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Abstract

Successful mathematical modeling of biological processes relies on the expertise of the

modeler to capture the essential mechanisms in the process at hand and on the ability to

extract useful information from empirical data. A model is said to be structurally unidentifi-

able, if different quantitative sets of parameters provide the same observable outcome. This

is typical (but not exclusive) of partially observed problems in which only a few variables can

be experimentally measured. Most of the available methods to test the structural identifiabil-

ity of a model are either too complex mathematically for the general practitioner to be

applied, or require involved calculations or numerical computation for complex non-linear

models. In this work, we present a new analytical method to test structural identifiability of

models based on ordinary differential equations, based on the invariance of the equations

under the scaling transformation of its parameters. The method is based on rigorous mathe-

matical results but it is easy and quick to apply, even to test the identifiability of sophisticated

highly non-linear models. We illustrate our method by example and compare its perfor-

mance with other existing methods in the literature.

Author summary

Theoretical Biology is a useful approach to explain, generate hypotheses, or discriminate

among competing theories. A well-formulated model has to be complex enough to cap-

ture the relevant mechanisms of the problem, and simple enough to be fitted to data.

Structural identifiability tests aim to recognize, in advance, if the structure of the model

allows parameter fitting even with unlimited high-quality data. Available methods require

advanced mathematical skills, or are too costly for high-dimensional non-linear models.

We propose an analytical method based on scale invariance of the equations. It provides

definite answers to the structural identifiability problem while being simple enough to be

performed in a few lines of calculations without any computational aid. It favorably com-

pares with other existing methods.

This is a PLOS Computational Biology Methods paper.
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Introduction

Mathematical models contribute to our understanding of Biology in several ways ranging

from the quantification of biological processes to reconciling conflicting experiments [1]. In

many cases, this requires formulating a mathematical model and extracting quantitative esti-

mates of its parameters from the experimental data. Parameters are typically unknown con-

stants that change the behavior of the model. While it is usually recognized that parameter

estimation requires the availability of sufficient informative data, sometimes it is not possible

to estimate all parameters due to the structure of the model (whatever the quantity or quality

of the data), even with large amounts of noiseless observations. This inability is referred to as

‘structural identifiability’, a concept introduced decades ago by Bellman and Åström [2, 3], as

opposed to the ‘practical identifiability’ that depends on limitations set by the data. Practical

identifiability has important consequences that can lead to questionable interpretations of the

data leading to some recent controversy around this point [4, 5]. Structural identifiability

poses an unsolvable limitation as it is unrelated to the resolution of the experimental data col-

lection or the number of observations.

Structural identifiability is a necessary condition for model fitting and should be used

before any attempt to extract information about the parameters, and as a test of the applicabil-

ity of the model itself. Importantly, the quality of the fit does not guarantee that the estimated

parameters are meaningful. In practice, this is both uncontrolled and misleading, as many fit-

ting tools provide information about the goodness of fit but do not check sensitivity or iden-

tifiability. Structural identifiability can be qualified as global or local [6–10]. Global structural

identifiability tests the ability to estimate unique sets of parameters, while local (or simply,

structural identifiability) means that parameters can be estimated only in a limited subset of

the space of parameters. In practical terms, these definitions can be translated into the lan-

guage of sensitivity analysis as identifiability requires that (i) the columns of the sensitivity

matrix are linearly independent, and (ii) each of its columns has at least one large entry [11,

12].

Traditionally, work primarily focused on linear systems [2, 3, 13] based on ordinary differ-

ential equations (ODE). For non-linear models, those methods cannot be applied, so many

methods have been proposed in the literature to address structural identifiability. Early

attempts were based on power series expansions of the original non-linear system [14], the

similarity transformation method [15–17] or the so-called direct-test method proposed by

Denis-Vidal and Joly-Blanchard [18, 19]. These methods exploit the definition of identifiability

either analytically [18] or numerically [20–25], but they are not generically suitable for high-

dimensional problems. Xia and Moog [6, 26] proposed an alternative to these classical meth-

ods based on the implicit function theorem, but this method also becomes involved to apply

for complex models [27].

Another approach that is becoming mainstream is based on the framework of differential

algebra [28–31]. These methods are also difficult to apply, requiring advanced mathematical

skills and, in some cases, replace highly non-linear terms by polynomial approximations that

simplify the analysis. On the positive side, they are based on rigorous mathematical theories,

are suitable for non-linear models and, more importantly, they can be coded using existing

symbolic computational libraries. In this regard, it is worth mentioning DAISY [32], GenSSI

[33], COMBOS [34] or, more recently, SIAN [35].

