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Abstract

Understanding the collective reaction to individual actions is key to effectively
spread information in social media. In this work we define efficiency on Twitter,
as the ratio between the emergent spreading process and the activity employed
by the user. We characterize this property by means of a quantitative analysis
of the structural and dynamical patterns emergent from human interactions,
and show it to be universal across several Twitter conversations. We found that
some influential users efficiently cause remarkable collective reactions by each
message sent, while the majority of users must employ extremely larger efforts
to reach similar effects. Next we propose a model that reproduces the retweet
cascades occurring on Twitter to explain the emergent distribution of the user
efficiency. The model shows that the dynamical patterns of the conversations are
strongly conditioned by the topology of the underlying network. We conclude
that the appearance of a small fraction of extremely efficient users results from
the heterogeneity of the followers network and independently of the individual
user behavior.

Keywords: Complex Networks, Social Networks Analysis, Information
spreading, User Behavior, Twitter

1. Introduction

In the recent years, our society has experienced the rise of new ways to
communicate and relate among each other through digital devices. The in-
creasingly affordability of technology, together with the solutions brought, have
turn mobile and Internet devices as one of the fastest growing markets world-
wide [1]. Specially in third world countries where the expanding projections of
technological solutions double those found in the industrialized world [2]. Such
technological revolution has given as a result, a massive amount of data pro-
vided by humans, as they interact with their digital devices on daily basis. The
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nowadays challenge is to turn these unstructured data into valuable information
for policy makers to take better and more intelligent decisions [3].

At the moment, traditional surveys have given important insights to our
societal understanding. However, their cost in time and human efforts, makes
it impossible for them to scale up and bring information of the structure of the
social system behind their observation. Traditionally, the discovery of structural
properties of social networks have been limited to the necessity of mapping a
large amount of interactions between people. In this sense, online social net-
works, such as Twitter or Facebook, have become an ideal source of information
to collect human-to-human interactions and unveil the social structures that
people constitute, which opens an opportunity for researchers to characterize
and model human behavior [4, 5]. These web applications are used on daily
basis by people to post opinions, propagate news and exchange information. As
a result, several commercial, political and social organizations are increasingly
exploiting this communication tool to advertise products, organize campaigns
and disseminate updates on their respective fields.

Twitter, with over 200 million users, is the ideal tool to quickly propagate
short text messages. It is an open debate that the data taken from Twitter
are not necessarily representative samples of the outside world, as they are
constrained to the population that participates in the online conversations [6,
7). However, a social contextualization of the data, combined with a suitable
computational and mathematical treatment, may provide important insights
into how people behave. In fact, the activity performed by users on Twitter has
brought information enough to understand a wide variety of phenomena, like the
prediction of stock market variations [8], the management of natural disasters
[9], the understanding of epidemical diseases [10] and the characterization of
electoral processes [11, 12]. The deeply understanding of these social processes
is crucial to design better strategies and get optimal outcomes from the network
potential.

Recent studies have revealed that most of the information posted on Twitter
is hardly propagated through the network, as 71% of the messages do not travel
any farther than the authors time-line [13]. Among other factors, this spreading
inertia has been attributed to the fact that the novelty of the posted information
decays quite rapidly, which stretches the effective time to attract the collective
attention [14], in addition to the fact that most of the people on Twitter behave
passively [15]. However, in this context, there are people who do influence the
rest of users and are able to get their messages spread through the network, in
a wide variety of proportions.

The keys to success when propagating information on Twitter have been
reported to be a combination of several factors, such as the popularity of the
source, the posting frequency, as well as the novelty and resonance of the message
content [15]. In fact, the largest retweets cascades on Twitter, were found to be
seeded by previously popular users, whose messages contained positive feelings
[16]. However, the efforts of each user to gain influence and get their information
spread on the network is a subject that has not yet been explained. In the sense,
that although users may gain enough influence to transfer information on the



network, this influence is not necessarily archived with the same efficiency, in
terms of the amount of efforts that had to be employed for this matter.

In this work we address the question of which factors, like the individual
behavior or the underlying substratum, determine the users efficiency to have
their messages spread through the network. More specifically, we propose a mea-
sure to characterize the user efficiency to influence the emergence and growth of
retweets cascades, by means of the relationship between the activity employed
by the users and the emergent collective response to such activity, measured
in terms of the number of retransmissions gained. On this basis, we propose
a model to understand the emergence of the user efficiency distribution, based
on independent cascades taking place on networks [17], biasing the probability
of retransmission among nodes, in order to decay as we move farther from the
message source, as we see in the empirical data.

