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Abstract

Sizeable differences between OLS and IV estimates might be interpreted in the
literature as evidence that the instrument is not valid. Yet, to the best of my knowl-
edge, this comparison is carried out using only the OLS coefficient as a benchmark
but without taking into account any statistical measurement or information from the
OLS regression. This paper establishes a framework where Oster (2017)’s methodol-
ogy might be used to compare objectively OLS and IV estimates. This methodology
offers evidence to support or discard validity of the instrument.

Keywords: instrumental variables, comparison IV and OLS estimates, instrument va-
lidity.
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1 Introduction

Instrumental variables techniques are a fundamental method in the econometrics toolkit
in order to solve both issues of endogeneity and measurement error (Angrist and Krueger
2001; Angrist and Pischke 2008). A common approach in econometrics is to interpret con-
siderable differences between the size of Ordinary Least Squares (OLS) and Instrumental
Variables (IV) coefficients as evidence against the validity of the instrument. The intu-
itive appeal of this strategy is that the OLS regression can be informative about the true
effect the researcher wants to estimate. Nonetheless, in the literature, to the best of my
knowledge, there is no formal methodology to compare these two estimates.

Oster (2017) makes use of information from the OLS regression - such as, inclusion of
controls, size of variances and movement of R2, etc.- to estimate a set of values where the
true treatment effect should lie. The size of such set depends on how “informative” the
observables are about the unobservables according to the researcher. Consequently, this
methodology allows the researcher to compute a parameter to develop a formal bound-
ing argument. This parameter is known as coefficient of proportionality and measures the
relative size of the proportionality between selection on observables and unobservables.
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This article argues that this methodology might be useful to make objective compar-
isons between IV and OLS estimates. To this end, taking into account that the IV esti-
mates measure the effect only for the population whose choice of treatment is affected
by the instrument, this paper suggests that larger (smaller) values of the coefficient of
proportionality are evidence against (in favour of) the validity of the instrument.

The main contribution of this paper is to suggest a formal methodology through which
scholars can compare IV and OLS estimates. First, this paper is related to several recent
papers comparing the relative size of such two estimates without a formal methodology
(see, among others, Alesina et al. (2013); Mejia and Restrepo (2013); Bhuller et al. (2020);
Liu (2020). Second, this paper is also related to a branch of the literature that uses observ-
ables to asses the bias generated by unobservables in OLS settings (Murphy and Topel
1990; Altonji et al. 2005a,b, 2010; Oster 2017; De Luca et al. 2019).

The rest of the paper is divided in the following sections. Section 2 introduces the
methodology intuitively and suggests how to implement it. Section 3 applies the method-
ology to different settings. Section 4 briefly explains how to use this methodology in Stata.
Section 5 concludes.

2 Intuition

Let the population regression function (hereinafter, PRF) be given by the panel data
regression:

yih = α1 + β1dih + γwih + θ1Xih + ε1ih (1)

where, for each variable, ih denotes unit i at time h. d is the (scalar) treatment we are
interested in, w is the vector of unobserved controls and X is the vector of observed
controls. Given the nature of w we can only run

yih = α2 + β2dih + θ2Xih + ε2ih (2)

If we are in a setting where the assumptions exposed in Oster (2017) are plausible we can
take into consideration the proportional selection relationship given by:

δ
Cov(dih, Xih)

V ar(Xih)
=
Cov(dih, wih)

V ar(wih)
(3)

which holds for some δ 6= 0.
Now consider the simple univariate setting. We know that in the case where w is the

only control, and it is omitted from the regression, the omitted variable bias is given by:1

β̂2 = β1 + γ
Cov(dih, wih)

V ar(dih)
(4)

Recall that if the instrument is valid the IV coefficient consistently estimates β1. There-

1The univariate setting is useful to develop intuition. Appendix Section A develops the multivariate
case. Results are similar.
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fore, given equation (3), we can compute how large δ needs to be to support the difference
in size between the OLS estimates β2 and the candidate to be the true effect β1, the IV es-
timates. Plugging equation (3) into equation (4) and solving for δ we can easily get:

