
Master’s Degree in Industrial Engineering

Master’s final project

Crash Pulse Prediction applied to Frontal Crash

Configurations

Author
Pablo Mira Arana

Supervised by
Francisco José López Valdés

Madrid
June 2021

Declaro, bajo mi responsabilidad, que el Proyecto presentado con el título

Crash Pulse Prediction applied to Frontal Crash Configurations

en la ETS de Ingeniería - ICAI de la Universidad Pontificia Comillas en el

curso académico 2020/21 es de mi autoría, original e inédito y

no ha sido presentado con anterioridad a otros efectos.

El Proyecto no es plagio de otro, ni total ni parcialmente y la información que ha sido

tomada de otros documentos está debidamente referenciada.

Fdo.: Pablo Mira Arana Fecha: 14/ 07/ 2021

Autorizada la entrega del proyecto

EL DIRECTOR DEL PROYECTO

7/14/2021

X

Francisco J. Lopez Valdes

Signed by: LOPEZ VALDES FRANCISCO JOSE - 09437440B

Fdo.: Francisco J. López Valdés Fecha: Fecha: 14/ 07/ 2021

Master’s Degree in Industrial Engineering

Master’s final project

Crash Pulse Prediction applied to Frontal Crash

Configurations

Author
Pablo Mira Arana

Supervised by
Francisco José López Valdés

Madrid
June 2021

CRASH PULSE PREDICTION APPLIED TO FRONTAL
CRASH CONFIGURATIONS
Author: Mira Arana, Pablo
Director: López Valdés, Francisco José
Collaborating Entity: Volvo Cars AB

PROJECT SUMMARY

1. Introduction

Occupant safety is one of the main challenges when designing a vehicle. As the
number of vehicles increases every year around the world, enhancing their perfor-
mance in a crash regarding the protection of the occupants is key to reduce the
number of injuries and deaths. In these terms, studying what happens during a
crash event is crucial for safety evaluation and improvement. To do so, numer-
ous physical and virtual crash tests are performed, trying different scenarios and
configurations. Both methodologies have their limitations, being the time con-
sumption and high expenses the main ones.

Introducing Machine Learning to this field can bring numerous benefits, taking
advantage of the existence of years of performed and recorded tests. The principal
aim of this project is to help the evaluation of the movement response the vehi-
cle has during the crash. This response is called Crash Pulse, and its importance
and effect on the severity of the crash has been amply studied and proven.[1][2][3][4]

The overall behavior of the vehicle during a crash may vary on a large scale
depending on how the crash occurs. Many crash types can be stated, but the
main one is the division between lateral and frontal crashes. As for the first one,
the intrusions in the cabin and lateral accelerations have large importance, the
second one is largely determined by the decelerations suffered. This project will
be focused on frontal crashes.

The objective of this project is to develop an Artificial Intelligence algorithm
that is capable of predicting the resulting Crash Pulse with a given Crash Config-
uration. The Crash Configuration definition that will be used is defined in [5] and
later on used in [6].

2. Methodology

The project has two main stages. The first one is the process of Data Analysis,
where all the information from past tests is recorded, filtered, and pre-processed
to be introduced to the AI algorithm. The second one is the design of this AI
algorithm, its training, testing, and evaluation.

2.1 Data Analysis

The data analysis process is performed to create a valid dataset that can be
understood by the AI model. The process to do so is described in Figure 1.

Figure 1: Data gathering process.

• Selection. From all the information available, the useful and pertinent
simulations for this project must be selected. This includes car-to-car and
car-to-moving barrier simulations, with a minimum length of recorded Crash
Pulse and within the limits established for frontal and rear-end crashes.

• Pre-processing. The data needed for the AI implementation must be ex-
tracted from the selected simulations. This information extraction can be
divided into two differentiated parts:

– Crash Configuration. This is the input for the AI model. The param-
eters describing the crash must be computed from the raw simulation
information. The information in files d3plot and nodout has been
used to detect each object colliding using a clustering process, compute
their velocity (HS and OS), their masses (HM and OM), and the an-
gles describing their relative position. These angles are Host Collision
Point Angle (HCPA), Opponent Collision Point Angle (OCPA), and
Opponent Yaw Angle (OYA). The first two are referred to the First
Point of Contact (FPOC). To be able to compare configurations with
dimensional differences, normalization must be performed, to reduce
the vehicle shape to a unit square.
A graphic description is represented in Figures 2 and 3, and an example
of the resulting Crash Configuration is represented in Table 1.
The limit established for frontal/rear-end crashes is [-45,45] and [135,225]
regarding HCPA.

Figure 2: Crash Configuration Angles [5]

Figure 3: Crash Configuration Normalization [5]

HCPA -38º
OCPA -26º
OYA 160º

Host speed 13.5 m/s
Opponent speed 21 m/s

Host mass 2178.9 kg
Opponent mass 2335.4 kg

Table 1: Crash Configuration parameters

– Crash Pulse. This is the output of the model. The information of the
crash pulse is extracted using a pre-existing script, that computes the
crash pulse in terms of velocities. The crash pulse is formed by 6 time
series, 3 axis translations and 3 axis rotations. For translations, the in-
formation has been converted to acceleration. Meanwhile, the rotations
have been converted to angles. Each time series has been cropped to
80 ms and described using 16 timesteps. The resulting output infor-
mation describing the crash pulse of each simulation is formed by 96
uni-dimensional points.

2.1 AI Modelling

The data has been split into 2 different datasets. The first one will be intro-
duced to the model with input and output information, so it can learn the expected
output. This set is called training set. The second one will be introduced only
with input information, so the model will make blind predictions that can be then
compared with the real output. This set is called test set.

As the output parameter is a continuous value, the prediction model will be re-
gression. Four different algorithms have been tested. These are Neural Networks,
Support Vector Machine Regression, Gradient Boost Regression, and Random
Forest Regression. The first two algorithms are Kernel-based, as the last two are
Decision Trees-based. Each algorithm has been modeled individually to obtain the
best predictions possible.

3. Results

The resulting dataset is formed by 284 data points, 232 (81.7% of the dataset)
for the training set and 52 (18.3% of the dataset) for the test set. This split is rep-
resented in Figure 4, where the dataset is represented in terms of HCPA (x-axis)
and OCPA (y-axis) distribution.

Figure 4: Resulting data cloud and splitting

The four models have been tested using R2 and RMSE metrics, both for each
step/prediction and for the complete translations/rotations structure. The average
scores are represented in Table 2, and Figures 5, 6.

Translations Rotations
Algorithm RMSE R2 RMSE R2

Neural Network 0.020 0.728 0.0024 0.103
Support Vector Machine 0.017 0.805 0.0023 0.319

Gradient Boost 0.019 0.747 0.000126 0.834
Random Forest 0.0189 0.751 0.00229 0.937

Table 2: Average error metrics for each model

NN SVM GB RF
0

0.5

1

1.5

2

·10−2

NN SVM GB RF
0

1

2

·10−3

Figure 5: Comparison of RMSE for translations (left) and rotations (right)

NN SVM GB RF
0

0.2

0.4

0.6

0.8

1

0.73
0.81

0.75 0.75

0.1

0.32

0.83

0.94Translations Rotations

Figure 6: Comparison of R2

Figure 7: RMSE and R2 values for each step in Neural Network model for trans-
lations

Figure 8: RMSE and R2 values for each step in Neural Network model for rotations

Figure 9: RMSE and R2 values for each step in Support Vector Machine model
for translations

Figure 10: RMSE and R2 values for each step in Support Vector Machine model
for rotations

Figure 11: RMSE and R2 values for each step in Gradient Boost model for trans-
lations

Figure 12: RMSE and R2 values for each step in Gradient Boost model for rotations

Figure 13: RMSE and R2 values for each step in Random Forest model for trans-
lations

Figure 14: RMSE and R2 values for each step in Random Forest model for rotations

4. Conclusions

The first and most important conclusion that has been drawn during the devel-
opment of this project is that there is no perfect algorithm. Each one has its own
virtues and defects. The dataset used, its structure and the error metrics used for
the evaluation are also key and will affect largely the final result and conclusions.

Looking at the final obtained dataset, some clustering can be seen. This will
lead to reduced accuracy of the predictions, especially for Crash Configurations
with large differences compared to the ones in the dataset. This clustering can be
explained by the fact that most of the simulations are performed using a standard-
ized test configuration. Introducing additional simulations, or even creating them
specifically to fill those gaps could be beneficial for the model. In these terms,
completing the model with information from lateral crashes could help, in par-
ticular for simulations with HCPA values close to the frontal/lateral established
limit. Introducing information from other manufacturers could also lead to a more
complete model, but would require introducing an additional parameter for man-
ufacturer description.

Regarding the results of the project, and considering the error scores obtained,
it can be stated that the best fitting algorithms are Support Vector Machine Re-
gression for the translations and Random Forest Regression for the rotations. It
can also be seen that the overall performance of Decision Tree-based algorithms is
significantly better for rotations compared to the Kernel-based algorithms.

References

[1] Gerald Joy Sequeira. “Evaluation and characterization of crash-pulses for
head-on collisions with varying overlap scenarios”. In: (2020).

[2] Patil Kantilal. “Crash Pulse Characterization to Minimize Occupant Injuries
in Offset Frontal Crash”. In: (2017).

[3] Zhiqing Cheng. “Optimal Crash Pulse for Minimization of Peak Occupant
Deceleration in Frontal Impact”. In: (2005).

[4] Wesley Grimes. “The Effect of Crash Pulse Shape on Occupant Simulations”.
In: (2000).

[5] Linus Wågström. “Integrated Safety: Establishing Links for a Comprehensive
Virtual Tool Chain”. In: (2019).

[6] Alexandros Leledakis. “A method for predicting crash configurations using
counterfactual simulations and real-world data”. In: (2020).

[7] Alexandros Leledakis. “Pre-Crash and In-Crash Car Occupant Safety Assess-
ment”. PhD thesis. Chalmers University of Technology, 2021.