The results indicate that some regular users may gain a similar amount of
retransmissions as the popular ones, but far less efficiently, as they must employ
a much larger amount of activity. Furthermore, we have seen that the emergent
distribution of users according to their efficiency, is strongly conditioned to the
underlying network where information is being propagated. As a matter of fact,
it actually represents a reflection of the dynamical rules behind the spreading
process.

The paper is organized as follows. First, we introduce the system of our study
in section 2, as well as the datasets that we have built and analyzed. Then in
sections 3, 4 and 5 we focus on the empirical measurements that lead us to
state the dynamical rules of the propagation process. After this, in section 6 we
propose a simple model to verify the dynamical processes reported. Finally, we
discuss the effects of the underlying topology and initial user activity behavior
in the emergent dynamical patterns, which we found to be universal on Twitter
conversations.

2. System

The system under study is based on human activity taking place around spe-
cific topics of conversation on Twitter. In this section we give some background
on the user interaction mechanisms provided by Twitter, as well as describe the
datasets that we have built and analyzed.

2.1. Twitter Background

Twitter is a microblogging service where people are able to post and ex-
change text messages limited by 140 characters either from personal computers
or mobile devices. There are several mechanism for users to interact on Twitter.
The first of these is the ability to follow and be followed by other persons. This
is a passive mechanism that allows users to receive all the messages posted by
those who follow, as well as to deliver their own messages to their own followers.
In this sense, it establishes the Twitter followers network, where the users are
connected among each other, through links that determine the explicit ways



where messages are delivered. Previous studies have reported complex proper-
ties in this network [18], like degree distribution with power law behavior, small
mean distance between nodes and modular structure. However, it has been ob-
served that individuals do not actively interact with all of the declared contacts,
but only with a small fraction of them [19]. Among these active mechanisms to
interact, the retweet (or retransmission) is the most popular one to propagate
the received messages throughout the network. By retweeting a message, users
deliver specific information to their own followers, at the same time that endorse
ideas and gain visibility in the network [20]. The study of the retweets cascades
has served to characterize user profiles [21], measure influence [22] and propose
spreading models [23]. At last, all messages on Twitter, may be identified using
keywords called hashtag. This mechanism organize conversations and individu-
als use it to exchange ideas on specific subjects. Recently, the statistical analysis
of the hashtags usage has let prediction on social relations [24] and collective
attention [25].

2.2. Datasets

Using the Twitter Search API version 1.0 !, we have built several datasets
from public access messages. This API provides data from a temporal index of
recent tweets, posted within a lapse of a week from the time the query is made.
The limitations of this APT are not specified as a relative volume of messages, nor
a fixed number of queries, but instead a combination of the queries’ complexity
and frequency. The datasets were built querying for messages with specific
keywords related to topics of conversation that captured a significant part of
the collective attention. Their sizes vary from 10* to more than 10° messages
or participants, as may be seen in Table 1.

First, we considered an online Venezuelan political protest as a case study.
This event took place exclusively on Twitter on Dec. 16th, 2010. Two days
before the protest, the convoker asked his followers to post messages identified
with the hashtag #SOSInternetVE, who responded massively and the conversa-
tion propagated becoming trending topic. We collected up to 421,602 messages,
identified with the protest hashtag, which were posted by 77,706 users, between
Dec. 14-19, 2010 (two days before and after the protest). In our previous work
[26], we found that some influential users acted as information producers, pro-
viding messages that are received by the passive large majority of information
consumers. Besides, we found that users are organized in a community struc-
ture around hubs of different nature, like politicians, humorists or mass media
accounts.

Second, in order to generalize results, other datasets were also built around
other conversation topics of different nature such as sports, news, protests and
political campaigns. The first of these datasets is related to a political scandal
that took place on the Spanish parliament on 2012 due to some unappropriated
comments from a congresswoman that echoed loudly on the social networks.

Thttps://dev.twitter.com/docs/using-search



Table 1: Properties of the studied datasets and their resulting user efficiency distribution
properties.

Keyword Messages Users Iy oy
Andreafabra 35,835 23,498 0.15 | 1.05
Gingrich 93,063 43,061 —0.08 | 1.13
Leones 142, 808 46,608 —0.08 | 1.09
20N 389,988 123,710 | —0.49 | 1.08
SOSInternetVE | 421,602 77,706 —-0.79 | 1.21
Obama 6,818,782 | 2,265,799 | 0.14 | 1.15
Egypt 7,433,542 | 1,180,715 | —0.80 | 1.33

