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Abstract: Our current quantitative knowledge of the kinetics of antibody-mediated immunity is partly
based on idealized experiments throughout the last decades. However, new experimental techniques
often render contradictory quantitative outcomes that shake previously uncontroversial assumptions.
This has been the case in the field of T-cell receptors, where recent techniques for measuring the
2-dimensional rate constants of T-cell receptor–ligand interactions exposed results contradictory to
those obtained with techniques measuring 3-dimensional interactions. Recently, we have developed
a mathematical framework to rationalize those discrepancies, focusing on the proper fine-grained
description of the underlying kinetic steps involved in the immune synapse. In this perspective article,
we apply this approach to unveil potential blind spots in the case of B-cell receptors (BCR) and to
rethink the interactions between B cells and follicular dendritic cells (FDC) during the germinal center
(GC) reaction. Also, we elaborate on the concept of “catch bonds” and on the recent observations that
B-cell synapses retract and pull antigen generating a “retracting force”, and propose some testable
predictions that can lead to future research.

Keywords: antibody-antigen binding; kinetics; mathematical modeling; catch-bond; allostery

1. Introduction

The history of Immunology runs in parallel to the use of innovative experimental
techniques. From the early microscopes to modern molecular-level sensors, our basic
knowledge has been refined through the years; new techniques provide new discoveries.
For instance, in 2010 two papers [1,2] revealed essential differences between traditional
assays for the interaction of T-cell receptors (TCR) and their peptide-major histocompati-
bility complex (pMHC) ligands, in which one of the reactants is in fluid phase (referred
to as 3-dimensional (3D) assays), and those in which both TCRs and pMHC ligands are
confined to a cell membrane (referred to as 2D assays). More recently, an additional layer of
complexity was added to the binding kinetics of TCRs with the discovery that some TCRs
display a catch-slip bond behavior when they are bound to a given pMHC ligand [3,4].
While the predominant binding of receptors to ligands, known as slip bonds, are char-
acterized by being weakened when a tensile force is applied between the receptor and
the ligand, such that the half-life of the bond decreases for increasing tensile force [5,6],
in catch bonds the half-life increases for an increase of the tensile force, and catch-slip
bonds display initially a catch bond behavior until a threshold value is reached, beyond
which the bond becomes a slip one and its half-life decreases for increasing force [6,7].
Typically, the optimum tensile force for TCR-pMHC interactions with catch bond behavior
is in the range of 10–20 pN [4], which is within the range of forces per bound TCR gen-
erated by pulling in cell–cell interactions [8] and during initial TCR-pMHC binding [9].
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Currently, although there is no consensus about the mechanical basis of the catch bond
behavior of TCR-pMHC interactions, there is consensus about the role of dimensionality
and how different experimental methods can dramatically change previous qualitative and
quantitative predictions. In principle, this is how normal science progresses, but when a
dominant conceptual paradigm is built based on inappropriate experimental methods it
prevents moving the field forward (an illustrative example is the case of the oligoclonal
seeding concept in germinal center studies [10,11]). In these cases, mathematical modeling
can contribute to unveiling important differences between experimental procedures, to
warn against intuitively appealing but wrong interpretations of experimental results and
also to suggest new venues to explore [12].

Recently, we have developed a theoretical framework to analyze the effective binding
rate constants of TCR-pMHC interactions in 3D and 2D assays [13]. The rationale behind
our approach is to disentangle kinetic mechanisms into fine-grained steps. For instance,
in that framework binding–unbinding is understood as a sequence of three independent
mechanisms—diffusion (translation), orientation (rotation), and molecular binding. Our ap-
proach successfully helped to reconcile contradictory experimental results as well as to
predict how different experimental assays would lead to divergent predictions [13].

In the case of antibodies (Ab) and the B-cell membrane immunoglobulin (Ig) compo-
nent of B-cell receptors (BCR), there are also potential pitfalls in interpreting experimental
data. As already acknowledged years ago by Mason and Williams [14] the interaction of
bivalent Abs to antigen in solution departs considerably from their interaction with cell-
bound antigen. Moreover, it has been soundly argued that in real ligand-receptor reactions
it is essential to understand the process of events in dynamic cell–cell interactions rather
than following equilibrium considerations [15]. This raises the question of how many of
the current underlying assumptions on the binding of BCRs to an antigen (Ag) displayed
on cell membranes are based on misinterpreted experimental results or on inappropri-
ate extrapolation from in vitro fluid phase systems to very different conditions such as
cellular systems.

In this perspective article, we apply our theoretical framework to illustrate how it can
help to rightly understand and compare binding results of Ab–Ag reactions in solution (3D
assays) and in cell–cell interactions during an immune response (2D interactions, as it can
be expected in vivo). Specifically, we will approach the following two questions: (i) does the
dimensionality of the experimental setup impinge in our understanding of interactions of
BCRs and Ags held on the membrane of follicular dendritic cells (FDC) during a germinal
center (GC) reaction?; (ii) is there a role for catch-bonds in BCR–Ag reactions, and how it
could affect Ab affinity maturation in GC reactions?

2. General Theoretical Framework and Derived Properties for Antibody– and
BCR–ligand Interactions

Binding and unbinding of ligands (L) to receptors (R) can be described in detail as a
series of independent steps (see Figure 1). The first step comprises the spatial approximation
of R and L molecules to a distance that allows binding (denoted by RL∗). Once in that
state, the two molecules must attain a proper orientation to bind to each other—we denote
this intermediate-oriented state as RL—until finally, they can form a complex C [13]. We
summarize these series of states and processes in Equation (1), where the translational
and rotational diffusion on and off constant rates correspond either to those in 3D or in
2D settings.

R + L
k+d
k−d

RL∗
e+

e−
RL

k+

k−
C (1)

In a deterministic approximation, the general reaction scheme in Equation (1) is
described by the system of coupled ordinary differential equations given in Appendix (A1).
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Figure 1. Binding steps in three versus two dimensions. Top row, binding in three dimensions: (A) 3D
diffusion/encounter, (B) rotation/orientation, and (C) molecular binding. Bottom row, the three bind-
ing steps in two dimensions: (D) 2D (membrane) diffusion/encounter, (E) rotation/orientation, and
(F) molecular binding. The vertical line separates dimensional dependent and independent processes.