δ = (β̂2 − β1)
V ar(dih)V ar(Xih)

γV ar(wih)Cov(dih, Xih)
(5)

A low coefficient of proportionality is evidence in favour of the IV estimates. Put it
differently, a low δ means that not much selection on unobservables is needed to support
that the true effect is the one estimated by the IV regression. Intuitively, δ tells us how
large selection on unobservables, compared to observables, needs to be to support that the
”true effect” has the size of the IV estimates. Since this analysis takes into account inclu-
sion of controls, size of variances and movement of R2, among other things, large values
of δ might imply either that the instrument is not valid or that there are heterogeneous
effects and the IV estimates are estimating them for a subpopulation (Angrist and Imbens
1995). In this circumstance (i.e. a large coefficient of proportionality) to distinguish be-
tween the two cases this methodology might be complemented using Masten and Poirier
(2018) and carrying out an analysis, as in Bhuller et al. (2020), to explore whether in the
data there is empirical evidence supporting the IV is estimating heterogeneous effects for
a subpopulation.

In empirical settings in order to compute the identified sets it might be important to
establish the sign of δ. In the simplified equation presented above (i.e. equation (5)) the
sign of δ only depends on the sign we assume γ has, since variances are positive and
we can estimate from the data all the other objects of the equation. This formula is a
simplification drawn from the univariate setting, still the intuition is clear: giving the
known sign of (β̂2 − β1) and Cov(dih, Xih), we can guess the sign of δ depending on the
sign of the effect we think the omitted variable has in the main regression. Once we have
the sign we can compute the identified set for coefficients of proportionality with that
sign to check how the bounds of the set vary as the coefficient of proportionality varies.

Lastly, a key input to estimate the identified set is the selection of the value that theR2,
statistic would take in a hypothetical full regression, a regression with both observables
and unobservables (i.e. equation (1)). Oster (2017) denotes such value as Rmax. To select
Rmax prior knowledge of the setting is crucial.2 Namely, whether the researcher believes
the full regression can explain the outcome variable completely. If this is the case Rmax is
set to 1.

Implementation:3

1. Set the sign of the coefficient of proportionality δ depending on the regression and
the omitted variable the researcher wants to adress. Equation (5) can be helpful to
this end.

2Oster (2017) discusses this issue in detail.
3This implementation is similar in spirit to the “Statements about δ” subsection discussed in Section 3.4

of Oster (2017). Unlike the afore-mentioned subsection, we do not have a suggested upper bound for δ.
However, we would expect |δ| > 1 since in our framework the IV regression is run since the OLS regression
cannot pin down a causal relationship.
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2. Set Rmax according to knowledge of the setting.

3. Compute the exact value of the coefficient of proportionality δ, with the sign esti-
mated above, that could explain the IV estimates.

4. This value measures the minimum amount of selection on unobservables (compared
to observables) needed for the treatment effect to have the same size of the IV esti-
mates (i.e. for the IV estimates to lie in the identified set). Consider/discuss whether
this value is too large.

3 Empirical validation

This section makes use of different data sets to explore how to use the methodology
introduced in the previous section. Comparing the OLS and IV estimates simply due to
their relative size is not enough to assess whether the latter is a credible estimate of the
true effect.

3.1 Observational data, example 1

In this section I use data from Ciacci (2018) where I estimate the effect of penalizing
the purchase of prostitution on rape. Given selection into treatment in this setting, re-
verse causality and omitted variable bias are the main concerns connected to endogene-
ity of the treatment variable. Reverse causality arises from the concern that past values of
rape could affect fines for sex purchase: prostitutes might prefer to locate in regions with
low rapes. Omitted variable bias arises since I cannot control for variables that displace
prostitutes. Such variables are negatively correlated with fines and positively with rape,
leading OLS estimates to be downward biased.