In almost all cases, the major disadvantage of these methods is their difficulty to apply them

to even a few differential equations, hence requiring advanced mathematical skills and/or dedi-

cated numerical or symbolic software (that is frequently unable to handle the complexity of

the problem). This explains why, despite the huge volume of publications in the field of
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theoretical biology, only a few address parameter identifiability explicitly. In this paper, we

introduce a simple method to assess local structural identifiability of ODE models that

reduces the complexity of existing methods and can bring identifiability testing to a broader

audience. Our method is based on simple scaling transformations, and the solution of simple

sparse systems of equations. Identifiability for stochastic models [36] is out of the scope of our

work.

Method

A couple of motivating examples

Consider a simple death model in which the death rate is the product of two parameters λ1 and

λ2, namely

dx
dt
¼ � l1l2x; xð0Þ ¼ x0; ð1Þ

with the solution

x ¼ xðl1; l2; tÞ ¼ x0e� l1l2t: ð2Þ

It is evident that from an experiment only the product λ1λ2 can be inferred, and not any of the

two independently. Following the ‘actionable’ definition in Ref. [11], local structural identifia-

bility is directly linked to the linear independence of the columns of the sensitivity matrix, Sij,
of the variable xi with respect to parameter λj

Sijðx1; . . . ; xr; xrþ1 . . . xn; l1; . . . ; lmÞ �
@xi
@lj

ð3Þ

Here, we will work with a related (dimensionless) quantity called the relative sensitivity, or

simply the elasticity matrix K with elements Kij given by

Kijðx1; . . . ; xr; xrþ1 . . . xn; l1; . . . ; lmÞ �
@ log xi
@ log lj

¼
lj

xi

@xi
@lj
¼
lj

xi
Sij: ð4Þ

The logarithm in the definition of the elasticity matrix provides a clear-cut interpretation of its

coefficients. Thus, if Kij = 1, a 10% increase in λj implies a 10% increase in xi, and if Kij = 0.5,

that very same increase in λj translates only to a 5% increase in xi.
For Eq (1), the elasticity matrix would be simply a 1 × 2 matrix,

K ¼ ðK11 K12Þ;

with

K11 �
l1

x
@x
@l1

; and K12 �
l2

x
@x
@l2

: ð5Þ

We now propose to multiply λ1 with a generic scale factor u, and to divide λ2 by the same

factor, such that the solution remains invariant. Deriving the scaled solution of Eq (2) with

respect to that scale factor u, and by the chain rule,

dx
du
¼ 0 ðas u is arbitraryÞ ð6Þ
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and, also,

dxðul1; l2=u; tÞ
du

¼
@x
@l1

l1 �
l2

u2

@x
@l2

¼ 0 ð7Þ

where the last equality follows from Eq (6)

Rearranging Eq (7) and dividing by x,

l1

x
@x
@l1

¼
l2

u2x
@x
@l2

) K11 ¼
1

u2
K12; ð8Þ

so both columns of the elasticity matrix are linearly dependent and, accordingly, λ1 and λ2 are

unidentifiable. In this particular case, the exact solution confirms this result:

K11 ¼ K12 ¼ l1l2t:

In this case we had complete knowledge of the solution, and consequently, it was straight-

forward to find the right way to introduce the scaling u. Fortunately, this simple scaling calcu-

lation can also be performed directly on Eq (1). Introducing two unknown scaling factors, u1

and u2, into that equation,

dx
dt
¼ � u1l1u2l2x :

Requiring that this remains identical (or, more formally, invariant) to Eq (1), i.e., λ1λ2 x = u1λ1

u2λ2x, we conclude that u1 u2 = 1. The fact that u1 and u2 cannot be solved individually, also

means that the real values of λ1 and λ2 cannot be determined, namely both parameters are

unidentifiable.

Next consider a death model with immigration:

dx
dt
¼ l1 � l2x: ð9Þ

In this case, to leave the system invariant we need to find u1 and u2 such that

l1 � l2xðtÞ ¼ u1l1 � u2l2xðtÞ

for all values of x at any time. Rearranging the latter equation,

ð1 � u1Þl1 ¼ ð1 � u2Þl2xðtÞ;

where the left-hand side of the last equation is a constant and the right-hand side depends on

time. Hence the only possible solution to the latter equation is u1 = u2 = 1 implying that both

λ1 and λ2 are locally identifiable. Notice the difference with the preceding case, Eq (1), in

which an infinite number of combinations of the scaling factors satisfy the invariance

condition.