2.1. Experimentally Estimated Effective on and off Constant Rates

As we have shown previously [13], in the cases of the Surface Plasmon Resonance
(SPR, a 3D assay) and the Adhesion Frequency (AF) assay (a 2D assay [1]) Equation (1) is
effectively simplified to a single-step description of the process, namely,

R + L
k+eff

k−eff

C, (2)

where k+eff and k−eff are, respectively, the effective binding and unbinding rate constants. The
corresponding system of coupled ordinary differential equations for this simplified global
process is:

d[R]
dt

=
d[L]
dt

= −k+eff[R] · [L] + k−eff[C] (3)

d[C]
dt

= k+eff[R] · [L]− k−eff[C]. (4)

This single-step model can be formally derived from Equations (A1a)–(A1d) by as-
suming a quasi-steady state approximation for the intermediate states [RL∗] and [RL]. This
means assuming that the time derivatives in Equations (A1b)–(A1c) are in practice equal to
zero and solving for [RL∗] and [RL] in terms of the free species ([R] and [L]) and the bound
complex ([C]). Then, after a little algebraic manipulation one arrives (see Appendix A.1,
Equations (A2a)–(A3b)), in the case of the SPR and AF assays, to the following expressions
for k+eff and k−eff [13]:
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k+eff =
k+d e+ k+

k−d e− + k+(k−d + e+)

∣∣∣∣∣
3D/2D

(5)

k−eff =
k−d e− k−

k−d e− + k+(k−d + e+)

∣∣∣∣∣
3D/2D

, (6)

where the subscripts indicate that the rate constants are those corresponding to either 3D or
2D reactions, and k+ and k− are the intrinsic or molecular on and off constant rates, which
are, therefore, identical for the 3D and the 2D interactions.

The effective association affinity constant is simply the product of the affinities (de-
noted by capital K) of every intermediary step:

Keff
A

∣∣∣
3D/2D

≡
k+eff
k−eff

∣∣∣∣∣
3D/2D

=
(

Kd Ke

)
3D/2D

KA.

When this formalism is applied to Ab–Ag and BCR–Ag interactions it is instructive
to plot k+eff as a function of k+, and k−eff as a function of k+ and k− because it shows how
misleading can be the estimation of k+ and k− by the effective rate constants k+eff and k−eff,
respectively. For instance, according to Equation (5), for Abs and BCRs of the same isotype,

when k+ � k−d e−

(k−d +e+)
the effective rate k+eff will increase linearly for increasing values of k+.

However, when k+ approaches the value k−d e−

(k−d +e+)
, k+eff will increase more and more slowly,

approaching asymptotically the maximum k+d e+

(k−d +e+)
when k+ � k−d e−

(k−d +e+)
(see Figure 2A). The

latter situation could be named diffusion/orientation-limited reactions as the limiting
process is not binding itself but getting the Ab or BCR and the Ag close enough and well
oriented before the real molecular binding occurs.

With respect to k−eff, according to Equation (6), when k+ � k−d e−

(k−d +e+)
for any given

value of k+ the effective off rate constant is a good estimation of k−. However, for values

of k+ ≈ k−d e−

(k−d +e+)
this estimation is not longer valid, and for k+ � k−d e−

(k−d +e+)
the value of

k−eff becomes instead a good estimation of the true dissociation constant, more precisely

k−eff ∝ KD (see Figure 2B). In the remaining of this paper we refer to the quantity k−d e−

(k−d +e+)
as

the k+-threshold.

lo
g

1
0
(k

e
ff
)

–

log10(k+)
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–4 –3 –2 –1
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k+ = kd e––

(kd + e+)–

keff ≈ k––
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–

log10(k
– )A B
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keff
+

k+

keff ∝ k++
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k+ ≥ 6 kd e––
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Figure 2. Effective kinetic rates measured experimentally can be misleadingly interpreted as approximations of the
underlying molecular binding constant rates. Expected dependency of k+eff (panel A) and k−eff (panel B) as a function of
k+ and k−, for a given set of values of the translational and rotational rate constants (k+d = 106 M−1s−1, k−d = 103 s−1,
e+ = 104 s−1, e− = 106 s−1).
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In summary, the following approximations hold when k+ is greater or smaller than
k−d e−

k−d +e+
:

(a) for k+ �
( k−d e−

k−d + e+

)
3D/2D

: k+eff ≈
k+d e+

k−d e−
k+ = Kd Ke k+, (7)

k−eff ≈ k−. (8)

(b) for k+ �
( k−d e−

k−d + e+

)
3D/2D

: k+eff ≈
k+d e+

(k−d + e+)
, (9)

k−eff ≈
k−d e−

(k−d + e+)
k−

k+
=

k−d e−

(k−d + e+)
KD. (10)

In the following sections we discuss succinctly the mechanisms and geometrical
aspects that might raise concerns about our understanding of Ab–Ag and BCR–Ag interac-
tions: diffusion, rotation and dimensionality.

2.2. The Role of Translational Diffusion

Equations (5)–(10) are the roadmap to unveil the differences imposed by geometrical,
physical and molecular constraints. In particular, due to geometrical constraints, transla-
tional diffusion on and off constant rates are mathematically different in 2D (membrane)
and 3D (solution). Specifically, for unbound BCRs of IgM and IgG isotypes the median
translational diffusion constant has been estimated to be [16–18]

DT(2D) = 4× 10−2 µm2/s− 10−1 µm2/s, (11)

and for IgD BCRs DT(2D) = 3× 10−3 µm2/s [17]. However, for free IgMs and IgGs in
diluted saline solutions, as is the case in many SPR experimental setups, DT(3D) has been
reported to be [19–21]

DT(3D) = 10 µm2/s− 60 µm2/s. (12)