This dataset was built by downloading the hashtag #Andreafabra, which cor-
responds to this person’s name, from July 12th, 2012, to July 23th, 2012. The
second dataset concerns a conversation about a Venezuelan baseball team. It
was built by downloading the messages that contained the team’s name leones
during a 3 weeks period from Dec. 22th, 2010, to Jan. 12th, 2011. Moreover,
we have built another dataset concerning the 2011 Arab Spring, by downloading
the messages that contained the keyword (and hashtag) Fgypt during a 5 week
period, from Jan. 12th, 2011, to Feb. 17th, 2011. During this period the former
Egyptian president was overthrown by the social revolts. Besides, two datasets
concerning the American 2012 elections were built by respectively gathering all
the messages that contained the word Gingrich during a week period from Feb.
29th, 2012, to Mar. 3rd, 2012, as well as the word Obama during the first
televised debate from Oct. 3th, 2012, to Oct. 5th, 2012. Finally, the last of
these datasets is related to the 2011 Spanish electoral process. It has been built
with all the messages that contained the keyword (and hashtag) 20N, which was
used by all parties in reference to the election day on Nov. 20th, 2011. This
dataset comprehends the period from Oct. 29th, 2011, to Nov. 27th, 2011. In
our previous work of this electoral process [11], we characterized the user and
politicians interactions and found that the mass media accounts widely domi-
nated the attention received through the retweets mechanism, while politicians
ruled the mentions scenario.

3. Characterizing the Spreading Behavior

In this section we present the overall behavioral patterns of the conversation
#S0OSInternet VE. We analyze the user activity, as well as the underlying social
network and the emergent retweet network.

8.1. Activity Behavior

The user activity A; is considered as the sum of the original and retransmit-
ted messages, sent by each participant i. Its complementary cumulative density
function (CCDF) presents a broad distribution, as can be seen in Fig. 1A,
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Figure 1: Complementary cumulative density function (CCDF) of (A) user activity, measured
as the number of messages sent by user; (B) in strength of the retweet network; (C) in degree
of the followers network and (D) out degree of the followers network. The dashed line marks
where about half of the users are located in the distribution and the gray regions determine
the area that covers half of the samples. The distributions correspond to the #SOSInternetVE
dataset.



which means that users participated quite heterogeneously in the conversation.
This distribution indicates that up to 53.3% of the participants posted at most
two messages each (dashed line in Fig. 1A), which represents less than 10% of
the total messages posted, while the remaining 90% of the messages were sent
by almost the other half of the population (46.7%), who posted more than two
messages by person. The conversation stream was actually fed from a small
group of the most active users (6% of the participants), who individually posted
from 16 to around 630 messages, and whose activity represent half of the overall
amount of messages (shadow region in Fig. 1A). Previous studies on Twitter
[13], attribute 75% of the overall messages to 5% of the entire population, which
indicates that an unusual high amount of users participated in this protest.

3.2. Followers Network

In the same manner that users post messages quite differently among them,
these messages have also different relevance in the conversation development.
On Twitter, not all the users account the same level of visibility in the message
stream, because the number of recipients, and possible readers, strongly depends
on the source’s in degree on the followers network (see Sec. 2). This social
substratum may be analyzed by the construction of a graph with the protest
participants, linking the users according to who follows who. The resulting is a
directed and non weighted network compound by 77,706 nodes and 5,761,331
links, displaying the structure through which information is delivered and might
be spread. The edge direction goes from the follower to the message source, thus
information flows in the opposite sense of the edges and therefore the attention
received can be measured by means of the in degree k;,. As it can be seen in
Figs. 1C-D, the in and out degree distributions of the followers network present
power law behavior above three orders of magnitude, which is a property of
scale-free networks [27]. This indicates that while 51.7% of the population is
followed by less than 15 users (dashed line in Fig. 1C), there exist a very few
accounts, like the protest convoker, who are followed by over 40.000 users, which
correspond to more than half of all the participants. These popular accounts
are mainly related to mainstream, celebrities, politicians or popular bloggers,
and whose messages are widely received among the protest participants.

In order to unveil how these heterogeneous users interacted with each other,
we calculated the assortativity by degree coefficient [28] for this followers net-
work. The network resulted to be disassortative (r = —0.10), which reveals the
asymmetric configuration, where the hubs that concentrate much of the incom-
ing links, are often targeted by regular users, who do not receive much of the
collective attention. Although social networks have been reported to be assor-
tative [28], this pattern changes in the online world, where disassortativity is
usually found [29]. This is due to the new mechanisms that allow regular people
to interact and communicate with popular accounts, like following them in the
case of Twitter.



Figure 2: Visualization of the retweet network emergent from the message propagation on
the followers network. (A) Subgraph of the retweet network (green) superimposed to the
corresponding followers network (black), from the #SOSInternetVE dataset. In the figure a
subset of 1000 random nodes (yellow and red) are presented. The node size is proportional
to the respective in degree on the followers network. (B, C and D) Example of the formation
of the retweet network from independent retweet cascades on an artificial followers network.
(B) shows when two users (red nodes) post independent messages which are received by their
followers (gray). (C) shows when some users retweeted the message (yellow) and this message
arrives to their followers (gray). (D) shows the final shape of the cascades on the network,
compound only by the activated nodes (red and yellow) connected by the green links. The
white nodes and gray links represent the rest of the substratum (followers network) who did
not activate. (E) shows the schema of a single cascade. The black circles determine the
cascade layers.



