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Abstract. In this paper we analyze the influence of the spatial het-
erogeneities in the existence of positive solutions of Logistic problems
with heterogeneous sublinear boundary conditions. We will show that
the relative positions of the vanishing sets of the potentials in front of
the nonlinearities, in the PDE and on the boundary conditions, play a
crucial role as for the amplitude of the range of values of the bifurca-
tion parameter for which the problems possess positive solutions. We
will compare the cases of the logistic problem with linear and nonlinear
boundary conditions. Also, we will show the global bifurcation diagram
of positive solutions of the logistic problem with heterogeneous nonlin-
ear boundary conditions, considering the amplitude of the nonlinearity
in the boundary conditions as bifurcation-continuation parameter.
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1. Introduction and Main Result

In this paper we consider the logistic elliptic boundary value problem with
sublinear mixed boundary conditions and spatial heterogeneities given by⎧⎪⎨

⎪⎩
−Δu = λu− a(x)up in Ω , p > 1 ,

u = 0 on Γ0 ,
∂νu = −b(x)uq on Γ1 , q > 1 ,

(1)
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where:

i) Ω is a bounded domain of RN , N ≥ 2, with boundary ∂Ω = Γ0 ∪ Γ1,
where Γ0 and Γ1 are two disjoint components of the boundary ,

ii) −Δ stands for the minus Laplacian operator in R
N and λ ∈ R is the

bifurcation parameter,

iii) The potential a ∈ C(Ω̄) with a > 0 measures the spatial heterogeneities
in Ω and satisfies that

Ω0 := int {x ∈ Ω : a(x) = 0} �= 0 , Ω0 ∈ C2

and

a is bounded away from zero in any compact subset of Ω \ Ω̄0 . (2)

In some case, when it is pointed out, we will assume that

a is bounded away from zero in any compact subset of (Ω\Ω̄0)∪Γ1 (3)

instead of (2)

iv) The potential b ∈ C(Γ1) with b > 0 measures the spatial heterogeneities
on Γ1.

v) ∂νu(x) stands for the outward normal derivative of u at each x ∈ Γ1.
By a positive solution of (1) for the value λ of the parameter we mean a strong
positive solution, that is, any positive function u ∈ W 2

r (Ω) for some r > N
which satisfies (1) a.e. in Ω for such a value λ of the parameter.

This kind of elliptic problems has been widely analyzed under linear bound-
ary conditions in some previous works (cf. [4, 6, 13, 14, 15, 18]) and under
nonlinear boundary conditions (cf. [7, 9, 11, 16, 21, 22]).

The main goal of this work is to analyze the existence of positive solutions
of (1) and to ascertain the global bifurcation diagram of positive solutions of
it, depending on the nodal behavior of the spatial heterogeneities a and b, in
the domain and on the boundary conditions, respectively. Namely, as for the
nodal behavior of the potential a we will distinguish the cases

Γ1 ⊂ ∂Ω0 , dist(∂Ω0 ∩ Ω,Γ1) > 0 (4)

and
Ω̄0 ⊂ Ω ∪ Γ0 , (5)

and as for the profile of the potential b we will distinguish the case when

b(x) ≥ b > 0 for all x ∈ Γ1 (6)
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and the case when

b(x) = 0 ∀x ∈ Γ01 and b(x) > 0 ∀x ∈ Γ+1 , (7)

being Γ01 and Γ
+
1 two disjoint connected pieces of Γ1, closed and open, respec-

tively as N − 1 dimensional manifolds, such that Γ1 = Γ01 ∪ Γ+1 . Hereafter,
assuming that Γ01 and Γ

+
1 satisfy the previous assumptions, we will denote

C+(Γ+1 ) :=
{
V ∈ C(Γ1) : V (x) = 0 ∀ x ∈ Γ01 and V (x) > 0 ∀ x ∈ Γ+1

}
. (8)

In Figures 1 and 2 we show two possible configurations of the subdomain Ω0
with respect to Γ1, satisfying (4) in Figure 1 and satisfying (5) in Figure 2. In

Figure 1: Γ1 ⊂ ∂Ω0, b ∈ C+(Γ+1 ).

Figure 2: Ω̄0 ⊂ Ω ∪ Γ0, b ∈ C(Γ1).

[7, 9] it was analyzed, among other results, the existence of positive solutions
of (1), in the particular case when Ω̄0 ⊂ Ω and the potential a is bounded
away from zero in any compact subset of (Ω \ Ω̄0)∪Γ1. In [10] it was analyzed
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the particular special case when Ω = Ω0 and (6) holds. The results obtained
in this work extend the previous ones obtained in [7, 9], to cover the case
when either (4) or (5) hold, and either (6) or (7) hold. Moreover, it should be
noted that since we assume that (2) holds instead of (3) (as it was assumed
in [7, 9]), now when dist(Ω̄0,Γ1) > 0 we let that a vanishes on Γ1 or in some
subregion of Γ1 and therefore, in this case a is not bounded away from zero in
a neighborhood of Γ1. The extensions carried out in this work are not straight
with respect to the previous results, mainly when (4) and (7) hold, because
to obtain them it is necessary to apply a great variety of very sharp results
about principal eigenvalues. To obtain the new results under conditions (4)
and (7) it is necessary to work with a family of singular boundary eigenvalue
problems which possess Dirichlet and Neumann boundary conditions on the
component Γ1 of ∂Ω in a non-separated way. In this way, the results about
principal eigenvalues recently obtained in [5] play a crucial role to develop our
analysis.

Hereafter we denote by σ∗0 [b,Ω0] the principal eigenvalue defined

σ∗0 [b,Ω0] :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σΩ0
1 [−Δ,D] if (5) and (6) hold,
σΩ0
1 [−Δ,D] if (5) and (3) hold,
σΩ0
1 [−Δ,D] if (4) and (6) hold,
σΩ0
1 [−Δ,B∗(Γ01)] if (4) and (7) hold,

(9)

whereD stands for the Dirichlet boundary operator,B∗(Γ01) denotes the bound-
ary operator defined

B∗
(
Γ01

)
ϕ =

⎧⎪⎨
⎪⎩
ϕ on Γ0 ,
∂νϕ on Γ01 ,
ϕ on Γ+1 ,

Γ+1 = Γ1 \ Γ01 (10)

(cf. (7)) and where σΩ0
1 [−Δ,D] and σΩ0

1 [−Δ,B∗(Γ01)] stand for the principal
eigenvalues of the problems (−Δ,Ω0,D) and

(−Δ,Ω0,B∗(Γ01)), respectively.
It must be pointed out that, as show (9) and (41), when (4) and (7) hold, then

σ∗0 [b,Ω0] = σΩ0
1 [−Δ,B∗(Γ01)] < σΩ0

1 [−Δ,D] .
In (9) we can observe the dependence of σ∗0 [b,Ω0] with respect to the potential
b, since Γ01 = b−1(0), and with respect to the relative position of the vanishing
set Ω0 of the potential a with respect to Γ1. When (4) and (7) hold, the
dependence of σ∗0(b,Ω0) with respect to b, is not with respect to the size of
b but with respect to the amplitude of the piece Γ01 where b vanishes. That
is, σΩ0

1 [−Δ,B∗ (Γ01)] is decreasing with respect to the amplitude of Γ01 and
however, if bi ∈ C+(Γ+1 ), i = 1, 2, then we have that σ∗0 [b1,Ω0] = σ∗0 [b2,Ω0] =
σΩ0
1 [−Δ,B∗ (Γ01)], independently of the size of them.
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Let consider the logistic boundary value problem with linear mixed bound-
ary conditions given by⎧⎪⎨

⎪⎩
−Δu = λu− a(x)up in Ω ,
u = 0 on Γ0 ,
∂νu = 0 on Γ1 .