In a 2D setting, the translational diffusion on rate constant of BCRs toward an Ag teth-
ered on a cell membrane can be approximated by the expression: k+d (2D) = 2πDT/ log(b/s)
(a clear derivation of it can be found in [22], pp. 151–152, Section 4.2.3) where DT is the
translational diffusion constant of BCRs in the membrane (the contribution to total trans-
lational diffusion of Ag tethered on the membrane of a cell like FDCs is very small or
none at all), b is the the mean distance between BCRs in the membrane of a B cell, and s is
the encounter radius, which is essentially the radius of a BCR (∼7.5 nm [23]). Following
Lauffenburger and Linderman (see p. 153 in Reference [22]), to convert k+d (2D) into the
same unit as a typical bimolecular on rate, we multiply by NA (Avogadro constant) and, to
give an estimated local volume for cell surface components, by a membrane thickness of
` = 10 nm. Considering a B cell with a surface area of 40 µm2 (corresponding to a diameter
of ∼7 µm) and about 50,000 BCRs, it follows b ≈ 28 nm. Then, using DT from Equation (11)
one finds:

k+d (2D) = `NA(2πDT/ log(b/s)) = 2.2× 105 M−1s−1 − 2.9× 106 M−1s−1. (13)

The corresponding translational diffusion off rate constant can be approximated as:

k−d (2D) = k+d (2D)/(`NA Ac) = 2.1× 102 s−1 − 2.7× 103 s−1, (14)

where Ac is the effective local cell surface area, defined as Ac = πs2 [22].
In 3D, the translational diffusion on and off rate constants of proteins can be approxi-

mated by k+d (3D) = 4πDTsNA and k−d (3D) = 3DT/s2, where s is, as before, the encounter
radius [13]. This applied to free IgGs using the estimate in Equation (12) yields:

k+d (3D) = 3.8× 108 M−1s−1 − 3.4× 109 M−1s−1 and k−d (3D) = 5.3× 105 s−1 − 7.2× 106 s−1. (15)
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2.3. The Role of Rotational Diffusion

Antibodies and BCRs bind to Ags through a small part in the variable region, a
small area at the end of each Fab arm known as antigen-binding site or paratope (P). The
corresponding region at the surface of the cognate Ag, that is, the actual part of the Ag
participating in the Ab–Ag or BCR–Ag bond, is denoted epitope (E).

The spatial position of a BCR Fab paratope is determined by two possible Fab twists
and two possible Fab tilts, sketched in Figure 2A,B. The twists are: (1) of a whole BCR
relative to the axis along the Fc region, normal to the plasma membrane, denoted here Fc
twist rotation, with values in principle in the range [−360◦,+360◦]; and (2) of a Fab arm
relative to its major axis (i.e., the hinge-paratope axis), denoted here Fab twist rotation,
with values, at least for some Ig isotypes, in the range [−180◦,+180◦] relative to the more
relaxed conformation [24,25].

Similarly, the tilts or wagging and wobbling are: (1) of the whole BCR relative to the
major axis of the molecule (along the Fc region, normal to the plasma membrane) denoted
here Fc tilt; and (2) of a Fab arm relative to its major axis, denoted here Fab tilt; the range of
this tilt is much larger than the Fc tilt range (in some isotypes the angle of the Fab tilt cone
may be even larger than 90◦ [26–28]).

Considering the rotational movements sketched in Figure 3a,b, once a BCR and an Ag
are in the RL∗ state one can map the binding problem to that of random walk of a paratope
on a region of a spherical surface of radius R = length of a Fab arm ≈ 84 Å [23,29] delimited
by altitude and azimuthal angles θ and β, respectively, constrained by the flexibility of the
hinge of the Fab arm (Figure 3c). Thus, a paratope P diffuses within this restricted spherical
surface region until it reaches its cognate epitope E. This epitope can be described as a small
area on the mentioned spherical surface covering an arc of maximum length L ≈ 28 Å [30],
which is equivalent to an angle δ ≈ 19◦ (Figure 3c). In addition, once the paratope P is close
to the epitope E, proper binding requires their proper alignment or orientation through Fab
twist rotation, so not only rotational-tilt diffusion to the right location matters, also proper
alignment is mandatory (twist or rotational-alignment). Note that ,following unbinding
the possibility of immediate rebinding is lost when either movement is reversed, namely,
the alignment is lost or the Fab paratope P leaves the proximity of the epitope E through
tilting diffusion.

(a) (b) (c)

Fc twist
Fab twist

cell membrane

paratope (P)

hinge

Fc tilt
Fab tilt

Ag epitope (E)

cell membrane cell membrane

Fc

δ

R

β

Fab
P

E
θ

Figure 3. Possible rotations having an impact on the position of a paratope P relative to an Ag epitope E. The position of P in
a membrane Ig is submitted to (a) two possible twists, and (b) two possible tilts (wagging and wobbling). In (c) it is shown
a sketch of the diffusion of P constrained to a spherical cap on a sphere of radius R = length of a Fab arm ≈ 84 Å [29] and
to Fab altitude and azimuth angles θ and β, respectively. Depicted is a possible path followed by paratope P toward epitope
E (dotted line). This movement corresponds to Fab tilt in (b). The angle δ corresponds to an arc on the spherical surface
equal to the major length of E. For clarity, in all panels the membrane Ig is depicted with only one Fab arm.

The different IgG subclasses in human and mouse have different hinge regions, and
this makes them differ substantially in the flexibility and rotation of their Fab arms with
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respect to the Fc region (tilt rotation) [31,32]. More specifically, it has been found that
human IgG subclasses can be ordered with respect to hinge flexibility between Fab arms
(range of Fab-Fab angles), from most to least flexible, as: IgG3 > IgG1 > IgG4 > IgG2 [26].
Also, it has been shown that murine IgG subclasses can be ranked with respect to their Fab
arms flexibility as follows: IgG2b > IgG2a > IgG1 > IgG3 [33]. This two orderings turn out
to be totally consistent with each other when the reported functional equivalence of murine
and human IgG subclasses is considered [34,35]. For instance, murine IgG2b corresponds
to human IgG3 [34] and the maximum tilting angle (Fab-Fc angle) reported in the literature
is about θ ' 70◦ for both [26,33]. Similarly, murine IgG1 corresponds to human IgG4 and
both have θ ' 50◦. These differences and their impact on the average speed of the tilt Fab
rotation [33], suggest that Ig class switching could alter the effective binding constant rates
of BCR–Ag and Ab–Ag interactions because of a concomitant change in their paratope
rotational diffusion rate constants.