CRASH PULSE PREDICTION APPLIED TO FRONTAL
CRASH CONFIGURATIONS
Autor: Mira Arana, Pablo
Director: López Valdés, Francisco José
Entidad Colaboradora: Volvo Cars AB

RESUMEN DEL PROYECTO

1. Introducción

La seguridad de los ocupantes de un veh́ıculo es uno de los principales retos
a la hora de diseñar un veh́ıculo. Dado que el número de veh́ıculos aumenta cada
año en todo el mundo, mejorar su rendimiento en caso de choque en lo que respec-
ta a la protección de los ocupantes es clave para reducir el número de lesiones y
muertes. En este sentido, el estudio de lo que ocurre durante un choque es crucial
para evaluar y mejorar la seguridad. Para ello, se realizan numerosas pruebas de
choque f́ısicas y virtuales, probando diferentes escenarios y configuraciones. Ambas
metodoloǵıas tienen sus limitaciones, siendo las principales el consumo de tiempo
y los elevados costes.

La introducción del Machine Learning en este campo puede aportar numerosos
beneficios, aprovechando la existencia de años de pruebas realizadas y registradas.
El objetivo principal de este proyecto es ayudar a la evaluación de la respuesta
motriz que tiene el veh́ıculo durante el choque. Esta respuesta se denomina Pulso
de Choque, y su importancia y efecto en la gravedad del choque ha sido amplia-
mente estudiada y probada.[1][2][3]

El comportamiento global del veh́ıculo durante una colisión puede variar en
gran medida en función de cómo se produzca el choque. Se pueden establecer mu-
chos tipos de choques, pero el principal es la división entre choques laterales y
frontales. Mientras que en el primero tienen gran importancia las intrusiones en
el habitáculo y las aceleraciones laterales, el segundo viene determinado en gran
medida por las deceleraciones sufridas. Este proyecto se centrará en las colisiones
frontales.

El objetivo de este proyecto es desarrollar un algoritmo de Inteligencia Artifi-
cial que sea capaz de predecir el Pulso de Choque resultante con una Configuración
de Choque dada. La definición de Configuración de Choque que se utilizará está
definida en [4] y fue posteriormente utilizada en [5].

2. Metodoloǵıa

El proyecto consta de dos etapas principales. La primera es el proceso de análi-
sis de datos, donde se registra toda la información de las pruebas anteriores, se
filtra y se preprocesa para introducirla en el algoritmo de IA. La segunda es el
diseño de este algoritmo de IA, su entrenamiento, testing y evaluación.

2.1 Análisis de Datos

El proceso de análisis de datos se realiza para crear un conjunto de datos válido
que pueda ser entendido por el modelo de IA. El proceso para hacerlo se describe
en la Figura 1.

Figura 1: Proceso de Recogida de Datos.

Selección. De toda la información disponible, se deben seleccionar las si-
mulaciones útiles y pertinentes para este proyecto. Esto incluye simulaciones
de coche contra coche y de coche contra barrera móvil, con una longitud
mı́nima de pulso de choque registrado y dentro de los ĺımites establecidos
para los choques frontales y traseros.

Preprocesado. Los datos necesarios para la aplicación de la IA deben ex-
traerse de las simulaciones seleccionadas. Esta extracción de información
puede dividirse en dos partes diferenciadas:

• Configuración de Choque. Esta es el input para el modelo de IA. Los
parámetros que describen el choque deben calcularse a partir de la infor-
mación bruta de la simulación. La información de los archivos d3plot
y nodout se ha utilizado para detectar cada objeto que colisiona me-
diante un proceso de clustering, calcular su velocidad (HS y OS), sus
masas (HM y OM) y los ángulos que describen su posición relativa.
Estos ángulos son el ángulo del punto de colisión del veh́ıculo anfitrión
(HCPA), el ángulo del punto de colisión del veh́ıculo oponente (OCPA)
y el ángulo de guiñada del oponente (OYA). Los dos primeros están refe-
ridos al primer punto de contacto (FPOC). Para poder comparar entre
configuraciones con diferencias dimensionales, hay que realizar una nor-
malización, reduciendo la forma del veh́ıculo a un cuadrado unitario.
Una descripción gráfica está representada en las figuras 2 y 3, y un
ejemplo de la configuración de choque resultante se representa en la
tabla 1.
El ĺımite establecido para las colisiones frontales/traseras es [-45,45] y
[135,225] en lo que respecta al HCPA.

Figura 2: Ángulos de la Configuración de Choque [4]

Figura 3: Normalización de la Configuración de Choque [4]

HCPA -38º
OCPA -26º
OYA 160º

Host speed 13.5 m/s
Opponent speed 21 m/s

Host mass 2178.9 kg
Opponent mass 2335.4 kg

Cuadro 1: Parámetros de la Configuración de Choque

• Pulso de choque. Este es el output del modelo. La información del pul-
so de choque se extrae utilizando un script preexistente, que calcula el
pulso de choque en términos de velocidades. El pulso de choque está for-
mado por 6 series temporales, 3 ejes traslacionales y 3 ejes rotacionales.
Para las traslaciones, la información se ha convertido en aceleración.
Por su parte, las rotaciones se han convertido en ángulos. Cada serie
temporal se ha recortado a 80 ms y se ha descrito utilizando 16 times-
teps. La información resultante que describe el pulso de choque de cada
simulación está formada por 96 puntos unidimensionales.

2.1 Modelado de la IA

Los datos se han dividido en dos conjuntos de datos diferentes. El primero se
introducirá en el modelo con información de input y output, para que pueda apren-
der el output esperado. Este conjunto se denomina conjunto de entrenamiento. El
segundo se introducirá sólo con información del input, para que el modelo haga
predicciones a ciegas que luego podrá comparar con el output real. Este conjunto
se denomina conjunto de test.

Como el parámetro de salida es un valor continuo, el modelo de predicción será
de regresión. Se han probado cuatro algoritmos diferentes. Estos cuatro modelos
son Neural Networks, Support Vector Machine Regression, Gradient Boost Re-
gression y Random Forest Regression. Los dos primeros algoritmos están basados
en un Kernel, mientras que los dos últimos están basados en Árboles de Decisión.
Cada algoritmo ha sido modelado individualmente para obtener las mejores pre-
dicciones posibles.

3. Resultados

El conjunto de datos resultante está formado por 284 puntos, 232 (81,7 % del
conjunto de datos) para el conjunto de entrenamiento y 52 (18,3 % del conjunto de
datos) para el conjunto de test. Esta división se representa en la figura 4, donde el
conjunto de datos queda representado en términos de HCPA (eje x) y OCPA (eje
y).

Figura 4: Nube de datos y división

Los cuatro modelos se han probado utilizando las métricas R2 y RMSE, tanto
para cada timestep/predicción como para la estructura completa de traslaciones/-
rotaciones. Las puntuaciones medias se representan en la tabla 2, y en las figuras
5, 6.

Traslaciones Rotaciones
Algoritmo RMSE R2 RMSE R2

Neural Network 0.020 0.728 0.0024 0.103
Support Vector Machine 0.017 0.805 0.0023 0.319

Gradient Boost 0.019 0.747 0.000126 0.834
Random Forest 0.0189 0.751 0.00229 0.937

Cuadro 2: Métricas de error para cada modelo

NN SVM GB RF
0

0,5

1

1,5

2

·10−2

NN SVM GB RF
0

1

2

·10−3

Figura 5: Comparativa de valores de RMSE para traslaciones (derecha) y rotacio-
nes (izquierda)

NN SVM GB RF
0

0,2

0,4

0,6

0,8

1

0,73
0,81

0,75 0,75

0,1

0,32

0,83

0,94Traslaciones Rotaciones

Figura 6: Comparativa de R2

Figura 7: Valores de RMSE y R2 para cada timestep en traslaciones del modelo
de Neural Network

Figura 8: Valores de RMSE y R2 para cada timestep en rotaciones del modelo de
Neural Network

Figura 9: Valores de RMSE y R2 para cada timestep en traslaciones del modelo
de Support Vector Machine

Figura 10: Valores de RMSE y R2 para cada timestep en rotaciones del modelo de
Support Vector Machine

Figura 11: Valores de RMSE y R2 para cada timestep en traslaciones del modelo
de Gradient Boost

Figura 12: Valores de RMSE y R2 para cada timestep en rotaciones del modelo de
Gradient Boost

Figura 13: Valores de RMSE y R2 para cada timestep en traslaciones del modelo
de Random Forest

Figura 14: Valores de RMSE y R2 para cada timestep en rotaciones del modelo de
Random Forest

4. Conclusiones

La primera conclusión que se ha extráıdo durante el desarrollo de este proyec-
to es que no existe un algoritmo perfecto. Cada uno tiene sus propias virtudes
y defectos. El conjunto de datos utilizado, su estructura y las métricas de error
utilizadas para la evaluación también son clave, y afectarán en gran medida al
resultado final y a las conclusiones.

Si se observa el conjunto de datos obtenido, se puede apreciar cierto clustering.
Esto conducirá a una menor precisión de las predicciones, especialmente para las
configuraciones de choque con grandes diferencias en comparación con las del con-
junto de datos. La introducción de simulaciones adicionales, o incluso la creación
de las mismas espećıficamente para rellenar esas lagunas, podŕıa ser beneficiosa
para el modelo. En este sentido, completar el modelo con información de colisiones
laterales podŕıa ayudar, en particular para las simulaciones con valores de HC-
PA cercanos al ĺımite frontal/lateral establecido. Introducir información de otros
fabricantes también podŕıa conducir a un modelo más completo, pero requeriŕıa
introducir un parámetro adicional para la descripción del fabricante.

En cuanto a los resultados del proyecto, y teniendo en cuenta las puntuacio-
nes de error obtenidas, se puede afirmar que los algoritmos que mejor se ajustan
son Support Vector Machine para las traslaciones, y Random Forest para las ro-
taciones. También se puede observar que el rendimiento global de los algoritmos
basados en árboles de decisión es significativamente mejor para las rotaciones en
comparación con los algoritmos basados en kernels.

Referencias

[1] Gerald Joy Sequeira. “Evaluation and characterization of crash-pulses for
head-on collisions with varying overlap scenarios”. En: (2020).

[2] Patil Kantilal. “Crash Pulse Characterization to Minimize Occupant Injuries
in Offset Frontal Crash”. En: (2017).