(11)

In the sequel we denote by ΛNL(Ω0, b) and ΛL(Ω0) the ranges of values of λ
for which (1) and (11) possess positive solutions, respectively. Also we denote

σ1 := σΩ1 [−Δ,B(0)] , σ∗0 := σ∗0 [b,Ω0] ,

and we will say that a positive function u is strongly positive in Ω, and we will
denote it by u	 0, if

u(x) > 0 ∀x ∈ Ω ∪ Γ1 and ∂νu(x) < 0 ∀x ∈ Γ0 with u(x) = 0 .

In the sequel we denote

W 2(Ω) :=
⋂
p>1

W 2
p (Ω) , W 2

B(V ) :=
{
u ∈W 2(Ω) : B(V )u = 0

}
,

C∞
Γ0∪Γ+

1
(Ω) :=

{
φ ∈ C∞(Ω) : supp φ ⊂ Ω̄ \ (Γ0 ∪ Γ+1 )

}
and by H1

Γ0∪Γ+
1

(Ω) the clousure in H1(Ω) of the set of functions C∞
Γ0∪Γ+

1

(Ω).
The following is the main result of this work. It gives the structure of the

global bifurcation diagram of positive solutions of (1) and it compares ΛL(Ω0)
with ΛNL(Ω0, b) depending on the nodal behavior and profiles of the potentials
a and b.

Theorem 1.1. Under any pair of assumptions of (9), the following assertions
are true:

i) (1) possesses a positive solution if, and only if

σ1 < λ < σ∗0 . (12)

Moreover, the positive solution if it exists, it is unique and strongly posi-
tive in Ω. We will denote it by uλ. Moreover,

uλ ∈W 2(Ω) ⊂ C1+α(Ω̄) , ∀α ∈ (0, 1) . (13)

ii) The following hold:

a) If (5) and (6) hold, then

ΛL(Ω0) = ΛNL(Ω0, b) =
(
σ1, σ

Ω0
1 [−Δ,D]

)
. (14)
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b) If (4) and (6) hold, then

ΛL(Ω0) =
(
σ1, σ

Ω0
1 [−Δ,B(0,Ω0)]

)
, (15)

ΛNL(Ω0, b) =
(
σ1, σ

Ω0
1 [−Δ,D]

)
(16)

and therefore,
ΛL(Ω0) ⊂ ΛNL(Ω0, b) . (17)

c) If (4) and (7) hold, then

ΛL(Ω0) =
(
σ1, σ

Ω0
1 [−Δ,B(0,Ω0)]

)
, (18)

ΛNL(Ω0, b) =
(
σ1, σ

Ω0
1 [−Δ,B∗ (Γ01)]) (19)

and therefore,
ΛL(Ω0) ⊂ ΛNL(Ω0, b) . (20)

iii) Each positive solution uλ of (1) is linearly asymptotically stable, i.e., the
principal eigenvalue of the linearization of (1) around (λ, uλ) is positive.
Moreover, the function

u̇λ :=
d uλ
dλ

	 0 in Ω (21)

and in particular, for each x ∈ Ω ∪ Γ1 the map (σ1, σ∗0)→ (0,∞) defined

λ→ uλ(x)

is strictly increasing.

iv) There exists uniform L∞(Ω) bounds for the positive solutions of (1) in
any compact interval I of values of λ with I ⊂ [σ1, σ

∗
0).

v) The positive solutions of (1) belong to a differentiable continuum C+(σ1)
of positive solutions. It emanates supercritically from the trivial branch
(λ, u) = (λ, 0) at the unique bifurcation value to positive solutions of (1)
λ = σ1, bifurcates from infinity at the unique bifurcation value to positive
solutions from infinity λ = σ∗0 and it is increasing in ‖ · ‖L∞(Ω) with
respect to the λ-parameter. In particular,

Pλ

(
C+(σ1)

)
= [σ1, σ

∗
0) , (22)

and
lim
λ↓σ1

‖uλ‖L∞(Ω) = 0, lim
λ↑σ∗0

‖uλ‖L∞(Ω) =∞ ,

where Pλ (C
+(σ1)) denotes the λ-projection of the continuum C+(σ1) over

the λ-axis.
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vi) Let b1, b2 ∈ C(Γ1) be such that

b2 > b1 > 0 , (23)

let λ be satisfying

λ ∈ ΛNL(Ω0, b1) ∩ ΛNL(Ω0, b2) (24)

and let ui, i = 1, 2 denote the unique positive solution of (1) for b = bi,
i = 1, 2. Then,

u1 − u2 	 0 in Ω , (25)
that is,

u1(x) > u2(x) ∀ x ∈ Ω ∪ Γ1 and ∂νu1(x) < ∂νu2(x) ∀ x ∈ Γ0.
vii) Let b ∈ C(Γ1) be such that b > 0, let λ ∈ ΛL(Ω0) be and let ũ, u0 be the

unique positive solution of (1) and (11), respectively, for such a value λ
of the parameter. Then,

u0 > ũ in Ω . (26)

viii) Assume that (4) holds and let b1, b2 ∈ C+(Γ+1 ) be satisfying (23). Let
λ ∈

(
σ1, σ

Ω0
1 [−Δ,B∗(Γ01)]

)
be and let ui, i = 1, 2 denote the unique

positive solution of (1) for b = bi, i = 1, 2. Then, (25) holds.

ix) Assume that (4) or (5) holds and let b1, b2 ∈ C(Γ1) be bounded away from
zero satisfying (23). Let λ ∈

(
σ1, σ

Ω0
1 [−Δ,D]

)
be and let ui, i = 1, 2

denote the unique positive solution of (1) for b = bi, i = 1, 2. Then, (25)
holds.

Taking into account the results of Theorem 1.1, Figure 3 shows the global
bifurcation diagrams of positive solutions of (1) (red dashed curve) and (11)
(blue curve), constituted by the global continuum C+(σ1) of positive solutions
emanating from λ = σ1, where ΛL(Ω0) = (σ1, σ0) and ΛNL(Ω0, b) = (σ1, σ

∗
0),

with σ0 ≤ σ∗0 . Also, Figure 4 shows the global bifurcation diagrams of positive
solutions of (1) for b1, b2 ∈ C+(Γ+1 ) satisfying (23). The blue curve stands for
the continuum C+(σ1) of (1) for b = b1 and the the red dashed curve the global
continuum C+(σ1) of (1) for b = b2.

Following similar arguments to the given in the previous works [6, 7, 9,
12, 14], the results obtained in this paper may be generalized to ascertain
the global bifurcation diagram of positive solutions of the following nonlinear
elliptic weighted boundary value problem⎧⎪⎨

⎪⎩
−Δu = λW (x)u− a(x)f(x, u)u in Ω ,
u = 0 on Γ0 ,
∂νu+ V (x)u = −b(x)g(x, u)u on Γ1 ,
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Figure 3: C+(σ1) for b = 0 and b > 0.

Figure 4: C+(σ1) for b1, b2 ∈ C+(Γ+1 ), b2 > b1.

where:

• W ∈ L∞(Ω) and V ∈ C(Γ1) possess arbitrary sign in each point of Ω and
Γ1, respectively.