2.4. The Role of Dimension

Using experimental data on the relaxation times of fluorescent polarization anisotropy
of fluorescent probes [33,36], quantitative information on molecular rotational velocity can
be obtained. For instance, the mean square angular deviation of a molecule rotating about
a given molecule’s axis after a time t is given by [37,38]

〈φ2〉 = 2Dat (in units rad2),

where Da is the corresponding twist (alignment) rotational diffusion constant. On the other
hand, the mean rotational correlation time of a molecule rotating about a given molecule’s
axis, here denoted by t1rad, is the time it takes on average to rotate 1 rad. From these two
definitions it follows that for a Fab arm rotating about its major axis (Fab twist) the twist
(alignment) diffusion constant is:

Da =
1 rad2

2 t1rad
.

However, for a Fab arm rotating about the Fc axis with center in the hinge region (Fab
tilt) the tilt rotational diffusion constant is [36]:

Dt =
1 rad2

6 t1rad
.

The values of t1rad corresponding to Fab tilt as well as to Fab twist have been de-
termined for IgG molecules from fluorescent anisotropy experimental data, with IgG
molecules both in solution (t1rad(3D)) and attached through the Fc to a large particle
(t1rad(2D)) [33,36,39,40]. Based on that data, it can be estimated that the corresponding 3D
rotational (tilt+twist) off constant rates e− are at least 3 orders of magnitude faster than
those for 3D translational diffusion off constant rates k−d (Equation (15)). However, in 2D
the e− constant rates are even much faster than the 2D k−d constant rates (Equation (14)).
Thus, the k+-threshold values in 3D and in 2D can differ from each other by several orders
of magnitude. This points out, again, the need to carefully estimate these rates in order to
properly understand the outcome of different experimental setups.

In general, for Ab–Ag interactions in a typical experiment using SPR (a 3D assay),
the translational constant rates and the rotational constant rates will depend on which of
the two interacting molecules is immobilized. There are two possibilities: (1) antigens in
solution and Abs immobilized, (2) antigens immobilized and Abs in solution. In the first
case, the translational constant rates, k+d and k−d , will be only slightly different for Ags
of widely different sizes and shapes [20], but the rotational diffusion constants Dt and
Da will be very different for Ags of widely different sizes and shapes, and different (but
not very different) for Abs of different isotype or subclass. As a consequence, the total
rotational diffusion constants (Dt of Ag + Dt of Ab, and Da of Ag + Da of Ab) can be very
different for different Ags and Abs, and therefore can differ very much in their rotational
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rate constants e+ and e−. In contrast, in the second case (Ag immobilized, Ab in solution),
the translational diffusion constant and the corresponding rate constants, k+d and k−d , will
be very similar for Abs of different isotypes, because it has been experimentally found that
the 3D translational diffusion constant is affected very little, if at all, for a broad range of
protein sizes [20], and the rotational rate constants, e+ and e−, will be the same for Abs
of same isotype and subclass, and different (but not very different) for Abs of different
isotype or subclass. Notice that, in this case, irrespective of the mean distance between
Ag molecules on the sensor surface, Fab tilting/twist is always involved, either in the Ab
binding to an epitope or in preventing immediate rebinding after an unbinding event.

Therefore, according to Equations (5) and (6), the differential contribution of Abs
and Ags to the 3D rotational constant rates of Ab–Ag interactions is expected to have an
important impact on the effective 3D rate constants, k+eff and k−eff, depending on which of the
two interacting molecules, Abs or Ags, is immobilized, a theoretical prediction consistent
with experimental observations [41].

However, in 2D reactions, BCRs interact with Ag in form of immune complexes teth-
ered on cell membranes, notably FDCs. These Ag complexes (termed iccosomes [42]) are
much larger than BCRs (25 to 50-fold difference in size) and are anchored to the FDC mem-
brane by several receptor molecules, namely, Fc receptors and C3b/C4b receptors [23,42]
(Figure 4). Hence, the contribution of Ag complexes to diffusion and rotation are expected
to be negligible compared to that of BCRs. Then, for different BCRs and Ags the transla-
tional rate constants, k+d and k−d , would be similar because BCRs of different isotypes have
similar 2D translational diffusion constants [16–18], and the rotational rate constants, e+

and e−, would be similar for BCRs of same isotype/subclass, and different (but not very
different) for BCRs of different isotype or subclass.

GC B cell

BCR

Ag complex

FDC

Γ

λ

FcR
CR

Figure 4. BCRs contribute to translational and rotational diffusion to a much larger extent than Ag
complexes on FDCs (termed iccosomes). Iccosomes are tethered to the FDC membrane through
several Fc and/or complement receptors. Typical diameter of iccosomes is Γ = 250–700 nm [42],
while BCR diameter is λ = 10–15 nm [23]. FcR, Fc receptor; CR, complement receptor.

All the above indicates that, in general, for Ab–Ag interactions the k+-threshold value
k−d e−

k−d +e+
in 3D assays can vary substantially, particularly for Ags of different size when they

are in solution. However, the corresponding k+-threshold value in 2D BCR–Ag interactions
will be independent of Ag (save for epitope valency) and of BCRs, except for BCRs of
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different isotype and subclass, which can have k+-threshold values differing by at most
one order of magnitude.

3. Is There a Role for Catch-Bonds in BCR–ligand Interactions?
3.1. Evidence for Mechanical Forces in B-Cell Synapses and Their Relationship to Kinetic
Rate Constants

The binding of BCRs to Ag tethered to a plasma membrane induces in B cells the
formation of an immune synapse. After the synapse is formed, an initial lateral traction force
acts on Ag-bound BCRs, followed by a later retraction that pulls the Ag-bound BCRs [43–45].
The formation of such immune synapses involves an initial clustering of Ag-bound BCRs
by an active process, driven intracellularly by myosin, F-actin and dynein [44,46], that
generates shear or lateral forces of 10–20 nN per 50 µm2 acting on Ag-bound BCRs [46].
Assuming that in that large area there are initially about 103 Ag-engaged BCRs, individual
BCR–Ag bonds would be submitted to a shear force of 10–20 pN that would increase as the
number of broken BCR–Ag bonds increase. The subsequent immune synapse retraction
pulls the Ag-bound BCRs, generating a tensile force of 10–20 pN per Ag-bound BCR in the
direction normal to the local membrane plane [18,44].