[3] Zhiqing Cheng. “Optimal Crash Pulse for Minimization of Peak Occupant
Deceleration in Frontal Impact”. En: (2005).

[4] Linus Wågström. “Integrated Safety: Establishing Links for a Comprehensive
Virtual Tool Chain”. En: (2019).

[5] Alexandros Leledakis. “A method for predicting crash configurations using
counterfactual simulations and real-world data”. En: (2020).

[6] Alexandros Leledakis. “Pre-Crash and In-Crash Car Occupant Safety Assess-
ment”. Tesis doct. Chalmers University of Technology, 2021.

Master’s Degree in Industrial Engineering

Master’s final project

Crash Pulse Prediction applied to Frontal Crash

Configurations

Author
Pablo Mira Arana

Supervised by
Francisco José López Valdés

Madrid
June 2021

Contents

1 Introduction 1
1.1 Vehicle safety evaluation . 2

1.1.1 Frontal crashes . 3
1.2 Keywords . 4

1.2.1 Abbreviations . 4

2 Motivation 5

3 Objectives 7

4 State of the art 9
4.1 Crash Configuration . 9

4.1.1 Frontal and Rear-end Crashes 11
4.2 Crash Pulse . 13
4.3 Machine Learning . 15

4.3.1 K-Means Clustering . 15
4.3.2 Regression . 17
4.3.3 Decision Trees . 19
4.3.4 Error Functions . 21
4.3.5 AI models . 23

5 Methodology 33
5.1 Data Analysis & extraction . 33

5.1.1 Data selection . 34
5.1.2 Data pre-processing . 35

5.2 AI modelling . 44
5.2.1 Dataset division . 44
5.2.2 AI algorithms . 45

6 Results 49
6.1 Dataset . 49

ii

6.2 AI implementation . 52

7 Conclusions 55

8 Limitations & Future Work 57

A Alignment with the SDGs 63

B 65
B.1 Neural Networks . 65
B.2 Support Vector Machine . 68
B.3 Gradient Boost . 70
B.4 Random Forest . 72

List of Figures

1.1 Simulation flow example. 2
1.2 Rear-end collision. 3
1.3 Head-on collision. 3

4.1 Crash Configuration Angles [5] . 10
4.2 Crash Configuration Normalization [5] 11
4.3 Frontal Crashes Discrimination . 12
4.4 Frontal & Rear-end crashes discrimination 12
4.5 Crash Pulse example . 14
4.6 Clustering techniques . 16
4.7 Regression example . 17
4.8 Decision tree example . 20
4.9 Algorithm selection guide [12] . 24
4.10 Basic Neural Network Architecture 26
4.11 Neuron architecture . 26
4.12 SVM classification example . 28
4.13 Gradient Boost example . 29
4.14 Random Forest . 30

5.1 Data gathering process. 34
5.2 Object detection process . 37
5.3 Angle decomposition . 39
5.4 Dimensional reduction of the data 42
5.5 Direct strategy for multi-step prediction example 47
5.6 Recursive strategy for multi-step prediction example 47

6.1 Car-to-car and car-to-moving barrier simulations 49
6.2 Resulting data cloud and splitting 50
6.3 Frequency analysis of Host and Opponent speeds in dataset 51
6.4 Frequency analysis of Host and Opponent masses in dataset 51
6.5 Comparison of RMSE for translations (left) and rotations (right) . . 52
6.6 Comparison of R2 . 53

iv

B.1 RMSE values for each step in Neural Network model for translations 65
B.2 R2 values for each step in Neural Network model for translations . . 66
B.3 RMSE values for each step in Neural Network model for rotations . 66
B.4 R2 values for each step in Neural Network model for rotations . . . 67
B.5 RMSE values for each step in Support Vector Machine model for

translations . 68
B.6 R2 values for each step in Support Vector Machine model for trans-

lations . 68
B.7 RMSE values for each step in Support Vector Machine model for

rotations . 69
B.8 R2 values for each step in Support Vector Machine model for rotations 69
B.9 RMSE values for each step in Gradient Boost model for translations 70
B.10 R2 values for each step in Gradient Boost model for translations . . 70
B.11 RMSE values for each step in Gradient Boost model for rotations . 71
B.12 R2 values for each step in Gradient Boost model for rotations . . . 71
B.13 RMSE values for each step in Random Forest model for translations 72
B.14 R2 values for each step in Random Forest model for translations . . 72
B.15 RMSE values for each step in Random Forest model for rotations . 73
B.16 R2 values for each step in Random Forest model for rotations 73

List of Tables

5.1 Dimensions of the cluster without weighting 36
5.2 Dimensions of the cluster after weighting 36
5.3 Crash Configuration parameters . 39
5.4 Crash pulse description . 43

6.1 Average error metrics for each model 52

vi

Chapter 1

Introduction

Road safety is one of the biggest concerns of modern society. In 2016, 1.35 mil-
lion road traffic deaths were estimated worldwide [1], and the number of injuries
is considered to be over 10 times the number of deaths.

As the number of vehicles increases every year, making these vehicles safer is
crucial for limiting injuries and deaths. Vehicle safety can be evaluated using 2
different procedures. The first one, and the oldest one, is to perform physical tests.
These tests require a large financial investment to have the right equipment and
the right facilities. Apart from that, each test means a high cost and months of
preparation. This is one of the reasons why the second procedure was developed.
This procedure is to simulate these tests with FE simulations. By doing so, the
cost of equipment and facilities is drastically reduced. But these simulations also
have their flaws. They are also expensive computational and time-wise.

Using both physical tests and simulations, occupant safety in vehicles has been
improved over the last decades, but with the emergence of AD and ADAS, a
paradigm shift has occurred. Therefore, new scenarios may need to be evaluated,
and new variables may need to be considered. [2][3]

To help the evaluation of this new paradigm, Data Science and AI could have
an important role in vehicle safety.

1

Chapter 1. Introduction

1.1 Vehicle safety evaluation

Nowadays, a large number of tests are done via simulations. Many reasons
are explaining this. Cost reduction, the possibility of recreating scenarios that are
not ethically right to test physically, etc. The complete process of occupant safety
evaluation consists of two main phases: pre-crash and in-crash. The pre-crash
phase has gained a lot of importance with the growth of ADAS, as these systems
are designed to try to avoid the crash, or mitigate it. Therefore, the resultant
crash might be varied with the action of ADAS. In this first phase, the resulting
crash is determined.

When the final crash configuration (how is the crash occurring) is defined, the
in-crash phase is developed. In this in-crash phase, the crashworthiness (how the
structure of the vehicle behaves) is evaluated, to then evaluate the response of the
occupant (using an ATD (Anthropomorphic Test Device) or HBM (Human Body
Model)) and of the restraint systems and safety features.

Figure 1.1: Simulation flow example.

Considering the flow chart represented in Figure 1.1 as a possible simulation
flow, this particular project is focused on predicting one of the outputs of the 2nd

simulation, the crash pulse, from a given crash configuration. This crash pulse
will define to a large extent the occupant motions, defining too the crash severity
[4]. Therefore, the crashworthiness evaluation is essential when trying to reduce
this severity. The predicted crash pulse can be used, for example, to evaluate the
pre-crash phase regarding possible resulting crash configurations.

2

Chapter 1. Introduction

1.1.1 Frontal crashes

Frontal crashes include both Head-on and Rear-end collisions, as both involve
the frontal/back end of the vehicle. These two types of collisions have significant
differences. In rear-end collisions, as represented in Figure 1.2, both vehicles are
heading in the same direction. On the other hand, in head-on collisions, as rep-
resented in Figure 1.3, the vehicles colliding have opposite directions. Therefore,
the characteristics of the crash regarding occupant response and suffered acceler-
ations/impacts will differ largely.

Figure 1.2: Rear-end collision.

Figure 1.3: Head-on collision.

3

Chapter 1. Introduction

1.2 Keywords

Machine Learning, Artificial Intelligence, Crash Configuration, Crash Pulse,
Time Series, Python, Prediction, Regression, Frontal Crashes, Simulations

1.2.1 Abbreviations

• ML → Machine Learning

• DL → Deep Learning

• AI → Artificial Intelligence

• CC → Crash Configuration

• CP → Crash Pulse

• c2c → Car to car

• c2b → Car to barrier

• AD → Autonomous Driving

• ADAS → Advanced Driver Assistant Systems

• CoG → Center of Gravity

• FPOC → First Point of Contact

• RF → Random Forest

• NN → Neural Network

• SVM → Support Vector Machine

• GB → Gradient Boost

4

Chapter 2

Motivation

This project was born from the need of processing large sets of data efficiently,
investigating numerical methods for predicting the acceleration pulse of a vehicle
impact with a given crash configuration.

Vehicle safety needs constant research and development to adapt to evolving
mobility. With the growth of ADAS and the research regarding AD, safety may
experience a major change in its objectives and can result in a bigger need for it
to evolve.

With this pulse prediction, the study of different crash scenarios can be faster
and more cost-efficient compared to virtual simulations and crash tests. This can
help in the occupant safety enhancement, being useful for assessing the effect of
pre-crash maneuvers on the severity of the crash, evaluating the occupant response,
etc. This project can also be a first step for the inclusion of Artificial Intelligence
in vehicle safety evaluation.

Alongside the development of the project, extensive knowledge of Data Anal-
ysis and Machine Learning methodologies will be acquired. These two fields are
becoming increasingly important, since in every industry the volume of data is
increasing exponentially, and these methodologies are needed to process it and
obtain useful information from it.

5

Chapter 3

Objectives

This project aims to develop a method that predicts the resulting crash pulse
of a vehicle impact from a given crash configuration, using ideally both simulation
and test data. To define the project scope, 4 main objectives have been identified:

1. Explore existing methods. Search for similar projects, and developed
methodologies suitable for the project.

2. Crash configuration method. Create a method that automatically parses
through test and simulation data and extracts the desired crash configura-
tion parameters. These crash configurations shall be valid and shall have a
corresponding crash pulse, as it is needed to first train, then test the algo-
rithm.

3. Crash pulse forecasting. Create and train a method that predicts crash
pulses with a given standardized crash configuration. This method will read
the crash configuration parameters and generate a 3-axis translation and
3-axis rotation time-series.