• The function f ∈ C1(Ω̄× [0,∞);R) satisfies the following assumptions:

f(x, 0) = 0 ,
∂f

∂u
(x, u) > 0 (x, u) ∈ Ω× (0,∞)

and
lim
u↑∞

f(x, u) = +∞ uniformly in Ω̄ .

• The function g ∈ C1(Γ1 × [0,∞);R) satisfies the following assumptions:

g(x, 0) = 0 ,
∂g

∂u
(x, u) > 0 (x, u) ∈ Γ1 × (0,∞)
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and
lim
u↑∞

g(x, u) = +∞ uniformly on Γ1 .

• The piece of the boundary Γ0 possesses finitely many components satis-
fying

Γ0 =

l⋃
k=1

Γk
0

m⋃
k=l+1

Γk
0 ,

with

Γk
0 ∩ ∂Ω0 = ∅ k = 1, . . . , l , Γk

0 ∩ ∂Ω0 �= ∅ k = l + 1, . . . ,m .

• The piece of the boundary Γ1 possesses finitely many components, some
of them where the potential b in the nonlinear boundary condition is
bounded away from zero, and the rest where b vanishes in some subregions
of them.

Also, following the arguments and taking into account the results given in [13],
the results of this paper may be generalized to cover the very general case
when the vanishing set Ω0 of the potential a is not a nice subdomain of Ω with
Ω0 ∈ C2, but a very general set with no special restriction on its structure.

The main technical tools used to develop our analysis are bifurcation and
monotonicity techniques.

The distribution of the rest of this paper is the following. Section 2 contains,
without proofs, all the previous results about principal eigenvalues coming from
[5, 12, 17, 20] that we will need to prove the main result. Section 3 contains the
proof of Theorem 1.1. Finally, Section 4 includes without proof, the main result
coming from [11] about the global structure of the diagram of positive solutions
of (1) for a fixed λ in a suitable interval, considering the amplitude of the
potential b on the boundary conditions as bifurcation-continuation parameter.

2. Preliminaries results about principal eigenvalues

In this section we collect the main results about principal eigenvalues coming
from [5, 12, 17, 20] that are going to be used throughout the rest of this paper.

Hereafter, for each k ∈ L∞(Ω), Lk stands for the linear second order differ-
ential operator

Lk : −Δ+ k(x) ,

D stands for the Dirichlet boundary operator and for each V ∈ C(Γ1), B(V )
denotes the boundary operator defined

B(V )ϕ =

{
ϕ on Γ0 ,
∂νϕ+ V ϕ on Γ1 ,
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where ∂νϕ stands for the outward normal derivative on Γ1. It is known that
for each r > 1

B(V ) ∈ L
(
W 2

r (Ω),W
2− 1

r
r (Γ0)×W 1− 1

r
r (Γ1)

)
(cf. [2]). Also, given any proper subdomain Ω0 of Ω of class C2 with

dist(Γ1, ∂Ω0 ∩ Ω) > 0 , (27)

we denote B(V,Ω0) the boundary operator built from B(V ) through by

B(V,Ω0)ϕ :=

{
ϕ on ∂Ω0 ∩ Ω ,
B(V )ϕ on ∂Ω0 ∩ ∂Ω .

It should be pointed out that when Ω̄0 ⊂ Ω ∪ Γ0, then B(V,Ω0) = D.
By principal eigenvalue of an eigenvalue problem we mean any eigenvalue

of it which possesses a one-signed eigenfunction, and in particular a positive
eigenfunction.

It follows from [2, Theorem 12.1] that the eigenvalue problem{
Lkϕ = σϕ in Ω ,
B(V )ϕ = 0 on ∂Ω ,

(28)

possesses a unique principal eigenvalue, denoted in the sequel by σΩ1 [Lk,B(V )],
which is simple and the least eigenvalue of (28). Moreover, the positive eigen-
function ϕ∗ associated to it, unique up multiplicative constant, is strongly
positive in Ω, that is,

ϕ∗(x) > 0 ∀x ∈ Ω ∪ Γ1 and ∂νϕ
∗(x) < 0 ∀x ∈ Γ0 , (29)

and in addition

ϕ∗ ∈W 2
B(V )(Ω) ⊂ C1+α(Ω̄) for all α ∈ (0, 1) . (30)

The following result collects all the monotonicity properties of σΩ1 [Lk,B(V )]
coming from [17, Proposition 3.2], [12, Propositions 3.1, 3.2, 3.3 and 3.5] and
[20, Chapter 8] that we will use to develop our analysis.

Proposition 2.1. The following monotonicity properties hold:

i) Let k1, k2 ∈ L∞(Ω) and V ∈ C(Γ1) be such that k1 < k2. Then

σΩ1 [Lk1 ,B(V )] < σΩ1 [Lk2 ,B(V )] . (31)
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ii) Let V1, V2 ∈ C(Γ1) and k ∈ L∞(Ω) be such that V1 < V2. Then

σΩ1 [Lk,B(V1)] < σΩ1 [Lk,B(V2)] . (32)

iii) For any V ∈ C(Γ1) and k ∈ L∞(Ω) the following holds

σΩ1 [Lk,B(V )] < σΩ1 [Lk,D] . (33)

iv) Let Ω0 be a proper subdomain of Ω of class C2 satisfying (27). Then, for
any k ∈ L∞(Ω)

σΩ1 [Lk,B(V )] < σΩ0
1 [Lk,B(V,Ω0)] . (34)

Let Ω0 be a subdomain of Ω of class C2 with boundary ∂Ω0 = Γ00 ∪ Γ1
such that Γ00 ∩ Γ1 = ∅, where Γ00 = ∂Ω0 ∩ Ω, and Ωn, n ≥ 1, a sequence of
bounded domains of RN with boundary ∂Ωn = Γn

0 ∪ Γ1 of class C2 such that
Γn
0 ∩ Γ1 = ∅, n ≥ 1, where Γn

0 = ∂Ωn ∩ Ω. It is said that Ωn converges to Ω0
from the exterior if for each n ≥ 1

Ω0 ⊂ Ωn+1 ⊂ Ωn ,
⋂
n≥1

Ω̄n = Ω̄0 . (35)

The following result collects all the asymptotic behaviors of σΩ1 [Lk,B(V )],
coming from [17, Theorems 4.2 and 5.1], [12, Theorems 7.1, 8.2, 9.1 and 10.1]
and [20, Chapter 8], that we will need later.

Proposition 2.2. Let k ∈ L∞(Ω) be. Then the following hold:

i) Let B1 := {x ∈ R
N : |x| < 1} be, where | · | stands for the Lebesgue

measure of RN , then

lim inf
|Ω|↓0

σΩ1 [Lk,D] ≥ |B1| 2
N σB1

1 [−Δ,D]|Ω|− 2
N . (36)

ii) For any sequence Vn ∈ C(Γ1), n ≥ 1 satisfying

lim
n↑∞

min
x∈Γ1

Vn(x) =∞

yields
lim

n→∞σ
Ω
1 [Lk,B(Vn)] = σΩ1 [Lk,D] . (37)

iii) Let Ω0 be a subdomain of Ω with boundary ∂Ω0 = Γ00 ∪ Γ1 such that
Γ00 ∩ Γ1 = ∅ where Γ00 = ∂Ω0 ∩ Ω, and let Ωn, n ≥ 1 be any sequence of
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bounded domains of RN of class C2 converging to Ω0 from the exterior in
the sense of (35). Then

lim
n→∞σ

Ωn
1 [Lk,Bn(V )] = σΩ0

1 [Lk,B(V )] , (38)

where Bn(V ) denotes the boundary operator defined

Bn(V )u :=

{
u on Γn

0 ,

∂νu+ V u on Γ1 ,
Γn
0 := ∂Ωn ∩ Ω .

iv) Let Vn ∈ C(Γ1), n ≥ 1, be an arbitrary sequence satisfying

lim
n→∞ ‖Vn − V ‖L∞(Γ1) = 0 ,

with V ∈ C(Γ1). Then,

lim
n→∞σ

Ω
1 [Lk,B(Vn)] = σΩ1 [Lk,B(V )] . (39)

Now, let consider the boundary operator B∗(Γ01) defined in (10), where Γ01
and Γ+1 are two disjoint connected pieces of Γ1, closed and open, respectively
as N − 1 dimensional manifolds, such that Γ1 = Γ01 ∪ Γ+1

The following result collects all the properties about the principal eigenvalue
of the problem

(Lk,Ω,B
∗ (Γ01)), coming from [5, Th. 1.1, Prop. 3.2, Cor. 3.4

and 3.5], that we will use in the sequel.