For the process of Ag pulling and extraction, of the three processes and four states
distinguished above in BCR–Ag interactions only unbinding and the bound state are
relevant. For instance, in order for GC B cells to be able to pull and extract Ag from FDC
membrane immune complexes the average time 1/k− has to be large enough compared
with the time scale required for the Ag “pulling and extracting” process. This time scale is
similar to the time spent by a B cell interacting with a FDC, which has been reported to be
on average less than 5 min [47]. Assuming this time is 5 min, 1/k− has to be larger than
300 s, or k− < 3× 10−3 s−1, to allow for Ag extraction. Nevertheless, for larger values of
k−, if compensated for by very large values of k+eff, it could still be possible for a B cell to
extract Ag.

3.2. An Extension of the Theoretical Framework

It has been shown that some cell–receptor adhesion molecules can be in two different
conformational states, the so-called bent and extended states, the second one being favored
in receptor–ligand complexes submitted to a tensile force [48]. Also, recently it has been
described that TCRs can display dynamic ectodomain allostery [8,49]. Analogously, it has
been recently reported that BCRs binding to Ag tethered on a plasma membrane undergo
allosteric changes in the CH2 domain, in the B cell membrane-proximal CH domain, as well
as in the cytoplasmic tail of IgG BCRs [16,18,50]. Similarly, Ag binding by IgG Abs induced
a conformational change in the Fc region of the Abs [51]. Furthermore, a recent analysis of
the structure of 15 anti-protein Abs comparing the antigen-bound vs. unbound forms has
revealed that the binding process induced in a large fraction of those Abs high allosteric
changes in the angle between the variable and the adjacent constant domains in both the
heavy and light chains [52]. Finally, it has also been shown using different approaches that
the paratope of Abs and BCRs can be at least in two different conformational states [53,54].

Considering such conformational flexibility of the paratope of BCRs and Abs and the
allosteric changes often brought about by antigen binding we assume that in general the
complex C in Equation (1) comprise in fact at least two different complex states, C0 and
C1, which can be affected allosterically or in some other form by an applied force. Without
loss of generality, we assume that in the absence of any applied force the state C0 is more
probable than the state C1. Equation (17) summarizes all the states and reactions for most
3D experimental settings in which a free ligand (or receptor) diffuses until it binds to a
surface linked receptor (or ligand).
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R + L
k+d
k−d

RL∗
e+

e−
RL

k+0
k−0

C0

k+01k−01

C1

k +
1

k −
1

(16)

with k+01 < k−01.
If the Ab class switch induces a dominant conformation swap between the C0 and C1

conformations, this can be expressed in terms of Equation (17) as a change in the constant
rates k+01 and k−01 to a new ones, k̃+01 and k̃−01, respectively, such that k̃+01 > k̃−01. This possibility
could have important consequences when considering the effect of lateral and pulling
forces on BCR–Ag bonds.

The situation in B cell–FDC interactions and in some experimental 2D settings is slightly
different from that shown in Equation (17). For instance, in a variant of the Biomembrane
Force Probe (BFP) assay [4] the starting state is a previously bound receptor–ligand com-
plex (either in states C0 or C1) that, due to an externally applied tensile force, once the
bond is broken, even if the two molecules keep the proper orientation, the probability of
rebinding is very low. This experimental setup can be captured more accurately with the
following diagram:

∅
e−f

RL

k+0
k−0

C0

k+01k−01

C1,

k +
1

k −
1

(17)

where e−f and the other rates are constant rates modulated by the applied force.

3.3. Conditions for the Existence of Catch-Slip Bonds in BCR–Ag Interactions

In cell-to-cell experiments using the BFP assay [4], one has e−f > e− and e+ = 0 for
f > 0. In simple terms, this means that by means of a mechanical procedure, once a
BCR unbinds from its ligand the two cell membranes immediately retract from each other.
In this case, the interesting observable is the so-called bond survival distribution, S(t), that
gives the distribution of empirically observed bond lifetimes at time t under conditions
that prevent rebinding. Two time-scales in the distribution S(t) have been experimentally
observed so that such bond survival distribution could be fitted phenomenologically to
a sum of two exponentials, with weights 0 ≤ ω1 ≤ 1 and ω2 = 1− ω1 and respective
rates k1 and k2 [55]. As shown in Appendix A.2, Equation (A4), this empirical result can
be formally derived assuming that the bond survival distribution is a quasi-stationary
distribution [56]. Thus, the survival distribution is given by:

S(t) ≡ p̃0(t) + p̃1(t) = ωe−k1t + (1−ω)e−k2t, (18)

with

k1 =
1
2
(ktot + κ) (19)

k2 =
1
2
(ktot − κ) (20)

ω =
1
2
+

(1− 2α)(k−1 − k−0 ) + k−01 + k+01
2κ,

(21)
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where

(Total kinetic rate) ktot = k1 + k2 = k−1 + k−0 + k−01 + k+01 (22)

(Kinetic rate difference) κ = k1 − k2 =
√

k2
tot − 4(k−1 (k

−
0 + k+01) + k−0 k−01)

=
√
(k−1 − k−0 + k−01 − k+01)

2 + 4k−01k+01 < ktot (23)

and α and (1−α) are the initial occupancy probabilities, respectively, of states C1 and C0.
From Equations (A7)–(A8) in Appendix A.2, it turns out that α boils down to the simple
expression:

α =
k+01

k−01 + k+01
. (24)

The importance of Equations (18)–(24) is that they allow us to explore the effect of the
force on the bond survival distribution S(t). Specifically, if the bond kinetics is understood
under an allosteric model where the kinetic rates depend on the free-energy landscape
containing the work done by the applied force f , then, in our notation, one has [48]:

k−0 ( f ) = k−0 (0) exp
(

f x0

kBT

)
k−1 ( f ) = k−1 (0) exp

(
f x1

kBT

)
(25)

and

k+01( f ) = k+01(0) exp
(

f x01

kBT

)
k−01( f ) = k−01(0) exp

(
− f x10

kBT

)
, (26)

where kB is the Boltzmann constant, T is the absolute temperature of the system, and x0
and x1 are the distances from the minima of the receptor–ligand complex potential energy,
respectively, in the C0 and the C1 states to the maximum of the potential energy that acts
as a barrier between the bound and the unbound (RL) states. Similarly, x01 and x10 in
Equation (26) represent the distances or widths from the minima in the C0 and C1 states,
respectively, to the maximum of the potential energy between both states.