These simple examples illustrate how scaling invariance of the model equations can be used

to determine whether the parameters are unidentifiable or not. We prove this result more rig-

orously in S1 Text.
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Description of the method

Let us define a general ODE model characterized by the time evolution of n variables, xi(t),
depending on m parameters λj,

dxi
dt
¼ fiðx1; . . . ; xr; xrþ1 . . . xn; l1; . . . ; lmÞ i ¼ 1; . . . ; n ; ð10Þ

xið0Þ ¼ xi;0; i ¼ 1; . . . ; n ; ð11Þ

where the functions fi depend on the specific details of the problem at hand and xi,0 are the ini-

tial conditions. We need to distinguish between those variables that can be observed (mea-

sured) in the experiment, x1 . . . xr, and those which cannot (they are often referred to as latent
variables), xr+1 . . . xn.

As we will prove below, the simplicity of our method relies on the ability to decompose the

functions fi as a sum of M functional independent summands, fik,

fiðx1; . . . ; xr; xrþ1 . . . xn; l1; . . . ; lmÞ ¼
XM

k¼1

fikð~xk;
~lkÞ; ð12Þ

having the property that fik is functionally independent of fil for every k 6¼ l. For brevity, ~xk;
~lk

denote the subset of variables and parameters included in the function fik.
The notion of linear independent functions and how to test it is summarized in S1 Text.

However, a simple definition would be: If f1(x1, x2, . . .), . . ., fn(x1, x2, . . .) are linearly indepen-

dent functions, then the only solution of the equation

Xn

i¼1

aifiðx1; x2; . . .Þ ¼ 0 ð13Þ

is a1 = . . . = an = 0.

Typical examples of functionally independent functions are summarized in Table 1. For

instance, f11 = ax1, f12 = bx1x3, f13 = (c + x4)−1 are functionally independent, whereas examples

of dependent functions would be f11 = ax1x2 and f12 = bx1x2. Note that it is not required that fij
and fkj are independent (as they appear in different equations). For instance, in the example in

Eq (9) can be decomposed in polynomials of degree 0 (a constant) and 1 (a linear function),

namely

f11 ¼ l1 ; and f12 ¼ � l2x :

We summarize our method in Box 1.

Table 1. A collection of frequent linear independent functions: All the functions listed in the Table are indepen-

dent to each other (of the same or different type). We assume that λ1 6¼ λ2 in all of the cases.

Type Examples

Polynomial (one variable) x0, x, x2, x3, . . .

Polynomial (more than one variable) x1x2; x2
1
x2; x1x2x3; . . .

Rational 1

lþx1
;

x1

lþx1
; 1

x1þx2
; 1

l1þx1þx2
; 1

ðlþx1Þ
2 ; . . .

Exponential el1x1 ; el2x1 ; el1x2

Sigmoid 1

l1þe� l1x1
; 1

l1þe� l1x2
; 1

l1þe� l2x1
; 1

ðl1þe� l1x1 Þ
2 ; . . .

Trigonometric sin λ1x1, sin λ1x2 sin λ2x1, cos λ1x1, tan λ1x2, . . .

https://doi.org/10.1371/journal.pcbi.1008248.t001
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In summary, our method reduces the complexity of finding identifiable parameters to

finding which scaling factors do not satisfy the trivial solution ui = 1. In the literature, when

a scaling factor is related to one of the latent variables xr+1 . . . xn, if uxk
¼ 1, then xk is said to

be observable [10]. Thus, our method addresses at the same time identifiability and observ-

ability. Additionally, irreducible equations involving two or more parameters provide the

so-called identifiable groups of variables that cannot be fitted independently. In the case of

the pure death model above, the identifiability equation ul1
ul2
¼ 1 is a signature of the

unidentifiable group λ1λ2. This is interesting as groups involving latent variables (for

instance, uxj
ulk) would inform future experiments aimed to observe that variable and decou-

ple that group.

It is also worth mentioning that our identifiability test (illustrated by example in S1 Text)

provides a simple way to find a type of symmetry that is related to scale invariance. More

sophisticated methods have been introduced in the literature to address other symmetries

[37–39] using the theory of Lie group transformations, however, that approach involves com-

plex calculations assisted by symbolic computations.