4. Accuracy evaluation. Evaluate the accuracy of predicted crash pulses in
comparison with original crash pulses. To do so, the data set of crashes will
be split into train and test data sets.

7

Chapter 4

State of the art

In this chapter, an in-depth explanation of a variety of topics will be carried
out, in order to give the reader a better understanding of the knowledge domains
and specific tools that have been used during the development of this project.

4.1 Crash Configuration

The Crash Configuration is a set of parameters that define the principal char-
acteristics of how a crash occurs. It is referred to as the ego vehicle, also known
as the Host vehicle. The Crash Configuration definition that will be used for this
project is the Volvo Parametric Crash Configuration (VPARCC) [5], which in-
cludes the parameters description and the Crash Configuration normalization.

This Crash Configuration relies on the identification of the First Point of Con-
tact (FPOC) for the parameter definition. As it uses a top view of the crash, the
configuration is described in a two-dimensional plane.

To properly define this Crash Configuration, the boundaries of both colliding
objects must be known, as well as the geometrical center points of both objects,
their velocities, and directions. With this information, the positional angles and
the velocities that describe the Crash Configuration can be defined. For this
project, an object description parameter has been added, with mass being the
chosen one. The resulting parameters are:

1. Host Collision Point Angle (HCPA). This angle is defined as the counter-
clockwise angle between the host center plane and the FPOC.

2. Opponent Collision Point Angle (OCPA). This angle has a similar

9

Chapter 4. State of the art

definition as the HCPA, but the reference is taken from the opponent vehi-
cle/object, considering its center plane.

3. Opponent Yaw Angle (OYA). This angle is defined as the counter-
clockwise angle between the direction of the host vehicle and the direction
of the opponent vehicle.

4. Host Speed (HS). The velocity magnitude of the Host vehicle.

5. Opponent Speed (OS). The velocity magnitude of the Opponent vehicle.

6. Host Mass (HM). The mass of the Host vehicle, considering possible oc-
cupants.

7. Opponent Mass (OM). The mass of the Opponent vehicle, considering
possible occupants.

The three positional angles are represented in Figure 4.1 for a better under-
standing.

Figure 4.1: Crash Configuration Angles [5]

This Crash Configuration is dependant of the dimensions of the colliding ve-
hicles. To compare Crash Configurations from different vehicles, this dependency
must be eliminated. To do so, a normalization of the vehicle is performed, con-
verting it to a square unit. This normalization will allow not only to compare
Crash Configurations from vehicles with different dimensions, but to have a better
visualization tool for large sets of Crash Configurations.

10

Chapter 4. State of the art

Figure 4.2: Crash Configuration Normalization [5]

The Crash Configuration and its normalization are further explained in [5] and
[6].

4.1.1 Frontal and Rear-end Crashes

As seen in Section 1.1.1, Rear-end and Head-on collisions represent a large
percentage of the c2c collisions. However, the limits that define the difference
between a frontal/rear-end collision and a lateral collision are not defined. For the
purpose of this project, this limit has been set at 45º for the normalized HCPA,
regarding both corners in the anterior and posterior parts. This is represented in
Figures 4.3 and 4.4.

11

Chapter 4. State of the art

Figure 4.3: Frontal Crashes Discrimination

Figure 4.4: Frontal & Rear-end crashes discrimination

12

Chapter 4. State of the art

4.2 Crash Pulse

A vehicle crash is a very complex event, where hundreds of parameters influ-
ence its severity. In order to enhance occupant safety, one of the most important
outputs of a vehicle crash is the Crash Pulse, which is the movement history of the
vehicle during the crash. It can be represented using displacements, velocities, or
accelerations, being this last one the most common and the most straightforward
when studying its influence in the occupant response. Its shape, peak values, and
duration provide important information over how the occupant response will be
during the in-crash phase. In turn, these Crash Pulse parameters are very depen-
dent on the initial Crash Configuration.

Numerous studies have been carried out in order to minimize occupant in-
juries, especially regarding frontal crashes. Finding the Crash Pulse parameters
that define the severity of a crash has become a key factor when studying vehicle
safety. See Optimal Crash Pulse for Minimization of Peak Occupant Deceleration
in Frontal Impact [7], The Effect of Crash Pulse Shape on Occupant Simulations
[8], and Crash Pulse Characterization to Minimize Occupant Injuries in Offset
Frontal Crash [9] for further information about this topic.

The Crash Pulse can be represented in different ways. For the scope of this
project, it will be described using 6 time series, being 3-axis translations and 3-axis
rotations. This is represented in Figure 4.5.

13

Chapter 4. State of the art

Figure 4.5: Crash Pulse example

14

Chapter 4. State of the art

4.3 Machine Learning

4.3.1 K-Means Clustering

Clustering is a process in which the objective is to group a set of data points/ob-
jects in different groups, where all the objects in the same group have more similar
characteristics between them than with the objects in other groups. Its commonly
used in data mining applications and statistical data analysis.

Clustering is an Unsupervised Learning methodology. This means that there is
not a specific target to predict, and the data provided is unlabeled. The algorithm
finds hidden patterns in data on its own, with given characteristics of the data
(also called dimensions).

K-Means clustering is one of the most popular ML algorithms. This is due
to its versatility and simplicity. It is a partitional clustering technique, based on
centroid identification. The k parameter refers to the number of clusters that must
be identified, and it a user-set parameter. K-Means’ objective is to reduce the sum
of squares in each cluster, considering the mean value in each cluster. This pro-
cess is done by finding the centroid (arithmetic mean of all the points belonging
to the cluster) of each cluster and calculating the distance of each point of the
cluster to this centroid. This is an iterative process, searching for convergence
of the centroid positions. It starts with randomly selected centroids, iterating un-
til the centroids are stabilized or a defined number of iterations have been achieved.

In clustering processes, it is important to select correctly the dimensions that
it may take into account, as well as giving them an adequate weight. If one of the
dimensions has a magnitude ten times larger than the others, the algorithm will
give this dimension more weight when finding the clusters.

15

Chapter 4. State of the art

Figure 4.6: Clustering techniques

In Python, the scikit-learn library includes a K-Means clustering class [10].
This class allows easy implementation a clustering process with few preparation
and defined parameters. Defining the number of desired clusters and giving the
data set with the important dimensions, the process will be performed automat-
ically, returning an object with all the cluster information. This object includes
the centroids coordinates, the labeled data points, etc.

16

Chapter 4. State of the art

4.3.2 Regression

In contrast with the Clustering methodology described before, the Regression
methodology is a Supervised Learning methodology. This means that it uses la-
beled datasets, enabling the model to measure its accuracy and learn over time.

Regression is a learning method that considers relationships between a de-
pendent variable (the variable that the model tries to predict) and independent
variables and is widely used to predict numerical values. The general expression
of a regression model is shown in equation 4.1, where xi represent the independent
variables, and βi represent the coefficients of these variables, called parameters.

Y = f(xi, βi) (4.1)

There are numerous regression models, being divided primarily into linear and
non-linear regression. In linear regression, the dependent variable Y is a linear
combination of the parameters. Therefore, even with quadratic expressions for the
independent variables, if the parameters βi are linear, the regression will be linear.
If there is only one independent variable, it is called Simple Linear Regression. If
multiple independent variables are affecting the prediction of the dependent vari-
able, it is called Multiple Linear Regression.

Figure 4.7: Regression example

17

Chapter 4. State of the art

The difference between linear and non-linear regression is that, unlike linear
regression, where all the terms in the model definition are either constants or
parameters multiplied by independent variables, non-linear regression models are
not constrained to this. Then, its basic definition is represented in equation 4.2.
Non-linear regression models include Polynomial Regression, Logistic Regression,
etc.

Y ∼ f(xi, βi) (4.2)

When performing regression, the model’s objective is to estimate the values
of the parameters βi to fit the prediction the best way possible. To do so, the
difference between the predicted dependent variable and the actual value of this
variable must be minimized. This difference is called residual and is usually as-
sessed using sum of squares to avoid negative values. The Residual sum of squares
equation is defined in 4.3.

RSS =
n∑
i

(yi − ŷi)2 (4.3)

To assess the fitting of the model for the data, the Residual standard error
(RSE) and the R2 functions are commonly used.The functions defining these error
metrics are detailed in equations 4.4 and 4.5.

RSE =

√
1

n− 2
RSS (4.4)

R2 = 1− RSS

TSS
= 1− RSS∑

(yi − ȳ)
(4.5)

R2 measures the variability of Y that can be described using xi. This error
function is explained more in detail in section 4.3.4.

18

Chapter 4. State of the art

4.3.3 Decision Trees

A decision tree is a classifier, where a recursive division is performed. It is a
conditional-based prediction methodology, wherein each node of the tree a proba-
bilistic decision is made. They are commonly used for handling non-linear datasets
and can be used both for categorical variable prediction and continuous variable
prediction. When it is used for continuous variable prediction, it is called Regres-
sion Tree.

This particular type of Decision Tree is built through a process called Binary
Recursive Partitioning, where the data is split recursively into different partitions.
The algorithm will search for the split that minimizes the sum of squared devia-
tions from the mean. This splitting is performed until each different node reaches
a user-specified minimum node size.

Decision trees are made by three types of nodes:

• Root node: The ”original” node, that has no incoming edges. Is where the
tree starts. Represented in blue in the Figure 4.8.

• Internal node: Nodes that have in-going and outgoing edges. Represented
in red in the Figure 4.8.

• Decision/Terminal node: Ending nodes, where the decision is made. Rep-
resented in green in the Figure 4.8.

19

Chapter 4. State of the art

Figure 4.8: Decision tree example

Each internal node splits the instance into multiple edges, following a function
that is defined for that node and considers the input attributes.

For its implementation in ML, Decision Tree Inducers are used. These algo-
rithms build automatically a decision tree from a given dataset, finding the optimal
decision tree by minimizing the generalization error, the number of nodes, or the
tree depth. [11]

20

Chapter 4. State of the art

4.3.4 Error Functions

Root Mean Squared Error

Root Mean Squared Error (RMSE) is the standard deviation of the residuals
in a regression prediction. These residuals represent how far is the regression line
to the data points.