To address these issues I use two instruments that exploit variation in flights to proxy
access to sex tourism. The key identification assumption is that variation in the offering
of intercontinental flights is independent of rape and fines for sex purchase patterns. In
other words, the choice of flight companies to offer relatively more intercontinental flights
does not depend on any reason connected to rape or fines for sex purchase. This seems
plausible since to the best of my knowledge there is no evidence of flight companies that
choose to offer more flights due to any reason connected to crime patterns.

My structural regression is:

log(1 + rapermy) = βfinesrmy + αr + αm + αy + αr ∗ y + γofficersry + εrmy (6)

where r stands for region, m for month and y for year. The dependent variable is
log(1 + rapermy) I use the variable in logs due to the dispersion of the distribution of
rapes and log(1 + y) since rape may take value 0, finesrmy is the number of fines for
sex purchase issued by police officers in region r in month m and year y; αr, αm, αy are
respectively fixed effects for region, month and year; αr ∗ y is a region-year trend and
the control variable officersry is the number of police officers in region r in year y since
police officers are hired regionally every year.
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Therefore, as for equation (3) in this setting, dih is fines for sex purchase, Xih is the
number of police officers andwih are the omitted variables and past values of the outcome
that displace prostitutes. In order to use Oster (2017)’s methodology the researcher needs
to assess whether equation (3) is plausible in this setting. In this case this assumption boils
down to whether we believe that selection on unobservables that displace prostitutes
is proportional to the number of officers. To this extent, where there were higher past
values of rape, currently there should be fewer prostitutes but more officers. Hence, the
two appear to be oppositely related (i.e. negative coefficient of proportionality δ). Put it
differently, in this setting it makes sense to suspect:

• Taking into account previous literature (see, inter alia, Farley and Barkan (1998);
Farley et al. (2004)), unobservables (e.g. past values of rape) correlated with observ-
ables (e.g. officers) are positively correlated with the outcome variable (y following
the nomenclature of 2), rape.

• The treatment variable: fines for sex purchase, d following the nomenclature of Sec-
tion 2, is positively correlated with control variables, given results from the first-
stage regression (available upon request).

Given the difference between the OLS and IV estimates, the sign of these two correla-
tions imply the coefficient of proportionality δ is negative in this case.

Table 1 shows the coefficients estimated by Oster (2017)’s methodology setting a neg-
ative sign of the coefficient of proportionality δ and Rmax = 1. The first ten rows of Table
1 show how large the coefficient of proportionality δ needs to be, column (1), to iden-
tify a coefficient of the size of column (2). In particular, for each value of δ the identified
set is given by the coefficient estimated using Oster (2017)’s methodology and the OLS
estimate.

The next-to-last row of Table 1 displays the OLS coefficient, whereas the last row
shows the IV coefficient. Note that the latter is about 14 times larger than the former.
At first sight this difference might appear considerable, however, taking into account Ta-
ble 1, Oster (2017)’s methodology highlights that a negative coefficient of proportionality
with size 1.16 is enough to identify a set that includes the IV estimates.4 In other words,
as long as selection on unobservables is slightly larger (i.e. 16 %) than selection on ob-
servables it is enough for the true treatment effect to have the size of the IV estimates.5

4The sign of the coefficient of proportionality δ is consistent with equation (5).
5This set could even seem conservative since officers are hired yearly per region. Hence, it is reasonable

to expect that they might fluctuate relatively less compared to most crime variables.
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Table 1: Comparison of OLS and IV estimates

(1) (2)
δ Coefficient

-1 0.01620
-2 0.03490
-3 0.07020
-4 0.11010
-5 0.12640

-10 0.15010
-20 0.15960
-50 0.16490

-100 0.16660
-1000 0.16810

Technique Coefficient

OLS 0.00130
IV 0.01890

Notes: This table shows the bounds of the identified set using data from Ciacci (2018). Column
(1) shows either the value of the coefficient of proportionality δ or the technique used. Column

(2) shows the value of the associated estimated coefficient. For each coefficient of proportionality
δ the bounds of the interval are given by the OLS estimates and the coefficient estimated with

that coefficient of proportionality δ.

