
mathematics

Article

An Improvement of the Lower Bound on the Minimum Number
of ≤k-Edges

Javier Rodrigo 1,* , Susana Merchán 2 , Danilo Magistrali 1 and Mariló López 2

����������
�������

Citation: Rodrigo, J.; Merchán, S.;

Magistrali, D.; López, M. An

Improvement of the Lower Bound on

the Minimum Number of≤k-Edges.

Mathematics 2021, 9, 525. https://

doi.org/10.3390/math9050525

Academic Editor: Seok-Zun Song

Received: 10 December 2020

Accepted: 25 February 2021

Published: 3 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Matemática Aplicada, E.T.S.I. Universidad Pontificia Comillas, Alberto Aguilera 25,
28015 Madrid, Spain; dmagistrali@comillas.edu

2 Departamento de Matemática e Informática Aplicadas a las Ingenierías Civil y Naval, Escuela de Caminos,
Canales y Puertos, Universidad Politécnica de Madrid, Profesor Aranguren, 3, 28040 Madrid, Spain;
susana.merchan@upm.es (S.M.); marilo.lopez@upm.es (M.L.)

* Correspondence: jrodrigo@comillas.edu

Abstract: In this paper, we improve the lower bound on the minimum number of ≤k-edges in sets
of n points in general position in the plane when k is close to n

2 . As a consequence, we improve
the current best lower bound of the rectilinear crossing number of the complete graph Kn for some
values of n.
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1. Introduction

The search for lower bounds for the minimum number of ≤k-edges in sets of n points
of the plane for n ≥ 2 k + 2 (e≤k(n)) is an important task in Combinatorial Geometry, due
to its relation with the rectilinear crossing number problem. The most well-known case
of the rectilinear crossing number problem aims to find the number cr(P) of crossings in
a complete graph with a set of vertices P consisting of n points in the plane (in general
position) and edges represented by segments and the minimum number of crossings over
P, cr(n) (see the definitions below). The idea of determining cr(n) for each n was firstly
considered by Erdös and Guy (see [1,2]). Determining cr(n) is equivalent to finding the
minimum number of convex quadrilaterals defined by n points in the plane. These kinds of
problems belong to classical combinatorial geometry problems (Erdös-Szekeres problems).
The study of cr(n) is also interesting from the point of view of Geometric Probability. It is
connected with the Sylvester Four-Point Problem, in which Sylvester studies the probability
of four random points in the plane forming a convex quadrilateral.

Nowadays, finding the value of cr(n) continues to be a challenging open problem.
The exact value of cr(n) is known for n ≤ 27 and n = 30. The search of lower and
upper asymptotic bounds of cr(n) constitutes a relevant task due to its connection with
the problem of finding the value of the Sylvester Four-Point Constant q∗. In order to
define properly q∗, it is necessary to consider a convex open set R in the plane with finite
area. Let q(R) be the probability that four points chosen randomly from R define a convex
quadrilateral. Whence, q∗ is defined as the infimum of q(R) taken over all open sets R.

In particular, the connection between q∗ and cr(n) is given by the following expression:

q∗ = lim
n→∞

cr(n)
(n

4)

For more details, see [3].
The rigorous definitions of the above-presented concepts are the following:
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Definition 1. Given a finite set of points in general position in the plane P, assume that we join
each pair of points of P with a straight line segment. The rectilinear crossing number of P (cr(P) )
is the number of intersections out of the vertices of said segments. The rectilinear crossing number
of n ( cr(n)) is the minimum of cr(P) over all the sets P with n points.

Definition 2. Given a set of points in general position, A = {p1, ..., pn} and an integer number k
such that 0 ≤ k ≤ n−2

2 , a k-edge of A is a line R that joins two points of A and leaves exactly k
points of A in one of the open half-planes (it is named the k-half plane of R).

Definition 3. Given a set of points in general position, A = {p1, ..., pn}, a ≤ k-edge of A is an
i-edge of A with i ≤ k.

Notation 1. We call ek(P) the number of k−edges of the set P and ek(n) the maximum number of
ek(P) over all the sets P with n points.