RMSE =

√√√√ n∑
i=1

(ŷi − yi)2
n

(4.6)

The equation 4.6 represents the definition of the RMSE, being y1, y2, ..., yn the
observed values and ŷ1, ŷ2, ..., ŷn the predicted values. Dividing by n (number of
observations) enables the RMSE to be somewhat independent of the size of the
set, just becoming more accurate as the number of observations increases.

RMSE can be seen as the normalized distance between the vector of predicted
values and the vector of real values and helps estimate how far off will be the next
prediction.

In Data Science and Machine Learning, RMSE has two principal purposes. The
first one is to serve as a heuristic for training models. This means that, when train-
ing a model, RMSE can be used as a measure of how well the model is adapting
and therefore improving it. The second one is to evaluate the accuracy of trained
models.

This statistical parameter is a unit-dependent statistical parameter. Depend-
ing on the units of the set we are studying, the magnitude of the RMSE will vary.
For example, when studying a set of predicted weights, the RMSE will be larger
if these weights are measured in grams than if they are measured in kilograms.

In the case RMSE is used as a heuristic in training models, its magnitude will
not be as important, as it is used to evaluate the improvement of each iteration.
Therefore, it will be studied in relative terms, looking to reduce its value as the
model is further developed.

If the RMSE is used to evaluate the accuracy of a trained model, its magni-
tude will be more relevant. In this case, the user must evaluate if the RMSE is
sufficiently small regarding the magnitude of the dependent variable.

21

Chapter 4. State of the art

R squared

R2, also known as the coefficient of determination, is a statistical measure that
represents the proportion of the variance in the dependent variable that can be
explained by the effect of the independent variables. This is represented in the
equation 4.7. R2 measures the relationship between the model and the dependent
variable. Looking at equation 4.7, a R2 = 0.80 can be read as 80% of the variance
in the model can be explained by the inputs of the model.

R2 =
V ariance explained by the model

Total variance
(4.7)

This statistical parameter is commonly used in Regression models, as studying
the influence of independent variables in the prediction is crucial in these models.
But low values of R2 do not always represent a problem in the model, and high
values do not represent a good fitting model.

Depending on the nature and complexity of the model, a larger amount of the
variation can be inexplicable. On the other hand, high values of R2 can be miss
leading, as R2 cannot reflect how biased is the model. Therefore, further study of
the model must be developed to assess the good fit of the model, using residual
plots and other statistical parameters.

22

Chapter 4. State of the art

4.3.5 AI models

Selecting the adequate algorithm for each application is not a trivial task, and it
will largely define the success of the prediction model. When deciding which model
to use, there is no definitive guide to decide based on the particular application,
although some guiding can be made, as shown in Figure 4.9. The user must decide
based on the nature of the data, its structure, the desired prediction, etc. The
most important aspects to consider when selecting an algorithm are:

• Size of the training data. Although it is always desirable to have a gen-
erous amount of data, collecting this data is usually one of the constraints
when modeling an AI application. Algorithms with high bias and low vari-
ance, like Linear Regression are a good fit when the data set is not sufficiently
big.

• Nature of the dependent variable. This is one of the first discriminations
that must be made when selecting an algorithm. If the dependant variable
is a certain class (for example, predicting who will win the next presidential
elections), models based on Decision Trees are usually the best fit.
If, on the other hand, the dependent variable is a continuous value (for exam-
ple, what will be the stock price of a certain asset next month), Regression-
based algorithms will usually be the best choice.

• Computational time. Algorithms that provide higher accuracy often re-
quire more computational time when training, especially with large sets of
data. This would be the case of algorithms such as Neural Network, Random
Forest, or Support Vector Machine. More basic algorithms, such as Näıve
Bayes or Linear Regression require less training time, being also less precise.

• Number of features. If the number of independent variables describing
the behavior of the dependent variable is large, this can be miss leading to
some algorithms. Models such as Principal Component Analysis (PCA) can
be applied to perform a dimension reduction before the actual prediction
model.

23

Chapter 4. State of the art

Figure 4.9: Algorithm selection guide [12]

24

Chapter 4. State of the art

Having this into account, a common practice is to select some candidates and
evaluate them in parallel, to choose the best fit. For this particular project, fur
algorithms have been selected These are Neural Networks, Support Vector Ma-
chines, Gradient Boost and Random Forests. Both Neural Network and Support
Vector Machine are Kernel-based algorithms [13], as Gradient Boost and Random
Forest are Decision Trees-based algorithms. This will affect the way each algorithm
behaves. In the next sections, each algorithm will be described.

Neural Networks

Neural Networks is one of the most popular AI algorithms nowadays, as they
provide a wide variety of usages, and can be adapted to almost any application.
They are created replicating the structure of the human brain, with individual
nodes, called neurons, that interconnect with other nodes to create a complex
mesh of correlations. This algorithm’s architecture is geared to finding patterns
in large and complex sets of data.

These neurons are grouped in layers, where each layer represents one step in
the process. This is represented in Figure 4.10. There are three main types of
layers:

• Input layer. This layer is where the independent variables are introduced
to the model. The number of neurons in the input layer is determined by
the number of features that are describing the dependent variable.

• Hidden layers. These intermediate layers represent most of the computa-
tional procedure of the algorithm, where the correlations are defined. The
number of hidden layers and the number of neurons in each layer can be
defined by the user.

• Output layer. In this layer, the final prediction is generated. The number
of neurons is defined by the number of outputs predicted.

25

Chapter 4. State of the art

Figure 4.10: Basic Neural Network Architecture

Each node has a connection with all the nodes of the next layer, with a weight
assigned to each connection. This weight reflects the impact the output of each
node has on the following layer.

Figure 4.11: Neuron architecture

As represented in Figure 4.11, each node has an activation function, which
defines if the node must be activated or not, based on the weighted sum that it
receives from other neurons’ outputs. The most popular activation functions are:

26

Chapter 4. State of the art

• Step function. In this function, a threshold value is defined. If the weighted
sum of the inputs is greater than this value, the node will be activated with
value 1. If not, it will not be activated, giving as output value 0.

• Linear Function. The output value of the node is generated based on a
linear function. Therefore, the output of the node is not confined between any
range. A variation of this function is the rectified linear activation function
(ReLU), which works the same way as the Linear activation function, but
returns a value 0 if the generated output is negative. This modified Linear
activation function is one of the most used, due to its versatility and good
performance.

• Sigmoid function. It is defined by the equation 4.8, and allows the node
output to take values between 0 and 1. It is widely used for probabilistic-
based predictions.

S(x) =
ex

ex + 1
(4.8)

The architecture of the NN represented in Figure 4.10 corresponds to a Feed-
Forward Neural Network. This architecture only allows the algorithm to learn as
it advances on the layers. For more complex implementations, as applications for
predicting time series data, audio data, or text data, Recurrent Neural Networks
(RNN) is much more convenient. RNN are designed to understand sequential data,
where what happened before matters for the actual prediction.

The most important architecture for RNN is the Long Short-Term Memory
(LSTM). One of the main problems RNNs have is they tend to give more impor-
tance to what just happened before, rather than considering the whole process.
This is usually called ”short-term memory”. Therefore, if the time series/sequence
that is the prediction target is long enough, the first part of it will be lost in the
process. LSTM is designed to avoid this problem. The neurons for LSTM are built
so they learn which data is important, regardless of the length of the data. [14]

Another important aspect to have into account when building a Neural Network
is the optimizer that will be used. These optimizers are algorithms that reduce the
losses of the Neural Network by changing its parameters, such as weights. There
are several types [15], but for this project, the optimizer that will be used is Adam
(Adaptive Moment Estimation).

27

Chapter 4. State of the art

Support Vector Machine

Support Vector Machines (SVM) are algorithms which objective is to find a
vector/hyperplane (in a multidimensional plane with N dimensions, being N the
number of different features describing the problem) that classifies the data points.
This vector/hyperplane is selected between all the possible ones by finding the one
that maximizes the distance between both classes (d1 and d2).

Figure 4.12: SVM classification example

Although SVM is commonly used for classification applications, its use for
Regression problems is also extended. In this case, it is called Support Vector
Regression (SVR), and the hyperplane is used to fit the data points, considering
an error margin defined by the user.

The three main parameters that define an SVR algorithm are:

• Kernel. It defines the type of curve/hyperplane that will fit the data.

• Epsilon ε. Sets the amount of acceptable error when predicting.

• Regularization parameter C. Sets a tolerance value for points in the
dataset outside the ε boundaries.

28

Chapter 4. State of the art

Gradient Boost

Gradient Boost is not a specific algorithm, but a Machine Learning technique
that enables the creation of powerful prediction models using basic Decision Trees,
creating a stack of them to have a more precise and complex prediction. The
prediction is done in a staggered way, with each tree trying to improve the last
tree’s prediction. It is commonly used for regression and classification applications.
An example of a Gradient Boost base on decision trees is represented in Figure
4.13, where it can be seen how the ensemble method works.

Figure 4.13: Gradient Boost example

29

Chapter 4. State of the art

Random Forest

Random Forest, as Gradient Boost, is based and formed by multiple decision
trees that are stacked. The difference with Gradient Boost is that, in Random
Forest, each tree performs the same prediction, and then the prediction with more
”votes” is considered as the correct one.

Figure 4.14: Random Forest

The key to the good performance a Random Forest algorithm gives is the lack
of correlation between trees, enabling the model to give more accurate predictions
than individually or with a more correlated model, as each tree is protected from
the possible errors that other trees have.

The randomness of each tree is ensured using a technique called Bagging. As
the decision trees are very sensitive to the data that is used to train them, each
tree forming the Random Forest is trained with a randomly selected sample from
the dataset. This is done so each tree only sees some of the features describing

30

Chapter 4. State of the art

the model, being these features randomly selected. This ensures a low correlation
between trees.

Random Forest is a powerful algorithm, but it is also a very easy-to-implement
model. The most important hyperparameter defining it is the number of esti-
mators, being these estimators the Decision Trees. Increasing the number of trees
will lower the computational speed, but will increase the precision and also prevent
over-fitting.