Equations (25) and (26) summarize the changes produced by the force in the free
energy landscape relating states RL, C0 and C1 in Equation (17). Note that the effect of
the force is different on each rate and this can explain why some systems display catch-
bond behavior while others do not. Nevertheless, this outcome depends on how k1, k2
and ω change with the applied force. More concretely, note that the relative weight of
each timescale in Equation (18) (quantified by ω) would also depend on the applied force.
This effect might be observed experimentally because the expected time tx at which the
survival function transitions from one timescale to the other depends on κ and ω and,
hence, indirectly on the applied force f . This can be easily seen by considering that the
time tx is determined by the condition ωe−k1tx = (1− ω)e−k2tx , which yields after some
algebraic manipulation:

tx =
1

κ( f )

∣∣∣∣ln(1−ω( f )
ω( f )

)∣∣∣∣, (27)

where κ = k1 − k2. Note that tx does only exist for force values at which ω( f ) ≥ 1/2.
Interestingly, some recent studies suggest that at least at f = 0 the transition rates between
C0 and C1 are faster than the unbinding rates into RL [54], that is,

k+01, k−01 � k−0 , k−1 . (28)

If all the distances in Equations (25) and (26) are within the same order of magnitude,
namely, x0 ' x1 ' x10 ' x01 ≡ x, then for f > 0 the above relationships still hold and∣∣(1− 2α)(k−1 − k−0 )

∣∣� k+01 + k−01, and hence Equation (21) can be approximated by:

ω ' 1
2
+

k−01 + k+01
2κ

>
1
2

.
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In general, the system’s response to the force will be determined by the sensitivity of
the parameters with respect to the applied force. The sensitivity σX( f ), of the variable X
with respect to f [57,58] is defined as:

σX( f ) =
∂X
∂ f

.

Applying this to the rates in Equations (25) and (26) we find that

σk−01
( f ) < 0, σk+01

( f ), σk−0
( f ), σk−1

( f ) > 0.

From Equation (24), and taking into account that for f = 0 the state C0 is more
favorable, it follows that α(0) < 1/2 and therefore k−01(0) > k+01(0). Hence, we can assume
the following hierarchy of kinetic rates

k−01(0) > k+01(0)� k−0 , k−1 . (29)

This means that, for small forces, the (negative) sensitivity of k−01 will dominate for
lower values of the force—as we expect that, roughly, all the distances in Equations (25)
and (26) (x0, x1, x01 and x10) are of the same order. Also, taking into account our previous
discussion, it is plausible that k−01(0) > k+01(0) + k−0 (0) + k−1 (0).

Under these reasonable conditions, we can conclude that,{
σktot( f ), σκ( f ), σω( f ) < 0 for small f ,
σktot( f ), σκ( f ), σω( f ) > 0 for large f ,

(30)

which provides a mechanism for the qualitative behavior of the survival function defined
in Equation (18). This situation is depicted schematically in Figure 5.

This change in the qualitative behavior of the survival function with force has been
observed in platelet adhesion [55], and therefore it is sensible to experimentally test it in
BCR–Ag interactions. If observed, it would support the idea that the BCR–Ag interactions
are subject to force-dependent kinetic rates and also would help to estimate x01 and x10 in
Equation (26).

Equation (18) also allows us to explore the dependence of the mean bond duration
and the applied force. Note that the probability density of the bound state as a whole
(C0 + C1) is given by,

p(t) = −dS
dt

,

so the mean bond duration is simply

τ( f ) ≡
∫ ∞

0
tp(t)dt =

∫ ∞

0
−tS′(t)dt = −[tS]∞0 +

∫ ∞

0
S(t)dt =

ω( f )
k1( f )

+
1−ω( f )

k2( f )
. (31)

From this expression, it is straightforward to show that

στ( f ) ≡ dτ( f )
d f

= −
∣∣∣∣ 1
k2
− 1

k1

∣∣∣∣σω( f )−
∣∣∣∣ ω

k1
2

∣∣∣∣σk1( f )−
∣∣∣∣ (1−ω)

k22

∣∣∣∣σk2( f ). (32)

Hence, the sensitivity of the mean time is the sum of negative weights times the
sensitivities of ω, k1 and k2.

As we discussed above, it is plausible that all the distances (x0, x1, . . . ) in Equations (25)
and (26) are of the same order of magnitude. Although this is not necessary for our
discussion, it simplifies greatly the mathematical results and highlights the relevance of
different parameters. For instance, we can define a scaled force, f x/kBT, such that the
timescales k1 and k2, their respective weights ω and (1−ω), and the mean binding time τ
can display non-monotonic behavior, as shown in Figure 5. In particular, note how τ( f )
would increase for small values of the (scaled) force—catch bond behavior—and later it
would decrease—slip bond behavior.
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Figure 5. The BCR–Ag interaction might display a catch-bond behavior. The dependence on the
force f of the main kinetic rates k1 and k2 (defined in Equations (19) and (20)), the rates ktot and κ

(defined in Equations (22) and (23)), timescales weight ω (defined in Equation (21)), and times tx

and τ (defined in Equations (27) and (31)) is introduced in those variables through the basic rates
k−0 , k−1 , k+01 and k−01 defined in Equations (25) and (26). (a) Variation of k1 and k2 with the (scaled)
applied force; dashed lines are the corresponding tangent lines at f = 0 with slopes equal to the rates
sensitivities at f = 0. Note how the negative sensitivity of k−01( f ) affects the sign of the sensitivity
of k1 and k2 at low forces. (b) Total kinetic rate, ktot and kinetic rates difference, κ. (c) Weight of the
timescales, ω, and crossing time, tx . (d) Dependence of the mean bond lifetime, τ, on the (scaled)
applied force. The combination of k1, k2 and ω in Equation (31) and the negative sensitivity of
k−01( f ) opens the possibility of a catch-bond behavior (the binding time increases with the applied
force, at least for low forces). These plots were obtained using the following parameter values:
k−01(0) = 100, k−1 (0) = 10, k−0 (0) = 1, k+01(0) = 10, and assuming x0 = x1 = x01 = x10.

This deserves a more thorough exploration (qualitative and quantitative) when experi-
mental data become available, but it is out of the scope of this Perspective article. However,
it is worth emphasizing that a role for catch-bonds in BCR–ligand interactions is clearly an
open and not unlikely possibility.