The relation between the number of ≤k-edges of P and cr(P) is given by the expres-
sion:

cr(P) =
b n−2

2 c−2

∑
k=0

(n− 2k− 3)e≤k(P)− 3
4

(
n
3

)
+
(

1 + (−1)n+1
)1

8

(
n
2

)
, (1)

where e≤k(P) is the number of ≤k-edges of the set P with |P| = n (see [4,5]). This im-
plies that

cr(n) ≥
b n−2

2 c−2

∑
k=0

(n− 2k− 3)e≤k(n)−
3
4

(
n
3

)
+
(

1 + (−1)n+1
)1

8

(
n
2

)
. (2)

This way, improvements of the lower bound of e≤k(n) for k ≤
⌊ n−2

2
⌋
− 2 yield an

improvement of the lower bound of the rectilinear crossing number of n. The exact value
of e≤k(n) is known for k <

⌈
4n−11

9

⌉
(see [4,6,7]). For k ≥

⌈
4n−11

9

⌉
, the current best lower

bound of e≤k(n) is e≤k(n) ≥ uk for the sequence uk defined in [6].
Taking into account the asymptotic equivalence of uk, we have

e≤k(n) ≥
(

n
2

)
− 1

9

√
n− 2k− 2

n

(
5n2 + 19n + 31

)
. (3)

For k close to
⌊ n−2

2
⌋
− 2, namely k =

⌊ n−t
2
⌋

for some fixed constant t, the bound (3) gives

e≤k(n) ≥
(

n
2

)
−O

(
n

3
2

)
. (4)

For these values of k, if we define P as a set for which e≤k(n) is attained and es(P)
as the number of s-edges of P (see the definitions below), then we have that the identity:

e≤k(n) =
(

n
2

)
−
(

ek+1(P) + ... + eb n−2
2 c(P)

)
together with the current best upper bound

of es(P) (due to Dey, see [8]) yield a lower bound that is asymptotically better than (4).
More precisely, in [8] was shown the existence of a constant C ≤ 6.48 such that

es(P) ≤ Cn(s + 1)
1
3 , (5)

for s < n−2
2 and

es(P) ≤ Cn
(

n− 1
2

) 1
3
, (6)
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for s = n−2
2 . To do this, Dey in [8] applied the crossing lemma and the following values

for E(<= s)(n), the maximum number of (<= s)-edges due to [9]

E(<= s)(n) = s(k + 1) for s < (n− 2)/2, E(<= (n− 2)/2)(n) = n(n− 1)/2.

The best values for C are C =
(

31,827
210

) 1
3 for s < n−2

2 and C =
(

31,827
212

) 1
3 for s = n−2

2 ,

for n an even number, if es(P) ≥ 103n
6 , (see [10,11]). Notice that this condition is satisfied for

large n and s close to n
2 due to the best lower bound of es(n). As an example, for s = n−3

2
we have the upper bound (5) for n ≥ 327 and, for s = n−5

2 , we have the upper bound (5)
for n ≥ 329.

This gives:

e≤k(n) ≥
(

n
2

)
− Cn

b n−2
2 c

∑
i=k+1

(i + 1)
1
3 , (7)

for n an odd number and

e≤k(n) ≥
(

n
2

)
−
(
Cn

n−4
2

∑
i=k+1

(i + 1)
1
3 + Cn

(n− 1
2
) 1

3
)
, (8)

for n an even number. In this paper we improve in, at most,
⌊ t

4
⌋

the bounds (7) and (8)
for k =

⌊ n−t
2
⌋

and some big values of n. In this way, we achieve the best lower bound of
e≤k(n) for these values of k and n. As a consequence, we improve the lower bound of the
rectilinear crossing number of Kn.

The outline of the rest of the paper is as follows: In Section 2 we give the improvement
of the lower bound of e≤k(n), k =

⌊ n−t
2
⌋
, for the cases t = 7 (n is an odd number) and t = 8

(n is an even number). In Section 3, we generalize the achieved results in Section 2, and in
Section 4 we give some concluding remarks.

2. The Improvement of the Lower Bound

In order to get the improvement of the lower bound of e≤k(n), we need the follow-
ing lemma:

Lemma 1. Let k and n be positive integers, and let P be a set of n points in general position in the
plane. If k <

⌊ n−2
2
⌋
, then

ek(n− 1) ≥ n− k− 2
n

ek(P) +
k + 1

n
ek+1(P). (9)

Proof. Each (k + 1)-edge of P leaves k + 1 points of P in its (k + 1)-half plane, and each
k-edge of P leaves n− k− 2 points of P in one of its half-planes. Therefore, the total number
of points of P in these planes, allowing repetitions, is

(n− k− 2)ek(P) + (k + 1)ek+1(P), (10)

and then there is a point of P, say pn, that belongs to s half-planes with

s ≥ n− k− 2
n

ek(P) +
k + 1

n
ek+1(P). (11)

If we remove pn, then we obtain a set Q = {p1, ..., pn−1} such that the (k + 1)-
edges of P corresponding to the s half-planes are now k-edges of Q, because they have
(k + 1)− 1 = k points of Q in one of the open half-planes.
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Moreover, the k-edges of P corresponding to the s half-planes are now k-edges of Q
because they still have k points of Q in one of the open half-planes. Therefore, we have that

ek(n− 1) ≥ ek(Q) ≥ s ≥ n− k− 2
n

ek(P) +
k + 1

n
ek+1(P) (12)

as desired.