3.3. Retweets Network

The heterogeneous behavior of the followers network, gives place to a high
level of disparity in the reception of the messages and consequently in the in-
formation spreading process. To further understand it, we analyzed the retweet
network that emerged from the mentioned conversation. In this network nodes
represent users, and edges are created according to who retransmits whose mes-
sages. The edges are directed and weighted according to the number of times
users retweeted each other, plus the number of subsequent propagators that
retweeted the same message. This network can also be seen as the aggregation
of independent retweet cascades, that respectively occur when a single message
is retransmitted by any user to its followers, allowing them and their own follow-
ers, to do the same. An example of the resulting structure is shown in Fig. 2A;
where a subset of the retweet network (green edges) has been plotted, super-
imposed to the respective subgraph of the followers network (gray edges). The
red nodes represent those who posted an original message and the yellow nodes
represent the message propagators (those who retweet). It can be noticed that
the retweet network represents a subset of the followers graph where messages
are actually being propagated. This graph evidences that people are more selec-
tive to actively interact with their declared contacts than just receiving updates
from them [19].

In order to explain the dynamical process behind these cascades, an scheme
of the evolution of two cascades on an artificial followers network is sketched from
panels B to D in Fig. 2. In panel B two independent messages are respectively
posted by the red nodes and received by their followers (gray nodes). Some of
these followers retransmitted the messages (yellow nodes), through the green
edges, and others did not (white nodes), as shown in panel C. Accordingly, in
panel D some of the followers of followers retransmitted the message (also yellow
nodes), and the final shape of the cascades may be appreciated. To summarize
it schematically, a single retweet cascade from the dataset is presented in Fig.
2E. The white nodes do not belong to the cascade, as we only consider those
who actively participated in the retransmission process. Using this schema some
of the main cascade properties will be explained in the remaining section, such
as the amount of retransmissions gained by user, as well as the cascade size,
depth and rate of retransmission.

The first property we analyzed is the number of retweets gained by user, R;,
which may also be considered as the node i in strength of the retweet network.
This quantity may increase either from cascades originally seeded by i, as well
as cascades where 7 acted as a propagator. For example, for the cascade shown
in Fig. 2E, R; would take the following values: Ry = 15, which is the total
number of users who retweeted the message originally posted by the node 0,
either directly (nodes 1 to 11) or indirectly (nodes 12 to 15). Accordingly,
Rg = 2, since the node 8 has been retweeted by nodes 15 and 14; Ry = Ry = 1,
since node 1 and 4 have been retweeted by node 12 and 13 respectively; and
finally Ro = R3 = R5 = Rg = R7 = Rg = R190 = R11 = 0, as no one retweeted
them.



In Fig. 1B, we present the results of R; for the considered conversation.
It can be noticed that R; is distributed following a power law behavior, where
only 25% of the overall users got retweeted at least once. This means that
those messages from the remaining 75% of users had no effect on the growth of
the retweet network. In fact, this network is widely dominated by 0.4% of the
participants, who concentrated half of the sum of the users R; (shadow region in
Fig. 1B). After identifying who represent these influential accounts, we found
them to be compound by popular users, who often appear in the traditional
media and catalyze the diffusion of opinions behavior, as well as concentrate
most of the collective attention.

Another property analyzed is the cascade size, which is defined as the total
amount of nodes that have been activated in the context of a given cascade. In
the example shown in Fig. 2E the resulting cascade size would be 16, as we
have 1 author (node 0) plus 15 propagators (nodes 1 to 15). In the studied
conversation, this property is distributed following a power law behavior, as
presented in Fig. 3A. This indicates that most of the cascades are extremely
small, as more than half of them (60%) are compound at most by 2 persons
besides the author, and just a small fraction are large, since around 5% of them
have more than 10 users, and 0.03% present more than 100 participants.

In order to understand the cascades structure, we have divided them by
layers, as shown with the black circles in Fig. 2E. The cascade layer indicates
the number of hops from a propagator node to the source node, through the
cascade links. The users correspondent to the layer [ = n represent those who
retransmitted the message coming from a user of the previous layer | =n — 1.
In Fig. 2E, the message author (red node) stands alone in the layer [ = 0, while
in the consequent layers, we find those nodes who retweeted the message, like
the nodes 1 to 11 in layer [ = 1, and the nodes 12 to 15 in layer [ = 2.