Results

The main result

Now we are equipped to prove the main result of the paper. We will proceed in two steps:

firstly, we will show how Eq (14) is translated into a set of equations for the scaling factors u.

Box 1: Summary of the scale invariance local structural identifiability
method introduced in this work

1. Scale all parameters and all unobserved variables by unknown scaling factors, u:

li ! ulili i ¼ 1; . . . ;m

xj ! uxj
xj j ¼ r þ 1; . . . ; n

and substitute them into Eq (15) below.

2. Equate each functionally independent function, fik, to its scaled version. Namely,

fikð~x; ~lÞ ¼
1

uxi

fikðu~x~x; u~l
~lÞ ð14Þ

where uxi
¼ 1 for 1� i� r and the prefactor in the right-hand side of the equation

comes from the scaling of
dxi
dt ! uxi

dxi
dt . From Eq (11) it follows that uxi

¼ uxi;0
.

3. From Eq (14), find combinations of the scaling factors u that leave the system

invariant. Hereafter, we will denote these as the identifiability equations of the

model (see Eq (24) below).

4. Only the parameters λi with a solution uli ¼ 1 are identifiable. Only the variables,

xi with uxi
¼ 1 are observable. Otherwise, parameters whose scaling factors are

coupled, form identifiable groups but cannot be identified independently.
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Secondly, we will connect the elasticity matrix with the solution of the identifiability equations

and the identifiability of the parameters.

Consider a model described by a set of n ordinary differential equations (ODE)

dxi
dt
¼ fiðx1; . . . ; xr; xrþ1 . . . xn; l1; . . . ; lmÞ ¼

XM

k¼1

fikð~xk;
~lkÞ; ð15Þ

where fik is functionally independent of fil for every k 6¼ l (namely, they satisfy the generalized

Wronskian theorem; see S1 Text). For the sake of simplicity, we denote ~xk and ~lk the subset of

variables and parameters of function fik.
Motivated by Eqs (1)–(5), we seek for scaling of the parameters that leave the system invari-

ant. As we prove below, this invariance (or lack of) is related to the identifiability of the param-

eters. Hence, if we define the following scaling transformation:

li ! ulili; i ¼ 1; . . . ;m xj ! uxj
xj; j ¼ r þ 1; . . . ; n ð16Þ

(where the variables x1 . . . xr are unmodified as we can measure them in the experiment) we

can write the following set of re-scaled equations:

dxi
dt
¼
XM

k¼1

fikðu~xk
~xk; u~lk

~lkÞ; i ¼ 1; . . . ; r ð17Þ

xi ¼ xi;0; i ¼ 1; . . . ; r ð18Þ

uxi

dxi
dt
¼
XM

k¼1

fikðu~xk
~xk; u~lk

~lkÞ; i ¼ r þ 1; . . . ; n ð19Þ

uxi
xi ¼ uxi;0

xi;0; i ¼ r þ 1; . . . ; n ð20Þ

where M is the number of functional independent summands in the equation. It is convenient

to rewrite Eq (19) as

dxi
dt
¼

1

uxi

XM

k¼1

fikðu~xk
~xk; u~lk

~lkÞ; i ¼ r þ 1; . . . n ð21Þ

to perform the scale invariance analysis below in a simpler way.

If the solution is invariant under this transformation, then the right-hand sides of Eq (15)

and, consequently Eqs () should be equal. Besides, by the functional linear independence of

the functions fik we can split each summand. Thus,

fikð~xk;
~lkÞ ¼ fikðu~xk

~xk; u~lk
~lkÞ; i ¼ 1; . . . ; r ð22Þ

and

fikð~xk;
~lkÞ ¼

1

uxi

fikðu~xk
~xk; u~lk

~lkÞ; i ¼ r þ 1; . . . ; n ð23Þ

This new set of equations is much easier to solve than the one that we would obtain from Eqs

(17)–(19) (which would be equivalent to the so-called direct-test method [18]). Eqs (22) and

(23) admit the trivial solution u~xk
¼ u~lk

¼ 1. Alternatively, some of the parameters are
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functionally related to each other. Generically, they can be written as

ulk ¼ Fkðum1
; um2

; . . .Þ; ð24Þ

Note that, for each parameter k, the scaling ulk will depend only on a subset of all the scaling

factors m1, m2, . . . We denote Eq (24) the identifiability equations of the model. A third pos-

sibility would be that some scaling factors take fixed values different from 1. We discuss that

case below.