Corollary 1. Let k and n be positive integers, and let P be a set of n points in general position in
the plane. If k <

⌊ n−2
2
⌋
, then

min{ek(P), ek+1(P)} ≤
⌊

n
n− 1

ek(n− 1)
⌋

. (13)

Proof. Applying Lemma 1, we obtain

ek(n− 1) ≥ n− k− 2
n

ek(P) +
k + 1

n
ek+1(P) ≥ n− 1

n
min{ek(P), ek+1(P)}. (14)

This implies the desired result.

Corollary 2. Let k and n be positive integers, and let P be a set of n points in general position in
the plane. If k <

⌊ n−2
2
⌋
, then

min{ek(P), ek+1(P)} ≤
⌊

n
n− 1

⌊(
31, 827

210

) 1
3
(n− 1)(k + 1)

1
3

⌋⌋
. (15)

Proof. The result follows from Corollary 1 and inequality (5).

Remark 1. For fixed k and some values of n, the bound in Corollary 2 may improve by one the
following upper bound of min{ek(P), ek+1(P)} derived from (5)

min{ek(P), ek+1(P)} ≤ min

{⌊(
31, 827

210

) 1
3
n(k + 1)

1
3

⌋
,

⌊(
31, 827

210

) 1
3
n(k + 2)

1
3

⌋}
=⌊(

31, 827
210

) 1
3
n(k + 1)

1
3

⌋
. (16)

We will apply this improvement to shift the lower bound on the number of ≤k-edges
for sets with n points in the cases k = n−7

2 and k = n−8
2 for some values of n.

Corollary 3. Let n ≥ 7 be an odd integer, and let k := (n− 7)/2. Then

e≤k(n) ≥ n2−n
2 −

⌊
n

n−1

⌊(
31,827

211

) 1
3
(n− 1)(n− 3)

1
3

⌋⌋
−
⌊(

31,827
211

) 1
3 n(n− 1)

1
3

⌋
. (17)

Proof. Let P be a set of n points in general position attaining e≤k(n). From (7), it follows that

e≤k(n) =
n2 − n

2
− e n−5

2
(P)− e n−3

2
(P) =

n2 − n
2
−min

{
e n−5

2
(P), e n−3

2
(P)
}

−max
{

e n−5
2
(P), e n−3

2
(P)
}

. (18)

Thus, we obtain the desired result by applying Corollary 2 to k = n−5
2 and the

following upper bound of max
{

e n−5
2
(P), e n−3

2
(P)
}

derived from (5)
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max
{

e n−5
2
(P), e n−3

2
(P)
}
≤ max

{⌊(
31, 827

211

) 1
3

n(n− 3)
1
3

⌋
,

⌊(
31, 827

211

) 1
3

n(n− 1)
1
3

⌋}
=⌊(

31, 827
211

) 1
3

n(n− 1)
1
3

⌋
. (19)

Remark 2. Comparing with the upper bound of u n−7
2

included in Lemma 1 of [6], we obtain that
for n ≥ 33,623, the lower bound:

e≤ n−7
2
(n) ≥ n2 − n

2
−
⌊(

31, 827
211

) 1
3
n(n− 3)

1
3

⌋
−
⌊(

31, 827
211

) 1
3
n(n− 1)

1
3

⌋
(20)

is better than the lower bound for e≤ n−7
2
(n) of [6]. For these values of n, the lower bound (17)

sometimes improves (20) by one and is the best current lower bound of e≤ n−7
2
(n). As an example,

we get the improvement for the following odd values of n:
33,627, 33,629, 33,637, 33,639, 33,641, 33,647, 33,649, 33,651, 33,653, 33,661, 33663,

33,665, 33,667, 33,677, 33,679, 33,681, 33,683, 33,685, 33,687, 33,713, 33,715, 33,717, 33,719,
33,721, 33,723.

Remark 3. Plugging (17) in (2), we obtain an improvement of 4 for the lower bound of cr(n) for
the aforementioned odd values of n in the range [33623, 33723] because the coefficient of e≤ n−7

2
(n)

in (2) is 4.

