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Agricultural drought quantification is one of themost important tasks in the characterisation

process of this natural hazard. Recently, several vegetation indexes based on remote-sensing

datahavebeenapplied toquantify it,being theNormalizedDifferenceVegetation Index (NDVI)

the most widely used. Some index-based drought insurances define a drought event through

the comparison of actual NDVI values in a given period with a NDVI threshold based on his-

toricaldataof thatperiodextrapolating this result spatially to thesurroundedareas.Hence, the

spatial statistical approach is very relevant and has not been deeply studied in this context.

Drought can be highly localised, and several authors have recognised the critical role of

the spatial variability. Therefore, it is important to delimit areas that will share NDVI

statistical distributions and in which the same criteria can be applied to define the drought

event. In order to do so, we have applied for the first time in this context the method of

singularity maps commonly used in localisation of mineral deposits. The NDVI singularity

maps calculated for each season and different years are shown and discussed in this

context. For this study we have selected a region that includes the whole Autonomous

Community of Madrid (Spain). The resulting singularity maps show that areas where the

NDVI follows theoretically a spatial normal/log-normal distribution ðay2Þ are widely

scattered in the area of study and vary across seasons and years. Therefore, the extrapo-

lation of normal/log-normal NDVI statistics should be applied only inside these areas.

© 2017 IAgrE. Published by Elsevier Ltd. All rights reserved.
several definitions of drought, it can generally be defined as the

1. Introduction

1.1. Drought and vegetation indexes

Drought is one of the natural hazards withmore impact on the

planet and human life, becoming a natural disaster in extreme

cases (Gouveia, Trigo, & DaCamara, 2009). Although there are
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temporary lack of water, relative to the normal supply, for a

sustained period of time (Hayes, 2004; Keyantash & Dracup,

2002).

Drought quantification is one of the most important tasks

in the characterisation of this natural hazard and can be

approached in different ways (Sepulcre-Canto, Horion,
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Singleton, Carrao, & Vogt, 2012). One promising way is

through indexes based on remote-sensing data (Dalezios,

Blanta, Spyropoulos, & Tarquis, 2014) obtained by satellites

or drones. These aircraft have spectro radiometric sensors

installed on board (AVHRR, MODIS, among others) which are

able to detect different frequency bands to obtain surface-

Earth images at periodic time intervals. The combination of

these frequency bands derives to Vegetation Indexes (VI).

These indexes show the Photosynthetically Active Radiation

(PAR) absorption of green leaves. The VI are associated with

fundamental hydro-ecological processes such as precipita-

tion, which in turn is also directly linked to photosynthesis

and hence plant growth. The most widely used VI are:

Normalized Difference Vegetation Index (NDVI), Soil Adjusted

Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI).

1.2. Statistical approaches in VI spatial variability

It is important to note that more and more index-based agri-

cultural insurances are defining a drought event through the

comparison of the current VI value in a given period with a VI

threshold based on historical data (Chantarat, Mude, Barrett,

& Carter, 2013; Makaudze & Miranda, 2010). In this scenario,

the statistical assumptions made to calculate this threshold

will be crucial since different statistical approaches will lead

to different conclusions.

The VI maps usually present a high variability in their

values (Scheuring & Riedi, 1994). In the most common

approach, the spatial variable under study is considered to be

a random process and the main indicator measuring the

spatial variability is the semivariogram, a second-order sta-

tistical moment of the spatial variable (Peebles, 1987). The

most usual assumption is the “intrinsic hypothesis”where the

semivariogram only depends on the lag distance (stationary

process) and all the regionalised variables are considered

Gaussian (Journel & Huijbregts, 1978).

There is an alternative approach to measure the spatial

variability in singular physical processes by Multifractal Anal-

ysis (MFA). Singular processes are normally non-linear systems

whose final results can be modelled by fractals or multifractals

(Evertsz & Mandelbrot, 1992; Feder, 1989; Schertzer & Lovejoy,

1991). Fractality and multifractality (scaling laws) are emer-

gent general features of ecological and geological systems

(Saravia, Giorgi,&Momo, 2012; Turcotte, 1997), and they reflect

constraints in their organisation that can provide tracks about

the underlying mechanisms (Sol�e & Bascompte, 2006). Some

examples of singular processes in the context of natural sys-

tems are: cloud formation (Schertzer & Lovejoy, 1987), rainfall

(Veneziano, 2002), hurricanes (Sornette, 2004), etc. MFA should

be used when a spatial distribution shows a singular character

and extreme values (anomalies) are relevant (Cheng, 1999a).