Proposition 2.3. Let k ∈ L∞(Ω) be and let consider the eigenvalue problem{
Lkϕ = σϕ in Ω ,

B∗(Γ01)ϕ = 0 on ∂Ω ,
(40)

where ∂Ω = Γ0∪Γ1 and Γ1 = Γ01∪Γ+1 , being Γ01 and Γ+1 two disjoint connected
pieces of Γ1, closed and open, respectively as N − 1 dimensional manifolds.
Then, (40) possesses a unique principal eigenvalue, denoted in the sequel by
σΩ1 [Lk,B

∗(Γ01)], which is simple and the smallest eigenvalue of all other eigen-
values of (40). Moreover, any eigenfunction of (40) associated to the principal
eigenvalue is one-signed in Ω and if we denote by ϕ1 ∈ H1

Γ0∪Γ+
1

(Ω) the positive
eigenfunction associated to it, unique up multiplicative constant, yields

ϕ1(x) > 0 a.e. in Ω .

In addition:
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i) If ψD denotes the principal eigenfunction associated to σΩ1 [Lk,D] normal-
ized so that ‖ψD‖L∞(Ω) = 1, then

σΩ1 [Lk,B
∗(Γ01)] = σΩ1 [Lk,D] +

∫
Γ0
1
∂νψ

Dϕ1∫
Ω
ψDϕ1

< σΩ1 [Lk,D] . (41)

ii) For each V ∈ C+(Γ+1 ) the following hold

σΩ1 [Lk,B(0)] < σΩ1 [Lk,B(V )] < σΩ1 [Lk,B
∗(Γ01)] < σΩ1 [Lk,D] . (42)

iii) The following characterization holds

σΩ1
[Lk,B

∗(Γ01)
]
= sup

V ∈C+(Γ+
1 )

σΩ1 [Lk,B(V )] . (43)

3. Proof of Theorem 1.1

In this section we prove some previous results that we need to prove Theo-
rem 1.1 and finally we prove it.

Proposition 3.1. Let uλ be a positive solution of (1) for the value λ of the
parameter. Then,

λ = σΩ1

[
−Δ+ a(x)up−1λ ,B

(
b(x)uq−1λ

)]
, (44)

λ > σΩ1 [−Δ,B(0)] (45)

and
uλ 	 0 in Ω , uλ ∈W 2(Ω) ⊂ C1+α(Ω̄) ∀α ∈ (0, 1) . (46)

Moreover:

i) If either (5) is satisfied or (4) and (6) are satisfied, then

λ < σΩ0
1 [−Δ,D] . (47)

ii) If (4) and (7) are satisfied, then

λ < σΩ0
1 [−Δ,B∗(Γ01)] . (48)

Proof. Let uλ be a positive solution of (1) for the value λ of the parameter.
Then, uλ ∈ W 2

r (Ω) for some r > N and since a ∈ C(Ω̄) and b ∈ C(Γ1), the
following hold ⎧⎨

⎩
(
−Δ+ a(x)up−1λ

)
uλ = λuλ in Ω ,

B
(
b(x)uq−1λ

)
uλ = 0 on ∂Ω ,

(49)
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where
a(x)up−1λ ∈ C(Ω̄) , b(x)uq−1λ ∈ C(Γ1) .

Then, (49) fits into the framework of (28) and uλ is a positive eigenfunction
of (49) associated to the eigenvalue λ. Thus, (44) and (46) follow owing to
the existence and uniqueness of the principal eigenvalue of (49), joint with the
strongly positivity and regularity of its principal eigenfunction (cf.(28), (29)
and (30)).

Now, since a > 0 and b > 0, owing to (31) and (32) it follow from (44) that

λ = σΩ1

[
−Δ+ a(x)up−1λ ,B

(
b(x)uq−1λ

)]
> σΩ1 [−Δ,B(0)] ,

which proves (45). Also, owing to the monotonicity of the principal eigenvalue
with respect to the domain (cf.(34)) it follows from (44) that

λ = σΩ1

[
−Δ+ a(x)up−1λ ,B

(
b(x)uq−1λ

)]
< σΩ0

1

[
−Δ,B

(
b(x)uq−1λ ,Ω0

)]
.

(50)
We now prove (47). Indeed, let assume that (5) holds. Then,

B
(
b(x)uq−1λ ,Ω0

)
= D (51)

and hence, (50) and (51) imply (47) under condition (5). In the same way, let
assume now that (4) and (6) are satisfied. Then, since b(x)uq−1λ ∈ C(Γ1), (47)
follows from (50) owing to (33).

Finally we now prove (48). Indeed, let assume that (4) and (7) are satisfied.
Then, since uλ(x) > 0 for all x ∈ Γ1 and b ∈ C+(Γ+1 ) (cf. (8)), we have that
b(x)uq−1λ ∈ C+(Γ+1 ) and hence, (48) follows from (50) owing to (42).

This completes the proof.

Proposition 3.2. For each

λ > σΩ1 [−Δ,B(0)] (52)

(1) possesses a positive strict subsolution arbitrarily small and strongly positive
in Ω.

Proof. Let λ be satisfying (52). Owing to (32) and (39) we have that for each
ε > 0

σΩ1 [−Δ,B(0)] < σΩ1 [−Δ,B(ε)] ,
and

lim
ε↓0

σΩ1 [−Δ,B(ε)] = σΩ1 [−Δ,B(0)] ,
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and therefore since (52) holds, there exists ε1 > 0 such that for each ε ∈ (0, ε1]
the following hold

σΩ1 [−Δ,B(0)] < σΩ1 [−Δ,B(ε)] < λ . (53)

Fix ε ∈ (0, ε1] satisfying (53) and let us denote σε
1 := σΩ1 [−Δ,B(ε)] and ϕε the

principal eigenfunction associated to σε
1 normalized so that

‖ϕε‖L∞(Ω) = 1 . (54)

Now, let us consider the function

u = αϕε , (55)

where α > 0 is an small constant to determine later.
Since ϕε is strongly positive in Ω, to complete the proof it remains to

prove that there exists α̃ > 0 small enough such that for each α ∈ (0, α̃) the
function (55) provides us with a positive strict subsolution of (1). Indeed, pick
up α̃ satisfying

0 < α̃ < min

{(
λ− σε

1

‖a‖L∞(Ω)

) 1
p−1

,

(
ε

‖b‖L∞(Γ1)

) 1
q−1

}
.