Corollary 4. Let n ≥ 8 be an even integer, and let k := (n− 8)/2. Then

e≤k(n) ≥
n2 − n

2
−
⌊

n
n− 1

⌊(
31, 827

211

) 1
3

(n− 1)(n− 4)
1
3

⌋⌋
−
⌊(

31, 827
211

) 1
3

n(n− 2)
1
3

⌋
−⌊(

31, 827
213

) 1
3

n(n− 1)
1
3

⌋
. (21)

Proof. Let P be a set of n points in general position attaining e≤k(n). From (8), it follows that

e≤k(n) =
n2 − n

2
−min

{
e n−6

2
(P), e n−4

2
(P)
}
−max

{
e n−6

2
(P), e n−4

2
(P)
}
− e n−2

2
(P). (22)

Then we obtain the desired result by applying Corollary 2 to k = n−6
2 , (6) and the

following upper bound of max
{

e n−6
2
(P), e n−4

2
(P)
}

derived from (5):

max
{

e n−6
2
(P), e n−4

2
(P)
}
≤ max

{⌊(
31, 827

211

) 1
3

n(n− 4)
1
3

⌋
,

⌊(
31, 827

211

) 1
3

n(n− 2)
1
3

⌋}
=⌊(

31, 827
211

) 1
3

n(n− 2)
1
3

⌋
. (23)
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Remark 4. Comparing with the upper bound of u n−8
2

included in Lemma 1 of [6], we obtain that
for n ≥ 63,370, the lower bound

e≤ n−8
2
(n) ≥ n2 − n

2
−
⌊(

31, 827
211

) 1
3
n(n− 4)

1
3

⌋
−
⌊(

31, 827
211

) 1
3
n(n− 2)

1
3

⌋
−⌊(

31, 827
213

) 1
3
n(n− 1)

1
3

⌋
(24)

is better than the lower bound for e≤ n−8
2
(n) of [6]. For these values of n, the lower bound included

in Corollary 4 sometimes improves (24) by one, and then it is the best current lower bound of
e≤ n−8

2
(n). As an example, we get the improvement for the following values of n:

63,374, 63,380, 63,386, 63,392, 63,398, 63,404, 63,408, 63,410, 63,414, 63,416, 63420,
63,426, 63,430, 63,436, 63,440, 63,446, 63,450, 63,454, 63,456, 63,460, 63,464, 63,468.

Remark 5. Plugging the lower bound included in Corollary 4 in (2), we obtain an improvement
of 5 for the lower bound of cr(n) for the aforementioned values of n in the range [63, 370, 63, 470]
because the coefficient of e≤ n−8

2
(n) in (2) is 5.

3. Generalization

We can apply Corollary 2 to improve the lower bound of e≤ n−t
2
(n) in at most

⌊ t
4
⌋

for
fixed t, n > t, n and t with the same parity, by a generalization of the Corollaries 3 and 4.

Proposition 1. It is satisfied that

e≤ n−t
2
(n) ≥ n2 − n

2
−

t−7
4

∑
s=0

(⌊
n

n− 1

⌊(
31, 827

211

) 1
3
(n− 1)(n− (4s + 3))

1
3

⌋⌋
+

⌊(
31, 827

211

) 1
3
n(n + 2− (4s + 3))

1
3

⌋)
(25)

for odd n, t ≡ 3(4), t ≥ 7,

e≤ n−t
2
(n) ≥ n2 − n

2
−

t−5
4

∑
s=0

(⌊
n

n− 1

⌊(
31, 827

211

) 1
3
(n− 1)(n− (4s + 1))

1
3

⌋⌋
+

⌊(
31, 827

211

) 1
3
n(n + 2− (4s + 1))

1
3

⌋)
−
⌊(

31827
211

) 1
3
n(n− 1)

1
3

⌋
(26)

for odd n, t ≡ 1(4), t ≥ 5,

e≤ n−t
2
(n) ≥ n2 − n

2
−

t−4
4

∑
s=0

(⌊
n

n− 1

⌊(
31, 827

211

) 1
3
(n− 1)(n− 4s)

1
3

⌋⌋
+

⌊(
31, 827

211

) 1
3
n(n + 2− 4s)

1
3

⌋)
−
⌊(

31, 827
213

) 1
3
n(n− 1)

1
3

⌋
(27)

for even n, t ≡ 0(4), t ≥ 4 and
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e≤ n−t
2
(n) ≥ n2 − n

2
−

t−6
4

∑
s=0

(⌊
n

n− 1

⌊(
31, 827

211

) 1
3
(n− 1)(n− (4s + 2))

1
3

⌋⌋
+

⌊(
31, 827

211

) 1
3
n(n + 2− (4s + 2))

1
3

⌋)
−
⌊(

31, 827
211

) 1
3
n(n− 2)

1
3

⌋
−
⌊(

31, 827
213

) 1
3
n(n− 1)

1
3

⌋
(28)

for even n, t ≡ 2(4), t ≥ 6.

