarios. The features of the resulting MIP problem are compared in Table 6.3 
with those of the previous two examples. 
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 Equation
s Variables Binary 

variables 
Solution 

(M€) 
Maximum 

optimality loss 
Execution 

time 
Two-scenario 
problem 13249 13771 474 30.112293 0.00 % 6 s. 

Five-scenario 
problem 43921 41305 4704 32.099927 0.79 % 30 min. 

Eleven-scenario 
problem 99758 91043 10529 32.216254 0.68 % 1 h 30 min 

Table 6.3. A comparison of three study cases. 

Two interesting conclusions can be derived from the analysis of Table 6.3. On the 
one hand, the maximum relative loss of optimality due to the use of a simplified 
solution strategy does not seem to increase with the size of the problem. Indeed, 
CPLEX estimated a maximum relative loss of optimality for the five-scenario case of 
0.79 %, whereas the estimation for the eleven-scenario case amounts to 0.68 % . On the 
other hand, the relative change observed in the solution when passing from five to 
eleven scenarios is much less relevant than the one observed when passing from two to 
five scenarios. This seems to indicate that the accuracy with which the spot market 
uncertainty can be represented tends to saturate when the number of scenarios 
considered increases. 

6.2.2.2 Numerical resolution 
The process followed to obtain a numerical solution for this problem is identical to 

the one suggested for the five-scenario case. We first use Benders’ algorithm with the 
master problem separated into hourly problems to derive a good feasible solution, as 
illustrated in Table 6.4. After that we try to solve the full original problem with 
CPLEX, using this feasible solution as a starting point. CPLEX is unable to improve 
the values of the binary variables, but slightly improves the continuous variables and 
provides an upper bound for the loss of optimality, as shown in Table 6.3. 

Iteration Master Subproblem Total 
IT1 39.323263 -47.956541 -8.633278 
IT2 38.607588 -37.948807 0.658781 
IT3 37.417309 -25.273184 12.336544 
IT4 36.352892 -14.687634 22.272742 
IT5 35.447241 -9.093781 27.552025 
IT6 34.413846 -5.855816 30.06107 
IT7 32.507973 -4.360769 31.660443 
IT8 31.969344 -3.959781 32.025566 
IT9 31.601185 -3.75295 32.146506 
IT10 31.357666 -3.816563 32.15053 
IT11 31.356317 -3.802377 32.155819 
IT12 31.331983 -3.822391 32.150632 
IT13 31.331982 -3.822392 32.150631 

Table 6.4. Evolution of Benders’ algorithm for the eleven-scenario case. 

6.2.2.3 Analysis of the results 
The following figures demonstrate that the eleven hourly residual demand 

realizations used in this numerical example provide a framework to develop offer curves 
that is both relevant and flexible. Figure 6.11 provides a general perspective of the 
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offer curves developed by the model for the 24 hourly auctions of the day-ahead 
market. 

3

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

2

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

1

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

Pr
ice

 (
€/

M
W

h)

6

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (€

/M
W

h)

5

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (€

/M
W

h)

9

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

4

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (€

/M
W

h)

8

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

7

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

12

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ric

e 
(€

/M
W

h)

11

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ric

e 
(€

/M
W

h)

10

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ric

e 
(€

/M
W

h)

15

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (€

/M
W

h)

14

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (€

/M
W

h)

13

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (€

/M
W

h)

18

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

17

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

16

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

21

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

20

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

19

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

24

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

23

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

22

0

20

40

60

80

7000 9000 11000 13000
Energy (MWh)

P
ri

ce
 (

€/
M

W
h)

 
Figure 6.11. Offers for the 24 hourly auctions in the eleven-scenario case. 
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Figure 6.12 shows the offer curve constructed for the twelfth hourly auction, whose 
details can be analyzed in Figure 6.13. This curve presents a vertical segment 
indicating the minimum amount of energy that the company is willing to sell in this 
auction due the value of its market-share. It also has an horizontal segment defining a 
market-clearing price for which the company is willing to sell an extra amount of 
500 MWh. 
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Figure 6.12. Offers for the 12th hourly auction in the eleven-scenario case. 
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Figure 6.13. Detail of the offers for the 12th hourly auction in the eleven-scenario case. 

The general features of the offer curve constructed for hour 5 contrast with those 
observed in the one corresponding to hour 12, as can be seen in Figure 6.14 and Figure 
6.15. This curve seems to suggest that the company is not very worried about its sales 
in the auctions corresponding to off-peak hours. It is an almost horizontal offer curve 
that can lead to a variety of outcomes in terms of the quantity sold by the company 
with slight variations in the clearing price. 
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Figure 6.14. Offers for the 5th hourly auction in the eleven-scenario case. 
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Figure 6.15. Detail of the offers for the 5th hourly auction in the eleven-scenario case. 

6.2.2.4 A comparison with the real offers 

Even though the generation company of study is fictitious, the actual offers that 
were submitted on October 24th 2001 corresponding to each generating unit are 
publicly available. Based on this information we can construct the offer curve that the 
generation company of study “submitted” that day and compare them with those 
developed by the model. Figure 6.16 and Figure 6.17 establish this comparison. As can 
be seen, the offer curves suggested by the model are quite similar to those actually 
observed in the day of study. Obviously, this similarity is mainly due to our choice of 
the hourly market-share values. If higher values were selected, the mode would offer 
larger amounts of energy at a lower prices and vice versa. In any case it is reassuring to 
verify that the solutions provided by the model can mimic those actually observed in a 
real spot market. 
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Detail of the offers for the 12-th hourly auction
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Figure 6.16. A comparison of the offers developed by the model and the real offers for the 12th hourly 

auction. 
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Figure 6.17. A comparison of the offers developed by the model and the real offers for the 12th hourly 

auction. 

6.2.2.5 Influence of the non-decreasing constraints 

The presence of vertical and horizontal segments in the offer curve developed for the 
twelfth hourly auction (Figure 6.12) seems to indicate that, if it were possible, the 
company would rather use an offer curve with both increasing and decreasing 
segments. Figure 6.18 illustrates this idea. If the non-decreasing constraints are 
omitted, the model suggests decisions for the day-ahead market that do not constitute 
a valid offer curve. In this particular case, it seems that two alternative offer curves 
could be constructed. The first one would simply consist of an horizontal segment. The 
second one would be formed by a vertical segment and an horizontal segment. In 
principle, it is difficult to decide which of these two alternatives is the best. Indeed, 
only by including the non-decreasing constraints in the model can we make the correct 
choice. 
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Figure 6.18. Influence of the non-decreasing constraints on the offers for the 12th hourly auction. 

6.2.2.6 Influence of the number of scenarios 

It is also interesting to determine to what extent does the number of scenarios affect 
the shape of the offer curves decided by the model. Figure 6.19 represents the offer 
curves obtained for the twelfth hourly auction in the three numerical examples 
addressed hitherto. As can be seen, the offer curve constructed for the two-scenario 
case deviates importantly from the offer curves corresponding to the five-scenario case 
and the eleven-scenario case. This is due to the inclusion of several possible high-price 
residual demand realizations in the latter cases. Actually, the residual demand curve 
that the company faced in this particular auction lied between the two curves 
considered for the two-scenario case, so it is likely that the offer curve obtained for this 
case be the most appropriate. Something similar happens with the fifth hourly auction, 
as shown in Figure 6.20. Nevertheless, it is clear that the offering strategy developed 
for the eleven-scenario case is more robust than the one adopted for the two-scenario 
problem, even if the scenarios contemplated for the two-scenario case happen to be 
very close to the realization of uncertainty. 
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Figure 6.19. Influence of the number of scenarios on the offers for the 12th hourly auction. 
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Figure 6.20. Influence of the number of scenarios on the offers for the 5th hourly auction. 

In terms of expected sales and expected clearing prices (Figure 6.21), the two-
scenario case is characterized by high expected sales together with low expected 
clearing prices in the on-peak hours as well as low expected sales and high expected 
clearing prices in the off-peak hours. On the other hand, the five-scenario case presents 
high expected sales in the off-peak hours and low expected sales in the on-peak hours. 
Finally, the eleven-scenario case leads to high expected clearing prices in the on-peak 
hours. 
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Figure 6.21. Influence of the number of scenarios on the expected results. 
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6.2.3 Sensitivity analysis 
The generation company whose case is studied in the examples of this thesis obtains 

a volume of revenues in the day-ahead market of about 8 M€. It is not likely that such 
a company would develop its offering strategies with the model developed in this thesis 
without previously guaranteeing that the model adapts well to a variety of 
circumstances concerning its portfolio. Examples of these circumstances are the 
unavailability of a specific generating unit, changes in the amount of hydro reserves 
that can be used in the day of interest, the existence of an open position in a contract 
for differences, etc. It is impossible to include here the exhaustive sensitivity analysis 
that would be required to validate the model for commercial use. Nevertheless, it is 
interesting to solve a number of examples with slight differences in some of these 
aspects, so as to evaluate the variations observed in the solutions. The previous eleven-
scenario study case is used as a reference to measure these differences. 

6.2.3.1 Market-share value 

One of the most relevant elements of the input data used for these numerical 
examples is the value that the company gives to its market-share in each of the hourly 
auctions that constitute the spot market. The influence of this parameter is 
determinant for the offering strategies developed by the model. To illustrate this 
influence, a case has been solved in which the value given to the company’s market-
share is null. Figure 6.22 compares the expected outcome of the day-ahead market in 
this case with that of the base case. 
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Figure 6.22. Influence of the market-share value on the expected day-ahead market results . 



178 Chapter 6. Computational results 

 

As can be seen, when the value of the company’s market share is assumed to be 
equal to zero, the company’s expected sales are significantly lower than those expected 
in the base case. Moreover, the profile of these expected sales does not correspond with 
the typical chronological evolution of demand. Indeed, the model decides to withdraw 
energy from the on-peak hours reaching expected production levels similar (or even 
lower) than those expected for off-peak hours. This causes a substantial increase on the 
expected market-clearing prices, rendering important benefits to the company and even 
more important to its competitors.  

The shapes of the company’s offer curves for both numerical examples are so 
dramatically different that they can hardly be compared. Figure 6.23 shows the offer 
curves corresponding to the twelfth hourly auction. The offering strategy developed for 
the case in which no value is given to the company’s market-share aims at clearing 
prices almost three times higher than those expected in the base case. A similar effect 
is observed in the offers for the fifth hourly auction (Figure 6.24). 
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Figure 6.23. Influence of market-share value on the offers for the 12th hourly auction. 
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Figure 6.24. Influence of market-share value on the offers for the 5th hourly auction. 

The remarkable influence that the value of the company’s market share exerts on 
the offer curves developed by the model reveals the strategic role played by this 
parameter. Indeed, this value must be calculated with care, making use of medium-
term models that provide optimum guidelines for the annual operation of the 
generation company. Given a certain value for this parameter, the model developed in 
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this thesis is able to seize some of the short-term opportunities that may arise and at 
the same time pursue the company’s medium and long-term objectives. An additional 
conclusion that can be drawn from this example is that the value of the company’s 
market share is not an essential information in order to develop an offering strategy 
with the methodology suggested in this thesis. It has been shown that an offering 
strategy can actually be obtained without this information, although the results will 
typically not lead toward the maximization of the company’s long-term profits. 

6.2.3.2 Hydro reserves 

Another result that should be provided by a medium-term model and that is 
assumed to enter as input data in the model developed in this thesis is the amount of 
reserves that each hydro unit can use during the period of interest (in this case, one 
day). This information conditions to a certain extent the offering strategy developed by 
the model. To illustrate this idea, two different situations have been considered. In the 
first one, an extra 50 % of hydro energy is assumed to be available in each reservoir. In 
contrast, the second case assumes that no hydro energy can be used. The results for 
these two situations are illustrated in the following figures. Figure 6.25 compares the 
expected outcome of these two cases with the results of the base case. As can be seen, 
when extra hydro reserves are available, the model expects to sell more energy during 
the on-peak hours. On the contrary, when no hydro reserves are available the model 
reduces the company’s expected energy sales during the on-peak hours. 
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Figure 6.25. Influence of hydro reserves on the expected day-ahead market results . 
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The increment observed in the company’s expected sales for the case with extra 
hydro reserves is due to a change in the company’s offering strategy. As is shown in 
Figure 6.26, when extra hydro reserves are available, the vertical segment of the offer 
curve for the twelfth hourly auction suffers a translation to the right of almost 
100 MWh. The horizontal segment remains invariable, which justifies that the expected 
sales for this particular auction are almost the same as in the base case. In contrast, 
when no hydro reserves are available, the offer curve experiences a translation to the 
left as well as a significant change in its shape. 
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Figure 6.26. Influence of hydro reserves on the offers for the 12th hourly auction. 