Outcomes of such singular processes are often described by

positively-skewed distributions with Pareto upper-value tails

(Agterberg, 1995; Cheng, Agterberg, & Ballantyne, 1994;

Lavallee, Lovejoy, Schertzer, & Ladoy, 1993).

1.3. The singularity index

In the context of MFA, we can characterise the anomalous

spatial behaviour of singular processes by the singularity
index or exponent. The mapping of singularity exponents in

multifractal measures has proved to be a very effective tool in

delineating areas with anomalies in measure distributions.

Cheng (1999a, 2008) elaborated a local singularity analysis

based on multifractal modelling that provides a powerful tool

for characterising the local structural properties of spatial

patterns. Taking the notation of MFA, the behaviour around a

location x of a multifractal measure m can be described as a

power-law relationship:

mðBðx; rÞÞ � raðxÞ; (1)

where B(x,r) is a set centred at x with radius r / 0. The

exponent of this power-lawmodel is the singularity exponent

a(x) and characterises the degree of anomalous behaviour.

The singularity exponent usually has finite values around the

support topological dimension (E) and varies within a finite

range from amin to amax. Singularity map is defined as the locus

of the points x that have the same singularity exponent

(Falconer, 2003), calculated by the expression:

aðxÞ ¼ lim
r/0

ln mðBðx; rÞÞ
ln r

; (2)

This tool has been successfully applied to detect anomalies

in the concentration of an element (Cheng, 2001, 2006, 2007;

Xie, Cheng, Chen, Chen, & Bao, 2007), which helps to delimit

potential deposits (Cheng, 1999a). In the case of anomaly

detection in element concentration maps, Cheng (2001) stated

that the mean element concentration Z(x), calculated for

various cell sizes r centred at x, obeys a power-law with r:

ZðxÞ � raðxÞ�E; (3)

where E ¼ 2 in this type of maps. This power-law is fulfilled in

a certain range of r, [rmin,rmax], obtaining a singularity map.

In the above work, points with aðxÞy2 (where y means

“approximately equal to”) are named as “non-singular loca-

tions” and represent areas with constant mean element con-

centrations. Points with aðxÞs2 are named as “singular

locations”, and we can differentiate areas with positive sin-

gularities (a(x) < 2) corresponding to anomalously high values

of mean concentration in a geochemical map, and negative

singularities (a(x) > 2) corresponding to low mean concentra-

tion values. Then, the ConcentrationeArea (CA) method was

applied to calculate the threshold of positive and negative

singularities (Liu, Xia, Cheng, & Wang, 2013). Therefore,

calculating the singularity map for a geochemical concentra-

tion map may be used to characterise concentration patterns

which provide useful information for interpreting anomalies

related to local mineralisation processes.

Another useful interpretation of the singularity exponent

is related to geostatistics (Cheng, 2008). This interpretation

states that themajority of locations on themap where aðxÞy2

(non-singular locations) follows either normal or lognormal

distributions, whereas the singular locations (positive and

negative singularities) on the map with aðxÞs2 may follow

extreme value Pareto distributions. The majority of common

statistical techniques which require the assumption of

normal distributions and the intrinsic hypothesis may not be

effective for studying data with extreme value distributions,

as happens in multifractal processes.

http://dx.doi.org/10.1016/j.biosystemseng.2017.08.008
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Fig. 1 e RGB image of the rectangular area with 300 £ 280

pixels used for spatial study (MODIS capture date: 15/04/

2011). The dashed line gives the contours of the
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1.4. Objectives

In this work, NDVI is the spatial distribution under study.

NDVI maps have a multifractal character (Alonso, Tarquis, &

Benito, 2005; Alonso, Tarquis, Benito, & Zú~niga, 2007, 2008;

Lovejoy, Tarquis, Gaonac'h, & Schertzer, 2008; Poveda &

Salazar, 2004) representing an underlying singular process.

The aim of this work is to check if that multifractal character

holds, to estimate singularity maps of NDVI images and to

extrapolate the conclusions obtained by Cheng for chemical

element concentration maps and Pareto statistics. This study

will also explore if singularity maps could be applied to

delineate areas with anomalies in the NDVI concentration at

different times in the year. Finally, we aremainly interested in

places where singularity exponents satisfy aðxÞy2, (non-sin-

gular locations) since these places will follow normal or

lognormal distributions in NDVI values, and so we can apply a

normal statistical assumption over these areas, very useful in

index-based agricultural insurances.

This is the first time that this well-known methodology in

themultifractal field is applied to NDVImaps. For this purpose

a region that includes the Autonomous Community of Madrid

in Spain will be studied at each season for two different years

(dry and wet one).