Then, taking into account (53) and (54), we find that for each α ∈ (0, α̃] the
following estimate is satisfied in Ω

−Δu− λu+ a(x)up = αϕε

(
σε
1 − λ+ a(x)αp−1ϕp−1

ε

)
< αϕε

(
σε
1 − λ+ ‖a‖L∞(Ω)α̃p−1) < 0 .

(56)

Also, by construction the following estimate is satisfied on Γ1

∂νu+ b(x)uq = αϕε

(−ε+ b(x)αq−1ϕq−1
ε

)
< αϕε

(−ε+ ‖b‖L∞(Γ1)α̃
q−1) < 0 .

(57)

Finally the following holds on Γ0

u = αϕε = 0 on Γ0 . (58)

Therefore, (56)-(58) prove that u provides us with a positive strict subsolution
of (1) for each α ∈ (0, α̃], which by construction is strongly positive in Ω.

This completes the proof.

Proposition 3.3. Assume that either

i) (4) and (7), or
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ii) (4) and (6), or

iii) (5) and (6), or

iv) (5) and (3)

hold. Then, for each
λ < σ∗0 [b,Ω0] , (59)

(1) possesses a positive strict supersolution, arbitrarily large and strongly posi-
tive in Ω.

Proof. Taking into account the definition of σ∗0 [b,Ω0] (cf. (9)), we have that
under condition i), (59) becomes

λ < σΩ0
1

[−Δ,B∗(Γ01)] (60)

and under conditions ii), iii) or iv), (59) becomes

λ < σΩ0
1 [−Δ,D] . (61)

We now prove the result under conditon i).
Let us denote σ∗0 := σΩ0

1 [−Δ,B∗ (Γ01)] and let λ be satisfying (60).
Necessarily, either

∂Ω0 ∩ Γ0 = ∅ (62)

or
∂Ω0 ∩ Γ0 �= ∅ . (63)

Assume (62) holds. Since (7) is satisfied we have that b ∈ C+(Γ+1 ) and owing
to (42) and (43) it follows from (60) that there exists V ∈ C+(Γ+1 ) such that

λ < σΩ0
1 [−Δ,B(V )] < σ∗0 . (64)

Set for each interval I ⊂ (0,∞)

ΓI
1 =

{
x ∈ Γ+1 : distΓ1(x,Γ

0
1) ∈ I

}
,

where distΓ1
(·,Γ01) stands for the N−1 dimensional minimal distance along Γ1.

Now, for each ε > 0 sufficiently small, let us take a continuous perturbation
Vε ∈ C+(Γ+1 \ Γ(0,ε]1 ) of V satisfying

Vε(x) ≤ V (x) for all x ∈ Γ1
and

lim
ε→0

‖V − Vε‖L∞(Γ1) = 0 . (65)
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By construction we have that

Vε(x) = 0 ∀x ∈ Γ01 ∪ Γ(0,ε]1 and Vε(x) > 0 ∀x ∈ Γ+1 \ Γ(0,ε]1 (66)

and
Vε < V on Γ1 . (67)

Owing to (67) and (32) we find that

σΩ0
1 [−Δ,B(Vε)] < σΩ0

1 [−Δ,B(V )] (68)

and owing to (65), it follows from (39) that

lim
ε↓0

σΩ0
1 [−Δ,B(Vε)] = σΩ0

1 [−Δ,B(V )] . (69)

Then, (64), (68) and (69) imply the existence of ε1 > 0 such that for each
ε ∈ (0, ε1] the following hold

λ < σΩ0
1 [−Δ,B(Vε)] < σΩ0

1 [−Δ,B(V )] < σ∗0 . (70)

Fix ε ∈ (0, ε1] satisfying (70). Also, since b ∈ C+(Γ+1 ), there exists a constant
βε > 0 such that

b(x) ≥ βε > 0 ∀x ∈ Γ+1 \ Γ(0,ε)1 . (71)

On the other hand, for each δ > 0 sufficiently small, let consider the δ-
neighborhoods

Ωδ := (Ω0 +Bδ) ∩ Ω , Nδ := (Γ0 +Bδ) ∩ Ω , (72)

where Bδ ⊂ R
N denotes the ball of radius δ centered at the origin, and set

Γδ := ∂Ωδ ∩ Ω .

Then, ∂Ωδ = Γδ ∪ Γ1. Since Γ0 ∩ Γ1 = ∅ and (62) holds, there exists δ0 > 0
such that for each 0 < δ < δ0

Ω̄δ ∩ N̄δ = ∅ . (73)

By construction we have that Ω0 is a proper subdomain of Ωδ and Ωδ converges
to Ω0 from the exterior in the sense of (35). Then, it follows from (34) and (38)
that

σΩδ
1 [−Δ,B(Vε)] < σΩ0

1 [−Δ,B(Vε)] , 0 < δ < δ0 (74)

and
lim
δ↓0

σΩδ
1 [−Δ,B(Vε)] = σΩ0

1 [−Δ,B(Vε)] (75)
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and therefore, (70), (74) and (75) imply the existence of δ1 ∈ (0, δ0) such that

λ < σΩδ
1 [−Δ,B(Vε)] < σΩ0

1 [−Δ,B(Vε)] < σΩ0
1 [−Δ,B(V )] < σ∗0 (76)

for each δ ∈ (0, δ1). Let us denote in the sequel σδ,ε
1 := σΩδ

1 [−Δ,B(Vε)]. Also,
since limδ↓0 |Nδ| = 0, it follows from (36) the existence of δ2 ∈ (0, δ1) such that
for each δ ∈ (0, δ2)

σNδ
1 [−Δ,D] > σ∗0 . (77)

Now, fix δ∈(0,δ2) satisfying (76) and (77) and let ϕε
δ and ηδ denote the principal

eigenfunctions associated with the principal eigenvalues σδ,ε
1 and σNδ

1 [−Δ,D],
respectively, normalized so that ‖ϕε

δ‖L∞(Ωδ) = 1 and ‖ηδ‖L∞(Nδ) = 1.
Then, let consider now the positive function

ū := KΦ ,

where K > 0 is a sufficiently large constant to be determined later and Φ :
Ω̄ → [0,∞) is defined by

Φ :=

⎧⎪⎪⎨
⎪⎪⎩
ϕε
δ in Ω̄ δ

2
,

ηδ in N̄ δ
2
,

ξεδ in Ω̄ \
(
Ω̄ δ

2
∪ N̄ δ

2

)
,

where ξεδ is any regular positive extension of ϕε
δ and ηδ from Ω̄ δ

2
∪ N̄ δ

2
to Ω̄

which is bounded away from zero in Ω̄ \
(
Ω̄ δ

2
∪ N̄ δ

2

)
. The existence of ξεδ is

guaranteed since the functions

ϕε
δ|Γ δ

2

, ηδ|∂N δ
2
∩Ω

are bounded away from zero. Let μδ > 0 be such that

ξεδ(x) ≥ μδ > 0 ∀x ∈ Ω̄ \
(
Ω̄ δ

2
∪ N̄ δ

2

)
. (78)

Also, since a is bounded away from zero in any compact subset of Ω\ Ω̄0, there
exists aδ > 0 such that

a(x) ≥ aδ > 0 ∀x ∈ Ω̄ \
(
Ω̄ δ

2
∪ N̄ δ

2

)
. (79)

To complete the proof it remains to show that there exists κ > 0 sufficiently
large such that ū = KΦ provides us with a positive strict supersolution of (1)
for each K ≥ κ. Indeed, since a > 0 it follows from (76) that in Ω δ

2
the

following estimate is satisfied for eack K > 0

−Δū− λū+ a(x)ūp = Kϕε
δ

(
σδ,ε
1 − λ+ a(x)Kp−1(ϕε

δ)
p−1

)
≥ Kϕε

δ

(
σδ,ε
1 − λ

)
> 0 .