The effect of the variations in the available hydro reserves is almost unnoticeable in 
the offers curve corresponding to the fifth hourly auction, as depicted in Figure 6.27. 
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Figure 6.27. Influence of hydro reserves on the offers for the 5th hourly auction. 

In conclusion, a variation in the available hydro resources for the period of study 
leads to consistent changes in the offering strategy developed by the model for the day-
ahead market. Indeed, if more hydro energy can be used, the model offers higher 
quantities in the hours and at the prices that are more convenient. 
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6.2.3.3 Unit availability 

The availability of generating units is also a factor with relevant influence on the 
company’s offering strategy. The probability of suffering the unplanned outage of a 
generating unit is not negligible at all and a generation company must be able to adapt 
its offer curves so as to minimize the negative effects of this failure. 

Let us assume that the company’s nuclear unit G1 has been forced to stop some 
hours before the day-ahead market session of study. The company must correct its 
offering strategy in order to take this circumstance into account. With the model 
developed in this thesis, it suffices to declare the nuclear unit unavailable. Figure 6.28 
depicts the significant reduction that this unavailability produces in the company’s 
expected sales, particularly in the on-peak hours. This, in turn, causes an increase in 
the expected clearing prices. It is interesting to notice that the decrease in the expected 
output observed during on-peak hours is greater than the unit’s generating capacity. 
This means that the model not only has adapted the offering strategy to this capacity 
reduction but has also reallocated hydro resources, due to the interaction between the 
shape of the residual demand curves in the vicinity of the new solution and the value 
of the company’s market share. This effect highlights the adequacy of our approach. 
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Figure 6.28. Influence of units’ availability on the expected day-ahead market results. 

As in other numerical examples, it is also interesting to check the effect that the 
unavailability of a nuclear unit has on the shape of the offer curves constructed by the 
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model. Figure 6.29 shows the variations introduced in the offer curve for the twelfth 
hourly auction. The most evident change is a shift of the curve more than 1000 MWh 
to the left. However, the model also introduces changes to adapt the shape of the offer 
curve to the new relevant region of the possible residual demand realizations. This 
reinforces the validity of our approach. 
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Figure 6.29. Influence of units’ availability on the offers for the 12th hourly auction. 

The variations observed in the offer curve for the fifth hourly auction are less 
significant than those identified for the previous one. A simple translation to the left is 
observed in Figure 6.30. The reason is that the residual demand realizations for this 
fifth auction are almost parallel straight lines in a range of about 2000 MWh. 
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Figure 6.30. Influence of units’ availability on the offers for the 5th hourly auction. 

To sum up, the model has proved to be useful for those cases in which the 
generation company suffers the forced outage of one of its units. Not only does it 
suggest changes in the company’s offering strategy that can be intuitively interpreted. 
It also introduces changes in the shape of the offer curves to adapt to the 
characteristics of the possible residual demand realizations in the new region of 
interest. 
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6.2.3.4 Contracts for differences 

As was explained in chapter 4, the portfolio of a generation company that takes 
part in an electricity spot market is constituted not only by its generation units, but 
also by its open positions in physical bilateral contracts and electricity derivatives such 
as contracts for differences or options. These derivatives are frequently indexed to the 
spot price of electricity, thus affecting the strategy followed by the company in the 
spot market. To illustrate how the model developed in this thesis is able to develop 
offering strategies that take into account the company’s open positions in derivative 
products, we consider the case of a contract for differences. This contract is an 
agreement to exchange the difference between a fixed price (50 €/MWh) and the day-
ahead market clearing prices corresponding to the time interval that goes from the 
eleventh to the twenty-second hourly auction. The amount of energy affected by this 
contract is 3000 MWh in each auction. 

As was indicated in chapters 4 and 5, a contract for differences reduces the incentive 
of a generation company to raise the spot price of electricity. This is the result 
observed in Figure 6.31, where the company’s expected sales increase in almost all the 
hours affected by the CfDs, causing a reduction of the expected day-ahead market 
clearing prices. The influence on other hours is an indirect effect that is difficult to 
justify. 
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Figure 6.31. Influence of a contract for differences on the expected day-ahead market results. 
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The influence of the contract for differences on the offer curve for the twelfth hourly 
auction is very similar to the effect of an increase of the available hydro resources. A 
translation of the vertical segment of the offer curve is induced, implying an increase of 
the company’s expected sales for that hourly auction. In this case we omit the analysis 
of the offer curve obtained for the fifth hourly auction. 
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Figure 6.32. Influence of a contract for differences on the offers for the 12th hourly auction. 

To summarize, the model is also able to adapt its decisions to the presence of open 
positions in the company’s portfolio. This is an issue of great importance, particularly 
in those wholesale electricity markets with important trading volumes in electricity 
derivatives, such as the Nord Pool. 

An aspect that the model does not account for is the influence that current spot 
prices exert on the price of electricity derivatives. Given that the spot price is usually 
taken as a reference, generation companies may have an incentive to artificially raise it 
in order to improve the conditions of these long-term contracts. This strategy, however, 
can be seen as a form of market power abuse and as such should not be sustainable in 
the long term. 

6.2.4 Conclusions 

In this section we have presented a number of numerical examples to show the 
potential both of the model developed in this thesis and of the solution strategies 
adopted for its numerical resolution. All the examples focus on the same generation 
company and on the same spot market session, thus facilitating the comparison of the 
results obtained. 

In spite of the complexity of the large-scale MIP problems that have to be solved, 
the solution strategy suggested in chapter 5, based on the combination of Benders’ 
decomposition and two ad hoc techniques, has proven to be powerful and robust 
enough to provide reasonably good solutions for a battery of real-size numerical 
examples. 
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6.3 Weekly unit-commitment schedules under spot market 
uncertainty 

In this section we solve a numerical example of the weekly stochastic unit-
commitment problem faced by the generation company of study. Input data is taken 
from the operation of the Spanish electricity spot market corresponding to the week 
that goes from October 22nd to October 28th 2001, as explained in appendix C. 

6.3.1 A 16-scenario case 
The uncertainty faced by the generation company of study in this numerical 

example is represented by means of a sixteen-scenario tree. This scenario tree is due to 
the uncertain outcome of each of the seven spot market sessions considered. 

It has been justified that Lagrangian relaxation is an adequate approach to solve 
the mathematical program that results when the weekly stochastic program is 
formulated, given the generalized presence of binary variables. Figure 6.33 shows the 
evolution of the Lagrangian relaxation algorithm for this particular case. After 250 
iterations the objective function of the master dual problem is 240.472157 M€, whereas 
the value of the dual function is 240.482718 M€. The relative difference between both 
values is 0.0044 %, which is low enough to stop the process. Each iteration takes about 
8 minutes of CPU time, which gives an idea of the computational effort required 
(about 35 hours). 
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Figure 6.33. Evolution of the LR algorithm for the weekly stochastic problem. 

Figure 6.34 depicts the energy sold by the company in each hourly auction of the 
day-ahead market for the different scenarios of the week of study. 
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Figure 6.34. Energy sold by the company in the day-ahead market for each weekly scenario. 
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The high variability observed in the company’s sales on Thursday and Friday 
illustrates the idea of stochastic optimization: depending on the outcome of the 
uncertain factors, the decisions taken by the model may present significant differences. 
Figure 6.35 presents the same information in a more intuitive fashion, explicitly 
representing the sixteen-scenario tree. 

Figure 6.35. Tree constituted by the company’s sales in the day-ahead market. 
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Figure 6.36 shows the detail of the energy sold by the company in the two possible 
realizations considered for the day-ahead market session corresponding to the second 
day (Tuesday). 
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Figure 6.36. Detail of the day-ahead market company’s sales for the two nodes corresponding to Tuesday. 

As a result of the sales decided by the model for the day-ahead market, the weekly 
sequence of market clearing prices depicted in Figure 6.37 is obtained. The variability 
observed in the company’s sales is also observed in the day-ahead market clearing 
prices. However, it is interesting to notice that the model focuses on several price 
levels. This is due to the particular features of the Lagrangian relaxation method. 
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Figure 6.37. Day-ahead market clearing prices for each scenario. 

Figure 6.38 presents a detail of the market-clearing prices obtained for the two 
possible outcomes of the day-ahead market session corresponding to Tuesday. 
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Figure 6.38. Detail of the day-ahead market clearing prices for the two nodes corresponding to Tuesday. 

The results obtained for the adjustment market are similar to those reported for the 
day-ahead market. A great variability is observed in the company’s position for the 
adjustment market, according to Figure 6.39. The adjustment market clearing prices 
also present certain variability but several predominant price levels can be detected. 
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Figure 6.39. Company’s sales in the adjustment market. 
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Figure 6.40. Adjustment market clearing prices for each scenario. 
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The generation schedule decided by the model also depends on the outcome of the 
spot market. In particular, the model decides a different unit-commitment schedule for 
each weekly scenario. To illustrate this, the two unit-commitment schedules given by 
the model for Tuesday are shown in Table 6.5 and Table 6.6. It can be seen that the 
two schedules decided for generators G24 and G32 are not the same for the two 
scenarios. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

N
uc

le
ar

 

G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

C
oa

l 

G23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

G
as

/o
il 

G39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 6.5. Unit-commitment schedule for the first possible outcome of Tuesday’s session. 
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

N
uc

le
ar

 

G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

C
oa

l 

G23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
G25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
G33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

G
as

/o
il 

G39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 6.6. Unit-commitment schedule for the second possible outcome of Tuesday’s session. 
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To further illustrate the flexibility of the unit-commitment schedule provided by a 
stochastic programming model, Figure 6.41 represents the commitment schedule 
decided by the model for unit G24. As can be seen, this schedule depends on the 
outcome of the sequence of spot market sessions. For example, unit G24 will be online 
on Tuesday with a probability of 50 %. If it remains offline on Tuesday then it 
operates on Wednesday with a probability of 50 %, and so forth. Something similar 
happens with the management of hydro resources. Figure 6.42 shows the hydro energy 
used by the model in each node of the scenario tree and illustrates its dependence on 
the outcome of the spot market. 

 
Mon Tue Wed Thu Fri Sat Sun 

Startup Shutdown 

 
Figure 6.41. Scenario tree for the startup and shutdown of unit G24. 
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Figure 6.42. Hydro energy used in each node of the scenario tree in GWh. 
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These flexible unit-commitment schedules and hydro management decisions can be 
easily implemented in an offering strategy. For example, it can be assumed that unit 
G24 is online if the market-clearing price exceeds a certain value. A similar approach 
can be used to allocate hydro resources in the company’s offer curves. 

Although the energy used by the model in a certain spot market session strongly 
depends on the outcome of that particular session, the overall energy used during the 
week does not vary significantly from one scenario to another. According to Table 6.7, 
the company of study should use between 64.4 and 70.0 GWh of hydro energy during 
this week. 

Scenario 
Hydro energy 

(GWh) 
1 67.500 
2 68.925 
3 64.430 
4 66.526 
5 68.254 
6 65.312 
7 66.147 
8 67.342 
9 67.788 
10 69.951 
11 68.431 
12 67.051 
13 67.337 
14 66.039 
15 67.619 
16 64.946 

Table 6.7. Hydro energy used in each weekly scenario. 

The purchase of energy for pumping is also a relevant result. Table 6.8 indicates the 
energy purchased for pumping in each of the sixteen weekly scenarios, which ranges 
from 6.6 to 13.7 GWh. 

Scenario 
Energy pumped 

(GWh) 
1 10.941 
2 12.256 
3 6.561 
4 8.830 
5 10.903 
6 5.972 
7 9.408 
8 9.596 
9 10.237 
10 13.721 
11 11.157 
12 9.183 
13 10.383 
14 8.528 
15 11.448 
16 8.026 

Table 6.8. Energy pumped in each weekly scenario. 
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6.3.2 Conclusions 

This second part of the chapter has been dedicated to present the results obtained 
for a numerical example of the weekly stochastic unit-commitment problem. According 
to these results, the proposed approach suggests unit-commitment schedules that are 
consistent with the stochastic programming perspective adopted in this thesis. Indeed, 
the model does not yield a unique schedule, but rather a decision tree indicating the 
decisions that the company must take as uncertainty is unveiled. In this manner, the 
model correctly interprets that the company actually has the possibility of changing its 
strategy depending on the outcome of the spot market. This flexibility can be easily 
implemented in the company’s offering strategy, which emphasizes the consistency 
between the two perspectives adopted in chapter 5 in order to address the problem 
faced by a generation company in a spot market. 