Autonomous Community of Madrid and the six

agricultural regions: (1) Lozoya-Somosierra, (2)

Guadarrama, (3) Metropolitan area, (4) Campi~na, (5) South-

West and (6) Las Vegas.

2. Materials and methods

2.1. Normalized Difference Vegetation Index (NDVI)

NDVI shows vegetation photosynthetic activity (Flynn, 2006).

Photosynthetic activity is related to the moisture that crops

need to grow properly, the greater the moisture availability,

the higher photosynthetic activity. The latter is not a

completely accepted statement by all experts pointing out

that NDVI essentially relates to the effective proportion of the

image region that is green leaf tissue, and so NDVI has no

direct link to photosynthetic activity, but to photosynthetic

capacity. In any case, it is reasonable to study drought through

NDVI, except for physiological drought cases. There are other

more accurate indices that incorporate soil effects and at-

mospheric influences, however for simplicity and ease of

interpretation we will use NDVI in this paper. To calculate

NDVI we will use this mathematical formula:

NDVI ¼ IRc� R
IRcþ R

(4)

where IRc and R are the reflectance values in the Near-Infrared

band and Red band respectively. The range of NDVI values is

from �1 to þ1. Values below zero indicate no photosynthetic

activity and are characteristic of areas with large accumula-

tion of water such as rivers, lakes, reservoirs, etc. The higher is

the NDVI value, the greater is the photosynthetic activity.

2.2. Study area

For the spatial study we consider a rectangular region that

includes the whole Autonomous Community of Madrid

(ACM), Spain. This area consists of 300 � 280 pixels each one

representing an area of 500 m � 500 m (see Fig. 1).
UTM30 coordinates of the boundaries corresponding to

pixels centre of this area are:

(1) Top left corner: 360162 m E, 4560040 m N.

(2) Top right corner: 499662 m E, 4560040 m N.

(3) Bottom left corner: 360162 m E, 4410540 m N.

(4) Bottom right corner: 499662 m E, 4410540 m N.

This rectangle represents an extension of 150 � 140 km

involving two major units: the mountains and the plain of the

Tagus river, separated by the foothills. The altitude range

between 430 m in the final stretch of the Alberche river in the

south-east and 2428 m at the peak of Pe~nalara in the north.

Despite its small area, ACM presents two distinct climates,

as a result of its location between the Central System and the

Tagus Valley. The highest areas of the Guadarrama and Ayll�on

in the north, above an altitude of 1200 m, have mountain

climate. This implies cold or very cold temperatures in winter

and mild in summer. Here, precipitation is abundant and

could be greater than 1500 mm year�1, in the form of snow

during the winter and part of the spring and autumn (Sotelo

P�erez, 2013).

The rest of ACM has a continental Mediterranean climate

with warm summers. These are attenuated in the piedmont

and extreme in the plateau plain. In these areas the winters

are cool, with temperatures below 8 �C, very frequent night

frost and occasional snowfall. By contrast, summers are hot,

with average temperatures above 24 �C in July and August and

with maximums often exceeding 35 �C. Rainfall does not

usually exceed 700 mm year�1 and is concentrated especially

in the spring and autumn (Sotelo P�erez, 2013).

http://dx.doi.org/10.1016/j.biosystemseng.2017.08.008
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2.3. Remote sensing database

Information provided by the scientific research satellite Terra

(EOS AM-1) has been chosen to calculate NDVI in the study

area. This satellite was launched into orbit by NASA on

December 18th 1999. The MODIS (Moderate Resolution Imag-

ing Spectroradiometer) sensor provides information by fre-

quency bands.

MODIS information is organised by “products”. The prod-

uct we have used is MOD09A1 (LP DAAC, 2014), which in-

corporates seven frequency bands: Band 1 (620e670 nm), band

2 (841e876 nm), band 3 (459e479 nm), band 4 (545e565 nm), 5

band (1230e1250 nm), band 6 (1628e1652 nm) and band 7

(2105e2155 nm). The bands used to calculate NDVI are: band 1

for red frequency and band 2 for near-infrared frequency.

MOD09A1 provides geo-referenced images with pixel resolu-

tion of 500 m � 500 m. This product has a mix of the best

reflectance measures of each pixel in an 8-day period. Used

format file is GeoTIFFwith geo-referenced UTM30 information

and geode model WGS 84.

For spatial analysis we compare the results obtained on

four different dates over two 1-year periods, 2005 (dry year)

and 2011 (wet year). We have taken approximately the same

representative date for each season. Selected dates are:

- (Winter): 17th of January 2005 and 25th of January 2011.