The cascade depth d corresponds to the farthest layer from the message
source, in which a node has been activated. In the example shown in Fig. 2E, it
would take the value of d = 2. In the analyzed conversation, the probability of
a cascade to have a certain depth, P(d), is presented in Fig. 3B. Those cascades
of depth d = 0, represent original messages that were not retweeted by anyone,
which comprehends close to 80% of them. In this sense, only 17% of the cas-
cades just have one layer of retransmission (d = 1), and this quantity decreases
exponentially as we move farther from the message’s source, reaching a maxi-
mum depth of d = 6 layers with a very low likelihood (~ 107°). This indicates
that the retweets cascades found in this conversation are quite shallow, which
might result counterintuitive, as we would expect retransmissions to increase
directly to the message’s visibility, which should increase with each retrans-
mission. However, shallow cascades have been detected on Twitter in works
of influence dynamics [16] and prediction of urls propagation [21], as cases of
different media, like the flow of emails inside a corporation [30]. It has been
shown that information tends to loose its capacity to attract attention when we
move farther from the author’s social surroundings, and hence the probability
of a cascade to grow is inversely dependent on the distance from the source node
[31].
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Figure 4: Scatter plot of the retransmissions gained by user versus its activity and colored
by its number of followers. Dots represent users. Data correspond to the #SOSInternetVE
dataset.

Finally, the rate of retransmission at each layer, \;, is estimated by averaging
the ratio between the number of users who retransmitted a message normalized
by the number of individuals who received it at each layer, taking into account
the followers network information. The results are shown in Fig. 3C, and it
shows that A\; ~ 0.01 for [ > 1, while in the first layer the average retransmission
ratio reached up to 5% (\; ~ 0.05) of the exposed users.

4. Efficiency of Human Activity

At this point it has been shown a significant heterogeneity in the users
behavioral patterns, in terms of the activity distribution (number of messages
posted) and the attention received (number of followers and retweets gained).
However, the way these measures are correlated, and their relation to the user
efficiency to spread information remains unanswered.

In Table 2, the Pearson coefficient between the users number of followers
F (measured as the k;, in the followers network), retweets gained by user R

12



Table 2: Pearson correlation (r) by user of the number of followers (F), retweets (R) and
activity (A), from the #SOSInternetVE dataset.

Topic TFA TFR TRA

SOSInternetVE  0.07 0.57 0.17
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Figure 5: Scatter plot of the user in degree vs out degree in the followers network, colored by
the respective user efficiency. Dots represent users. Data correspond to the #SOSInternetVE
dataset.
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and activity A, are presented. It can be noticed that there is no correlation
between the number of followers and activity employed (rp 4 = 0.07), which
means that the amount of messages posted is independent of the user position
in the followers network. However, there is a strong correlation between the
number of followers and the retransmissions gained (rp r = 0.57), which means
that the most retransmitted users tend to be the most followed ones as well.
Besides, there is a positive correlation between the number of retransmissions
and activity employed (r4 r = 0.17), which indicates that the chances of being
retransmitted increase with every message posted for all users.

In Fig. 4, we present a scatter plot of the retweets gained by user as a func-
tion of its activity and colored by the user k;,, in the followers network. It can be
clearly noticed that the most retransmitted users are also the most followed ones
(red dots), independently of their activity. However, some less followed users
(green or yellow dots) may also gain a significant amount of retransmissions,
but by means of a considerable increase in their own activity. These users are
located around the straight line of slope 1, and their retransmissions gained are
proportional to their activity. Finally, some not so followed users (blue dots in
Fig. 4 below the dashed line), who are vast majority of the population, needed
to post an enormous amount of messages to gain, if any, a few retransmission
at most.

The fact that not all the participants must employ the same amount of ef-
fort, to accomplish the same level of retransmissions, implies that users have
an individual efficiency to get their messages spread by others. This user ef-
ficiency, n, may be understood as the ratio between the collective response to
the individual efforts. It is a metric of influence in the network, quantified as
the amount of retransmissions gained by user with each message posted, defined
according to the following expression:

i = E (1)

where R; is the number of retweets gained by user 7, and A; is the amount of
messages posted or retweeted by the user i. Those users whose n > 1 get more
retweets than the number of messages posted and therefore are more efficient to
spread their information in the network and consequently gain more influence,
in comparison to those users whose 77 < 1, that employed larger efforts to obtain
similar outcomes.