The computational effort required to obtain the results for this study case does not 
invalidate our approach. According to our experience, weekly unit-commitment 
schedules should be obtained on Sunday in order to decide the operation of coal 
generators, which typically require a week to recover the cost of a startup. It does not 
seem unreasonable to make this effort once a week. The case of oil/gas generators is 
different, given that they can recover the cost of a startup in several hours. Hence, if 
the commitment schedule of oil/gas units must be revised during the week, it suffices 
to consider two spot market sessions and not the whole week. Obviously, these smaller 
problems pose less computational requirements. 
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7 Conclusions, contributions 
and future research 

This last chapter is dedicated to evaluating the conclusions that result from the research 
conducted in this thesis. It includes a brief summary of the analysis, developments and findings 
that constitute the core of this work. It also specifies the original contributions that have 
resulted while pursuing the general objective of this thesis. Finally, several future lines of 
research stemming from the developments of this thesis are identified. 

 



 



7.1 Summary and conclusions 197 

 

7.1 Summary and conclusions 
This thesis has addressed the problem of developing an optimal offering strategy for 

a generation company operating in an electricity spot market. This issue is currently of 
the maximum relevance due to the regulatory reforms that have been introduced in the 
worldwide power industry. 

The idea of constructing optimal offers for an electricity spot market is too general 
to be developed in a straightforward manner. The variety of spot market designs that 
can be found throughout the world is so wide that it is impossible to propose a general 
methodology valid for them all. For this reason, an overview of the most relevant spot 
market designs currently in operation has been included in this thesis. Based on this 
analysis, the rules that govern the spot market of study have been clearly defined. 

The search for an optimal offering strategy requires the evaluation of the expected 
benefit of any candidate strategy. In particular, the company must be able to estimate 
the revenues that it expects to obtain in the spot market. This implies modeling the 
behavior of rivals, due to its relevant influence both on the company’s revenues and on 
the price of electricity. In this thesis a literature survey has been performed in order to 
identify the model of competition that best suits our general objective. As a result of 
this analysis, a representation based on residual demand curves and revenue functions 
has been used to calculate the outcome of the hourly auctions that constitute the spot 
market of study. 

Uncertainty with respect to rivals’ behavior is at the root of the development of any 
offering strategy. It is because of this uncertainty that a generation company gets 
involved in a decision process more complex than simply choosing a single price for all 
its output or a specific level of production. However, not every representation of this 
uncertainty is equally amenable in order to search for an optimal offering strategy. In 
this thesis, uncertainty about the strategies followed both by rivals and by wholesale 
buyers in each of the hourly auctions that constitute the spot market has been 
represented by assuming that the probability distribution of the corresponding residual 
demand curve has finite support. In other words, it has been assumed that each hourly 
auction has a limited number of possible outcomes. Given that the spot market of 
study consists of a sequence of auctions, this approach yields a representation of the 
spot market in the form of a multistage stochastic program. This representation is 
valid not only for the case of a generation company, but also for other agents operating 
in an electricity spot market such as energy service providers. 

The previous multistage stochastic programming framework has been enriched with 
a detailed model of the company’s portfolio. This model considers each of the 
company’s generation units, including their production costs and technical constraints. 
It also takes into account the obligations assumed by the company in previous market 
mechanisms, such as futures or options markets. 

Although this thesis focuses on the development of strategies for market mechanisms 
that operate on a daily basis, the main objective of a generation company is the 
maximization of its long-term profit. Some sort of guideline must be incorporated into 
our methodology, so as to orient its results toward this long-term objective. With this 
purpose, an explicit valuation of the market share obtained by the company in the spot 
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market has been suggested in order to correct the myopic incentive that a generation 
company has to reduce its sales and increase the spot price of electricity. Tuning of this 
parameter has been shown to result in realistic simulations of short-term bidding 
behavior, which suggests that it can be useful fore representing a company’s decision to 
tradeoff short- and long-run benefits. 

The size of the mathematical program that results when the abovementioned 
modeling features are put together is unmanageable for current commercial optimizers. 
In order to improve its numerical tractability, it has been assumed that the relative 
importance of the spot market mechanisms diminishes as the moment of physical 
delivery gets nearer. Under this assumption, the problem of choosing an optimal 
strategy for the spot market has turned out to have a twofold structure. On the one 
hand, the problem of developing optimal offers for a specific market mechanism has 
been expressed as a two-stage stochastic program, taking into account that recourse 
actions can be adopted in subsequent market mechanisms in order to correct any 
undesired result. On the other hand, the problem of deciding an optimal weekly unit-
commitment schedule has been formulated as a sequence of two-stage stochastic 
programs. These two aspects of the operation of a generation company in a spot 
market are mutually consistent. 

Both problems require the use of decomposition techniques so that realistic study 
cases can be formulated and solved under this framework. An analysis of the structure 
of both problems has been performed in order to identify the decomposition technique 
that best suits each of them. In the light of this analysis, Benders’ decomposition 
appears as the most adequate approach to solve the first type of problem, given that it 
adapts well to its two-stage structure. In contrast, Lagrangian relaxation is the 
solution method chosen to address the weekly unit-commitment problem, due to the 
generalized presence of binary variables. The application of both decomposition 
techniques has been explained in detail. In particular, the formulation of the Lagrange 
function provides an interesting economic interpretation for the Lagrange multipliers 
and permits a better understanding of the problem. 

The adequacy of the methodology developed in this thesis is confirmed by the 
results obtained for a collection of numerical examples. A variety of offering strategies 
have been derived for a generation company participating in a specific session of the 
Spanish day-ahead market under different circumstances. The sensitivity observed in 
the solutions proposed by our methodology with respect to a number of relevant 
factors is consistent. Additionally, a weekly unit-commitment schedule has been 
obtained for a sixteen-scenario case also based on historic sessions of the Spanish 
electricity spot market. 

The previous summary leads to a number of relevant conclusions that can be drawn 
from the research conducted in this thesis. We organize them as follows: 

i) Any attempt to solve one of the problems faced by an agent participating in a 
wholesale electricity market must be accompanied by a definition of the rules that 
govern the market mechanisms involved in the analysis. 

ii) All the methodologies suggested in the literature to represent competition in 
wholesale electricity markets have advantages and shortcomings. The adequacy of 
a specific approach depends on the nature of the analysis that has to be 
performed. In particular, a representation of the spot market based on residual 
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demand curves and revenue functions has been proposed for the problem addressed 
in this thesis. 

iii) The explicit consideration of uncertainty with respect to rivals’ behavior is crucial 
to guarantee the consistency of a methodology intended to develop optimal 
offering strategies for an electricity spot market. A flexible and powerful approach 
is to assume probability distributions with finite support when representing the 
uncertainty of residual demand curves. 

iv) As a consequence of previous conclusions, the problem faced by a generation 
company in an electricity spot market can be formulated as a multistage stochastic 
program. In this context, offering strategies are simply expressed as vectors of 
quantities. Each quantity expresses the amount of energy that the company sells 
in one of the spot market auctions if a certain market situation occurs. 

v) The development of an offering strategy for a generation company operating in an 
electricity spot market requires taking into account the company’s portfolio. This 
implies considering not only the company’s generating units, but also the 
obligations it has assumed in previous market mechanisms. 

vi) A methodology that proposes strategies for the short-term operation of a 
generation company must include guidelines that orient these decisions toward the 
main objective of the company: the maximization of its benefits in the long term. 
In particular, myopic strategies such as output reductions in order to increase the 
price of electricity should be avoided. This difficulty can be overcome by simply 
introducing a term in the objective function expressing the value that the 
generation company gives to its market share. This term is flexible enough to 
permit profiting from short-term opportunities, while at the same time pursuing 
longer-term objectives. 

vii) By assuming that the relative importance of the spot market mechanisms 
diminishes as the moment of physical delivery gets nearer, the problem of deciding 
an offering strategy for a certain market mechanism can be formulated as a two-
stage stochastic program. This type of problem can be solved using Benders’ 
decomposition under certain mild assumptions. The results obtained for a variety 
of realistic numerical examples confirm the validity of this approach. 

viii) The weekly stochastic unit-commitment problem of a generation company 
operating in a spot market can be expressed as a sequence of two-stage programs, 
one for each day of the week. Given the structure of this problem, a decomposition 
scheme based on Lagrangian relaxation is a good solution approach. A realistic 
numerical example illustrates the features of this method. 

A general conclusion is that, irrespective of the market design and the particular 
circumstances faced by a generation company in the new regulatory framework, three 
legs should sustain any methodology oriented to the development of optimal offering 
strategies. Firstly, a comprehensive analysis of the market rules that condition the 
company’s operation must be performed. Secondly, a consistent and flexible model of 
competition should be selected that permits the explicit consideration of uncertainty 
and a rapid evaluation of candidate strategies. And thirdly, a solution method should 
be identified that yields quasi-optimal strategies in a reasonable execution time. 
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7.2 Original contributions 
The development of this thesis has yielded a number of original contributions that 

can be categorized into three different types: methodological contributions, modeling 
contributions and algorithmic contributions. 

7.2.1 Methodological contribution 

The process of reasoning followed for the development of this thesis can be seen as a 
contribution. It starts by clearly defining the context in which the proposals of this 
thesis hold. In particular, an analysis of the most relevant wholesale electricity market 
designs has been carried out in order to specify the rules that govern the spot market 
of study. Additionally, the model adopted in this thesis to represent competition has 
also been justified according to the findings of a literature survey. Moreover, the 
reasons that support the approach used in this thesis to represent the uncertainty 
faced by generation companies in the spot market have also been carefully explained. 
After addressing these relevant aspects, the methodology suggested in this thesis to 
develop optimal offering strategies for the electricity spot market has been formulated 
in detail, resulting in a large-scale multistage stochastic programming problem. Finally, 
a strategy to obtain numerical results for this problem has been proposed that makes 
use of two well-known decomposition techniques. A variety of numerical examples 
illustrate the potential of this methodology. Although some particular hypotheses 
assumed in this thesis may not hold in other cases, the suggested process of reasoning 
can be reproduced in order to address the problems faced by a generation company 
operating in a substantially different spot market. Furthermore, it can also be applied 
to address problems related to other market mechanisms, such as futures markets, as 
we explain when indicating futures lines of research. 

7.2.2 Modeling contributions 

The following developments of this thesis constitute original contributions in the 
field of modeling competition in wholesale electricity markets: 

i) As has been mentioned, before choosing a model to represent competition in the 
spot market of study, a literature survey has been performed in order to identify 
the advantages and shortcomings of the existing models. In this context, an 
original characterization of the methodologies proposed in the literature to address 
the short-term problems faced by generation companies in electricity spot markets 
has been suggested. This analysis has shown the conceptual gap that this thesis 
aims to fill. 

ii) By using residual demand curves and revenue functions to evaluate the outcome of 
the spot market and by assuming that the probability distributions of these curves 
have finite support, an original representation of the spot market in the form of a 
multistage stochastic program has been derived. This modeling approach provides 
a consistent framework to evaluate the expected revenue of any offering strategy. 

iii) A generalized model of the portfolio of a generation company from the perspective 
of the spot market has been suggested that considers not only the company’s 
generation assets, but also its open positions resulting from previous market 
mechanisms. This guarantees a correct evaluation of the impact that each offering 
strategy has on the company’s revenues. 
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iv) In order to avoid the adoption of myopic strategies based on the exercise of market 
power, a new term has been added to the short-term objective function of the 
generation company that takes into account the value of its market share. In this 
manner, long-term profit maximization objectives can be pursued while at the 
same time seizing some of the short-term opportunities that may arise. 

v) It has been shown that the methodology proposed in this thesis, originally 
conceived to address the problem faced by generation companies in electricity spot 
markets, can be easily adapted to contemplate the problem of developing optimal 
bidding strategies for a wholesale buyer, such as an energy service provider. 