- (Spring): 23th of April 2005 and 15th of April 2011.

- (Summer): 20th of July 2005 and 20th of July 2011.

- (Autumn): 24th of October 2005 and 24th of October 2011.
2.4. Multifractal analysis

The aim of a multifractal analysis (MFA) is to study how a

normalised probability distribution or a measure m(x) varies

with scale r. Let us consider a grid of cells of size r covering a

measure m(x) on ℝ, with total length size L. The measure of the

cell i of size r is Mi(r) and can be calculated by the following

expression:

MiðrÞ ¼
Zxiþr

xi

mðxÞdx (5)

Then, the normalised probability distribution of the cell i of

size r is defined as:

miðrÞ ¼
MiðrÞ

PNðrÞ

j¼1

MjðrÞ
; (6)

where N(r) is the number of cells of size r included on total

length L. For a multifractal measure, the partition function

cðq; rÞ has scaling properties (Evertsz & Mandelbrot, 1992),

namely,

cðq; rÞ ¼
XNðrÞ

j¼1

m
q
j ðrÞ � rtðqÞ; (7)

where t(q) is a nonlinear function of q called the “mass

exponent function” (Feder, 1989). For each q, t(q) may be ob-

tained as the slope of a logelog plot of cðq; rÞ vs. r. Thismethod
is known as the “method of moments” (Halsey, Jensen,

Kadanoff, Procaccia, & Shraiman, 1986).

The singularity exponents a can be determined by the

Legendre transformation of the t(q) curve as:

aðqÞ ¼ dtðqÞ
dq

(8)

The number of cells of size r with the same singularity

exponent a, Na(r), is related to the cell size as,

NaðrÞfr�f ðaÞ (9)

Therefore, f(a) is a scaling exponent which is the fractal

dimension of the set Na(r). Parameter f(a) can be calculated as:

fðaÞ ¼ qaðqÞ � tðqÞ (10)

Properties of the functions a(q), t(q) and f(a) have been

discussed by several authors (e.g. Cheng & Agterberg, 1996;

Feder, 1989; Schertzer & Lovejoy, 1991).

The multifractal spectrum (MFS), i.e., a graph of a vs. f(a),

quantitatively characterises variability of themeasure studied

with asymmetry to the right and left indicating scaling

domination of small and large values respectively. The width

of the MFS indicates overall variability (Tarquis, Losada,

Benito, & Borondo, 2001).

2.5. The ConcentrationeArea (CeA) method

When a variable Z(x,y) follows a fractal/multifractal model,

the CeA method (Cheng et al., 1994) establishes power-law

relationships between the values z of the spatial-dependent

variable Z(x,y) and the area A enclosed by these values:

AðZðx; yÞ � zÞfzb; (11)

where A is the area constituted by values greater than a given

value z and b is the characteristic exponent of the CeA

method. These power-law relationships are converted to

linear segments in a logelog plot. The CeA method uses the

slope-changed points to calculate thresholds in the variable

Z(x,y) which define different sets.

The spatial variability of the singularity exponents a(x,y)

also satisfies a fractal/multifractal model. Then, linear seg-

ments can be determined from the singularity-area

relationship:

Aðaðx; yÞ � cÞfcb; (12)

whereA is the area constituted by singularity exponents a(x,y)

greater than a given value c and b is the characteristic expo-

nent of the CeAmethod (Liu et al., 2013). In the context of two

dimensional maps, the slope-change point in the logelog plot

is used to establish the threshold aTmin in the theoretical set of

positive singularities (a(x,y) < 2). Therefore, the real set of

positive singularities is defined by the expression:

aðx; yÞ<aTmin <2 (13)

In the sameway, a threshold aTmax can also be calculated in

the set of negative singularities (a(x,y) > 2) using the following

expression:

Aðaðx; yÞ � cÞfcg (14)

http://dx.doi.org/10.1016/j.biosystemseng.2017.08.008
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Fig. 2 e Square window of variable side, from rmin ¼ 3 pixels to rmax ¼ 19 pixels, used to calculate the singularity exponent at

each location (pixel). Nine window sizes derive to nine values to calculate the slope a(x) in a logelog plot.
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whereA is the area constituted by singularity exponents a(x,y)

lower than a given value c and b is the characteristic exponent

of the CeA method. Therefore, the real set of negative singu-

larities is defined by the expression:
Fig. 3 e (Top) Multifractal spectrums for the 2005-year NDVI

maps: 17/01/2005 (black), 23/04/2005 (green), 20/07/2005

(red) and 24/10/2005 (blue). (Bottom) Multifractal spectrums

for the 2011-year NDVI maps: 25/01/2011 (black), 15/04/

2011 (green), 20/07/2011 (red) and 24/10/2011 (blue).
aðx; yÞ>aTmax > 2: (15)