In Fig. 5, we present a scatter plot of the users degree in the followers
network, k;, and k¢, colored by their efficiency 1. It may be noticed, that
the users who present an efficiency n > 1 (green, yellow, orange and red dots)
are mostly located below the dashed line of slope one, which means that their
audiences (k;,,) are larger than their sources of information (ko ), which implies
a certain level of popularity in the network. Specially, those whose n >> 1
(orange and red dots), who may be followed by more than 10* users, but they
only follow less than 10 users. Meanwhile, the users who present a low efficiency
(blue dots), tend to receive messages from much more sources than the size of
their audiences (kour > kin), and also have a smaller amount of followers. This
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Quantile plot (C) of the user efficiency distribution, filtered by the in degree in the followers
network Kf:L. The distributions correspond to the #SOSInternetVE dataset.
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means that these users hear more information from the network, than what they
are actually listened.

However, the mean efficiency value seems to be close to 1 (R; ~ A;), as shown
in the user efficiency n distribution presented in Fig. 6A, which means that in
average most of the users who got retweeted, gained as many retransmissions
as the amount of messages posted. Besides, the users whose n >> 1, represent
a minority part of the population, as clearly shown in the 7 complementary
cumulative distribution in Fig. 6B. It can be noticed that less than 2% of
the retweeted population gained more than 10 retransmissions by message sent
(dashed line in Fig. 6B), 0.2% gained over 100 retransmissions by message sent
(dotted line in Fig. 6B) and just one user gained over 1000 retransmissions with
a single post.

In order to further understand the n distribution, we have superimposed in
Fig. 6A-B the correspondent lognormal curve, with the mean and variance taken
from the empirical observations (see Table 1). It is known that lognormal dis-
tributions arise from multiplicative growing processes, like branching processes,
as they may be explained by the central limit theorem, in the logarithmic scale
[32]. An example of these processes are found in viral marketing campaigns
[33, 34], where the number of leaves grow multiplicative as the branches split
like the cascades shown in section 3.3. It can be noticed that the initial part of
the distribution fits quite well the lognormal curve, but right after its maximum
the distribution changes the scaling behavior, apparently to a power law, which
we have also superimposed in Fig. 6A with a dashed line. This means that
there is a higher concentration of users who gain a larger amount of retransmis-
sions by message posted, than what is expected for a lognormal distribution.
These highly efficient users correspond to the hubs of the followers network as
can be appreciated in Fig. 6C, where we have plotted the Quantile-Quantile
plot of the n distribution in comparison to the lognormal distribution, filtered
by the number of followers. If n would follow a lognormal distribution, all the
points would appear in a straight line, which actually happens for the users who
present less than 1000 followers. But, as we consider the most followed users,
the curve begins to change its behavior, suggesting that the underlying network
topology is responsible for such deviation. This point would be further analyzed
in section 6.1.

In summary, we have seen two kind of users who may gain a significant
amount of retransmissions. One of them, are the highly connected users in
the followers network, which have no need to follow other people, and with a
high efficiency, gain a much larger amount of retweets than their own messages.
While, there are other not so well connected users, who may also gain a lot of
retweets, but in a less efficient way, since they need to post much more messages
than the highly efficient ones.

5. Universality

In order to identify whether this distribution is constrained to the present
case study or rather represents a consequence of an universal feature of the
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interaction mechanism, we have calculated the user efficiency (n) for other con-
versations on Twitter. Specifically, we performed the analysis over six different
datasets described in section 2 and whose features may be found in Table 1.
All of them belong to different contexts and their sizes include several order of
magnitude in terms of the number of posted messages and participant users.
The results of the emergent 7 distributions from these datasets are presented
in Fig. 7, plotted in ascendant order according to their size (from A to F). It
can be noticed that the lognormal distribution emerges, even when the small-
est datasets are considered (Fig. 7A-B). However, as the size of the dataset
increases, the effects of the presence of highly efficient users is more evident in
the distributions, which present a very similar shape as the one found for the
#S0SinternetVE conversation (Fig. 6A).

Given the fact that the size of the datasets cover from four to six orders of
magnitude and correspond to topics of different nature, it is remarkable that
the resulting distributions present a very similar shape. This ubiquity of the
resulting patterns, strongly suggests the existence of an universal behavior in
the relation between the individual efforts, managed by the user, and the col-
lective reaction to such efforts, which is an emergent property of the underlying
network. So we open the following question: what factors cause the emergence
of such distribution? In the next section we will propose a model to explain the
emergence of the observed distribution.

6. Model

In order to model the propagation of retweets that took place on the #SOS-
Internet VE conversation, we propose a spreading mechanism based on indepen-
dent cascades [17] taking place on the followers network. In this model, nodes
are activated in analogy to having posted a message, allowing their neighbors
to also activate, like having retransmitted the received message, following the
cascade schema shown in Fig. 2. Each message may trigger an independent
cascade regardlessly of the author’s previous activations. Besides, nodes may
belong and participate in several cascades at the same time.