Proof. Assume that P is a set in which e≤ n−t
2
(n) is attained.

For odd n, t ≡ 3(4), t ≥ 7 we have that:

e≤ n−t
2
(n) =

n2 − n
2
−

t−7
4

∑
s=0

(
e n−(4s+3)

2
(P) + e n−2−(4s+3)

2
(P)
)
=

n2 − n
2
−

t−7
4

∑
s=0

(
min

{
e n−(4s+3)

2
(P), e n−2−(4s+3)

2
(P)
}
+ max

{
e n−(4s+3)

2
(P), e n−2−(4s+3)

2
(P)
})

. (29)

For odd n, t ≡ 1(4) , t ≥ 5 we have that:

e≤ n−t
2
(n) =

n2 − n
2
−

t−5
4

∑
s=1

(
e n−(4s+1)

2
(P) + e n−2−(4s+1)

2
(P)
)
− e n−3

2
(P) =

n2 − n
2
−

t−5
4

∑
s=1

(
min

{
e n−(4s+1)

2
(P), e n−2−(4s+1)

2
(P)
}
+ max

{
e n−(4s+1)

2
(P), e n−2−(4s+1)

2
(P)
})
− e n−3

2
(P).

(30)

For even n, t ≡ 0(4), t ≥ 4 we have that:

e≤ n−t
2
(n) =

n2 − n
2
−

t−4
4

∑
s=1

(
e n−4s

2
(P) + e n−2−4s

2
(P)
)
− e n−2

2
(P) =

n2 − n
2
−

t−4
4

∑
s=1

(
min

{
e n−4s

2
(P), e n−2−4s

2
(P)
}
+ max

{
e n−4s

2
(P), e n−2−4s

2
(P)
})
− e n−2

2
(P). (31)

For even n, t ≡ 2(4), t ≥ 6 we have that:

e≤ n−t
2
(n) =

n2 − n
2
−

t−6
4

∑
s=1

(
e n−(4s+2)

2
(P) + e n−2−(4s+2)

2
(P)
)
− e n−4

2
(P)− e n−2

2
(P) =

n2 − n
2
−

t−6
4

∑
s=1

(
min

{
e n−(4s+2)

2
(P), e n−2−(4s+2)

2
(P)
}
+ max

{
e n−(4s+2)

2
(P), e n−2−(4s+2)

2
(P)
})

− e n−4
2
(P)− e n−2

2
(P). (32)

Then we have the desired results by applying the bound of Corollary 2, (5), and (6).



Mathematics 2021, 9, 525 8 of 9

Remark 6. As an example, for t = 11 ≡ 3(4) and n an odd number, we obtain that for n ≥
122,487, the lower bound

e≤ n−11
2

(n) ≥ n2 − n
2
−
⌊(

31, 827
211

) 1
3
n(n− 3)

1
3

⌋
−
⌊(

31, 827
211

) 1
3
n(n− 1)

1
3

⌋
−⌊(

31, 827
211

) 1
3
n(n− 7)

1
3

⌋
−
⌊(

31, 827
211

) 1
3
n(n− 5)

1
3

⌋
(33)

is better than the lower bound for e≤ n−11
2

(n) of [6]. For these values of n, the lower bound included
in Proposition 1 sometimes improves (33) by two, and then it is the best current lower bound of
e≤ n−11

2
(n). As a matter of fact, we get the improvement for every odd value of n in the range

[122, 487, 122, 587] except for the following values: 122,533, 122,547, 122,577, 122,583.

4. Conclusions

We have improved the current lower bound on the maximum number of ≤k-edges
for planar sets of n points when k is close to n

2 for some values of n. To do this, we have
applied an upper bound of min{ek(P), ek−1(P)} that is a function of ek(n− 1), where es(P)
is the number of s-edges of a set P of n points, and ek(n− 1) is the maximum number of
k-edges over all the sets Q with n− 1 points. This sometimes improves by one the upper
bound of min{ek(P), ek−1(P)} due to Dey (see [8]).

As a consequence, we have shifted the lower bound of the rectilinear crossing number
of n points in the plane for some large values of n. This reduces the gap with the current
best upper bound for these values of n, closing in the exact value of cr(n).

An open problem is to determine whether these improvements are attained for infinite
values of n. In order to do this, it is enough to prove that, for k close to n

2 and, for infinite
values of n, the bound of expression (15) improves by one unit the bound of (16).
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