(80)
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Similarly, owing to (70) and (77) and since a > 0, the following estimate is
satisfied in N δ

2
for each K > 0

−Δū− λū+ a(x)ūp = Kηδ

(
σNδ
1 [−Δ,D]− λ+ a(x)Kp−1ηp−1δ

)
≥ Kηδ

(
σNδ
1 [−Δ,D]− λ

)
> 0 .

(81)

Also, owing to (78) and (79) there exists κ1 > 0 such that for any K ≥ κ1 > 0

the following estimate is satisfied in Ω \
(
Ω δ

2
∪N δ

2

)
−Δū− λū+ a(x)ūp ≥ K

(−Δξεδ − λξεδ + a(x) (ξεδ)
p
Kp−1)

≥ K
(
−Δξεδ − λξεδ + aδμ

p
δκ

p−1
1

)
≥ K

(
−‖Δξεδ + λξεδ‖L∞ + aδμ

p
δκ

p−1
1

)
> 0 .

(82)

As for the boundary conditions, on Γ1 we will distinguish two different subre-
gions, Γ01 ∪ Γ(0,ε]1 and Γ+1 \ Γ(0,ε]1 . Since

Vε(x) = 0, b(x) ≥ 0 ∀x ∈ Γ01 ∪ Γ(0,ε]1 ,

we find that by construction the following estimate is satisfied for any K > 0

on Γ01 ∪ Γ(0,ε]1

∂ν ū+ b(x)ūq = K∂νϕ
ε
δ + b(x)Kq (ϕε

δ)
q

= −KVεϕε
δ + b(x)Kq (ϕε

δ)
q

= b(x)Kq (ϕε
δ)

q ≥ 0 .
(83)

Also, since ϕε
δ is strongly positive in Ωδ yields

mε
δ := min

x∈Γ1

ϕε
δ(x) > 0 . (84)

Then, owing to the fact that Vε(x) > 0 for all x ∈ Γ+1 \Γ(0,ε]1 and (71) and (84)
hold, we find that there exists κ2 ≥ κ1 > 0 such that the following estimate is
satisfied on Γ+1 \ Γ(0,ε]1 for each K ≥ κ2 > 0

∂ν ū+ b(x)ūq = Kϕε
δ

[
−Vε(x) + b(x)Kq−1 (ϕε

δ)
q−1

]
≥ Kϕε

δ

[
−‖Vε‖L∞(Γ1) + βεκ

q−1
2

(
mε

δ

)q−1]
> 0 .

(85)

Finally, by construction
ū|Γ0 = Kηδ|Γ0 = 0 . (86)

Then, (80)-(82) and (83)-(86) prove that, under condition (62), ū provides us
with a positive strict supersolution of (1) for each K ≥ κ2 > 0, which by
construction is strongly positive in Ω.
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This completes the proof of the result under condition (62).
Now, let assume that (63) holds. Then, pick up δ > 0, let denote

Ω̃ := Ω ∪Bδ(Γ0) , Γ̃0 := ∂Ω̃ \ Γ1 .

where Bδ(Γ0) ⊂ R
N stands for a δ-neighborhood of Γ0, let consider the auxil-

iary potential

ã =

{
1 in Ω̃ \ Ω ,
a in Ω ,

the auxiliary boundary operator

B̃(b) :=

{
D on Γ̃0 ,
∂ν + b on Γ1 ,

and the associated boundary value problem⎧⎪⎨
⎪⎩
−Δu = λu− ã(x)up in Ω̃ ,
u = 0 on Γ̃0 ,
∂νu = −b(x)uq on Γ1 .

(87)

By construction

Ω̃0 = Ω0 , Γ̃0 ∩ ¯̃Ω0 = ∅ , σΩ̃0
1 [−Δ,B∗ (Γ01)] = σΩ0

1 [−Δ,B∗ (Γ01)] = σ∗0

and (60) becomes
λ < σΩ̃0

1 [−Δ,B∗(Γ01)] . (88)

Then, (87) satisfies condition (62), and hence, since (88) holds, we find by
the above arguments that (87) possesses a positive strict supersolution ũ arbi-
trarily large and strongly positive in Ω̃ for each λ satisfying (60). Now, it is
straightforward to prove that the function

ū := ũ|Ω̄
provides us with, for each λ satisfying (60), a positive strict supersolution of (1)
under condition (63), which is arbitrarily large and strongly positive in Ω.

This completes the proof of the result under condition i).
We now prove the result under condition ii). Let us denote σ0 :=σΩ0

1 [−Δ,D]
and let λ be satisfying (61). Whithout lost of generality we will assume that
(62) holds. On the contrary we would argue as in case i) when (63) holds.
Owing to (33) and (37) we have that

σΩ0
1 [−Δ,B(n)] < σ0 ∀n ∈ N , lim

n↑∞
σΩ0
1 [−Δ,B(n)] = σ0 . (89)
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Then, owing to (61) and (89), there exists n ∈ N large enough such that

λ < σΩ0
1 [−Δ,B(n)] < σ0 . (90)

Fix n ∈ N satisfying (90). Now, let consider the δ-neighborhoods Ωδ and
Nδ defined in (72). Using the same arguments than in case i), it follows the
existence of δ0 > 0 such that for each δ ∈ (0, δ0) (73) holds and moreover

σΩδ
1 [−Δ,B(n)] < σΩ0

1 [−Δ,B(n)]

and
lim
δ↓0

σΩδ
1 [−Δ,B(n)] = σΩ0

1 [−Δ,B(n)] .

Thus, taking into account (90), there exists δ1 ∈ (0, δ0) such that for each
δ ∈ (0, δ1) the following hold

λ < σΩδ
1 [−Δ,B(n)] < σΩ0

1 [−Δ,B(n)] < σ0 . (91)

Also, arguing as in case i), there exists δ2 ∈ (0, δ1) such that for each δ ∈ (0, δ2)

σNδ
1 [−Δ,D] > σ0 . (92)

Now, fix δ ∈ (0, δ2) satisfying (91) and (92), let ϕn
δ and ηδ denote the principal

eigenfunctions associated with the principal eigenvalues σΩδ
1 [−Δ,B(n)] and

σNδ
1 [−Δ,D] normalized so that ‖ϕn

δ ‖L∞(Ωδ) = 1 and ‖ηδ‖L∞(Nδ) = 1 Now, let
consider the positive function

ū = KΦ ,

where K > 0 is a sufficiently large constant to be determined later and Φ :
Ω̄→ [0,∞) is defined by

Φ :=

⎧⎪⎪⎨
⎪⎪⎩
ϕn
δ in Ω̄ δ

2
,

ηδ in N̄ δ
2
,

ξnδ in Ω̄ \
(
Ω̄ δ

2
∪ N̄ δ

2

)
,

being ξnδ any regular positive extension of ϕn
δ and ηδ from Ω̄ δ

2
∪N̄ δ

2
to Ω̄ which

is bounded away from zero. Now, taking into account (91) and (92) and the
fact that ϕn

δ is strongly positive in Ωδ and arguing as in case i), it is not hard
to prove that there exists κ̃ > 0 such that for each K ≥ κ̃, ū is a positive strict
supersolution of (1), which by construction is strongly positive in Ω.