7.2.3 Algorithmic contributions 

In addition to proposing an original multistage stochastic formulation for the 
problems faced by a generation company in the spot market, this thesis suggests a 
solution strategy based on the assumption that the relative importance of spot market 
mechanisms diminishes as the moment of physical delivery gets nearer. This facilitates 
the search for a solution when addressing realistic study cases. Three specific 
contributions can be identified from this point of view: 

i) Two types of mathematical programs have been suggested in order to obtain 
numerical results. On the one hand, the problem of developing an offering strategy 
for a specific market mechanism has been expressed as a two-stage stochastic 
program. This approach includes an explicit representation of the uncertainty 
faced by the company in the market mechanism of interest, considers the 
possibility of adopting recourse actions in subsequent market mechanisms and 
evaluates the impact that these decisions have on the company’s portfolio. On the 
other hand, the problem of deciding a weekly unit-commitment schedule and 
distributing the company’s hydro resources during the week of study has been 
formulated as a sequence of two-stage programs, each one corresponding to one 
particular day of the week. The combination of both approaches constitutes a 
consistent framework to assess the operation of a generation company in a spot 
market. 

ii) A Benders’ decomposition approach has been developed in order to solve the 
abovementioned two-stage stochastic program. Benders’ master problem comprises 
the first-stage decisions, i.e., the development of an offering strategy for the market 
mechanism of interest. Benders’ subproblem evaluates the possibility of taking 
recourse actions in subsequent market mechanisms and derives a final generation 
schedule that meets the obligations assumed by the company through its sales. An 
original ad hoc procedure based on the separation of the master problem into 
hourly problems (one for each auction of the day-ahead market) has been devised 
to quickly obtain quasi-optimal feasible offering strategies. 

iii) A Lagrangian relaxation approach has been developed to tackle the weekly 
stochastic unit-commitment problem by dualizing the energy balance equation. In 
addition to constituting an adequate solution method, the formulation of the 
Lagrange function has provided an interesting economic interpretation for the 
Lagrange multipliers. The identification of the presence of new Lagrangian 
subproblems due to the competitive framework in which generation companies now 
operate is also an original result. 
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iv) The application of both Benders’ decomposition and Lagrangian relaxation to the 
problems addressed in this thesis has been implemented in an algebraic modeling 
language so that the proposed methodology can be systematically used by a real 
generation company. Moreover, the routines that prepare the input data for these 
problems based on historic information of the Spanish electricity spot market are 
also implemented in a general-purpose programming language. In this manner, the 
daily task of developing offering strategies for a company operating in the Spanish 
electricity spot market can be performed in a simple and straightforward manner. 

7.3 Future research 
The developments of this thesis lead to a number of future lines of research whose 

exploration is likely to yield interesting results. This section tries to summarize them 
and justify their relevance. They have been organized into two main groups. The first 
one refers to possible advances in the field of modeling wholesale electricity markets. 
The second one focuses on the improvement of the algorithmic solutions suggested in 
this thesis. 

7.3.1 Modeling advances 

The analysis of competition in wholesale electricity markets is an issue that has 
received much attention during the last decade and that is likely to continue as a very 
active field of research due to its inherent complexity and to the relevant role that the 
electric power industry plays in the worldwide economy. Some of the research lines 
stemming from this thesis that would constitute interesting modeling advances can be 
summarized as follows: 

i) As has been justified, the methodology proposed in this thesis adapts well to a 
specific spot market design, but it may not be adequate for others. In particular, 
situations such as nodal spot pricing, pay-as-bid schemes or continuous trading 
mechanisms are not contemplated. It would be of great interest to repeat the 
process followed in this thesis but assuming a substantially different spot market 
design. 

ii) As a matter of fact, the line of reasoning followed in this thesis can also be 
adopted to address the problems faced by a generation company when operating in 
medium-term market mechanisms such as futures or options markets. Indeed, 
these problems seem also to adapt well to a multistage stochastic programming 
approach in which current decisions can be corrected by future recourse actions 
ultimately leading to a generation schedule. The continuous trading process typical 
in these markets would have to be represented with a discrete-time model. An 
open issue would be the choice of the competition model that best suits these 
problems. This decision strongly depends on the approach adopted to obtain 
numerical results. 

iii) In this thesis, a static model of competition based on residual demand curves and 
revenue functions has been used to evaluate the influence that rivals’ decisions 
exert on the company’s revenues. This model overlooks the possibility of triggering 
an undesired reaction of a rival in a subsequent spot market session. This static 
perspective has been justified by assuming that a company should try to keep a 
steady state behavior so as to avoid sudden reactions from its competitors whose 
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consequences are difficult to estimate. It would be interesting to explore the 
possibility of incorporating an explicit representation of these reactions in our 
modeling approach. 

iv) Even though it has been justified that the methodology proposed in this thesis 
adapts well to the case of an wholesale energy buyer such as an energy service 
provider, it would be necessary to further elaborate this line of research. In 
particular, a detailed formulation of the portfolio of an energy service provider 
would be an interesting extension for this thesis. 

v) In order to orient the company’s short-term strategies toward the objective of 
long-term profit maximization, a term that evaluates the value of the company’s 
market share has been introduced. Although the results obtained with this 
approach are encouraging, a more detailed analysis of the role played by this 
parameter would contribute to better understand its implications. Moreover, the 
estimation of this parameter as a result of medium-term operation-planning 
decisions remains an open issue. 

vi) The numerical examples and solution methods included in this thesis focus mainly 
on the day-ahead market and the adjustment market, while leaving aside other 
market mechanisms such as the reserves market. Nevertheless, it has been argued 
that our methodology can also be applied for this purpose. The precise formulation 
of the two-stage problem that considers the development of an optimal offering 
strategy for the reserves market, given the results obtained in previous energy 
markets, is a relevant question that can be easily addressed given the general 
background provided in this thesis. 

7.3.2 Algorithmic improvements 

Although a significant effort has been devoted in this thesis to the development of 
algorithms that permit obtaining numerical results for the formulation proposed, two 
particular algorithmic improvements can be identified: 

i) The application of Benders’ decomposition has required the elimination of binary 
variables in the subproblem. This implies a simplification in the representation of 
the second stage. In particular, it has been assumed that the residual demand 
curves of the second-stage market mechanism are linear functions. This 
simplification could be avoided by enhancing Benders’ decomposition approach so 
that binary variables can be included in the subproblem. A development of this 
nature has been applied to the medium-term operation-planning problem of a 
generation company [Cerisola '02]. 

ii) Even though Lagrangian relaxation provides good results for the weekly stochastic 
unit-commitment problem, its convergence requires a considerable computational 
effort. In particular, a reduction in the execution time reported for the numerical 
example included in this thesis would be of great interest, given that this model 
should be executed once a week. This improvement could be achieved with an 
approach that accelerates the convergence of Lagrangian relaxation for mixed 
linear-integer programs such as the one developed in [Cerisola '01]. 
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A. Modeling the electricity spot market through residual demand curves 

A Modeling the electricity spot market 
through residual demand curves 

An agent willing to optimize his strategy in an electricity spot market must be able to evaluate 
the influence that his decisions exert on his revenues. This requires a mathematical 
representation of the spot market that takes into account all the aspects that are relevant from 
the perspective of the agent. 

In this thesis, the residual demand model is considered the most adequate approach to 
represent the relationship that exists between an agent’s decisions and the outcome of the 
multiunit double auctions that frequently constitute electricity spot markets. This appendix 
provides the general background of this modeling approach and explains the details of its 
implementation in this thesis. 
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A.1 Introduction 
The developments presented in this thesis require a formal description of the 

modeling approach adopted to represent competition in an electricity spot market from 
the perspective of a specific agent (e.g. a generation company or an energy service 
provider). As indicated in chapter 3, the residual demand model seems the most 
convenient approach for the purposes of this thesis. This appendix provides an 
overview of some of the basic concepts that justify the validity of this model in the 
context of multiunit double auctions. 

The implementation of the residual demand model in a mathematical programming 
framework requires a consistent representation approach. In this appendix, a piecewise 
linear approach is described that permits the evaluation of both residual demand 
curves and revenue functions in a mixed-integer programming context. This piecewise 
linear representation also allows to compare different residual demand curves in a 
straightforward manner, which can be helpful in order to identify patterns in rivals’ 
strategic behavior. 

A.2 Basic concepts 

A.2.1 The idea of residual demand in microeconomic theory 

A.2.1.1 Equilibrium models 

The idea of residual demand arises in microeconomic analysis in the case of a 
homogeneous good industry where a dominant firm 1  acts as a price leader and the 
rest of firms consider that the price is independent of their decisions (i.e. they act as 
price takers) [Varian '92]. 

In this context, each price taker 1i ≠  decides the output iq  that maximizes its 
profit, given the price p  established by the dominant firm: 

 ( )Max  , 1.
i

i i i
q

pq c q i− ∀ ≠  (A.1) 

As a result, the output decision taken by firm i  can be expressed as a function of 
price in the form ( )i iq S p= . This function can be seen as firm i ’s offer curve and 
obviously coincides with its marginal cost curve, ( )i ic q′ . 

When deciding the price, in order to maximize its profits, the dominant firm 1  must 
take into account that the amount of product that that it can sell at each price is the 
result of two contributions. On one hand, the total amount of product demanded by 
consumers, q , which can be expressed as a function of price by means of the demand 
function, ( )q D p= . On the other hand, part of this demand is covered by price takers 
with their output, which can be expressed as ( ) ( )1 1

1 1
j i

i i
q q S p S p− −

≠ ≠
= = =∑ ∑ . 

Consequently, the amount of product that firm 1  is able to sell at price p  is given by 
( ) ( ) ( )1 1 1q R p D p S p−= = − . This function is known as firm 1 ’s residual demand and 

its construction is illustrated in Figure A.1. 
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Figure A.1. Residual demand function for the price leader 1 . 

The problem faced by firm 1  is then: 

 ( ) ( )[ ] ( ) ( )( ) ( ) ( )( )1 1 1 1 1 1Max  .
p

p D p S p c D p S p pR p c R p− −− − − = −  (A.2) 

The idea of residual demand is also useful for more advanced models of oligopoly, 
such as the supply function equilibrium model developed in [Klemperer '89]. In this 
model, every firm i  takes its decisions in the form of a supply function ( )iS p . The 
profit maximization problem of firm i  is then formulated as: 

 ( ) ( )[ ] ( ) ( )( )Max  , .i i i
p

p D p S p c D p S p i− −− − − ∀  (A.3) 

This yields the following set of first-order optimality conditions: 

 ( ) ( )( ) ( ) ( ) ( ) ( )[ ] 0, , .i i i ip c D p S p D p S p D p S p i p− − −
 ′  ′− − ⋅ − + − = ∀    

 (A.4) 

Although equations (A.2) and (A.3) may seem similar, there is relevant difference 
between them: (A.3) is formulated for every firm and for every price that may result. 
Consequently, (A.4) constitutes a set of differential equations that is solved by any set 

( ){ }S iS p=  of supply functions that satisfies these optimality conditions for every 
price p  such that ( ) 0D p ≥ . As uncertainty about demand increases, the number of 
possible clearing prices also increases and the set of solutions for this set of differential 
equations is reduced. Hence, in the supply function equilibrium model every firm faces 
an uncertain residual demand curve when expressing its strategic decisions in the form 
of a supply function. 

A.2.1.2 The perspective of a particular firm 

The previous models take the perspective of a general observer that analyzes the 
interaction of a number of firms and makes use of the concept of equilibrium to 
determine the outcome of such an industry structure. However, the idea of residual 
demand is also interesting from the point of view of one of the firms. Indeed, even if a 
specific firm is not able to unilaterally decide the market price of the good it sells, its 
decisions may well have a relevant influence on the final price. In that case, the firm 
should try to estimate the shape of its residual demand curve in order to maximize its 
profits. Its profit-maximization problem would then be similar to the one formulated 
for the price leader (A.2). The only difference is that in the price leader case, the 
decision has to be taken in the form of a price, whereas in this case, the firm is free to 



A.2 Basic concepts 209 

 

decide the form in which its strategic decisions are expressed (a price, a quantity or a 
supply function). 

If the firm assumes that the estimated residual demand curve is correct and 
overlooks any source of uncertainty, it is irrelevant whether its decisions are expressed 
in terms of a quantity, a price or a supply function [Klemperer '86]. On the contrary, if 
the firm recognizes that the strategies of its rivals and/or the decisions of consumers 
are uncertain, its maximum expected profits might depend on the form in which the 
company expresses its strategic decisions. In this context, the most flexible and robust 
approach is to calculate the firm’s profit-maximizing supply function (Figure A.2). 
This also includes the particular cases of deciding a fixed price for the entire firm’s 
output or a fixed output irrespective of the market price. 

Firm i ’s output qi  

Price p  Firm i ’s expected 
residual demand ( )R pi  

Firm i ’s maximum expected profit can be 
obtained with a variety of offering strategies, in 

particular, a fixed quantity or a fixed price. 

Firm i ’s output qi  

Price p  Firm i ’s residual 
demand discrete 

probability distribution 

To obtain firm i ’s maximum expected profit a 
procedure to obtain optimal offering strategies 

must be used.  
Figure A.2. The effect of considering the residual demand discrete probability distribution. 