Let us now connect the identifiability equations with the concept of local structural iden-

tifiability. If we take the partial derivative of the following (invariant equation)

xiðx1; . . . ; xr; uxrþ1
xrþ1 . . . uxn

xn; ul1
l1; . . . ; ulmlmÞ ¼ xiðx1; . . . ; xr; xrþ1 . . . xn; l1; . . . ; lmÞ

with respect to ulk , by the chain rule, it follows that

@xi
@lk

lk þ
@xi
@m1

m1bm1k
þ
@xi
@m2

m2bm2k
þ . . . ¼ 0 ð25Þ

where, for convenience, we have defined

bmk �
@um

@ulk
¼

@Fk

@um

� �� 1

:

Finally, dividing Eq (25) by xi:

Kik þ bm1k
Kim1
þ bm2k

Kim2
þ . . . ¼ 0; ð26Þ

where Kim are the elements of the elasticity matrix defined in Eq (4). Eq (26) implies that Kik

can be written as a linear combination of other column(s) of the elasticity matrix. According

to our discussion in the Introduction (see also Refs. [11, 12]) this is means that λk is not

identifiable.

Summarising, for each parameter λk either ulk ¼ 1 or it is not identifiable. The adjective

“local” follows because the method stems on the continuity of the derivative of xi(t) with

respect to λk to derive Eq (25). Thus, it is unable to capture any discrete transformations like,

for instance,

(

uc ! 1; ud ! 1;

(

uc !
d

c
; ud !

c
d

discussed for Model 8 in S1 Text and that, as we anticipated above, is the third possible solu-

tion of the identifiability Eq (24).
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Example: An unidentifiable nonlinear model [16]

Here we show how to apply our method to a nonlinear model introduced in Ref. [16] (this

model is mathematically equivalent to Model 2 in S1 Text).

_x1 ¼ l1x
2

1
þ l2x1x2; ð27Þ

_x2 ¼ l3x
2

1
þ l4x1x2; ð28Þ

x1ð0Þ ¼ 0; ð29Þ

x2ð0Þ ¼ 0; ð30Þ

x1 is observed ð31Þ

Following Box 1:

1. We re-scale the non-observed variables and parameters:

x2 ! ux2
x2

l1 ! ul1
l1

l2 ! ul2
l2

l3 ! ul3
l3

l4 ! ul4
l4

8
>>>>>>>>>>><

>>>>>>>>>>>:

; ð32Þ

as x1 is observed (so, ux1
¼ 1).

2. We define the functional linear independent functions:

f11 ¼ l1x2
1

f12 ¼ l2x1x2 f21 ¼ l3x2
1

f22 ¼ l4x1x2;

and from Eq (14)

ul1
l1x2

1
¼ l1x2

1
ul2

ux2
l2x1x2 ¼ l2x1x2

and

ul3

ux2

l3x
2

1
¼ l3x

2

1
ul4
l4x1x2 ¼ l4x1x2

respectively.

3. Manipulating the previous equations:

ul1
l1x

2

1
¼ l1x

2

1
ul2

ux2
l2x1x2 ¼ l2x1x2

and

ul3

ux2

l3x
2

1
¼ l3x

2

1
ul4
l4x1x2 ¼ l4x1x2
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Hence, the identifiability equations are

ul1
¼ 1

ul2
ux2
¼ 1

ul3
¼ ux2

ul4
¼ 1

8
>>>>>>><

>>>>>>>:

ð33Þ

4. As the system has more than 1 solution besides the trivial (ul1
¼ ul2

¼ . . . ¼ 1) it follows

that the model is unidentifiable. Moreover, Eq (33) allows one to conclude that (i) if x2 were

to be observed (ux2
¼ 1), all the parameters would be identifiable, and (ii) the combination

ul2
ul3

is identifiable as, for any scale of x2, the condition ul2
ul3
¼ 1 is always fulfilled and

hence λ2λ3 is an identifiable group.

Comparison with other methods

We have applied the method outlined in Box 1 to 13 different models defined and analyzed in

detail in S1 Text. The choice is based on two criteria: on the one hand, models 1-5 are included

for pedagogical purposes. They are simple enough to illustrate the novel method and most of

the existing methods also provide the same definite answers. Models 6-13 were chosen because

they have previously been analyzed using the methods summarized in the Introduction and in

Table 2. This allows us to put our method in direct competition with those methods and to

highlight their merits and limitations.