This completes the proof of the result under condition ii).
Now, taking the notations of the previous cases, the proof of the result

under condition iii) follows arguing as in cases i) and ii), taking ū = KΦ,
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where K > 0 is sufficiently large and

Φ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ηδ in N̄ δ
2
,

ϕδ in Ω̄ δ
2
,

ψδ in Ā δ
2
∩ Ω ,

ξδ in Ω̄ \
(
N̄ δ

2
∪ Ω̄ δ

2
∪ (Ā δ

2
∩ Ω)

)
,

being Ωδ := Ω̄0 +Bδ and Aδ := Γ1 +Bδ, for δ > 0 small enough so that

Ω̄δ ∩ N̄δ = ∅ , Ω̄δ ∩ Āδ = ∅ , Āδ ∩ N̄δ = ∅ ,

and where ψδ stands for the principal eigenfunction associated to σAδ
1 [−Δ,D],

normalized with L∞-norm equals 1 in its domain, and ξδ is any positive regular
extension of ηδ, ϕδ and ψδ from N̄ δ

2
∪ Ω̄ δ

2
∪ (Ā δ

2
∩Ω) to Ω̄, bounded away from

zero.
Finally, taking the notations of the previous cases, the proof of the result

under condition iv) follows arguing in a similar way taking ū = KΦ for K > 0
sufficiently large and

Φ :=

⎧⎪⎪⎨
⎪⎪⎩
ηδ in N̄ δ

2
,

ϕδ in Ω̄ δ
2
,

ξδ in Ω̄ \
(
N̄ δ

2
∪ Ω̄ δ

2

)
,

where now ξδ is any positive regular extension of ηδ and ϕδ from N̄ δ
2
∪ Ω̄ δ

2
to

Ω̄ bounded away from zero, satisfying

∂νξδ(x) ≥ 0 ∀ x ∈ Γ1 , (93)

whose existence is guaranteed by construction. This completes the proof.

We now prove Theorem 1.1

Proof of Theorem 1.1: We are going to prove i). Indeed, let uλ be a positive
solution of (1) for the value λ of the parameter. Then, taking into account the
definition of σ∗0 [b,Ω0] (cf.(9)), the necessary condition (12) for the existence of
positive solution follows from (45), (47) and (48).

To prove the sufficient condition (12) for the existence of positive solution
of (1) we will use the sub-supersolution method (cf. [1]). Let λ be satisfy-
ing (12). Then owing to Proposition 3.2, (1) possesses a positive strict sub-
solution uλ, arbitrarily small and strongly positive in Ω. On the other hand,
it follows from Proposition 3.3 that for each λ satisfying (12), (1) possesses
a positive strict supersolution ūλ, arbitrarily large and strongly positive in Ω.
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Then, since both of them, the subsolution uλ and the supersolution ūλ, are
strongly positive in Ω, it is possible to take them satisfying uλ < ūλ in Ω, and
owing to the sub-supersolution method we find that (1) possesses a positive
solution uλ, with uλ < uλ < ūλ, for each λ satisfying (12).

The proof of the uniqueness of positive solution, if it exists, is obtained
following the same arguments than in [9, Theorem 3.1].

The fact that any positive solution uλ of (1) is strongly positive in Ω and
that (13) holds, follow from (46).

We now prove ii) The results about the structure of ΛL(Ω0) in (14), (15)
and (18) follow from [14, Theorem 3.5] and [6, Theorem 3.4]. The results about
the structure of ΛNL(Ω0, b) in (14), (16) and (19) follow from (12), taking into
account the definition of σ∗0 [Ω0, b]. Finally, (17) and (20) follow from (33)
and (42).

We now prove iii) Let uλ be a positive solution of (1) for the value λ of the
parameter. Then, (12) and (44) hold and differentiating (1) with respect to λ
we find that u̇λ := duλ

dλ satisfies the following problem⎧⎨
⎩
(
−Δ+ pa(x)up−1λ − λ

)
u̇λ = uλ > 0 in Ω ,

B
(
qb(x)uq−1λ

)
u̇λ = 0 on ∂Ω .

(94)

Also, since a > 0 and uλ > 0 in Ω, b > 0 on Γ1 and p, q > 1, owing to (31)
and (32) it follows from (44) that

σΩ1

[
−Δ+paup−1λ −λ,B(qbuq−1λ )

]
> σΩ1

[
−Δ+aup−1λ −λ,B(buq−1λ )

]
= 0 , (95)

that is, uλ is linearly asymptotically stable. Moreover, owing to the Charac-
terization of the Strong Maximum Principle given by H. Amann and J. López-
Gómez in [3, Theorem 2.4], it follows from (95) that (94) satisfies the strong
maximum principle, and hence (21) holds.

We now prove iv). Let I = [α, β] be, with β > σ1, a compact interval with
I ⊂ [σ1, σ

∗
0) and let uβ the unique positive solution of (1) for λ = β, whose

existence and uniqueness are guaranteed by i). Then, owing to (21) we have
that uλ ≤ uβ for all λ ∈ I and therefore, ‖uλ‖L∞(Ω) ≤ ‖uβ‖L∞(Ω) for all λ ∈ I
which proves iv).

We now prove v) The fact that λ = σ1 is the unique bifurcation value
to positive solutions of (1) from the trivial branch (λ, u) = (λ, 0), and the
existence of a differentiable continuum C(σ1) of solutions of (1) emanating
from the trivial branch at the value λ = σ1, follow from [8, Theorem 1.1]. Now,
let denote by C+(σ1) the maximal subcontinuum of C(σ1) constituted by the
positive solutions of (1) emanating from the trivial branch at (λ, u) = (σ1, 0)
and Pλ (C

+(σ1)) its projection on the λ axis. The fact that C+(σ1) emanates
supercritically from the trivial branch follows from (12) or [8, Theorem 1.1].
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Let ϕ1 denote the principal eigenfunction associated to the principal eigenvalue
σ1, normalized such that ‖ϕ1‖L∞(Ω) = 1. It is known that ϕ1 	 0 in Ω. Since
λ = σ1 is a simple eigenvalue of the linearization of (1) around (λ, u) = (σ1, 0)
and owing to the fact that λ = σ1 is the unique bifurcation value to positive
solutions of (1) from the trivial branch, it follows from the updated version of
the Global Alternative of P.H. Rabinowitz [23, Theorem 1.27] given by J. López-
Gómez in [19, Theorem 6.4.3] that either C+(σ1) is unbounded in R×C1Γ0

, or it
contains a pair (λ̃, ũ) with ũ strongly positive in Ω satisfying

∫
Ω
ũϕ1 = 0, which

is impossible since ϕ1 is strongly positive in Ω. Then, we get that C+(σ1) is
unbounded in R×C1Γ0

(Ω̄) and since (12) holds, we find that C+(σ1) is bounded
in R and unbounded in L∞(Ω). Now, the existence of uniform L∞(Ω) bounds
for the positive solutions of (1) in compact intervals of values of λ contained
in [σ1, σ∗0), guaranteed by iv), joint with the fact that C+(σ1) is unbounded in
L∞(Ω), imply that λ = σ∗0 is the unique bifurcation value to positive solutions
of (1) from infinity and that C+(σ1) bifurcates from infinity to positive solutions
at λ = σ∗0 . In particular, owing to (12) and since C+(σ1) is connected and it
bifurcates to positive solutions from the trivial branch at λ = σ1 and from
infinity at λ = σ∗0 , we find that (22) holds.