31

Chapter 5

Methodology

In this chapter, the process followed to develop the project will be detailed.
This process can be divided into two main steps: data analysis & extraction,
and AI modeling. All this process has been developed using Python 3.8.3 with the
Spyder coding environment [16], using specific packages for improved functionality.

5.1 Data Analysis & extraction

This project relies on the previous work done in the past. Over the last years,
numerous projects have been developed at the Volvo Cars Safety Center where
crash simulations and tests have been done. All this stored information can now
be used to obtain the data to train an AI model, as the resulting output of those
crashes is needed. The data extraction process will be designed so new simulations
can be introduced to the model.

From this database, the relevant and useful simulations shall be selected, to
then process them to extract the data needed for the AI model. This process is
represented in Figure 5.1.

33

Chapter 5. Methodology

Figure 5.1: Data gathering process.

5.1.1 Data selection

Among all the simulations stored in this database, c2c and c2b have been
identified and selected, rejecting those where the minimal requirements to extract
the data are not fulfilled. Some of these requirements are having a labeled CoG
and an accelerometer for at least one of the objects colliding, having at least 80 ms
of recorded results for the crash pulse, or having two voluminous colliding objects.
This last restriction is due to a limitation when clustering each object, where the
cluster fails when one of the bodies has no volume. This last restriction excludes,
for example, a car colliding to a wall, where the wall is defined with a single-node
layer.

34

Chapter 5. Methodology

5.1.2 Data pre-processing

With these valid crashes identified, the needed data shall be extracted from
them, adapted to the format that the AI model requires. These simulations are
formed by numerous elements and definitions, and they generate a large number
of output data. Selecting where to take the information from and validating it is
key for a reliable data set. In the next sections, the process to obtain the crash
configuration and the crash pulse from each simulation will be detailed.

Crash configuration extraction

The first step for obtaining the crash configuration is to read the simulation
files from where the information will be extracted. The information is extracted
from output files of the simulation (d3plot and binout).

• The d3plot file contains information about nodes, elements, parts, shells,
etc., and their behavior during the simulation (displacements, velocities,
etc.). For this project, information about node displacements, as well as
part masses and velocities will be used.

• The binout file includes a variety of outputs from the simulation, as kinetic
energy or node velocities. For this project, information from the nodout
will be used, where information from specific nodes is recorded. These nodes
include CoGs, accelerometers, etc.

The information from these files is read using the lasso.dyna library [17], which
is a specific library for reading LsDyna simulation files in Python. This library
allows reading the information in a structured way, using cards to define each in-
formation type.

When these two files are read, the next step is to determine which objects are
colliding. This may seem trivial, but as each object is defined by thousands of
nodes, elements, parts, etc; a clustering process must be developed to differentiate
each object. The clustering method that has been used is K-Means [10], which is
detailed in the K-Means Clustering section. For this specific clustering process, 3
dimensions have been selected:

• Node X coordinate

• Node Y coordinate

• Node ID

35

Chapter 5. Methodology

A weight has been assigned for the node ID dimension, to reduce its influence
in the process. The maximum value of the node ID list has been equalized with
the maximum coordinate value. By doing so, the three dimensions will have the
same weight on the cluster. This is represented in tables 5.1 and 5.2 (note that the
values represented in these tables do not correspond to real values). The number
of clusters is defined as 2 (number of colliding objects).

Node number X-coord Y-coord Node ID
Node 1 135.45 -2004.53 1

Node 45234 526.23 153.65 45234
Node 2343244 2034.34 -1121.43 2343244

...
Maximum values 3025.65 3185.54 58523443

Table 5.1: Dimensions of the cluster without weighting

Node number X-coord Y-coord Node ID
Node 1 135.45 -2004.53 1

Node 45234 526.23 153.65 853.51
Node 2343244 2034.34 -1121.43 2543.43

...
Maximum values 3025.65 3185.54 3185.54

Table 5.2: Dimensions of the cluster after weighting

As part of this clustering process, and to correctly detect the FPOC, an itera-
tive process has been developed to detect the last timestep of the simulation before
the collision. This process has been designed to start from timestep 0, cluster both
objects, detect the boundaries and then check if they are intersecting. If not, the
loop continues and repeats the same process for the next timestep. When it de-
tects intrusion between boundaries, it returns the immediate previous timestep,
and this one will be used to do the final cluster and detect the FPOC.

36

Chapter 5. Methodology

Figure 5.2: Object detection process

When the final cluster is obtained, to find the FPOC, the boundary of each
cluster must be found. The first step is to create a Convex Hull [18], to later
on creating a polygon [19] around this hull. With both polygons, the minimum
distance can be found using the built-in function in Shapely objects [19]. This
Shapely object will also be useful to perform the vehicle normalization. This is
done by reducing the vehicle/object dimensions to a 1x1 square. This normaliza-
tion allows the comparison of crash configurations between vehicles with different
dimensions [6].

The vehicle normalization is the last step before calculating the positional
(HCPA, OCPA, OYA) angles described in the Crash Configuration section. With
these angles defined, the last two steps are to extract the velocities and the masses
of both vehicles.

37

Chapter 5. Methodology

As for the velocities, the information is extracted from the nodout file. If a
CoG node is identified within each vehicle boundary, the velocity is directly ex-
tracted from these nodes. If this is not the case and one of the CoG is missing, the
velocity for that vehicle is extracted from nodes in the nodout that are within
the boundary. A sample of these nodes is selected, to ensure the information is
extracted correctly.

The mass information is stored in the d3plot file, and it is assigned to the
parts defined in the model. As the vehicle identification has been done regarding
the nodes, it is not known which part belongs to which vehicle. For this reason, a
new clustering process must be developed.

In this case, there will be four dimensions:

• Part ID

• Part mass

• Part Velocity in X coordinate

• Part velocity in Y coordinate

Each cluster is then compared with the already known vehicle velocities, to
define which cluster is which vehicle. Once this is known, the mass of each part
belonging to each vehicle is summed up to obtain the vehicle’s total mass. This
procedure is sensitive to added masses, as dummies.

With the velocities and masses, all the information regarding the Crash Config-
uration is extracted. As the last step, an angle decomposition must be performed.
This decomposition in X-Y coordinates will be applied for the three angles (HCPA,
OCPA, and OYA).

This is graphically described in Figure 4.4. Two angles that represent practi-
cally the same point (P1 & P2) have a widely different numerical representation
(178 & -178). This can be miss leading for the AI model.

38

Chapter 5. Methodology

Figure 5.3: Angle decomposition

After the decomposition of HCPA, OCPA and OYA, the final Crash Configu-
ration definition consists of 10 parameters, all of them numerical and continuous.
This is represented in Figure 5.3.

HCPA-X -0.98
HCPA-Y 0.2
OCPA-X 0.98
OCPA-Y -0.2
OYA-X 1
OYA-Y 0

Host speed 13.5
Opponent speed 21

Host mass 2354.5
Opponent mass 2154.2

Table 5.3: Crash Configuration parameters

39

Chapter 5. Methodology

All this process of Crash Configuration extraction has been executed automat-
ically for each simulation that fulfilled the requirements described in section 5.1.1,
and the Crash Configuration of each simulation has been stored in a database,
where later on the information of the Crash Pulses will be annexed.

With this database fully defined, the division to select the frontal crashes has
been carried out. In order, to do so, a limit has been set in the HCPA parameter,
where all the simulations where this parameter is within the ranges of [-45,45] and
[135,225] have been identified as frontal/rear-end crashes, as explained in section
4.1.1.

40

Chapter 5. Methodology

Crash Pulse extraction

The remaining part of the data analysis process is to extract the Crash Pulse
of each simulation. This Crash Pulse is formed by 3 axis translation and rotation
time series, as described in section 4.2. The information for the crash pulse is
extracted using a pre-existing script. This script computes the Crash Pulse in
the shape of velocities, using the information stored in the nodout file for the
accelerometers positioned in the vehicle. It is important to use the information in
the global coordinates system, as these accelerometers compute the information
both in global and local coordinates. This velocity crash pulse can be integrated
or derived to obtain displacements or accelerations, respectively.

However, this script has been modified to fit the purpose of this project. The
input parameters for the script are the ID of the accelerometers with global co-
ordinates information (3 in total), the read file path, the writing file path, and a
pid parameter. The 3 used accelerometers are positioned in a region of the vehicle
body that is not deformed during the crash.

The script has also been modified to generate a reduced number of points for
the Crash Pulse time series, with an x100 reduction. The output of the script is a
.k file with the information for the 6 time series, in this case, translational acceler-
ations and rotational positioning. The models have been tested with accelerations,
velocities, and displacements, both for translations and rotations, concluding that
translational accelerations (m/s2) and rotational displacements (rad) are the best
ones for predicting.

However, these extracted Crash Pulses are not suitable yet for the model. This
information must be adapted to a format the AI model can interpret. Princi-
pal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX) and
frequency analysis have been considered as methods to perform a dimensional re-
duction of the time series. However, due to limitations of replicability, and looking
for a data structure that can be easily introduced in an AI algorithm, it has been
decided to perform the reduction of the Crash Pulse, dividing the time series in
time steps of 5 ms. The mean value of each timestep’s data will be calculated.
This allows not only to reduce the number of data points, which will reduce the
complexity of the needed model, but to make the data independent from time, as
each value is assigned to a particular step, equal for each simulation. Therefore,
each data point will be uni-dimensional.

41

Chapter 5. Methodology

Figure 5.4: Dimensional reduction of the data

After performing this reduction, each simulation crash pulse is described by 96
values, being each curve described by 16 values. This is represented in Table 5.4.

42

Chapter 5. Methodology

Steps X-axis tr Y-axis tr Z-axis tr X-axis rot Y-axis rot Z-axis rot
Step 1 #1 #17 #33 #49 #65 #81
Step 2 #2 #18 #34 #50 #66 #82
Step 3 #3 #19 #35 #51 #67 #83
Step 4 #4 #20 #36 #52 #68 #84
Step 5 #5 #21 #37 #53 #69 #85
Step 6 #6 #22 #38 #54 #70 #86
Step 7 #7 #23 #39 #55 #71 #87
Step 8 #8 #24 #40 #56 #72 #88
Step 9 #9 #25 #41 #57 #73 #89
Step 10 #10 #26 #42 #58 #74 #90
Step 11 #11 #27 #43 #59 #75 #91
Step 12 #12 #28 #44 #60 #76 #92
Step 13 #13 #29 #45 #61 #77 #93
Step 14 #14 #30 #46 #62 #78 #94
Step 15 #15 #31 #47 #63 #79 #95
Step 16 #16 #32 #48 #64 #80 #96

Table 5.4: Crash pulse description

43

Chapter 5. Methodology

5.2 AI modelling

5.2.1 Dataset division

Now that the data has been collected and pre-processed, the dataset is ready
to be introduced to an AI algorithm. To do so, the dataset must be split into
training and test sets.