3.2 Observational data, example 2

This section applies the presented methodology to the seminal paper Acemoglu et al.
(2001). The main threat to their OLS estimates is that there might be unobservables
(mainly geographic and climatic features) positively correlated with economic growth
and the treatment.6 Given that IV estimates are greater than OLS estimates, there might
be the concern that OLS regressions give rise to downward biased estimates. In this set-
ting, a naive comparison between the two would highlight that the IV estimates are at
most almost three times larger than OLS estimates. This setting is an example where even
if the IV estimates are not much larger than the OLS estimates, it is necessary a large
coefficient of proportionality δ to support IV estimates.

Table 2 considers the simplest IV regression with controls of Acemoglu et al. (2001).7

In this regression model the authors regress the log of 1995 GDP per capita on average
protection against expropriation risk between 1985–1995, instrumented with settler mor-
tality, and control for continent dummies. Table 2 has the same format and assumptions
(i.e. Rmax = 1) of Table 1.

6For example consider temperate weather or natural resources. The paper also discusses a number of
control variables which could affect economic growth but which might be affected by the treatment variable
(such as current religion, diseases, etc.). This section is not meant to take into account these controls (bad
controls).

7In Acemoglu et al. (2001) the output of this regression is displayed in column (7) of Table 4.
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Further, in the setting of Acemoglu et al. (2001) it makes sense to suspect that:

• Taking into account previous literature (Gallup et al. 1999), unobservables (e.g. tem-
perate weather) correlated with observables (e.g. latitude/geographic dummies)
are positively correlated with the outcome variable (y following the nomenclature
of Section 2), 1995 GDP per capita.

• Given results from the first-stage regression (Table 3 of Acemoglu et al. (2001)) and
previous literature (Hall and Jones 1999), the treatment variable, d following the
nomenclature of Section 2, is positively correlated with control variables.

Hence, δ has negative sign.8 The last two rows of Table 2 show the OLS and IV esti-
mates of this regression. Table 2 shows that, in spite of the IV estimates being less than
three times larger than the OLS one, there is no coefficient of proportionality δ between -1
and -1000 that could rationalize the IV estimates.9

Table 2: Comparison of OLS and IV estimates

(1) (2)
δ Coefficient

-1 0.62030
-2 0.72640
-3 0.76790
-4 0.78880
-5 0.80130

-10 0.82630
-20 0.83870
-50 0.84620

-100 0.84870
-1,000 0.85100

Technique Coefficient

OLS 0.42380
IV 0.98220

Notes: This table shows the bounds of the identified set using data from Acemoglu et al. (2001).
In Acemoglu et al. (2001) the output of this regression is displayed in column (7) of Table 4.

Column (1) shows either the value of the coefficient of proportionality δ or the technique used.
Column (2) shows the value of the associated estimated coefficient. For each coefficient of

proportionality δ the bounds of the interval are given by the OLS estimates and the coefficient
estimated with that coefficient of proportionality δ.

There might be the concern that inclusion of controls could easily affect these results.
To this extent, Table 3 considers the same regression model of Table 2 but where latitude

8This is a result using the IV and OLS estimates from Acemoglu et al. (2001), the two signs of the
correlation discussed in this subsection and equation (5)

9Also in this case the sign of the coefficient of proportionality δ is consistent with equation (5). Yet,
similar results hold even if δ is suspected to have positive sign. Tables are available upon request.
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(i.e. a variable taking into account the distance from the equator scaled between 0 and 1)
is included.10 As with geographic binary variables, latitude is correlated with unobserv-
ables and positively correlated with the treatment variable.

Table 3 shows that inclusion of this control decreases slightly the OLS estimates and
increases slightly the IV estimates. Yet, results are unchanged. There is no coefficient of
proportionality δ between -1 and -1000 that could rationalise the IV coefficient.