In the context of a given cascade, when a node ¢ has been activated, it has a
single chance to activate each of its neighbors (followers), j, located at [ layers
away from the message source. Thus the spreading probability depends on such
distance [. In the sense that, the probability of a node j to retransmit a message
at [ layers away from the source, is given according to the probability of the
cascade to grow vertically and have a depth of at least ! layers, P(d > 1), and
the probability to grow inside the layer [, given by ;.

The user activity A; is given as the result of all the messages posted by i: as
a source in layer [ = 0 (A; ) plus all the retweets made by ¢ at I steps farther
from the message source (A;;|l > 0), in the following way:

dmax

Ai=Aio+ Z Aiy (2)

=1
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where d,y,q, is the maximum cascade depth allowed. On one hand, A4; ¢ is an
independent random variable with density distribution P(Ap), and represents
the initial conditions for the spreading process. On the other hand, A4;;[l > 0
is not independent and it rather represents a consequence of the propagation of
other nodes’ activity. Among other factors, this quantity depends on the amount
of messages received by ¢, which is proportional to the amount of people who 4
follows on the underlying followers network (k; out)-

From this perspective, we define the retransmissions gained by user ¢ in the
following way:

7na'1:_1

d
Ri= Y R (3)
=0

where R;; represents the retweets gained by the node ¢ due to its given
activations at the layer [ in all the cascades. This means that a node ¢ may gain
retransmissions either from the messages originally posted by it (R; ), as well
as from messages retweeted by 4 at [ layers away from the source (R;;). On
this basis, the value of R;; depends on the number ¢’s followers, as well as the
followers of followers, and so on, until reaching the maximum depth considered
for a possible node activation, given by d;,q.. Hence the sum upper limit in eq.
3 is one layer before this value.

In order to simulate the model, we must define the underlying network where
the propagation process would take place, as well as the initial user activity
distribution P(Ap). Then the messages are spread taking into account the
probability of a cascade to reach [ layers P(d > [) and the retransmission rate
in a given layer )\;. Finally after all the initial activations are performed and the
triggered cascades extinct, we calculate the efficiency 7 for each user according
to eq. 1, as well as the correspondent density distribution.

0.1. Results

We applied the model to two followers networks from the considered datasets.
One of these networks corresponds to the present case study #SOSInternetVE
and the other one is constructed from the #20N dataset (see Fig. 7D). The
results of the user efficiency and retweets distribution are shown at the top
and bottom panel in Fig. 8 respectively. These results correspond to the
average value of 50 model realizations. In both cases, the system has been
initially excited using an heterogeneous user activity distribution in the form:
P(Ap) x Ay 14" and the spreading probabilities were taken from the cascade’s
characterization, given in Fig. 3. It can be noticed that the resulting efficiency
distributions in Fig. 8A and C (blue crosses) present a very good agreement with
the empirical data (open circles) in both cases. In fact, the distributions also
presents the different scaling behavior at the right side of the curve. Besides,
the resulting retweets distributions in Fig. 8B and D (blue crosses), are also in
very good agreement with the empirical data (open circles). These results show
that the distributions analyzed are a reflection of the dynamical process behind
the message spreading, which happens on Twitter by means of the retweets
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Figure 8: Model results to the user efficiency distribution (left column) and retweets gained
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to the followers network from the #SOSInternetVE dataset (top panel) and the #20N dataset
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efficiency distribution (left column) and retweets gained by user distribution (right column).
The model has been applied to the followers network (blue crosses) and their randomized
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and #20N (bottom panel). In all cases, an heterogeneous initial activity distribution P(Ag) o
A51'4 has been considered.
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mechanism in independent cascades, where the probability of a cascade to grow
decays as the message travels through the network, independently of the social
context. After having validated the spreading mechanism, we are able to use
the model to control the effect of the different factors that determine the user
efficiency patterns, such as the heterogeneity of the underlying network topology
and the characteristics of the individual user behavior (activity distribution).

First, we analyze the effects of the heterogeneity of underlying network topol-
ogy on the spreading process. For this matter we applied the model to two dif-
ferent kind of substrata: the followers networks, from the datasets #SOSInter-
netVE and #20N, and their randomized versions. These randomized networks
were built to avoid the presence of hubs and create homogeneous users profiles,
by rewiring the edges so the degree distribution would follow a Normal curve
instead of a power law, but maintaining the average number of edges per node.
The resulting n distributions after having excited the system with the same het-
erogeneous P(Ag) are plotted by red x symbols in Fig. 9A andC respectively. It
can be noticed that the distributions from these homogeneous networks present
a different behavior than the ones obtained from the empirical observations and
the modelled ones on the followers networks. There is a slightly lower density
of the low efficient users, but more importantly, the highest values of the distri-
bution are almost two orders below the empirical values, apparently following a
lognormal behavior. However, the retweets distributions in Fig. 9B and D (red
x symbols) still present power law behavior, due to the heterogeneity of P(Ay),
although the probabilities of retweet are lower. In both cases, this means that
an homogeneous society would allow users to gain an extremely high amount of
retweets, only by means of employing an enormous amount of initial activity as
well, since the user efficiency is strongly limited to the available connections on
the underlying network.