4. Discussion

We have argued here that Ab–Ag binding constant rates measurements, both 3D and
2D, are effective estimations that may be not even proportional to the intrinsic binding rates.
We have also shown that effective estimations of 3D constant rates may be not proportional
to the effective 2D constant rates and, hence, they can be misleading when used to interpret
results involving 2D BCR–Ag interactions, particularly BCR-driven B-cell activation and/or
Ag endocytosis.

Moreover, irrespective of the effect different isotype glycosylations may have on the
constant rates of Abs and BCRs [29], we have clarified here that Ig class switching might
significantly alter the effective binding constant rates of BCR–Ag and Ab–Ag interactions,
mainly because of the concomitant change in the rotational diffusion rate constants. This is
particularly relevant for interpreting correctly—in terms of Ab affinity maturation—the
k+eff and k−eff of BCRs and secreted Abs, respectively, of GC B cells and plasmablasts that
have undergone class switch. In the case of secreted Abs, k+eff(3D) and k−eff(3D) are often
obtained with the SPR technique, and are used as surrogates of k+ and k−, respectively.
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According to what was discussed in Section 2.4 with respect to 3D Ab–Ag interactions,
there are two main, opposite possible effects of class switch: (1) an increase of the 3D k+

-threshold
(

k−d e−

k−d +e+

)
3D

, and (2) a decrease of the 3D k+-threshold. In the first situation, if

the increase is significant, for instance, when a class switched Ab decreases e+(3D) 6-fold,
and increases e−(3D) 3-fold, in which case the 3D k+-threshold will increase 8-fold, this
increase will cause in the class switched Ab a decrease of the effective constant rate k+eff(3D)
and an increase of k−eff(3D) with respect to the corresponding values of the Ab before its
switch (see Appendix A.3), in spite of the fact that the two Abs have the same variable
region. If such class-switched Ab gets later a mutation causing an increase of k+ and/or
a decrease of k−, this could be detected by SPR as an increase of k+eff(3D) or a decrease
of k−eff(3D), respectively, with respect to the unmutated Ab. In other words, an Ab class
switch that causes an increase of the 3D k+-threshold may allow detecting mutation-driven
affinity maturation of class switched Abs. In the second case (class switch causes a decrease
of the 3D k+-threshold) there would be a corresponding increase of k+eff(3D) and decrease
of k−eff(3D). In this case, since k+eff(3D) will get closer to the k+eff(3D) plateau (see Figure 2),
a mutation-driven increase of k+ could be barely detected or not at all by the SPR technique
in the corresponding secreted Abs, and the concomitant decrease of k−eff(3D) could not
correspond to a decrease of k−, but to a decrease of the affinity dissociation constant KD.

In contrast, in 2D BCR–Ag interactions, not only Ag barely contributes to transla-
tional and rotational diffusion in 2D BCR–Ag interactions (discussed toward the end of
Section 2.4), but solely the IgD to IgG class switch impacts significantly the translational
diffusion rate constants k+d (2D) and k−d (2D) (nearly 10-fold variation; see Section 2.2) as well
as the 2D rotational diffusion constants [28]. Thus, a BCR class switch from IgD to IgG1

can increase the k+-threshold
(

k−d e−

k−d +e+

)
2D

by 8–10-fold. However, other BCR class switches

will affect only the BCR rotational diffusion constant rates e+(2D) and e−(2D), and since in
general k−d (2D)� e+(2D), we expect the corresponding change in k+-threshold to be small
as shown in the following. Let us take for k−d (2D) the upper bound k−d (2D) = 2.7× 103 s−1,
and consider a BCR with e+2D = 1.3× 106 s−1 and e−2D = 4.4× 109 s−1. A BCR class switch
from IgG1 to IgG2b can lead to a 2-fold increase in Dt, a 1.5-fold increase in Da and a
1.5 increase in the tilt angle θ, which implies a 3-fold increase in e+(2D) and a 1.6-fold
increase in e−(2D). A simple calculation shows then that the k+-threshold would decrease
from 8.8× 106 s−1 to 4.8× 106 s−1, which is less than a 2-fold change. Therefore, whether
k+ � 2D k+-threshold or k+ � 2D k+-threshold before a BCR switch, that condition will
likely persist after switching. This predicts that estimations of k+eff(2D) and k−eff(2D) will not
depend on the BCR isotype, except for a switch from BCR IgD. Moreover, whether k+eff(2D)
and k−eff(2D) are good estimators, respectively, of k+ and k− will depend on whether k+ is
larger or smaller than the 2D k+-threshold before class switch (except when the switch is
from IgD).

When GC B cells bind an Ag presented by FDCs they form an immune synapse that
later retracts, pulling the BCR-bound Ag. This Ag pulling, when succesful, ends up creating
an endosomal vesicle containing the extracted material [43,45,59,60]. If the multivalent
binding of immune complexes to Fc and complement receptors on FDCs is stronger than the
rupture force of FDC membrane integrity nearby those immune complexes, then it can be
expected that, in general, the tensile force either breaks the BCR–Ag bond or it extracts bites
of the FDC membrane, including immune complexes plus Fc and complement receptors.
Otherwise, the tensile force will lead either to a break of the BCR–Ag bond or to extract
only immune complexes. In principle, the force generated by this Ag pulling can modify
the BCR–Ag bond strength either decreasing it (slip-bond), or first increasing it and then
decreasing it for increasing forces (catch-slip bond) [4,61]. Some recent observations lend
support to this second possibility [43,50,62]. In this later case, the increased force resistance
can reach the point at which a large Ag extraction takes place. Moreover, increasing the
lifetime of a bond when a tensile force is applied could facilitate extracting bites of the
antigen presenting cell membrane together with Ag complex. Indeed, this has been recently
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reported for B cells [43], reminiscent of an older report that showed how T cells can extract
and internalize cognate pMHC molecules from antigen presenting cells [63].