Table 3: Comparison of OLS and IV estimates

(1) (2)
δ Coefficient

-1 0.62800
-2 0.72210
-3 0.75520
-4 0.77180
-5 0.78170

-10 0.80150
-20 0.81140
-50 0.81730

-100 0.81930
-1,000 0.82110

Technique Coefficient

OLS 0.40130
IV 1.10710

Notes: This table shows the bounds of the identified set using data from Acemoglu et al. (2001).
In Acemoglu et al. (2001) the output of this regression is displayed in column (8) of Table 4.

Column (1) shows either the value of the coefficient of proportionality δ or the technique used.
Column (2) shows the value of the associated estimated coefficient. For each coefficient of

proportionality δ the bounds of the interval are given by the OLS estimates and the coefficient
estimated with that coefficient of proportionality δ.

Lastly, Table 4 considers one of Acemoglu et al. (2001)’s most demanding specifica-
tions.11 In this regression, the authors test the robustness of their results. Namely, they
add a large set of controls to their regression model to check how their main coefficient
changes. In this case both the OLS and the IV estimates decrease such as the identified
sets of Tables 2 and 3 suggest. All the same, results do not change: no coefficient of pro-
portionality δ between -1 and -1000 can rationalise the IV coefficient.

This analysis highlights that the IV estimates of these regressions were too large com-
pared to the OLS estimates. This finding casts doubt on the IV estimation. However,
the interpretation of these results is not straightforward, it requires prior knowledge of
the setting we are analyzing. Specifically the researcher needs to determine whether the
assumptions made to use this methodology are plausible. For example, it might be that

10This regression corresponds to column (8) of Table 4 in Acemoglu et al. (2001).
11The output of this regression is displayed in Table 6, column (9) of Acemoglu et al. (2001).
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selection on observables is uninformative about selection on unobservables, yet, if this
is the case there is no point in checking how the main coefficient changes after inclu-
sion of controls. It is important to recall that, a further explanation that the methodology
developed in this paper cannot discard, is that the effects are heterogeneous for the sub-
population affected by the instrument.

Table 4: Comparison of OLS and IV estimates

(1) (2)
δ Coefficient

-1 0.47760
-2 0.53820
-3 0.57150
-4 0.59130
-5 0.60420

-10 0.63200
-20 0.64690
-50 0.65610

-100 0.65920
-1,000 0.66200

Technique Coefficient

OLS 0.37210
IV 0.71270

Notes: This table shows the bounds of the identified set using data from Acemoglu et al. (2001).
In Acemoglu et al. (2001) the output of this regression is displayed in column (9) of Table 6.

Column (1) shows either the value of the coefficient of proportionality δ or the technique used.
Column (2) shows the value of the associated estimated coefficient. For each coefficient of

proportionality δ the bounds of the interval are given by the OLS estimates and the coefficient
estimated with that coefficient of proportionality δ.

3.3 Simulated data

This section shows the results of simulating 10,000 samples with 10,000 observations
each and specific features. In particular:

1. There is only one observable and one unobservable variable.

2. The unobservable is negatively correlated with the observable.

3. In absolute value the correlation between the unobservable and the treatment is
always larger than the correlation between the observable and the treatment.

4. The PRF effect of the unobservable on the outcome is larger than the treatment ef-
fect.

5. The variance of the unobservable is larger than the one of the observable
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The aim of this section is threefold. First, it investigates whether IV estimates are
reliable even when they are considerably differente in size compared to the OLS ones.
Second, it evaluates how accurately the procedure analyzed in this paper (i.e. in sub-
section “Implementation”) computes δ. Third, it explores how the coefficients intervals
estimated with the methodology developed in Oster (2017) perform in this IV setting.

Figure 1 shows the IV/OLS ratio is uninformative.12 Such figure plots the ratio be-
tween the IV and OLS estimates on the vertical axis and the ratio between the Treatment
effect and OLS estimates on the horizontal axis. The red line is the function given by
the equality of the two axis. The figure shows data are distributed along this line, point-
ing that high values of the IV/OLS ratio are “justified” by high values of the Treatment
effect/OLS ratio.