Using both thresholds, the set of non-singular locations

ðaðxÞy2Þ is defined by the expression:

aTmin � aðxÞ � aTmax (16)

3. Results and discussion

For themultifractal and singularity analysis, the initial images

of 300 � 280 pixels containing the ACM (Spain) were cut and

centred to obtain images of 256 � 256 pixels. This was

necessary to correctly apply the method of moments used to

calculate the MFS. NDVI values were calculated for each pixel

and the spatial distribution of the NDVI map was considered

as a measure or mass distribution m on ℝ2. To ensure the

validity of the multifractal calculation, all negative NDVI

values were converted to zero following other works (Alonso,

Tarquis, Zú~niga, & Benito, 2017).

Let A(aj,k) be the matrix of 256 rows � 256 columns with

NDVI values. First, the matrix is normalised, so that the

probability value of the i-th cell of side r is:

mi ¼
P

j;k2i�cellaj;k

P256
j¼1

P256
k¼1

aj;k

(17)
Table 1 e Extreme singularity exponents (amax,amin), the
difference (Da¼ amax ¡ amin), extreme fractal dimensions
(f(amax), f(amin)) and the difference (Df¼ f(amax)¡ f(amin)) for
all the analysed dates and years (2005 and 2011).

amin amax Da f(amin) f(amax) Df

2005

Winter (17/01/2005) 1.87 2.16 0.29 1.52 1.56 0.04

Spring (23/04/2005) 1.92 2.13 0.21 1.71 1.56 ¡0.15

Summer (20/07/2005) 1.76 2.17 0.41 1.12 1.56 0.44

Autumn (24/10/2005) 1.81 2.19 0.38 1.29 1.45 0.16

2011

Winter (25/01/2011) 1.89 2.18 0.29 1.56 1.34 ¡0.22

Spring (15/04/2011) 1.95 2.11 0.16 1.79 1.47 ¡0.32

Summer (20/07/2011) 1.79 2.18 0.39 1.23 1.50 0.27

Autumn (24/10/2011) 1.78 2.19 0.41 1.20 1.45 0.25

Bold columns refer to the parameters used for the Multifracral

Spectrum.comparison.

http://dx.doi.org/10.1016/j.biosystemseng.2017.08.008
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Fig. 4 e (Top) NDVI maps (247 £ 247 pixels), and (bottom) singularity maps (247 £ 247 pixels) for each analysed date in year

2005. Dashed lines are the limits of the Autonomous Community of Madrid. In NDVI maps, dark blue represents

NDVImin ¼ 0 and dark red represents NDVImax ¼ 1. In singularity maps, the colour-map is transposed, i.e., the reddish

colours indicate positive singularities (singularity exponents a < 2) and the bluish colours indicate negative singularities

(singularity exponents a > 2). For better visualisation, singularity values less than 1.7 were collapsed to 1.7, and singularity

values greater than 2.3 were collapsed to 2.3, to highlight positive and negative singularities

Fig. 5 e (Top) NDVI maps (247 £ 247 pixels), and (bottom) singularity maps (247 £ 247 pixels) for each analysed date in year

2011. Dashed lines are the limits of the Autonomous Community of Madrid. Colours as in Fig. 4.
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Fig. 6 e CeA method application. Logelog cumulative distributions with two regression lines (red dotted lines) for obtaining

aTmin and aTmax thresholds. (Top e from left to right) The lower thresholds: aTmin(17/01/05) ¼ 1.973, aTmin(23/04/05) ¼ 1.961,

aTmin(20/07/05) ¼ 1.988, and aTmin(24/10/05) ¼ 1.979. (Bottom e from left to right) The upper thresholds: aTmax(17/01/

05) ¼ 2.057, aTmax(23/04/05) ¼ 2.028, aTmax(20/07/05) ¼ 2.074, and aTmax(24/10/05) ¼ 2.047. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

b i o s y s t em s e n g i n e e r i n g 1 6 8 ( 2 0 1 8 ) 4 2e5 348
All the MFS and singularity maps were performed in