It must be emphasized that the problem of constructing the optimal supply function 
for a firm that faces an uncertain residual demand is different from the problem of 
determining the supply function equilibrium (SFE) for a number of firms. In the 
former case, a single offer curve has to be calculated and uncertainty can be due both 
to the demand curve and to rivals’ behavior. On the contrary, to obtain a SFE an offer 
curve must be calculated for every firm and uncertainty is typically restricted to the 
shape of the demand curve. 

A.2.2 The residual demand approach in a repetitive sealed-bid multiunit 
double auction 

The residual demand approach can also be adopted by an agent participating in a 
repetitive sealed-bid homogeneous-product uniform-price multiunit double auction1 
such as the ones that constitute the spot market considered in this thesis. 

If the offers (bids) rendered by all agents to a multiunit double auction are sorted in 
ascending (descending) order by price and their quantities are accumulated, an 
aggregate offer (bid) curve such as the one depicted in Figure A.3 is obtained. Only the 
offers and bids that are located on the left of the intersection of the aggregate offer and 
bid curves are accepted. Each buyer should pay, at most, the price he bid and, at least, 

                                         
1 For simplicity, henceforth this specific type of auction will be referred to as multiunit double auction. 
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the price of the most expensive accepted offer. Similarly, each seller should receive, at 
least, the price of its offer and, at most, the price of the cheapest accepted bid. In this 
thesis only uniform-price auctions are considered, so that all buyers pay the same price 
and all sellers receive the same price. This price is determined by the intersection of the 
aggregate offer and bid curves. In this manner a situation similar to the market 
equilibria analyzed in microeconomic theory is obtained. 

 

Quantity q 

Price p  

Aggregate 
offer curve Aggregate 

bid curve 

 
Figure A.3. Aggregate offer and bid curves for a double auction. 

Therefore, the ideas presented in the previous section are applicable to the case of a 
multiunit uniform-price double auction. In particular, to obtain the residual demand 
curve for one of the sellers, the aggregate offer curve of the rest of sellers must be 
subtracted from the aggregate demand curve, proceeding in the way depicted in Figure 
A.12. Due to repetition, this agent can make use of historic data to estimate the offers 
and bids that the rest of agents are expected to submit in the next session. In fact, it is 
not even necessary to estimate individual bids and offers. The residual demand curve 
comprises all the relevant information about the rest of the world that the agent 
requires in order to pursue the objective of maximizing his profit. Indeed, the residual 
demand curve determines which of the agent’s offers are accepted. Moreover, in a 
uniform-pricing context, it also determines the price that the agent receives for each of 
these accepted offers3. 

A.2.3 From the residual demand curve to the revenue function 

As has been indicated, in a multiunit uniform-price double auction, it is the residual 
demand curve what determines the price that a seller will receive for his accepted offers 
and, as a result, the revenue he will obtain. Figure A.4 depicts the revenues obtained 
by a selling agent in two different situations. It is quite clear that these revenues do 
not depend on the shape of the agent’s offer curve. They just depend on the point 
( ),q p  where his offer curve intersects with his residual demand curve. In other words, 
the agent’s revenues are solely determined by his residual demand curve and the 
quantity he sells, irrespective of the specific offers that have produced these sales4. 

                                         
2 In rigor, the residual demand function does not exist for a seller participating in a multiunit auction. It 
is obvious that there is not a unique quantity that satisfies ( )q R p= . In contrast, the inverse residual 
demand function ( )1R q−  does exist and will be referred to as ‘residual demand curve’. 
3 This does not hold in a pay-as-bid context, where each accepted offer is remunerated at its own price. 
4 Conversely, in a pay-as-bid auction the shape of the agent’s offer curve determines his revenues. 
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Figure A.4. The relationship between revenue and residual demand. 

The agent’s revenues, r , can then be expressed as a function of his sales by simply 
multiplying each possible quantity jq  by the corresponding price that results from the 
residual demand curve, ( )1

j jp R q−= . Figure A.5 illustrates the appearance of the 
revenue functions that are typically obtained. It is clear that a non-linear and non-
concave revenue function is likely to complicate the search for an optimal strategy. In 
following sections a piecewise linear approximation methodology will be suggested to 
overcome this difficulty. 
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Figure A.5. A residual demand curve and the corresponding revenue function. 

In conclusion, in a multiunit uniform-price double auction, a revenue function can 
always be derived from a residual demand curve. Hence, the terms residual demand 
curve and revenue function will be frequently used indistinctly to refer to a specific 
situation faced by an agent when participating in an auction. 

A.3 Representing residual demand curves in a MIP problem 
The objectives established for this thesis will be pursued making use of 

mathematical programming techniques. As has been shown, at least one part of the 
objective function, the company’s revenues in the spot market auctions, take the form 
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of non-linear and non-convex functions of the company’s sales. Two alternative 
perspectives can be adopted to address such a mathematical programming problem: 
non-linear programming (NLP) or mixed-integer programming (MIP). The impressive 
theoretical and practical advances that have been achieved in the field of MIP and 
their implementation in current commercial MIP solvers provide a powerful and 
reliable framework for the developments of this thesis [Ceria '01]. 

This section suggests a method to express the revenues of a company that 
participates in a double auction using a MIP formulation. It is not the unique valid 
approach but it combines simplicity with a detailed representation. Other proposals 
can be found in [Mateo '01] and in [Sánchez-Úbeda '00]. 

A.3.1 Piecewise linear approximation of offer curves, bid curves and 
residual demand curves 

As mentioned, the offer and bid curves involved in a double auction take the form 
of stepwise curves, which have certain disadvantages concerning numerical tractability. 
It would be significantly easier to deal with curves that were expressed in the form of 
vectors of offered (or bid) quantities, ( )1, , Jq q… , at a fixed set of prices, ( )1, , Jp p… . 
Figure A.6 illustrates this approach with an example in which the prices used to divide 
the price domain are evenly spaced. As can be seen, this yields a piecewise linear 
approximation of the residual demand curve that, depending on the number of 
components used, can be as accurate as desired5. 

 

Agent’s sold quantity q  

Price p   

Jq2q

2p
1p

Jp
1q

Real residual 
demand curve 
Piecewise linear 
approximation 

 
Figure A.6. Piecewise linear approximation for residual demand curves. 

Figure A.7 shows another example in which the aggregate offer curve submitted to 
one of the hourly auctions of the Spanish day-ahead market has been approximated by 
a vector of 50 quantities6. 

                                         
5 Other approximation methods optimize the amount of information used to obtain a piecewise linear 
approximation for each curve [Sánchez-Úbeda '99]. However, this requires more sophisticated data 
processing routines (the number of components used to represent each curve can be different) and 
complicates the subsequent analysis (it is easier to compare a pair of vectors of the same dimension 
whose components provide the same information). 
6 This information is publicly available from OMEL’s web site http://www.omel.es 
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Figure A.7. PWL approximation for an aggregate offer curve in the Spanish day-ahead market. 

Using a fixed number of components to approximate all curves has several 
advantages. First, the same amount of memory is required to store the information of 
every curve. Moreover, in order to compare a pair of curves it suffices to calculate the 
norm of the difference of both vectors. Finally, summing a pair of curves or subtracting 
one curve from another is equivalent to summing or subtracting vectors. 

Let us assume then that the residual demand curve of a certain agent has been 
approximated by a vector of J  components indicating the quantities ( )1, , Jq q…  that 
the agent is able to sell at J  different prices ( )1, , Jp p… . In order to calculate the price 
p  that results when the agent sells a certain quantity, q , it is necessary to search for 
the pair of components j  and 1j +  whose quantities jq  and 1jq +  are closest to q . 
Price p  would then be approximated as: 

 ( )1

1
.j j

j
j j

p p
p q q

q q
+

+

−
⋅ −

−
 (A.5) 

This approach is not easy to implement in a MIP formulation. An alternative is to 
calculate the non-positive slope jδ  of each of the 1J −  segments defined by the 
piecewise linear approximation of the residual demand curve and use these slopes as 
input data for the MIP model: 

 1

1
,j j

j
j j

p p
j J

q q
δ +

+

−
= <

−
. (A.6) 

In this manner, the following formulation can be used to express the auction price 
p  as a function of the agent’s sales q : 
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 (A.7) 
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where 1p  is the highest price and 1q  is the corresponding quantity; ju  is a binary 
variable that indicates that the quantity q  sold by the agent has reached segment j  
and jv  is the incremental quantity corresponding to segment j . Consequently, in order 
to calculate the auction-clearing price as a function of the agent’s sales in a MIP 
model, it suffices to define both the vector of quantities and the vector of slopes that 
result from the suggested piecewise linear approximation of the residual demand curve. 
Figure A.8 illustrates this idea. 
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Figure A.8. Auction-clearing price as a function of the agent’s sales in a MIP model. 

This procedure may seem cumbersome or even useless, given that it is the revenue 
and not the auction-clearing price what the company is interested in. However, it will 
be shown that when residual demand uncertainty is explicitly considered, the auction-
clearing price is a relevant variable in order to guarantee that the results provided by 
the model can be considered a valid offering strategy. 

A.3.2 Piecewise linear approximations of revenue functions 

The method that will be used in this thesis to evaluate the revenue obtained by an 
agent as a function of his sales is parallel to the one proposed to calculate the auction-
clearing price. 

Let us assume again that the residual demand curve of a certain agent has been 
approximated by a vector of J  components indicating the quantities ( )1, , Jq q…  that 
the agent is able to sell at J  different prices ( )1, , Jp p… . This yields a vector of 
revenues ( ) ( )1 1 1, , , ,J J Jr r p q p q=… …  that can be seen as a PWL approximation of the 
revenue function. Figure A.9 shows an example for a fictitious generation company in a 
certain auction of the Spanish day-ahead market. This company sold 12316.4 MWh in 
this hour and the market clearing price was 50 €/MWh. 
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Figure A.9. From a PWL residual demand curve to the corresponding PWL revenue function. 

The next step is to calculate the slope jm  of each segment j  that has been 
obtained from the PWL approximation of the revenue function7, according to the 
following expression: 

 1

1
, .j j

j
j j

r r
j J

q q
ρ +

+

−
= <

−
 (A.8) 

Consequently, a formulation similar to the one suggested for the auction-clearing 
price can be used to express the agent’s revenue r  as a function of his sales q : 
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 (A.9) 

This formulation has the advantage of being based on the same binary variables, 
ju , and the same incremental quantities, jv , that were defined in (A.7). 

                                         
7 These slopes can be interpreted as the agent’s marginal revenue, an important concept in the theory of 
oligopoly. 
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A.3.3 Dealing with non-concave revenue functions 

Although binary variables are useful to formulate non-linear equations in terms of 
mixed linear-integer expressions, their use must be limited so as to avoid increasing the 
complexity of the resulting MIP problem. In particular, the set of binary variables 
{ }ju  that has been introduced to guarantee that the segments of the residual demand 
curve and the revenue function are sequentially covered, might be reduced under 
certain circumstances. 

Let us consider the case in which an agent with zero production costs tries to 
maximize his profit in a multiunit double auction. Assume that the agent bases his 
offers only on the residual demand curve he expects to face in that auction. In other 
words, the agent disregards the possibility of encountering a residual demand curve 
different form the one he has estimated. As has already been shown, under this 
assumption, the agent finds it irrelevant to express his decision in terms of a price, a 
quantity or an offer curve. Without loss of generality, it can be assumed that his 
decision is expressed in terms of a quantity. 

When evaluating the revenue he expects to obtain in the auction, the agent can use 
the set of equations (A.9). Hence, he would ask the MIP model to search for the 
quantity that yields the maximum revenue by gradually incrementing his sales, 
covering the segments used to define the PWL approximation of the revenue function. 
However, if binary variables ju  were not used, the MIP model would not be aware of 
the order that should be followed when covering these segments and would prefer those 
segments with higher marginal revenues, as shown in Figure A.10. 
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Figure A.10. Binary variables and the revenue function. 

Binary variables are used to avoid this effect. Hence, they are not necessary for 
those pairs of segments in which the marginal revenue of the preceding segment is 
higher than that of the following segment. To put it in different words, binary 
variables are not required to guarantee that the segments that belong to the same 
concave section are chosen in the right order. Figure A.11 illustrates this assertion. 
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Figure A.11. Concave sections in the revenue function. 

Thus, binary variables are only strictly required to establish the order in which the 
several concave sections that constitute the revenue function must be covered. As a 
result, under the specified assumptions, the number of binary variables that should be 
used is equal to the number of concave sections that the revenue function has. 

The situation changes if the agent considers a discrete probability distribution for 
the residual demand curve consisting of several possible residual-demand realizations. 
Such an approach is explored in chapter 4 to show that, in order to guarantee that the 
revenue function is correctly evaluated, a binary variable is actually needed for each 
segment. This does not cause a dramatic increase of the computational effort required 
to solve the problem. 