Figure 1: Comparison ratio IV/OLS vs Treatment effect/OLS

Notes: This figure plots the ratio between the IV and OLS estimates on the vertical axis
and the ratio between the Treatment effect and OLS estimates on the horizontal axis. The
red line is the function given by the equality of the two axis. Data are distributed on this

line for any value of the ratios suggesting there is no difference between high and low
values of the IV/OLS ratio.

12IV variables of the simulation fulfill the usual requirements (i.e. exogeneity, exclusion restriction and
strong first stage).
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Tables 5 and 6 respectively show descriptive statistics of δ and estimated δ (hereinafter,
δ̂) for different values of |δ̂|. As it might be expected, comparing descriptive statistics
suggests that the two are more likely to be similar if |δ̂| is low. Put it differently, these
results suggest that δ̂ is more likely to be informative about δ if |δ̂| takes low values. To this
extent, row 1 of Table 5 shows that out of 10,000 observations 3,593 have |δ̂| < 1, for these
observations on average δ = 1.1 while standard deviation, min and max are respectively
0.49; 0.18 and 2.45. Results of these last three statistics are stable as |δ̂| increases. Likewise,
comparing Tables 5 and 6 suggests that descriptive statistics between δ and δ̂ are similar
for low values of |δ̂|.

There might be concerns about how likely is that the sign of the coefficient of pro-
portionality δ is correctly estimated by δ̂. To this end, Table 7 shows the frequency and
relative share of samples for which the sign of the coefficient of proportionality δ is cor-
rectly estimated (i.e. sign(δ̂) = sign(δ)) as δ̂ increases. This table indicates, out of each
category, for over 90% of the cases the sign of the coefficient is estimated correctly.

Table 5: Comparison of delta: estimated versus true (i.e. simulated)

Obs Mean Std. Dev. Min Max |δ̂| <

3,593 1.1 0.49 0.18 2.45 1
6,753 1.06 0.49 0.18 2.45 2
8,198 1.05 0.49 0.18 2.45 3
8,945 1.04 0.49 0.18 2.45 4
9,295 1.03 0.49 0.18 2.45 5
9,762 1.01 0.49 0.18 2.45 10

10,000 1 0.49 0.18 2.45 100

Notes: This table shows descriptive statistics of δ for different values of δ̂.

Table 6: Comparison of delta: estimated versus true (i.e. simulated)

Obs Mean Std. Dev. Min Max |δ̂| <

3,593 0.82 0.58 -1 1 1
6,753 1.37 0.73 -1 2 2
8,198 1.57 0.8 -1 3 3
8,945 1.73 0.93 -1 4 4
9,295 1.83 1.05 -1 5 5
9,762 2.06 1.48 -1 10 10

10,000 2.27 1.98 -1 10.9 100

Notes: This table shows descriptive statistics of δ̂ as it increases.
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Table 7: Frequency

Frequency Total Percentage |δ̂| <

3,261 3,593 0.91 1
6,421 6,753 0.95 2
7,866 8,198 0.96 3
8,613 8,945 0.96 4
8,963 9,295 0.96 5
9,430 9,762 0.97 10
9,668 10,000 0.97 100

Notes: This table shows the frequency and relative share of samples for which the sign of the
coefficient of proportionality δ is correctly estimated (i.e. sign(δ̂) = sign(δ)) as δ̂ increases.

Figure 2 plots the distribution of the treatment effect and the three estimators consid-
ered in this paper: OLS, IV and Oster for the samples in which the sign of the coefficient
of proportionality δ is correctly estimated (i.e. sign(δ̂) = sign(δ)), 9,668 samples out of
10,000. Given the structure of the samples the OLS and Oster estimators are respectively
a lower- and upper- bound of the Treatment effect. The vertical line cuts the distribu-
tion of Oster estimators at the 90% percentile. This figure supports that in this setting the
Oster estimator is a reasonable upper-bound of the Treatment effect. Indeed, the Oster
estimator is closer to the Treatment effect, then the OLS estimator, for 90% of the samples
considered.
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Figure 2: Distribution of the treatment effect and estimators