MATLAB. For the singularity map calculation, the

windows-based method was used (Cheng, 2001) to obtain the

singularity exponents of the NDVI map, i.e., the expression (2)
Fig. 7 e CeA method application. Logelog cumulative distributio

aTmin and aTmax thresholds. (Top e from left to right) The lower

aTmin(20/07/11)¼1.997, and aTmin(24/10/11)¼1.999. (Bottom e from

aTmax(15/04/11)¼2.029, aTmax(20/07/11)¼2.059, and aTmax(24/10/1

this figure legend, the reader is referred to the web version of t
was applied using a sliding window (a square window) of

variable sides rmin¼ r1 < r2<…< rn¼ rmax. The sides used in the

analysed NDVI maps were rmin ¼ 3pixels and rmax ¼ 19 pixels

(see Fig. 2). Hence, nine valueswere used to calculate the slope
ns with two regression lines (red dotted lines) for obtaining

thresholds: aTmin(25/01/11)¼1.965, aTmin(15/04/11)¼1.953,

left to right) The upper thresholds: aTmax(25/01/11)¼2.036,

1)¼2.055. (For interpretation of the references to colour in

his article.)

http://dx.doi.org/10.1016/j.biosystemseng.2017.08.008
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Fig. 8 e Non-singular areas shown as black pixels, where aTmin ≤ a(x) ≤ aTmax, for all analysed dates and years. Dashed lines

are the limits of the Autonomous Community of Madrid.
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a(x) by the least-square linear regressionmethod obtaining an

R2 > 0.99 in all the locations.

3.1. Multifractal analysis

An MFA was applied to all NDVI maps previously detailed

(four different dates over two 1-year periods). In all cases, a

linear relationship was found between the logelog plot of the

partition function c(q,r) vs. the scale (r) for a range from 22

pixels side-square (2 km side-square) to 28 pixels side-square

(128 km side-square) obtaining R2 higher than 0.98. From the

slope estimated for each q, a nonlinear mass exponent func-

tion t(q) was obtained reflecting a scaling hierarchical struc-

ture, typical of multifractal measures. The result t(q ¼ 1) ¼ 0

shows the conservative character of the measure. The MFS

was estimated in an interval of q ¼ ±10 with increments of 1

(Fig. 3).

All the MFS are convex parabolic curves (Fig. 3) with a

variable symmetry depending on the studied NDVI season-

dependent maps. In a fractal system, the MFS is shown as a

single point; therefore, these results support the hypothesis of

a multifractal behaviour, rather than fractal, of NDVI maps in
Table 2 e The upper rows “Year 2005 (dry)” and “Year
2011 (wet)” show: % of non-singular areas respect to the
total area for all the analysed dates (seasons). The bottom
row shows: % of non-singular intersection area respect to
the total area for all the analysed dates (seasons).

Winter Spring Summer Autumn

Year 2005 (dry) 41.6% 39.9% 39.7% 34.5%

Year 2011 (wet) 36.6% 46.3% 31.4% 25.6%

Intersection 24.4% 27.2% 24.3% 14.7%
agreement with previous works (Alonso et al., 2017; Lovejoy

et al., 2008).

MFS show important differences in amplitudes and sym-

metries. These concepts can be quantified by the difference of

the extreme singularities (Da ¼ amax � amin) and the difference

of their respective f(a) values (Df¼ f(amax)� f(amin)). In this way,

the wider is Da, the higher is the complexity of the structure

studied in the NDVI map; and the wider is Df, the higher is the

asymmetry presented in the MFS. To follow other works that

use these concepts, we will define right handed if Df < 0 and

left handed if Df > 0 (Alonso et al., 2017). In Table 1, all these

values are shown for all the analysed seasons and years.

Studying the evolution of Da through a year, we realise that

Da yields the smallest value during spring, increasing in

summer and autumn, reaching the maximum value during

the latter season, and then decreasing in winter. This behav-

iour is similar in both years (2005 and 2011), so it is general

cyclic behaviour, independent of whether the year is dry or

wet. The meaning of Da, increasing its value through the

seasons, is that the NDVI maps show a higher hierarchical

spatial structure among scales showing a maximum at

autumn, a season when rainfall begins and temperatures

decrease mainly at the north of ACM.