• Training set. This set will be introduced to the supervised algorithm with
both Crash Configuration (input) and Crash Pulse (output). With this set,
the model will learn what output is expected from the given input, adjusting
the weights and internal parameters of the algorithm.

• Test set. From the base dataset, a selection of simulations must be ex-
tracted, to be introduced as a validation set. This set will be introduced
to the model without the Crash Pulse (output) information. The model
will predict the values of the output, so they can be compared with the ac-
tual output. This will help evaluate the precision of the model, comparing
prediction with actual values.

There are different strategies when dividing the dataset, but the most common,
and the one used in this project, is to randomly divide the dataset, using a certain
percentage of the dataset for training and the rest for test. In this project, the
set has been divided 80% training and 20% test. This random division helps to
ensure that neither set is biased regarding the base dataset.

This splitting has been performed using Sklearn functionality, where the dataset
is introduced, as well as the percentage of the dataset that is designated to testing,
and a randomizer parameter, that shuffles the dataset before splitting. [20]

44

Chapter 5. Methodology

5.2.2 AI algorithms

Four different AI algorithms have been tested, to determine which one is the
most suitable for the prediction of the Crash Pulse. The structure of these four
algorithms is explained in detail in section 4.3.5.

Now, how each algorithm has been structured and created will be detailed.
Note that the process to find the best structure has been carried out via trial-and-
error, as there is no a ”perfect” solution for each application.

The goodness of fit will be evaluated using R2 and RMSE metrics, whose
operation and meaning is detailed in section 4.3.4

Neural Networks

Neural Networks general information is detailed in section 4.3.5.

Two different models have been created, one for translations and one for rota-
tions. Their architecture is formed by:

• Input layer. The number of neurons in this layer is determined by the
number of inputs that will be introduced to the model. In this case, 10
neurons.

• 1st hidden layer. Dense layer formed by 256 neurons, with a ReLU activa-
tion function.

• 2nd hidden layer. Dense layer formed by 128 neurons, with a ReLU acti-
vation function.

• Output layer. As in the input layer, the number of neurons is determined
by the number of desired outputs. The activation function is defined as
Linear.

• Compiler. Here is where the loss function and the optimizer are defined.
The optimizer has been set as Adam [21], and the loss metric for the loss
function Mean Squared Error (MSE).

The model has been trained with 1500 epochs (hyperparameter that defines
the number of times the algorithm will go through the entire dataset). [22]

45

Chapter 5. Methodology

For better performance, normalization has been performed, subtracting the
mean of each parameter and dividing by the standard deviation. This is rep-
resented in equation 5.1, where index i represents each parameter and index j
represents each simulation or data point.

Xi,j =
Xi,j −Xi

Xdev i

(5.1)

The algorithm has been created using Keras library for Python.[23]

Support Vector Regression

Support Vector Machines general information is detailed in section 4.3.5.

The input has been normalized, as explained in the Neural Networks section.

The structure of the SVR model has been defined as a recursive process. As
SVR only allows to do one prediction at a time, 96 models shall be created to
predict the 96 points that describe the Crash Pulse.

A common model architecture has been defined, using a 3rd degree polynomial
and a ε = 1 × 10−8. This architecture will be replicated for each model. It has
been created using Sklearn specific class for Support Vector Regression. [24]

The strategy for building the different models could have been to create indi-
vidual models, each one predicting one output. This would have resulted in models
with no correlation. To avoid this, a recursive model has been created. This recur-
sive approach has been used for diverse applications [25][26][27]. This way, each
consecutive model will have the information from previous steps, being able to
”learn from the past”. The two different strategies are represented in Figures 5.5
and 5.6. Using the recursive strategy, each prediction will be added to the input
dataset for the next model.

46

Chapter 5. Methodology

Figure 5.5: Direct strategy for multi-step prediction example

Figure 5.6: Recursive strategy for multi-step prediction example

47

Chapter 5. Methodology

Gradient Boost

General information about Gradient Boost is detailed in section 4.3.5.

As for the SVR, the Gradient Boost architecture only allows predicting one
variable per model. In this case, unlike in SVR, a direct multi-step prediction
strategy has been followed. This has been done by creating a stack of models,
using MultiOutputRegressor class from Sklearn [28], each one trained individually
with the same architecture.
The number of estimators has been set to 100, being their maximum depth 4, the
learning rate 0.05 and the loss function to be optimized Least Squares. The model
has been created using Sklearn class for Gradient Boosting Regressor [29]. Using
MultiOutputRegressor, the fit of the algorithm and its validation is done directly
to the stack of models, not having to fit every individual algorithm manually.

Random Forest

General information about Random Forest is detailed in section 4.3.5.

Random Forest Regressor allows predicting multiple outputs. A unique model
has been tested but results for rotations were poor. Therefore, two different models
have been created, one for translations and one for rotations. Each model has been
defined with an adequate architecture, consisting of 50 estimators or decision trees
for the translations model and 150 estimators for the rotations model, each one
with a maximum depth of 15. Normalization of the input is not needed for this
algorithm. The model has been created using Sklearn class for Random Forest
Regressor [30].

48

Chapter 6

Results

6.1 Dataset

As described in Figure 5.1, the first step of the data extraction process was to
select the simulations, from the whole available set of simulations, that complied
with different requirements. After doing this selection as stated in Section 5.1.1,
a total of 284 frontal crash simulations have been selected. These simulations
include both car-to-car and car-to-moving barrier simulations, as both are similar
dimensional-wise.

Figure 6.1: Car-to-car and car-to-moving barrier simulations

For these 285 simulations, the process of Crash Configuration extraction has
been performed, resulting in the dataset represented in Figure 6.2, being the x-axis
the different values of HCPA and the y-axis the values of OCPA.

49

Chapter 6. Results

Figure 6.2: Resulting data cloud and splitting

Although it is not visible in Figure 6.2, simulations with the same HCPA and
OCPA configuration may vary in terms of OYA, speeds, or masses. This will result
in unique simulations, with unique results. In Figures 6.3 and 6.4 the number of
data points regarding speeds and masses both for Host and Opponent is repre-
sented.

50

Chapter 6. Results

Figure 6.3: Frequency analysis of Host and Opponent speeds in dataset

Figure 6.4: Frequency analysis of Host and Opponent masses in dataset

In parallel with the crash configuration extraction, the crash pulse has also been
extracted from each simulation and processed to obtain the describing 16 steps.
Each simulation crash pulse being represented by 6 curves, the resulting data for
each one is 96 uni-dimensional points, that have been stored with the crash con-
figuration in a dataset that combines input/output information of each simulation.

After the dataset was created, the splitting into train and test sets has been
performed as described in Section 5.2.1. These split sets are also represented in
Figure 6.2. The train set is formed by 232 simulations (81.7% of the dataset),
while the test set is formed by 52 simulations (18.3% of the dataset).

51

Chapter 6. Results

6.2 AI implementation

The four models described in section 5.2.2 have been tested and compared us-
ing RMSE and R2 error metrics. These parameters have been computed for each
step, and the average error has also been computed for translations and rotations.

The graphs representing the error metrics for each step are attached in Ap-
pendix B. The average error metrics for each model are detailed in Table 6.1.

Translations Rotations
Algorithm RMSE R2 RMSE R2

Neural Network 0.020 0.728 0.0024 0.103
Support Vector Machine 0.017 0.805 0.0023 0.319

Gradient Boost 0.019 0.747 0.000126 0.834
Random Forest 0.0189 0.751 0.00229 0.937

Table 6.1: Average error metrics for each model

NN SVM GB RF
0

0.5

1

1.5

2

·10−2

NN SVM GB RF
0

1

2

·10−3

Figure 6.5: Comparison of RMSE for translations (left) and rotations (right)

52

Chapter 6. Results

NN SVM GB RF
0

0.2

0.4

0.6

0.8

1

0.73
0.81

0.75 0.75

0.1

0.32

0.83

0.94Translations Rotations

Figure 6.6: Comparison of R2

53

Chapter 7

Conclusions

Looking at the Results, some conclusions can be drawn. The first and main one
is that, when building an AI algorithm, there is no perfect model. Evaluating the
performance of a model is a complex task, and usually a subjective one. Choosing
the adequate metrics to evaluate the performance will affect the analysis, and may
result in different conclusions.

Another important factor is the dataset. Building a dataset that is represen-
tative enough but not biased is key for creating a good AI algorithm. In these
terms, the dataset obtained in this project, as represented in Figures 6.2, 6.3 and
6.4, combines multiple and diverse configurations. Nevertheless, some clustering
can be seen regarding HCPA, OCPA, speeds, and masses. This will affect the ac-
curacy of the predictions, especially for crash configurations with large differences
in these parameters compared to the dataset. This will be especially important if
Lateral Crash Configurations are predicted. As no information from similar Crash
Configurations is recorded in the dataset, the models would perform poorly, as
there is no similar information to use as a base.

In the frequency analysis of the speeds and masses, it can be seen that there
are a large number of simulations that have the same values for these parameters.
This can be explained by the fact that many of these crash simulations represent
standardized crashes, and the vehicle models are constrained to Volvo cars.