Notes: This figure plots the distribution of the treatment effect and the three estimators
considered in this paper: OLS, IV and Oster for the samples in which the sign of the

coefficient of proportionality δ is correctly estimated (i.e. 9,668 samples out of 10,000).
Given the structure of the samples the OLS and Oster estimators are respectively a

lower- and upper- bound of the Treatment effect. This figure indicates in this setting the
Oster estimator is more accurate than the OLS estimator. In particular, this is the case for

90% of the samples.

4 Stata code

This section discusses how to compute estimates as the ones in the Section 3 using
STATA. Download Oster (2017) STATA command typing:

ssc install psacalc

Run the structural regression of interest. Afterwards, to compute the bound of the identi-
fied set for a certain value of δ type:

psacalc beta treatment, delta(δ)
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where treatment is the name of the treatment variable and δ ranges from 1 (-1) to 1000
(-1000) depending on the sign suggested by the observational setting. Using the options:
mcontrol (unrelated controls) and rmax(Rmax) we can respectively add control variables,
that the observational setting suggests are unrelated to unobservables, and set the maxi-
mum value ofR. If no value is specified forRmax, it is set to the default value of 1. In this
way, psacalc computes the value of the βPRF , the coefficient of the PRF, that would arise
with a coefficient of proportionality of δ. By setting different values of δ we can build
tables as those in Section 3.

To compute the exact value of δ leading to the IV estimate we replace the option delta(δ)
with the option beta(βIV ) where βIV is the value of the IV estimate. Specifically, we would
type:

psacalc delta treatment, beta(βIV )

In this case, psacalc computes the value of the coefficient of proportionality δ that can
explain that the coefficient of the PRF equals βIV . However, it is worth noting that in this
case the command assumes by default that δ is positive which might not make sense with
the observational setting.

5 Concluding remarks

Considerable differences between the size of OLS and IV coefficients are likely seen as
evidence against the validity of the instrument. The intuition supporting this viewpoint
is that the OLS regression might be informative about the true effect the researcher wants
to estimate. However, to my knowledge, in the literature there is no formal methodology
to compare these two estimates.

To the best of my knowledge this is one of the first papers to suggest an objective cri-
terion to compare IV and OLS estimates. For this purpose, this article adapts Oster (2017)
setting to an IV framework. Furthermore, the analysis presented in this study disentan-
gles in which setting this methodology might be used and suggests a way to implement
it. Finally, this manuscript presents two observational examples and a simulated one to
evaluate empirically its implementation.

This paper suggests that low values of the coefficient of proportionality offer support-
ive evidence that IV estimates are not too large with respect to OLS. The main limit of the
methodology presented in this paper is that high values of such a coefficient might either
cast doubts on instrument validity or merely highlight that effects are heterogeneous (An-
grist and Imbens 1995; Masten and Poirier 2018). To tackle this issue, this study suggests
to complement the usage of this methodology with different analyses depending on the
specifical setting.

The analysis carried out in this paper indicates that further research on criteria to
objectively compare IV and OLS estimates is needed. All in all, this paper sets the ground
for an objeticve criterion to compare IV and OLS estimates.
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Appendix

A Multivariate case

Let the PRF be equation (1). However, given the nature of w we can only run equation
(2).

Denote d̃ as the residual of a regression of d onX (namely, dih = τ0+τ1Xih+ d̃ih). Then:

β̂2 = β1 + γ
Cov(dih, wih)− τ1Cov(Xih, wih)

V ar(d̃ih)
(A.1)

We can rearrange equation (A.1) using equation (3), assuming observables and unob-
servables are orthogonal (as in Oster (2017)), it is straightforward to get:

δ = (β̂2 − β1)
V ar(d̃ih)V ar(Xih)

γV ar(wih)Cov(dih, Xih)
(A.2)

which is similar to equation (5) of the univariate case.
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