A.4 Conclusion 
This appendix describes the approach adopted in this thesis to represent 

competition in the spot market from the perspective of a particular agent (e.g. a 
generation company). 

After presenting basic ideas relative to the concept of residual demand, this 
appendix explains the piecewise linear approximations that can be used in a mixed-
integer programming model to handle both residual demand curves and revenue 
functions. This provides a powerful platform to evaluate the influence of the agent’s 
decisions both on the market-clearing price and on his own revenues. 
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B A procedure to build spot 
market scenario trees 

This thesis proposes a multistage stochastic programming approach to address the problem of 
developing optimal offering strategies for a company that participates in an electricity spot 
market. This line of attack combines both a correct representation of the uncertainty faced by 
the company and an adequate framework to obtain numerical solutions for real-size problems. 

A spot-market scenario-tree structure has been suggested in which each stage corresponds to 
the clearing of a number of auctions that are part of a certain market mechanism. The 
uncertainty faced by the company in each of these auctions is represented by means of a 
collection of residual demand curves. 

This appendix describes a practical method to construct spot-market scenario trees making use 
of historic information from past spot market sessions. It is based on the identification of spot 
market situations whose circumstances were similar to those envisaged for the current session. 
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B.1 Introduction 
The construction of scenario trees in the context of multistage stochastic 

programming is not an easy task (see [Dupacová '00] for a good analysis of the matter). 
A frequent approach is to identify past spot market sessions that can be considered 
similar to the situation expected for the time scope of interest and select the scenarios 
from these past observations, assuming that they have equal probabilities. Although 
this can be seen as the simplest approach, it is also a practical solution that makes use 
of the historic information available at the moment of deciding an offering strategy. 

This appendix describes a procedure to construct scenarios for the stochastic 
mathematical programs suggested in this thesis. We make use of clustering techniques 
in order to identify historic days that are likely to be similar to the day of study. The 
resulting scenario trees contemplate the timing of the generation company’s decision 
process and comply with the non-anticipative requirements of this field of research. 

B.2 The decision process of a company in the spot market 
The spot market considered in this thesis is organized as a sequence of market 

mechanisms (see chapter 2 for further details). Each of these market mechanisms 
consists of a set of hourly auctions. Participants are required to submit their offers and 
bids for the auctions of a certain market mechanism after the previous market 
mechanism has been cleared. Figure B.1 illustrates this decision process, which has 
obviously the structure of a multistage stochastic program. 
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Figure B.1. The decision process of a generation company in the spot market. 
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According to Figure B.1, a generation company decides its offers for the hourly 
auctions of the adjustment market after the clearing of the day-ahead market. 
Similarly, the company decides its offers for the reserve market after the clearing of the 
adjustment market. Finally, the company introduces last-minute changes to its 
generation schedule through the balancing mechanism. 

The volume traded in each of the market mechanisms typically diminishes as the 
moment of physical delivery gets nearer. For example, in the Spanish spot market, the 
volume of energy traded in the adjustment market is usually between a 10 and a 20 % 
of the volume traded in the day-ahead market. This suggests introducing a number of 
simplifications. In particular, when deciding the offers for the day-ahead market, the 
generation company might neglect the influence that the reserve market and the 
balancing mechanism have on its final generation schedule. Furthermore, the company 
might also neglect the influence of the uncertainty faced in the adjustment market by 
simply reducing its discrete probability distribution to the set of expected hourly 
residual demand curves. In other words, each possible realization of the day-ahead 
market would be accompanied by a single possible realization of the adjustment 
market. This would result in the simplified decision process depicted in Figure B.2. 
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ahead market 

Day-ahead 
market 
clearing 

Day-ahead market discrete 
probability distribution 

Offers for the 
adjustment market

Adjustment 
market 
clearing 

Adjustment market 
expected outcome 

Generation 
schedule  

Figure B.2. A simplified version of the decision process from the perspective of the day-ahead market. 

Once the day-ahead market clears, the generation company must decide its offers for 
the adjustment market. In this case, the influence of the balancing mechanism might 
be neglected. The simplified decision process shown in Figure B.3 would result: 
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Figure B.3. A simplified version of the decision process from the perspective of the adjustment market. 
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Consequently, by assuming that the nearer a market mechanism is to the moment of 
physical delivery, the smaller its relative importance, the multistage stochastic program 
can be approximated by a sequence of two-stage stochastic programs. The scenario 
structure for each of these two-stage problems, rather than having the typical 
appearance of a tree, can be compared to a “fan” [Dupacová '00], as illustrated in 
Figure B.4: 
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Figure B.4. The scenario structure for each of the two-stage stochastic programs. 

The following sections explain in detail the method used to construct these scenario 
structures. 

B.3 Explanatory variables 
As has been indicated, the idea is to search for past spot market sessions that can 

be considered similar to the spot market session that the generation company is about 
to face. To evaluate the degree of similarity of two spot market sessions, a relevant 
explanatory variable (or variables) must be chosen. The choice of the explanatory 
variable will depend on the market mechanism that is being considered. 

For example, when constructing the scenario structure for the day-ahead market 
problem (Figure B.2), the most reliable and relevant information that is available 
about the current spot market session is the chronological hourly demand curve 
predicted by the ISO. This prediction is typically very accurate and can be used to 
compare the current spot market session with past spot market sessions. This would 
yield a representative group of past spot market sessions whose day-ahead market 
information can be used to construct scenarios for the current day-ahead market 
session. 

The situation changes when constructing the scenario structure for the adjustment 
market problem (Figure B.3), a task that should be commenced after the day-ahead 
market clears. In this context, the most reliable and relevant information about the 
current spot market session is the vector of 24 prices that has resulted from the day-
ahead market clearing. This vector can serve to compare the current spot market 
session with past sessions in order to obtain a new representative group of past sessions 
whose adjustment market information can be used to construct the scenario structure 
for the current adjustment market problem. 
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In conclusion, the construction of the scenario structures for the two-stage stochastic 
programs that are suggested in this thesis to develop optimal offering strategies is 
based on the identification of past spot market sessions that can be considered similar 
to the current spot market session. This identification is carried out using a vector of 
explanatory variables that must be relevant and reliable. 

B.4 Day-type identification by clustering techniques 
One possible way of performing the mentioned day identification is to classify the 

whole collection of spot market sessions (including the current session) according to the 
values of the explanatory variables. This classification can be done using clustering 
techniques. The following two examples illustrate this idea. 

B.4.1 An example of the construction of the scenario structure for the day-
ahead market problem 

Let us consider the construction of the scenario structure for the day-ahead market 
problem faced by a company in the Spanish spot market. In particular, the market 
session of July 25th 2001 is considered as the current session. As indicated, the 
explanatory variable that is used to identify similar past market sessions is the hourly 
demand curve predicted by the ISO. The past market sessions that are considered 
relevant range from July 9th to July 24th. The classification provided by the K-means 
algorithm for K=5 is presented in Table B.1. As can be seen, the five day types 
provided by the clustering analysis are quite reasonable: Saturdays, Sundays, Mondays 
and two types of weekdays other than Mondays. 

July 2001 
Date 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
Day Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We 
Cluster 2 4 5 5 5 3 1 2 4 5 4 4 3 1 2 4 5 

Table B.1. Classification of 17 days according to their 24 h demand profile. 

Figure B.5 shows the reason why this particular classification has been obtained. As 
can be seen in the charts of the right column, the demand profile is indeed a variable 
that can be used to identify day types when no other information is available. The left 
column provides the price profiles that resulted in the day-ahead market sessions that 
took place on those days. In particular, the last price chart corresponds to cluster 5 
and includes a highlighted representation of the price profile that was actually 
obtained on the day of study. It is interesting to notice that the variability observed in 
the series of hourly prices is much higher than the variability observed in the series of 
hourly demand levels. The reason is that the demand profile is the result of the 
decisions of a large number of relatively small agents. On the contrary, the price profile 
is caused by the interaction of a reduced number of generation companies. 
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Figure B.5. Detail of the five clusters obtained in a 17-day case according to their 24 h demand profile. 

The results of the clustering analysis suggest considering a four-scenario structure 
for the day-ahead market problem faced by the generation company on July 25th. Each 
of these scenarios consists of 24 residual demand curves for the day-ahead market and 
24 residual demand curves for the adjustment market. These sets of 48 curves should 
be taken from those observed in past days belonging to the same cluster as the day of 
study (Figure B.6). Given that it is extremely difficult to determine whether one 
particular scenario is more likely to occur than others, we suggest assigning identical 
probabilities to all the scenarios. 
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Figure B.6. Scenario structure for the day-ahead market problem. 

B.4.2 An example of the construction of the scenario structure for the 
adjustment market problem 

Let us consider now an example of the construction of the scenario structure for the 
two-stage program that focuses on the development of an optimal offering strategy for 
the adjustment market. As has been mentioned, this problem should be addressed after 
the clearing of the day-ahead market. Therefore, the explanatory variable that can be 
used to search for similar past spot market sessions is the vector of 24 prices that has 
resulted from the clearing of the day-ahead market. Table B.2 presents the results of 
the clustering analysis performed with the same range of days as in the previous 
example but considering only four clusters. As can be seen, in this case the four 
requested clusters do not yield intuitive day types. Cluster 1 corresponds to low-price 
days (Sundays and a Saturday), cluster 2 includes one type of weekdays, cluster 3 
comprises the other type of weekdays and cluster 4 is an outlier. This analysis suggests 
considering four scenarios for the adjustment market problem faced by the company on 
July 25th. 

July 2001 
Date 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
Day Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We 
Cluster 2 2 3 3 2 1 1 2 2 2 2 2 4 1 3 3 3 

Table B.2. Classification of 17 days according to their 24 h day-ahead market price profile. 

Figure B.7 presents the detail of the clusters obtained. The charts on the left 
column depict the 24 h day-ahead market profile that has been used to classify the 
range of days. The right column represents the corresponding 24 h adjustment market 
price profiles. It is evident that the price of the day-ahead market is a reasonable 
explanatory variable of the outcome of the adjustment market. 
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Figure B.7. Detail of the four clusters obtained for a 17-day case according to their 24 h day-ahead market 

price profile. 

In conclusion, the scenario structures required to solve the proposed sequence of 
two-stage problems can be constructed based on the results observed in past market 
sessions that are considered similar to the current market session. The identification of 
these similar past market sessions can be performed by classifying a range of historic 
market sessions making use of clustering techniques according to the values of an 
explanatory variable. The scenarios contemplated in the corresponding two-stage 
problem can be taken from the set of past sessions that belong to the same cluster as 
the session of study. 

B.5 Relevant vs. Significant results 
A typical requirement in any statistical analysis is that enough historic information 

is available in order to obtain estimations with an adequate degree of significance. This 
is true if the process of interest is random, i.e. its realization depends on a number of 
unknown factors that are assumed to remain invariable (e.g. the annual inflows of a 
certain river basin). However, the residual demand curves faced by an agent in the spot 
market auctions are the result of the strategies of a limited number of agents. These 
strategies suffer several changes throughout the year and are not usually kept 
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invariable for more than a month. Hence, a great part of the historic information 
relative to the operation of the spot market may not be relevant at all. 

The suggested method to construct scenario structures allows a balance between 
significance and relevance through the adjustment of two parameters: the range of 
historic days used to search for past spot market sessions similar to the session of study 
and the number of clusters into which these days are classified. The values of these two 
parameters must be chosen based on the experience of the analyst. This can be seen as 
a disadvantage, particularly if the results present a great dependence on these 
parameters, but it provides the user with a means to add his/her personal touch to the 
process. 

One alternative is to start by selecting the range of historic days, which would 
typically range from three to six weeks. Less than three weeks would not provide a 
significant variety of scenarios, whereas more than six weeks would probably 
contaminate the analysis with historic information that is not longer relevant. In fact, 
it is the tradeoff between relevance and significance what must guide this decision. 
Once the range of historic days has been selected, the number of clusters that is more 
convenient can be determined by performing several trials. 

B.6 An extension to obtain weekly spot market scenarios 
In addition to proposing a method to decide optimal offers for a generation 

company operating in a spot market, this thesis suggests a procedure to decide the 
unit-commitment schedule of a generation company including an explicit 
representation of the spot market uncertainty. 

Traditional stochastic unit-commitment models typically consider the uncertainty of 
demand [Nowak '99]. More recent approaches tend to focus on the stochasticity caused 
by uncertain electricity spot prices under the assumption that prices are exogenously 
fixed [Takriti '00]. Irrespective of the source of uncertainty, Lagrangian relaxation (LR) 
is usually considered an appropriate solution method due to the particular structure of 
the unit-commitment problem: a non-convex problem with complicating constraints. 
Indeed, LR is also the approach adopted to solve the stochastic unit-commitment 
problem formulated in this thesis. 