The results of this comparison are summarized in Table 3, which is an extension of a similar

table in Ref. [7]. The column Not Conclusive/Not Applicable groups different situations in

which a particular method do not provide a conclusive answer (or no answer at all). In general,

it captures the fact that many of these methods are computationally demanding (after several

hours they do not provide any answer) or that the computations do not converge numerically.

For instance, in some implementations of the Differential Algebra method [32], when the

number of observables is lower than the number of parameters, the computation requires the

evaluation of high-order derivatives of the functions fi in Eq (11) what can be computationally

prohibitive. In other cases, some criterion of applicability is not fulfilled (for instance, the

observability rank condition for the similarity transformation method) or the method cannot

Table 2. List of current methods testing structural identifiability. We introduce here the acronyms referred to in Table 3.

Method Acronym Main Ref. Pros Cons

Direct test method DT [18, 20] Simple Limited

Implicit function theorem IFT [26] Software Limited

Taylor series approach TS [14] Simple Computationally Expensive

Generating series approach GS [13] Simple, Software Computationally Expensive

Similarity Transformation ST [16] Software Computationally Expensive

Differential algebra DA [29, 32, 34] Software, Conclusive Limited, Comp. Expensive

Reaction Network theory RNT [40, 41] Simple, Hybrid with other Only reaction systems

STRIKE-GOLDD SG [9, 22] Powerful, Software Computationally Expensive

Scaling Invariance Method SIM This work Simple, Widely applicable Only Local Identifiability

https://doi.org/10.1371/journal.pcbi.1008248.t002

PLOS COMPUTATIONAL BIOLOGY Testing structural identifiability by a simple scaling method

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008248 November 3, 2020 10 / 15

https://doi.org/10.1371/journal.pcbi.1008248.t002
https://doi.org/10.1371/journal.pcbi.1008248


be solved if it involves the solution of a high-degree polynomial or transcendental equations

(Direct Test method). These limitations are summarized succinctly in the Cons column in

Table 2.

Discussion and conclusions

Table 3 shows that our method can handle any complex model and provides a local structural

identifiability criterion that is compatible with those methods capable of producing an answer.

Thus, our method is widely applicable. It is worth noting that in several cases where our scaling

method comes with a conclusive answer, other more complicated methods cannot address

those cases (rightmost column in the table). As any global structural identifiable model is also

local, our results are compatible with those methods that can address that difference.

Table 3 also highlights the huge discrepancies among methods. These conflicting conclu-

sions are rather discomforting and deserve deeper clarification. The main source of conflict

arises when comparing the Taylor series and the Generating series methods, as they transform

the original problem into an approximate one. Also, they incorporate (rightly) the initial con-

ditions into the computation while some implementations of the Differential algebra (DA)

method do not (see the DAISY implementation [32]), what can lead to different conclusions.

Regarding the DA method, in some instances random values are used for the parameters to

handle the complexity of some models what, if those parameters are not properly explored,

can lead to wrong conclusions.

So overall, we can distinguish three sources of discrepancy: local vs global structural iden-

tifiability (which is not an incompatibility as Global implies Local and our method is restricted

to the latter); conclusive vs not conclusive (which favors our method as it is not limited by any

computational constraint) and; the most concerning, incompatible conclusions. Here, our

method is compatible with the conclusions of DA and hybrid methods such as Reaction net-

work theory or STRIKE-GOLDD. As we mentioned in the introduction, Differential Algebra

methods (and extensions) are considered the most reliable (when computable) and our

method either agrees, or provides an answer where the other methods cannot. The discrepan-

cies with other methods are due to limitations or uncontrolled approximations when applied

to complex problems and have been already raised by other authors [7].

Table 3. Summary of models compared in the literature: The number in brackets in the Model Name column corresponds to the number of observed variables.

Model Numbers correspond to those in Table A in S1 Text. The acronyms for the methods are summarized in Table 2. This table is an extension of Table 1 in Ref. [7].