During a moderate Ag extraction most of the engulfed material would be BCR–Ag
complexes. Once processed in the endocytic vesicles, they will generate a large fraction of
Ag-derived peptides, which will be presented to follicular T helper (Tfh) cells in form of
peptide-MHC class II (MHCII) molecular complexes. In contrast, a strong Ag extraction
would likely include portions of the FDC membrane [43,47], recruiting irrelevant proteins
together with BCR–Ag complexes into the same endocytic vesicle. During the ensuing
proteolysis in the endocytic vesicles a plethora of different peptides will be generated,
many of them derived from FDC-membrane self-proteins, effectively diluting Ag-derived
peptides in the vesicle. Consequently, the number of MHCII molecules presenting Ag-
derived peptides would decrease. This implies that a B cell with high-affinity BCRs that
bind Ag with slip bonds can present as many Ag-derived peptides as a B cell with moderate-
affinity BCRs that bind Ag with catch bonds. Conversely, B cells with high-affinity BCRs
that bind Ag with catch bonds can present as many Ag-derived peptides or even less than
B cells with moderate-affinity BCRs that bind Ag with slip bonds, thus setting an effective
trade-off to the strength of BCR–Ag bonds.

In summary, given the evidence supporting the existence of Ig allosteric states [16,52–54],
we have shown here that under very broad conditions for the kinetic rates there is ample
room for the existence of catch bonds in BCR–Ag interactions. If that is the case, then it
could be expected that there would be some optimum BCR–Ag affinity for best Ag-derived
p-MHCII presentation to Tfh cells. Moreover, if different BCRs with specificity for the same
Ag differ in their bond properties (slip vs. catch), then this property could be a selectable
trait in GCs, favoring both high-affinity BCRs with slip bonding and moderate-affinity
BCRs with catch bonding. So far, the immunological relevance of this possibility is unclear
but the technology to confirm its existence is already available.
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Appendix A. Some Mathematical Results

Appendix A.1. Full Model for the General Reaction Scheme

The following system of coupled ordinary differential equations describes the reactions
in Equation (1):

d[R]
dt

=
d[L]
dt

= −k+d [R] · [L] + k−d [RL∗] , (A1a)

d[RL∗]
dt

= k+d [R] · [L]− k−d [RL∗]− e+[RL∗] + e−[RL] , (A1b)

d[RL]
dt

= e+[RL∗]− e−[RL]− k+[RL] + k−[C] , (A1c)

d[C]
dt

= k+[RL]− k−[C] , (A1d)

where the square brackets represent the concentration of the different molecular species.
When the rotational constant rates are large, the time derivatives in Equations (A1b) and

(A1c) can be dropped and the slaved concentrations [RL∗] and [RL] can be expressed in
terms of the remaining ones [13]:

[RL∗] =
k+d (e

− + k+)
e−k−d + k+(e+ + k−d )

[R] · [L] + e−k−

e−k−d + k+(e+ + k−d )
[C] (A2a)

[RL] =
e+k+d

e−k−d + k+(e+ + k−d )
[R] · [L] +

k−(e+ + k−d )
e−k−d + k+(e+ + k−d )

[C] (A2b)

Finally, substituting [RL∗] and [RL] into Equations (A1a) and (A1d) yields:

d[R]
dt

=
d[L]
dt

= −
k+d e+k+

k−d e− + k+(k−d + e+)
[R] · [L] +

k−d e−k−

k−d e− + k+(k−d + e+)
[C], (A3a)

d[C]
dt

=
k+d e+k+

k−d e− + k+(k−d + e+)
[R] · [L]−

k−d e−k−

k−d e− + k+(k−d + e+)
[C]. (A3b)

This model corresponds to the single-step model in which the effective rates are given
by Equations (5) and (6).

Appendix A.2. Master Equations

The stochastic dynamics of Equation (17) is captured by the solution of the system of
differential master equations:

dp∅
dt = e−f pRL

dpRL
dt = k−1 p1 + k−0 p0 − pRL(k+1 + k+0 + e−f )
dp0
dt = k−01 p1 + k+0 pRL − p0(k−0 + k+01)

dp1
dt = k+1 pRL + k+01 p0 − p1(k−1 + k−01)

(A4)

with p∅(t) + p0(t) + p1(t) + pRL(t) = 1. Note that the system of Equation (A4) includes
an irreversible state (so that limt→∞ p∅ = 1).

The bond survival distribution can be computed as the probability of being in any
state C0 or C1 conditioned to eventual decay into RL, respectively, p̃0(t) and p̃1(t):

p̃0(t) ≡
p0(t)

1− p∅(t)− pRL(t)
, p̃1(t) ≡

p1(t)
1− p∅(t)− pRL(t)

. (A5)
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Thus, 
dp̃0
dt = k−01 p̃1 − p̃0(k−0 + k+01)

dp̃1
dt = k+01 p̃0 − p̃1(k−1 + k−01)

p̃0(0) = 1− α
p̃1(0) = α

(A6)

The solution to Equation (A6) is summarized in Equation (18).
The initial condition α is the relative occupancy of state C1 at t = 0, so that from

Equations (17) and (A4) and assuming C0 and C1 are in quasi-steady state,

α ≡ p̃1(0) =
k−0 k+1 + (k+1 + k+0 )k

+
01

k−0 k+1 + k−1 k+0 + (k+1 + k+0 )(k
−
01 + k+01)

(A7)

Assuming also that the reactions in Equation (17) obey detailed-balance [22,64], namely,

k+0
k−0

k+01
k−01

=
k+1
k−1

, (A8)

then we arrive at Equation (24).

Appendix A.3. Effect of k+-Threshold Increase (or Decrease) on k+eff and k−eff

In general, given a ratio a x
a+x and a parameter b, with a, x, b > 0, one has:

a x
a + x

<
a b x

a b + x
for b > 1

a x
a + x

>
a b x

a b + x
for b < 1

Given the equations:

k+eff =
k+d e+ k+

k−d e− + k+(k−d + e+)

k−eff =
k−d e− k−

k−d e− + k+(k−d + e+)

and considering that e+(2D)� k−d (2D) they can be re-written as:

k+eff =
k+d e+ k+(

k−d e−

k−d +e+
+ k+

)
(k−d + e+)

≈
k+d k+(

k−d e−

k−d +e+

)
+ k+

k−eff =

(
k−d e−

k−d +e+

)
k−(

k−d e−

k−d +e+

)
+ k+

therefore, if k−d e−

k−d +e+
increases then k+eff decreases and k−eff increases, and vice versa.
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