The stochastic unit-commitment problem can be seen as a multistage stochastic 
program. The time scope considered is usually a week, which is the horizon that many 
thermal units require to recover the cost of a startup. 

We have assumed in a previous section that the relative importance of a market 
mechanism diminishes as it gets nearer to the moment of physical delivery. From the 
perspective of a whole week, this suggests focusing on the day-ahead market and the 
adjustment market while neglecting the reserve market and the balancing mechanism. 
In other words, the weekly multistage stochastic program can be seen as a sequence of 
two-stage programs, each one having the structure depicted in Figure B.1. This yields 
the scenario tree represented in Figure B.8. 
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Figure B.8. The decision process from the perspective of the weekly unit-commitment problem. 

The method we propose to construct scenarios for the weekly stochastic unit-
commitment problem is an extension of the one suggested for the two-stage problems. 
The idea is to replicate the decision process that the company follows during the week. 
On Monday, the company will use historic spot market data (typically obtained from 
recent Mondays) in order to decide an optimal offering strategy for the day-ahead 
market. After the clearing of the day-ahead market, the company will try to introduce 
adjustments in its final schedule by submitting offers to the adjustment market. The 
company will then have to decide the optimal generation schedule that meets the 
obligations assumed in different market mechanisms for this day. An identical decision 
process is repeated during the rest of the week. 

As a consequence, in order to construct the scenario tree for the whole week, a 
number of historic spot market sessions has to be identified that are similar to each of 
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the sessions of the week of study. In other words, the clustering analysis suggested in a 
previous section must be performed seven times. For example, let us consider the 
construction of the scenario structure for the stochastic unit commitment problem 
faced by a generation company in the Spanish spot market in the week of July 23rd – 
July 29th 2001. The range of past data considered in this case comprises the previous 
two weeks. If a four-cluster analysis is performed, the results shown in Table B.3 are 
obtained. 

July 2001 

Date 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

Day Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su 

Cluster 2 4 4 4 4 3 1 2 4 4 4 4 3 1 2 4 4 4 4 3 1 

Table B.3. Classification of 21 days into four clusters according to their 24 h demand profile. 

According to these results, the scenario structure that should be used in principle is 
the following: 

• Two possible market situations for Monday, July 23rd (cluster 2). 
• Eight possible market situations for Tuesday, July 24th (cluster 4). 
• Eight possible market situations for Wednesday, July 25th (cluster 4). 
• Eight possible market situations for Thursday, July 26th (cluster 4). 
• Eight possible market situations for Friday, July 27th (cluster 4). 
• Two possible market situations for Saturday, July 28th (cluster 3). 
• Two possible market situations for Sunday, July 29th (cluster 1). 

However, the size of the scenario trees that typically result if this sequence of 
possible daily outcomes is expanded becomes unmanageable. In the previous example, 
the scenario tree would have 2 8 8 8 8 2 2 32768⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  terminal nodes. 

Hence, a strategy to reduce the size of the scenario tree would be required. This is 
an issue that frequently arises in the field of stochastic programming and for which 
solutions have recently been proposed from the perspective of probability metrics 
[Heitsch '01, Dupacová '01]. Nevertheless, it is not the purpose of this thesis to develop 
a state-of-the-art method to construct scenario trees for the multistage stochastic 
programs addressed. In order to avoid this kind of problems, weekly scenario trees will 
be constructed using only very recent historic information. In this manner, the size of 
the resulting scenario trees will allow their direct usage and no reduction technique will 
have to be applied. Figure B.9 shows an example in which only one possible outcome is 
considered for the spot market session celebrated on Monday and two possible 
realizations are considered for the rest of spot market sessions. As can be seen, this 
leads to a 64-scenario tree. 
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 Mon Tue Wed Thu Fri Sat Sun  
Figure B.9. A scenario tree for the weekly unit-commitment problem. 

The constraints that guarantee non-decreasing offer curves must be enforced only 
between nodes sharing their immediate ancestor node. For example, if the scenario tree 
depicted in Figure B.9 is considered, the non-decreasing constraints are enforced 
between both Tuesday nodes. In contrast, these constraints are enforced between the 
two upper Wednesday nodes and also between the two lower Wednesday nodes, but 
not between nodes that do not share their ancestor node. 

B.7 Conclusion 
This appendix describes a simple and practical procedure that can be used to 

construct daily scenarios for the two-stage stochastic programming models with which 
optimal offers are developed for each of the spot market mechanisms. An extension of 
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this procedure to provide weekly scenario trees is also presented. It must be 
emphasized that this procedures are by no means a contribution of this thesis. 
However, the inherent complexity of more sophisticated methods requires a 
developmental effort that goes well beyond the purposes of this thesis. On the 
contrary, the procedures proposed in this appendix provide a simple and practical way 
of obtaining manageable scenario trees that can be used to test the ideas presented in 
this thesis. 
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C Input data for the 
study cases 

In this thesis a number of numerical examples are solved in order to illustrate the methodology 
proposed to address the problem of developing optimal offering strategies for a company 
operating in an electricity spot market. These examples consider the case of a fictitious but 
representative generation company of study that participates in the Spanish electricity spot 
market. The problems solved correspond to specific past spot market sessions for which all the 
information is already publicly available. 

This appendix provides a general overview of the input data used in these numerical examples. 
It includes a full description of the generation portfolio of the company of study and relevant 
information about the real outcome of the spot market sessions of study. More importantly, it 
explains in detail how the spot market scenarios that are considered in these examples were 
constructed using the day-type identification technique suggested in appendix B. In this 
manner, the results obtained from these examples can be more easily interpreted and the 
relevance of this thesis is increased, given that the problems solved are based on real situations. 
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C.1 Introduction 
This appendix describes the input data used for the numerical examples included in 

this thesis. The information is organized in four parts. The first section is dedicated to 
the generation company whose case is studied in all the examples. The second section 
focuses on the actual sessions of the Spanish electricity market that are explored in 
these examples. The third section describes how we prepared the input data for the 
examples that are formulated as two-stage programs. Finally, the fourth section 
explains how the scenario tree for the weekly stochastic unit-commitment problem was 
built. All the information relative to the Spanish electricity spot market is publicly 
available at OMEL’s website [OMEL]. 

C.2 Generation units’ data 
All the numerical examples included in this thesis refer to the same generation 

company. It is a large fictitious generation company owning 38 thermal units and 16 
hydro units that have been selected from the Spanish generation system. The 
characteristics estimated for the thermal units are shown in Table C.1, whereas those 
assumed for the hydro units are specified in Table C.2. 

 tq  t
q  tk  to  tl  tf  tα  tβ  ts  

 
Unit 
t  MW MW p.u. €/MWh MW €/Tcal Tcal/MWh Tcal/h € 
G1 963 963 0.955 0.07  3.546 1.000 0.000 50000 
G2 968 968 0.955 0.07  3.546 1.000 0.000 50000 

N
uc

le
ar

 

G3 1009 1009 0.955 0.07  3.546 1.000 0.000 50000 
G4 550 180 0.95 0.035  5.422 2.092 97.597 13975 
G5 550 180 0.95 0.035  5.452 2.147 34.146 11420 
G6 534 180 0.95 0.1 276 5.452 2.139 36.845 11420 
G7 330 160 0.945 0.045  8.601 2.296 34.156 6768 
G8 350 175 0.945 0.045  8.601 2.263 41.539 3913 
G9 350 175 0.945 0.045  8.601 2.204 67.606 11324 
G10 141 65 0.93 0.065  8.601 2.298 14.765 17912 
G11 141 70 0.93 0.065  8.601 2.251 43.453 8668 
G12 220 80 0.905 0.065  10.254 2.116 68.295 6714 
G13 313 150 0.905 0.045  8.806 2.316 27.190 16674 
G14 160 80 0.885 0.065  8.136 2.460 23.005 7784 
G15 160 80 0.885 0.065  8.806 2.412 32.950 10621 
G16 80 44 0.93 0.065  9.058 2.133 18.612 6011 
G17 350 180 0.945 0.04  8.283 2.424 -1.883 16091 
G18 350 180 0.945 0.04  8.283 2.424 -1.883 16091 
G19 350 180 0.945 0.04  8.283 2.424 -1.883 16091 
G20 350 230 0.945 0.07  7.783 2.394 -10.104 18285 
G21 350 230 0.945 0.07  7.783 2.519 -13.391 18285 
G22 350 230 0.945 0.07  7.783 2.394 -10.104 18285 

C
oa
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G23 350 230 0.945 0.07  7.783 2.394 -10.104 18285 
G24 350 100 0.93 0.1  17.678 2.249 32.506 4358 
G25 172 55 0.93 0.1  10.597 2.358 28.530 6011 
G26 172 55 0.93 0.1  10.597 2.358 28.530 6011 
G27 70 22 0.9 0.1  18.984 2.613 14.100 6011 
G28 160 48 0.93 0.1  18.984 2.331 28.200 6011 
G29 120 40 0.93 0.1  18.878 2.115 24.081 6011 
G30 350 100 0.95 0.1  18.878 2.283 12.332 8944 
G31 350 100 0.93 0.1  17.678 2.249 32.506 6011 
G32 350 100 0.93 0.1  17.678 2.249 32.506 4358 
G33 220 66 0.95 0.1  18.984 2.239 6.447 11306 
G34 533 160 0.955 0.1 300 18.984 2.099 59.505 11012 
G35 150 45 0.93 0.1  18.419 2.091 31.592 6011 
G36 300 60 0.95 0.1 180 18.419 2.224 5.612 4081 
G37 148 43 0.93 0.1  18.984 0.233 28.200 6011 

O
il/
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G38 520 100 0.955 0.1 300 19.072 2.113 40.586 6269 

Table C.1. Characteristics of the thermal units. 
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 Unit hq  hb  hη  0hW  (1 day) 0hW  (1 week) 
 h  MW MW p.u. MWh MWh 

G39 340 308 0.7   
G40 989     
G41 197   4320 25720 
G42 605     
G43 115   820 2820 
G44 272     
G45 210 194 0.7   
G46 84 76 0.7   
G47 213 207 0.7 660 1840 
G48 88 80 0.7 180 800 
G49 587   3040 15720 
G50 416 416 0.7 1000 4760 
G51 134   500 2510 
G52 70   110 550 
G53 360 333 0.7 1080 4690 

H
yd

ro
 

G54 277   540 3840 

Table C.2. Characteristics of the hydro units. 

C.3 The spot market sessions of study 
All the numerical examples provided in this thesis are based on real sessions of the 

Spanish electricity spot market. In this section we provide the results that were 
actually observed in the spot market sessions of study. This information can be used as 
a benchmark to evaluate the solutions obtained with our model. 

C.3.1 Daily cases 

The majority of the study cases included in this thesis are oriented to the 
development of optimal offering strategies for the day-ahead market, taking into 
account the company’s portfolio as well as the possibility of adopting recourse actions 
in the adjustment market. All these numerical examples are based on the session of the 
Spanish electricity spot market that took place on October 24th 2001. Figure C.1 
represents the trading volumes and the clearing prices observed in that session both in 
the day-ahead and in the on-day market. As can be seen, the volume traded in the on-
day market is significantly lower than that observed in the day-ahead market. 
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Figure C.1. Trading volumes and clearing prices on October 24th 2001. 
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Figure C.2 depicts the energy that the company of study sold in both market 
mechanisms. It must be noticed that the company can adopt a net selling or net 
buying position in the hourly auctions of the on-day market. Additionally, Figure C.3 
specifies the type of generation units that were supposed to provide the energy sold (or 
purchased, in the case of pumping) in the day-ahead market. 
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Figure C.2. Energy sold by the company on October 24th 2001. 
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Figure C.3. Energy sold by the company in the day-ahead market on October 24th 2001. 

As is justified in chapter 5, commitment decisions are assumed to be taken on a 
weekly basis. Hence, in the numerical cases that we solve to obtain an optimal offering 
strategy for a particular market mechanism, we consider commitment decisions as 
input data. Table C.3 contains the commitment schedule that is used as input data for 
the numerical examples corresponding to October 24th, 2001. 



240 Appendix C. Input data for the study cases 

 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
G1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

N
uc
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ar

 

G3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G5 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

C
oa
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G23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
G32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G33 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
G34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
G37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 

O
il/
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G38 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Table C.3. Unit-commitment schedule for October 24th 2001. 