With respect to the evolution of Df through a year, the

symmetry changes from right handed, in winter and spring, to

left handed, in summer and autumn. This means that lower

NDVI values are driving the scaling behaviour inwinter/spring

as such part of the MFS corresponds to calculations using

negative q values. By contrast, the higher NDVI values are

driving the scaling behaviour in summer/autumn as MFS left

hand corresponds to positive q values. The maximum right

handed asymmetry is achieved in spring, a season with

rainfall mainly in the north of ACM and temperature

increasing rapidly in the south. The maximum left handed

http://dx.doi.org/10.1016/j.biosystemseng.2017.08.008
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asymmetry is achieved in summer, the driest season in ACM

in which higher NDVI values are reflecting areas with higher

soil moisture. The evolution of Df through a year is indepen-

dent of whether the year is dry or wet. However, comparing

the dry year (2005) to the wet year (2011), Df asymmetry in-

creases in winter/spring of the wet year. By contrast, Df

asymmetry decreases in summer of the wet year. In autumn it

is very difficult to establish a pattern due to its high variability,

but it is reasonable to think that it has a similar behaviour to

summer.

Therefore, the cyclic evolution of Da and Df is describing

the variation in complexity and in the importance of high or

low NDVI values through the seasons. Summer and autumn

show higher complexity and the scaling behaviour is domi-

nated by the highest NDVI values. On the other hand, winter

and spring have lower complexity and the lowest NDVI values

are dominating the scaling behaviour. By the MFA, the NDVI

spatial pattern and their scaling properties through the sea-

sons are clearly revealed.

3.2. Singularity maps and CeA method

Two rows of images are shown in Figs. 4 and 5: the NDVImaps

and the singularitymaps for the analysed dates (Fig. 4 for 2005
Fig. 9 e Intersection of the two non-singular areas (2005 and 201

as black pixels. Dashed red lines are the limits of the Autonom
dates and Fig. 5 for 2011 dates). A “jet” colour-map was used

for better visualisation.

The maximum size of the sliding window (19 � 19 pixels)

causes an edge effect on the 256 � 256 images, so that it is

unable to calculate the singularities in a frame 9 pixels wide.

This is the reason that singularity maps have a size of

(256e9) � (256e9) pixels (247 � 247 pixels).

Areas of positive and negative singularities appear on the

singularity maps obtained. It is visually appreciated that

positive singularities (a < 2) represented by reddish colours are

highly correlated with riverbanks in the dry season (summer)

and negative singularities (a > 2) represented by bluish colours

appear mostly on the city of Madrid and outlying cities.

The thresholds to delimit the non-singular areas, aTmin and

aTmax, were calculated by the CeA method. The CeA method

provided the upper and lower thresholds (aTmin,aTmax) for each

of the dates analysed. In Fig. 6 (for year 2005) and Fig. 7 (for

year 2011), logelog graphs are shown with slope-change

points which define the sought thresholds. In all cumulative

logelog graphs it was possible to calculate the slope-change

points due to the existence of two linear segments. The

least-square linear regression method was used to obtain the

equations of both lines and to calculate the crossing point or

slope-change point. The selection of points used for the
1) calculated per season. The intersection areas are shown

ous Community of Madrid.
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regression lines were based on obtaining R2 � 0.98 (Cheng,

1999b).

3.3. Non-singular areas

In Fig. 8 non-singular areas are shown for each analysed date.

Black pixels are the points for which aTmin � a(x) � aTmax, i.e.,

the non-singular areas. Therefore, black connected pixels

constitute potential areas with normal or log-normal statis-

tical distributions.

In Table 2, the percentage of non-singular areas with

respect to the total area is shown for all dates and years. In the

dry year (2005), the percentage of non-singular areas in all

seasons is quite similar, probably due to the lower climate

contrast among seasons. On the other hand, spring is the

season with more non-singular areas in the wet year (2011),

probably due to the greater climate contrast with the other

seasons. Therefore, a majority of normal or log-normal dis-

tributions is expected in spring.

The lowest percentage of non-singular areas is always

found in autumn, independently of the type (dry or wet) year.

This is probably due to the increase of the NDVI spatial vari-

ability, indicating that, for several reasons such as topography

and rainfall heterogeneity, there are certain areas that achieve

a high NDVI value faster than others.

The intersection of non-singular areas per season (inter-

section area) was obtained by intersecting the two non-

singular areas calculated per season (see Fig. 9). Each inter-

section area was obtained as follows:

- Intersection area (winter) ¼ Non-singular area (17/01/05) &

Non-singular area (25/01/11).

- Intersection area (spring) ¼ Non-singular area (23/04/05) &

Non-singular area (15/04/11).

- Intersection area (summer) ¼ Non-singular area (20/07/05)

& Non-singular area (20/07/11).