Model name Main Ref. Model Number Global Struct. Id. Local Struct. Id. Unidentifiable Not Conclusive Not Applicable

Goodwin model (1) [7] 6 SG,SIM TS,GS,ST,DT,DA,IFT,RNT

Goodwin model (all) [7] 6bis TS,GS,IFT,RNT DA,SG,SIM ST,DT

Circadian clock model [42] 7 TS,GS,RNT,SG,SIM ST,DT,DA,IFT

HIV model (1) [6, 43] 8 All

HIV model (2) [6, 43] 8bis DA,IFT,RNT TS,GS,SIM DT,ST

Linear HIV model (1) [6, 43, 44] 8ter DA,IFT,RNT,SG DT,ST,TS,GS,SIM

Glycolysis model [45] 9 GS,DA,RNT TS,SIM ST,DT

High dimensional model [42] 10 TS,GS,DA,RNT IFT,SIM ST,DT

NF-κmodel B (1) [46] 11 SG, SIM TS,GS,ST,DT,DA,IFT,RNT

NF-κmodel B (2) [46] 11bis GS,RNT TS,SIM SG ST,DT,DA,IFT

Pharmacokinetics model (1) [47] 12 TS,GS,RNT,SG,SIM ST,DT,DA,IFT

Pharmacokinetics model (2) [47] 12bis DA GS,SG,SIM ST,DT,IFT,RNT

Within-host virus model [27] 13 DA SIM TS,GS,ST,DT,IFT,RANT

https://doi.org/10.1371/journal.pcbi.1008248.t003
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From viewpoint of performance, it is worth emphasizing that we have performed our test

by hand, as illustrated in S1 Text, and that, after some practice (and using some interesting

motifs as having sums of different parameters, or the coefficients related to diagonal terms in

the system of equations) the calculations can be made in a few minutes. This contrasts with the

most sophisticated methods that, by hand, can fill several pages [27] or take hours using sym-

bolic computation packages.

Together, broad applicability and simplicity are the main signatures of our method and this

may attract the interest of mathematical modelers and spread the culture of checking structural

identifiability as a mandatory step when fitting experimental data.

We would like to highlight a connection with the so-called Buckingham-P theorem of

dimensional analysis [48]. In some sense, the scale invariance property is related to the princi-

ple of dimensional homogeneity, i.e., the constraints on the functional form of the indepen-

dent variables with the parameters. Our identifiability equations are therefore similar to

finding the so-called P-groups in the theorem.

A limitation of the method is that it is restricted to testing local identifiability. This is

implicit in the differentiability of the elasticity matrix which, by definition, is a local operation.

Discrete symmetries are not captured, and more sophisticated methods (based on Lie group

transformations [39]) are required. However, simple manipulation of the equations to remove

the latent variables can improve the explanatory power of the method and might capture those

discrete symmetries (see Sec. 3.8 of S1 Text). We leave that extension for future developments.

Finally, in this work we have chosen to solve the scaling factor equations directly as it is

easy to perform with pen and paper. However, if we were to redefine the scaling factors as

ui ¼ ewi , the new factors wi would obey a linear system of homogeneous equations. It is there-

fore expected that the problem of identifiability is related to the rank of the matrix defining the

linear system of equations. In that regard, the theorems presented in S1 Text could be supple-

mented with generic results on homogeneous systems of equations. Thus, our results provide a

solid ground for the method and indicate a venue for further development in other systems

like delay-differential or partial differential equations.

Another open question is the identifiability problem of mixed-effect models, where param-

eters are not fixed quantities for each observation but, rather, they are drawn from a meta-dis-
tribution linking different subjects [49]. For instance, if one considers the simple model

_x ¼ ðaþ bÞx;

a and b are not identifiable. However, if they are assumed to be drawn from, say, two exponen-

tial distributions with different means μa and μb, then the joint distribution for λ� a − b is

given by

p l; ma; mbð Þ ¼
mamb
ma � mb

e� mbl � e� mal
� �

;

which is formed by two linearly independent functions (if μa 6¼ μb),� e� mbl and� e� mal so μa
and μb are identifiable as the unique solution of the identifiability equations

umbmaumbmb
umbma � umbmb

e� umb mbl ¼
mamb
ma � mb

e� mbl

is umb ¼ 1 (because of the exponential). This kind of models need further analysis but they

seem to be amenable to our approach.
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Finally, while we emphasize the simplicity of the method, it is also amenable to be imple-

mented using symbolic computation packages, particularly for systems with a large number of

equations/reactions.

Supporting information

S1 Text. In S1 Text we collect the theorems sustaining the method and a catalogue of mod-

els with a detailed computation of the identifiability equations that were used to build

Table 3.

(TEX)
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