C.3.2 Weekly cases 

In addition to suggesting a procedure to develop optimal offering strategies for each 
of the spot market mechanisms, this thesis proposes a methodology to formulate and 
solve the weekly unit-commitment problem with explicit consideration of the spot 
market uncertainty. In chapter 6 a numerical example is solved in order to illustrate 
the potential of this approach. This study case is based on the sessions of the Spanish 
electricity spot market that took place from Monday October 22nd 2001 to Sunday 
October 28th 2001. The trading volumes and clearing prices observed both in the day-
ahead market and in the adjustment market during this week are represented in Figure 
C.4. 
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Figure C.4. Trading volumes and clearing prices from October 22nd to October 28th 2001. 

The solution of the weekly stochastic unit-commitment problem provides a good 
approximation for the company’s optimal unit-commitment schedule as well as a 
strategy to distribute the company’s hydro resources throughout the week. This 
solution can be compared with the company’s actual operation in the Spanish 
electricity spot market. Figure C.5 shows the company’s sales both in the day-ahead 
market and in the on-day market. Figure C.6 represents the sales of the company in 
the day-ahead market identifying the different generation technologies that are 
expected to produce these sales, whereas Table C.4 provides the daily energy sold by 
the company in the day-ahead market according for each type of generating unit. 
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Figure C.5. Energy sold by the company from October 22nd to October 28th 2001. 
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Figure C.6. Energy sold by the company in the day-ahead market from October 22nd to October 28th 2001. 



242 Appendix C. Input data for the study cases 

 

  Mo Tu We Th Fr Sa Su Total 
Nuclear 70531 70531 71113 71056 71202 69612 71088 495133 

Coal 132442 124867 131345 134575 135784 128230 101382 888625 
Oil/gas 13244 18774 8833 5203 5447 0 0 52268 
Hydro 11064 10791 12032 10577 9773 6239 5410 65885 

Pumping -3104 -2356 -2756 -2129 -3954 -4780 -7795 -26873 
Total 224177 222607 220567 219282 218252 200068 170085 1475038 

Table C.4. Energy sold by the company in the day-ahead market for each type of unit from October 22nd to 
October 28th 2001, in MWh. 

The commitment schedule of each thermal unit depends on the ratio between its 
startup cost and its variable cost. For instance, coal units usually follow a weekly cycle, 
given that their startup cost is high if compared with their variable cost. In contrast, 
oil/gas units frequently follow a daily cycle. This idea is confirmed by Table C.5, in 
which we specify the hours of startup and shutdown of each of the company’s thermal 
units during the week of study. 

   Hour of startup   Hour of shutdown 
    Mo Tu We Th Fr Sa Su   Mo Tu We Th Fr Sa Su 

G1                               
G2                

N
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ar

 

G3                               
G4                               
G5   10             
G6                
G7 6               
G8                
G9                
G10                
G11                
G12                
G13                
G14 5               
G15                
G16                
G17                
G18 5               
G19                
G20                
G21                
G22                

C
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G23                               
G24 9 8             22             
G25                
G26                
G27                
G28     19        24   
G29                
G30                
G31    8 8       23 23   
G32                
G33 10 9 9 9 9 11   23 24 24 24 24 24  
G34                
G35                
G36                
G37 20 19 19 19     24 24 24 24    

O
il/

ga
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G38 8   9 9 9         24 24 23 23     

Table C.5. Hours of startup and shutdown for the company’s thermal units from October 22nd to October 
28th 2001. 

Another important aspect of the weekly operation of a generation company is the 
management of its hydro resources. Table C.6 shows the daily energy that the 
company produced with each of its hydro units during the week of study. 



C.4 Spot market data for the two-stage stochastic problems 243 

 

  Mo Tu We Th Fr Sa Su Total 
G39                 
G40         
G41 4264.4 4273.5 4286.4 4078 3861.9 3265.3 2890.5 26920 
G42         
G43  27 816     843 
G44         
G45 50 50 50 50    200 
G46 224 224  168    616 
G47 360 360 660  240   1620 
G48  220 176 176 132   704 
G49 3148.1 2764.8 2982.5 2896.3 2762 1470 1366 17389.7 
G50 850 800 900 1226 682.9 450 250 5158.9 
G51 505.7 485.3 501.7 454.8 350.4 236.3 172.6 2706.8 
G52 90 97.4 106.7 74.7 75 36 35.7 515.5 
G53 990 810 1008.9 810 1070 360 225 5273.9 
G54 581.4 678.6 543.8 642.8 598.8 421.2 470.5 3937.1 
Total 11063.6 10790.6 12032 10576.6 9773 6238.8 5410.3 65884.9 

Table C.6. Energy produced by the company’s hydro units from October 22nd to October 28th 2001, in 
MWh. 

C.4 Spot market data for the two-stage stochastic problems 
In this section we explain the process followed when preparing the spot market data 

for the numerical examples included in this thesis. We have already mentioned that the 
information for these study cases corresponds to the session of the Spanish electricity 
spot market that took place on October 24th 2001. The scenario trees that were used to 
represent uncertainty were constructed based on spot market results observed in 
previous days. As indicated in appendix B, the number of scenarios can be adjusted by 
modifying the range of historic days that are considered when searching for similar spot 
market sessions. 

C.4.1 Two-scenario case 

This simple numerical example is the only one that can be solved without using 
decomposition techniques. As a matter of fact, it was conceived to check that the 
algorithms suggested in this thesis had been correctly implemented in GAMS language. 
The detailed description of the process followed to prepare the input data for this case 
serves as a paradigm for the rest of numerical examples. 

C.4.1.1 Clustering analysis 

Following the ideas presented in appendix B, a clustering analysis is performed with 
the aim of identifying two recent past days that can be considered relevant to estimate 
the outcome of the October 24th session. The days ranging from October 19th to 
October 24th are classified into four clusters according to their 24-hour demand profile, 
as shown in Table C.7. Based on these results, the spot market data of Friday October 
19th and Tuesday October 23rd are identified as two relevant days for estimating the 
probability distribution of the spot market session celebrated on October 24th. In fact, 
in this particular study case, only these two days are used to estimate this probability 
distribution. 
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October 2001 
Date 19 20 21 22 23 24 
Day Fr Sa Su Mo Tu We 
Cluster 4 3 1 2 4 4 

Table C.7. Classification of 5 days according to their 24 h demand profile. 
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Figure C.7. Detail of the four clusters obtained in a 6-day case according to their 24 h demand profile. 

C.4.1.2 Relevant historic spot market data for the current spot market session 

After identifying two relevant historic days that can be used to prepare the input 
data for this two-scenario case, we specify the particular information that has to be 
processed. Firstly, the residual demand curves that the generation company of study 
faced in the spot market auctions celebrated in these two days must be obtained. 
Figure C.8 shows how the residual demand curves faced by this company on October 
19th and on October 23rd both in the day-ahead market and in the first session of the 
on-day market constitute the two spot market scenarios considered for this study case. 
One revenue function can be obtained from each of these residual demand curves. In 
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particular, the revenue functions corresponding to the adjustment market are 
approximated by a concave piecewise linear function, as described in chapter 4. 
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Figure C.8. Historic residual demand curves constitute the spot market scenarios 

We have assumed that all the scenarios have the same probability of occurring. 
Hence, in this two-scenario case the probability of each scenario is 0.5. 

The trading volumes observed in past auctions are also relevant, given that our 
objective function includes a term evaluating the future value of the company’s current 
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market share. Figure C.9 shows the trading volumes observed in each of the hourly 
auctions of the two considered historic days. 
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Figure C.9. Trading volumes for each of the spot market scenarios 

To sum up, a two-stage two-branch scenario tree is constructed making use of the 
results observed in two past spot market sessions that are likely to be similar to those 
of the current session. These results include both residual demand curves and trading 
volumes. 

C.4.2 Five-scenario case 

In this section we explain how a five-scenario tree was constructed in order to 
develop optimal offers for the day-ahead market session celebrated on October 24th 
2001. With the aim of identifying five historic days that are similar to the day of 
study, we perform a clustering analysis that considers the sequence of 9 daily spot 
market sessions that took place prior to the day of study, as indicated in Table C.8. 

October 2001 
Date 15 16 17 18 19 20 21 22 23 24 
Day Mo Tu We Th Fr Sa Su Mo Tu We 
Cluster 2 4 4 4 4 3 1 2 4 4 

Table C.8. Classification of 10 days according to their 24 h demand profile. 

Figure C.10 illustrates the features of this clustering analysis, in which four clusters 
have been considered. 
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Figure C.10. Detail of the four clusters obtained in a 10-day case according to their 24 h demand profile. 

C.4.3 Eleven-scenario case 

To prepare the input data for the eleven-scenario case, eleven historic days that are 
likely to be similar to the day of study have to be identified. Table C.8 shows the days 
selected by the clustering analysis when four clusters are considered. Figure C.11 
provides the details of this particular clustering analysis. 

October 

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Day Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We 

Cluster 2 4 4 4 4 3 1 2 4 4 4 1 3 1 2 4 2 4 4 3 1 2 4 4 

Table C.9. Classification of 24 days according to their 24 h demand profile. 
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Figure C.11. Detail of the four clusters obtained in a 24-day case according to their 24 h demand profile. 

C.5 Spot market data for the weekly stochastic UC problem 
As indicated in appendix B, when a company faces the problem of deciding an 

optimal weekly unit-commitment schedule, it must anticipate the decision process that 
it will follow during the week. In other words, the company must consider that on 
Monday it will face an uncertain day-ahead market session with several possible 
outcomes. To estimate these possible outcomes a number of similar historic days will 
have to be identified. After the clearing of the day-ahead market, a session of the 
adjustment market will take place and the company will have the opportunity to 
correct any undesired result obtained in the day-ahead market. If we neglect 
subsequent market mechanisms, after the clearing of the adjustment market, the 
company has to decide a generation schedule to meet the obligations assumed for that 
day. The next six days evolve in the same manner, so that a number of similar historic 
days has to be identified for each of them. In order to identify these historic days we 
use clustering analysis, as we explain for the 16-scenario problem solved in chapter 6. 
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C.5.1 16-scenario case 

As mentioned, in order to construct the scenario tree for the weekly stochastic unit-
commitment problem, a number of historic relevant days has to be identified for each 
day of the week. Let us assume that the search for relevant historic days is restricted to 
the previous week. If a clustering analysis is performed in order to classify the days of 
the week of study and the days of the previous week into five clusters, the results 
shown in Figure C.12 are obtained. 
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Figure C.12. Detail of the five clusters obtained in a 14-day case according to their 24 h demand profile. 

The results of this clustering analysis are summarized in Table C.10: 



250 Appendix C. Input data for the study cases 

 

Cluster Day type Current week Previous week 
1 Sundays Sunday Sunday 
2 Mondays Monday Monday 
3 Saturdays Saturday Saturday 
4 Weekdays 1 Tuesday, Friday Tuesday, Friday 
5 Weekdays 2 Wednesday, Thursday Wednesday, Thursday 

Table C.10. Classification of two weeks into five clusters according to their 24 h demand profile. 

Hence, for the Sunday of the week of study only one possible outcome will be 
considered: the previous Sunday. The same happens with the Monday and the 
Saturday of the week of study. In contrast, for each of the weekdays of the week of 
study two possible outcomes are considered. This yields the scenario-tree structure 
depicted in Figure C.13. 

 Mon Tue Wed Thu Fri Sat Sun 
 

Figure C.13. A sixteen-scenario tree for the weekly unit-commitment problem. 

This scenario tree correctly represents the decision process that the company is 
expected to follow throughout the week if the company considers that the presence of 
relevant historic data is restricted to the previous week and assumes that five types of 
day can occur during the week. Obviously, if more historic information were used or a 
different number of day types were proposed, the resulting scenario tree would be 
different. As indicated in appendix B, the size of a weekly scenario tree constructed in 
this manner is typically unmanageable and requires the use of scenario reduction 
techniques. Nevertheless, the sixteen-scenario structure developed for this example can 
be addressed in a straightforward manner with the LR decomposition approach 
described in chapter 5. 

C.6 Conclusion 
This appendix provides a qualitative description of how the input data for the 

numerical examples studied in this thesis were prepared. The objective is to give a 
general overview, so that the reader can identify the most relevant aspects of the 
information comprised in these examples and can interpret more easily the results 
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obtained. Particular attention has been paid to the characteristics and operation of the 
generation units owned by the company of study. Additionally, we have summarized 
the actual results observed in the sessions of the Spanish electricity spot market that 
constitute the core of these examples. Finally, we explain in detail the manner in which 
the scenario trees included in these examples were prepared, following the ideas 
developed in appendix B. 
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