Finally, since (12) and (22) hold and taking into account the structure of
C+(σ1), the fact that any positive solution of (1) belongs to C+(σ1) follows
from the uniqueness of positive solution of (1) for any λ satisfying (12). The
fact that C+(σ1) is increasing in ‖ · ‖L∞(Ω) with respect to the λ-parameter
follows from (21) and the uniqueness of positive solution of (1) for each λ
satisfying (12).

We now prove vi) Since (24) holds, the existence and uniqueness of ui,
i = 1, 2, follow from (24) and i). Owing to (44) the following holds

σΩ1 [−Δ− λ+ a(x)up−1i ,B(biu
q−1
i )] = 0 , i = 1, 2 . (96)

Now, let denote Θ = u1−u2. By construction, Θ satisfies the following problem⎧⎪⎨
⎪⎩
(−Δ− λ+ a(x)F (x))Θ = 0 in Ω ,
Θ = 0 on Γ0 ,
(∂ν + b1(x)G(x))Θ = (b2 − b1)uq2 > 0 on Γ1 ,

(97)

where F ∈ C(Ω̄) and G ∈ C(Γ1) are defined by

F (x) :=

⎧⎨
⎩
u1(x)

p − u2(x)p
u1(x)− u2(x) if u1(x) �= u2(x) ,

pup−11 (x) if u1(x) = u2(x) ,

and

G(x) :=

⎧⎨
⎩
u1(x)

q − u2(x)q
u1(x)− u2(x) if u1(x) �= u2(x) ,

quq−11 (x) if u1(x) = u2(x) .
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By construction, and since p, q > 1 and u1 	 0 in Ω we have that

F (x) > up−11 , G(x) > uq−11

and hence, since a > 0, b1 > 0 and owing to (31), (32) and (96) we find that

σΩ1 [−Δ− λ+ a(x)F (x),B(b1G(x))]

> σΩ1 [−Δ− λ+ a(x)up−11 ,B(b1u
q−1
1 )] = 0 . (98)

Then, owing to the Characterization of the Strong Maximum Principle [3, The-
orem 2.4] it follows from (98) that (97) satisfies the strong maximum principle
and therefore Θ := u1 − u2 	 0 in Ω, which proves (25) and completes the
proof of vi).

We now prove vii). The existence and uniqueness of u0 follows from the
fact that λ ∈ ΛL(Ω0) and [6, Theorem 1.5]. The existence of ũ follows from the
fact that owing to ii), we have that λ ∈ ΛL(Ω0) ⊂ ΛNL(Ω0, b). The uniqueness
of ũ follows from i). Finally (26) follows arguing exactly as in vi), taking into
account that b > 0 instead of (23).

We now prove viii). Since (4) holds and bi ∈ C+(Γ+1 ), i = 1, 2, it follows
from (19) that

ΛNL(Ω0, b1) = ΛNL(Ω0, b2) = (σ1, σ
Ω0
1 [−Δ,B∗ (Γ01)] ,

and hence,
λ ∈ ΛNL(Ωo, bi) , i = 1, 2 . (99)

Then, the existence and uniqueness of ui, i = 1, 2 is guaranteed by (99) and i).
Now the result follows from vi).

We now prove ix). The result follows from vi), arguing as in viii), taking
into account that now

ΛNL(Ω0, b1) = ΛNL(Ω0, b2) =
(
σ1, σ

Ω0
1 [−Δ,D]

)
.

This completes the proof.

4. The amplitude of the nonlinearity in the boundary
conditions as bifurcation parameter

In order to complete the exposition, in this section we consider, under the
general assumptions of this paper, the bi-parameter logistic elliptic problem⎧⎪⎨

⎪⎩
−Δu = λu− a(x)up in Ω , p > 1 ,

u = 0 on Γ0 ,
∂νu = γb(x)uq on Γ1 , q > 1 ,

(100)
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where λ, γ ∈ R, a > 0 in Ω and b > 0 on Γ1. The main goal of this section
is to ascertain the global structure of the set of positive solutions of (100)
considering γ as the bifurcation-continuation parameter, for some λ fixed in a
suitable interval. We focus in the particular case when Ω̄0 ⊂ Ω and (3) holds,
and we denote

σ1 := σΩ1 [−Δ,B(0)] , σ̃0 := σΩ1 [−Δ,D] , σ∗0 := σΩ0
1 [−Δ,D] ,

where σ1 < σ̃0 < σ∗0 .
The following result collects the main findings about the global structure of

the set of positive solutions of (100) considering γ as bifurcation-continuation
parameter, for some λ fixed in a suitable interval. It is one of the main results
of [11]. We include it without proof and we remit to [11, Theorem 1.2] for the
details of its proof.

Theorem 4.1. Assume λ ∈ (σ1, σ
∗
0), and let u0 denote the unique positive

solution of (100) for γ = 0. Then:

i) For each γ ≤ 0, (100) possesses a unique positive solution uγ , which is
linearly asymptotically stable. Moreover, the map

(−∞, 0] −→ C1Γ0
(Ω̄)

γ → uγ

is differentiable and u̇γ :=
duγ
dγ

	 0 in Ω , and in particular, the map

(−∞, 0] �→ CΓ0(Ω̄)
γ �→ uγ

is strictly increasing.

ii) If (6) holds and λ ∈ (σ1, σ̃0), then there exists D(λ) > 0 such that

‖uγ‖L∞(Ω) ≤ D(λ)

(
1

bγ̃

) 1
q−1

, for all γ < 0 .

In particular
lim

γ↓−∞
‖uγ‖L∞(Ω) = 0 ,

that is, the problem exhibits bifurcation to positive solutions from the triv-
ial branch (γ, u) = (γ, 0) when γ ↓ −∞.

iii) There exists ε0 > 0 and a differentiable map

u : (−ε0, ε0) → C1Γ0
(Ω̄)

γ �→ u∗γ
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such that u∗γ = uγ for all γ ∈ (−ε0, 0], there exists a neighborhood U of
(γ, u) = (0, u0) in (−ε0, ε0)×C1Γ0

(Ω̄) such that if (γ, ũ) ∈ U is a positive so-
lution of (100), then ũ = u∗γ , and in addition (γ, u∗γ) is a positive linearly
asymptotically stable solution of (100) for all γ ∈ (−ε0, ε0). Moreover,

u̇∗γ :=
du∗γ
dγ

	 0 in Ω ,

and in particular the map

(−ε0, ε0) → CΓ0
(Ω̄)

γ �→ u∗γ

is strictly increasing.

iv) Any positive solution ûγ of (100) for γ > 0 satisfies ûγ 	 u0 .

v) If p > 2q − 1, then the following hold:

a) For each γ > 0, (100) possesses at least a positive solution.

b) For each γ > 0, (100) possesses a minimal positive solution umin
γ

satisfying umin
γ 	 u0 and umin

γ = u∗γ for γ ∈ (0, ε0) , where ε0 and
u∗γ are defined by iii).

c) There exist uniform L∞(Ω) bounds for the positive solutions of (100)
in compact intervals of values of γ.

Figure 5: Global bifurcation diagram of positive solutions of (100) in the γ
parameter (λ ∈ (σ1, σ∗0)).
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Theorem 4.1 establishes that, for each fixed λ ∈ (σ1, σ∗0), the global bifurcation
diagram in the γ-parameter of the positive solutions of (100) should be like
shown by Figure 5, where the continuous line stands for the exact structure of
the set of positive solutions for γ < ε0 and the dashed line stands for a possible
configuration of the set of positive solutions of (100) for γ > ε0.
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