Regarding the AI implementation, looking at the error values in the Results
chapter and Appendix B, the evaluation of the performance of each algorithm can
be carried out. Looking at the predictions for the Translations, the four algo-
rithms have similar performance, being the Support Vector Machine the model
with less RMSE (0.017), and the largest R2 (0.805). Therefore, this model can
be defined as the best fit for Translations prediction. For the Rotations models,

55

Chapter 7. Conclusions

the models based on Decision Trees (Gradient Boost and Random Forest) outper-
form the kernel-based models by a large extent (0.834 & 0.937 vs. 0.103 & 0.319).
Therefore, it can be stated that for the Rotations prediction, a model based on
Decision Trees is more suitable. Between both Gradient Boost and Random For-
est, a higher R2 in the Random Forest (0.937 vs. 0.834) can lead to the thought
that this model is predicting better. This assumption is not always correct, as
overfitting of the model can lead to these high values of R2. In addition, the mean
RMSE for Gradient Boost is significantly better compared to the mean RMSE for
Random Forest (0.000126 vs 0.00229). Therefore, a more detailed analysis must
be done.

Looking at the predictions step-by-step in Appendix B, the R2 values for Ran-
dom Forest are much more consistent compared to the values for Gradient Boost,
being each step over 0.8. For the Gradient Boost algorithm, inconsistencies in Y
and Z axes can be seen, even going below 0 for the last step in Y-axis. Negative
values of R2 mean that the prediction is done just by considering the mean values
of the points learned during the training phase.

Due to this inconsistency in R2 values in late stages for the Gradient Boost,
the Random Forest has been considered the best fitting algorithm for Rotations.
Therefore, the selected algorithms are Support Vector Machine Regressor for
Translations and Random Forest Regressor for Rotations.

Although the Support Vector Machine Regressor has been created as an itera-
tive process combining Translations and Rotations, where each model is dependent
on the previous predictions, as the Translations of the Crash Pulse are predicted
before the Rotations, cropping the model to only predict the Translations will not
affect the predictions.

56

Chapter 8

Limitations & Future Work

During the development of this project, different problems and limitations have
been encountered. In this chapter, the main ones will be detailed, also commenting
on possible future work.

• As it can be seen in Figures 6.2, 6.3 and 6.4, the dataset obtained for this
project can be considered as clustered. More simulations may be needed to
fill the dataset and have a more consistent data cloud. This dataset is also
restricted by the fact that only Frontal Crashes are considered. Although
frontal and lateral crashes are very different in terms of crash dynamics, intro-
ducing lateral crashes could help to complete the dataset, helping therefore
the predictions for crashes that are close to the limit marked between frontal
and lateral.

• The length of a crash pulse depends largely on the type of the crash. De-
pending on the Crash Configuration, the important part of the crash pulse
can be at 40 ms or 120 ms. For this project, the Crash Pulses needed to
be cropped to 80 ms due to the usage of Supervised Learning algorithms.
Unsupervised Learning algorithms have gained importance in the last years
and could be a good solution, as no need for output information for training
is needed.

• Crash Pulses are complex, as well as their relationship with the severity of
the crashes. The time series extracted from the simulations are formed by
thousands of points. It would be ideal to predict directly these time series,
but this fell out of the scope of the project. For easier implementation, the
Crash Pulses have been reduced to 16 intervals. This reduction is enough
when covering the objectives of the project, but for wider implementation,
a more precise representation of the Crash Pulse may be necessary.

57

Chapter 8. Limitations & Future Work

• As the information has been all extracted from a single manufacturer, differ-
ences in Crashworthiness and general behavior of the vehicle between vehicles
from different manufacturers and not considered in this project. Including
crashes from other manufacturers could add more richness to the model. For
this, an additional parameter describing the manufacturer, or even the ve-
hicle model, could be needed. From a generalist point of view, completing
the definition of the Crash Configuration with additional parameters would
enrich the model.

• Due to time limitations, no information from physical tests has been ex-
tracted, as their information structure varies largely from the simulations.
These tests would help validate the model with real-world data, and could
also provide additional information.

58

Bibliography

[1] WHO. “Road traffic injuries”. In: (2016). url: https://www.who.int/news-
room/fact-sheets/detail/road-traffic-injuries.

[2] Martin Östling. “Predicted crash configurations for Autonomous Driving
vehicles in mixed German traffic for the evaluation of occupant restraint
system”. In: (2019).

[3] Martin Östling. “Passenger car safety beyond ADAS: Defining remaining
accident configurations as future priorities”. In: (2019).

[4] Gerald Joy Sequeira. “Evaluation and characterization of crash-pulses for
head-on collisions with varying overlap scenarios”. In: (2020).

[5] Linus Wågström. “Integrated Safety: Establishing Links for a Comprehensive
Virtual Tool Chain”. In: (2019).

[6] Alexandros Leledakis. “A method for predicting crash configurations using
counterfactual simulations and real-world data”. In: (2020).

[7] Zhiqing Cheng. “Optimal Crash Pulse for Minimization of Peak Occupant
Deceleration in Frontal Impact”. In: (2005).

[8] Wesley Grimes. “The Effect of Crash Pulse Shape on Occupant Simulations”.
In: (2000).

[9] Patil Kantilal. “Crash Pulse Characterization to Minimize Occupant Injuries
in Offset Frontal Crash”. In: (2017).

[11] Oded Maimon. The Data Mining and Knowledge Handbook. 2005, pp. 165–
192.

[12] Hui Li. “Which machine learning algorithm should I use?” In: (2020). url:
https://blogs.sas.com/content/subconsciousmusings/2020/12/09/machine-
learning-algorithm-use/.

[13] Klaus-Robert Müller. “An Introduction to Kernel-Based Learning Algorithms”.
In: (2001).

59

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://blogs.sas.com/content/subconsciousmusings/2020/12/09/machine-learning-algorithm-use/
https://blogs.sas.com/content/subconsciousmusings/2020/12/09/machine-learning-algorithm-use/

[14] Michael Phi. “Illustrated Guide to LSTM’s and GRU’s: A step by step ex-
planation”. In: (2018). url: https://towardsdatascience.com/illustrated-
guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21.

[15] Sanket Doshi. “Various Optimization Algorithms For Training Neural Net-
work”. In: (2019). url: https ://towardsdatascience .com/optimizers- for-
training-neural-network-59450d71caf6.

[21] Diederik Kingma. “Adam: A method for Stochastic Optimization”. In: (2015).

[22] Jason Brownlee. “Difference Between a Batch and an Epoch in a Neural
Network”. In: (2018). url: https://machinelearningmastery.com/difference-
between-a-batch-and-an-epoch/.

[25] Souhaib Ben Taieb. “Recursive and direct multi-stepforecasting: the best of
bothworlds”. In: (2012).

[26] Arun Venkitaraman. “Recursive prediction of Graph Signals with Incoming
Nodes”. In: (2019).

[27] Puning Xue. “Multi-step ahead forecasting of heat load in district heating
system susing machine learning algorithms”. In: (2019).

60

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/

Python documentation

[10] Scikit KMeans Documentation. url: https : / / scikit - learn . org / stable /
modules/generated/sklearn.cluster.KMeans.html.

[16] Spyder. url: https://www.spyder-ide.org/.

[17] LASSO Python Library. url: https://lasso-gmbh.github.io/lasso-python/
build/html/dyna/dyna.html.

[18] Scipy Convex Hull Documentation. url: https://docs.scipy.org/doc/scipy/
reference/generated/scipy.spatial.ConvexHull.html.

[19] Shapely Documentation. url: https://shapely.readthedocs. io/en/stable/
manual.html.

[20] Sklearn Train and Test Splitting. url: https : / / scikit - learn . org / stable /
modules/generated/sklearn.model selection.train test split.html.

[23] Keras. url: https://keras.io/guides/.

[24] Sklearn SVR Documentation. url: https://scikit-learn.org/stable/modules/
generated/sklearn.svm.SVR.html.

[28] Sklearn MultiOutputRegressor Documentation. url: https : // scikit - learn .
org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.
html.

[29] Sklearn Gradient Boosting Regressor Documentation. url: https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.
html.

[30] Sklearn Random Forest Regressor Documentation. url: https://scikit-learn.
org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.
html.

61

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://www.spyder-ide.org/
https://lasso-gmbh.github.io/lasso-python/build/html/dyna/dyna.html
https://lasso-gmbh.github.io/lasso-python/build/html/dyna/dyna.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html
https://shapely.readthedocs.io/en/stable/manual.html
https://shapely.readthedocs.io/en/stable/manual.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://keras.io/guides/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.multioutput.MultiOutputRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

Appendix A

Alignment with the SDGs

Mobility is one of the key features in a globalized world, and for it to be effec-
tive, it must be safe and reliable.

Considering the SDGs (United Nations, 2015) and their purposes and scopes,
this project is aligned with several of them. The main ones are the following:

• Goal 3 - Good health and well-being. This SDG has as primary objectives
to ensure healthy lives and to promote well-being for all at all ages. There-
fore, one of the main tasks is to reduce the number of global deaths, and
specifically the road traffic accidents, as defined in target 3.6.

• Goal 11 – Make cities and human settlements inclusive, safe, resilient, and
sustainable. The target 11.2 is to provide access to safe, affordable, accessi-
ble, and sustainable transport systems for all, improving road safety.

63

Appendix B

B.1 Neural Networks

Figure B.1: RMSE values for each step in Neural Network model for translations

65

Figure B.2: R2 values for each step in Neural Network model for translations

Figure B.3: RMSE values for each step in Neural Network model for rotations

66

Figure B.4: R2 values for each step in Neural Network model for rotations

67

B.2 Support Vector Machine

Figure B.5: RMSE values for each step in Support Vector Machine model for
translations

Figure B.6: R2 values for each step in Support Vector Machine model for transla-
tions

68

Figure B.7: RMSE values for each step in Support Vector Machine model for
rotations

Figure B.8: R2 values for each step in Support Vector Machine model for rotations

69

B.3 Gradient Boost

Figure B.9: RMSE values for each step in Gradient Boost model for translations

Figure B.10: R2 values for each step in Gradient Boost model for translations

70

Figure B.11: RMSE values for each step in Gradient Boost model for rotations

Figure B.12: R2 values for each step in Gradient Boost model for rotations

71

B.4 Random Forest

Figure B.13: RMSE values for each step in Random Forest model for translations

Figure B.14: R2 values for each step in Random Forest model for translations

72

Figure B.15: RMSE values for each step in Random Forest model for rotations

Figure B.16: R2 values for each step in Random Forest model for rotations

73