- Intersection area (autumn) ¼ Non-singular area (24/10/05)

& Non-singular area (24/10/11).

where “&” means “logical and”. This intersection area can be

interpreted as the area which maintains non-singularity over

the two analysed years. The percentage of this intersection

area (per season) with respect to the total area is shown in

Table 2. This percentage gives us an insight into the spatio-

temporal variability of the non-singular areas, since two

extreme years were used for the study (wet and dry years). In

winter and summer this percentage is very similar (~24%). The

highest non-singular intersection area is found in spring

(27.2%). Hence, spring is the seasonwithmore stability in non-

singular areas across years. The lowest intersection area is

found in autumn (14.7%), probably due to the high spatial

variability in NDVI maps.

Figure 9 shows that the spatial distribution of non-singular

intersection areas (black pixels) is extremely dispersed for

each season, confirming the multifractal pattern of NDVI

mapswhere different a-sets are very intertwined. This reflects

the strong influence that climatic factors, i.e. precipitation and

temperature, have in temporal and spatial patterns of NDVI.

At this point it is important to remember that 8 NDVI maps

(and so 8 dates) were selected as representative maps of each
season in two contrasting years, a dry (2005) and a wet year

(2011). Although the results obtained are not statistically sig-

nificant, in strict sense, the differences found in this study are

relevant; pointing out that this methodology could potentially

delimit areas that are statistically homogeneous.
4. Conclusions

First, it was proved that the initial assumption of multi-

fractality applied to NDVI maps is reasonably valid in a

particular range of scales. Then, it was also proved that the

MFS change through the seasons showed a characteristic

pattern. It is important to realise that the bandwidthDahas the

smallest value during spring, showing the lowest complexity of

the scaling structure in the NDVI map. It is also important to

note how the symmetry changes from right handed (Df < 0) in

winter and spring to left handed (Df > 0) in summer and

autumn. This means that in winter/spring lower NDVI values

produce more multifractal complexity than the higher NDVI

values. The opposite happens in summer/autumn.

Then, it was shown that spatial analysis of NDVI concen-

tration by using singularity maps can offer similar in-

terpretations to those Cheng applies in detecting anomalous

element concentrations within a multifractal framework.

Particularly in this study, non-singular areas were calculated

in the singularity maps. Singularity map calculation has been

a useful tool in establishing NDVI areas where normal or

lognormal statistics can be supposed ðay2Þ. To find these

areas, the CeA method was used to calculate where positive

and negative anomalous singularity exponents begin.

It was shown that non-singular areas change through the

seasons and different years. It is important to note that the

percentage of non-singular areas in the spring depends greatly

on the type of year (dry or wet). It takes the highest value of all

seasons inawet year, but it is quite similar to other seasons in a

dry year. By contrast, the lowest percentage of non-singular

areas was always found in autumn, independent of the (dry

orwet) year, probably due to thehigherNDVI spatial variability.

The intersection of singularity maps for every season and

different years could be the starting point for establishing

potential “stable non-singular areas” in time. In this paper it

was shown that spring is the season with the highest non-

singular intersection area. Hence, in this season the highest

amount of area was found which maintained normal or

lognormal statistics through the two different years.

In further research, the use of singularity maps to define

non-singular areas in the index-based drought insurance

context could be explored. An example of drought quantifi-

cation by NDVI is found in the Spanish insurance. In this kind

of insurance, a drought event occurs when the current NDVI is

below a NDVI threshold for a specific period of time. This

threshold is calculated assuming Gaussian statistics “all over

the places”. Therefore, using the singularitymap analysis, this

index-based insurance could take into account the spatio-

temporal variability that NDVI maps show. It will also be

necessary to increase the number of different dates to

improve the statistical significance of the results and to in-

crease the resolution of the analysed images to cover specific

vegetation areas.
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Summary table

Parameter Definition

A(aj,k) Matrix of 256 rows � 256 columns with NDVI values.

mi ¼
P

j;k 2 i�cell
aj;kP256

j¼1

P256

k¼1
aj;k

Measure or normalised probability distribution for the NDVI maps:

probability value of the cell i of side r.

aðx; yÞ ¼ lim
r/0

ln mi
ln r Singularity exponents for the NDVI maps which characterise the

anomalous spatial behaviour.

Aðaðx; yÞ � cÞ Area constituted by singularity exponents a(x,y) greater than a given value c

(CeA model)

Aðaðx; yÞ< cÞ Area constituted by singularity exponents a(x,y) lower than a given value c

(CeA model)

aTmin Threshold in the set of positive singularities calculated by the CeA model.

aTmax Threshold in the set of negative singularities calculated by the CeA model.

Da ¼ amax � amin Difference of the extreme singularities in the MFS

Df ¼ f(amax) � f(amin) Difference of the extreme fractal dimensions in the MFS
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