Second, to study the effects of the individual user behavior, given by the ini-
tial activity distribution, we also applied the model to both followers networks
(the case study #SOSInternetVE and the #20N dataset) and their random-
ized versions, but in this case considering an homogeneous P(Ap), in the form:
P(Ap) = 1/6 where Ay € [1,6], instead of the heterogeneous one previously
considered. The results of applying this homogeneous user behavior to the
heterogeneous followers networks are presented by blue crosses in Fig. 10. It
can be noticed that the resulting user efficiency distributions in Fig. 10A and
C, present the same behavior on the right side of the curve as the empirical
observations (open circles), even though the considered user behavior is radi-
cally different than the empirical one. Besides, the retweets distribution (Fig.
10B and D) also coincide quite well with the empirical observations and hardly
changes in comparison to the distributions obtained when users posted messages
in a heterogeneous way. However, if we change the substrata to their random-
ized versions, the model results no longer reproduce the empirical behavior and
all the distributions loose their heterogeneity (red x symbols in Fig. 10). This
confirms that the emerging patterns are not dependent on the way users post
original messages, but instead a consequence of their heterogeneous connections
on the underlying network.
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In the case of Twitter, the followers network also represents the way that
the collective attention is organized. On this basis, this model has shown that
if this collective attention is distributed heterogeneously among the population,
the way users post messages has no further effects in the efficiency distribu-
tion, nor the retweets distribution, since the high aggregation of users around
the influential ones is what produces such large collective reactions. In turn,
if users would pay attention to each other homogeneously, as the randomized
version of the followers network, then the retweets gained by user would be a
reflection of the frequency and amount of posted messages, and the efficiency to
gain such retweets would be strongly limited by the properties of the underlying
substratum. However, despite the fact that in an homogeneous society it would
be more difficult to find extreme cases of high efficient users, the density of
extremely low efficient users also decreases when the attention is shared homo-
geneously among the collective. Therefore, this evidences that in order for some
users to gain attention from the collective, others must loose it at the same time.

In summary, we have been able to model the efficiency of users to spread their
opinions during Twitter conversations, and found that the emergent patterns
are remarkable influenced by the underlying network topology. We have shown
an evidence of the robust but vulnerable property of complex networks. In the
sense that complex networks appear to be robust for most of the external exci-
tations, as most of people post messages that do not travel at all, but vulnerable
for selected excitations, as the activity performed by the highly efficient users
have a remarkable impact in the resulting patterns [35]. This effect is also mea-
sured through the macroscopical property of the percentage of retweets on the
overall posted messages. In the protest 47% of the messages were retweets, while
our simulations gave 45 + 3% for the followers network and 40.3 + 0.1% for the
randomized version. This additional 5% of retransmissions were only possible
due to the complex organization of the network.

7. Conclusions

While spreading processes have been largely studied across several disci-
plines, accurate models to explain empirical dynamical processes are still an
open field. In this paper we have performed a quantitative analysis of the
structural and dynamical patterns of the activity on Twitter during an online
political protest and generalized our results to other online conversations. We
found that the activity is fed by a small group of very active users, while the
large majority hardly participated. As part of this activity there are interactions
that determine the collective attention, which we found to be dominated by a
very small group of highly influential users. However, if any, the rest of users
gain influence in proportion to the activity they employ. Although, for the large
majority of users the efforts are usually higher than the results. We propose
a way to measure this bonding between actions and reactions, as the ratio be-
tween the retransmissions gained and user activity, that we understand as the
individual efficiency to have messages spread in the network and hence it can be
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considered as a measure to be influential in the information spreading process.
We found this measure to be universal across several Twitter conversations, as
it is distributed following a lognormal distribution with a larger density of users
at the higher orders, in all the studied cases. We propose a model to explain the
nature of the efficiency distribution, based on biased independent cascades on
the followers networks. The model results unveiled the effects of topology and
individual behavior into the emergent dynamical patterns. More particularly, it
revealed that the emergence of a small fraction of highly efficient users results
from the heterogeneity of the underlying network, rather than the differences in
the individual user behavior. In fact, we found that in an homogeneously or-
ganized society we would need a much larger population to find the same level
of influence to diffuse information that we get by complex and heterogeneous
organizing. We conclude that although individuals may have remarkable psy-
chological and contextual differences, the dynamical patterns are due to simple
and universal interaction mechanisms.
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